[M108 Migration][VD] Support set time and time zone offset
[platform/framework/web/chromium-efl.git] / base / sync_socket_win.cc
1 // Copyright 2012 The Chromium Authors
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "base/sync_socket.h"
6
7 #include <limits.h>
8 #include <stddef.h>
9
10 #include "base/logging.h"
11 #include "base/rand_util.h"
12 #include "base/threading/scoped_blocking_call.h"
13 #include "base/win/scoped_handle.h"
14
15 namespace base {
16
17 using win::ScopedHandle;
18
19 namespace {
20 // IMPORTANT: do not change how this name is generated because it will break
21 // in sandboxed scenarios as we might have by-name policies that allow pipe
22 // creation. Also keep the secure random number generation.
23 const wchar_t kPipeNameFormat[] = L"\\\\.\\pipe\\chrome.sync.%u.%u.%lu";
24 const size_t kPipePathMax = std::size(kPipeNameFormat) + (3 * 10) + 1;
25
26 // To avoid users sending negative message lengths to Send/Receive
27 // we clamp message lengths, which are size_t, to no more than INT_MAX.
28 const size_t kMaxMessageLength = static_cast<size_t>(INT_MAX);
29
30 const int kOutBufferSize = 4096;
31 const int kInBufferSize = 4096;
32 const int kDefaultTimeoutMilliSeconds = 1000;
33
34 bool CreatePairImpl(ScopedHandle* socket_a,
35                     ScopedHandle* socket_b,
36                     bool overlapped) {
37   DCHECK_NE(socket_a, socket_b);
38   DCHECK(!socket_a->is_valid());
39   DCHECK(!socket_b->is_valid());
40
41   wchar_t name[kPipePathMax];
42   ScopedHandle handle_a;
43   DWORD flags = PIPE_ACCESS_DUPLEX | FILE_FLAG_FIRST_PIPE_INSTANCE;
44   if (overlapped)
45     flags |= FILE_FLAG_OVERLAPPED;
46
47   do {
48     unsigned long rnd_name;
49     RandBytes(&rnd_name, sizeof(rnd_name));
50
51     swprintf(name, kPipePathMax,
52              kPipeNameFormat,
53              GetCurrentProcessId(),
54              GetCurrentThreadId(),
55              rnd_name);
56
57     handle_a.Set(CreateNamedPipeW(
58         name,
59         flags,
60         PIPE_TYPE_BYTE | PIPE_READMODE_BYTE,
61         1,
62         kOutBufferSize,
63         kInBufferSize,
64         kDefaultTimeoutMilliSeconds,
65         NULL));
66   } while (!handle_a.is_valid() && (GetLastError() == ERROR_PIPE_BUSY));
67
68   if (!handle_a.is_valid()) {
69     NOTREACHED();
70     return false;
71   }
72
73   // The SECURITY_ANONYMOUS flag means that the server side (handle_a) cannot
74   // impersonate the client (handle_b). This allows us not to care which side
75   // ends up in which side of a privilege boundary.
76   flags = SECURITY_SQOS_PRESENT | SECURITY_ANONYMOUS;
77   if (overlapped)
78     flags |= FILE_FLAG_OVERLAPPED;
79
80   ScopedHandle handle_b(CreateFileW(name,
81                                     GENERIC_READ | GENERIC_WRITE,
82                                     0,          // no sharing.
83                                     NULL,       // default security attributes.
84                                     OPEN_EXISTING,  // opens existing pipe.
85                                     flags,
86                                     NULL));     // no template file.
87   if (!handle_b.is_valid()) {
88     DPLOG(ERROR) << "CreateFileW failed";
89     return false;
90   }
91
92   if (!ConnectNamedPipe(handle_a.get(), NULL)) {
93     DWORD error = GetLastError();
94     if (error != ERROR_PIPE_CONNECTED) {
95       DPLOG(ERROR) << "ConnectNamedPipe failed";
96       return false;
97     }
98   }
99
100   *socket_a = std::move(handle_a);
101   *socket_b = std::move(handle_b);
102
103   return true;
104 }
105
106 // Inline helper to avoid having the cast everywhere.
107 DWORD GetNextChunkSize(size_t current_pos, size_t max_size) {
108   // The following statement is for 64 bit portability.
109   return static_cast<DWORD>(((max_size - current_pos) <= UINT_MAX) ?
110       (max_size - current_pos) : UINT_MAX);
111 }
112
113 // Template function that supports calling ReadFile or WriteFile in an
114 // overlapped fashion and waits for IO completion.  The function also waits
115 // on an event that can be used to cancel the operation.  If the operation
116 // is cancelled, the function returns and closes the relevant socket object.
117 template <typename BufferType, typename Function>
118 size_t CancelableFileOperation(Function operation,
119                                HANDLE file,
120                                BufferType* buffer,
121                                size_t length,
122                                WaitableEvent* io_event,
123                                WaitableEvent* cancel_event,
124                                CancelableSyncSocket* socket,
125                                DWORD timeout_in_ms) {
126   ScopedBlockingCall scoped_blocking_call(FROM_HERE, BlockingType::MAY_BLOCK);
127   // The buffer must be byte size or the length check won't make much sense.
128   static_assert(sizeof(buffer[0]) == sizeof(char), "incorrect buffer type");
129   DCHECK_GT(length, 0u);
130   DCHECK_LE(length, kMaxMessageLength);
131   DCHECK_NE(file, SyncSocket::kInvalidHandle);
132
133   // Track the finish time so we can calculate the timeout as data is read.
134   TimeTicks current_time, finish_time;
135   if (timeout_in_ms != INFINITE) {
136     current_time = TimeTicks::Now();
137     finish_time = current_time + base::Milliseconds(timeout_in_ms);
138   }
139
140   size_t count = 0;
141   do {
142     // The OVERLAPPED structure will be modified by ReadFile or WriteFile.
143     OVERLAPPED ol = { 0 };
144     ol.hEvent = io_event->handle();
145
146     const DWORD chunk = GetNextChunkSize(count, length);
147     // This is either the ReadFile or WriteFile call depending on whether
148     // we're receiving or sending data.
149     DWORD len = 0;
150     const BOOL operation_ok = operation(
151         file, static_cast<BufferType*>(buffer) + count, chunk, &len, &ol);
152     if (!operation_ok) {
153       if (::GetLastError() == ERROR_IO_PENDING) {
154         HANDLE events[] = { io_event->handle(), cancel_event->handle() };
155         const DWORD wait_result = WaitForMultipleObjects(
156             std::size(events), events, FALSE,
157             timeout_in_ms == INFINITE
158                 ? timeout_in_ms
159                 : static_cast<DWORD>(
160                       (finish_time - current_time).InMilliseconds()));
161         if (wait_result != WAIT_OBJECT_0 + 0) {
162           // CancelIo() doesn't synchronously cancel outstanding IO, only marks
163           // outstanding IO for cancellation. We must call GetOverlappedResult()
164           // below to ensure in flight writes complete before returning.
165           CancelIo(file);
166         }
167
168         // We set the |bWait| parameter to TRUE for GetOverlappedResult() to
169         // ensure writes are complete before returning.
170         if (!GetOverlappedResult(file, &ol, &len, TRUE))
171           len = 0;
172
173         if (wait_result == WAIT_OBJECT_0 + 1) {
174           DVLOG(1) << "Shutdown was signaled. Closing socket.";
175           socket->Close();
176           return count;
177         }
178
179         // Timeouts will be handled by the while() condition below since
180         // GetOverlappedResult() may complete successfully after CancelIo().
181         DCHECK(wait_result == WAIT_OBJECT_0 + 0 || wait_result == WAIT_TIMEOUT);
182       } else {
183         break;
184       }
185     }
186
187     count += len;
188
189     // Quit the operation if we can't write/read anymore.
190     if (len != chunk)
191       break;
192
193     // Since TimeTicks::Now() is expensive, only bother updating the time if we
194     // have more work to do.
195     if (timeout_in_ms != INFINITE && count < length)
196       current_time = base::TimeTicks::Now();
197   } while (count < length &&
198            (timeout_in_ms == INFINITE || current_time < finish_time));
199
200   return count;
201 }
202
203 }  // namespace
204
205 // static
206 bool SyncSocket::CreatePair(SyncSocket* socket_a, SyncSocket* socket_b) {
207   return CreatePairImpl(&socket_a->handle_, &socket_b->handle_, false);
208 }
209
210 void SyncSocket::Close() {
211   handle_.Close();
212 }
213
214 size_t SyncSocket::Send(const void* buffer, size_t length) {
215   ScopedBlockingCall scoped_blocking_call(FROM_HERE, BlockingType::MAY_BLOCK);
216   DCHECK_GT(length, 0u);
217   DCHECK_LE(length, kMaxMessageLength);
218   DCHECK(IsValid());
219   size_t count = 0;
220   while (count < length) {
221     DWORD len;
222     DWORD chunk = GetNextChunkSize(count, length);
223     if (::WriteFile(handle(), static_cast<const char*>(buffer) + count, chunk,
224                     &len, NULL) == FALSE) {
225       return count;
226     }
227     count += len;
228   }
229   return count;
230 }
231
232 size_t SyncSocket::ReceiveWithTimeout(void* buffer,
233                                       size_t length,
234                                       TimeDelta timeout) {
235   NOTIMPLEMENTED();
236   return 0;
237 }
238
239 size_t SyncSocket::Receive(void* buffer, size_t length) {
240   ScopedBlockingCall scoped_blocking_call(FROM_HERE, BlockingType::MAY_BLOCK);
241   DCHECK_GT(length, 0u);
242   DCHECK_LE(length, kMaxMessageLength);
243   DCHECK(IsValid());
244   size_t count = 0;
245   while (count < length) {
246     DWORD len;
247     DWORD chunk = GetNextChunkSize(count, length);
248     if (::ReadFile(handle(), static_cast<char*>(buffer) + count, chunk, &len,
249                    NULL) == FALSE) {
250       return count;
251     }
252     count += len;
253   }
254   return count;
255 }
256
257 size_t SyncSocket::Peek() {
258   DWORD available = 0;
259   PeekNamedPipe(handle(), NULL, 0, NULL, &available, NULL);
260   return available;
261 }
262
263 bool SyncSocket::IsValid() const {
264   return handle_.is_valid();
265 }
266
267 SyncSocket::Handle SyncSocket::handle() const {
268   return handle_.get();
269 }
270
271 SyncSocket::Handle SyncSocket::Release() {
272   return handle_.release();
273 }
274
275 bool CancelableSyncSocket::Shutdown() {
276   // This doesn't shut down the pipe immediately, but subsequent Receive or Send
277   // methods will fail straight away.
278   shutdown_event_.Signal();
279   return true;
280 }
281
282 void CancelableSyncSocket::Close() {
283   SyncSocket::Close();
284   shutdown_event_.Reset();
285 }
286
287 size_t CancelableSyncSocket::Send(const void* buffer, size_t length) {
288   static const DWORD kWaitTimeOutInMs = 500;
289   return CancelableFileOperation(
290       &::WriteFile, handle(), reinterpret_cast<const char*>(buffer), length,
291       &file_operation_, &shutdown_event_, this, kWaitTimeOutInMs);
292 }
293
294 size_t CancelableSyncSocket::Receive(void* buffer, size_t length) {
295   return CancelableFileOperation(
296       &::ReadFile, handle(), reinterpret_cast<char*>(buffer), length,
297       &file_operation_, &shutdown_event_, this, INFINITE);
298 }
299
300 size_t CancelableSyncSocket::ReceiveWithTimeout(void* buffer,
301                                                 size_t length,
302                                                 TimeDelta timeout) {
303   return CancelableFileOperation(&::ReadFile, handle(),
304                                  reinterpret_cast<char*>(buffer), length,
305                                  &file_operation_, &shutdown_event_, this,
306                                  static_cast<DWORD>(timeout.InMilliseconds()));
307 }
308
309 // static
310 bool CancelableSyncSocket::CreatePair(CancelableSyncSocket* socket_a,
311                                       CancelableSyncSocket* socket_b) {
312   return CreatePairImpl(&socket_a->handle_, &socket_b->handle_, true);
313 }
314
315 }  // namespace base