2 * Core of Xen paravirt_ops implementation.
4 * This file contains the xen_paravirt_ops structure itself, and the
6 * - privileged instructions
11 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
14 #include <linux/cpu.h>
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/smp.h>
18 #include <linux/preempt.h>
19 #include <linux/hardirq.h>
20 #include <linux/percpu.h>
21 #include <linux/delay.h>
22 #include <linux/start_kernel.h>
23 #include <linux/sched.h>
24 #include <linux/kprobes.h>
25 #include <linux/bootmem.h>
26 #include <linux/export.h>
28 #include <linux/page-flags.h>
29 #include <linux/highmem.h>
30 #include <linux/console.h>
31 #include <linux/pci.h>
32 #include <linux/gfp.h>
33 #include <linux/memblock.h>
34 #include <linux/edd.h>
35 #include <linux/frame.h>
38 #include <xen/events.h>
39 #include <xen/interface/xen.h>
40 #include <xen/interface/version.h>
41 #include <xen/interface/physdev.h>
42 #include <xen/interface/vcpu.h>
43 #include <xen/interface/memory.h>
44 #include <xen/interface/nmi.h>
45 #include <xen/interface/xen-mca.h>
46 #include <xen/features.h>
48 #include <xen/hvc-console.h>
51 #include <asm/paravirt.h>
54 #include <asm/xen/pci.h>
55 #include <asm/xen/hypercall.h>
56 #include <asm/xen/hypervisor.h>
57 #include <asm/xen/cpuid.h>
58 #include <asm/fixmap.h>
59 #include <asm/processor.h>
60 #include <asm/proto.h>
61 #include <asm/msr-index.h>
62 #include <asm/traps.h>
63 #include <asm/setup.h>
65 #include <asm/pgalloc.h>
66 #include <asm/pgtable.h>
67 #include <asm/tlbflush.h>
68 #include <asm/reboot.h>
69 #include <asm/stackprotector.h>
70 #include <asm/hypervisor.h>
71 #include <asm/mach_traps.h>
72 #include <asm/mwait.h>
73 #include <asm/pci_x86.h>
77 #include <linux/acpi.h>
79 #include <acpi/pdc_intel.h>
80 #include <acpi/processor.h>
81 #include <xen/interface/platform.h>
87 #include "multicalls.h"
90 void *xen_initial_gdt;
92 static int xen_cpu_up_prepare_pv(unsigned int cpu);
93 static int xen_cpu_dead_pv(unsigned int cpu);
96 struct desc_struct desc[3];
100 * Updating the 3 TLS descriptors in the GDT on every task switch is
101 * surprisingly expensive so we avoid updating them if they haven't
102 * changed. Since Xen writes different descriptors than the one
103 * passed in the update_descriptor hypercall we keep shadow copies to
106 static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
108 static void __init xen_banner(void)
110 unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
111 struct xen_extraversion extra;
112 HYPERVISOR_xen_version(XENVER_extraversion, &extra);
114 pr_info("Booting paravirtualized kernel on %s\n", pv_info.name);
115 printk(KERN_INFO "Xen version: %d.%d%s%s\n",
116 version >> 16, version & 0xffff, extra.extraversion,
117 xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
119 /* Check if running on Xen version (major, minor) or later */
121 xen_running_on_version_or_later(unsigned int major, unsigned int minor)
123 unsigned int version;
128 version = HYPERVISOR_xen_version(XENVER_version, NULL);
129 if ((((version >> 16) == major) && ((version & 0xffff) >= minor)) ||
130 ((version >> 16) > major))
135 static __read_mostly unsigned int cpuid_leaf5_ecx_val;
136 static __read_mostly unsigned int cpuid_leaf5_edx_val;
138 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
139 unsigned int *cx, unsigned int *dx)
141 unsigned maskebx = ~0;
144 * Mask out inconvenient features, to try and disable as many
145 * unsupported kernel subsystems as possible.
148 case CPUID_MWAIT_LEAF:
149 /* Synthesize the values.. */
152 *cx = cpuid_leaf5_ecx_val;
153 *dx = cpuid_leaf5_edx_val;
157 /* Suppress extended topology stuff */
162 asm(XEN_EMULATE_PREFIX "cpuid"
167 : "0" (*ax), "2" (*cx));
171 STACK_FRAME_NON_STANDARD(xen_cpuid); /* XEN_EMULATE_PREFIX */
173 static bool __init xen_check_mwait(void)
176 struct xen_platform_op op = {
177 .cmd = XENPF_set_processor_pminfo,
178 .u.set_pminfo.id = -1,
179 .u.set_pminfo.type = XEN_PM_PDC,
182 unsigned int ax, bx, cx, dx;
183 unsigned int mwait_mask;
185 /* We need to determine whether it is OK to expose the MWAIT
186 * capability to the kernel to harvest deeper than C3 states from ACPI
187 * _CST using the processor_harvest_xen.c module. For this to work, we
188 * need to gather the MWAIT_LEAF values (which the cstate.c code
189 * checks against). The hypervisor won't expose the MWAIT flag because
190 * it would break backwards compatibility; so we will find out directly
191 * from the hardware and hypercall.
193 if (!xen_initial_domain())
197 * When running under platform earlier than Xen4.2, do not expose
198 * mwait, to avoid the risk of loading native acpi pad driver
200 if (!xen_running_on_version_or_later(4, 2))
206 native_cpuid(&ax, &bx, &cx, &dx);
208 mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
209 (1 << (X86_FEATURE_MWAIT % 32));
211 if ((cx & mwait_mask) != mwait_mask)
214 /* We need to emulate the MWAIT_LEAF and for that we need both
215 * ecx and edx. The hypercall provides only partial information.
218 ax = CPUID_MWAIT_LEAF;
223 native_cpuid(&ax, &bx, &cx, &dx);
225 /* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
226 * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
228 buf[0] = ACPI_PDC_REVISION_ID;
230 buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
232 set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
234 if ((HYPERVISOR_platform_op(&op) == 0) &&
235 (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
236 cpuid_leaf5_ecx_val = cx;
237 cpuid_leaf5_edx_val = dx;
245 static bool __init xen_check_xsave(void)
247 unsigned int cx, xsave_mask;
251 xsave_mask = (1 << (X86_FEATURE_XSAVE % 32)) |
252 (1 << (X86_FEATURE_OSXSAVE % 32));
254 /* Xen will set CR4.OSXSAVE if supported and not disabled by force */
255 return (cx & xsave_mask) == xsave_mask;
258 static void __init xen_init_capabilities(void)
260 setup_force_cpu_cap(X86_FEATURE_XENPV);
261 setup_clear_cpu_cap(X86_FEATURE_DCA);
262 setup_clear_cpu_cap(X86_FEATURE_APERFMPERF);
263 setup_clear_cpu_cap(X86_FEATURE_MTRR);
264 setup_clear_cpu_cap(X86_FEATURE_ACC);
265 setup_clear_cpu_cap(X86_FEATURE_X2APIC);
266 setup_clear_cpu_cap(X86_FEATURE_SME);
269 * Xen PV would need some work to support PCID: CR3 handling as well
270 * as xen_flush_tlb_others() would need updating.
272 setup_clear_cpu_cap(X86_FEATURE_PCID);
274 if (!xen_initial_domain())
275 setup_clear_cpu_cap(X86_FEATURE_ACPI);
277 if (xen_check_mwait())
278 setup_force_cpu_cap(X86_FEATURE_MWAIT);
280 setup_clear_cpu_cap(X86_FEATURE_MWAIT);
282 if (!xen_check_xsave()) {
283 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
284 setup_clear_cpu_cap(X86_FEATURE_OSXSAVE);
288 static void xen_set_debugreg(int reg, unsigned long val)
290 HYPERVISOR_set_debugreg(reg, val);
293 static unsigned long xen_get_debugreg(int reg)
295 return HYPERVISOR_get_debugreg(reg);
298 static void xen_end_context_switch(struct task_struct *next)
301 paravirt_end_context_switch(next);
304 static unsigned long xen_store_tr(void)
310 * Set the page permissions for a particular virtual address. If the
311 * address is a vmalloc mapping (or other non-linear mapping), then
312 * find the linear mapping of the page and also set its protections to
315 static void set_aliased_prot(void *v, pgprot_t prot)
324 ptep = lookup_address((unsigned long)v, &level);
325 BUG_ON(ptep == NULL);
327 pfn = pte_pfn(*ptep);
328 page = pfn_to_page(pfn);
330 pte = pfn_pte(pfn, prot);
333 * Careful: update_va_mapping() will fail if the virtual address
334 * we're poking isn't populated in the page tables. We don't
335 * need to worry about the direct map (that's always in the page
336 * tables), but we need to be careful about vmap space. In
337 * particular, the top level page table can lazily propagate
338 * entries between processes, so if we've switched mms since we
339 * vmapped the target in the first place, we might not have the
340 * top-level page table entry populated.
342 * We disable preemption because we want the same mm active when
343 * we probe the target and when we issue the hypercall. We'll
344 * have the same nominal mm, but if we're a kernel thread, lazy
345 * mm dropping could change our pgd.
347 * Out of an abundance of caution, this uses __get_user() to fault
348 * in the target address just in case there's some obscure case
349 * in which the target address isn't readable.
354 probe_kernel_read(&dummy, v, 1);
356 if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
359 if (!PageHighMem(page)) {
360 void *av = __va(PFN_PHYS(pfn));
363 if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
371 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
373 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
377 * We need to mark the all aliases of the LDT pages RO. We
378 * don't need to call vm_flush_aliases(), though, since that's
379 * only responsible for flushing aliases out the TLBs, not the
380 * page tables, and Xen will flush the TLB for us if needed.
382 * To avoid confusing future readers: none of this is necessary
383 * to load the LDT. The hypervisor only checks this when the
384 * LDT is faulted in due to subsequent descriptor access.
387 for (i = 0; i < entries; i += entries_per_page)
388 set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
391 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
393 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
396 for (i = 0; i < entries; i += entries_per_page)
397 set_aliased_prot(ldt + i, PAGE_KERNEL);
400 static void xen_set_ldt(const void *addr, unsigned entries)
402 struct mmuext_op *op;
403 struct multicall_space mcs = xen_mc_entry(sizeof(*op));
405 trace_xen_cpu_set_ldt(addr, entries);
408 op->cmd = MMUEXT_SET_LDT;
409 op->arg1.linear_addr = (unsigned long)addr;
410 op->arg2.nr_ents = entries;
412 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
414 xen_mc_issue(PARAVIRT_LAZY_CPU);
417 static void xen_load_gdt(const struct desc_ptr *dtr)
419 unsigned long va = dtr->address;
420 unsigned int size = dtr->size + 1;
421 unsigned pages = DIV_ROUND_UP(size, PAGE_SIZE);
422 unsigned long frames[pages];
426 * A GDT can be up to 64k in size, which corresponds to 8192
427 * 8-byte entries, or 16 4k pages..
430 BUG_ON(size > 65536);
431 BUG_ON(va & ~PAGE_MASK);
433 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
436 unsigned long pfn, mfn;
440 * The GDT is per-cpu and is in the percpu data area.
441 * That can be virtually mapped, so we need to do a
442 * page-walk to get the underlying MFN for the
443 * hypercall. The page can also be in the kernel's
444 * linear range, so we need to RO that mapping too.
446 ptep = lookup_address(va, &level);
447 BUG_ON(ptep == NULL);
449 pfn = pte_pfn(*ptep);
450 mfn = pfn_to_mfn(pfn);
451 virt = __va(PFN_PHYS(pfn));
455 make_lowmem_page_readonly((void *)va);
456 make_lowmem_page_readonly(virt);
459 if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
464 * load_gdt for early boot, when the gdt is only mapped once
466 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
468 unsigned long va = dtr->address;
469 unsigned int size = dtr->size + 1;
470 unsigned pages = DIV_ROUND_UP(size, PAGE_SIZE);
471 unsigned long frames[pages];
475 * A GDT can be up to 64k in size, which corresponds to 8192
476 * 8-byte entries, or 16 4k pages..
479 BUG_ON(size > 65536);
480 BUG_ON(va & ~PAGE_MASK);
482 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
484 unsigned long pfn, mfn;
486 pfn = virt_to_pfn(va);
487 mfn = pfn_to_mfn(pfn);
489 pte = pfn_pte(pfn, PAGE_KERNEL_RO);
491 if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
497 if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
501 static inline bool desc_equal(const struct desc_struct *d1,
502 const struct desc_struct *d2)
504 return !memcmp(d1, d2, sizeof(*d1));
507 static void load_TLS_descriptor(struct thread_struct *t,
508 unsigned int cpu, unsigned int i)
510 struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
511 struct desc_struct *gdt;
513 struct multicall_space mc;
515 if (desc_equal(shadow, &t->tls_array[i]))
518 *shadow = t->tls_array[i];
520 gdt = get_cpu_gdt_rw(cpu);
521 maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
522 mc = __xen_mc_entry(0);
524 MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
527 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
530 * XXX sleazy hack: If we're being called in a lazy-cpu zone
531 * and lazy gs handling is enabled, it means we're in a
532 * context switch, and %gs has just been saved. This means we
533 * can zero it out to prevent faults on exit from the
534 * hypervisor if the next process has no %gs. Either way, it
535 * has been saved, and the new value will get loaded properly.
536 * This will go away as soon as Xen has been modified to not
537 * save/restore %gs for normal hypercalls.
539 * On x86_64, this hack is not used for %gs, because gs points
540 * to KERNEL_GS_BASE (and uses it for PDA references), so we
541 * must not zero %gs on x86_64
543 * For x86_64, we need to zero %fs, otherwise we may get an
544 * exception between the new %fs descriptor being loaded and
545 * %fs being effectively cleared at __switch_to().
547 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
557 load_TLS_descriptor(t, cpu, 0);
558 load_TLS_descriptor(t, cpu, 1);
559 load_TLS_descriptor(t, cpu, 2);
561 xen_mc_issue(PARAVIRT_LAZY_CPU);
565 static void xen_load_gs_index(unsigned int idx)
567 if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
572 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
575 xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
576 u64 entry = *(u64 *)ptr;
578 trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
583 if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
590 struct trap_array_entry {
596 static struct trap_array_entry trap_array[] = {
597 { debug, xen_xendebug, true },
598 { int3, xen_xenint3, true },
599 { double_fault, xen_double_fault, true },
600 #ifdef CONFIG_X86_MCE
601 { machine_check, xen_machine_check, true },
603 { nmi, xen_nmi, true },
604 { overflow, xen_overflow, false },
605 #ifdef CONFIG_IA32_EMULATION
606 { entry_INT80_compat, xen_entry_INT80_compat, false },
608 { page_fault, xen_page_fault, false },
609 { divide_error, xen_divide_error, false },
610 { bounds, xen_bounds, false },
611 { invalid_op, xen_invalid_op, false },
612 { device_not_available, xen_device_not_available, false },
613 { coprocessor_segment_overrun, xen_coprocessor_segment_overrun, false },
614 { invalid_TSS, xen_invalid_TSS, false },
615 { segment_not_present, xen_segment_not_present, false },
616 { stack_segment, xen_stack_segment, false },
617 { general_protection, xen_general_protection, false },
618 { spurious_interrupt_bug, xen_spurious_interrupt_bug, false },
619 { coprocessor_error, xen_coprocessor_error, false },
620 { alignment_check, xen_alignment_check, false },
621 { simd_coprocessor_error, xen_simd_coprocessor_error, false },
624 static bool get_trap_addr(void **addr, unsigned int ist)
627 bool ist_okay = false;
630 * Replace trap handler addresses by Xen specific ones.
631 * Check for known traps using IST and whitelist them.
632 * The debugger ones are the only ones we care about.
633 * Xen will handle faults like double_fault, * so we should never see
634 * them. Warn if there's an unexpected IST-using fault handler.
636 for (nr = 0; nr < ARRAY_SIZE(trap_array); nr++) {
637 struct trap_array_entry *entry = trap_array + nr;
639 if (*addr == entry->orig) {
641 ist_okay = entry->ist_okay;
646 if (WARN_ON(ist != 0 && !ist_okay))
653 static int cvt_gate_to_trap(int vector, const gate_desc *val,
654 struct trap_info *info)
658 if (val->bits.type != GATE_TRAP && val->bits.type != GATE_INTERRUPT)
661 info->vector = vector;
663 addr = gate_offset(val);
665 if (!get_trap_addr((void **)&addr, val->bits.ist))
667 #endif /* CONFIG_X86_64 */
668 info->address = addr;
670 info->cs = gate_segment(val);
671 info->flags = val->bits.dpl;
672 /* interrupt gates clear IF */
673 if (val->bits.type == GATE_INTERRUPT)
674 info->flags |= 1 << 2;
679 /* Locations of each CPU's IDT */
680 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
682 /* Set an IDT entry. If the entry is part of the current IDT, then
684 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
686 unsigned long p = (unsigned long)&dt[entrynum];
687 unsigned long start, end;
689 trace_xen_cpu_write_idt_entry(dt, entrynum, g);
693 start = __this_cpu_read(idt_desc.address);
694 end = start + __this_cpu_read(idt_desc.size) + 1;
698 native_write_idt_entry(dt, entrynum, g);
700 if (p >= start && (p + 8) <= end) {
701 struct trap_info info[2];
705 if (cvt_gate_to_trap(entrynum, g, &info[0]))
706 if (HYPERVISOR_set_trap_table(info))
713 static void xen_convert_trap_info(const struct desc_ptr *desc,
714 struct trap_info *traps)
716 unsigned in, out, count;
718 count = (desc->size+1) / sizeof(gate_desc);
721 for (in = out = 0; in < count; in++) {
722 gate_desc *entry = (gate_desc *)(desc->address) + in;
724 if (cvt_gate_to_trap(in, entry, &traps[out]))
727 traps[out].address = 0;
730 void xen_copy_trap_info(struct trap_info *traps)
732 const struct desc_ptr *desc = this_cpu_ptr(&idt_desc);
734 xen_convert_trap_info(desc, traps);
737 /* Load a new IDT into Xen. In principle this can be per-CPU, so we
738 hold a spinlock to protect the static traps[] array (static because
739 it avoids allocation, and saves stack space). */
740 static void xen_load_idt(const struct desc_ptr *desc)
742 static DEFINE_SPINLOCK(lock);
743 static struct trap_info traps[257];
745 trace_xen_cpu_load_idt(desc);
749 memcpy(this_cpu_ptr(&idt_desc), desc, sizeof(idt_desc));
751 xen_convert_trap_info(desc, traps);
754 if (HYPERVISOR_set_trap_table(traps))
760 /* Write a GDT descriptor entry. Ignore LDT descriptors, since
761 they're handled differently. */
762 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
763 const void *desc, int type)
765 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
776 xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
779 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
789 * Version of write_gdt_entry for use at early boot-time needed to
790 * update an entry as simply as possible.
792 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
793 const void *desc, int type)
795 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
804 xmaddr_t maddr = virt_to_machine(&dt[entry]);
806 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
807 dt[entry] = *(struct desc_struct *)desc;
813 static void xen_load_sp0(struct tss_struct *tss,
814 struct thread_struct *thread)
816 struct multicall_space mcs;
818 mcs = xen_mc_entry(0);
819 MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
820 xen_mc_issue(PARAVIRT_LAZY_CPU);
821 tss->x86_tss.sp0 = thread->sp0;
824 void xen_set_iopl_mask(unsigned mask)
826 struct physdev_set_iopl set_iopl;
828 /* Force the change at ring 0. */
829 set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
830 HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
833 static void xen_io_delay(void)
837 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
839 static unsigned long xen_read_cr0(void)
841 unsigned long cr0 = this_cpu_read(xen_cr0_value);
843 if (unlikely(cr0 == 0)) {
844 cr0 = native_read_cr0();
845 this_cpu_write(xen_cr0_value, cr0);
851 static void xen_write_cr0(unsigned long cr0)
853 struct multicall_space mcs;
855 this_cpu_write(xen_cr0_value, cr0);
857 /* Only pay attention to cr0.TS; everything else is
859 mcs = xen_mc_entry(0);
861 MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
863 xen_mc_issue(PARAVIRT_LAZY_CPU);
866 static void xen_write_cr4(unsigned long cr4)
868 cr4 &= ~(X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PCE);
870 native_write_cr4(cr4);
873 static inline unsigned long xen_read_cr8(void)
877 static inline void xen_write_cr8(unsigned long val)
883 static u64 xen_read_msr_safe(unsigned int msr, int *err)
887 if (pmu_msr_read(msr, &val, err))
890 val = native_read_msr_safe(msr, err);
892 case MSR_IA32_APICBASE:
893 #ifdef CONFIG_X86_X2APIC
894 if (!(cpuid_ecx(1) & (1 << (X86_FEATURE_X2APIC & 31))))
896 val &= ~X2APIC_ENABLE;
902 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
913 case MSR_FS_BASE: which = SEGBASE_FS; goto set;
914 case MSR_KERNEL_GS_BASE: which = SEGBASE_GS_USER; goto set;
915 case MSR_GS_BASE: which = SEGBASE_GS_KERNEL; goto set;
918 base = ((u64)high << 32) | low;
919 if (HYPERVISOR_set_segment_base(which, base) != 0)
927 case MSR_SYSCALL_MASK:
928 case MSR_IA32_SYSENTER_CS:
929 case MSR_IA32_SYSENTER_ESP:
930 case MSR_IA32_SYSENTER_EIP:
931 /* Fast syscall setup is all done in hypercalls, so
932 these are all ignored. Stub them out here to stop
933 Xen console noise. */
937 if (!pmu_msr_write(msr, low, high, &ret))
938 ret = native_write_msr_safe(msr, low, high);
944 static u64 xen_read_msr(unsigned int msr)
947 * This will silently swallow a #GP from RDMSR. It may be worth
952 return xen_read_msr_safe(msr, &err);
955 static void xen_write_msr(unsigned int msr, unsigned low, unsigned high)
958 * This will silently swallow a #GP from WRMSR. It may be worth
961 xen_write_msr_safe(msr, low, high);
964 void xen_setup_shared_info(void)
966 set_fixmap(FIX_PARAVIRT_BOOTMAP, xen_start_info->shared_info);
968 HYPERVISOR_shared_info =
969 (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
971 xen_setup_mfn_list_list();
973 if (system_state == SYSTEM_BOOTING) {
976 * In UP this is as good a place as any to set up shared info.
977 * Limit this to boot only, at restore vcpu setup is done via
978 * xen_vcpu_restore().
980 xen_setup_vcpu_info_placement();
983 * Now that shared info is set up we can start using routines
984 * that point to pvclock area.
990 /* This is called once we have the cpu_possible_mask */
991 void __ref xen_setup_vcpu_info_placement(void)
995 for_each_possible_cpu(cpu) {
996 /* Set up direct vCPU id mapping for PV guests. */
997 per_cpu(xen_vcpu_id, cpu) = cpu;
1000 * xen_vcpu_setup(cpu) can fail -- in which case it
1001 * falls back to the shared_info version for cpus
1002 * where xen_vcpu_nr(cpu) < MAX_VIRT_CPUS.
1004 * xen_cpu_up_prepare_pv() handles the rest by failing
1007 (void) xen_vcpu_setup(cpu);
1011 * xen_vcpu_setup managed to place the vcpu_info within the
1012 * percpu area for all cpus, so make use of it.
1014 if (xen_have_vcpu_info_placement) {
1015 pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1016 pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
1017 pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1018 pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1019 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
1023 static const struct pv_info xen_info __initconst = {
1024 .shared_kernel_pmd = 0,
1026 #ifdef CONFIG_X86_64
1027 .extra_user_64bit_cs = FLAT_USER_CS64,
1032 static const struct pv_cpu_ops xen_cpu_ops __initconst = {
1035 .set_debugreg = xen_set_debugreg,
1036 .get_debugreg = xen_get_debugreg,
1038 .read_cr0 = xen_read_cr0,
1039 .write_cr0 = xen_write_cr0,
1041 .write_cr4 = xen_write_cr4,
1043 #ifdef CONFIG_X86_64
1044 .read_cr8 = xen_read_cr8,
1045 .write_cr8 = xen_write_cr8,
1048 .wbinvd = native_wbinvd,
1050 .read_msr = xen_read_msr,
1051 .write_msr = xen_write_msr,
1053 .read_msr_safe = xen_read_msr_safe,
1054 .write_msr_safe = xen_write_msr_safe,
1056 .read_pmc = xen_read_pmc,
1059 #ifdef CONFIG_X86_64
1060 .usergs_sysret64 = xen_sysret64,
1063 .load_tr_desc = paravirt_nop,
1064 .set_ldt = xen_set_ldt,
1065 .load_gdt = xen_load_gdt,
1066 .load_idt = xen_load_idt,
1067 .load_tls = xen_load_tls,
1068 #ifdef CONFIG_X86_64
1069 .load_gs_index = xen_load_gs_index,
1072 .alloc_ldt = xen_alloc_ldt,
1073 .free_ldt = xen_free_ldt,
1075 .store_tr = xen_store_tr,
1077 .write_ldt_entry = xen_write_ldt_entry,
1078 .write_gdt_entry = xen_write_gdt_entry,
1079 .write_idt_entry = xen_write_idt_entry,
1080 .load_sp0 = xen_load_sp0,
1082 .set_iopl_mask = xen_set_iopl_mask,
1083 .io_delay = xen_io_delay,
1085 /* Xen takes care of %gs when switching to usermode for us */
1086 .swapgs = paravirt_nop,
1088 .start_context_switch = paravirt_start_context_switch,
1089 .end_context_switch = xen_end_context_switch,
1092 static void xen_restart(char *msg)
1094 xen_reboot(SHUTDOWN_reboot);
1097 static void xen_machine_halt(void)
1099 xen_reboot(SHUTDOWN_poweroff);
1102 static void xen_machine_power_off(void)
1106 xen_reboot(SHUTDOWN_poweroff);
1109 static void xen_crash_shutdown(struct pt_regs *regs)
1111 xen_reboot(SHUTDOWN_crash);
1114 static const struct machine_ops xen_machine_ops __initconst = {
1115 .restart = xen_restart,
1116 .halt = xen_machine_halt,
1117 .power_off = xen_machine_power_off,
1118 .shutdown = xen_machine_halt,
1119 .crash_shutdown = xen_crash_shutdown,
1120 .emergency_restart = xen_emergency_restart,
1123 static unsigned char xen_get_nmi_reason(void)
1125 unsigned char reason = 0;
1127 /* Construct a value which looks like it came from port 0x61. */
1128 if (test_bit(_XEN_NMIREASON_io_error,
1129 &HYPERVISOR_shared_info->arch.nmi_reason))
1130 reason |= NMI_REASON_IOCHK;
1131 if (test_bit(_XEN_NMIREASON_pci_serr,
1132 &HYPERVISOR_shared_info->arch.nmi_reason))
1133 reason |= NMI_REASON_SERR;
1138 static void __init xen_boot_params_init_edd(void)
1140 #if IS_ENABLED(CONFIG_EDD)
1141 struct xen_platform_op op;
1142 struct edd_info *edd_info;
1147 edd_info = boot_params.eddbuf;
1148 mbr_signature = boot_params.edd_mbr_sig_buffer;
1150 op.cmd = XENPF_firmware_info;
1152 op.u.firmware_info.type = XEN_FW_DISK_INFO;
1153 for (nr = 0; nr < EDDMAXNR; nr++) {
1154 struct edd_info *info = edd_info + nr;
1156 op.u.firmware_info.index = nr;
1157 info->params.length = sizeof(info->params);
1158 set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params,
1160 ret = HYPERVISOR_platform_op(&op);
1164 #define C(x) info->x = op.u.firmware_info.u.disk_info.x
1167 C(interface_support);
1168 C(legacy_max_cylinder);
1170 C(legacy_sectors_per_track);
1173 boot_params.eddbuf_entries = nr;
1175 op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE;
1176 for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) {
1177 op.u.firmware_info.index = nr;
1178 ret = HYPERVISOR_platform_op(&op);
1181 mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature;
1183 boot_params.edd_mbr_sig_buf_entries = nr;
1188 * Set up the GDT and segment registers for -fstack-protector. Until
1189 * we do this, we have to be careful not to call any stack-protected
1190 * function, which is most of the kernel.
1192 static void xen_setup_gdt(int cpu)
1194 pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1195 pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1197 setup_stack_canary_segment(0);
1198 switch_to_new_gdt(0);
1200 pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1201 pv_cpu_ops.load_gdt = xen_load_gdt;
1204 static void __init xen_dom0_set_legacy_features(void)
1206 x86_platform.legacy.rtc = 1;
1209 /* First C function to be called on Xen boot */
1210 asmlinkage __visible void __init xen_start_kernel(void)
1212 struct physdev_set_iopl set_iopl;
1213 unsigned long initrd_start = 0;
1216 if (!xen_start_info)
1219 xen_domain_type = XEN_PV_DOMAIN;
1221 xen_setup_features();
1223 xen_setup_machphys_mapping();
1225 /* Install Xen paravirt ops */
1227 pv_init_ops.patch = paravirt_patch_default;
1228 pv_cpu_ops = xen_cpu_ops;
1230 x86_platform.get_nmi_reason = xen_get_nmi_reason;
1232 x86_init.resources.memory_setup = xen_memory_setup;
1233 x86_init.oem.arch_setup = xen_arch_setup;
1234 x86_init.oem.banner = xen_banner;
1237 * Set up some pagetable state before starting to set any ptes.
1242 /* Prevent unwanted bits from being set in PTEs. */
1243 __supported_pte_mask &= ~_PAGE_GLOBAL;
1246 * Prevent page tables from being allocated in highmem, even
1247 * if CONFIG_HIGHPTE is enabled.
1249 __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1251 /* Work out if we support NX */
1255 xen_build_dynamic_phys_to_machine();
1258 * Set up kernel GDT and segment registers, mainly so that
1259 * -fstack-protector code can be executed.
1264 xen_init_capabilities();
1266 #ifdef CONFIG_X86_LOCAL_APIC
1268 * set up the basic apic ops.
1273 if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1274 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1275 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1278 machine_ops = xen_machine_ops;
1281 * The only reliable way to retain the initial address of the
1282 * percpu gdt_page is to remember it here, so we can go and
1283 * mark it RW later, when the initial percpu area is freed.
1285 xen_initial_gdt = &per_cpu(gdt_page, 0);
1289 #ifdef CONFIG_ACPI_NUMA
1291 * The pages we from Xen are not related to machine pages, so
1292 * any NUMA information the kernel tries to get from ACPI will
1293 * be meaningless. Prevent it from trying.
1297 /* Let's presume PV guests always boot on vCPU with id 0. */
1298 per_cpu(xen_vcpu_id, 0) = 0;
1301 * Setup xen_vcpu early because start_kernel needs it for
1302 * local_irq_disable(), irqs_disabled().
1304 * Don't do the full vcpu_info placement stuff until we have
1305 * the cpu_possible_mask and a non-dummy shared_info.
1307 xen_vcpu_info_reset(0);
1309 WARN_ON(xen_cpuhp_setup(xen_cpu_up_prepare_pv, xen_cpu_dead_pv));
1311 local_irq_disable();
1312 early_boot_irqs_disabled = true;
1314 xen_raw_console_write("mapping kernel into physical memory\n");
1315 xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base,
1316 xen_start_info->nr_pages);
1317 xen_reserve_special_pages();
1319 /* keep using Xen gdt for now; no urgent need to change it */
1321 #ifdef CONFIG_X86_32
1322 pv_info.kernel_rpl = 1;
1323 if (xen_feature(XENFEAT_supervisor_mode_kernel))
1324 pv_info.kernel_rpl = 0;
1326 pv_info.kernel_rpl = 0;
1328 /* set the limit of our address space */
1332 * We used to do this in xen_arch_setup, but that is too late
1333 * on AMD were early_cpu_init (run before ->arch_setup()) calls
1334 * early_amd_init which pokes 0xcf8 port.
1337 rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1339 xen_raw_printk("physdev_op failed %d\n", rc);
1341 #ifdef CONFIG_X86_32
1342 /* set up basic CPUID stuff */
1343 cpu_detect(&new_cpu_data);
1344 set_cpu_cap(&new_cpu_data, X86_FEATURE_FPU);
1345 new_cpu_data.x86_capability[CPUID_1_EDX] = cpuid_edx(1);
1348 if (xen_start_info->mod_start) {
1349 if (xen_start_info->flags & SIF_MOD_START_PFN)
1350 initrd_start = PFN_PHYS(xen_start_info->mod_start);
1352 initrd_start = __pa(xen_start_info->mod_start);
1355 /* Poke various useful things into boot_params */
1356 boot_params.hdr.type_of_loader = (9 << 4) | 0;
1357 boot_params.hdr.ramdisk_image = initrd_start;
1358 boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1359 boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1360 boot_params.hdr.hardware_subarch = X86_SUBARCH_XEN;
1362 if (!xen_initial_domain()) {
1363 add_preferred_console("xenboot", 0, NULL);
1364 add_preferred_console("tty", 0, NULL);
1365 add_preferred_console("hvc", 0, NULL);
1367 x86_init.pci.arch_init = pci_xen_init;
1369 const struct dom0_vga_console_info *info =
1370 (void *)((char *)xen_start_info +
1371 xen_start_info->console.dom0.info_off);
1372 struct xen_platform_op op = {
1373 .cmd = XENPF_firmware_info,
1374 .interface_version = XENPF_INTERFACE_VERSION,
1375 .u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
1378 x86_platform.set_legacy_features =
1379 xen_dom0_set_legacy_features;
1380 xen_init_vga(info, xen_start_info->console.dom0.info_size);
1381 xen_start_info->console.domU.mfn = 0;
1382 xen_start_info->console.domU.evtchn = 0;
1384 if (HYPERVISOR_platform_op(&op) == 0)
1385 boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
1387 /* Make sure ACS will be enabled */
1390 xen_acpi_sleep_register();
1392 /* Avoid searching for BIOS MP tables */
1393 x86_init.mpparse.find_smp_config = x86_init_noop;
1394 x86_init.mpparse.get_smp_config = x86_init_uint_noop;
1396 xen_boot_params_init_edd();
1399 /* PCI BIOS service won't work from a PV guest. */
1400 pci_probe &= ~PCI_PROBE_BIOS;
1402 xen_raw_console_write("about to get started...\n");
1404 /* We need this for printk timestamps */
1405 xen_setup_runstate_info(0);
1409 /* Start the world */
1410 #ifdef CONFIG_X86_32
1411 i386_start_kernel();
1413 cr4_init_shadow(); /* 32b kernel does this in i386_start_kernel() */
1414 x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1418 static int xen_cpu_up_prepare_pv(unsigned int cpu)
1422 if (per_cpu(xen_vcpu, cpu) == NULL)
1425 xen_setup_timer(cpu);
1427 rc = xen_smp_intr_init(cpu);
1429 WARN(1, "xen_smp_intr_init() for CPU %d failed: %d\n",
1434 rc = xen_smp_intr_init_pv(cpu);
1436 WARN(1, "xen_smp_intr_init_pv() for CPU %d failed: %d\n",
1444 static int xen_cpu_dead_pv(unsigned int cpu)
1446 xen_smp_intr_free(cpu);
1447 xen_smp_intr_free_pv(cpu);
1449 xen_teardown_timer(cpu);
1454 static uint32_t __init xen_platform_pv(void)
1456 if (xen_pv_domain())
1457 return xen_cpuid_base();
1462 const struct hypervisor_x86 x86_hyper_xen_pv = {
1464 .detect = xen_platform_pv,
1465 .pin_vcpu = xen_pin_vcpu,
1467 EXPORT_SYMBOL(x86_hyper_xen_pv);