isl_tab_compute_reduced_basis: handle unbounded directions in initial basis
[platform/upstream/isl.git] / basis_reduction_templ.c
1 #include <stdlib.h>
2 #include "isl_basis_reduction.h"
3
4 static void save_alpha(GBR_LP *lp, int first, int n, GBR_type *alpha)
5 {
6         int i;
7
8         for (i = 0; i < n; ++i)
9                 GBR_lp_get_alpha(lp, first + i, &alpha[i]);
10 }
11
12 /* Compute a reduced basis for the set represented by the tableau "tab".
13  * tab->basis, must be initialized by the calling function to an affine
14  * unimodular basis, is updated to reflect the reduced basis.
15  * The first tab->n_zero rows of the basis (ignoring the constant row)
16  * are assumed to correspond to equalities and are left untouched.
17  * tab->n_zero is updated to reflect any additional equalities that
18  * have been detected in the first rows of the new basis.
19  * The final tab->n_unbounded rows of the basis are assumed to correspond
20  * to unbounded directions and are also left untouched.
21  * In particular this means that the remaining rows are assumed to
22  * correspond to bounded directions.
23  *
24  * This function implements the algorithm described in
25  * "An Implementation of the Generalized Basis Reduction Algorithm
26  *  for Integer Programming" of Cook el al. to compute a reduced basis.
27  * We use \epsilon = 1/4.
28  *
29  * If ctx->gbr_only_first is set, the user is only interested
30  * in the first direction.  In this case we stop the basis reduction when
31  * the width in the first direction becomes smaller than 2.
32  */
33 struct isl_tab *isl_tab_compute_reduced_basis(struct isl_tab *tab)
34 {
35         unsigned dim;
36         struct isl_ctx *ctx;
37         struct isl_mat *B;
38         int unbounded;
39         int i;
40         GBR_LP *lp = NULL;
41         GBR_type F_old, alpha, F_new;
42         int row;
43         isl_int tmp;
44         struct isl_vec *b_tmp;
45         GBR_type *F = NULL;
46         GBR_type *alpha_buffer[2] = { NULL, NULL };
47         GBR_type *alpha_saved;
48         GBR_type F_saved;
49         int use_saved = 0;
50         isl_int mu[2];
51         GBR_type mu_F[2];
52         GBR_type two;
53         GBR_type one;
54         int empty = 0;
55         int fixed = 0;
56         int fixed_saved = 0;
57         int mu_fixed[2];
58         int n_bounded;
59
60         if (!tab)
61                 return NULL;
62
63         ctx = tab->mat->ctx;
64         dim = tab->n_var;
65         B = tab->basis;
66         if (!B)
67                 return tab;
68
69         n_bounded = dim - tab->n_unbounded;
70         if (n_bounded <= tab->n_zero + 1)
71                 return tab;
72
73         isl_int_init(tmp);
74         isl_int_init(mu[0]);
75         isl_int_init(mu[1]);
76
77         GBR_init(alpha);
78         GBR_init(F_old);
79         GBR_init(F_new);
80         GBR_init(F_saved);
81         GBR_init(mu_F[0]);
82         GBR_init(mu_F[1]);
83         GBR_init(two);
84         GBR_init(one);
85
86         b_tmp = isl_vec_alloc(ctx, dim);
87         if (!b_tmp)
88                 goto error;
89
90         F = isl_alloc_array(ctx, GBR_type, n_bounded);
91         alpha_buffer[0] = isl_alloc_array(ctx, GBR_type, n_bounded);
92         alpha_buffer[1] = isl_alloc_array(ctx, GBR_type, n_bounded);
93         alpha_saved = alpha_buffer[0];
94
95         if (!F || !alpha_buffer[0] || !alpha_buffer[1])
96                 goto error;
97
98         for (i = 0; i < n_bounded; ++i) {
99                 GBR_init(F[i]);
100                 GBR_init(alpha_buffer[0][i]);
101                 GBR_init(alpha_buffer[1][i]);
102         }
103
104         GBR_set_ui(two, 2);
105         GBR_set_ui(one, 1);
106
107         lp = GBR_lp_init(tab);
108         if (!lp)
109                 goto error;
110
111         i = tab->n_zero;
112
113         GBR_lp_set_obj(lp, B->row[1+i]+1, dim);
114         ctx->stats->gbr_solved_lps++;
115         unbounded = GBR_lp_solve(lp);
116         isl_assert(ctx, !unbounded, goto error);
117         GBR_lp_get_obj_val(lp, &F[i]);
118
119         if (GBR_lt(F[i], one)) {
120                 if (!GBR_is_zero(F[i])) {
121                         empty = GBR_lp_cut(lp, B->row[1+i]+1);
122                         if (empty)
123                                 goto done;
124                         GBR_set_ui(F[i], 0);
125                 }
126                 tab->n_zero++;
127         }
128
129         do {
130                 if (i+1 == tab->n_zero) {
131                         GBR_lp_set_obj(lp, B->row[1+i+1]+1, dim);
132                         ctx->stats->gbr_solved_lps++;
133                         unbounded = GBR_lp_solve(lp);
134                         isl_assert(ctx, !unbounded, goto error);
135                         GBR_lp_get_obj_val(lp, &F_new);
136                         fixed = GBR_lp_is_fixed(lp);
137                         GBR_set_ui(alpha, 0);
138                 } else
139                 if (use_saved) {
140                         row = GBR_lp_next_row(lp);
141                         GBR_set(F_new, F_saved);
142                         fixed = fixed_saved;
143                         GBR_set(alpha, alpha_saved[i]);
144                 } else {
145                         row = GBR_lp_add_row(lp, B->row[1+i]+1, dim);
146                         GBR_lp_set_obj(lp, B->row[1+i+1]+1, dim);
147                         ctx->stats->gbr_solved_lps++;
148                         unbounded = GBR_lp_solve(lp);
149                         isl_assert(ctx, !unbounded, goto error);
150                         GBR_lp_get_obj_val(lp, &F_new);
151                         fixed = GBR_lp_is_fixed(lp);
152
153                         GBR_lp_get_alpha(lp, row, &alpha);
154
155                         if (i > 0)
156                                 save_alpha(lp, row-i, i, alpha_saved);
157
158                         GBR_lp_del_row(lp);
159                 }
160                 GBR_set(F[i+1], F_new);
161
162                 GBR_floor(mu[0], alpha);
163                 GBR_ceil(mu[1], alpha);
164
165                 if (isl_int_eq(mu[0], mu[1]))
166                         isl_int_set(tmp, mu[0]);
167                 else {
168                         int j;
169
170                         for (j = 0; j <= 1; ++j) {
171                                 isl_int_set(tmp, mu[j]);
172                                 isl_seq_combine(b_tmp->el,
173                                                 ctx->one, B->row[1+i+1]+1,
174                                                 tmp, B->row[1+i]+1, dim);
175                                 GBR_lp_set_obj(lp, b_tmp->el, dim);
176                                 ctx->stats->gbr_solved_lps++;
177                                 unbounded = GBR_lp_solve(lp);
178                                 isl_assert(ctx, !unbounded, goto error);
179                                 GBR_lp_get_obj_val(lp, &mu_F[j]);
180                                 mu_fixed[j] = GBR_lp_is_fixed(lp);
181                                 if (i > 0)
182                                         save_alpha(lp, row-i, i, alpha_buffer[j]);
183                         }
184
185                         if (GBR_lt(mu_F[0], mu_F[1]))
186                                 j = 0;
187                         else
188                                 j = 1;
189
190                         isl_int_set(tmp, mu[j]);
191                         GBR_set(F_new, mu_F[j]);
192                         fixed = mu_fixed[j];
193                         alpha_saved = alpha_buffer[j];
194                 }
195                 isl_seq_combine(B->row[1+i+1]+1, ctx->one, B->row[1+i+1]+1,
196                                 tmp, B->row[1+i]+1, dim);
197
198                 if (i+1 == tab->n_zero && fixed) {
199                         if (!GBR_is_zero(F[i+1])) {
200                                 empty = GBR_lp_cut(lp, B->row[1+i+1]+1);
201                                 if (empty)
202                                         goto done;
203                                 GBR_set_ui(F[i+1], 0);
204                         }
205                         tab->n_zero++;
206                 }
207
208                 GBR_set(F_old, F[i]);
209
210                 use_saved = 0;
211                 /* mu_F[0] = 4 * F_new; mu_F[1] = 3 * F_old */
212                 GBR_set_ui(mu_F[0], 4);
213                 GBR_mul(mu_F[0], mu_F[0], F_new);
214                 GBR_set_ui(mu_F[1], 3);
215                 GBR_mul(mu_F[1], mu_F[1], F_old);
216                 if (GBR_lt(mu_F[0], mu_F[1])) {
217                         B = isl_mat_swap_rows(B, 1 + i, 1 + i + 1);
218                         if (i > tab->n_zero) {
219                                 use_saved = 1;
220                                 GBR_set(F_saved, F_new);
221                                 fixed_saved = fixed;
222                                 GBR_lp_del_row(lp);
223                                 --i;
224                         } else {
225                                 GBR_set(F[tab->n_zero], F_new);
226                                 if (ctx->gbr_only_first && GBR_lt(F[tab->n_zero], two))
227                                         break;
228
229                                 if (fixed) {
230                                         if (!GBR_is_zero(F[tab->n_zero])) {
231                                                 empty = GBR_lp_cut(lp, B->row[1+tab->n_zero]+1);
232                                                 if (empty)
233                                                         goto done;
234                                                 GBR_set_ui(F[tab->n_zero], 0);
235                                         }
236                                         tab->n_zero++;
237                                 }
238                         }
239                 } else {
240                         GBR_lp_add_row(lp, B->row[1+i]+1, dim);
241                         ++i;
242                 }
243         } while (i < n_bounded - 1);
244
245         if (0) {
246 done:
247                 if (empty < 0) {
248 error:
249                         isl_mat_free(B);
250                         B = NULL;
251                 }
252         }
253
254         GBR_lp_delete(lp);
255
256         if (alpha_buffer[1])
257                 for (i = 0; i < n_bounded; ++i) {
258                         GBR_clear(F[i]);
259                         GBR_clear(alpha_buffer[0][i]);
260                         GBR_clear(alpha_buffer[1][i]);
261                 }
262         free(F);
263         free(alpha_buffer[0]);
264         free(alpha_buffer[1]);
265
266         isl_vec_free(b_tmp);
267
268         GBR_clear(alpha);
269         GBR_clear(F_old);
270         GBR_clear(F_new);
271         GBR_clear(F_saved);
272         GBR_clear(mu_F[0]);
273         GBR_clear(mu_F[1]);
274         GBR_clear(two);
275         GBR_clear(one);
276
277         isl_int_clear(tmp);
278         isl_int_clear(mu[0]);
279         isl_int_clear(mu[1]);
280
281         tab->basis = B;
282
283         return tab;
284 }
285
286 struct isl_mat *isl_basic_set_reduced_basis(struct isl_basic_set *bset)
287 {
288         struct isl_mat *basis;
289         struct isl_tab *tab;
290
291         isl_assert(bset->ctx, bset->n_eq == 0, return NULL);
292
293         tab = isl_tab_from_basic_set(bset);
294         tab->basis = isl_mat_identity(bset->ctx, 1 + tab->n_var);
295         tab = isl_tab_compute_reduced_basis(tab);
296         if (!tab)
297                 return NULL;
298
299         basis = isl_mat_copy(tab->basis);
300
301         isl_tab_free(tab);
302
303         return basis;
304 }