2 * Copyright 2006-2007 Universiteit Leiden
3 * Copyright 2008-2009 Katholieke Universiteit Leuven
5 * Use of this software is governed by the GNU LGPLv2.1 license
7 * Written by Sven Verdoolaege, Leiden Institute of Advanced Computer Science,
8 * Universiteit Leiden, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
9 * and K.U.Leuven, Departement Computerwetenschappen, Celestijnenlaan 200A,
10 * B-3001 Leuven, Belgium
14 #include <isl_ctx_private.h>
15 #include <isl_map_private.h>
16 #include "isl_basis_reduction.h"
18 static void save_alpha(GBR_LP *lp, int first, int n, GBR_type *alpha)
22 for (i = 0; i < n; ++i)
23 GBR_lp_get_alpha(lp, first + i, &alpha[i]);
26 /* Compute a reduced basis for the set represented by the tableau "tab".
27 * tab->basis, which must be initialized by the calling function to an affine
28 * unimodular basis, is updated to reflect the reduced basis.
29 * The first tab->n_zero rows of the basis (ignoring the constant row)
30 * are assumed to correspond to equalities and are left untouched.
31 * tab->n_zero is updated to reflect any additional equalities that
32 * have been detected in the first rows of the new basis.
33 * The final tab->n_unbounded rows of the basis are assumed to correspond
34 * to unbounded directions and are also left untouched.
35 * In particular this means that the remaining rows are assumed to
36 * correspond to bounded directions.
38 * This function implements the algorithm described in
39 * "An Implementation of the Generalized Basis Reduction Algorithm
40 * for Integer Programming" of Cook el al. to compute a reduced basis.
41 * We use \epsilon = 1/4.
43 * If ctx->opt->gbr_only_first is set, the user is only interested
44 * in the first direction. In this case we stop the basis reduction when
45 * the width in the first direction becomes smaller than 2.
47 struct isl_tab *isl_tab_compute_reduced_basis(struct isl_tab *tab)
55 GBR_type F_old, alpha, F_new;
58 struct isl_vec *b_tmp;
60 GBR_type *alpha_buffer[2] = { NULL, NULL };
61 GBR_type *alpha_saved;
82 gbr_only_first = ctx->opt->gbr_only_first;
88 n_bounded = dim - tab->n_unbounded;
89 if (n_bounded <= tab->n_zero + 1)
105 b_tmp = isl_vec_alloc(ctx, dim);
109 F = isl_alloc_array(ctx, GBR_type, n_bounded);
110 alpha_buffer[0] = isl_alloc_array(ctx, GBR_type, n_bounded);
111 alpha_buffer[1] = isl_alloc_array(ctx, GBR_type, n_bounded);
112 alpha_saved = alpha_buffer[0];
114 if (!F || !alpha_buffer[0] || !alpha_buffer[1])
117 for (i = 0; i < n_bounded; ++i) {
119 GBR_init(alpha_buffer[0][i]);
120 GBR_init(alpha_buffer[1][i]);
126 lp = GBR_lp_init(tab);
132 GBR_lp_set_obj(lp, B->row[1+i]+1, dim);
133 ctx->stats->gbr_solved_lps++;
134 unbounded = GBR_lp_solve(lp);
135 isl_assert(ctx, !unbounded, goto error);
136 GBR_lp_get_obj_val(lp, &F[i]);
138 if (GBR_lt(F[i], one)) {
139 if (!GBR_is_zero(F[i])) {
140 empty = GBR_lp_cut(lp, B->row[1+i]+1);
149 if (i+1 == tab->n_zero) {
150 GBR_lp_set_obj(lp, B->row[1+i+1]+1, dim);
151 ctx->stats->gbr_solved_lps++;
152 unbounded = GBR_lp_solve(lp);
153 isl_assert(ctx, !unbounded, goto error);
154 GBR_lp_get_obj_val(lp, &F_new);
155 fixed = GBR_lp_is_fixed(lp);
156 GBR_set_ui(alpha, 0);
159 row = GBR_lp_next_row(lp);
160 GBR_set(F_new, F_saved);
162 GBR_set(alpha, alpha_saved[i]);
164 row = GBR_lp_add_row(lp, B->row[1+i]+1, dim);
165 GBR_lp_set_obj(lp, B->row[1+i+1]+1, dim);
166 ctx->stats->gbr_solved_lps++;
167 unbounded = GBR_lp_solve(lp);
168 isl_assert(ctx, !unbounded, goto error);
169 GBR_lp_get_obj_val(lp, &F_new);
170 fixed = GBR_lp_is_fixed(lp);
172 GBR_lp_get_alpha(lp, row, &alpha);
175 save_alpha(lp, row-i, i, alpha_saved);
177 if (GBR_lp_del_row(lp) < 0)
180 GBR_set(F[i+1], F_new);
182 GBR_floor(mu[0], alpha);
183 GBR_ceil(mu[1], alpha);
185 if (isl_int_eq(mu[0], mu[1]))
186 isl_int_set(tmp, mu[0]);
190 for (j = 0; j <= 1; ++j) {
191 isl_int_set(tmp, mu[j]);
192 isl_seq_combine(b_tmp->el,
193 ctx->one, B->row[1+i+1]+1,
194 tmp, B->row[1+i]+1, dim);
195 GBR_lp_set_obj(lp, b_tmp->el, dim);
196 ctx->stats->gbr_solved_lps++;
197 unbounded = GBR_lp_solve(lp);
198 isl_assert(ctx, !unbounded, goto error);
199 GBR_lp_get_obj_val(lp, &mu_F[j]);
200 mu_fixed[j] = GBR_lp_is_fixed(lp);
202 save_alpha(lp, row-i, i, alpha_buffer[j]);
205 if (GBR_lt(mu_F[0], mu_F[1]))
210 isl_int_set(tmp, mu[j]);
211 GBR_set(F_new, mu_F[j]);
213 alpha_saved = alpha_buffer[j];
215 isl_seq_combine(B->row[1+i+1]+1, ctx->one, B->row[1+i+1]+1,
216 tmp, B->row[1+i]+1, dim);
218 if (i+1 == tab->n_zero && fixed) {
219 if (!GBR_is_zero(F[i+1])) {
220 empty = GBR_lp_cut(lp, B->row[1+i+1]+1);
223 GBR_set_ui(F[i+1], 0);
228 GBR_set(F_old, F[i]);
231 /* mu_F[0] = 4 * F_new; mu_F[1] = 3 * F_old */
232 GBR_set_ui(mu_F[0], 4);
233 GBR_mul(mu_F[0], mu_F[0], F_new);
234 GBR_set_ui(mu_F[1], 3);
235 GBR_mul(mu_F[1], mu_F[1], F_old);
236 if (GBR_lt(mu_F[0], mu_F[1])) {
237 B = isl_mat_swap_rows(B, 1 + i, 1 + i + 1);
238 if (i > tab->n_zero) {
240 GBR_set(F_saved, F_new);
242 if (GBR_lp_del_row(lp) < 0)
246 GBR_set(F[tab->n_zero], F_new);
247 if (gbr_only_first && GBR_lt(F[tab->n_zero], two))
251 if (!GBR_is_zero(F[tab->n_zero])) {
252 empty = GBR_lp_cut(lp, B->row[1+tab->n_zero]+1);
255 GBR_set_ui(F[tab->n_zero], 0);
261 GBR_lp_add_row(lp, B->row[1+i]+1, dim);
264 } while (i < n_bounded - 1);
278 for (i = 0; i < n_bounded; ++i) {
280 GBR_clear(alpha_buffer[0][i]);
281 GBR_clear(alpha_buffer[1][i]);
284 free(alpha_buffer[0]);
285 free(alpha_buffer[1]);
299 isl_int_clear(mu[0]);
300 isl_int_clear(mu[1]);
307 /* Compute an affine form of a reduced basis of the given basic
308 * non-parametric set, which is assumed to be bounded and not
309 * include any integer divisions.
310 * The first column and the first row correspond to the constant term.
312 * If the input contains any equalities, we first create an initial
313 * basis with the equalities first. Otherwise, we start off with
314 * the identity matrix.
316 struct isl_mat *isl_basic_set_reduced_basis(struct isl_basic_set *bset)
318 struct isl_mat *basis;
324 if (isl_basic_set_dim(bset, isl_dim_div) != 0)
325 isl_die(bset->ctx, isl_error_invalid,
326 "no integer division allowed", return NULL);
327 if (isl_basic_set_dim(bset, isl_dim_param) != 0)
328 isl_die(bset->ctx, isl_error_invalid,
329 "no parameters allowed", return NULL);
331 tab = isl_tab_from_basic_set(bset);
336 tab->basis = isl_mat_identity(bset->ctx, 1 + tab->n_var);
339 unsigned nvar = isl_basic_set_total_dim(bset);
340 eq = isl_mat_sub_alloc(bset->ctx, bset->eq, 0, bset->n_eq,
342 eq = isl_mat_left_hermite(eq, 0, NULL, &tab->basis);
343 tab->basis = isl_mat_lin_to_aff(tab->basis);
344 tab->n_zero = bset->n_eq;
347 tab = isl_tab_compute_reduced_basis(tab);
351 basis = isl_mat_copy(tab->basis);