2 * arch/xtensa/kernel/process.c
4 * Xtensa Processor version.
6 * This file is subject to the terms and conditions of the GNU General Public
7 * License. See the file "COPYING" in the main directory of this archive
10 * Copyright (C) 2001 - 2005 Tensilica Inc.
12 * Joe Taylor <joe@tensilica.com, joetylr@yahoo.com>
13 * Chris Zankel <chris@zankel.net>
14 * Marc Gauthier <marc@tensilica.com, marc@alumni.uwaterloo.ca>
18 #include <linux/errno.h>
19 #include <linux/sched.h>
20 #include <linux/kernel.h>
22 #include <linux/smp.h>
23 #include <linux/stddef.h>
24 #include <linux/unistd.h>
25 #include <linux/ptrace.h>
26 #include <linux/elf.h>
27 #include <linux/init.h>
28 #include <linux/prctl.h>
29 #include <linux/init_task.h>
30 #include <linux/module.h>
31 #include <linux/mqueue.h>
33 #include <linux/slab.h>
35 #include <asm/pgtable.h>
36 #include <asm/uaccess.h>
38 #include <asm/processor.h>
39 #include <asm/platform.h>
42 #include <linux/atomic.h>
43 #include <asm/asm-offsets.h>
46 extern void ret_from_fork(void);
48 struct task_struct *current_set[NR_CPUS] = {&init_task, };
50 void (*pm_power_off)(void) = NULL;
51 EXPORT_SYMBOL(pm_power_off);
54 #if XTENSA_HAVE_COPROCESSORS
56 void coprocessor_release_all(struct thread_info *ti)
58 unsigned long cpenable;
61 /* Make sure we don't switch tasks during this operation. */
65 /* Walk through all cp owners and release it for the requested one. */
67 cpenable = ti->cpenable;
69 for (i = 0; i < XCHAL_CP_MAX; i++) {
70 if (coprocessor_owner[i] == ti) {
71 coprocessor_owner[i] = 0;
72 cpenable &= ~(1 << i);
76 ti->cpenable = cpenable;
77 coprocessor_clear_cpenable();
82 void coprocessor_flush_all(struct thread_info *ti)
84 unsigned long cpenable;
89 cpenable = ti->cpenable;
91 for (i = 0; i < XCHAL_CP_MAX; i++) {
92 if ((cpenable & 1) != 0 && coprocessor_owner[i] == ti)
93 coprocessor_flush(ti, i);
104 * Powermanagement idle function, if any is provided by the platform.
111 /* endless idle loop with no priority at all */
113 while (!need_resched())
115 schedule_preempt_disabled();
120 * This is called when the thread calls exit().
122 void exit_thread(void)
124 #if XTENSA_HAVE_COPROCESSORS
125 coprocessor_release_all(current_thread_info());
130 * Flush thread state. This is called when a thread does an execve()
131 * Note that we flush coprocessor registers for the case execve fails.
133 void flush_thread(void)
135 #if XTENSA_HAVE_COPROCESSORS
136 struct thread_info *ti = current_thread_info();
137 coprocessor_flush_all(ti);
138 coprocessor_release_all(ti);
143 * this gets called so that we can store coprocessor state into memory and
144 * copy the current task into the new thread.
146 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
148 #if XTENSA_HAVE_COPROCESSORS
149 coprocessor_flush_all(task_thread_info(src));
158 * The stack layout for the new thread looks like this:
160 * +------------------------+ <- sp in childregs (= tos)
162 * +------------------------+ <- thread.sp = sp in dummy-frame
163 * | dummy-frame | (saved in dummy-frame spill-area)
164 * +------------------------+
166 * We create a dummy frame to return to ret_from_fork:
167 * a0 points to ret_from_fork (simulating a call4)
168 * sp points to itself (thread.sp)
171 * Note: This is a pristine frame, so we don't need any spill region on top of
175 int copy_thread(unsigned long clone_flags, unsigned long usp,
176 unsigned long unused,
177 struct task_struct * p, struct pt_regs * regs)
179 struct pt_regs *childregs;
180 struct thread_info *ti;
182 int user_mode = user_mode(regs);
184 /* Set up new TSS. */
185 tos = (unsigned long)task_stack_page(p) + THREAD_SIZE;
187 childregs = (struct pt_regs*)(tos - PT_USER_SIZE);
189 childregs = (struct pt_regs*)tos - 1;
193 /* Create a call4 dummy-frame: a0 = 0, a1 = childregs. */
194 *((int*)childregs - 3) = (unsigned long)childregs;
195 *((int*)childregs - 4) = 0;
197 childregs->areg[1] = tos;
198 childregs->areg[2] = 0;
199 p->set_child_tid = p->clear_child_tid = NULL;
200 p->thread.ra = MAKE_RA_FOR_CALL((unsigned long)ret_from_fork, 0x1);
201 p->thread.sp = (unsigned long)childregs;
203 if (user_mode(regs)) {
205 int len = childregs->wmask & ~0xf;
206 childregs->areg[1] = usp;
207 memcpy(&childregs->areg[XCHAL_NUM_AREGS - len/4],
208 ®s->areg[XCHAL_NUM_AREGS - len/4], len);
209 // FIXME: we need to set THREADPTR in thread_info...
210 if (clone_flags & CLONE_SETTLS)
211 childregs->areg[2] = childregs->areg[6];
214 /* In kernel space, we start a new thread with a new stack. */
215 childregs->wmask = 1;
218 #if (XTENSA_HAVE_COPROCESSORS || XTENSA_HAVE_IO_PORTS)
219 ti = task_thread_info(p);
228 * These bracket the sleeping functions..
231 unsigned long get_wchan(struct task_struct *p)
233 unsigned long sp, pc;
234 unsigned long stack_page = (unsigned long) task_stack_page(p);
237 if (!p || p == current || p->state == TASK_RUNNING)
241 pc = MAKE_PC_FROM_RA(p->thread.ra, p->thread.sp);
244 if (sp < stack_page + sizeof(struct task_struct) ||
245 sp >= (stack_page + THREAD_SIZE) ||
248 if (!in_sched_functions(pc))
251 /* Stack layout: sp-4: ra, sp-3: sp' */
253 pc = MAKE_PC_FROM_RA(*(unsigned long*)sp - 4, sp);
254 sp = *(unsigned long *)sp - 3;
255 } while (count++ < 16);
260 * xtensa_gregset_t and 'struct pt_regs' are vastly different formats
261 * of processor registers. Besides different ordering,
262 * xtensa_gregset_t contains non-live register information that
263 * 'struct pt_regs' does not. Exception handling (primarily) uses
264 * 'struct pt_regs'. Core files and ptrace use xtensa_gregset_t.
268 void xtensa_elf_core_copy_regs (xtensa_gregset_t *elfregs, struct pt_regs *regs)
270 unsigned long wb, ws, wm;
273 wb = regs->windowbase;
274 ws = regs->windowstart;
276 ws = ((ws >> wb) | (ws << (WSBITS - wb))) & ((1 << WSBITS) - 1);
278 /* Don't leak any random bits. */
280 memset(elfregs, 0, sizeof(*elfregs));
282 /* Note: PS.EXCM is not set while user task is running; its
283 * being set in regs->ps is for exception handling convenience.
286 elfregs->pc = regs->pc;
287 elfregs->ps = (regs->ps & ~(1 << PS_EXCM_BIT));
288 elfregs->lbeg = regs->lbeg;
289 elfregs->lend = regs->lend;
290 elfregs->lcount = regs->lcount;
291 elfregs->sar = regs->sar;
292 elfregs->windowstart = ws;
294 live = (wm & 2) ? 4 : (wm & 4) ? 8 : (wm & 8) ? 12 : 16;
295 last = XCHAL_NUM_AREGS - (wm >> 4) * 4;
296 memcpy(elfregs->a, regs->areg, live * 4);
297 memcpy(elfregs->a + last, regs->areg + last, (wm >> 4) * 16);
306 long xtensa_clone(unsigned long clone_flags, unsigned long newsp,
307 void __user *parent_tid, void *child_tls,
308 void __user *child_tid, long a5,
309 struct pt_regs *regs)
312 newsp = regs->areg[1];
313 return do_fork(clone_flags, newsp, regs, 0, parent_tid, child_tid);
317 * xtensa_execve() executes a new program.
321 long xtensa_execve(const char __user *name,
322 const char __user *const __user *argv,
323 const char __user *const __user *envp,
324 long a3, long a4, long a5,
325 struct pt_regs *regs)
330 filename = getname(name);
331 error = PTR_ERR(filename);
332 if (IS_ERR(filename))
334 error = do_execve(filename, argv, envp, regs);