2 * Copyright 2006-2007 Universiteit Leiden
3 * Copyright 2008-2009 Katholieke Universiteit Leuven
5 * Use of this software is governed by the GNU LGPLv2.1 license
7 * Written by Sven Verdoolaege, Leiden Institute of Advanced Computer Science,
8 * Universiteit Leiden, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
9 * and K.U.Leuven, Departement Computerwetenschappen, Celestijnenlaan 200A,
10 * B-3001 Leuven, Belgium
14 #include <isl_ctx_private.h>
15 #include <isl_map_private.h>
16 #include <isl_options_private.h>
17 #include "isl_basis_reduction.h"
19 static void save_alpha(GBR_LP *lp, int first, int n, GBR_type *alpha)
23 for (i = 0; i < n; ++i)
24 GBR_lp_get_alpha(lp, first + i, &alpha[i]);
27 /* Compute a reduced basis for the set represented by the tableau "tab".
28 * tab->basis, which must be initialized by the calling function to an affine
29 * unimodular basis, is updated to reflect the reduced basis.
30 * The first tab->n_zero rows of the basis (ignoring the constant row)
31 * are assumed to correspond to equalities and are left untouched.
32 * tab->n_zero is updated to reflect any additional equalities that
33 * have been detected in the first rows of the new basis.
34 * The final tab->n_unbounded rows of the basis are assumed to correspond
35 * to unbounded directions and are also left untouched.
36 * In particular this means that the remaining rows are assumed to
37 * correspond to bounded directions.
39 * This function implements the algorithm described in
40 * "An Implementation of the Generalized Basis Reduction Algorithm
41 * for Integer Programming" of Cook el al. to compute a reduced basis.
42 * We use \epsilon = 1/4.
44 * If ctx->opt->gbr_only_first is set, the user is only interested
45 * in the first direction. In this case we stop the basis reduction when
46 * the width in the first direction becomes smaller than 2.
48 struct isl_tab *isl_tab_compute_reduced_basis(struct isl_tab *tab)
56 GBR_type F_old, alpha, F_new;
59 struct isl_vec *b_tmp;
61 GBR_type *alpha_buffer[2] = { NULL, NULL };
62 GBR_type *alpha_saved;
83 gbr_only_first = ctx->opt->gbr_only_first;
89 n_bounded = dim - tab->n_unbounded;
90 if (n_bounded <= tab->n_zero + 1)
106 b_tmp = isl_vec_alloc(ctx, dim);
110 F = isl_alloc_array(ctx, GBR_type, n_bounded);
111 alpha_buffer[0] = isl_alloc_array(ctx, GBR_type, n_bounded);
112 alpha_buffer[1] = isl_alloc_array(ctx, GBR_type, n_bounded);
113 alpha_saved = alpha_buffer[0];
115 if (!F || !alpha_buffer[0] || !alpha_buffer[1])
118 for (i = 0; i < n_bounded; ++i) {
120 GBR_init(alpha_buffer[0][i]);
121 GBR_init(alpha_buffer[1][i]);
127 lp = GBR_lp_init(tab);
133 GBR_lp_set_obj(lp, B->row[1+i]+1, dim);
134 ctx->stats->gbr_solved_lps++;
135 unbounded = GBR_lp_solve(lp);
136 isl_assert(ctx, !unbounded, goto error);
137 GBR_lp_get_obj_val(lp, &F[i]);
139 if (GBR_lt(F[i], one)) {
140 if (!GBR_is_zero(F[i])) {
141 empty = GBR_lp_cut(lp, B->row[1+i]+1);
150 if (i+1 == tab->n_zero) {
151 GBR_lp_set_obj(lp, B->row[1+i+1]+1, dim);
152 ctx->stats->gbr_solved_lps++;
153 unbounded = GBR_lp_solve(lp);
154 isl_assert(ctx, !unbounded, goto error);
155 GBR_lp_get_obj_val(lp, &F_new);
156 fixed = GBR_lp_is_fixed(lp);
157 GBR_set_ui(alpha, 0);
160 row = GBR_lp_next_row(lp);
161 GBR_set(F_new, F_saved);
163 GBR_set(alpha, alpha_saved[i]);
165 row = GBR_lp_add_row(lp, B->row[1+i]+1, dim);
166 GBR_lp_set_obj(lp, B->row[1+i+1]+1, dim);
167 ctx->stats->gbr_solved_lps++;
168 unbounded = GBR_lp_solve(lp);
169 isl_assert(ctx, !unbounded, goto error);
170 GBR_lp_get_obj_val(lp, &F_new);
171 fixed = GBR_lp_is_fixed(lp);
173 GBR_lp_get_alpha(lp, row, &alpha);
176 save_alpha(lp, row-i, i, alpha_saved);
178 if (GBR_lp_del_row(lp) < 0)
181 GBR_set(F[i+1], F_new);
183 GBR_floor(mu[0], alpha);
184 GBR_ceil(mu[1], alpha);
186 if (isl_int_eq(mu[0], mu[1]))
187 isl_int_set(tmp, mu[0]);
191 for (j = 0; j <= 1; ++j) {
192 isl_int_set(tmp, mu[j]);
193 isl_seq_combine(b_tmp->el,
194 ctx->one, B->row[1+i+1]+1,
195 tmp, B->row[1+i]+1, dim);
196 GBR_lp_set_obj(lp, b_tmp->el, dim);
197 ctx->stats->gbr_solved_lps++;
198 unbounded = GBR_lp_solve(lp);
199 isl_assert(ctx, !unbounded, goto error);
200 GBR_lp_get_obj_val(lp, &mu_F[j]);
201 mu_fixed[j] = GBR_lp_is_fixed(lp);
203 save_alpha(lp, row-i, i, alpha_buffer[j]);
206 if (GBR_lt(mu_F[0], mu_F[1]))
211 isl_int_set(tmp, mu[j]);
212 GBR_set(F_new, mu_F[j]);
214 alpha_saved = alpha_buffer[j];
216 isl_seq_combine(B->row[1+i+1]+1, ctx->one, B->row[1+i+1]+1,
217 tmp, B->row[1+i]+1, dim);
219 if (i+1 == tab->n_zero && fixed) {
220 if (!GBR_is_zero(F[i+1])) {
221 empty = GBR_lp_cut(lp, B->row[1+i+1]+1);
224 GBR_set_ui(F[i+1], 0);
229 GBR_set(F_old, F[i]);
232 /* mu_F[0] = 4 * F_new; mu_F[1] = 3 * F_old */
233 GBR_set_ui(mu_F[0], 4);
234 GBR_mul(mu_F[0], mu_F[0], F_new);
235 GBR_set_ui(mu_F[1], 3);
236 GBR_mul(mu_F[1], mu_F[1], F_old);
237 if (GBR_lt(mu_F[0], mu_F[1])) {
238 B = isl_mat_swap_rows(B, 1 + i, 1 + i + 1);
239 if (i > tab->n_zero) {
241 GBR_set(F_saved, F_new);
243 if (GBR_lp_del_row(lp) < 0)
247 GBR_set(F[tab->n_zero], F_new);
248 if (gbr_only_first && GBR_lt(F[tab->n_zero], two))
252 if (!GBR_is_zero(F[tab->n_zero])) {
253 empty = GBR_lp_cut(lp, B->row[1+tab->n_zero]+1);
256 GBR_set_ui(F[tab->n_zero], 0);
262 GBR_lp_add_row(lp, B->row[1+i]+1, dim);
265 } while (i < n_bounded - 1);
279 for (i = 0; i < n_bounded; ++i) {
281 GBR_clear(alpha_buffer[0][i]);
282 GBR_clear(alpha_buffer[1][i]);
285 free(alpha_buffer[0]);
286 free(alpha_buffer[1]);
300 isl_int_clear(mu[0]);
301 isl_int_clear(mu[1]);
308 /* Compute an affine form of a reduced basis of the given basic
309 * non-parametric set, which is assumed to be bounded and not
310 * include any integer divisions.
311 * The first column and the first row correspond to the constant term.
313 * If the input contains any equalities, we first create an initial
314 * basis with the equalities first. Otherwise, we start off with
315 * the identity matrix.
317 struct isl_mat *isl_basic_set_reduced_basis(struct isl_basic_set *bset)
319 struct isl_mat *basis;
325 if (isl_basic_set_dim(bset, isl_dim_div) != 0)
326 isl_die(bset->ctx, isl_error_invalid,
327 "no integer division allowed", return NULL);
328 if (isl_basic_set_dim(bset, isl_dim_param) != 0)
329 isl_die(bset->ctx, isl_error_invalid,
330 "no parameters allowed", return NULL);
332 tab = isl_tab_from_basic_set(bset, 0);
337 tab->basis = isl_mat_identity(bset->ctx, 1 + tab->n_var);
340 unsigned nvar = isl_basic_set_total_dim(bset);
341 eq = isl_mat_sub_alloc6(bset->ctx, bset->eq, 0, bset->n_eq,
343 eq = isl_mat_left_hermite(eq, 0, NULL, &tab->basis);
344 tab->basis = isl_mat_lin_to_aff(tab->basis);
345 tab->n_zero = bset->n_eq;
348 tab = isl_tab_compute_reduced_basis(tab);
352 basis = isl_mat_copy(tab->basis);