Refactor some hax related codes.
[sdk/emulator/qemu.git] / arch_init.c
1 /*
2  * QEMU System Emulator
3  *
4  * Copyright (c) 2003-2008 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include <stdint.h>
25 #include <stdarg.h>
26 #include <stdlib.h>
27 #ifndef _WIN32
28 #include <sys/types.h>
29 #include <sys/mman.h>
30 #endif
31 #include "config.h"
32 #include "monitor/monitor.h"
33 #include "sysemu/sysemu.h"
34 #include "qemu/bitops.h"
35 #include "qemu/bitmap.h"
36 #include "sysemu/arch_init.h"
37 #include "audio/audio.h"
38 #include "hw/i386/pc.h"
39 #include "hw/pci/pci.h"
40 #include "hw/audio/audio.h"
41 #include "sysemu/kvm.h"
42 #include "migration/migration.h"
43 #include "hw/i386/smbios.h"
44 #include "exec/address-spaces.h"
45 #include "hw/audio/pcspk.h"
46 #include "migration/page_cache.h"
47 #include "qemu/config-file.h"
48 #include "qmp-commands.h"
49 #include "trace.h"
50 #include "exec/cpu-all.h"
51 #include "hw/acpi/acpi.h"
52
53 #ifdef DEBUG_ARCH_INIT
54 #define DPRINTF(fmt, ...) \
55     do { fprintf(stdout, "arch_init: " fmt, ## __VA_ARGS__); } while (0)
56 #else
57 #define DPRINTF(fmt, ...) \
58     do { } while (0)
59 #endif
60
61 #ifdef TARGET_SPARC
62 int graphic_width = 1024;
63 int graphic_height = 768;
64 int graphic_depth = 8;
65 #else
66 int graphic_width = 800;
67 int graphic_height = 600;
68 int graphic_depth = 15;
69 #endif
70
71
72 #if defined(TARGET_ALPHA)
73 #define QEMU_ARCH QEMU_ARCH_ALPHA
74 #elif defined(TARGET_ARM)
75 #define QEMU_ARCH QEMU_ARCH_ARM
76 #elif defined(TARGET_CRIS)
77 #define QEMU_ARCH QEMU_ARCH_CRIS
78 #elif defined(TARGET_I386)
79 #define QEMU_ARCH QEMU_ARCH_I386
80 #elif defined(TARGET_M68K)
81 #define QEMU_ARCH QEMU_ARCH_M68K
82 #elif defined(TARGET_LM32)
83 #define QEMU_ARCH QEMU_ARCH_LM32
84 #elif defined(TARGET_MICROBLAZE)
85 #define QEMU_ARCH QEMU_ARCH_MICROBLAZE
86 #elif defined(TARGET_MIPS)
87 #define QEMU_ARCH QEMU_ARCH_MIPS
88 #elif defined(TARGET_MOXIE)
89 #define QEMU_ARCH QEMU_ARCH_MOXIE
90 #elif defined(TARGET_OPENRISC)
91 #define QEMU_ARCH QEMU_ARCH_OPENRISC
92 #elif defined(TARGET_PPC)
93 #define QEMU_ARCH QEMU_ARCH_PPC
94 #elif defined(TARGET_S390X)
95 #define QEMU_ARCH QEMU_ARCH_S390X
96 #elif defined(TARGET_SH4)
97 #define QEMU_ARCH QEMU_ARCH_SH4
98 #elif defined(TARGET_SPARC)
99 #define QEMU_ARCH QEMU_ARCH_SPARC
100 #elif defined(TARGET_XTENSA)
101 #define QEMU_ARCH QEMU_ARCH_XTENSA
102 #elif defined(TARGET_UNICORE32)
103 #define QEMU_ARCH QEMU_ARCH_UNICORE32
104 #endif
105
106 const uint32_t arch_type = QEMU_ARCH;
107
108 /***********************************************************/
109 /* ram save/restore */
110
111 #define RAM_SAVE_FLAG_FULL     0x01 /* Obsolete, not used anymore */
112 #define RAM_SAVE_FLAG_COMPRESS 0x02
113 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
114 #define RAM_SAVE_FLAG_PAGE     0x08
115 #define RAM_SAVE_FLAG_EOS      0x10
116 #define RAM_SAVE_FLAG_CONTINUE 0x20
117 #define RAM_SAVE_FLAG_XBZRLE   0x40
118
119
120 static struct defconfig_file {
121     const char *filename;
122     /* Indicates it is an user config file (disabled by -no-user-config) */
123     bool userconfig;
124 } default_config_files[] = {
125     { CONFIG_QEMU_CONFDIR "/qemu.conf",                   true },
126     { CONFIG_QEMU_CONFDIR "/target-" TARGET_ARCH ".conf", true },
127     { NULL }, /* end of list */
128 };
129
130
131 int qemu_read_default_config_files(bool userconfig)
132 {
133     int ret;
134     struct defconfig_file *f;
135
136     for (f = default_config_files; f->filename; f++) {
137         if (!userconfig && f->userconfig) {
138             continue;
139         }
140         ret = qemu_read_config_file(f->filename);
141         if (ret < 0 && ret != -ENOENT) {
142             return ret;
143         }
144     }
145
146     return 0;
147 }
148
149 static inline bool is_zero_page(uint8_t *p)
150 {
151     return buffer_find_nonzero_offset(p, TARGET_PAGE_SIZE) ==
152         TARGET_PAGE_SIZE;
153 }
154
155 /* struct contains XBZRLE cache and a static page
156    used by the compression */
157 static struct {
158     /* buffer used for XBZRLE encoding */
159     uint8_t *encoded_buf;
160     /* buffer for storing page content */
161     uint8_t *current_buf;
162     /* buffer used for XBZRLE decoding */
163     uint8_t *decoded_buf;
164     /* Cache for XBZRLE */
165     PageCache *cache;
166 } XBZRLE = {
167     .encoded_buf = NULL,
168     .current_buf = NULL,
169     .decoded_buf = NULL,
170     .cache = NULL,
171 };
172
173
174 int64_t xbzrle_cache_resize(int64_t new_size)
175 {
176     if (XBZRLE.cache != NULL) {
177         return cache_resize(XBZRLE.cache, new_size / TARGET_PAGE_SIZE) *
178             TARGET_PAGE_SIZE;
179     }
180     return pow2floor(new_size);
181 }
182
183 /* accounting for migration statistics */
184 typedef struct AccountingInfo {
185     uint64_t dup_pages;
186     uint64_t skipped_pages;
187     uint64_t norm_pages;
188     uint64_t iterations;
189     uint64_t xbzrle_bytes;
190     uint64_t xbzrle_pages;
191     uint64_t xbzrle_cache_miss;
192     uint64_t xbzrle_overflows;
193 } AccountingInfo;
194
195 static AccountingInfo acct_info;
196
197 static void acct_clear(void)
198 {
199     memset(&acct_info, 0, sizeof(acct_info));
200 }
201
202 uint64_t dup_mig_bytes_transferred(void)
203 {
204     return acct_info.dup_pages * TARGET_PAGE_SIZE;
205 }
206
207 uint64_t dup_mig_pages_transferred(void)
208 {
209     return acct_info.dup_pages;
210 }
211
212 uint64_t skipped_mig_bytes_transferred(void)
213 {
214     return acct_info.skipped_pages * TARGET_PAGE_SIZE;
215 }
216
217 uint64_t skipped_mig_pages_transferred(void)
218 {
219     return acct_info.skipped_pages;
220 }
221
222 uint64_t norm_mig_bytes_transferred(void)
223 {
224     return acct_info.norm_pages * TARGET_PAGE_SIZE;
225 }
226
227 uint64_t norm_mig_pages_transferred(void)
228 {
229     return acct_info.norm_pages;
230 }
231
232 uint64_t xbzrle_mig_bytes_transferred(void)
233 {
234     return acct_info.xbzrle_bytes;
235 }
236
237 uint64_t xbzrle_mig_pages_transferred(void)
238 {
239     return acct_info.xbzrle_pages;
240 }
241
242 uint64_t xbzrle_mig_pages_cache_miss(void)
243 {
244     return acct_info.xbzrle_cache_miss;
245 }
246
247 uint64_t xbzrle_mig_pages_overflow(void)
248 {
249     return acct_info.xbzrle_overflows;
250 }
251
252 static size_t save_block_hdr(QEMUFile *f, RAMBlock *block, ram_addr_t offset,
253                              int cont, int flag)
254 {
255     size_t size;
256
257     qemu_put_be64(f, offset | cont | flag);
258     size = 8;
259
260     if (!cont) {
261         qemu_put_byte(f, strlen(block->idstr));
262         qemu_put_buffer(f, (uint8_t *)block->idstr,
263                         strlen(block->idstr));
264         size += 1 + strlen(block->idstr);
265     }
266     return size;
267 }
268
269 #define ENCODING_FLAG_XBZRLE 0x1
270
271 static int save_xbzrle_page(QEMUFile *f, uint8_t *current_data,
272                             ram_addr_t current_addr, RAMBlock *block,
273                             ram_addr_t offset, int cont, bool last_stage)
274 {
275     int encoded_len = 0, bytes_sent = -1;
276     uint8_t *prev_cached_page;
277
278     if (!cache_is_cached(XBZRLE.cache, current_addr)) {
279         if (!last_stage) {
280             cache_insert(XBZRLE.cache, current_addr, current_data);
281         }
282         acct_info.xbzrle_cache_miss++;
283         return -1;
284     }
285
286     prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
287
288     /* save current buffer into memory */
289     memcpy(XBZRLE.current_buf, current_data, TARGET_PAGE_SIZE);
290
291     /* XBZRLE encoding (if there is no overflow) */
292     encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
293                                        TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
294                                        TARGET_PAGE_SIZE);
295     if (encoded_len == 0) {
296         DPRINTF("Skipping unmodified page\n");
297         return 0;
298     } else if (encoded_len == -1) {
299         DPRINTF("Overflow\n");
300         acct_info.xbzrle_overflows++;
301         /* update data in the cache */
302         memcpy(prev_cached_page, current_data, TARGET_PAGE_SIZE);
303         return -1;
304     }
305
306     /* we need to update the data in the cache, in order to get the same data */
307     if (!last_stage) {
308         memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
309     }
310
311     /* Send XBZRLE based compressed page */
312     bytes_sent = save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_XBZRLE);
313     qemu_put_byte(f, ENCODING_FLAG_XBZRLE);
314     qemu_put_be16(f, encoded_len);
315     qemu_put_buffer(f, XBZRLE.encoded_buf, encoded_len);
316     bytes_sent += encoded_len + 1 + 2;
317     acct_info.xbzrle_pages++;
318     acct_info.xbzrle_bytes += bytes_sent;
319
320     return bytes_sent;
321 }
322
323
324 /* This is the last block that we have visited serching for dirty pages
325  */
326 static RAMBlock *last_seen_block;
327 /* This is the last block from where we have sent data */
328 static RAMBlock *last_sent_block;
329 static ram_addr_t last_offset;
330 static unsigned long *migration_bitmap;
331 static uint64_t migration_dirty_pages;
332 static uint32_t last_version;
333 static bool ram_bulk_stage;
334
335 static inline
336 ram_addr_t migration_bitmap_find_and_reset_dirty(MemoryRegion *mr,
337                                                  ram_addr_t start)
338 {
339     unsigned long base = mr->ram_addr >> TARGET_PAGE_BITS;
340     unsigned long nr = base + (start >> TARGET_PAGE_BITS);
341     unsigned long size = base + (int128_get64(mr->size) >> TARGET_PAGE_BITS);
342
343     unsigned long next;
344
345     if (ram_bulk_stage && nr > base) {
346         next = nr + 1;
347     } else {
348         next = find_next_bit(migration_bitmap, size, nr);
349     }
350
351     if (next < size) {
352         clear_bit(next, migration_bitmap);
353         migration_dirty_pages--;
354     }
355     return (next - base) << TARGET_PAGE_BITS;
356 }
357
358 static inline bool migration_bitmap_set_dirty(MemoryRegion *mr,
359                                               ram_addr_t offset)
360 {
361     bool ret;
362     int nr = (mr->ram_addr + offset) >> TARGET_PAGE_BITS;
363
364     ret = test_and_set_bit(nr, migration_bitmap);
365
366     if (!ret) {
367         migration_dirty_pages++;
368     }
369     return ret;
370 }
371
372 /* Needs iothread lock! */
373
374 static void migration_bitmap_sync(void)
375 {
376     RAMBlock *block;
377     ram_addr_t addr;
378     uint64_t num_dirty_pages_init = migration_dirty_pages;
379     MigrationState *s = migrate_get_current();
380     static int64_t start_time;
381     static int64_t num_dirty_pages_period;
382     int64_t end_time;
383
384     if (!start_time) {
385         start_time = qemu_get_clock_ms(rt_clock);
386     }
387
388     trace_migration_bitmap_sync_start();
389     memory_global_sync_dirty_bitmap(get_system_memory());
390
391     QTAILQ_FOREACH(block, &ram_list.blocks, next) {
392         for (addr = 0; addr < block->length; addr += TARGET_PAGE_SIZE) {
393             if (memory_region_test_and_clear_dirty(block->mr,
394                                                    addr, TARGET_PAGE_SIZE,
395                                                    DIRTY_MEMORY_MIGRATION)) {
396                 migration_bitmap_set_dirty(block->mr, addr);
397             }
398         }
399     }
400     trace_migration_bitmap_sync_end(migration_dirty_pages
401                                     - num_dirty_pages_init);
402     num_dirty_pages_period += migration_dirty_pages - num_dirty_pages_init;
403     end_time = qemu_get_clock_ms(rt_clock);
404
405     /* more than 1 second = 1000 millisecons */
406     if (end_time > start_time + 1000) {
407         s->dirty_pages_rate = num_dirty_pages_period * 1000
408             / (end_time - start_time);
409         s->dirty_bytes_rate = s->dirty_pages_rate * TARGET_PAGE_SIZE;
410         start_time = end_time;
411         num_dirty_pages_period = 0;
412     }
413 }
414
415 /*
416  * ram_save_block: Writes a page of memory to the stream f
417  *
418  * Returns:  The number of bytes written.
419  *           0 means no dirty pages
420  */
421
422 static int ram_save_block(QEMUFile *f, bool last_stage)
423 {
424     RAMBlock *block = last_seen_block;
425     ram_addr_t offset = last_offset;
426     bool complete_round = false;
427     int bytes_sent = 0;
428     MemoryRegion *mr;
429     ram_addr_t current_addr;
430
431     if (!block)
432         block = QTAILQ_FIRST(&ram_list.blocks);
433
434     while (true) {
435         mr = block->mr;
436         offset = migration_bitmap_find_and_reset_dirty(mr, offset);
437         if (complete_round && block == last_seen_block &&
438             offset >= last_offset) {
439             break;
440         }
441         if (offset >= block->length) {
442             offset = 0;
443             block = QTAILQ_NEXT(block, next);
444             if (!block) {
445                 block = QTAILQ_FIRST(&ram_list.blocks);
446                 complete_round = true;
447                 ram_bulk_stage = false;
448             }
449         } else {
450             uint8_t *p;
451             int cont = (block == last_sent_block) ?
452                 RAM_SAVE_FLAG_CONTINUE : 0;
453
454             p = memory_region_get_ram_ptr(mr) + offset;
455
456             /* In doubt sent page as normal */
457             bytes_sent = -1;
458             if (is_zero_page(p)) {
459                 acct_info.dup_pages++;
460                 if (!ram_bulk_stage) {
461                     bytes_sent = save_block_hdr(f, block, offset, cont,
462                                                 RAM_SAVE_FLAG_COMPRESS);
463                     qemu_put_byte(f, 0);
464                     bytes_sent++;
465                 } else {
466                     acct_info.skipped_pages++;
467                     bytes_sent = 0;
468                 }
469             } else if (!ram_bulk_stage && migrate_use_xbzrle()) {
470                 current_addr = block->offset + offset;
471                 bytes_sent = save_xbzrle_page(f, p, current_addr, block,
472                                               offset, cont, last_stage);
473                 if (!last_stage) {
474                     p = get_cached_data(XBZRLE.cache, current_addr);
475                 }
476             }
477
478             /* XBZRLE overflow or normal page */
479             if (bytes_sent == -1) {
480                 bytes_sent = save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_PAGE);
481                 qemu_put_buffer_async(f, p, TARGET_PAGE_SIZE);
482                 bytes_sent += TARGET_PAGE_SIZE;
483                 acct_info.norm_pages++;
484             }
485
486             /* if page is unmodified, continue to the next */
487             if (bytes_sent > 0) {
488                 last_sent_block = block;
489                 break;
490             }
491         }
492     }
493     last_seen_block = block;
494     last_offset = offset;
495
496     return bytes_sent;
497 }
498
499 static uint64_t bytes_transferred;
500
501 static ram_addr_t ram_save_remaining(void)
502 {
503     return migration_dirty_pages;
504 }
505
506 uint64_t ram_bytes_remaining(void)
507 {
508     return ram_save_remaining() * TARGET_PAGE_SIZE;
509 }
510
511 uint64_t ram_bytes_transferred(void)
512 {
513     return bytes_transferred;
514 }
515
516 uint64_t ram_bytes_total(void)
517 {
518     RAMBlock *block;
519     uint64_t total = 0;
520
521     QTAILQ_FOREACH(block, &ram_list.blocks, next)
522         total += block->length;
523
524     return total;
525 }
526
527 static void migration_end(void)
528 {
529     if (migration_bitmap) {
530         memory_global_dirty_log_stop();
531         g_free(migration_bitmap);
532         migration_bitmap = NULL;
533     }
534
535     if (XBZRLE.cache) {
536         cache_fini(XBZRLE.cache);
537         g_free(XBZRLE.cache);
538         g_free(XBZRLE.encoded_buf);
539         g_free(XBZRLE.current_buf);
540         g_free(XBZRLE.decoded_buf);
541         XBZRLE.cache = NULL;
542     }
543 }
544
545 static void ram_migration_cancel(void *opaque)
546 {
547     migration_end();
548 }
549
550 static void reset_ram_globals(void)
551 {
552     last_seen_block = NULL;
553     last_sent_block = NULL;
554     last_offset = 0;
555     last_version = ram_list.version;
556     ram_bulk_stage = true;
557 }
558
559 #define MAX_WAIT 50 /* ms, half buffered_file limit */
560
561 static int ram_save_setup(QEMUFile *f, void *opaque)
562 {
563     RAMBlock *block;
564     int64_t ram_pages = last_ram_offset() >> TARGET_PAGE_BITS;
565
566     migration_bitmap = bitmap_new(ram_pages);
567     bitmap_set(migration_bitmap, 0, ram_pages);
568     migration_dirty_pages = ram_pages;
569
570     if (migrate_use_xbzrle()) {
571         XBZRLE.cache = cache_init(migrate_xbzrle_cache_size() /
572                                   TARGET_PAGE_SIZE,
573                                   TARGET_PAGE_SIZE);
574         if (!XBZRLE.cache) {
575             DPRINTF("Error creating cache\n");
576             return -1;
577         }
578         XBZRLE.encoded_buf = g_malloc0(TARGET_PAGE_SIZE);
579         XBZRLE.current_buf = g_malloc(TARGET_PAGE_SIZE);
580         acct_clear();
581     }
582
583     qemu_mutex_lock_iothread();
584     qemu_mutex_lock_ramlist();
585     bytes_transferred = 0;
586     reset_ram_globals();
587
588     memory_global_dirty_log_start();
589     migration_bitmap_sync();
590     qemu_mutex_unlock_iothread();
591
592     qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE);
593
594     QTAILQ_FOREACH(block, &ram_list.blocks, next) {
595         qemu_put_byte(f, strlen(block->idstr));
596         qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
597         qemu_put_be64(f, block->length);
598     }
599
600     qemu_mutex_unlock_ramlist();
601     qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
602
603     return 0;
604 }
605
606 static int ram_save_iterate(QEMUFile *f, void *opaque)
607 {
608     int ret;
609     int i;
610     int64_t t0;
611     int total_sent = 0;
612
613     qemu_mutex_lock_ramlist();
614
615     if (ram_list.version != last_version) {
616         reset_ram_globals();
617     }
618
619     t0 = qemu_get_clock_ns(rt_clock);
620     i = 0;
621     while ((ret = qemu_file_rate_limit(f)) == 0) {
622         int bytes_sent;
623
624         bytes_sent = ram_save_block(f, false);
625         /* no more blocks to sent */
626         if (bytes_sent == 0) {
627             break;
628         }
629         total_sent += bytes_sent;
630         acct_info.iterations++;
631         /* we want to check in the 1st loop, just in case it was the 1st time
632            and we had to sync the dirty bitmap.
633            qemu_get_clock_ns() is a bit expensive, so we only check each some
634            iterations
635         */
636         if ((i & 63) == 0) {
637             uint64_t t1 = (qemu_get_clock_ns(rt_clock) - t0) / 1000000;
638             if (t1 > MAX_WAIT) {
639                 DPRINTF("big wait: %" PRIu64 " milliseconds, %d iterations\n",
640                         t1, i);
641                 break;
642             }
643         }
644         i++;
645     }
646
647     qemu_mutex_unlock_ramlist();
648
649     if (ret < 0) {
650         bytes_transferred += total_sent;
651         return ret;
652     }
653
654     qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
655     total_sent += 8;
656     bytes_transferred += total_sent;
657
658     return total_sent;
659 }
660
661 static int ram_save_complete(QEMUFile *f, void *opaque)
662 {
663     qemu_mutex_lock_ramlist();
664     migration_bitmap_sync();
665
666     /* try transferring iterative blocks of memory */
667
668     /* flush all remaining blocks regardless of rate limiting */
669     while (true) {
670         int bytes_sent;
671
672         bytes_sent = ram_save_block(f, true);
673         /* no more blocks to sent */
674         if (bytes_sent == 0) {
675             break;
676         }
677         bytes_transferred += bytes_sent;
678     }
679     migration_end();
680
681     qemu_mutex_unlock_ramlist();
682     qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
683
684     return 0;
685 }
686
687 static uint64_t ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size)
688 {
689     uint64_t remaining_size;
690
691     remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
692
693     if (remaining_size < max_size) {
694         qemu_mutex_lock_iothread();
695         migration_bitmap_sync();
696         qemu_mutex_unlock_iothread();
697         remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
698     }
699     return remaining_size;
700 }
701
702 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
703 {
704     int ret, rc = 0;
705     unsigned int xh_len;
706     int xh_flags;
707
708     if (!XBZRLE.decoded_buf) {
709         XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
710     }
711
712     /* extract RLE header */
713     xh_flags = qemu_get_byte(f);
714     xh_len = qemu_get_be16(f);
715
716     if (xh_flags != ENCODING_FLAG_XBZRLE) {
717         fprintf(stderr, "Failed to load XBZRLE page - wrong compression!\n");
718         return -1;
719     }
720
721     if (xh_len > TARGET_PAGE_SIZE) {
722         fprintf(stderr, "Failed to load XBZRLE page - len overflow!\n");
723         return -1;
724     }
725     /* load data and decode */
726     qemu_get_buffer(f, XBZRLE.decoded_buf, xh_len);
727
728     /* decode RLE */
729     ret = xbzrle_decode_buffer(XBZRLE.decoded_buf, xh_len, host,
730                                TARGET_PAGE_SIZE);
731     if (ret == -1) {
732         fprintf(stderr, "Failed to load XBZRLE page - decode error!\n");
733         rc = -1;
734     } else  if (ret > TARGET_PAGE_SIZE) {
735         fprintf(stderr, "Failed to load XBZRLE page - size %d exceeds %d!\n",
736                 ret, TARGET_PAGE_SIZE);
737         abort();
738     }
739
740     return rc;
741 }
742
743 static inline void *host_from_stream_offset(QEMUFile *f,
744                                             ram_addr_t offset,
745                                             int flags)
746 {
747     static RAMBlock *block = NULL;
748     char id[256];
749     uint8_t len;
750
751     if (flags & RAM_SAVE_FLAG_CONTINUE) {
752         if (!block) {
753             fprintf(stderr, "Ack, bad migration stream!\n");
754             return NULL;
755         }
756
757         return memory_region_get_ram_ptr(block->mr) + offset;
758     }
759
760     len = qemu_get_byte(f);
761     qemu_get_buffer(f, (uint8_t *)id, len);
762     id[len] = 0;
763
764     QTAILQ_FOREACH(block, &ram_list.blocks, next) {
765         if (!strncmp(id, block->idstr, sizeof(id)))
766             return memory_region_get_ram_ptr(block->mr) + offset;
767     }
768
769     fprintf(stderr, "Can't find block %s!\n", id);
770     return NULL;
771 }
772
773 static int ram_load(QEMUFile *f, void *opaque, int version_id)
774 {
775     ram_addr_t addr;
776     int flags, ret = 0;
777     int error;
778     static uint64_t seq_iter;
779
780     seq_iter++;
781
782     if (version_id < 4 || version_id > 4) {
783         return -EINVAL;
784     }
785
786     do {
787         addr = qemu_get_be64(f);
788
789         flags = addr & ~TARGET_PAGE_MASK;
790         addr &= TARGET_PAGE_MASK;
791
792         if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
793             if (version_id == 4) {
794                 /* Synchronize RAM block list */
795                 char id[256];
796                 ram_addr_t length;
797                 ram_addr_t total_ram_bytes = addr;
798
799                 while (total_ram_bytes) {
800                     RAMBlock *block;
801                     uint8_t len;
802
803                     len = qemu_get_byte(f);
804                     qemu_get_buffer(f, (uint8_t *)id, len);
805                     id[len] = 0;
806                     length = qemu_get_be64(f);
807
808                     QTAILQ_FOREACH(block, &ram_list.blocks, next) {
809                         if (!strncmp(id, block->idstr, sizeof(id))) {
810                             if (block->length != length) {
811                                 ret =  -EINVAL;
812                                 goto done;
813                             }
814                             break;
815                         }
816                     }
817
818                     if (!block) {
819                         fprintf(stderr, "Unknown ramblock \"%s\", cannot "
820                                 "accept migration\n", id);
821                         ret = -EINVAL;
822                         goto done;
823                     }
824
825                     total_ram_bytes -= length;
826                 }
827             }
828         }
829
830         if (flags & RAM_SAVE_FLAG_COMPRESS) {
831             void *host;
832             uint8_t ch;
833
834             host = host_from_stream_offset(f, addr, flags);
835             if (!host) {
836                 return -EINVAL;
837             }
838
839             ch = qemu_get_byte(f);
840             memset(host, ch, TARGET_PAGE_SIZE);
841 #ifndef _WIN32
842             if (ch == 0 &&
843                 (!kvm_enabled() || kvm_has_sync_mmu()) &&
844                 getpagesize() <= TARGET_PAGE_SIZE) {
845                 qemu_madvise(host, TARGET_PAGE_SIZE, QEMU_MADV_DONTNEED);
846             }
847 #endif
848         } else if (flags & RAM_SAVE_FLAG_PAGE) {
849             void *host;
850
851             host = host_from_stream_offset(f, addr, flags);
852             if (!host) {
853                 return -EINVAL;
854             }
855
856             qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
857         } else if (flags & RAM_SAVE_FLAG_XBZRLE) {
858             void *host = host_from_stream_offset(f, addr, flags);
859             if (!host) {
860                 return -EINVAL;
861             }
862
863             if (load_xbzrle(f, addr, host) < 0) {
864                 ret = -EINVAL;
865                 goto done;
866             }
867         }
868         error = qemu_file_get_error(f);
869         if (error) {
870             ret = error;
871             goto done;
872         }
873     } while (!(flags & RAM_SAVE_FLAG_EOS));
874
875 done:
876     DPRINTF("Completed load of VM with exit code %d seq iteration "
877             "%" PRIu64 "\n", ret, seq_iter);
878     return ret;
879 }
880
881 SaveVMHandlers savevm_ram_handlers = {
882     .save_live_setup = ram_save_setup,
883     .save_live_iterate = ram_save_iterate,
884     .save_live_complete = ram_save_complete,
885     .save_live_pending = ram_save_pending,
886     .load_state = ram_load,
887     .cancel = ram_migration_cancel,
888 };
889
890 struct soundhw {
891     const char *name;
892     const char *descr;
893     int enabled;
894     int isa;
895     union {
896         int (*init_isa) (ISABus *bus);
897         int (*init_pci) (PCIBus *bus);
898     } init;
899 };
900
901 static struct soundhw soundhw[9];
902 static int soundhw_count;
903
904 void isa_register_soundhw(const char *name, const char *descr,
905                           int (*init_isa)(ISABus *bus))
906 {
907     assert(soundhw_count < ARRAY_SIZE(soundhw) - 1);
908     soundhw[soundhw_count].name = name;
909     soundhw[soundhw_count].descr = descr;
910     soundhw[soundhw_count].isa = 1;
911     soundhw[soundhw_count].init.init_isa = init_isa;
912     soundhw_count++;
913 }
914
915 void pci_register_soundhw(const char *name, const char *descr,
916                           int (*init_pci)(PCIBus *bus))
917 {
918     assert(soundhw_count < ARRAY_SIZE(soundhw) - 1);
919     soundhw[soundhw_count].name = name;
920     soundhw[soundhw_count].descr = descr;
921     soundhw[soundhw_count].isa = 0;
922     soundhw[soundhw_count].init.init_pci = init_pci;
923     soundhw_count++;
924 }
925
926 void select_soundhw(const char *optarg)
927 {
928     struct soundhw *c;
929
930     if (is_help_option(optarg)) {
931     show_valid_cards:
932
933         if (soundhw_count) {
934              printf("Valid sound card names (comma separated):\n");
935              for (c = soundhw; c->name; ++c) {
936                  printf ("%-11s %s\n", c->name, c->descr);
937              }
938              printf("\n-soundhw all will enable all of the above\n");
939         } else {
940              printf("Machine has no user-selectable audio hardware "
941                     "(it may or may not have always-present audio hardware).\n");
942         }
943         exit(!is_help_option(optarg));
944     }
945     else {
946         size_t l;
947         const char *p;
948         char *e;
949         int bad_card = 0;
950
951         if (!strcmp(optarg, "all")) {
952             for (c = soundhw; c->name; ++c) {
953                 c->enabled = 1;
954             }
955             return;
956         }
957
958         p = optarg;
959         while (*p) {
960             e = strchr(p, ',');
961             l = !e ? strlen(p) : (size_t) (e - p);
962
963             for (c = soundhw; c->name; ++c) {
964                 if (!strncmp(c->name, p, l) && !c->name[l]) {
965                     c->enabled = 1;
966                     break;
967                 }
968             }
969
970             if (!c->name) {
971                 if (l > 80) {
972                     fprintf(stderr,
973                             "Unknown sound card name (too big to show)\n");
974                 }
975                 else {
976                     fprintf(stderr, "Unknown sound card name `%.*s'\n",
977                             (int) l, p);
978                 }
979                 bad_card = 1;
980             }
981             p += l + (e != NULL);
982         }
983
984         if (bad_card) {
985             goto show_valid_cards;
986         }
987     }
988 }
989
990 void audio_init(void)
991 {
992     struct soundhw *c;
993     ISABus *isa_bus = (ISABus *) object_resolve_path_type("", TYPE_ISA_BUS, NULL);
994     PCIBus *pci_bus = (PCIBus *) object_resolve_path_type("", TYPE_PCI_BUS, NULL);
995
996     for (c = soundhw; c->name; ++c) {
997         if (c->enabled) {
998             if (c->isa) {
999                 if (!isa_bus) {
1000                     fprintf(stderr, "ISA bus not available for %s\n", c->name);
1001                     exit(1);
1002                 }
1003                 c->init.init_isa(isa_bus);
1004             } else {
1005                 if (!pci_bus) {
1006                     fprintf(stderr, "PCI bus not available for %s\n", c->name);
1007                     exit(1);
1008                 }
1009                 c->init.init_pci(pci_bus);
1010             }
1011         }
1012     }
1013 }
1014
1015 int qemu_uuid_parse(const char *str, uint8_t *uuid)
1016 {
1017     int ret;
1018
1019     if (strlen(str) != 36) {
1020         return -1;
1021     }
1022
1023     ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
1024                  &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
1025                  &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14],
1026                  &uuid[15]);
1027
1028     if (ret != 16) {
1029         return -1;
1030     }
1031 #ifdef TARGET_I386
1032     smbios_add_field(1, offsetof(struct smbios_type_1, uuid), uuid, 16);
1033 #endif
1034     return 0;
1035 }
1036
1037 void do_acpitable_option(const QemuOpts *opts)
1038 {
1039 #ifdef TARGET_I386
1040     Error *err = NULL;
1041
1042     acpi_table_add(opts, &err);
1043     if (err) {
1044         fprintf(stderr, "Wrong acpi table provided: %s\n",
1045                 error_get_pretty(err));
1046         error_free(err);
1047         exit(1);
1048     }
1049 #endif
1050 }
1051
1052 void do_smbios_option(const char *optarg)
1053 {
1054 #ifdef TARGET_I386
1055     if (smbios_entry_add(optarg) < 0) {
1056         exit(1);
1057     }
1058 #endif
1059 }
1060
1061 void cpudef_init(void)
1062 {
1063 #if defined(cpudef_setup)
1064     cpudef_setup(); /* parse cpu definitions in target config file */
1065 #endif
1066 }
1067
1068 int tcg_available(void)
1069 {
1070     return 1;
1071 }
1072
1073 int kvm_available(void)
1074 {
1075 #ifdef CONFIG_KVM
1076     return 1;
1077 #else
1078     return 0;
1079 #endif
1080 }
1081
1082 int xen_available(void)
1083 {
1084 #ifdef CONFIG_XEN
1085     return 1;
1086 #else
1087     return 0;
1088 #endif
1089 }
1090
1091
1092 TargetInfo *qmp_query_target(Error **errp)
1093 {
1094     TargetInfo *info = g_malloc0(sizeof(*info));
1095
1096     info->arch = TARGET_TYPE;
1097
1098     return info;
1099 }
1100
1101 int hax_available(void)
1102 {
1103 #ifdef CONFIG_HAX
1104     return 1;
1105 #else
1106     return 0;
1107 #endif
1108 }