1 /* ----------------------------------------------------------------------- *
3 * Copyright 1996-2012 The NASM Authors - All Rights Reserved
4 * See the file AUTHORS included with the NASM distribution for
5 * the specific copyright holders.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above
14 * copyright notice, this list of conditions and the following
15 * disclaimer in the documentation and/or other materials provided
16 * with the distribution.
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
19 * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
20 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
21 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
25 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
26 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
29 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
30 * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 * ----------------------------------------------------------------------- */
35 * assemble.c code generation for the Netwide Assembler
37 * the actual codes (C syntax, i.e. octal):
38 * \0 - terminates the code. (Unless it's a literal of course.)
39 * \1..\4 - that many literal bytes follow in the code stream
40 * \5 - add 4 to the primary operand number (b, low octdigit)
41 * \6 - add 4 to the secondary operand number (a, middle octdigit)
42 * \7 - add 4 to both the primary and the secondary operand number
43 * \10..\13 - a literal byte follows in the code stream, to be added
44 * to the register value of operand 0..3
45 * \20..\23 - a byte immediate operand, from operand 0..3
46 * \24..\27 - a zero-extended byte immediate operand, from operand 0..3
47 * \30..\33 - a word immediate operand, from operand 0..3
48 * \34..\37 - select between \3[0-3] and \4[0-3] depending on 16/32 bit
49 * assembly mode or the operand-size override on the operand
50 * \40..\43 - a long immediate operand, from operand 0..3
51 * \44..\47 - select between \3[0-3], \4[0-3] and \5[4-7]
52 * depending on the address size of the instruction.
53 * \50..\53 - a byte relative operand, from operand 0..3
54 * \54..\57 - a qword immediate operand, from operand 0..3
55 * \60..\63 - a word relative operand, from operand 0..3
56 * \64..\67 - select between \6[0-3] and \7[0-3] depending on 16/32 bit
57 * assembly mode or the operand-size override on the operand
58 * \70..\73 - a long relative operand, from operand 0..3
59 * \74..\77 - a word constant, from the _segment_ part of operand 0..3
60 * \1ab - a ModRM, calculated on EA in operand a, with the spare
61 * field the register value of operand b.
62 * \172\ab - the register number from operand a in bits 7..4, with
63 * the 4-bit immediate from operand b in bits 3..0.
64 * \173\xab - the register number from operand a in bits 7..4, with
65 * the value b in bits 3..0.
66 * \174..\177 - the register number from operand 0..3 in bits 7..4, and
67 * an arbitrary value in bits 3..0 (assembled as zero.)
68 * \2ab - a ModRM, calculated on EA in operand a, with the spare
69 * field equal to digit b.
70 * \254..\257 - a signed 32-bit operand to be extended to 64 bits.
71 * \260..\263 - this instruction uses VEX/XOP rather than REX, with the
72 * V field taken from operand 0..3.
73 * \270 - this instruction uses VEX/XOP rather than REX, with the
74 * V field set to 1111b.
76 * VEX/XOP prefixes are followed by the sequence:
77 * \tmm\wlp where mm is the M field; and wlp is:
79 * [l0] ll = 0 for L = 0 (.128, .lz)
80 * [l1] ll = 1 for L = 1 (.256)
81 * [lig] ll = 2 for L don't care (always assembled as 0)
83 * [w0] ww = 0 for W = 0
84 * [w1 ] ww = 1 for W = 1
85 * [wig] ww = 2 for W don't care (always assembled as 0)
86 * [ww] ww = 3 for W used as REX.W
88 * t = 0 for VEX (C4/C5), t = 1 for XOP (8F).
90 * \271 - instruction takes XRELEASE (F3) with or without lock
91 * \272 - instruction takes XACQUIRE/XRELEASE with or without lock
92 * \273 - instruction takes XACQUIRE/XRELEASE with lock only
93 * \274..\277 - a byte immediate operand, from operand 0..3, sign-extended
94 * to the operand size (if o16/o32/o64 present) or the bit size
95 * \310 - indicates fixed 16-bit address size, i.e. optional 0x67.
96 * \311 - indicates fixed 32-bit address size, i.e. optional 0x67.
97 * \312 - (disassembler only) invalid with non-default address size.
98 * \313 - indicates fixed 64-bit address size, 0x67 invalid.
99 * \314 - (disassembler only) invalid with REX.B
100 * \315 - (disassembler only) invalid with REX.X
101 * \316 - (disassembler only) invalid with REX.R
102 * \317 - (disassembler only) invalid with REX.W
103 * \320 - indicates fixed 16-bit operand size, i.e. optional 0x66.
104 * \321 - indicates fixed 32-bit operand size, i.e. optional 0x66.
105 * \322 - indicates that this instruction is only valid when the
106 * operand size is the default (instruction to disassembler,
107 * generates no code in the assembler)
108 * \323 - indicates fixed 64-bit operand size, REX on extensions only.
109 * \324 - indicates 64-bit operand size requiring REX prefix.
110 * \325 - instruction which always uses spl/bpl/sil/dil
111 * \326 - instruction not valid with 0xF3 REP prefix. Hint for
112 disassembler only; for SSE instructions.
113 * \330 - a literal byte follows in the code stream, to be added
114 * to the condition code value of the instruction.
115 * \331 - instruction not valid with REP prefix. Hint for
116 * disassembler only; for SSE instructions.
117 * \332 - REP prefix (0xF2 byte) used as opcode extension.
118 * \333 - REP prefix (0xF3 byte) used as opcode extension.
119 * \334 - LOCK prefix used as REX.R (used in non-64-bit mode)
120 * \335 - disassemble a rep (0xF3 byte) prefix as repe not rep.
121 * \336 - force a REP(E) prefix (0xF3) even if not specified.
122 * \337 - force a REPNE prefix (0xF2) even if not specified.
123 * \336-\337 are still listed as prefixes in the disassembler.
124 * \340 - reserve <operand 0> bytes of uninitialized storage.
125 * Operand 0 had better be a segmentless constant.
126 * \341 - this instruction needs a WAIT "prefix"
127 * \360 - no SSE prefix (== \364\331)
128 * \361 - 66 SSE prefix (== \366\331)
129 * \364 - operand-size prefix (0x66) not permitted
130 * \365 - address-size prefix (0x67) not permitted
131 * \366 - operand-size prefix (0x66) used as opcode extension
132 * \367 - address-size prefix (0x67) used as opcode extension
133 * \370,\371 - match only if operand 0 meets byte jump criteria.
134 * 370 is used for Jcc, 371 is used for JMP.
135 * \373 - assemble 0x03 if bits==16, 0x05 if bits==32;
136 * used for conditional jump over longer jump
137 * \374 - this instruction takes an XMM VSIB memory EA
138 * \375 - this instruction takes an YMM VSIB memory EA
141 #include "compiler.h"
145 #include <inttypes.h>
149 #include "assemble.h"
155 * Matching errors. These should be sorted so that more specific
156 * errors come later in the sequence.
165 * Matching success; the conditional ones first
167 MOK_JUMP, /* Matching OK but needs jmp_match() */
168 MOK_GOOD /* Matching unconditionally OK */
172 enum ea_type type; /* what kind of EA is this? */
173 int sib_present; /* is a SIB byte necessary? */
174 int bytes; /* # of bytes of offset needed */
175 int size; /* lazy - this is sib+bytes+1 */
176 uint8_t modrm, sib, rex, rip; /* the bytes themselves */
179 #define GEN_SIB(scale, index, base) \
180 (((scale) << 6) | ((index) << 3) | ((base)))
182 #define GEN_MODRM(mod, reg, rm) \
183 (((mod) << 6) | (((reg) & 7) << 3) | ((rm) & 7))
185 static uint32_t cpu; /* cpu level received from nasm.c */
186 static efunc errfunc;
187 static struct ofmt *outfmt;
188 static ListGen *list;
190 static int64_t calcsize(int32_t, int64_t, int, insn *,
191 const struct itemplate *);
192 static void gencode(int32_t segment, int64_t offset, int bits,
193 insn * ins, const struct itemplate *temp,
195 static enum match_result find_match(const struct itemplate **tempp,
197 int32_t segment, int64_t offset, int bits);
198 static enum match_result matches(const struct itemplate *, insn *, int bits);
199 static opflags_t regflag(const operand *);
200 static int32_t regval(const operand *);
201 static int rexflags(int, opflags_t, int);
202 static int op_rexflags(const operand *, int);
203 static void add_asp(insn *, int);
205 static enum ea_type process_ea(operand *, ea *, int, int, int, opflags_t);
207 static int has_prefix(insn * ins, enum prefix_pos pos, int prefix)
209 return ins->prefixes[pos] == prefix;
212 static void assert_no_prefix(insn * ins, enum prefix_pos pos)
214 if (ins->prefixes[pos])
215 errfunc(ERR_NONFATAL, "invalid %s prefix",
216 prefix_name(ins->prefixes[pos]));
219 static const char *size_name(int size)
241 static void warn_overflow(int pass, int size)
243 errfunc(ERR_WARNING | pass | ERR_WARN_NOV,
244 "%s data exceeds bounds", size_name(size));
247 static void warn_overflow_const(int64_t data, int size)
249 if (overflow_general(data, size))
250 warn_overflow(ERR_PASS1, size);
253 static void warn_overflow_opd(const struct operand *o, int size)
255 if (o->wrt == NO_SEG && o->segment == NO_SEG) {
256 if (overflow_general(o->offset, size))
257 warn_overflow(ERR_PASS2, size);
262 * This routine wrappers the real output format's output routine,
263 * in order to pass a copy of the data off to the listing file
264 * generator at the same time.
266 static void out(int64_t offset, int32_t segto, const void *data,
267 enum out_type type, uint64_t size,
268 int32_t segment, int32_t wrt)
270 static int32_t lineno = 0; /* static!!! */
271 static char *lnfname = NULL;
274 if (type == OUT_ADDRESS && segment == NO_SEG && wrt == NO_SEG) {
276 * This is a non-relocated address, and we're going to
277 * convert it into RAWDATA format.
282 errfunc(ERR_PANIC, "OUT_ADDRESS with size > 8");
286 WRITEADDR(q, *(int64_t *)data, size);
291 list->output(offset, data, type, size);
294 * this call to src_get determines when we call the
295 * debug-format-specific "linenum" function
296 * it updates lineno and lnfname to the current values
297 * returning 0 if "same as last time", -2 if lnfname
298 * changed, and the amount by which lineno changed,
299 * if it did. thus, these variables must be static
302 if (src_get(&lineno, &lnfname))
303 outfmt->current_dfmt->linenum(lnfname, lineno, segto);
305 outfmt->output(segto, data, type, size, segment, wrt);
308 static void out_imm8(int64_t offset, int32_t segment, struct operand *opx)
310 if (opx->segment != NO_SEG) {
311 uint64_t data = opx->offset;
312 out(offset, segment, &data, OUT_ADDRESS, 1, opx->segment, opx->wrt);
314 uint8_t byte = opx->offset;
315 out(offset, segment, &byte, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
319 static bool jmp_match(int32_t segment, int64_t offset, int bits,
320 insn * ins, const struct itemplate *temp)
323 const uint8_t *code = temp->code;
326 if (((c & ~1) != 0370) || (ins->oprs[0].type & STRICT))
330 if (optimizing < 0 && c == 0371)
333 isize = calcsize(segment, offset, bits, ins, temp);
335 if (ins->oprs[0].opflags & OPFLAG_UNKNOWN)
336 /* Be optimistic in pass 1 */
339 if (ins->oprs[0].segment != segment)
342 isize = ins->oprs[0].offset - offset - isize; /* isize is delta */
343 return (isize >= -128 && isize <= 127); /* is it byte size? */
346 int64_t assemble(int32_t segment, int64_t offset, int bits, uint32_t cp,
347 insn * instruction, struct ofmt *output, efunc error,
350 const struct itemplate *temp;
355 int64_t start = offset;
356 int64_t wsize; /* size for DB etc. */
358 errfunc = error; /* to pass to other functions */
360 outfmt = output; /* likewise */
361 list = listgen; /* and again */
363 wsize = idata_bytes(instruction->opcode);
369 int32_t t = instruction->times;
372 "instruction->times < 0 (%ld) in assemble()", t);
374 while (t--) { /* repeat TIMES times */
375 list_for_each(e, instruction->eops) {
376 if (e->type == EOT_DB_NUMBER) {
378 errfunc(ERR_NONFATAL,
379 "integer supplied to a DT, DO or DY"
382 out(offset, segment, &e->offset,
383 OUT_ADDRESS, wsize, e->segment, e->wrt);
386 } else if (e->type == EOT_DB_STRING ||
387 e->type == EOT_DB_STRING_FREE) {
390 out(offset, segment, e->stringval,
391 OUT_RAWDATA, e->stringlen, NO_SEG, NO_SEG);
392 align = e->stringlen % wsize;
395 align = wsize - align;
396 out(offset, segment, zero_buffer,
397 OUT_RAWDATA, align, NO_SEG, NO_SEG);
399 offset += e->stringlen + align;
402 if (t > 0 && t == instruction->times - 1) {
404 * Dummy call to list->output to give the offset to the
407 list->output(offset, NULL, OUT_RAWDATA, 0);
408 list->uplevel(LIST_TIMES);
411 if (instruction->times > 1)
412 list->downlevel(LIST_TIMES);
413 return offset - start;
416 if (instruction->opcode == I_INCBIN) {
417 const char *fname = instruction->eops->stringval;
420 fp = fopen(fname, "rb");
422 error(ERR_NONFATAL, "`incbin': unable to open file `%s'",
424 } else if (fseek(fp, 0L, SEEK_END) < 0) {
425 error(ERR_NONFATAL, "`incbin': unable to seek on file `%s'",
429 static char buf[4096];
430 size_t t = instruction->times;
435 if (instruction->eops->next) {
436 base = instruction->eops->next->offset;
438 if (instruction->eops->next->next &&
439 len > (size_t)instruction->eops->next->next->offset)
440 len = (size_t)instruction->eops->next->next->offset;
443 * Dummy call to list->output to give the offset to the
446 list->output(offset, NULL, OUT_RAWDATA, 0);
447 list->uplevel(LIST_INCBIN);
451 fseek(fp, base, SEEK_SET);
455 m = fread(buf, 1, l > sizeof(buf) ? sizeof(buf) : l, fp);
458 * This shouldn't happen unless the file
459 * actually changes while we are reading
463 "`incbin': unexpected EOF while"
464 " reading file `%s'", fname);
465 t = 0; /* Try to exit cleanly */
468 out(offset, segment, buf, OUT_RAWDATA, m,
473 list->downlevel(LIST_INCBIN);
474 if (instruction->times > 1) {
476 * Dummy call to list->output to give the offset to the
479 list->output(offset, NULL, OUT_RAWDATA, 0);
480 list->uplevel(LIST_TIMES);
481 list->downlevel(LIST_TIMES);
484 return instruction->times * len;
486 return 0; /* if we're here, there's an error */
489 /* Check to see if we need an address-size prefix */
490 add_asp(instruction, bits);
492 m = find_match(&temp, instruction, segment, offset, bits);
496 int64_t insn_size = calcsize(segment, offset, bits, instruction, temp);
497 itimes = instruction->times;
498 if (insn_size < 0) /* shouldn't be, on pass two */
499 error(ERR_PANIC, "errors made it through from pass one");
502 for (j = 0; j < MAXPREFIX; j++) {
504 switch (instruction->prefixes[j]) {
524 error(ERR_WARNING | ERR_PASS2,
525 "cs segment base generated, but will be ignored in 64-bit mode");
531 error(ERR_WARNING | ERR_PASS2,
532 "ds segment base generated, but will be ignored in 64-bit mode");
538 error(ERR_WARNING | ERR_PASS2,
539 "es segment base generated, but will be ignored in 64-bit mode");
551 error(ERR_WARNING | ERR_PASS2,
552 "ss segment base generated, but will be ignored in 64-bit mode");
559 "segr6 and segr7 cannot be used as prefixes");
564 "16-bit addressing is not supported "
566 } else if (bits != 16)
576 "64-bit addressing is only supported "
600 error(ERR_PANIC, "invalid instruction prefix");
603 out(offset, segment, &c, OUT_RAWDATA, 1,
608 insn_end = offset + insn_size;
609 gencode(segment, offset, bits, instruction,
612 if (itimes > 0 && itimes == instruction->times - 1) {
614 * Dummy call to list->output to give the offset to the
617 list->output(offset, NULL, OUT_RAWDATA, 0);
618 list->uplevel(LIST_TIMES);
621 if (instruction->times > 1)
622 list->downlevel(LIST_TIMES);
623 return offset - start;
627 case MERR_OPSIZEMISSING:
628 error(ERR_NONFATAL, "operation size not specified");
630 case MERR_OPSIZEMISMATCH:
631 error(ERR_NONFATAL, "mismatch in operand sizes");
634 error(ERR_NONFATAL, "no instruction for this cpu level");
637 error(ERR_NONFATAL, "instruction not supported in %d-bit mode",
642 "invalid combination of opcode and operands");
649 int64_t insn_size(int32_t segment, int64_t offset, int bits, uint32_t cp,
650 insn * instruction, efunc error)
652 const struct itemplate *temp;
655 errfunc = error; /* to pass to other functions */
658 if (instruction->opcode == I_none)
661 if (instruction->opcode == I_DB || instruction->opcode == I_DW ||
662 instruction->opcode == I_DD || instruction->opcode == I_DQ ||
663 instruction->opcode == I_DT || instruction->opcode == I_DO ||
664 instruction->opcode == I_DY) {
666 int32_t isize, osize, wsize;
669 wsize = idata_bytes(instruction->opcode);
671 list_for_each(e, instruction->eops) {
675 if (e->type == EOT_DB_NUMBER) {
677 warn_overflow_const(e->offset, wsize);
678 } else if (e->type == EOT_DB_STRING ||
679 e->type == EOT_DB_STRING_FREE)
680 osize = e->stringlen;
682 align = (-osize) % wsize;
685 isize += osize + align;
687 return isize * instruction->times;
690 if (instruction->opcode == I_INCBIN) {
691 const char *fname = instruction->eops->stringval;
696 fp = fopen(fname, "rb");
698 error(ERR_NONFATAL, "`incbin': unable to open file `%s'",
700 else if (fseek(fp, 0L, SEEK_END) < 0)
701 error(ERR_NONFATAL, "`incbin': unable to seek on file `%s'",
705 if (instruction->eops->next) {
706 len -= instruction->eops->next->offset;
707 if (instruction->eops->next->next &&
708 len > (size_t)instruction->eops->next->next->offset) {
709 len = (size_t)instruction->eops->next->next->offset;
712 val = instruction->times * len;
719 /* Check to see if we need an address-size prefix */
720 add_asp(instruction, bits);
722 m = find_match(&temp, instruction, segment, offset, bits);
724 /* we've matched an instruction. */
728 isize = calcsize(segment, offset, bits, instruction, temp);
731 for (j = 0; j < MAXPREFIX; j++) {
732 switch (instruction->prefixes[j]) {
758 return isize * instruction->times;
760 return -1; /* didn't match any instruction */
764 static void bad_hle_warn(const insn * ins, uint8_t hleok)
766 enum prefixes rep_pfx = ins->prefixes[PPS_REP];
767 enum whatwarn { w_none, w_lock, w_inval } ww;
768 static const enum whatwarn warn[2][4] =
770 { w_inval, w_inval, w_none, w_lock }, /* XACQUIRE */
771 { w_inval, w_none, w_none, w_lock }, /* XRELEASE */
775 n = (unsigned int)rep_pfx - P_XACQUIRE;
777 return; /* Not XACQUIRE/XRELEASE */
780 if (!is_class(MEMORY, ins->oprs[0].type))
781 ww = w_inval; /* HLE requires operand 0 to be memory */
788 if (ins->prefixes[PPS_LOCK] != P_LOCK) {
789 errfunc(ERR_WARNING | ERR_WARN_HLE | ERR_PASS2,
790 "%s with this instruction requires lock",
791 prefix_name(rep_pfx));
796 errfunc(ERR_WARNING | ERR_WARN_HLE | ERR_PASS2,
797 "%s invalid with this instruction",
798 prefix_name(rep_pfx));
803 /* Common construct */
804 #define case3(x) case (x): case (x)+1: case (x)+2
805 #define case4(x) case3(x): case (x)+3
807 static int64_t calcsize(int32_t segment, int64_t offset, int bits,
808 insn * ins, const struct itemplate *temp)
810 const uint8_t *codes = temp->code;
819 bool lockcheck = true;
821 ins->rex = 0; /* Ensure REX is reset */
822 eat = EA_SCALAR; /* Expect a scalar EA */
824 if (ins->prefixes[PPS_OSIZE] == P_O64)
827 (void)segment; /* Don't warn that this parameter is unused */
828 (void)offset; /* Don't warn that this parameter is unused */
832 op1 = (c & 3) + ((opex & 1) << 2);
833 op2 = ((c >> 3) & 3) + ((opex & 2) << 1);
834 opx = &ins->oprs[op1];
835 opex = 0; /* For the next iteration */
839 codes += c, length += c;
848 op_rexflags(opx, REX_B|REX_H|REX_P|REX_W);
862 if (opx->type & (BITS16 | BITS32 | BITS64))
863 length += (opx->type & BITS16) ? 2 : 4;
865 length += (bits == 16) ? 2 : 4;
873 length += ins->addr_size >> 3;
881 length += 8; /* MOV reg64/imm */
889 if (opx->type & (BITS16 | BITS32 | BITS64))
890 length += (opx->type & BITS16) ? 2 : 4;
892 length += (bits == 16) ? 2 : 4;
919 ins->vexreg = regval(opx);
920 ins->vex_cm = *codes++;
921 ins->vex_wlp = *codes++;
927 ins->vex_cm = *codes++;
928 ins->vex_wlp = *codes++;
945 length += (bits != 16) && !has_prefix(ins, PPS_ASIZE, P_A16);
949 length += (bits != 32) && !has_prefix(ins, PPS_ASIZE, P_A32);
956 if (bits != 64 || has_prefix(ins, PPS_ASIZE, P_A16) ||
957 has_prefix(ins, PPS_ASIZE, P_A32))
966 enum prefixes pfx = ins->prefixes[PPS_OSIZE];
970 errfunc(ERR_WARNING | ERR_PASS2, "invalid operand size prefix");
972 ins->prefixes[PPS_OSIZE] = P_O16;
978 enum prefixes pfx = ins->prefixes[PPS_OSIZE];
982 errfunc(ERR_WARNING | ERR_PASS2, "invalid operand size prefix");
984 ins->prefixes[PPS_OSIZE] = P_O32;
1026 if (!ins->prefixes[PPS_REP])
1027 ins->prefixes[PPS_REP] = P_REP;
1031 if (!ins->prefixes[PPS_REP])
1032 ins->prefixes[PPS_REP] = P_REPNE;
1036 if (ins->oprs[0].segment != NO_SEG)
1037 errfunc(ERR_NONFATAL, "attempt to reserve non-constant"
1038 " quantity of BSS space");
1040 length += ins->oprs[0].offset;
1044 if (!ins->prefixes[PPS_WAIT])
1045 ins->prefixes[PPS_WAIT] = P_WAIT;
1095 struct operand *opy = &ins->oprs[op2];
1097 ea_data.rex = 0; /* Ensure ea.REX is initially 0 */
1100 /* pick rfield from operand b (opx) */
1101 rflags = regflag(opx);
1102 rfield = nasm_regvals[opx->basereg];
1107 if (process_ea(opy, &ea_data, bits,ins->addr_size,
1108 rfield, rflags) != eat) {
1109 errfunc(ERR_NONFATAL, "invalid effective address");
1112 ins->rex |= ea_data.rex;
1113 length += ea_data.size;
1119 errfunc(ERR_PANIC, "internal instruction table corrupt"
1120 ": instruction code \\%o (0x%02X) given", c, c);
1125 ins->rex &= rex_mask;
1127 if (ins->rex & REX_NH) {
1128 if (ins->rex & REX_H) {
1129 errfunc(ERR_NONFATAL, "instruction cannot use high registers");
1132 ins->rex &= ~REX_P; /* Don't force REX prefix due to high reg */
1135 if (ins->rex & REX_V) {
1136 int bad32 = REX_R|REX_W|REX_X|REX_B;
1138 if (ins->rex & REX_H) {
1139 errfunc(ERR_NONFATAL, "cannot use high register in vex instruction");
1142 switch (ins->vex_wlp & 060) {
1156 if (bits != 64 && ((ins->rex & bad32) || ins->vexreg > 7)) {
1157 errfunc(ERR_NONFATAL, "invalid operands in non-64-bit mode");
1160 if (ins->vex_cm != 1 || (ins->rex & (REX_W|REX_X|REX_B)))
1164 } else if (ins->rex & REX_REAL) {
1165 if (ins->rex & REX_H) {
1166 errfunc(ERR_NONFATAL, "cannot use high register in rex instruction");
1168 } else if (bits == 64) {
1170 } else if ((ins->rex & REX_L) &&
1171 !(ins->rex & (REX_P|REX_W|REX_X|REX_B)) &&
1174 assert_no_prefix(ins, PPS_LOCK);
1175 lockcheck = false; /* Already errored, no need for warning */
1178 errfunc(ERR_NONFATAL, "invalid operands in non-64-bit mode");
1183 if (has_prefix(ins, PPS_LOCK, P_LOCK) && lockcheck &&
1184 (!(temp->flags & IF_LOCK) || !is_class(MEMORY, ins->oprs[0].type))) {
1185 errfunc(ERR_WARNING | ERR_WARN_LOCK | ERR_PASS2 ,
1186 "instruction is not lockable");
1189 bad_hle_warn(ins, hleok);
1194 static inline unsigned int emit_rex(insn *ins, int32_t segment, int64_t offset, int bits)
1197 if ((ins->rex & REX_REAL) && !(ins->rex & REX_V)) {
1198 ins->rex = (ins->rex & REX_REAL) | REX_P;
1199 out(offset, segment, &ins->rex, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1208 static void gencode(int32_t segment, int64_t offset, int bits,
1209 insn * ins, const struct itemplate *temp,
1217 struct operand *opx;
1218 const uint8_t *codes = temp->code;
1220 enum ea_type eat = EA_SCALAR;
1224 op1 = (c & 3) + ((opex & 1) << 2);
1225 op2 = ((c >> 3) & 3) + ((opex & 2) << 1);
1226 opx = &ins->oprs[op1];
1227 opex = 0; /* For the next iteration */
1234 offset += emit_rex(ins, segment, offset, bits);
1235 out(offset, segment, codes, OUT_RAWDATA, c, NO_SEG, NO_SEG);
1247 offset += emit_rex(ins, segment, offset, bits);
1248 bytes[0] = *codes++ + (regval(opx) & 7);
1249 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1254 if (opx->offset < -256 || opx->offset > 255) {
1255 errfunc(ERR_WARNING | ERR_PASS2 | ERR_WARN_NOV,
1256 "byte value exceeds bounds");
1258 out_imm8(offset, segment, opx);
1263 if (opx->offset < 0 || opx->offset > 255)
1264 errfunc(ERR_WARNING | ERR_PASS2 | ERR_WARN_NOV,
1265 "unsigned byte value exceeds bounds");
1266 out_imm8(offset, segment, opx);
1271 warn_overflow_opd(opx, 2);
1273 out(offset, segment, &data, OUT_ADDRESS, 2,
1274 opx->segment, opx->wrt);
1279 if (opx->type & (BITS16 | BITS32))
1280 size = (opx->type & BITS16) ? 2 : 4;
1282 size = (bits == 16) ? 2 : 4;
1283 warn_overflow_opd(opx, size);
1285 out(offset, segment, &data, OUT_ADDRESS, size,
1286 opx->segment, opx->wrt);
1291 warn_overflow_opd(opx, 4);
1293 out(offset, segment, &data, OUT_ADDRESS, 4,
1294 opx->segment, opx->wrt);
1300 size = ins->addr_size >> 3;
1301 warn_overflow_opd(opx, size);
1302 out(offset, segment, &data, OUT_ADDRESS, size,
1303 opx->segment, opx->wrt);
1308 if (opx->segment != segment) {
1310 out(offset, segment, &data,
1311 OUT_REL1ADR, insn_end - offset,
1312 opx->segment, opx->wrt);
1314 data = opx->offset - insn_end;
1315 if (data > 127 || data < -128)
1316 errfunc(ERR_NONFATAL, "short jump is out of range");
1317 out(offset, segment, &data,
1318 OUT_ADDRESS, 1, NO_SEG, NO_SEG);
1324 data = (int64_t)opx->offset;
1325 out(offset, segment, &data, OUT_ADDRESS, 8,
1326 opx->segment, opx->wrt);
1331 if (opx->segment != segment) {
1333 out(offset, segment, &data,
1334 OUT_REL2ADR, insn_end - offset,
1335 opx->segment, opx->wrt);
1337 data = opx->offset - insn_end;
1338 out(offset, segment, &data,
1339 OUT_ADDRESS, 2, NO_SEG, NO_SEG);
1345 if (opx->type & (BITS16 | BITS32 | BITS64))
1346 size = (opx->type & BITS16) ? 2 : 4;
1348 size = (bits == 16) ? 2 : 4;
1349 if (opx->segment != segment) {
1351 out(offset, segment, &data,
1352 size == 2 ? OUT_REL2ADR : OUT_REL4ADR,
1353 insn_end - offset, opx->segment, opx->wrt);
1355 data = opx->offset - insn_end;
1356 out(offset, segment, &data,
1357 OUT_ADDRESS, size, NO_SEG, NO_SEG);
1363 if (opx->segment != segment) {
1365 out(offset, segment, &data,
1366 OUT_REL4ADR, insn_end - offset,
1367 opx->segment, opx->wrt);
1369 data = opx->offset - insn_end;
1370 out(offset, segment, &data,
1371 OUT_ADDRESS, 4, NO_SEG, NO_SEG);
1377 if (opx->segment == NO_SEG)
1378 errfunc(ERR_NONFATAL, "value referenced by FAR is not"
1381 out(offset, segment, &data, OUT_ADDRESS, 2,
1382 outfmt->segbase(1 + opx->segment),
1389 opx = &ins->oprs[c >> 3];
1390 bytes[0] = nasm_regvals[opx->basereg] << 4;
1391 opx = &ins->oprs[c & 7];
1392 if (opx->segment != NO_SEG || opx->wrt != NO_SEG) {
1393 errfunc(ERR_NONFATAL,
1394 "non-absolute expression not permitted as argument %d",
1397 if (opx->offset & ~15) {
1398 errfunc(ERR_WARNING | ERR_PASS2 | ERR_WARN_NOV,
1399 "four-bit argument exceeds bounds");
1401 bytes[0] |= opx->offset & 15;
1403 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1409 opx = &ins->oprs[c >> 4];
1410 bytes[0] = nasm_regvals[opx->basereg] << 4;
1412 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1417 bytes[0] = nasm_regvals[opx->basereg] << 4;
1418 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1424 if (opx->wrt == NO_SEG && opx->segment == NO_SEG &&
1425 (int32_t)data != (int64_t)data) {
1426 errfunc(ERR_WARNING | ERR_PASS2 | ERR_WARN_NOV,
1427 "signed dword immediate exceeds bounds");
1429 out(offset, segment, &data, OUT_ADDRESS, 4,
1430 opx->segment, opx->wrt);
1437 if (ins->vex_cm != 1 || (ins->rex & (REX_W|REX_X|REX_B))) {
1438 bytes[0] = (ins->vex_cm >> 6) ? 0x8f : 0xc4;
1439 bytes[1] = (ins->vex_cm & 31) | ((~ins->rex & 7) << 5);
1440 bytes[2] = ((ins->rex & REX_W) << (7-3)) |
1441 ((~ins->vexreg & 15)<< 3) | (ins->vex_wlp & 07);
1442 out(offset, segment, &bytes, OUT_RAWDATA, 3, NO_SEG, NO_SEG);
1446 bytes[1] = ((~ins->rex & REX_R) << (7-2)) |
1447 ((~ins->vexreg & 15) << 3) | (ins->vex_wlp & 07);
1448 out(offset, segment, &bytes, OUT_RAWDATA, 2, NO_SEG, NO_SEG);
1463 if (ins->rex & REX_W)
1465 else if (ins->prefixes[PPS_OSIZE] == P_O16)
1467 else if (ins->prefixes[PPS_OSIZE] == P_O32)
1472 um = (uint64_t)2 << (s-1);
1475 if (uv > 127 && uv < (uint64_t)-128 &&
1476 (uv < um-128 || uv > um-1)) {
1477 /* If this wasn't explicitly byte-sized, warn as though we
1478 * had fallen through to the imm16/32/64 case.
1480 errfunc(ERR_WARNING | ERR_PASS2 | ERR_WARN_NOV,
1481 "%s value exceeds bounds",
1482 (opx->type & BITS8) ? "signed byte" :
1487 if (opx->segment != NO_SEG) {
1489 out(offset, segment, &data, OUT_ADDRESS, 1,
1490 opx->segment, opx->wrt);
1493 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG,
1504 if (bits == 32 && !has_prefix(ins, PPS_ASIZE, P_A16)) {
1506 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1513 if (bits != 32 && !has_prefix(ins, PPS_ASIZE, P_A32)) {
1515 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1550 *bytes = *codes++ ^ get_cond_opcode(ins->condition);
1551 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1560 *bytes = c - 0332 + 0xF2;
1561 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1566 if (ins->rex & REX_R) {
1568 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1571 ins->rex &= ~(REX_L|REX_R);
1582 if (ins->oprs[0].segment != NO_SEG)
1583 errfunc(ERR_PANIC, "non-constant BSS size in pass two");
1585 int64_t size = ins->oprs[0].offset;
1587 out(offset, segment, NULL,
1588 OUT_RESERVE, size, NO_SEG, NO_SEG);
1601 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1611 *bytes = c - 0366 + 0x66;
1612 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1621 *bytes = bits == 16 ? 3 : 5;
1622 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1652 struct operand *opy = &ins->oprs[op2];
1655 /* pick rfield from operand b (opx) */
1656 rflags = regflag(opx);
1657 rfield = nasm_regvals[opx->basereg];
1659 /* rfield is constant */
1664 if (process_ea(opy, &ea_data, bits, ins->addr_size,
1665 rfield, rflags) != eat)
1666 errfunc(ERR_NONFATAL, "invalid effective address");
1669 *p++ = ea_data.modrm;
1670 if (ea_data.sib_present)
1674 out(offset, segment, bytes, OUT_RAWDATA, s, NO_SEG, NO_SEG);
1677 * Make sure the address gets the right offset in case
1678 * the line breaks in the .lst file (BR 1197827)
1683 switch (ea_data.bytes) {
1693 if (opy->segment == segment) {
1695 if (overflow_signed(data, ea_data.bytes))
1696 warn_overflow(ERR_PASS2, ea_data.bytes);
1697 out(offset, segment, &data, OUT_ADDRESS,
1698 ea_data.bytes, NO_SEG, NO_SEG);
1700 /* overflow check in output/linker? */
1701 out(offset, segment, &data, OUT_REL4ADR,
1702 insn_end - offset, opy->segment, opy->wrt);
1705 if (overflow_general(opy->offset, ins->addr_size >> 3) ||
1706 signed_bits(opy->offset, ins->addr_size) !=
1707 signed_bits(opy->offset, ea_data.bytes * 8))
1708 warn_overflow(ERR_PASS2, ea_data.bytes);
1710 out(offset, segment, &data, OUT_ADDRESS,
1711 ea_data.bytes, opy->segment, opy->wrt);
1717 "Invalid amount of bytes (%d) for offset?!",
1726 errfunc(ERR_PANIC, "internal instruction table corrupt"
1727 ": instruction code \\%o (0x%02X) given", c, c);
1733 static opflags_t regflag(const operand * o)
1735 if (!is_register(o->basereg))
1736 errfunc(ERR_PANIC, "invalid operand passed to regflag()");
1737 return nasm_reg_flags[o->basereg];
1740 static int32_t regval(const operand * o)
1742 if (!is_register(o->basereg))
1743 errfunc(ERR_PANIC, "invalid operand passed to regval()");
1744 return nasm_regvals[o->basereg];
1747 static int op_rexflags(const operand * o, int mask)
1752 if (!is_register(o->basereg))
1753 errfunc(ERR_PANIC, "invalid operand passed to op_rexflags()");
1755 flags = nasm_reg_flags[o->basereg];
1756 val = nasm_regvals[o->basereg];
1758 return rexflags(val, flags, mask);
1761 static int rexflags(int val, opflags_t flags, int mask)
1766 rex |= REX_B|REX_X|REX_R;
1769 if (!(REG_HIGH & ~flags)) /* AH, CH, DH, BH */
1771 else if (!(REG8 & ~flags) && val >= 4) /* SPL, BPL, SIL, DIL */
1777 static enum match_result find_match(const struct itemplate **tempp,
1779 int32_t segment, int64_t offset, int bits)
1781 const struct itemplate *temp;
1782 enum match_result m, merr;
1783 opflags_t xsizeflags[MAX_OPERANDS];
1784 bool opsizemissing = false;
1787 for (i = 0; i < instruction->operands; i++)
1788 xsizeflags[i] = instruction->oprs[i].type & SIZE_MASK;
1790 merr = MERR_INVALOP;
1792 for (temp = nasm_instructions[instruction->opcode];
1793 temp->opcode != I_none; temp++) {
1794 m = matches(temp, instruction, bits);
1795 if (m == MOK_JUMP) {
1796 if (jmp_match(segment, offset, bits, instruction, temp))
1800 } else if (m == MERR_OPSIZEMISSING &&
1801 (temp->flags & IF_SMASK) != IF_SX) {
1803 * Missing operand size and a candidate for fuzzy matching...
1805 for (i = 0; i < temp->operands; i++)
1806 xsizeflags[i] |= temp->opd[i] & SIZE_MASK;
1807 opsizemissing = true;
1811 if (merr == MOK_GOOD)
1815 /* No match, but see if we can get a fuzzy operand size match... */
1819 for (i = 0; i < instruction->operands; i++) {
1821 * We ignore extrinsic operand sizes on registers, so we should
1822 * never try to fuzzy-match on them. This also resolves the case
1823 * when we have e.g. "xmmrm128" in two different positions.
1825 if (is_class(REGISTER, instruction->oprs[i].type))
1828 /* This tests if xsizeflags[i] has more than one bit set */
1829 if ((xsizeflags[i] & (xsizeflags[i]-1)))
1830 goto done; /* No luck */
1832 instruction->oprs[i].type |= xsizeflags[i]; /* Set the size */
1835 /* Try matching again... */
1836 for (temp = nasm_instructions[instruction->opcode];
1837 temp->opcode != I_none; temp++) {
1838 m = matches(temp, instruction, bits);
1839 if (m == MOK_JUMP) {
1840 if (jmp_match(segment, offset, bits, instruction, temp))
1847 if (merr == MOK_GOOD)
1856 static enum match_result matches(const struct itemplate *itemp,
1857 insn *instruction, int bits)
1859 opflags_t size[MAX_OPERANDS], asize;
1860 bool opsizemissing = false;
1866 if (itemp->opcode != instruction->opcode)
1867 return MERR_INVALOP;
1870 * Count the operands
1872 if (itemp->operands != instruction->operands)
1873 return MERR_INVALOP;
1878 if (!(optimizing > 0) && (itemp->flags & IF_OPT))
1879 return MERR_INVALOP;
1882 * Check that no spurious colons or TOs are present
1884 for (i = 0; i < itemp->operands; i++)
1885 if (instruction->oprs[i].type & ~itemp->opd[i] & (COLON | TO))
1886 return MERR_INVALOP;
1889 * Process size flags
1891 switch (itemp->flags & IF_SMASK) {
1931 if (itemp->flags & IF_ARMASK) {
1932 /* S- flags only apply to a specific operand */
1933 i = ((itemp->flags & IF_ARMASK) >> IF_ARSHFT) - 1;
1934 memset(size, 0, sizeof size);
1937 /* S- flags apply to all operands */
1938 for (i = 0; i < MAX_OPERANDS; i++)
1943 * Check that the operand flags all match up,
1944 * it's a bit tricky so lets be verbose:
1946 * 1) Find out the size of operand. If instruction
1947 * doesn't have one specified -- we're trying to
1948 * guess it either from template (IF_S* flag) or
1951 * 2) If template operand do not match the instruction OR
1952 * template has an operand size specified AND this size differ
1953 * from which instruction has (perhaps we got it from code bits)
1955 * a) Check that only size of instruction and operand is differ
1956 * other characteristics do match
1957 * b) Perhaps it's a register specified in instruction so
1958 * for such a case we just mark that operand as "size
1959 * missing" and this will turn on fuzzy operand size
1960 * logic facility (handled by a caller)
1962 for (i = 0; i < itemp->operands; i++) {
1963 opflags_t type = instruction->oprs[i].type;
1964 if (!(type & SIZE_MASK))
1967 if (itemp->opd[i] & ~type & ~SIZE_MASK) {
1968 return MERR_INVALOP;
1969 } else if ((itemp->opd[i] & SIZE_MASK) &&
1970 (itemp->opd[i] & SIZE_MASK) != (type & SIZE_MASK)) {
1971 if (type & SIZE_MASK) {
1972 return MERR_INVALOP;
1973 } else if (!is_class(REGISTER, type)) {
1975 * Note: we don't honor extrinsic operand sizes for registers,
1976 * so "missing operand size" for a register should be
1977 * considered a wildcard match rather than an error.
1979 opsizemissing = true;
1985 return MERR_OPSIZEMISSING;
1988 * Check operand sizes
1990 if (itemp->flags & (IF_SM | IF_SM2)) {
1991 oprs = (itemp->flags & IF_SM2 ? 2 : itemp->operands);
1992 for (i = 0; i < oprs; i++) {
1993 asize = itemp->opd[i] & SIZE_MASK;
1995 for (i = 0; i < oprs; i++)
2001 oprs = itemp->operands;
2004 for (i = 0; i < itemp->operands; i++) {
2005 if (!(itemp->opd[i] & SIZE_MASK) &&
2006 (instruction->oprs[i].type & SIZE_MASK & ~size[i]))
2007 return MERR_OPSIZEMISMATCH;
2011 * Check template is okay at the set cpu level
2013 if (((itemp->flags & IF_PLEVEL) > cpu))
2017 * Verify the appropriate long mode flag.
2019 if ((itemp->flags & (bits == 64 ? IF_NOLONG : IF_LONG)))
2020 return MERR_BADMODE;
2023 * If we have a HLE prefix, look for the NOHLE flag
2025 if ((itemp->flags & IF_NOHLE) &&
2026 (has_prefix(instruction, PPS_REP, P_XACQUIRE) ||
2027 has_prefix(instruction, PPS_REP, P_XRELEASE)))
2031 * Check if special handling needed for Jumps
2033 if ((itemp->code[0] & ~1) == 0370)
2039 static enum ea_type process_ea(operand *input, ea *output, int bits,
2040 int addrbits, int rfield, opflags_t rflags)
2042 bool forw_ref = !!(input->opflags & OPFLAG_UNKNOWN);
2044 output->type = EA_SCALAR;
2045 output->rip = false;
2047 /* REX flags for the rfield operand */
2048 output->rex |= rexflags(rfield, rflags, REX_R | REX_P | REX_W | REX_H);
2050 if (is_class(REGISTER, input->type)) {
2052 * It's a direct register.
2054 if (!is_register(input->basereg))
2057 if (!is_class(REG_EA, regflag(input)))
2060 output->rex |= op_rexflags(input, REX_B | REX_P | REX_W | REX_H);
2061 output->sib_present = false; /* no SIB necessary */
2062 output->bytes = 0; /* no offset necessary either */
2063 output->modrm = GEN_MODRM(3, rfield, nasm_regvals[input->basereg]);
2066 * It's a memory reference.
2068 if (input->basereg == -1 &&
2069 (input->indexreg == -1 || input->scale == 0)) {
2071 * It's a pure offset.
2073 if (bits == 64 && ((input->type & IP_REL) == IP_REL) &&
2074 input->segment == NO_SEG) {
2075 nasm_error(ERR_WARNING | ERR_PASS1, "absolute address can not be RIP-relative");
2076 input->type &= ~IP_REL;
2077 input->type |= MEMORY;
2080 if (input->eaflags & EAF_BYTEOFFS ||
2081 (input->eaflags & EAF_WORDOFFS &&
2082 input->disp_size != (addrbits != 16 ? 32 : 16))) {
2083 nasm_error(ERR_WARNING | ERR_PASS1, "displacement size ignored on absolute address");
2086 if (bits == 64 && (~input->type & IP_REL)) {
2087 output->sib_present = true;
2088 output->sib = GEN_SIB(0, 4, 5);
2090 output->modrm = GEN_MODRM(0, rfield, 4);
2091 output->rip = false;
2093 output->sib_present = false;
2094 output->bytes = (addrbits != 16 ? 4 : 2);
2095 output->modrm = GEN_MODRM(0, rfield, (addrbits != 16 ? 5 : 6));
2096 output->rip = bits == 64;
2100 * It's an indirection.
2102 int i = input->indexreg, b = input->basereg, s = input->scale;
2103 int32_t seg = input->segment;
2104 int hb = input->hintbase, ht = input->hinttype;
2105 int t, it, bt; /* register numbers */
2106 opflags_t x, ix, bx; /* register flags */
2109 i = -1; /* make this easy, at least */
2111 if (is_register(i)) {
2112 it = nasm_regvals[i];
2113 ix = nasm_reg_flags[i];
2119 if (is_register(b)) {
2120 bt = nasm_regvals[b];
2121 bx = nasm_reg_flags[b];
2127 /* if either one are a vector register... */
2128 if ((ix|bx) & (XMMREG|YMMREG) & ~REG_EA) {
2129 opflags_t sok = BITS32 | BITS64;
2130 int32_t o = input->offset;
2131 int mod, scale, index, base;
2134 * For a vector SIB, one has to be a vector and the other,
2135 * if present, a GPR. The vector must be the index operand.
2137 if (it == -1 || (bx & (XMMREG|YMMREG) & ~REG_EA)) {
2143 t = bt, bt = it, it = t;
2144 x = bx, bx = ix, ix = x;
2150 if (!(REG64 & ~bx) || !(REG32 & ~bx))
2157 * While we're here, ensure the user didn't specify
2160 if (input->disp_size == 16 || input->disp_size == 64)
2163 if (addrbits == 16 ||
2164 (addrbits == 32 && !(sok & BITS32)) ||
2165 (addrbits == 64 && !(sok & BITS64)))
2168 output->type = (ix & YMMREG & ~REG_EA)
2169 ? EA_YMMVSIB : EA_XMMVSIB;
2171 output->rex |= rexflags(it, ix, REX_X);
2172 output->rex |= rexflags(bt, bx, REX_B);
2174 index = it & 7; /* it is known to be != -1 */
2189 default: /* then what the smeg is it? */
2190 goto err; /* panic */
2198 if (base != REG_NUM_EBP && o == 0 &&
2199 seg == NO_SEG && !forw_ref &&
2200 !(input->eaflags & (EAF_BYTEOFFS | EAF_WORDOFFS)))
2202 else if (input->eaflags & EAF_BYTEOFFS ||
2203 (o >= -128 && o <= 127 &&
2204 seg == NO_SEG && !forw_ref &&
2205 !(input->eaflags & EAF_WORDOFFS)))
2211 output->sib_present = true;
2212 output->bytes = (bt == -1 || mod == 2 ? 4 : mod);
2213 output->modrm = GEN_MODRM(mod, rfield, 4);
2214 output->sib = GEN_SIB(scale, index, base);
2215 } else if ((ix|bx) & (BITS32|BITS64)) {
2217 * it must be a 32/64-bit memory reference. Firstly we have
2218 * to check that all registers involved are type E/Rxx.
2220 opflags_t sok = BITS32 | BITS64;
2221 int32_t o = input->offset;
2224 if (!(REG64 & ~ix) || !(REG32 & ~ix))
2232 goto err; /* Invalid register */
2233 if (~sok & bx & SIZE_MASK)
2234 goto err; /* Invalid size */
2239 * While we're here, ensure the user didn't specify
2242 if (input->disp_size == 16 || input->disp_size == 64)
2245 if (addrbits == 16 ||
2246 (addrbits == 32 && !(sok & BITS32)) ||
2247 (addrbits == 64 && !(sok & BITS64)))
2250 /* now reorganize base/index */
2251 if (s == 1 && bt != it && bt != -1 && it != -1 &&
2252 ((hb == b && ht == EAH_NOTBASE) ||
2253 (hb == i && ht == EAH_MAKEBASE))) {
2254 /* swap if hints say so */
2255 t = bt, bt = it, it = t;
2256 x = bx, bx = ix, ix = x;
2258 if (bt == it) /* convert EAX+2*EAX to 3*EAX */
2259 bt = -1, bx = 0, s++;
2260 if (bt == -1 && s == 1 && !(hb == it && ht == EAH_NOTBASE)) {
2261 /* make single reg base, unless hint */
2262 bt = it, bx = ix, it = -1, ix = 0;
2264 if (((s == 2 && it != REG_NUM_ESP && !(input->eaflags & EAF_TIMESTWO)) ||
2265 s == 3 || s == 5 || s == 9) && bt == -1)
2266 bt = it, bx = ix, s--; /* convert 3*EAX to EAX+2*EAX */
2267 if (it == -1 && (bt & 7) != REG_NUM_ESP &&
2268 (input->eaflags & EAF_TIMESTWO))
2269 it = bt, ix = bx, bt = -1, bx = 0, s = 1;
2270 /* convert [NOSPLIT EAX] to sib format with 0x0 displacement */
2271 if (s == 1 && it == REG_NUM_ESP) {
2272 /* swap ESP into base if scale is 1 */
2273 t = it, it = bt, bt = t;
2274 x = ix, ix = bx, bx = x;
2276 if (it == REG_NUM_ESP ||
2277 (s != 1 && s != 2 && s != 4 && s != 8 && it != -1))
2278 goto err; /* wrong, for various reasons */
2280 output->rex |= rexflags(it, ix, REX_X);
2281 output->rex |= rexflags(bt, bx, REX_B);
2283 if (it == -1 && (bt & 7) != REG_NUM_ESP) {
2292 if (rm != REG_NUM_EBP && o == 0 &&
2293 seg == NO_SEG && !forw_ref &&
2294 !(input->eaflags & (EAF_BYTEOFFS | EAF_WORDOFFS)))
2296 else if (input->eaflags & EAF_BYTEOFFS ||
2297 (o >= -128 && o <= 127 &&
2298 seg == NO_SEG && !forw_ref &&
2299 !(input->eaflags & EAF_WORDOFFS)))
2305 output->sib_present = false;
2306 output->bytes = (bt == -1 || mod == 2 ? 4 : mod);
2307 output->modrm = GEN_MODRM(mod, rfield, rm);
2310 int mod, scale, index, base;
2330 default: /* then what the smeg is it? */
2331 goto err; /* panic */
2339 if (base != REG_NUM_EBP && o == 0 &&
2340 seg == NO_SEG && !forw_ref &&
2341 !(input->eaflags & (EAF_BYTEOFFS | EAF_WORDOFFS)))
2343 else if (input->eaflags & EAF_BYTEOFFS ||
2344 (o >= -128 && o <= 127 &&
2345 seg == NO_SEG && !forw_ref &&
2346 !(input->eaflags & EAF_WORDOFFS)))
2352 output->sib_present = true;
2353 output->bytes = (bt == -1 || mod == 2 ? 4 : mod);
2354 output->modrm = GEN_MODRM(mod, rfield, 4);
2355 output->sib = GEN_SIB(scale, index, base);
2357 } else { /* it's 16-bit */
2359 int16_t o = input->offset;
2361 /* check for 64-bit long mode */
2365 /* check all registers are BX, BP, SI or DI */
2366 if ((b != -1 && b != R_BP && b != R_BX && b != R_SI && b != R_DI) ||
2367 (i != -1 && i != R_BP && i != R_BX && i != R_SI && i != R_DI))
2370 /* ensure the user didn't specify DWORD/QWORD */
2371 if (input->disp_size == 32 || input->disp_size == 64)
2374 if (s != 1 && i != -1)
2375 goto err; /* no can do, in 16-bit EA */
2376 if (b == -1 && i != -1) {
2381 if ((b == R_SI || b == R_DI) && i != -1) {
2386 /* have BX/BP as base, SI/DI index */
2388 goto err; /* shouldn't ever happen, in theory */
2389 if (i != -1 && b != -1 &&
2390 (i == R_BP || i == R_BX || b == R_SI || b == R_DI))
2391 goto err; /* invalid combinations */
2392 if (b == -1) /* pure offset: handled above */
2393 goto err; /* so if it gets to here, panic! */
2397 switch (i * 256 + b) {
2398 case R_SI * 256 + R_BX:
2401 case R_DI * 256 + R_BX:
2404 case R_SI * 256 + R_BP:
2407 case R_DI * 256 + R_BP:
2425 if (rm == -1) /* can't happen, in theory */
2426 goto err; /* so panic if it does */
2428 if (o == 0 && seg == NO_SEG && !forw_ref && rm != 6 &&
2429 !(input->eaflags & (EAF_BYTEOFFS | EAF_WORDOFFS)))
2431 else if (input->eaflags & EAF_BYTEOFFS ||
2432 (o >= -128 && o <= 127 && seg == NO_SEG &&
2433 !forw_ref && !(input->eaflags & EAF_WORDOFFS)))
2438 output->sib_present = false; /* no SIB - it's 16-bit */
2439 output->bytes = mod; /* bytes of offset needed */
2440 output->modrm = GEN_MODRM(mod, rfield, rm);
2445 output->size = 1 + output->sib_present + output->bytes;
2446 return output->type;
2449 return output->type = EA_INVALID;
2452 static void add_asp(insn *ins, int addrbits)
2457 valid = (addrbits == 64) ? 64|32 : 32|16;
2459 switch (ins->prefixes[PPS_ASIZE]) {
2470 valid &= (addrbits == 32) ? 16 : 32;
2476 for (j = 0; j < ins->operands; j++) {
2477 if (is_class(MEMORY, ins->oprs[j].type)) {
2480 /* Verify as Register */
2481 if (!is_register(ins->oprs[j].indexreg))
2484 i = nasm_reg_flags[ins->oprs[j].indexreg];
2486 /* Verify as Register */
2487 if (!is_register(ins->oprs[j].basereg))
2490 b = nasm_reg_flags[ins->oprs[j].basereg];
2492 if (ins->oprs[j].scale == 0)
2496 int ds = ins->oprs[j].disp_size;
2497 if ((addrbits != 64 && ds > 8) ||
2498 (addrbits == 64 && ds == 16))
2518 if (valid & addrbits) {
2519 ins->addr_size = addrbits;
2520 } else if (valid & ((addrbits == 32) ? 16 : 32)) {
2521 /* Add an address size prefix */
2522 ins->prefixes[PPS_ASIZE] = (addrbits == 32) ? P_A16 : P_A32;;
2523 ins->addr_size = (addrbits == 32) ? 16 : 32;
2526 errfunc(ERR_NONFATAL, "impossible combination of address sizes");
2527 ins->addr_size = addrbits; /* Error recovery */
2530 defdisp = ins->addr_size == 16 ? 16 : 32;
2532 for (j = 0; j < ins->operands; j++) {
2533 if (!(MEM_OFFS & ~ins->oprs[j].type) &&
2534 (ins->oprs[j].disp_size ? ins->oprs[j].disp_size : defdisp) != ins->addr_size) {
2536 * mem_offs sizes must match the address size; if not,
2537 * strip the MEM_OFFS bit and match only EA instructions
2539 ins->oprs[j].type &= ~(MEM_OFFS & ~MEMORY);