arch_init: Be sure of only one exit entry with DPRINTF() for ram_load()
[sdk/emulator/qemu.git] / arch_init.c
1 /*
2  * QEMU System Emulator
3  *
4  * Copyright (c) 2003-2008 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include <stdint.h>
25 #include <stdarg.h>
26 #include <stdlib.h>
27 #ifndef _WIN32
28 #include <sys/types.h>
29 #include <sys/mman.h>
30 #endif
31 #include "config.h"
32 #include "monitor/monitor.h"
33 #include "sysemu/sysemu.h"
34 #include "qemu/bitops.h"
35 #include "qemu/bitmap.h"
36 #include "sysemu/arch_init.h"
37 #include "audio/audio.h"
38 #include "hw/i386/pc.h"
39 #include "hw/pci/pci.h"
40 #include "hw/audio/audio.h"
41 #include "sysemu/kvm.h"
42 #include "migration/migration.h"
43 #include "hw/i386/smbios.h"
44 #include "exec/address-spaces.h"
45 #include "hw/audio/pcspk.h"
46 #include "migration/page_cache.h"
47 #include "qemu/config-file.h"
48 #include "qemu/error-report.h"
49 #include "qmp-commands.h"
50 #include "trace.h"
51 #include "exec/cpu-all.h"
52 #include "exec/ram_addr.h"
53 #include "hw/acpi/acpi.h"
54 #include "qemu/host-utils.h"
55
56 #ifdef DEBUG_ARCH_INIT
57 #define DPRINTF(fmt, ...) \
58     do { fprintf(stdout, "arch_init: " fmt, ## __VA_ARGS__); } while (0)
59 #else
60 #define DPRINTF(fmt, ...) \
61     do { } while (0)
62 #endif
63
64 #ifdef TARGET_SPARC
65 int graphic_width = 1024;
66 int graphic_height = 768;
67 int graphic_depth = 8;
68 #else
69 int graphic_width = 800;
70 int graphic_height = 600;
71 int graphic_depth = 32;
72 #endif
73
74
75 #if defined(TARGET_ALPHA)
76 #define QEMU_ARCH QEMU_ARCH_ALPHA
77 #elif defined(TARGET_ARM)
78 #define QEMU_ARCH QEMU_ARCH_ARM
79 #elif defined(TARGET_CRIS)
80 #define QEMU_ARCH QEMU_ARCH_CRIS
81 #elif defined(TARGET_I386)
82 #define QEMU_ARCH QEMU_ARCH_I386
83 #elif defined(TARGET_M68K)
84 #define QEMU_ARCH QEMU_ARCH_M68K
85 #elif defined(TARGET_LM32)
86 #define QEMU_ARCH QEMU_ARCH_LM32
87 #elif defined(TARGET_MICROBLAZE)
88 #define QEMU_ARCH QEMU_ARCH_MICROBLAZE
89 #elif defined(TARGET_MIPS)
90 #define QEMU_ARCH QEMU_ARCH_MIPS
91 #elif defined(TARGET_MOXIE)
92 #define QEMU_ARCH QEMU_ARCH_MOXIE
93 #elif defined(TARGET_OPENRISC)
94 #define QEMU_ARCH QEMU_ARCH_OPENRISC
95 #elif defined(TARGET_PPC)
96 #define QEMU_ARCH QEMU_ARCH_PPC
97 #elif defined(TARGET_S390X)
98 #define QEMU_ARCH QEMU_ARCH_S390X
99 #elif defined(TARGET_SH4)
100 #define QEMU_ARCH QEMU_ARCH_SH4
101 #elif defined(TARGET_SPARC)
102 #define QEMU_ARCH QEMU_ARCH_SPARC
103 #elif defined(TARGET_XTENSA)
104 #define QEMU_ARCH QEMU_ARCH_XTENSA
105 #elif defined(TARGET_UNICORE32)
106 #define QEMU_ARCH QEMU_ARCH_UNICORE32
107 #endif
108
109 const uint32_t arch_type = QEMU_ARCH;
110 static bool mig_throttle_on;
111 static int dirty_rate_high_cnt;
112 static void check_guest_throttling(void);
113
114 static uint64_t bitmap_sync_count;
115
116 /***********************************************************/
117 /* ram save/restore */
118
119 #define RAM_SAVE_FLAG_FULL     0x01 /* Obsolete, not used anymore */
120 #define RAM_SAVE_FLAG_COMPRESS 0x02
121 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
122 #define RAM_SAVE_FLAG_PAGE     0x08
123 #define RAM_SAVE_FLAG_EOS      0x10
124 #define RAM_SAVE_FLAG_CONTINUE 0x20
125 #define RAM_SAVE_FLAG_XBZRLE   0x40
126 /* 0x80 is reserved in migration.h start with 0x100 next */
127
128 static struct defconfig_file {
129     const char *filename;
130     /* Indicates it is an user config file (disabled by -no-user-config) */
131     bool userconfig;
132 } default_config_files[] = {
133     { CONFIG_QEMU_CONFDIR "/qemu.conf",                   true },
134     { CONFIG_QEMU_CONFDIR "/target-" TARGET_NAME ".conf", true },
135     { NULL }, /* end of list */
136 };
137
138 static const uint8_t ZERO_TARGET_PAGE[TARGET_PAGE_SIZE];
139
140 int qemu_read_default_config_files(bool userconfig)
141 {
142     int ret;
143     struct defconfig_file *f;
144
145     for (f = default_config_files; f->filename; f++) {
146         if (!userconfig && f->userconfig) {
147             continue;
148         }
149         ret = qemu_read_config_file(f->filename);
150         if (ret < 0 && ret != -ENOENT) {
151             return ret;
152         }
153     }
154
155     return 0;
156 }
157
158 static inline bool is_zero_range(uint8_t *p, uint64_t size)
159 {
160     return buffer_find_nonzero_offset(p, size) == size;
161 }
162
163 /* struct contains XBZRLE cache and a static page
164    used by the compression */
165 static struct {
166     /* buffer used for XBZRLE encoding */
167     uint8_t *encoded_buf;
168     /* buffer for storing page content */
169     uint8_t *current_buf;
170     /* Cache for XBZRLE, Protected by lock. */
171     PageCache *cache;
172     QemuMutex lock;
173 } XBZRLE;
174
175 /* buffer used for XBZRLE decoding */
176 static uint8_t *xbzrle_decoded_buf;
177
178 static void XBZRLE_cache_lock(void)
179 {
180     if (migrate_use_xbzrle())
181         qemu_mutex_lock(&XBZRLE.lock);
182 }
183
184 static void XBZRLE_cache_unlock(void)
185 {
186     if (migrate_use_xbzrle())
187         qemu_mutex_unlock(&XBZRLE.lock);
188 }
189
190 /*
191  * called from qmp_migrate_set_cache_size in main thread, possibly while
192  * a migration is in progress.
193  * A running migration maybe using the cache and might finish during this
194  * call, hence changes to the cache are protected by XBZRLE.lock().
195  */
196 int64_t xbzrle_cache_resize(int64_t new_size)
197 {
198     PageCache *new_cache;
199     int64_t ret;
200
201     if (new_size < TARGET_PAGE_SIZE) {
202         return -1;
203     }
204
205     XBZRLE_cache_lock();
206
207     if (XBZRLE.cache != NULL) {
208         if (pow2floor(new_size) == migrate_xbzrle_cache_size()) {
209             goto out_new_size;
210         }
211         new_cache = cache_init(new_size / TARGET_PAGE_SIZE,
212                                         TARGET_PAGE_SIZE);
213         if (!new_cache) {
214             error_report("Error creating cache");
215             ret = -1;
216             goto out;
217         }
218
219         cache_fini(XBZRLE.cache);
220         XBZRLE.cache = new_cache;
221     }
222
223 out_new_size:
224     ret = pow2floor(new_size);
225 out:
226     XBZRLE_cache_unlock();
227     return ret;
228 }
229
230 /* accounting for migration statistics */
231 typedef struct AccountingInfo {
232     uint64_t dup_pages;
233     uint64_t skipped_pages;
234     uint64_t norm_pages;
235     uint64_t iterations;
236     uint64_t xbzrle_bytes;
237     uint64_t xbzrle_pages;
238     uint64_t xbzrle_cache_miss;
239     double xbzrle_cache_miss_rate;
240     uint64_t xbzrle_overflows;
241 } AccountingInfo;
242
243 static AccountingInfo acct_info;
244
245 static void acct_clear(void)
246 {
247     memset(&acct_info, 0, sizeof(acct_info));
248 }
249
250 uint64_t dup_mig_bytes_transferred(void)
251 {
252     return acct_info.dup_pages * TARGET_PAGE_SIZE;
253 }
254
255 uint64_t dup_mig_pages_transferred(void)
256 {
257     return acct_info.dup_pages;
258 }
259
260 uint64_t skipped_mig_bytes_transferred(void)
261 {
262     return acct_info.skipped_pages * TARGET_PAGE_SIZE;
263 }
264
265 uint64_t skipped_mig_pages_transferred(void)
266 {
267     return acct_info.skipped_pages;
268 }
269
270 uint64_t norm_mig_bytes_transferred(void)
271 {
272     return acct_info.norm_pages * TARGET_PAGE_SIZE;
273 }
274
275 uint64_t norm_mig_pages_transferred(void)
276 {
277     return acct_info.norm_pages;
278 }
279
280 uint64_t xbzrle_mig_bytes_transferred(void)
281 {
282     return acct_info.xbzrle_bytes;
283 }
284
285 uint64_t xbzrle_mig_pages_transferred(void)
286 {
287     return acct_info.xbzrle_pages;
288 }
289
290 uint64_t xbzrle_mig_pages_cache_miss(void)
291 {
292     return acct_info.xbzrle_cache_miss;
293 }
294
295 double xbzrle_mig_cache_miss_rate(void)
296 {
297     return acct_info.xbzrle_cache_miss_rate;
298 }
299
300 uint64_t xbzrle_mig_pages_overflow(void)
301 {
302     return acct_info.xbzrle_overflows;
303 }
304
305 static size_t save_block_hdr(QEMUFile *f, RAMBlock *block, ram_addr_t offset,
306                              int cont, int flag)
307 {
308     size_t size;
309
310     qemu_put_be64(f, offset | cont | flag);
311     size = 8;
312
313     if (!cont) {
314         qemu_put_byte(f, strlen(block->idstr));
315         qemu_put_buffer(f, (uint8_t *)block->idstr,
316                         strlen(block->idstr));
317         size += 1 + strlen(block->idstr);
318     }
319     return size;
320 }
321
322 /* This is the last block that we have visited serching for dirty pages
323  */
324 static RAMBlock *last_seen_block;
325 /* This is the last block from where we have sent data */
326 static RAMBlock *last_sent_block;
327 static ram_addr_t last_offset;
328 static unsigned long *migration_bitmap;
329 static uint64_t migration_dirty_pages;
330 static uint32_t last_version;
331 static bool ram_bulk_stage;
332
333 /* Update the xbzrle cache to reflect a page that's been sent as all 0.
334  * The important thing is that a stale (not-yet-0'd) page be replaced
335  * by the new data.
336  * As a bonus, if the page wasn't in the cache it gets added so that
337  * when a small write is made into the 0'd page it gets XBZRLE sent
338  */
339 static void xbzrle_cache_zero_page(ram_addr_t current_addr)
340 {
341     if (ram_bulk_stage || !migrate_use_xbzrle()) {
342         return;
343     }
344
345     /* We don't care if this fails to allocate a new cache page
346      * as long as it updated an old one */
347     cache_insert(XBZRLE.cache, current_addr, ZERO_TARGET_PAGE);
348 }
349
350 #define ENCODING_FLAG_XBZRLE 0x1
351
352 static int save_xbzrle_page(QEMUFile *f, uint8_t **current_data,
353                             ram_addr_t current_addr, RAMBlock *block,
354                             ram_addr_t offset, int cont, bool last_stage)
355 {
356     int encoded_len = 0, bytes_sent = -1;
357     uint8_t *prev_cached_page;
358
359     if (!cache_is_cached(XBZRLE.cache, current_addr)) {
360         acct_info.xbzrle_cache_miss++;
361         if (!last_stage) {
362             if (cache_insert(XBZRLE.cache, current_addr, *current_data) == -1) {
363                 return -1;
364             } else {
365                 /* update *current_data when the page has been
366                    inserted into cache */
367                 *current_data = get_cached_data(XBZRLE.cache, current_addr);
368             }
369         }
370         return -1;
371     }
372
373     prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
374
375     /* save current buffer into memory */
376     memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
377
378     /* XBZRLE encoding (if there is no overflow) */
379     encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
380                                        TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
381                                        TARGET_PAGE_SIZE);
382     if (encoded_len == 0) {
383         DPRINTF("Skipping unmodified page\n");
384         return 0;
385     } else if (encoded_len == -1) {
386         DPRINTF("Overflow\n");
387         acct_info.xbzrle_overflows++;
388         /* update data in the cache */
389         if (!last_stage) {
390             memcpy(prev_cached_page, *current_data, TARGET_PAGE_SIZE);
391             *current_data = prev_cached_page;
392         }
393         return -1;
394     }
395
396     /* we need to update the data in the cache, in order to get the same data */
397     if (!last_stage) {
398         memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
399     }
400
401     /* Send XBZRLE based compressed page */
402     bytes_sent = save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_XBZRLE);
403     qemu_put_byte(f, ENCODING_FLAG_XBZRLE);
404     qemu_put_be16(f, encoded_len);
405     qemu_put_buffer(f, XBZRLE.encoded_buf, encoded_len);
406     bytes_sent += encoded_len + 1 + 2;
407     acct_info.xbzrle_pages++;
408     acct_info.xbzrle_bytes += bytes_sent;
409
410     return bytes_sent;
411 }
412
413 static inline
414 ram_addr_t migration_bitmap_find_and_reset_dirty(MemoryRegion *mr,
415                                                  ram_addr_t start)
416 {
417     unsigned long base = mr->ram_addr >> TARGET_PAGE_BITS;
418     unsigned long nr = base + (start >> TARGET_PAGE_BITS);
419     uint64_t mr_size = TARGET_PAGE_ALIGN(memory_region_size(mr));
420     unsigned long size = base + (mr_size >> TARGET_PAGE_BITS);
421
422     unsigned long next;
423
424     if (ram_bulk_stage && nr > base) {
425         next = nr + 1;
426     } else {
427         next = find_next_bit(migration_bitmap, size, nr);
428     }
429
430     if (next < size) {
431         clear_bit(next, migration_bitmap);
432         migration_dirty_pages--;
433     }
434     return (next - base) << TARGET_PAGE_BITS;
435 }
436
437 static inline bool migration_bitmap_set_dirty(ram_addr_t addr)
438 {
439     bool ret;
440     int nr = addr >> TARGET_PAGE_BITS;
441
442     ret = test_and_set_bit(nr, migration_bitmap);
443
444     if (!ret) {
445         migration_dirty_pages++;
446     }
447     return ret;
448 }
449
450 static void migration_bitmap_sync_range(ram_addr_t start, ram_addr_t length)
451 {
452     ram_addr_t addr;
453     unsigned long page = BIT_WORD(start >> TARGET_PAGE_BITS);
454
455     /* start address is aligned at the start of a word? */
456     if (((page * BITS_PER_LONG) << TARGET_PAGE_BITS) == start) {
457         int k;
458         int nr = BITS_TO_LONGS(length >> TARGET_PAGE_BITS);
459         unsigned long *src = ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION];
460
461         for (k = page; k < page + nr; k++) {
462             if (src[k]) {
463                 unsigned long new_dirty;
464                 new_dirty = ~migration_bitmap[k];
465                 migration_bitmap[k] |= src[k];
466                 new_dirty &= src[k];
467                 migration_dirty_pages += ctpopl(new_dirty);
468                 src[k] = 0;
469             }
470         }
471     } else {
472         for (addr = 0; addr < length; addr += TARGET_PAGE_SIZE) {
473             if (cpu_physical_memory_get_dirty(start + addr,
474                                               TARGET_PAGE_SIZE,
475                                               DIRTY_MEMORY_MIGRATION)) {
476                 cpu_physical_memory_reset_dirty(start + addr,
477                                                 TARGET_PAGE_SIZE,
478                                                 DIRTY_MEMORY_MIGRATION);
479                 migration_bitmap_set_dirty(start + addr);
480             }
481         }
482     }
483 }
484
485
486 /* Needs iothread lock! */
487
488 static void migration_bitmap_sync(void)
489 {
490     RAMBlock *block;
491     uint64_t num_dirty_pages_init = migration_dirty_pages;
492     MigrationState *s = migrate_get_current();
493     static int64_t start_time;
494     static int64_t bytes_xfer_prev;
495     static int64_t num_dirty_pages_period;
496     int64_t end_time;
497     int64_t bytes_xfer_now;
498     static uint64_t xbzrle_cache_miss_prev;
499     static uint64_t iterations_prev;
500
501     bitmap_sync_count++;
502
503     if (!bytes_xfer_prev) {
504         bytes_xfer_prev = ram_bytes_transferred();
505     }
506
507     if (!start_time) {
508         start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
509     }
510
511     trace_migration_bitmap_sync_start();
512     address_space_sync_dirty_bitmap(&address_space_memory);
513
514     QTAILQ_FOREACH(block, &ram_list.blocks, next) {
515         migration_bitmap_sync_range(block->mr->ram_addr, block->length);
516     }
517     trace_migration_bitmap_sync_end(migration_dirty_pages
518                                     - num_dirty_pages_init);
519     num_dirty_pages_period += migration_dirty_pages - num_dirty_pages_init;
520     end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
521
522     /* more than 1 second = 1000 millisecons */
523     if (end_time > start_time + 1000) {
524         if (migrate_auto_converge()) {
525             /* The following detection logic can be refined later. For now:
526                Check to see if the dirtied bytes is 50% more than the approx.
527                amount of bytes that just got transferred since the last time we
528                were in this routine. If that happens >N times (for now N==4)
529                we turn on the throttle down logic */
530             bytes_xfer_now = ram_bytes_transferred();
531             if (s->dirty_pages_rate &&
532                (num_dirty_pages_period * TARGET_PAGE_SIZE >
533                    (bytes_xfer_now - bytes_xfer_prev)/2) &&
534                (dirty_rate_high_cnt++ > 4)) {
535                     trace_migration_throttle();
536                     mig_throttle_on = true;
537                     dirty_rate_high_cnt = 0;
538              }
539              bytes_xfer_prev = bytes_xfer_now;
540         } else {
541              mig_throttle_on = false;
542         }
543         if (migrate_use_xbzrle()) {
544             if (iterations_prev != 0) {
545                 acct_info.xbzrle_cache_miss_rate =
546                    (double)(acct_info.xbzrle_cache_miss -
547                             xbzrle_cache_miss_prev) /
548                    (acct_info.iterations - iterations_prev);
549             }
550             iterations_prev = acct_info.iterations;
551             xbzrle_cache_miss_prev = acct_info.xbzrle_cache_miss;
552         }
553         s->dirty_pages_rate = num_dirty_pages_period * 1000
554             / (end_time - start_time);
555         s->dirty_bytes_rate = s->dirty_pages_rate * TARGET_PAGE_SIZE;
556         start_time = end_time;
557         num_dirty_pages_period = 0;
558         s->dirty_sync_count = bitmap_sync_count;
559     }
560 }
561
562 /*
563  * ram_save_block: Writes a page of memory to the stream f
564  *
565  * Returns:  The number of bytes written.
566  *           0 means no dirty pages
567  */
568
569 static int ram_save_block(QEMUFile *f, bool last_stage)
570 {
571     RAMBlock *block = last_seen_block;
572     ram_addr_t offset = last_offset;
573     bool complete_round = false;
574     int bytes_sent = 0;
575     MemoryRegion *mr;
576     ram_addr_t current_addr;
577
578     if (!block)
579         block = QTAILQ_FIRST(&ram_list.blocks);
580
581     while (true) {
582         mr = block->mr;
583         offset = migration_bitmap_find_and_reset_dirty(mr, offset);
584         if (complete_round && block == last_seen_block &&
585             offset >= last_offset) {
586             break;
587         }
588         if (offset >= block->length) {
589             offset = 0;
590             block = QTAILQ_NEXT(block, next);
591             if (!block) {
592                 block = QTAILQ_FIRST(&ram_list.blocks);
593                 complete_round = true;
594                 ram_bulk_stage = false;
595             }
596         } else {
597             int ret;
598             uint8_t *p;
599             bool send_async = true;
600             int cont = (block == last_sent_block) ?
601                 RAM_SAVE_FLAG_CONTINUE : 0;
602
603             p = memory_region_get_ram_ptr(mr) + offset;
604
605             /* In doubt sent page as normal */
606             bytes_sent = -1;
607             ret = ram_control_save_page(f, block->offset,
608                                offset, TARGET_PAGE_SIZE, &bytes_sent);
609
610             XBZRLE_cache_lock();
611
612             current_addr = block->offset + offset;
613             if (ret != RAM_SAVE_CONTROL_NOT_SUPP) {
614                 if (ret != RAM_SAVE_CONTROL_DELAYED) {
615                     if (bytes_sent > 0) {
616                         acct_info.norm_pages++;
617                     } else if (bytes_sent == 0) {
618                         acct_info.dup_pages++;
619                     }
620                 }
621             } else if (is_zero_range(p, TARGET_PAGE_SIZE)) {
622                 acct_info.dup_pages++;
623                 bytes_sent = save_block_hdr(f, block, offset, cont,
624                                             RAM_SAVE_FLAG_COMPRESS);
625                 qemu_put_byte(f, 0);
626                 bytes_sent++;
627                 /* Must let xbzrle know, otherwise a previous (now 0'd) cached
628                  * page would be stale
629                  */
630                 xbzrle_cache_zero_page(current_addr);
631             } else if (!ram_bulk_stage && migrate_use_xbzrle()) {
632                 bytes_sent = save_xbzrle_page(f, &p, current_addr, block,
633                                               offset, cont, last_stage);
634                 if (!last_stage) {
635                     /* Can't send this cached data async, since the cache page
636                      * might get updated before it gets to the wire
637                      */
638                     send_async = false;
639                 }
640             }
641
642             /* XBZRLE overflow or normal page */
643             if (bytes_sent == -1) {
644                 bytes_sent = save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_PAGE);
645                 if (send_async) {
646                     qemu_put_buffer_async(f, p, TARGET_PAGE_SIZE);
647                 } else {
648                     qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
649                 }
650                 bytes_sent += TARGET_PAGE_SIZE;
651                 acct_info.norm_pages++;
652             }
653
654             XBZRLE_cache_unlock();
655             /* if page is unmodified, continue to the next */
656             if (bytes_sent > 0) {
657                 last_sent_block = block;
658                 break;
659             }
660         }
661     }
662     last_seen_block = block;
663     last_offset = offset;
664
665     return bytes_sent;
666 }
667
668 static uint64_t bytes_transferred;
669
670 void acct_update_position(QEMUFile *f, size_t size, bool zero)
671 {
672     uint64_t pages = size / TARGET_PAGE_SIZE;
673     if (zero) {
674         acct_info.dup_pages += pages;
675     } else {
676         acct_info.norm_pages += pages;
677         bytes_transferred += size;
678         qemu_update_position(f, size);
679     }
680 }
681
682 static ram_addr_t ram_save_remaining(void)
683 {
684     return migration_dirty_pages;
685 }
686
687 uint64_t ram_bytes_remaining(void)
688 {
689     return ram_save_remaining() * TARGET_PAGE_SIZE;
690 }
691
692 uint64_t ram_bytes_transferred(void)
693 {
694     return bytes_transferred;
695 }
696
697 uint64_t ram_bytes_total(void)
698 {
699     RAMBlock *block;
700     uint64_t total = 0;
701
702     QTAILQ_FOREACH(block, &ram_list.blocks, next)
703         total += block->length;
704
705     return total;
706 }
707
708 void free_xbzrle_decoded_buf(void)
709 {
710     g_free(xbzrle_decoded_buf);
711     xbzrle_decoded_buf = NULL;
712 }
713
714 static void migration_end(void)
715 {
716     if (migration_bitmap) {
717         memory_global_dirty_log_stop();
718         g_free(migration_bitmap);
719         migration_bitmap = NULL;
720     }
721
722     XBZRLE_cache_lock();
723     if (XBZRLE.cache) {
724         cache_fini(XBZRLE.cache);
725         g_free(XBZRLE.cache);
726         g_free(XBZRLE.encoded_buf);
727         g_free(XBZRLE.current_buf);
728         XBZRLE.cache = NULL;
729         XBZRLE.encoded_buf = NULL;
730         XBZRLE.current_buf = NULL;
731     }
732     XBZRLE_cache_unlock();
733 }
734
735 static void ram_migration_cancel(void *opaque)
736 {
737     migration_end();
738 }
739
740 static void reset_ram_globals(void)
741 {
742     last_seen_block = NULL;
743     last_sent_block = NULL;
744     last_offset = 0;
745     last_version = ram_list.version;
746     ram_bulk_stage = true;
747 }
748
749 #define MAX_WAIT 50 /* ms, half buffered_file limit */
750
751 static int ram_save_setup(QEMUFile *f, void *opaque)
752 {
753     RAMBlock *block;
754     int64_t ram_bitmap_pages; /* Size of bitmap in pages, including gaps */
755
756     mig_throttle_on = false;
757     dirty_rate_high_cnt = 0;
758     bitmap_sync_count = 0;
759
760     if (migrate_use_xbzrle()) {
761         XBZRLE_cache_lock();
762         XBZRLE.cache = cache_init(migrate_xbzrle_cache_size() /
763                                   TARGET_PAGE_SIZE,
764                                   TARGET_PAGE_SIZE);
765         if (!XBZRLE.cache) {
766             XBZRLE_cache_unlock();
767             error_report("Error creating cache");
768             return -1;
769         }
770         XBZRLE_cache_unlock();
771
772         /* We prefer not to abort if there is no memory */
773         XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
774         if (!XBZRLE.encoded_buf) {
775             error_report("Error allocating encoded_buf");
776             return -1;
777         }
778
779         XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
780         if (!XBZRLE.current_buf) {
781             error_report("Error allocating current_buf");
782             g_free(XBZRLE.encoded_buf);
783             XBZRLE.encoded_buf = NULL;
784             return -1;
785         }
786
787         acct_clear();
788     }
789
790     qemu_mutex_lock_iothread();
791     qemu_mutex_lock_ramlist();
792     bytes_transferred = 0;
793     reset_ram_globals();
794
795     ram_bitmap_pages = last_ram_offset() >> TARGET_PAGE_BITS;
796     migration_bitmap = bitmap_new(ram_bitmap_pages);
797     bitmap_set(migration_bitmap, 0, ram_bitmap_pages);
798
799     /*
800      * Count the total number of pages used by ram blocks not including any
801      * gaps due to alignment or unplugs.
802      */
803     migration_dirty_pages = 0;
804     QTAILQ_FOREACH(block, &ram_list.blocks, next) {
805         uint64_t block_pages;
806
807         block_pages = block->length >> TARGET_PAGE_BITS;
808         migration_dirty_pages += block_pages;
809     }
810
811     memory_global_dirty_log_start();
812     migration_bitmap_sync();
813     qemu_mutex_unlock_iothread();
814
815     qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE);
816
817     QTAILQ_FOREACH(block, &ram_list.blocks, next) {
818         qemu_put_byte(f, strlen(block->idstr));
819         qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
820         qemu_put_be64(f, block->length);
821     }
822
823     qemu_mutex_unlock_ramlist();
824
825     ram_control_before_iterate(f, RAM_CONTROL_SETUP);
826     ram_control_after_iterate(f, RAM_CONTROL_SETUP);
827
828     qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
829
830     return 0;
831 }
832
833 static int ram_save_iterate(QEMUFile *f, void *opaque)
834 {
835     int ret;
836     int i;
837     int64_t t0;
838     int total_sent = 0;
839
840     qemu_mutex_lock_ramlist();
841
842     if (ram_list.version != last_version) {
843         reset_ram_globals();
844     }
845
846     ram_control_before_iterate(f, RAM_CONTROL_ROUND);
847
848     t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
849     i = 0;
850     while ((ret = qemu_file_rate_limit(f)) == 0) {
851         int bytes_sent;
852
853         bytes_sent = ram_save_block(f, false);
854         /* no more blocks to sent */
855         if (bytes_sent == 0) {
856             break;
857         }
858         total_sent += bytes_sent;
859         acct_info.iterations++;
860         check_guest_throttling();
861         /* we want to check in the 1st loop, just in case it was the 1st time
862            and we had to sync the dirty bitmap.
863            qemu_get_clock_ns() is a bit expensive, so we only check each some
864            iterations
865         */
866         if ((i & 63) == 0) {
867             uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000;
868             if (t1 > MAX_WAIT) {
869                 DPRINTF("big wait: %" PRIu64 " milliseconds, %d iterations\n",
870                         t1, i);
871                 break;
872             }
873         }
874         i++;
875     }
876
877     qemu_mutex_unlock_ramlist();
878
879     /*
880      * Must occur before EOS (or any QEMUFile operation)
881      * because of RDMA protocol.
882      */
883     ram_control_after_iterate(f, RAM_CONTROL_ROUND);
884
885     bytes_transferred += total_sent;
886
887     /*
888      * Do not count these 8 bytes into total_sent, so that we can
889      * return 0 if no page had been dirtied.
890      */
891     qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
892     bytes_transferred += 8;
893
894     ret = qemu_file_get_error(f);
895     if (ret < 0) {
896         return ret;
897     }
898
899     return total_sent;
900 }
901
902 static int ram_save_complete(QEMUFile *f, void *opaque)
903 {
904     qemu_mutex_lock_ramlist();
905     migration_bitmap_sync();
906
907     ram_control_before_iterate(f, RAM_CONTROL_FINISH);
908
909     /* try transferring iterative blocks of memory */
910
911     /* flush all remaining blocks regardless of rate limiting */
912     while (true) {
913         int bytes_sent;
914
915         bytes_sent = ram_save_block(f, true);
916         /* no more blocks to sent */
917         if (bytes_sent == 0) {
918             break;
919         }
920         bytes_transferred += bytes_sent;
921     }
922
923     ram_control_after_iterate(f, RAM_CONTROL_FINISH);
924     migration_end();
925
926     qemu_mutex_unlock_ramlist();
927     qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
928
929     return 0;
930 }
931
932 static uint64_t ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size)
933 {
934     uint64_t remaining_size;
935
936     remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
937
938     if (remaining_size < max_size) {
939         qemu_mutex_lock_iothread();
940         migration_bitmap_sync();
941         qemu_mutex_unlock_iothread();
942         remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
943     }
944     return remaining_size;
945 }
946
947 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
948 {
949     int ret, rc = 0;
950     unsigned int xh_len;
951     int xh_flags;
952
953     if (!xbzrle_decoded_buf) {
954         xbzrle_decoded_buf = g_malloc(TARGET_PAGE_SIZE);
955     }
956
957     /* extract RLE header */
958     xh_flags = qemu_get_byte(f);
959     xh_len = qemu_get_be16(f);
960
961     if (xh_flags != ENCODING_FLAG_XBZRLE) {
962         fprintf(stderr, "Failed to load XBZRLE page - wrong compression!\n");
963         return -1;
964     }
965
966     if (xh_len > TARGET_PAGE_SIZE) {
967         fprintf(stderr, "Failed to load XBZRLE page - len overflow!\n");
968         return -1;
969     }
970     /* load data and decode */
971     qemu_get_buffer(f, xbzrle_decoded_buf, xh_len);
972
973     /* decode RLE */
974     ret = xbzrle_decode_buffer(xbzrle_decoded_buf, xh_len, host,
975                                TARGET_PAGE_SIZE);
976     if (ret == -1) {
977         fprintf(stderr, "Failed to load XBZRLE page - decode error!\n");
978         rc = -1;
979     } else  if (ret > TARGET_PAGE_SIZE) {
980         fprintf(stderr, "Failed to load XBZRLE page - size %d exceeds %d!\n",
981                 ret, TARGET_PAGE_SIZE);
982         abort();
983     }
984
985     return rc;
986 }
987
988 static inline void *host_from_stream_offset(QEMUFile *f,
989                                             ram_addr_t offset,
990                                             int flags)
991 {
992     static RAMBlock *block = NULL;
993     char id[256];
994     uint8_t len;
995
996     if (flags & RAM_SAVE_FLAG_CONTINUE) {
997         if (!block) {
998             fprintf(stderr, "Ack, bad migration stream!\n");
999             return NULL;
1000         }
1001
1002         return memory_region_get_ram_ptr(block->mr) + offset;
1003     }
1004
1005     len = qemu_get_byte(f);
1006     qemu_get_buffer(f, (uint8_t *)id, len);
1007     id[len] = 0;
1008
1009     QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1010         if (!strncmp(id, block->idstr, sizeof(id)))
1011             return memory_region_get_ram_ptr(block->mr) + offset;
1012     }
1013
1014     fprintf(stderr, "Can't find block %s!\n", id);
1015     return NULL;
1016 }
1017
1018 /*
1019  * If a page (or a whole RDMA chunk) has been
1020  * determined to be zero, then zap it.
1021  */
1022 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
1023 {
1024     if (ch != 0 || !is_zero_range(host, size)) {
1025         memset(host, ch, size);
1026     }
1027 }
1028
1029 static int ram_load(QEMUFile *f, void *opaque, int version_id)
1030 {
1031     ram_addr_t addr;
1032     int flags, ret = 0;
1033     int error;
1034     static uint64_t seq_iter;
1035
1036     seq_iter++;
1037
1038     if (version_id != 4) {
1039         ret = -EINVAL;
1040         goto done;
1041     }
1042
1043     do {
1044         addr = qemu_get_be64(f);
1045
1046         flags = addr & ~TARGET_PAGE_MASK;
1047         addr &= TARGET_PAGE_MASK;
1048
1049         if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
1050             /* Synchronize RAM block list */
1051             char id[256];
1052             ram_addr_t length;
1053             ram_addr_t total_ram_bytes = addr;
1054
1055             while (total_ram_bytes) {
1056                 RAMBlock *block;
1057                 uint8_t len;
1058
1059                 len = qemu_get_byte(f);
1060                 qemu_get_buffer(f, (uint8_t *)id, len);
1061                 id[len] = 0;
1062                 length = qemu_get_be64(f);
1063
1064                 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1065                     if (!strncmp(id, block->idstr, sizeof(id))) {
1066                         if (block->length != length) {
1067                             fprintf(stderr,
1068                                     "Length mismatch: %s: " RAM_ADDR_FMT
1069                                     " in != " RAM_ADDR_FMT "\n", id, length,
1070                                     block->length);
1071                             ret =  -EINVAL;
1072                             goto done;
1073                         }
1074                         break;
1075                     }
1076                 }
1077
1078                 if (!block) {
1079                     fprintf(stderr, "Unknown ramblock \"%s\", cannot "
1080                             "accept migration\n", id);
1081                     ret = -EINVAL;
1082                     goto done;
1083                 }
1084
1085                 total_ram_bytes -= length;
1086             }
1087         }
1088
1089         if (flags & RAM_SAVE_FLAG_COMPRESS) {
1090             void *host;
1091             uint8_t ch;
1092
1093             host = host_from_stream_offset(f, addr, flags);
1094             if (!host) {
1095                 ret = -EINVAL;
1096                 goto done;
1097             }
1098
1099             ch = qemu_get_byte(f);
1100             ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
1101         } else if (flags & RAM_SAVE_FLAG_PAGE) {
1102             void *host;
1103
1104             host = host_from_stream_offset(f, addr, flags);
1105             if (!host) {
1106                 ret = -EINVAL;
1107                 goto done;
1108             }
1109
1110             qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
1111         } else if (flags & RAM_SAVE_FLAG_XBZRLE) {
1112             void *host = host_from_stream_offset(f, addr, flags);
1113             if (!host) {
1114                 ret = -EINVAL;
1115                 goto done;
1116             }
1117
1118             if (load_xbzrle(f, addr, host) < 0) {
1119                 ret = -EINVAL;
1120                 goto done;
1121             }
1122         } else if (flags & RAM_SAVE_FLAG_HOOK) {
1123             ram_control_load_hook(f, flags);
1124         }
1125         error = qemu_file_get_error(f);
1126         if (error) {
1127             ret = error;
1128             goto done;
1129         }
1130     } while (!(flags & RAM_SAVE_FLAG_EOS));
1131
1132 done:
1133     DPRINTF("Completed load of VM with exit code %d seq iteration "
1134             "%" PRIu64 "\n", ret, seq_iter);
1135     return ret;
1136 }
1137
1138 static SaveVMHandlers savevm_ram_handlers = {
1139     .save_live_setup = ram_save_setup,
1140     .save_live_iterate = ram_save_iterate,
1141     .save_live_complete = ram_save_complete,
1142     .save_live_pending = ram_save_pending,
1143     .load_state = ram_load,
1144     .cancel = ram_migration_cancel,
1145 };
1146
1147 void ram_mig_init(void)
1148 {
1149     qemu_mutex_init(&XBZRLE.lock);
1150     register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, NULL);
1151 }
1152
1153 struct soundhw {
1154     const char *name;
1155     const char *descr;
1156     int enabled;
1157     int isa;
1158     union {
1159         int (*init_isa) (ISABus *bus);
1160         int (*init_pci) (PCIBus *bus);
1161     } init;
1162 };
1163
1164 static struct soundhw soundhw[9];
1165 static int soundhw_count;
1166
1167 void isa_register_soundhw(const char *name, const char *descr,
1168                           int (*init_isa)(ISABus *bus))
1169 {
1170     assert(soundhw_count < ARRAY_SIZE(soundhw) - 1);
1171     soundhw[soundhw_count].name = name;
1172     soundhw[soundhw_count].descr = descr;
1173     soundhw[soundhw_count].isa = 1;
1174     soundhw[soundhw_count].init.init_isa = init_isa;
1175     soundhw_count++;
1176 }
1177
1178 void pci_register_soundhw(const char *name, const char *descr,
1179                           int (*init_pci)(PCIBus *bus))
1180 {
1181     assert(soundhw_count < ARRAY_SIZE(soundhw) - 1);
1182     soundhw[soundhw_count].name = name;
1183     soundhw[soundhw_count].descr = descr;
1184     soundhw[soundhw_count].isa = 0;
1185     soundhw[soundhw_count].init.init_pci = init_pci;
1186     soundhw_count++;
1187 }
1188
1189 void select_soundhw(const char *optarg)
1190 {
1191     struct soundhw *c;
1192
1193     if (is_help_option(optarg)) {
1194     show_valid_cards:
1195
1196         if (soundhw_count) {
1197              printf("Valid sound card names (comma separated):\n");
1198              for (c = soundhw; c->name; ++c) {
1199                  printf ("%-11s %s\n", c->name, c->descr);
1200              }
1201              printf("\n-soundhw all will enable all of the above\n");
1202         } else {
1203              printf("Machine has no user-selectable audio hardware "
1204                     "(it may or may not have always-present audio hardware).\n");
1205         }
1206         exit(!is_help_option(optarg));
1207     }
1208     else {
1209         size_t l;
1210         const char *p;
1211         char *e;
1212         int bad_card = 0;
1213
1214         if (!strcmp(optarg, "all")) {
1215             for (c = soundhw; c->name; ++c) {
1216                 c->enabled = 1;
1217             }
1218             return;
1219         }
1220
1221         p = optarg;
1222         while (*p) {
1223             e = strchr(p, ',');
1224             l = !e ? strlen(p) : (size_t) (e - p);
1225
1226             for (c = soundhw; c->name; ++c) {
1227                 if (!strncmp(c->name, p, l) && !c->name[l]) {
1228                     c->enabled = 1;
1229                     break;
1230                 }
1231             }
1232
1233             if (!c->name) {
1234                 if (l > 80) {
1235                     fprintf(stderr,
1236                             "Unknown sound card name (too big to show)\n");
1237                 }
1238                 else {
1239                     fprintf(stderr, "Unknown sound card name `%.*s'\n",
1240                             (int) l, p);
1241                 }
1242                 bad_card = 1;
1243             }
1244             p += l + (e != NULL);
1245         }
1246
1247         if (bad_card) {
1248             goto show_valid_cards;
1249         }
1250     }
1251 }
1252
1253 void audio_init(void)
1254 {
1255     struct soundhw *c;
1256     ISABus *isa_bus = (ISABus *) object_resolve_path_type("", TYPE_ISA_BUS, NULL);
1257     PCIBus *pci_bus = (PCIBus *) object_resolve_path_type("", TYPE_PCI_BUS, NULL);
1258
1259     for (c = soundhw; c->name; ++c) {
1260         if (c->enabled) {
1261             if (c->isa) {
1262                 if (!isa_bus) {
1263                     fprintf(stderr, "ISA bus not available for %s\n", c->name);
1264                     exit(1);
1265                 }
1266                 c->init.init_isa(isa_bus);
1267             } else {
1268                 if (!pci_bus) {
1269                     fprintf(stderr, "PCI bus not available for %s\n", c->name);
1270                     exit(1);
1271                 }
1272                 c->init.init_pci(pci_bus);
1273             }
1274         }
1275     }
1276 }
1277
1278 int qemu_uuid_parse(const char *str, uint8_t *uuid)
1279 {
1280     int ret;
1281
1282     if (strlen(str) != 36) {
1283         return -1;
1284     }
1285
1286     ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
1287                  &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
1288                  &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14],
1289                  &uuid[15]);
1290
1291     if (ret != 16) {
1292         return -1;
1293     }
1294     return 0;
1295 }
1296
1297 void do_acpitable_option(const QemuOpts *opts)
1298 {
1299 #ifdef TARGET_I386
1300     Error *err = NULL;
1301
1302     acpi_table_add(opts, &err);
1303     if (err) {
1304         error_report("Wrong acpi table provided: %s",
1305                      error_get_pretty(err));
1306         error_free(err);
1307         exit(1);
1308     }
1309 #endif
1310 }
1311
1312 void do_smbios_option(QemuOpts *opts)
1313 {
1314 #ifdef TARGET_I386
1315     smbios_entry_add(opts);
1316 #endif
1317 }
1318
1319 void cpudef_init(void)
1320 {
1321 #if defined(cpudef_setup)
1322     cpudef_setup(); /* parse cpu definitions in target config file */
1323 #endif
1324 }
1325
1326 int tcg_available(void)
1327 {
1328     return 1;
1329 }
1330
1331 int kvm_available(void)
1332 {
1333 #ifdef CONFIG_KVM
1334     return 1;
1335 #else
1336     return 0;
1337 #endif
1338 }
1339
1340 int xen_available(void)
1341 {
1342 #ifdef CONFIG_XEN
1343     return 1;
1344 #else
1345     return 0;
1346 #endif
1347 }
1348
1349
1350 TargetInfo *qmp_query_target(Error **errp)
1351 {
1352     TargetInfo *info = g_malloc0(sizeof(*info));
1353
1354     info->arch = g_strdup(TARGET_NAME);
1355
1356     return info;
1357 }
1358
1359 /* Stub function that's gets run on the vcpu when its brought out of the
1360    VM to run inside qemu via async_run_on_cpu()*/
1361 static void mig_sleep_cpu(void *opq)
1362 {
1363     qemu_mutex_unlock_iothread();
1364     g_usleep(30*1000);
1365     qemu_mutex_lock_iothread();
1366 }
1367
1368 /* To reduce the dirty rate explicitly disallow the VCPUs from spending
1369    much time in the VM. The migration thread will try to catchup.
1370    Workload will experience a performance drop.
1371 */
1372 static void mig_throttle_guest_down(void)
1373 {
1374     CPUState *cpu;
1375
1376     qemu_mutex_lock_iothread();
1377     CPU_FOREACH(cpu) {
1378         async_run_on_cpu(cpu, mig_sleep_cpu, NULL);
1379     }
1380     qemu_mutex_unlock_iothread();
1381 }
1382
1383 static void check_guest_throttling(void)
1384 {
1385     static int64_t t0;
1386     int64_t        t1;
1387
1388     if (!mig_throttle_on) {
1389         return;
1390     }
1391
1392     if (!t0)  {
1393         t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1394         return;
1395     }
1396
1397     t1 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1398
1399     /* If it has been more than 40 ms since the last time the guest
1400      * was throttled then do it again.
1401      */
1402     if (40 < (t1-t0)/1000000) {
1403         mig_throttle_guest_down();
1404         t0 = t1;
1405     }
1406 }