tizen: Use unique directory prefix for baselibs packages
[platform/kernel/linux-rpi.git] / arch / x86 / power / cpu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Suspend support specific for i386/x86-64.
4  *
5  * Copyright (c) 2007 Rafael J. Wysocki <rjw@sisk.pl>
6  * Copyright (c) 2002 Pavel Machek <pavel@ucw.cz>
7  * Copyright (c) 2001 Patrick Mochel <mochel@osdl.org>
8  */
9
10 #include <linux/suspend.h>
11 #include <linux/export.h>
12 #include <linux/smp.h>
13 #include <linux/perf_event.h>
14 #include <linux/tboot.h>
15 #include <linux/dmi.h>
16 #include <linux/pgtable.h>
17
18 #include <asm/proto.h>
19 #include <asm/mtrr.h>
20 #include <asm/page.h>
21 #include <asm/mce.h>
22 #include <asm/suspend.h>
23 #include <asm/fpu/api.h>
24 #include <asm/debugreg.h>
25 #include <asm/cpu.h>
26 #include <asm/cacheinfo.h>
27 #include <asm/mmu_context.h>
28 #include <asm/cpu_device_id.h>
29 #include <asm/microcode.h>
30
31 #ifdef CONFIG_X86_32
32 __visible unsigned long saved_context_ebx;
33 __visible unsigned long saved_context_esp, saved_context_ebp;
34 __visible unsigned long saved_context_esi, saved_context_edi;
35 __visible unsigned long saved_context_eflags;
36 #endif
37 struct saved_context saved_context;
38
39 static void msr_save_context(struct saved_context *ctxt)
40 {
41         struct saved_msr *msr = ctxt->saved_msrs.array;
42         struct saved_msr *end = msr + ctxt->saved_msrs.num;
43
44         while (msr < end) {
45                 if (msr->valid)
46                         rdmsrl(msr->info.msr_no, msr->info.reg.q);
47                 msr++;
48         }
49 }
50
51 static void msr_restore_context(struct saved_context *ctxt)
52 {
53         struct saved_msr *msr = ctxt->saved_msrs.array;
54         struct saved_msr *end = msr + ctxt->saved_msrs.num;
55
56         while (msr < end) {
57                 if (msr->valid)
58                         wrmsrl(msr->info.msr_no, msr->info.reg.q);
59                 msr++;
60         }
61 }
62
63 /**
64  * __save_processor_state() - Save CPU registers before creating a
65  *                             hibernation image and before restoring
66  *                             the memory state from it
67  * @ctxt: Structure to store the registers contents in.
68  *
69  * NOTE: If there is a CPU register the modification of which by the
70  * boot kernel (ie. the kernel used for loading the hibernation image)
71  * might affect the operations of the restored target kernel (ie. the one
72  * saved in the hibernation image), then its contents must be saved by this
73  * function.  In other words, if kernel A is hibernated and different
74  * kernel B is used for loading the hibernation image into memory, the
75  * kernel A's __save_processor_state() function must save all registers
76  * needed by kernel A, so that it can operate correctly after the resume
77  * regardless of what kernel B does in the meantime.
78  */
79 static void __save_processor_state(struct saved_context *ctxt)
80 {
81 #ifdef CONFIG_X86_32
82         mtrr_save_fixed_ranges(NULL);
83 #endif
84         kernel_fpu_begin();
85
86         /*
87          * descriptor tables
88          */
89         store_idt(&ctxt->idt);
90
91         /*
92          * We save it here, but restore it only in the hibernate case.
93          * For ACPI S3 resume, this is loaded via 'early_gdt_desc' in 64-bit
94          * mode in "secondary_startup_64". In 32-bit mode it is done via
95          * 'pmode_gdt' in wakeup_start.
96          */
97         ctxt->gdt_desc.size = GDT_SIZE - 1;
98         ctxt->gdt_desc.address = (unsigned long)get_cpu_gdt_rw(smp_processor_id());
99
100         store_tr(ctxt->tr);
101
102         /* XMM0..XMM15 should be handled by kernel_fpu_begin(). */
103         /*
104          * segment registers
105          */
106         savesegment(gs, ctxt->gs);
107 #ifdef CONFIG_X86_64
108         savesegment(fs, ctxt->fs);
109         savesegment(ds, ctxt->ds);
110         savesegment(es, ctxt->es);
111
112         rdmsrl(MSR_FS_BASE, ctxt->fs_base);
113         rdmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base);
114         rdmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base);
115         mtrr_save_fixed_ranges(NULL);
116
117         rdmsrl(MSR_EFER, ctxt->efer);
118 #endif
119
120         /*
121          * control registers
122          */
123         ctxt->cr0 = read_cr0();
124         ctxt->cr2 = read_cr2();
125         ctxt->cr3 = __read_cr3();
126         ctxt->cr4 = __read_cr4();
127         ctxt->misc_enable_saved = !rdmsrl_safe(MSR_IA32_MISC_ENABLE,
128                                                &ctxt->misc_enable);
129         msr_save_context(ctxt);
130 }
131
132 /* Needed by apm.c */
133 void save_processor_state(void)
134 {
135         __save_processor_state(&saved_context);
136         x86_platform.save_sched_clock_state();
137 }
138 #ifdef CONFIG_X86_32
139 EXPORT_SYMBOL(save_processor_state);
140 #endif
141
142 static void do_fpu_end(void)
143 {
144         /*
145          * Restore FPU regs if necessary.
146          */
147         kernel_fpu_end();
148 }
149
150 static void fix_processor_context(void)
151 {
152         int cpu = smp_processor_id();
153 #ifdef CONFIG_X86_64
154         struct desc_struct *desc = get_cpu_gdt_rw(cpu);
155         tss_desc tss;
156 #endif
157
158         /*
159          * We need to reload TR, which requires that we change the
160          * GDT entry to indicate "available" first.
161          *
162          * XXX: This could probably all be replaced by a call to
163          * force_reload_TR().
164          */
165         set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
166
167 #ifdef CONFIG_X86_64
168         memcpy(&tss, &desc[GDT_ENTRY_TSS], sizeof(tss_desc));
169         tss.type = 0x9; /* The available 64-bit TSS (see AMD vol 2, pg 91 */
170         write_gdt_entry(desc, GDT_ENTRY_TSS, &tss, DESC_TSS);
171
172         syscall_init();                         /* This sets MSR_*STAR and related */
173 #else
174         if (boot_cpu_has(X86_FEATURE_SEP))
175                 enable_sep_cpu();
176 #endif
177         load_TR_desc();                         /* This does ltr */
178         load_mm_ldt(current->active_mm);        /* This does lldt */
179         initialize_tlbstate_and_flush();
180
181         fpu__resume_cpu();
182
183         /* The processor is back on the direct GDT, load back the fixmap */
184         load_fixmap_gdt(cpu);
185 }
186
187 /**
188  * __restore_processor_state() - Restore the contents of CPU registers saved
189  *                               by __save_processor_state()
190  * @ctxt: Structure to load the registers contents from.
191  *
192  * The asm code that gets us here will have restored a usable GDT, although
193  * it will be pointing to the wrong alias.
194  */
195 static void notrace __restore_processor_state(struct saved_context *ctxt)
196 {
197         struct cpuinfo_x86 *c;
198
199         if (ctxt->misc_enable_saved)
200                 wrmsrl(MSR_IA32_MISC_ENABLE, ctxt->misc_enable);
201         /*
202          * control registers
203          */
204         /* cr4 was introduced in the Pentium CPU */
205 #ifdef CONFIG_X86_32
206         if (ctxt->cr4)
207                 __write_cr4(ctxt->cr4);
208 #else
209 /* CONFIG X86_64 */
210         wrmsrl(MSR_EFER, ctxt->efer);
211         __write_cr4(ctxt->cr4);
212 #endif
213         write_cr3(ctxt->cr3);
214         write_cr2(ctxt->cr2);
215         write_cr0(ctxt->cr0);
216
217         /* Restore the IDT. */
218         load_idt(&ctxt->idt);
219
220         /*
221          * Just in case the asm code got us here with the SS, DS, or ES
222          * out of sync with the GDT, update them.
223          */
224         loadsegment(ss, __KERNEL_DS);
225         loadsegment(ds, __USER_DS);
226         loadsegment(es, __USER_DS);
227
228         /*
229          * Restore percpu access.  Percpu access can happen in exception
230          * handlers or in complicated helpers like load_gs_index().
231          */
232 #ifdef CONFIG_X86_64
233         wrmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base);
234 #else
235         loadsegment(fs, __KERNEL_PERCPU);
236 #endif
237
238         /* Restore the TSS, RO GDT, LDT, and usermode-relevant MSRs. */
239         fix_processor_context();
240
241         /*
242          * Now that we have descriptor tables fully restored and working
243          * exception handling, restore the usermode segments.
244          */
245 #ifdef CONFIG_X86_64
246         loadsegment(ds, ctxt->es);
247         loadsegment(es, ctxt->es);
248         loadsegment(fs, ctxt->fs);
249         load_gs_index(ctxt->gs);
250
251         /*
252          * Restore FSBASE and GSBASE after restoring the selectors, since
253          * restoring the selectors clobbers the bases.  Keep in mind
254          * that MSR_KERNEL_GS_BASE is horribly misnamed.
255          */
256         wrmsrl(MSR_FS_BASE, ctxt->fs_base);
257         wrmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base);
258 #else
259         loadsegment(gs, ctxt->gs);
260 #endif
261
262         do_fpu_end();
263         tsc_verify_tsc_adjust(true);
264         x86_platform.restore_sched_clock_state();
265         cache_bp_restore();
266         perf_restore_debug_store();
267
268         c = &cpu_data(smp_processor_id());
269         if (cpu_has(c, X86_FEATURE_MSR_IA32_FEAT_CTL))
270                 init_ia32_feat_ctl(c);
271
272         microcode_bsp_resume();
273
274         /*
275          * This needs to happen after the microcode has been updated upon resume
276          * because some of the MSRs are "emulated" in microcode.
277          */
278         msr_restore_context(ctxt);
279 }
280
281 /* Needed by apm.c */
282 void notrace restore_processor_state(void)
283 {
284         __restore_processor_state(&saved_context);
285 }
286 #ifdef CONFIG_X86_32
287 EXPORT_SYMBOL(restore_processor_state);
288 #endif
289
290 #if defined(CONFIG_HIBERNATION) && defined(CONFIG_HOTPLUG_CPU)
291 static void __noreturn resume_play_dead(void)
292 {
293         play_dead_common();
294         tboot_shutdown(TB_SHUTDOWN_WFS);
295         hlt_play_dead();
296 }
297
298 int hibernate_resume_nonboot_cpu_disable(void)
299 {
300         void (*play_dead)(void) = smp_ops.play_dead;
301         int ret;
302
303         /*
304          * Ensure that MONITOR/MWAIT will not be used in the "play dead" loop
305          * during hibernate image restoration, because it is likely that the
306          * monitored address will be actually written to at that time and then
307          * the "dead" CPU will attempt to execute instructions again, but the
308          * address in its instruction pointer may not be possible to resolve
309          * any more at that point (the page tables used by it previously may
310          * have been overwritten by hibernate image data).
311          *
312          * First, make sure that we wake up all the potentially disabled SMT
313          * threads which have been initially brought up and then put into
314          * mwait/cpuidle sleep.
315          * Those will be put to proper (not interfering with hibernation
316          * resume) sleep afterwards, and the resumed kernel will decide itself
317          * what to do with them.
318          */
319         ret = cpuhp_smt_enable();
320         if (ret)
321                 return ret;
322         smp_ops.play_dead = resume_play_dead;
323         ret = freeze_secondary_cpus(0);
324         smp_ops.play_dead = play_dead;
325         return ret;
326 }
327 #endif
328
329 /*
330  * When bsp_check() is called in hibernate and suspend, cpu hotplug
331  * is disabled already. So it's unnecessary to handle race condition between
332  * cpumask query and cpu hotplug.
333  */
334 static int bsp_check(void)
335 {
336         if (cpumask_first(cpu_online_mask) != 0) {
337                 pr_warn("CPU0 is offline.\n");
338                 return -ENODEV;
339         }
340
341         return 0;
342 }
343
344 static int bsp_pm_callback(struct notifier_block *nb, unsigned long action,
345                            void *ptr)
346 {
347         int ret = 0;
348
349         switch (action) {
350         case PM_SUSPEND_PREPARE:
351         case PM_HIBERNATION_PREPARE:
352                 ret = bsp_check();
353                 break;
354         default:
355                 break;
356         }
357         return notifier_from_errno(ret);
358 }
359
360 static int __init bsp_pm_check_init(void)
361 {
362         /*
363          * Set this bsp_pm_callback as lower priority than
364          * cpu_hotplug_pm_callback. So cpu_hotplug_pm_callback will be called
365          * earlier to disable cpu hotplug before bsp online check.
366          */
367         pm_notifier(bsp_pm_callback, -INT_MAX);
368         return 0;
369 }
370
371 core_initcall(bsp_pm_check_init);
372
373 static int msr_build_context(const u32 *msr_id, const int num)
374 {
375         struct saved_msrs *saved_msrs = &saved_context.saved_msrs;
376         struct saved_msr *msr_array;
377         int total_num;
378         int i, j;
379
380         total_num = saved_msrs->num + num;
381
382         msr_array = kmalloc_array(total_num, sizeof(struct saved_msr), GFP_KERNEL);
383         if (!msr_array) {
384                 pr_err("x86/pm: Can not allocate memory to save/restore MSRs during suspend.\n");
385                 return -ENOMEM;
386         }
387
388         if (saved_msrs->array) {
389                 /*
390                  * Multiple callbacks can invoke this function, so copy any
391                  * MSR save requests from previous invocations.
392                  */
393                 memcpy(msr_array, saved_msrs->array,
394                        sizeof(struct saved_msr) * saved_msrs->num);
395
396                 kfree(saved_msrs->array);
397         }
398
399         for (i = saved_msrs->num, j = 0; i < total_num; i++, j++) {
400                 u64 dummy;
401
402                 msr_array[i].info.msr_no        = msr_id[j];
403                 msr_array[i].valid              = !rdmsrl_safe(msr_id[j], &dummy);
404                 msr_array[i].info.reg.q         = 0;
405         }
406         saved_msrs->num   = total_num;
407         saved_msrs->array = msr_array;
408
409         return 0;
410 }
411
412 /*
413  * The following sections are a quirk framework for problematic BIOSen:
414  * Sometimes MSRs are modified by the BIOSen after suspended to
415  * RAM, this might cause unexpected behavior after wakeup.
416  * Thus we save/restore these specified MSRs across suspend/resume
417  * in order to work around it.
418  *
419  * For any further problematic BIOSen/platforms,
420  * please add your own function similar to msr_initialize_bdw.
421  */
422 static int msr_initialize_bdw(const struct dmi_system_id *d)
423 {
424         /* Add any extra MSR ids into this array. */
425         u32 bdw_msr_id[] = { MSR_IA32_THERM_CONTROL };
426
427         pr_info("x86/pm: %s detected, MSR saving is needed during suspending.\n", d->ident);
428         return msr_build_context(bdw_msr_id, ARRAY_SIZE(bdw_msr_id));
429 }
430
431 static const struct dmi_system_id msr_save_dmi_table[] = {
432         {
433          .callback = msr_initialize_bdw,
434          .ident = "BROADWELL BDX_EP",
435          .matches = {
436                 DMI_MATCH(DMI_PRODUCT_NAME, "GRANTLEY"),
437                 DMI_MATCH(DMI_PRODUCT_VERSION, "E63448-400"),
438                 },
439         },
440         {}
441 };
442
443 static int msr_save_cpuid_features(const struct x86_cpu_id *c)
444 {
445         u32 cpuid_msr_id[] = {
446                 MSR_AMD64_CPUID_FN_1,
447         };
448
449         pr_info("x86/pm: family %#hx cpu detected, MSR saving is needed during suspending.\n",
450                 c->family);
451
452         return msr_build_context(cpuid_msr_id, ARRAY_SIZE(cpuid_msr_id));
453 }
454
455 static const struct x86_cpu_id msr_save_cpu_table[] = {
456         X86_MATCH_VENDOR_FAM(AMD, 0x15, &msr_save_cpuid_features),
457         X86_MATCH_VENDOR_FAM(AMD, 0x16, &msr_save_cpuid_features),
458         {}
459 };
460
461 typedef int (*pm_cpu_match_t)(const struct x86_cpu_id *);
462 static int pm_cpu_check(const struct x86_cpu_id *c)
463 {
464         const struct x86_cpu_id *m;
465         int ret = 0;
466
467         m = x86_match_cpu(msr_save_cpu_table);
468         if (m) {
469                 pm_cpu_match_t fn;
470
471                 fn = (pm_cpu_match_t)m->driver_data;
472                 ret = fn(m);
473         }
474
475         return ret;
476 }
477
478 static void pm_save_spec_msr(void)
479 {
480         struct msr_enumeration {
481                 u32 msr_no;
482                 u32 feature;
483         } msr_enum[] = {
484                 { MSR_IA32_SPEC_CTRL,    X86_FEATURE_MSR_SPEC_CTRL },
485                 { MSR_IA32_TSX_CTRL,     X86_FEATURE_MSR_TSX_CTRL },
486                 { MSR_TSX_FORCE_ABORT,   X86_FEATURE_TSX_FORCE_ABORT },
487                 { MSR_IA32_MCU_OPT_CTRL, X86_FEATURE_SRBDS_CTRL },
488                 { MSR_AMD64_LS_CFG,      X86_FEATURE_LS_CFG_SSBD },
489                 { MSR_AMD64_DE_CFG,      X86_FEATURE_LFENCE_RDTSC },
490         };
491         int i;
492
493         for (i = 0; i < ARRAY_SIZE(msr_enum); i++) {
494                 if (boot_cpu_has(msr_enum[i].feature))
495                         msr_build_context(&msr_enum[i].msr_no, 1);
496         }
497 }
498
499 static int pm_check_save_msr(void)
500 {
501         dmi_check_system(msr_save_dmi_table);
502         pm_cpu_check(msr_save_cpu_table);
503         pm_save_spec_msr();
504
505         return 0;
506 }
507
508 device_initcall(pm_check_save_msr);