4 * This file contains the various mmu fetch and update operations.
5 * The most important job they must perform is the mapping between the
6 * domain's pfn and the overall machine mfns.
8 * Xen allows guests to directly update the pagetable, in a controlled
9 * fashion. In other words, the guest modifies the same pagetable
10 * that the CPU actually uses, which eliminates the overhead of having
11 * a separate shadow pagetable.
13 * In order to allow this, it falls on the guest domain to map its
14 * notion of a "physical" pfn - which is just a domain-local linear
15 * address - into a real "machine address" which the CPU's MMU can
18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19 * inserted directly into the pagetable. When creating a new
20 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely,
21 * when reading the content back with __(pgd|pmd|pte)_val, it converts
22 * the mfn back into a pfn.
24 * The other constraint is that all pages which make up a pagetable
25 * must be mapped read-only in the guest. This prevents uncontrolled
26 * guest updates to the pagetable. Xen strictly enforces this, and
27 * will disallow any pagetable update which will end up mapping a
28 * pagetable page RW, and will disallow using any writable page as a
31 * Naively, when loading %cr3 with the base of a new pagetable, Xen
32 * would need to validate the whole pagetable before going on.
33 * Naturally, this is quite slow. The solution is to "pin" a
34 * pagetable, which enforces all the constraints on the pagetable even
35 * when it is not actively in use. This menas that Xen can be assured
36 * that it is still valid when you do load it into %cr3, and doesn't
37 * need to revalidate it.
39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
41 #include <linux/sched.h>
42 #include <linux/highmem.h>
43 #include <linux/debugfs.h>
44 #include <linux/bug.h>
45 #include <linux/vmalloc.h>
46 #include <linux/module.h>
47 #include <linux/gfp.h>
48 #include <linux/memblock.h>
49 #include <linux/seq_file.h>
51 #include <trace/events/xen.h>
53 #include <asm/pgtable.h>
54 #include <asm/tlbflush.h>
55 #include <asm/fixmap.h>
56 #include <asm/mmu_context.h>
57 #include <asm/setup.h>
58 #include <asm/paravirt.h>
60 #include <asm/linkage.h>
66 #include <asm/xen/hypercall.h>
67 #include <asm/xen/hypervisor.h>
71 #include <xen/interface/xen.h>
72 #include <xen/interface/hvm/hvm_op.h>
73 #include <xen/interface/version.h>
74 #include <xen/interface/memory.h>
75 #include <xen/hvc-console.h>
77 #include "multicalls.h"
82 * Protects atomic reservation decrease/increase against concurrent increases.
83 * Also protects non-atomic updates of current_pages and balloon lists.
85 DEFINE_SPINLOCK(xen_reservation_lock);
88 * Identity map, in addition to plain kernel map. This needs to be
89 * large enough to allocate page table pages to allocate the rest.
90 * Each page can map 2MB.
92 #define LEVEL1_IDENT_ENTRIES (PTRS_PER_PTE * 4)
93 static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES);
96 /* l3 pud for userspace vsyscall mapping */
97 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
98 #endif /* CONFIG_X86_64 */
101 * Note about cr3 (pagetable base) values:
103 * xen_cr3 contains the current logical cr3 value; it contains the
104 * last set cr3. This may not be the current effective cr3, because
105 * its update may be being lazily deferred. However, a vcpu looking
106 * at its own cr3 can use this value knowing that it everything will
107 * be self-consistent.
109 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
110 * hypercall to set the vcpu cr3 is complete (so it may be a little
111 * out of date, but it will never be set early). If one vcpu is
112 * looking at another vcpu's cr3 value, it should use this variable.
114 DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */
115 DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */
119 * Just beyond the highest usermode address. STACK_TOP_MAX has a
120 * redzone above it, so round it up to a PGD boundary.
122 #define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
124 unsigned long arbitrary_virt_to_mfn(void *vaddr)
126 xmaddr_t maddr = arbitrary_virt_to_machine(vaddr);
128 return PFN_DOWN(maddr.maddr);
131 xmaddr_t arbitrary_virt_to_machine(void *vaddr)
133 unsigned long address = (unsigned long)vaddr;
139 * if the PFN is in the linear mapped vaddr range, we can just use
140 * the (quick) virt_to_machine() p2m lookup
142 if (virt_addr_valid(vaddr))
143 return virt_to_machine(vaddr);
145 /* otherwise we have to do a (slower) full page-table walk */
147 pte = lookup_address(address, &level);
149 offset = address & ~PAGE_MASK;
150 return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
152 EXPORT_SYMBOL_GPL(arbitrary_virt_to_machine);
154 void make_lowmem_page_readonly(void *vaddr)
157 unsigned long address = (unsigned long)vaddr;
160 pte = lookup_address(address, &level);
162 return; /* vaddr missing */
164 ptev = pte_wrprotect(*pte);
166 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
170 void make_lowmem_page_readwrite(void *vaddr)
173 unsigned long address = (unsigned long)vaddr;
176 pte = lookup_address(address, &level);
178 return; /* vaddr missing */
180 ptev = pte_mkwrite(*pte);
182 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
187 static bool xen_page_pinned(void *ptr)
189 struct page *page = virt_to_page(ptr);
191 return PagePinned(page);
194 void xen_set_domain_pte(pte_t *ptep, pte_t pteval, unsigned domid)
196 struct multicall_space mcs;
197 struct mmu_update *u;
199 trace_xen_mmu_set_domain_pte(ptep, pteval, domid);
201 mcs = xen_mc_entry(sizeof(*u));
204 /* ptep might be kmapped when using 32-bit HIGHPTE */
205 u->ptr = virt_to_machine(ptep).maddr;
206 u->val = pte_val_ma(pteval);
208 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, domid);
210 xen_mc_issue(PARAVIRT_LAZY_MMU);
212 EXPORT_SYMBOL_GPL(xen_set_domain_pte);
214 static void xen_extend_mmu_update(const struct mmu_update *update)
216 struct multicall_space mcs;
217 struct mmu_update *u;
219 mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
221 if (mcs.mc != NULL) {
224 mcs = __xen_mc_entry(sizeof(*u));
225 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
232 static void xen_extend_mmuext_op(const struct mmuext_op *op)
234 struct multicall_space mcs;
237 mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u));
239 if (mcs.mc != NULL) {
242 mcs = __xen_mc_entry(sizeof(*u));
243 MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
250 static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
258 /* ptr may be ioremapped for 64-bit pagetable setup */
259 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
260 u.val = pmd_val_ma(val);
261 xen_extend_mmu_update(&u);
263 xen_mc_issue(PARAVIRT_LAZY_MMU);
268 static void xen_set_pmd(pmd_t *ptr, pmd_t val)
270 trace_xen_mmu_set_pmd(ptr, val);
272 /* If page is not pinned, we can just update the entry
274 if (!xen_page_pinned(ptr)) {
279 xen_set_pmd_hyper(ptr, val);
283 * Associate a virtual page frame with a given physical page frame
284 * and protection flags for that frame.
286 void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
288 set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
291 static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval)
295 if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU)
300 u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
301 u.val = pte_val_ma(pteval);
302 xen_extend_mmu_update(&u);
304 xen_mc_issue(PARAVIRT_LAZY_MMU);
309 static inline void __xen_set_pte(pte_t *ptep, pte_t pteval)
311 if (!xen_batched_set_pte(ptep, pteval))
312 native_set_pte(ptep, pteval);
315 static void xen_set_pte(pte_t *ptep, pte_t pteval)
317 trace_xen_mmu_set_pte(ptep, pteval);
318 __xen_set_pte(ptep, pteval);
321 static void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
322 pte_t *ptep, pte_t pteval)
324 trace_xen_mmu_set_pte_at(mm, addr, ptep, pteval);
325 __xen_set_pte(ptep, pteval);
328 pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
329 unsigned long addr, pte_t *ptep)
331 /* Just return the pte as-is. We preserve the bits on commit */
332 trace_xen_mmu_ptep_modify_prot_start(mm, addr, ptep, *ptep);
336 void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
337 pte_t *ptep, pte_t pte)
341 trace_xen_mmu_ptep_modify_prot_commit(mm, addr, ptep, pte);
344 u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
345 u.val = pte_val_ma(pte);
346 xen_extend_mmu_update(&u);
348 xen_mc_issue(PARAVIRT_LAZY_MMU);
351 /* Assume pteval_t is equivalent to all the other *val_t types. */
352 static pteval_t pte_mfn_to_pfn(pteval_t val)
354 if (val & _PAGE_PRESENT) {
355 unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
356 pteval_t flags = val & PTE_FLAGS_MASK;
357 val = ((pteval_t)mfn_to_pfn(mfn) << PAGE_SHIFT) | flags;
363 static pteval_t pte_pfn_to_mfn(pteval_t val)
365 if (val & _PAGE_PRESENT) {
366 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
367 pteval_t flags = val & PTE_FLAGS_MASK;
370 if (!xen_feature(XENFEAT_auto_translated_physmap))
371 mfn = get_phys_to_machine(pfn);
375 * If there's no mfn for the pfn, then just create an
376 * empty non-present pte. Unfortunately this loses
377 * information about the original pfn, so
378 * pte_mfn_to_pfn is asymmetric.
380 if (unlikely(mfn == INVALID_P2M_ENTRY)) {
385 * Paramount to do this test _after_ the
386 * INVALID_P2M_ENTRY as INVALID_P2M_ENTRY &
387 * IDENTITY_FRAME_BIT resolves to true.
389 mfn &= ~FOREIGN_FRAME_BIT;
390 if (mfn & IDENTITY_FRAME_BIT) {
391 mfn &= ~IDENTITY_FRAME_BIT;
392 flags |= _PAGE_IOMAP;
395 val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
401 static pteval_t iomap_pte(pteval_t val)
403 if (val & _PAGE_PRESENT) {
404 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
405 pteval_t flags = val & PTE_FLAGS_MASK;
407 /* We assume the pte frame number is a MFN, so
408 just use it as-is. */
409 val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
415 static pteval_t xen_pte_val(pte_t pte)
417 pteval_t pteval = pte.pte;
419 /* If this is a WC pte, convert back from Xen WC to Linux WC */
420 if ((pteval & (_PAGE_PAT | _PAGE_PCD | _PAGE_PWT)) == _PAGE_PAT) {
421 WARN_ON(!pat_enabled);
422 pteval = (pteval & ~_PAGE_PAT) | _PAGE_PWT;
425 if (xen_initial_domain() && (pteval & _PAGE_IOMAP))
428 return pte_mfn_to_pfn(pteval);
430 PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
432 static pgdval_t xen_pgd_val(pgd_t pgd)
434 return pte_mfn_to_pfn(pgd.pgd);
436 PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
439 * Xen's PAT setup is part of its ABI, though I assume entries 6 & 7
440 * are reserved for now, to correspond to the Intel-reserved PAT
443 * We expect Linux's PAT set as follows:
445 * Idx PTE flags Linux Xen Default
452 * 6 PAT PCD UC- UC UC-
453 * 7 PAT PCD PWT UC UC UC
456 void xen_set_pat(u64 pat)
458 /* We expect Linux to use a PAT setting of
459 * UC UC- WC WB (ignoring the PAT flag) */
460 WARN_ON(pat != 0x0007010600070106ull);
463 static pte_t xen_make_pte(pteval_t pte)
465 phys_addr_t addr = (pte & PTE_PFN_MASK);
467 /* If Linux is trying to set a WC pte, then map to the Xen WC.
468 * If _PAGE_PAT is set, then it probably means it is really
469 * _PAGE_PSE, so avoid fiddling with the PAT mapping and hope
470 * things work out OK...
472 * (We should never see kernel mappings with _PAGE_PSE set,
473 * but we could see hugetlbfs mappings, I think.).
475 if (pat_enabled && !WARN_ON(pte & _PAGE_PAT)) {
476 if ((pte & (_PAGE_PCD | _PAGE_PWT)) == _PAGE_PWT)
477 pte = (pte & ~(_PAGE_PCD | _PAGE_PWT)) | _PAGE_PAT;
481 * Unprivileged domains are allowed to do IOMAPpings for
482 * PCI passthrough, but not map ISA space. The ISA
483 * mappings are just dummy local mappings to keep other
484 * parts of the kernel happy.
486 if (unlikely(pte & _PAGE_IOMAP) &&
487 (xen_initial_domain() || addr >= ISA_END_ADDRESS)) {
488 pte = iomap_pte(pte);
491 pte = pte_pfn_to_mfn(pte);
494 return native_make_pte(pte);
496 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
498 #ifdef CONFIG_XEN_DEBUG
499 pte_t xen_make_pte_debug(pteval_t pte)
501 phys_addr_t addr = (pte & PTE_PFN_MASK);
502 phys_addr_t other_addr;
503 bool io_page = false;
506 if (pte & _PAGE_IOMAP)
509 _pte = xen_make_pte(pte);
515 (xen_initial_domain() || addr >= ISA_END_ADDRESS)) {
516 other_addr = pfn_to_mfn(addr >> PAGE_SHIFT) << PAGE_SHIFT;
517 WARN_ONCE(addr != other_addr,
518 "0x%lx is using VM_IO, but it is 0x%lx!\n",
519 (unsigned long)addr, (unsigned long)other_addr);
521 pteval_t iomap_set = (_pte.pte & PTE_FLAGS_MASK) & _PAGE_IOMAP;
522 other_addr = (_pte.pte & PTE_PFN_MASK);
523 WARN_ONCE((addr == other_addr) && (!io_page) && (!iomap_set),
524 "0x%lx is missing VM_IO (and wasn't fixed)!\n",
525 (unsigned long)addr);
530 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte_debug);
533 static pgd_t xen_make_pgd(pgdval_t pgd)
535 pgd = pte_pfn_to_mfn(pgd);
536 return native_make_pgd(pgd);
538 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
540 static pmdval_t xen_pmd_val(pmd_t pmd)
542 return pte_mfn_to_pfn(pmd.pmd);
544 PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
546 static void xen_set_pud_hyper(pud_t *ptr, pud_t val)
554 /* ptr may be ioremapped for 64-bit pagetable setup */
555 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
556 u.val = pud_val_ma(val);
557 xen_extend_mmu_update(&u);
559 xen_mc_issue(PARAVIRT_LAZY_MMU);
564 static void xen_set_pud(pud_t *ptr, pud_t val)
566 trace_xen_mmu_set_pud(ptr, val);
568 /* If page is not pinned, we can just update the entry
570 if (!xen_page_pinned(ptr)) {
575 xen_set_pud_hyper(ptr, val);
578 #ifdef CONFIG_X86_PAE
579 static void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
581 trace_xen_mmu_set_pte_atomic(ptep, pte);
582 set_64bit((u64 *)ptep, native_pte_val(pte));
585 static void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
587 trace_xen_mmu_pte_clear(mm, addr, ptep);
588 if (!xen_batched_set_pte(ptep, native_make_pte(0)))
589 native_pte_clear(mm, addr, ptep);
592 static void xen_pmd_clear(pmd_t *pmdp)
594 trace_xen_mmu_pmd_clear(pmdp);
595 set_pmd(pmdp, __pmd(0));
597 #endif /* CONFIG_X86_PAE */
599 static pmd_t xen_make_pmd(pmdval_t pmd)
601 pmd = pte_pfn_to_mfn(pmd);
602 return native_make_pmd(pmd);
604 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
606 #if PAGETABLE_LEVELS == 4
607 static pudval_t xen_pud_val(pud_t pud)
609 return pte_mfn_to_pfn(pud.pud);
611 PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
613 static pud_t xen_make_pud(pudval_t pud)
615 pud = pte_pfn_to_mfn(pud);
617 return native_make_pud(pud);
619 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
621 static pgd_t *xen_get_user_pgd(pgd_t *pgd)
623 pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
624 unsigned offset = pgd - pgd_page;
625 pgd_t *user_ptr = NULL;
627 if (offset < pgd_index(USER_LIMIT)) {
628 struct page *page = virt_to_page(pgd_page);
629 user_ptr = (pgd_t *)page->private;
637 static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
641 u.ptr = virt_to_machine(ptr).maddr;
642 u.val = pgd_val_ma(val);
643 xen_extend_mmu_update(&u);
647 * Raw hypercall-based set_pgd, intended for in early boot before
648 * there's a page structure. This implies:
649 * 1. The only existing pagetable is the kernel's
650 * 2. It is always pinned
651 * 3. It has no user pagetable attached to it
653 static void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
659 __xen_set_pgd_hyper(ptr, val);
661 xen_mc_issue(PARAVIRT_LAZY_MMU);
666 static void xen_set_pgd(pgd_t *ptr, pgd_t val)
668 pgd_t *user_ptr = xen_get_user_pgd(ptr);
670 trace_xen_mmu_set_pgd(ptr, user_ptr, val);
672 /* If page is not pinned, we can just update the entry
674 if (!xen_page_pinned(ptr)) {
677 WARN_ON(xen_page_pinned(user_ptr));
683 /* If it's pinned, then we can at least batch the kernel and
684 user updates together. */
687 __xen_set_pgd_hyper(ptr, val);
689 __xen_set_pgd_hyper(user_ptr, val);
691 xen_mc_issue(PARAVIRT_LAZY_MMU);
693 #endif /* PAGETABLE_LEVELS == 4 */
696 * (Yet another) pagetable walker. This one is intended for pinning a
697 * pagetable. This means that it walks a pagetable and calls the
698 * callback function on each page it finds making up the page table,
699 * at every level. It walks the entire pagetable, but it only bothers
700 * pinning pte pages which are below limit. In the normal case this
701 * will be STACK_TOP_MAX, but at boot we need to pin up to
704 * For 32-bit the important bit is that we don't pin beyond there,
705 * because then we start getting into Xen's ptes.
707 * For 64-bit, we must skip the Xen hole in the middle of the address
708 * space, just after the big x86-64 virtual hole.
710 static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
711 int (*func)(struct mm_struct *mm, struct page *,
716 unsigned hole_low, hole_high;
717 unsigned pgdidx_limit, pudidx_limit, pmdidx_limit;
718 unsigned pgdidx, pudidx, pmdidx;
720 /* The limit is the last byte to be touched */
722 BUG_ON(limit >= FIXADDR_TOP);
724 if (xen_feature(XENFEAT_auto_translated_physmap))
728 * 64-bit has a great big hole in the middle of the address
729 * space, which contains the Xen mappings. On 32-bit these
730 * will end up making a zero-sized hole and so is a no-op.
732 hole_low = pgd_index(USER_LIMIT);
733 hole_high = pgd_index(PAGE_OFFSET);
735 pgdidx_limit = pgd_index(limit);
737 pudidx_limit = pud_index(limit);
742 pmdidx_limit = pmd_index(limit);
747 for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) {
750 if (pgdidx >= hole_low && pgdidx < hole_high)
753 if (!pgd_val(pgd[pgdidx]))
756 pud = pud_offset(&pgd[pgdidx], 0);
758 if (PTRS_PER_PUD > 1) /* not folded */
759 flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
761 for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) {
764 if (pgdidx == pgdidx_limit &&
765 pudidx > pudidx_limit)
768 if (pud_none(pud[pudidx]))
771 pmd = pmd_offset(&pud[pudidx], 0);
773 if (PTRS_PER_PMD > 1) /* not folded */
774 flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
776 for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) {
779 if (pgdidx == pgdidx_limit &&
780 pudidx == pudidx_limit &&
781 pmdidx > pmdidx_limit)
784 if (pmd_none(pmd[pmdidx]))
787 pte = pmd_page(pmd[pmdidx]);
788 flush |= (*func)(mm, pte, PT_PTE);
794 /* Do the top level last, so that the callbacks can use it as
795 a cue to do final things like tlb flushes. */
796 flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
801 static int xen_pgd_walk(struct mm_struct *mm,
802 int (*func)(struct mm_struct *mm, struct page *,
806 return __xen_pgd_walk(mm, mm->pgd, func, limit);
809 /* If we're using split pte locks, then take the page's lock and
810 return a pointer to it. Otherwise return NULL. */
811 static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
813 spinlock_t *ptl = NULL;
815 #if USE_SPLIT_PTLOCKS
816 ptl = __pte_lockptr(page);
817 spin_lock_nest_lock(ptl, &mm->page_table_lock);
823 static void xen_pte_unlock(void *v)
829 static void xen_do_pin(unsigned level, unsigned long pfn)
834 op.arg1.mfn = pfn_to_mfn(pfn);
836 xen_extend_mmuext_op(&op);
839 static int xen_pin_page(struct mm_struct *mm, struct page *page,
842 unsigned pgfl = TestSetPagePinned(page);
846 flush = 0; /* already pinned */
847 else if (PageHighMem(page))
848 /* kmaps need flushing if we found an unpinned
852 void *pt = lowmem_page_address(page);
853 unsigned long pfn = page_to_pfn(page);
854 struct multicall_space mcs = __xen_mc_entry(0);
860 * We need to hold the pagetable lock between the time
861 * we make the pagetable RO and when we actually pin
862 * it. If we don't, then other users may come in and
863 * attempt to update the pagetable by writing it,
864 * which will fail because the memory is RO but not
865 * pinned, so Xen won't do the trap'n'emulate.
867 * If we're using split pte locks, we can't hold the
868 * entire pagetable's worth of locks during the
869 * traverse, because we may wrap the preempt count (8
870 * bits). The solution is to mark RO and pin each PTE
871 * page while holding the lock. This means the number
872 * of locks we end up holding is never more than a
873 * batch size (~32 entries, at present).
875 * If we're not using split pte locks, we needn't pin
876 * the PTE pages independently, because we're
877 * protected by the overall pagetable lock.
881 ptl = xen_pte_lock(page, mm);
883 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
884 pfn_pte(pfn, PAGE_KERNEL_RO),
885 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
888 xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
890 /* Queue a deferred unlock for when this batch
892 xen_mc_callback(xen_pte_unlock, ptl);
899 /* This is called just after a mm has been created, but it has not
900 been used yet. We need to make sure that its pagetable is all
901 read-only, and can be pinned. */
902 static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
904 trace_xen_mmu_pgd_pin(mm, pgd);
908 if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
909 /* re-enable interrupts for flushing */
919 pgd_t *user_pgd = xen_get_user_pgd(pgd);
921 xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
924 xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
925 xen_do_pin(MMUEXT_PIN_L4_TABLE,
926 PFN_DOWN(__pa(user_pgd)));
929 #else /* CONFIG_X86_32 */
930 #ifdef CONFIG_X86_PAE
931 /* Need to make sure unshared kernel PMD is pinnable */
932 xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
935 xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
936 #endif /* CONFIG_X86_64 */
940 static void xen_pgd_pin(struct mm_struct *mm)
942 __xen_pgd_pin(mm, mm->pgd);
946 * On save, we need to pin all pagetables to make sure they get their
947 * mfns turned into pfns. Search the list for any unpinned pgds and pin
948 * them (unpinned pgds are not currently in use, probably because the
949 * process is under construction or destruction).
951 * Expected to be called in stop_machine() ("equivalent to taking
952 * every spinlock in the system"), so the locking doesn't really
953 * matter all that much.
955 void xen_mm_pin_all(void)
959 spin_lock(&pgd_lock);
961 list_for_each_entry(page, &pgd_list, lru) {
962 if (!PagePinned(page)) {
963 __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
964 SetPageSavePinned(page);
968 spin_unlock(&pgd_lock);
972 * The init_mm pagetable is really pinned as soon as its created, but
973 * that's before we have page structures to store the bits. So do all
974 * the book-keeping now.
976 static int __init xen_mark_pinned(struct mm_struct *mm, struct page *page,
983 static void __init xen_mark_init_mm_pinned(void)
985 xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
988 static int xen_unpin_page(struct mm_struct *mm, struct page *page,
991 unsigned pgfl = TestClearPagePinned(page);
993 if (pgfl && !PageHighMem(page)) {
994 void *pt = lowmem_page_address(page);
995 unsigned long pfn = page_to_pfn(page);
996 spinlock_t *ptl = NULL;
997 struct multicall_space mcs;
1000 * Do the converse to pin_page. If we're using split
1001 * pte locks, we must be holding the lock for while
1002 * the pte page is unpinned but still RO to prevent
1003 * concurrent updates from seeing it in this
1004 * partially-pinned state.
1006 if (level == PT_PTE) {
1007 ptl = xen_pte_lock(page, mm);
1010 xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
1013 mcs = __xen_mc_entry(0);
1015 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
1016 pfn_pte(pfn, PAGE_KERNEL),
1017 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
1020 /* unlock when batch completed */
1021 xen_mc_callback(xen_pte_unlock, ptl);
1025 return 0; /* never need to flush on unpin */
1028 /* Release a pagetables pages back as normal RW */
1029 static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
1031 trace_xen_mmu_pgd_unpin(mm, pgd);
1035 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1037 #ifdef CONFIG_X86_64
1039 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1042 xen_do_pin(MMUEXT_UNPIN_TABLE,
1043 PFN_DOWN(__pa(user_pgd)));
1044 xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
1049 #ifdef CONFIG_X86_PAE
1050 /* Need to make sure unshared kernel PMD is unpinned */
1051 xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
1055 __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
1060 static void xen_pgd_unpin(struct mm_struct *mm)
1062 __xen_pgd_unpin(mm, mm->pgd);
1066 * On resume, undo any pinning done at save, so that the rest of the
1067 * kernel doesn't see any unexpected pinned pagetables.
1069 void xen_mm_unpin_all(void)
1073 spin_lock(&pgd_lock);
1075 list_for_each_entry(page, &pgd_list, lru) {
1076 if (PageSavePinned(page)) {
1077 BUG_ON(!PagePinned(page));
1078 __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
1079 ClearPageSavePinned(page);
1083 spin_unlock(&pgd_lock);
1086 static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
1088 spin_lock(&next->page_table_lock);
1090 spin_unlock(&next->page_table_lock);
1093 static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
1095 spin_lock(&mm->page_table_lock);
1097 spin_unlock(&mm->page_table_lock);
1102 /* Another cpu may still have their %cr3 pointing at the pagetable, so
1103 we need to repoint it somewhere else before we can unpin it. */
1104 static void drop_other_mm_ref(void *info)
1106 struct mm_struct *mm = info;
1107 struct mm_struct *active_mm;
1109 active_mm = percpu_read(cpu_tlbstate.active_mm);
1111 if (active_mm == mm && percpu_read(cpu_tlbstate.state) != TLBSTATE_OK)
1112 leave_mm(smp_processor_id());
1114 /* If this cpu still has a stale cr3 reference, then make sure
1115 it has been flushed. */
1116 if (percpu_read(xen_current_cr3) == __pa(mm->pgd))
1117 load_cr3(swapper_pg_dir);
1120 static void xen_drop_mm_ref(struct mm_struct *mm)
1125 if (current->active_mm == mm) {
1126 if (current->mm == mm)
1127 load_cr3(swapper_pg_dir);
1129 leave_mm(smp_processor_id());
1132 /* Get the "official" set of cpus referring to our pagetable. */
1133 if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
1134 for_each_online_cpu(cpu) {
1135 if (!cpumask_test_cpu(cpu, mm_cpumask(mm))
1136 && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
1138 smp_call_function_single(cpu, drop_other_mm_ref, mm, 1);
1142 cpumask_copy(mask, mm_cpumask(mm));
1144 /* It's possible that a vcpu may have a stale reference to our
1145 cr3, because its in lazy mode, and it hasn't yet flushed
1146 its set of pending hypercalls yet. In this case, we can
1147 look at its actual current cr3 value, and force it to flush
1149 for_each_online_cpu(cpu) {
1150 if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1151 cpumask_set_cpu(cpu, mask);
1154 if (!cpumask_empty(mask))
1155 smp_call_function_many(mask, drop_other_mm_ref, mm, 1);
1156 free_cpumask_var(mask);
1159 static void xen_drop_mm_ref(struct mm_struct *mm)
1161 if (current->active_mm == mm)
1162 load_cr3(swapper_pg_dir);
1167 * While a process runs, Xen pins its pagetables, which means that the
1168 * hypervisor forces it to be read-only, and it controls all updates
1169 * to it. This means that all pagetable updates have to go via the
1170 * hypervisor, which is moderately expensive.
1172 * Since we're pulling the pagetable down, we switch to use init_mm,
1173 * unpin old process pagetable and mark it all read-write, which
1174 * allows further operations on it to be simple memory accesses.
1176 * The only subtle point is that another CPU may be still using the
1177 * pagetable because of lazy tlb flushing. This means we need need to
1178 * switch all CPUs off this pagetable before we can unpin it.
1180 static void xen_exit_mmap(struct mm_struct *mm)
1182 get_cpu(); /* make sure we don't move around */
1183 xen_drop_mm_ref(mm);
1186 spin_lock(&mm->page_table_lock);
1188 /* pgd may not be pinned in the error exit path of execve */
1189 if (xen_page_pinned(mm->pgd))
1192 spin_unlock(&mm->page_table_lock);
1195 static void __init xen_pagetable_setup_start(pgd_t *base)
1199 static __init void xen_mapping_pagetable_reserve(u64 start, u64 end)
1201 /* reserve the range used */
1202 native_pagetable_reserve(start, end);
1204 /* set as RW the rest */
1205 printk(KERN_DEBUG "xen: setting RW the range %llx - %llx\n", end,
1206 PFN_PHYS(pgt_buf_top));
1207 while (end < PFN_PHYS(pgt_buf_top)) {
1208 make_lowmem_page_readwrite(__va(end));
1213 static void xen_post_allocator_init(void);
1215 static void __init xen_pagetable_setup_done(pgd_t *base)
1217 xen_setup_shared_info();
1218 xen_post_allocator_init();
1221 static void xen_write_cr2(unsigned long cr2)
1223 percpu_read(xen_vcpu)->arch.cr2 = cr2;
1226 static unsigned long xen_read_cr2(void)
1228 return percpu_read(xen_vcpu)->arch.cr2;
1231 unsigned long xen_read_cr2_direct(void)
1233 return percpu_read(xen_vcpu_info.arch.cr2);
1236 static void xen_flush_tlb(void)
1238 struct mmuext_op *op;
1239 struct multicall_space mcs;
1241 trace_xen_mmu_flush_tlb(0);
1245 mcs = xen_mc_entry(sizeof(*op));
1248 op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1249 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1251 xen_mc_issue(PARAVIRT_LAZY_MMU);
1256 static void xen_flush_tlb_single(unsigned long addr)
1258 struct mmuext_op *op;
1259 struct multicall_space mcs;
1261 trace_xen_mmu_flush_tlb_single(addr);
1265 mcs = xen_mc_entry(sizeof(*op));
1267 op->cmd = MMUEXT_INVLPG_LOCAL;
1268 op->arg1.linear_addr = addr & PAGE_MASK;
1269 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1271 xen_mc_issue(PARAVIRT_LAZY_MMU);
1276 static void xen_flush_tlb_others(const struct cpumask *cpus,
1277 struct mm_struct *mm, unsigned long va)
1280 struct mmuext_op op;
1282 DECLARE_BITMAP(mask, num_processors);
1284 DECLARE_BITMAP(mask, NR_CPUS);
1287 struct multicall_space mcs;
1289 trace_xen_mmu_flush_tlb_others(cpus, mm, va);
1291 if (cpumask_empty(cpus))
1292 return; /* nothing to do */
1294 mcs = xen_mc_entry(sizeof(*args));
1296 args->op.arg2.vcpumask = to_cpumask(args->mask);
1298 /* Remove us, and any offline CPUS. */
1299 cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1300 cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));
1302 if (va == TLB_FLUSH_ALL) {
1303 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1305 args->op.cmd = MMUEXT_INVLPG_MULTI;
1306 args->op.arg1.linear_addr = va;
1309 MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1311 xen_mc_issue(PARAVIRT_LAZY_MMU);
1314 static unsigned long xen_read_cr3(void)
1316 return percpu_read(xen_cr3);
1319 static void set_current_cr3(void *v)
1321 percpu_write(xen_current_cr3, (unsigned long)v);
1324 static void __xen_write_cr3(bool kernel, unsigned long cr3)
1326 struct mmuext_op op;
1329 trace_xen_mmu_write_cr3(kernel, cr3);
1332 mfn = pfn_to_mfn(PFN_DOWN(cr3));
1336 WARN_ON(mfn == 0 && kernel);
1338 op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1341 xen_extend_mmuext_op(&op);
1344 percpu_write(xen_cr3, cr3);
1346 /* Update xen_current_cr3 once the batch has actually
1348 xen_mc_callback(set_current_cr3, (void *)cr3);
1352 static void xen_write_cr3(unsigned long cr3)
1354 BUG_ON(preemptible());
1356 xen_mc_batch(); /* disables interrupts */
1358 /* Update while interrupts are disabled, so its atomic with
1360 percpu_write(xen_cr3, cr3);
1362 __xen_write_cr3(true, cr3);
1364 #ifdef CONFIG_X86_64
1366 pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1368 __xen_write_cr3(false, __pa(user_pgd));
1370 __xen_write_cr3(false, 0);
1374 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
1377 static int xen_pgd_alloc(struct mm_struct *mm)
1379 pgd_t *pgd = mm->pgd;
1382 BUG_ON(PagePinned(virt_to_page(pgd)));
1384 #ifdef CONFIG_X86_64
1386 struct page *page = virt_to_page(pgd);
1389 BUG_ON(page->private != 0);
1393 user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1394 page->private = (unsigned long)user_pgd;
1396 if (user_pgd != NULL) {
1397 user_pgd[pgd_index(VSYSCALL_START)] =
1398 __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1402 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1409 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1411 #ifdef CONFIG_X86_64
1412 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1415 free_page((unsigned long)user_pgd);
1419 #ifdef CONFIG_X86_32
1420 static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
1422 /* If there's an existing pte, then don't allow _PAGE_RW to be set */
1423 if (pte_val_ma(*ptep) & _PAGE_PRESENT)
1424 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
1429 #else /* CONFIG_X86_64 */
1430 static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
1432 unsigned long pfn = pte_pfn(pte);
1435 * If the new pfn is within the range of the newly allocated
1436 * kernel pagetable, and it isn't being mapped into an
1437 * early_ioremap fixmap slot as a freshly allocated page, make sure
1440 if (((!is_early_ioremap_ptep(ptep) &&
1441 pfn >= pgt_buf_start && pfn < pgt_buf_top)) ||
1442 (is_early_ioremap_ptep(ptep) && pfn != (pgt_buf_end - 1)))
1443 pte = pte_wrprotect(pte);
1447 #endif /* CONFIG_X86_64 */
1449 /* Init-time set_pte while constructing initial pagetables, which
1450 doesn't allow RO pagetable pages to be remapped RW */
1451 static void __init xen_set_pte_init(pte_t *ptep, pte_t pte)
1453 pte = mask_rw_pte(ptep, pte);
1455 xen_set_pte(ptep, pte);
1458 static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1460 struct mmuext_op op;
1462 op.arg1.mfn = pfn_to_mfn(pfn);
1463 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1467 /* Early in boot, while setting up the initial pagetable, assume
1468 everything is pinned. */
1469 static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1471 #ifdef CONFIG_FLATMEM
1472 BUG_ON(mem_map); /* should only be used early */
1474 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1475 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1478 /* Used for pmd and pud */
1479 static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1481 #ifdef CONFIG_FLATMEM
1482 BUG_ON(mem_map); /* should only be used early */
1484 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1487 /* Early release_pte assumes that all pts are pinned, since there's
1488 only init_mm and anything attached to that is pinned. */
1489 static void __init xen_release_pte_init(unsigned long pfn)
1491 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1492 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1495 static void __init xen_release_pmd_init(unsigned long pfn)
1497 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1500 static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1502 struct multicall_space mcs;
1503 struct mmuext_op *op;
1505 mcs = __xen_mc_entry(sizeof(*op));
1508 op->arg1.mfn = pfn_to_mfn(pfn);
1510 MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
1513 static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot)
1515 struct multicall_space mcs;
1516 unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT);
1518 mcs = __xen_mc_entry(0);
1519 MULTI_update_va_mapping(mcs.mc, (unsigned long)addr,
1520 pfn_pte(pfn, prot), 0);
1523 /* This needs to make sure the new pte page is pinned iff its being
1524 attached to a pinned pagetable. */
1525 static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn,
1528 bool pinned = PagePinned(virt_to_page(mm->pgd));
1530 trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned);
1533 struct page *page = pfn_to_page(pfn);
1535 SetPagePinned(page);
1537 if (!PageHighMem(page)) {
1540 __set_pfn_prot(pfn, PAGE_KERNEL_RO);
1542 if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1543 __pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1545 xen_mc_issue(PARAVIRT_LAZY_MMU);
1547 /* make sure there are no stray mappings of
1549 kmap_flush_unused();
1554 static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1556 xen_alloc_ptpage(mm, pfn, PT_PTE);
1559 static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1561 xen_alloc_ptpage(mm, pfn, PT_PMD);
1564 /* This should never happen until we're OK to use struct page */
1565 static inline void xen_release_ptpage(unsigned long pfn, unsigned level)
1567 struct page *page = pfn_to_page(pfn);
1568 bool pinned = PagePinned(page);
1570 trace_xen_mmu_release_ptpage(pfn, level, pinned);
1573 if (!PageHighMem(page)) {
1576 if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1577 __pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1579 __set_pfn_prot(pfn, PAGE_KERNEL);
1581 xen_mc_issue(PARAVIRT_LAZY_MMU);
1583 ClearPagePinned(page);
1587 static void xen_release_pte(unsigned long pfn)
1589 xen_release_ptpage(pfn, PT_PTE);
1592 static void xen_release_pmd(unsigned long pfn)
1594 xen_release_ptpage(pfn, PT_PMD);
1597 #if PAGETABLE_LEVELS == 4
1598 static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1600 xen_alloc_ptpage(mm, pfn, PT_PUD);
1603 static void xen_release_pud(unsigned long pfn)
1605 xen_release_ptpage(pfn, PT_PUD);
1609 void __init xen_reserve_top(void)
1611 #ifdef CONFIG_X86_32
1612 unsigned long top = HYPERVISOR_VIRT_START;
1613 struct xen_platform_parameters pp;
1615 if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1616 top = pp.virt_start;
1618 reserve_top_address(-top);
1619 #endif /* CONFIG_X86_32 */
1623 * Like __va(), but returns address in the kernel mapping (which is
1624 * all we have until the physical memory mapping has been set up.
1626 static void *__ka(phys_addr_t paddr)
1628 #ifdef CONFIG_X86_64
1629 return (void *)(paddr + __START_KERNEL_map);
1635 /* Convert a machine address to physical address */
1636 static unsigned long m2p(phys_addr_t maddr)
1640 maddr &= PTE_PFN_MASK;
1641 paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1646 /* Convert a machine address to kernel virtual */
1647 static void *m2v(phys_addr_t maddr)
1649 return __ka(m2p(maddr));
1652 /* Set the page permissions on an identity-mapped pages */
1653 static void set_page_prot(void *addr, pgprot_t prot)
1655 unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1656 pte_t pte = pfn_pte(pfn, prot);
1658 if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0))
1662 static void __init xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1664 unsigned pmdidx, pteidx;
1668 level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES,
1673 for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1676 /* Reuse or allocate a page of ptes */
1677 if (pmd_present(pmd[pmdidx]))
1678 pte_page = m2v(pmd[pmdidx].pmd);
1680 /* Check for free pte pages */
1681 if (ident_pte == LEVEL1_IDENT_ENTRIES)
1684 pte_page = &level1_ident_pgt[ident_pte];
1685 ident_pte += PTRS_PER_PTE;
1687 pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1690 /* Install mappings */
1691 for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1694 #ifdef CONFIG_X86_32
1695 if (pfn > max_pfn_mapped)
1696 max_pfn_mapped = pfn;
1699 if (!pte_none(pte_page[pteidx]))
1702 pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1703 pte_page[pteidx] = pte;
1707 for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1708 set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1710 set_page_prot(pmd, PAGE_KERNEL_RO);
1713 void __init xen_setup_machphys_mapping(void)
1715 struct xen_machphys_mapping mapping;
1716 unsigned long machine_to_phys_nr_ents;
1718 if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) {
1719 machine_to_phys_mapping = (unsigned long *)mapping.v_start;
1720 machine_to_phys_nr_ents = mapping.max_mfn + 1;
1722 machine_to_phys_nr_ents = MACH2PHYS_NR_ENTRIES;
1724 machine_to_phys_order = fls(machine_to_phys_nr_ents - 1);
1727 #ifdef CONFIG_X86_64
1728 static void convert_pfn_mfn(void *v)
1733 /* All levels are converted the same way, so just treat them
1735 for (i = 0; i < PTRS_PER_PTE; i++)
1736 pte[i] = xen_make_pte(pte[i].pte);
1740 * Set up the initial kernel pagetable.
1742 * We can construct this by grafting the Xen provided pagetable into
1743 * head_64.S's preconstructed pagetables. We copy the Xen L2's into
1744 * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt. This
1745 * means that only the kernel has a physical mapping to start with -
1746 * but that's enough to get __va working. We need to fill in the rest
1747 * of the physical mapping once some sort of allocator has been set
1750 pgd_t * __init xen_setup_kernel_pagetable(pgd_t *pgd,
1751 unsigned long max_pfn)
1756 /* max_pfn_mapped is the last pfn mapped in the initial memory
1757 * mappings. Considering that on Xen after the kernel mappings we
1758 * have the mappings of some pages that don't exist in pfn space, we
1759 * set max_pfn_mapped to the last real pfn mapped. */
1760 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));
1762 /* Zap identity mapping */
1763 init_level4_pgt[0] = __pgd(0);
1765 /* Pre-constructed entries are in pfn, so convert to mfn */
1766 convert_pfn_mfn(init_level4_pgt);
1767 convert_pfn_mfn(level3_ident_pgt);
1768 convert_pfn_mfn(level3_kernel_pgt);
1770 l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1771 l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1773 memcpy(level2_ident_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1774 memcpy(level2_kernel_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1776 l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd);
1777 l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud);
1778 memcpy(level2_fixmap_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1780 /* Set up identity map */
1781 xen_map_identity_early(level2_ident_pgt, max_pfn);
1783 /* Make pagetable pieces RO */
1784 set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1785 set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1786 set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1787 set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1788 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1789 set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1791 /* Pin down new L4 */
1792 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1793 PFN_DOWN(__pa_symbol(init_level4_pgt)));
1795 /* Unpin Xen-provided one */
1796 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1799 pgd = init_level4_pgt;
1802 * At this stage there can be no user pgd, and no page
1803 * structure to attach it to, so make sure we just set kernel
1807 __xen_write_cr3(true, __pa(pgd));
1808 xen_mc_issue(PARAVIRT_LAZY_CPU);
1810 memblock_x86_reserve_range(__pa(xen_start_info->pt_base),
1811 __pa(xen_start_info->pt_base +
1812 xen_start_info->nr_pt_frames * PAGE_SIZE),
1817 #else /* !CONFIG_X86_64 */
1818 static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD);
1819 static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD);
1821 static void __init xen_write_cr3_init(unsigned long cr3)
1823 unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir));
1825 BUG_ON(read_cr3() != __pa(initial_page_table));
1826 BUG_ON(cr3 != __pa(swapper_pg_dir));
1829 * We are switching to swapper_pg_dir for the first time (from
1830 * initial_page_table) and therefore need to mark that page
1831 * read-only and then pin it.
1833 * Xen disallows sharing of kernel PMDs for PAE
1834 * guests. Therefore we must copy the kernel PMD from
1835 * initial_page_table into a new kernel PMD to be used in
1838 swapper_kernel_pmd =
1839 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
1840 memcpy(swapper_kernel_pmd, initial_kernel_pmd,
1841 sizeof(pmd_t) * PTRS_PER_PMD);
1842 swapper_pg_dir[KERNEL_PGD_BOUNDARY] =
1843 __pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT);
1844 set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO);
1846 set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
1848 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn);
1850 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
1851 PFN_DOWN(__pa(initial_page_table)));
1852 set_page_prot(initial_page_table, PAGE_KERNEL);
1853 set_page_prot(initial_kernel_pmd, PAGE_KERNEL);
1855 pv_mmu_ops.write_cr3 = &xen_write_cr3;
1858 pgd_t * __init xen_setup_kernel_pagetable(pgd_t *pgd,
1859 unsigned long max_pfn)
1863 initial_kernel_pmd =
1864 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
1866 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->pt_base) +
1867 xen_start_info->nr_pt_frames * PAGE_SIZE +
1870 kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
1871 memcpy(initial_kernel_pmd, kernel_pmd, sizeof(pmd_t) * PTRS_PER_PMD);
1873 xen_map_identity_early(initial_kernel_pmd, max_pfn);
1875 memcpy(initial_page_table, pgd, sizeof(pgd_t) * PTRS_PER_PGD);
1876 initial_page_table[KERNEL_PGD_BOUNDARY] =
1877 __pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT);
1879 set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO);
1880 set_page_prot(initial_page_table, PAGE_KERNEL_RO);
1881 set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
1883 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1885 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE,
1886 PFN_DOWN(__pa(initial_page_table)));
1887 xen_write_cr3(__pa(initial_page_table));
1889 memblock_x86_reserve_range(__pa(xen_start_info->pt_base),
1890 __pa(xen_start_info->pt_base +
1891 xen_start_info->nr_pt_frames * PAGE_SIZE),
1894 return initial_page_table;
1896 #endif /* CONFIG_X86_64 */
1898 static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;
1900 static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
1904 phys >>= PAGE_SHIFT;
1907 case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
1908 #ifdef CONFIG_X86_F00F_BUG
1911 #ifdef CONFIG_X86_32
1914 # ifdef CONFIG_HIGHMEM
1915 case FIX_KMAP_BEGIN ... FIX_KMAP_END:
1918 case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE:
1920 case FIX_TEXT_POKE0:
1921 case FIX_TEXT_POKE1:
1922 /* All local page mappings */
1923 pte = pfn_pte(phys, prot);
1926 #ifdef CONFIG_X86_LOCAL_APIC
1927 case FIX_APIC_BASE: /* maps dummy local APIC */
1928 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
1932 #ifdef CONFIG_X86_IO_APIC
1933 case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
1935 * We just don't map the IO APIC - all access is via
1936 * hypercalls. Keep the address in the pte for reference.
1938 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
1942 case FIX_PARAVIRT_BOOTMAP:
1943 /* This is an MFN, but it isn't an IO mapping from the
1945 pte = mfn_pte(phys, prot);
1949 /* By default, set_fixmap is used for hardware mappings */
1950 pte = mfn_pte(phys, __pgprot(pgprot_val(prot) | _PAGE_IOMAP));
1954 __native_set_fixmap(idx, pte);
1956 #ifdef CONFIG_X86_64
1957 /* Replicate changes to map the vsyscall page into the user
1958 pagetable vsyscall mapping. */
1959 if (idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) {
1960 unsigned long vaddr = __fix_to_virt(idx);
1961 set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
1966 void __init xen_ident_map_ISA(void)
1971 * If we're dom0, then linear map the ISA machine addresses into
1972 * the kernel's address space.
1974 if (!xen_initial_domain())
1977 xen_raw_printk("Xen: setup ISA identity maps\n");
1979 for (pa = ISA_START_ADDRESS; pa < ISA_END_ADDRESS; pa += PAGE_SIZE) {
1980 pte_t pte = mfn_pte(PFN_DOWN(pa), PAGE_KERNEL_IO);
1982 if (HYPERVISOR_update_va_mapping(PAGE_OFFSET + pa, pte, 0))
1989 static void __init xen_post_allocator_init(void)
1991 #ifdef CONFIG_XEN_DEBUG
1992 pv_mmu_ops.make_pte = PV_CALLEE_SAVE(xen_make_pte_debug);
1994 pv_mmu_ops.set_pte = xen_set_pte;
1995 pv_mmu_ops.set_pmd = xen_set_pmd;
1996 pv_mmu_ops.set_pud = xen_set_pud;
1997 #if PAGETABLE_LEVELS == 4
1998 pv_mmu_ops.set_pgd = xen_set_pgd;
2001 /* This will work as long as patching hasn't happened yet
2002 (which it hasn't) */
2003 pv_mmu_ops.alloc_pte = xen_alloc_pte;
2004 pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
2005 pv_mmu_ops.release_pte = xen_release_pte;
2006 pv_mmu_ops.release_pmd = xen_release_pmd;
2007 #if PAGETABLE_LEVELS == 4
2008 pv_mmu_ops.alloc_pud = xen_alloc_pud;
2009 pv_mmu_ops.release_pud = xen_release_pud;
2012 #ifdef CONFIG_X86_64
2013 SetPagePinned(virt_to_page(level3_user_vsyscall));
2015 xen_mark_init_mm_pinned();
2018 static void xen_leave_lazy_mmu(void)
2022 paravirt_leave_lazy_mmu();
2026 static const struct pv_mmu_ops xen_mmu_ops __initconst = {
2027 .read_cr2 = xen_read_cr2,
2028 .write_cr2 = xen_write_cr2,
2030 .read_cr3 = xen_read_cr3,
2031 #ifdef CONFIG_X86_32
2032 .write_cr3 = xen_write_cr3_init,
2034 .write_cr3 = xen_write_cr3,
2037 .flush_tlb_user = xen_flush_tlb,
2038 .flush_tlb_kernel = xen_flush_tlb,
2039 .flush_tlb_single = xen_flush_tlb_single,
2040 .flush_tlb_others = xen_flush_tlb_others,
2042 .pte_update = paravirt_nop,
2043 .pte_update_defer = paravirt_nop,
2045 .pgd_alloc = xen_pgd_alloc,
2046 .pgd_free = xen_pgd_free,
2048 .alloc_pte = xen_alloc_pte_init,
2049 .release_pte = xen_release_pte_init,
2050 .alloc_pmd = xen_alloc_pmd_init,
2051 .release_pmd = xen_release_pmd_init,
2053 .set_pte = xen_set_pte_init,
2054 .set_pte_at = xen_set_pte_at,
2055 .set_pmd = xen_set_pmd_hyper,
2057 .ptep_modify_prot_start = __ptep_modify_prot_start,
2058 .ptep_modify_prot_commit = __ptep_modify_prot_commit,
2060 .pte_val = PV_CALLEE_SAVE(xen_pte_val),
2061 .pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
2063 .make_pte = PV_CALLEE_SAVE(xen_make_pte),
2064 .make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
2066 #ifdef CONFIG_X86_PAE
2067 .set_pte_atomic = xen_set_pte_atomic,
2068 .pte_clear = xen_pte_clear,
2069 .pmd_clear = xen_pmd_clear,
2070 #endif /* CONFIG_X86_PAE */
2071 .set_pud = xen_set_pud_hyper,
2073 .make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
2074 .pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
2076 #if PAGETABLE_LEVELS == 4
2077 .pud_val = PV_CALLEE_SAVE(xen_pud_val),
2078 .make_pud = PV_CALLEE_SAVE(xen_make_pud),
2079 .set_pgd = xen_set_pgd_hyper,
2081 .alloc_pud = xen_alloc_pmd_init,
2082 .release_pud = xen_release_pmd_init,
2083 #endif /* PAGETABLE_LEVELS == 4 */
2085 .activate_mm = xen_activate_mm,
2086 .dup_mmap = xen_dup_mmap,
2087 .exit_mmap = xen_exit_mmap,
2090 .enter = paravirt_enter_lazy_mmu,
2091 .leave = xen_leave_lazy_mmu,
2094 .set_fixmap = xen_set_fixmap,
2097 void __init xen_init_mmu_ops(void)
2099 x86_init.mapping.pagetable_reserve = xen_mapping_pagetable_reserve;
2100 x86_init.paging.pagetable_setup_start = xen_pagetable_setup_start;
2101 x86_init.paging.pagetable_setup_done = xen_pagetable_setup_done;
2102 pv_mmu_ops = xen_mmu_ops;
2104 memset(dummy_mapping, 0xff, PAGE_SIZE);
2107 /* Protected by xen_reservation_lock. */
2108 #define MAX_CONTIG_ORDER 9 /* 2MB */
2109 static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];
2111 #define VOID_PTE (mfn_pte(0, __pgprot(0)))
2112 static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
2113 unsigned long *in_frames,
2114 unsigned long *out_frames)
2117 struct multicall_space mcs;
2120 for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
2121 mcs = __xen_mc_entry(0);
2124 in_frames[i] = virt_to_mfn(vaddr);
2126 MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
2127 __set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
2130 out_frames[i] = virt_to_pfn(vaddr);
2136 * Update the pfn-to-mfn mappings for a virtual address range, either to
2137 * point to an array of mfns, or contiguously from a single starting
2140 static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
2141 unsigned long *mfns,
2142 unsigned long first_mfn)
2149 limit = 1u << order;
2150 for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
2151 struct multicall_space mcs;
2154 mcs = __xen_mc_entry(0);
2158 mfn = first_mfn + i;
2160 if (i < (limit - 1))
2164 flags = UVMF_INVLPG | UVMF_ALL;
2166 flags = UVMF_TLB_FLUSH | UVMF_ALL;
2169 MULTI_update_va_mapping(mcs.mc, vaddr,
2170 mfn_pte(mfn, PAGE_KERNEL), flags);
2172 set_phys_to_machine(virt_to_pfn(vaddr), mfn);
2179 * Perform the hypercall to exchange a region of our pfns to point to
2180 * memory with the required contiguous alignment. Takes the pfns as
2181 * input, and populates mfns as output.
2183 * Returns a success code indicating whether the hypervisor was able to
2184 * satisfy the request or not.
2186 static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
2187 unsigned long *pfns_in,
2188 unsigned long extents_out,
2189 unsigned int order_out,
2190 unsigned long *mfns_out,
2191 unsigned int address_bits)
2196 struct xen_memory_exchange exchange = {
2198 .nr_extents = extents_in,
2199 .extent_order = order_in,
2200 .extent_start = pfns_in,
2204 .nr_extents = extents_out,
2205 .extent_order = order_out,
2206 .extent_start = mfns_out,
2207 .address_bits = address_bits,
2212 BUG_ON(extents_in << order_in != extents_out << order_out);
2214 rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
2215 success = (exchange.nr_exchanged == extents_in);
2217 BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
2218 BUG_ON(success && (rc != 0));
2223 int xen_create_contiguous_region(unsigned long vstart, unsigned int order,
2224 unsigned int address_bits)
2226 unsigned long *in_frames = discontig_frames, out_frame;
2227 unsigned long flags;
2231 * Currently an auto-translated guest will not perform I/O, nor will
2232 * it require PAE page directories below 4GB. Therefore any calls to
2233 * this function are redundant and can be ignored.
2236 if (xen_feature(XENFEAT_auto_translated_physmap))
2239 if (unlikely(order > MAX_CONTIG_ORDER))
2242 memset((void *) vstart, 0, PAGE_SIZE << order);
2244 spin_lock_irqsave(&xen_reservation_lock, flags);
2246 /* 1. Zap current PTEs, remembering MFNs. */
2247 xen_zap_pfn_range(vstart, order, in_frames, NULL);
2249 /* 2. Get a new contiguous memory extent. */
2250 out_frame = virt_to_pfn(vstart);
2251 success = xen_exchange_memory(1UL << order, 0, in_frames,
2252 1, order, &out_frame,
2255 /* 3. Map the new extent in place of old pages. */
2257 xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
2259 xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
2261 spin_unlock_irqrestore(&xen_reservation_lock, flags);
2263 return success ? 0 : -ENOMEM;
2265 EXPORT_SYMBOL_GPL(xen_create_contiguous_region);
2267 void xen_destroy_contiguous_region(unsigned long vstart, unsigned int order)
2269 unsigned long *out_frames = discontig_frames, in_frame;
2270 unsigned long flags;
2273 if (xen_feature(XENFEAT_auto_translated_physmap))
2276 if (unlikely(order > MAX_CONTIG_ORDER))
2279 memset((void *) vstart, 0, PAGE_SIZE << order);
2281 spin_lock_irqsave(&xen_reservation_lock, flags);
2283 /* 1. Find start MFN of contiguous extent. */
2284 in_frame = virt_to_mfn(vstart);
2286 /* 2. Zap current PTEs. */
2287 xen_zap_pfn_range(vstart, order, NULL, out_frames);
2289 /* 3. Do the exchange for non-contiguous MFNs. */
2290 success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
2293 /* 4. Map new pages in place of old pages. */
2295 xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
2297 xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
2299 spin_unlock_irqrestore(&xen_reservation_lock, flags);
2301 EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region);
2303 #ifdef CONFIG_XEN_PVHVM
2304 static void xen_hvm_exit_mmap(struct mm_struct *mm)
2306 struct xen_hvm_pagetable_dying a;
2309 a.domid = DOMID_SELF;
2310 a.gpa = __pa(mm->pgd);
2311 rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2312 WARN_ON_ONCE(rc < 0);
2315 static int is_pagetable_dying_supported(void)
2317 struct xen_hvm_pagetable_dying a;
2320 a.domid = DOMID_SELF;
2322 rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2324 printk(KERN_DEBUG "HVMOP_pagetable_dying not supported\n");
2330 void __init xen_hvm_init_mmu_ops(void)
2332 if (is_pagetable_dying_supported())
2333 pv_mmu_ops.exit_mmap = xen_hvm_exit_mmap;
2337 #define REMAP_BATCH_SIZE 16
2342 struct mmu_update *mmu_update;
2345 static int remap_area_mfn_pte_fn(pte_t *ptep, pgtable_t token,
2346 unsigned long addr, void *data)
2348 struct remap_data *rmd = data;
2349 pte_t pte = pte_mkspecial(pfn_pte(rmd->mfn++, rmd->prot));
2351 rmd->mmu_update->ptr = virt_to_machine(ptep).maddr;
2352 rmd->mmu_update->val = pte_val_ma(pte);
2358 int xen_remap_domain_mfn_range(struct vm_area_struct *vma,
2360 unsigned long mfn, int nr,
2361 pgprot_t prot, unsigned domid)
2363 struct remap_data rmd;
2364 struct mmu_update mmu_update[REMAP_BATCH_SIZE];
2366 unsigned long range;
2369 prot = __pgprot(pgprot_val(prot) | _PAGE_IOMAP);
2371 BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_RESERVED | VM_IO)) ==
2372 (VM_PFNMAP | VM_RESERVED | VM_IO)));
2378 batch = min(REMAP_BATCH_SIZE, nr);
2379 range = (unsigned long)batch << PAGE_SHIFT;
2381 rmd.mmu_update = mmu_update;
2382 err = apply_to_page_range(vma->vm_mm, addr, range,
2383 remap_area_mfn_pte_fn, &rmd);
2388 if (HYPERVISOR_mmu_update(mmu_update, batch, NULL, domid) < 0)
2402 EXPORT_SYMBOL_GPL(xen_remap_domain_mfn_range);
2404 #ifdef CONFIG_XEN_DEBUG_FS
2405 static int p2m_dump_open(struct inode *inode, struct file *filp)
2407 return single_open(filp, p2m_dump_show, NULL);
2410 static const struct file_operations p2m_dump_fops = {
2411 .open = p2m_dump_open,
2413 .llseek = seq_lseek,
2414 .release = single_release,
2416 #endif /* CONFIG_XEN_DEBUG_FS */