1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "base/rand_util.h"
14 #include "base/logging.h"
15 #include "base/time/time.h"
16 #include "testing/gtest/include/gtest/gtest.h"
20 const int kIntMin = std::numeric_limits<int>::min();
21 const int kIntMax = std::numeric_limits<int>::max();
25 TEST(RandUtilTest, RandInt) {
26 EXPECT_EQ(base::RandInt(0, 0), 0);
27 EXPECT_EQ(base::RandInt(kIntMin, kIntMin), kIntMin);
28 EXPECT_EQ(base::RandInt(kIntMax, kIntMax), kIntMax);
30 // Check that the DCHECKS in RandInt() don't fire due to internal overflow.
31 // There was a 50% chance of that happening, so calling it 40 times means
32 // the chances of this passing by accident are tiny (9e-13).
33 for (int i = 0; i < 40; ++i)
34 base::RandInt(kIntMin, kIntMax);
37 TEST(RandUtilTest, RandDouble) {
38 // Force 64-bit precision, making sure we're not in a 80-bit FPU register.
39 volatile double number = base::RandDouble();
40 EXPECT_GT(1.0, number);
41 EXPECT_LE(0.0, number);
44 TEST(RandUtilTest, RandBytes) {
45 const size_t buffer_size = 50;
46 char buffer[buffer_size];
47 memset(buffer, 0, buffer_size);
48 base::RandBytes(buffer, buffer_size);
49 std::sort(buffer, buffer + buffer_size);
50 // Probability of occurrence of less than 25 unique bytes in 50 random bytes
52 EXPECT_GT(std::unique(buffer, buffer + buffer_size) - buffer, 25);
55 // Verify that calling base::RandBytes with an empty buffer doesn't fail.
56 TEST(RandUtilTest, RandBytes0) {
57 base::RandBytes(nullptr, 0);
60 TEST(RandUtilTest, RandBytesAsString) {
61 std::string random_string = base::RandBytesAsString(1);
62 EXPECT_EQ(1U, random_string.size());
63 random_string = base::RandBytesAsString(145);
64 EXPECT_EQ(145U, random_string.size());
66 for (size_t i = 0; i < random_string.size(); ++i)
67 accumulator |= random_string[i];
68 // In theory this test can fail, but it won't before the universe dies of
70 EXPECT_NE(0, accumulator);
73 // Make sure that it is still appropriate to use RandGenerator in conjunction
74 // with std::random_shuffle().
75 TEST(RandUtilTest, RandGeneratorForRandomShuffle) {
76 EXPECT_EQ(base::RandGenerator(1), 0U);
77 EXPECT_LE(std::numeric_limits<ptrdiff_t>::max(),
78 std::numeric_limits<int64_t>::max());
81 TEST(RandUtilTest, RandGeneratorIsUniform) {
82 // Verify that RandGenerator has a uniform distribution. This is a
83 // regression test that consistently failed when RandGenerator was
84 // implemented this way:
86 // return base::RandUint64() % max;
88 // A degenerate case for such an implementation is e.g. a top of
89 // range that is 2/3rds of the way to MAX_UINT64, in which case the
90 // bottom half of the range would be twice as likely to occur as the
91 // top half. A bit of calculus care of jar@ shows that the largest
92 // measurable delta is when the top of the range is 3/4ths of the
93 // way, so that's what we use in the test.
94 const uint64_t kTopOfRange =
95 (std::numeric_limits<uint64_t>::max() / 4ULL) * 3ULL;
96 const uint64_t kExpectedAverage = kTopOfRange / 2ULL;
97 const uint64_t kAllowedVariance = kExpectedAverage / 50ULL; // +/- 2%
98 const int kMinAttempts = 1000;
99 const int kMaxAttempts = 1000000;
101 double cumulative_average = 0.0;
103 while (count < kMaxAttempts) {
104 uint64_t value = base::RandGenerator(kTopOfRange);
105 cumulative_average = (count * cumulative_average + value) / (count + 1);
107 // Don't quit too quickly for things to start converging, or we may have
109 if (count > kMinAttempts &&
110 kExpectedAverage - kAllowedVariance < cumulative_average &&
111 cumulative_average < kExpectedAverage + kAllowedVariance) {
118 ASSERT_LT(count, kMaxAttempts) << "Expected average was " <<
119 kExpectedAverage << ", average ended at " << cumulative_average;
122 TEST(RandUtilTest, RandUint64ProducesBothValuesOfAllBits) {
123 // This tests to see that our underlying random generator is good
124 // enough, for some value of good enough.
125 uint64_t kAllZeros = 0ULL;
126 uint64_t kAllOnes = ~kAllZeros;
127 uint64_t found_ones = kAllZeros;
128 uint64_t found_zeros = kAllOnes;
130 for (size_t i = 0; i < 1000; ++i) {
131 uint64_t value = base::RandUint64();
133 found_zeros &= value;
135 if (found_zeros == kAllZeros && found_ones == kAllOnes)
139 FAIL() << "Didn't achieve all bit values in maximum number of tries.";
142 TEST(RandUtilTest, RandBytesLonger) {
143 // Fuchsia can only retrieve 256 bytes of entropy at a time, so make sure we
144 // handle longer requests than that.
145 std::string random_string0 = base::RandBytesAsString(255);
146 EXPECT_EQ(255u, random_string0.size());
147 std::string random_string1 = base::RandBytesAsString(1023);
148 EXPECT_EQ(1023u, random_string1.size());
149 std::string random_string2 = base::RandBytesAsString(4097);
150 EXPECT_EQ(4097u, random_string2.size());
153 // Benchmark test for RandBytes(). Disabled since it's intentionally slow and
154 // does not test anything that isn't already tested by the existing RandBytes()
156 TEST(RandUtilTest, DISABLED_RandBytesPerf) {
157 // Benchmark the performance of |kTestIterations| of RandBytes() using a
158 // buffer size of |kTestBufferSize|.
159 const int kTestIterations = 10;
160 const size_t kTestBufferSize = 1 * 1024 * 1024;
162 std::unique_ptr<uint8_t[]> buffer(new uint8_t[kTestBufferSize]);
163 const base::TimeTicks now = base::TimeTicks::Now();
164 for (int i = 0; i < kTestIterations; ++i)
165 base::RandBytes(buffer.get(), kTestBufferSize);
166 const base::TimeTicks end = base::TimeTicks::Now();
168 LOG(INFO) << "RandBytes(" << kTestBufferSize << ") took: "
169 << (end - now).InMicroseconds() << "µs";