Merge branch 'v4l_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[platform/kernel/linux-arm64.git] / arch / x86 / platform / uv / tlb_uv.c
1 /*
2  *      SGI UltraViolet TLB flush routines.
3  *
4  *      (c) 2008-2010 Cliff Wickman <cpw@sgi.com>, SGI.
5  *
6  *      This code is released under the GNU General Public License version 2 or
7  *      later.
8  */
9 #include <linux/seq_file.h>
10 #include <linux/proc_fs.h>
11 #include <linux/debugfs.h>
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/delay.h>
15
16 #include <asm/mmu_context.h>
17 #include <asm/uv/uv.h>
18 #include <asm/uv/uv_mmrs.h>
19 #include <asm/uv/uv_hub.h>
20 #include <asm/uv/uv_bau.h>
21 #include <asm/apic.h>
22 #include <asm/idle.h>
23 #include <asm/tsc.h>
24 #include <asm/irq_vectors.h>
25 #include <asm/timer.h>
26
27 /* timeouts in nanoseconds (indexed by UVH_AGING_PRESCALE_SEL urgency7 30:28) */
28 static int timeout_base_ns[] = {
29                 20,
30                 160,
31                 1280,
32                 10240,
33                 81920,
34                 655360,
35                 5242880,
36                 167772160
37 };
38 static int timeout_us;
39 static int nobau;
40 static int baudisabled;
41 static spinlock_t disable_lock;
42 static cycles_t congested_cycles;
43
44 /* tunables: */
45 static int max_bau_concurrent = MAX_BAU_CONCURRENT;
46 static int max_bau_concurrent_constant = MAX_BAU_CONCURRENT;
47 static int plugged_delay = PLUGGED_DELAY;
48 static int plugsb4reset = PLUGSB4RESET;
49 static int timeoutsb4reset = TIMEOUTSB4RESET;
50 static int ipi_reset_limit = IPI_RESET_LIMIT;
51 static int complete_threshold = COMPLETE_THRESHOLD;
52 static int congested_response_us = CONGESTED_RESPONSE_US;
53 static int congested_reps = CONGESTED_REPS;
54 static int congested_period = CONGESTED_PERIOD;
55 static struct dentry *tunables_dir;
56 static struct dentry *tunables_file;
57
58 static int __init setup_nobau(char *arg)
59 {
60         nobau = 1;
61         return 0;
62 }
63 early_param("nobau", setup_nobau);
64
65 /* base pnode in this partition */
66 static int uv_partition_base_pnode __read_mostly;
67 /* position of pnode (which is nasid>>1): */
68 static int uv_nshift __read_mostly;
69 static unsigned long uv_mmask __read_mostly;
70
71 static DEFINE_PER_CPU(struct ptc_stats, ptcstats);
72 static DEFINE_PER_CPU(struct bau_control, bau_control);
73 static DEFINE_PER_CPU(cpumask_var_t, uv_flush_tlb_mask);
74
75 /*
76  * Determine the first node on a uvhub. 'Nodes' are used for kernel
77  * memory allocation.
78  */
79 static int __init uvhub_to_first_node(int uvhub)
80 {
81         int node, b;
82
83         for_each_online_node(node) {
84                 b = uv_node_to_blade_id(node);
85                 if (uvhub == b)
86                         return node;
87         }
88         return -1;
89 }
90
91 /*
92  * Determine the apicid of the first cpu on a uvhub.
93  */
94 static int __init uvhub_to_first_apicid(int uvhub)
95 {
96         int cpu;
97
98         for_each_present_cpu(cpu)
99                 if (uvhub == uv_cpu_to_blade_id(cpu))
100                         return per_cpu(x86_cpu_to_apicid, cpu);
101         return -1;
102 }
103
104 /*
105  * Free a software acknowledge hardware resource by clearing its Pending
106  * bit. This will return a reply to the sender.
107  * If the message has timed out, a reply has already been sent by the
108  * hardware but the resource has not been released. In that case our
109  * clear of the Timeout bit (as well) will free the resource. No reply will
110  * be sent (the hardware will only do one reply per message).
111  */
112 static inline void uv_reply_to_message(struct msg_desc *mdp,
113                                        struct bau_control *bcp)
114 {
115         unsigned long dw;
116         struct bau_payload_queue_entry *msg;
117
118         msg = mdp->msg;
119         if (!msg->canceled) {
120                 dw = (msg->sw_ack_vector << UV_SW_ACK_NPENDING) |
121                                                 msg->sw_ack_vector;
122                 uv_write_local_mmr(
123                                 UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS, dw);
124         }
125         msg->replied_to = 1;
126         msg->sw_ack_vector = 0;
127 }
128
129 /*
130  * Process the receipt of a RETRY message
131  */
132 static inline void uv_bau_process_retry_msg(struct msg_desc *mdp,
133                                             struct bau_control *bcp)
134 {
135         int i;
136         int cancel_count = 0;
137         int slot2;
138         unsigned long msg_res;
139         unsigned long mmr = 0;
140         struct bau_payload_queue_entry *msg;
141         struct bau_payload_queue_entry *msg2;
142         struct ptc_stats *stat;
143
144         msg = mdp->msg;
145         stat = bcp->statp;
146         stat->d_retries++;
147         /*
148          * cancel any message from msg+1 to the retry itself
149          */
150         for (msg2 = msg+1, i = 0; i < DEST_Q_SIZE; msg2++, i++) {
151                 if (msg2 > mdp->va_queue_last)
152                         msg2 = mdp->va_queue_first;
153                 if (msg2 == msg)
154                         break;
155
156                 /* same conditions for cancellation as uv_do_reset */
157                 if ((msg2->replied_to == 0) && (msg2->canceled == 0) &&
158                     (msg2->sw_ack_vector) && ((msg2->sw_ack_vector &
159                         msg->sw_ack_vector) == 0) &&
160                     (msg2->sending_cpu == msg->sending_cpu) &&
161                     (msg2->msg_type != MSG_NOOP)) {
162                         slot2 = msg2 - mdp->va_queue_first;
163                         mmr = uv_read_local_mmr
164                                 (UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE);
165                         msg_res = msg2->sw_ack_vector;
166                         /*
167                          * This is a message retry; clear the resources held
168                          * by the previous message only if they timed out.
169                          * If it has not timed out we have an unexpected
170                          * situation to report.
171                          */
172                         if (mmr & (msg_res << UV_SW_ACK_NPENDING)) {
173                                 /*
174                                  * is the resource timed out?
175                                  * make everyone ignore the cancelled message.
176                                  */
177                                 msg2->canceled = 1;
178                                 stat->d_canceled++;
179                                 cancel_count++;
180                                 uv_write_local_mmr(
181                                     UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS,
182                                         (msg_res << UV_SW_ACK_NPENDING) |
183                                          msg_res);
184                         }
185                 }
186         }
187         if (!cancel_count)
188                 stat->d_nocanceled++;
189 }
190
191 /*
192  * Do all the things a cpu should do for a TLB shootdown message.
193  * Other cpu's may come here at the same time for this message.
194  */
195 static void uv_bau_process_message(struct msg_desc *mdp,
196                                    struct bau_control *bcp)
197 {
198         int msg_ack_count;
199         short socket_ack_count = 0;
200         struct ptc_stats *stat;
201         struct bau_payload_queue_entry *msg;
202         struct bau_control *smaster = bcp->socket_master;
203
204         /*
205          * This must be a normal message, or retry of a normal message
206          */
207         msg = mdp->msg;
208         stat = bcp->statp;
209         if (msg->address == TLB_FLUSH_ALL) {
210                 local_flush_tlb();
211                 stat->d_alltlb++;
212         } else {
213                 __flush_tlb_one(msg->address);
214                 stat->d_onetlb++;
215         }
216         stat->d_requestee++;
217
218         /*
219          * One cpu on each uvhub has the additional job on a RETRY
220          * of releasing the resource held by the message that is
221          * being retried.  That message is identified by sending
222          * cpu number.
223          */
224         if (msg->msg_type == MSG_RETRY && bcp == bcp->uvhub_master)
225                 uv_bau_process_retry_msg(mdp, bcp);
226
227         /*
228          * This is a sw_ack message, so we have to reply to it.
229          * Count each responding cpu on the socket. This avoids
230          * pinging the count's cache line back and forth between
231          * the sockets.
232          */
233         socket_ack_count = atomic_add_short_return(1, (struct atomic_short *)
234                         &smaster->socket_acknowledge_count[mdp->msg_slot]);
235         if (socket_ack_count == bcp->cpus_in_socket) {
236                 /*
237                  * Both sockets dump their completed count total into
238                  * the message's count.
239                  */
240                 smaster->socket_acknowledge_count[mdp->msg_slot] = 0;
241                 msg_ack_count = atomic_add_short_return(socket_ack_count,
242                                 (struct atomic_short *)&msg->acknowledge_count);
243
244                 if (msg_ack_count == bcp->cpus_in_uvhub) {
245                         /*
246                          * All cpus in uvhub saw it; reply
247                          */
248                         uv_reply_to_message(mdp, bcp);
249                 }
250         }
251
252         return;
253 }
254
255 /*
256  * Determine the first cpu on a uvhub.
257  */
258 static int uvhub_to_first_cpu(int uvhub)
259 {
260         int cpu;
261         for_each_present_cpu(cpu)
262                 if (uvhub == uv_cpu_to_blade_id(cpu))
263                         return cpu;
264         return -1;
265 }
266
267 /*
268  * Last resort when we get a large number of destination timeouts is
269  * to clear resources held by a given cpu.
270  * Do this with IPI so that all messages in the BAU message queue
271  * can be identified by their nonzero sw_ack_vector field.
272  *
273  * This is entered for a single cpu on the uvhub.
274  * The sender want's this uvhub to free a specific message's
275  * sw_ack resources.
276  */
277 static void
278 uv_do_reset(void *ptr)
279 {
280         int i;
281         int slot;
282         int count = 0;
283         unsigned long mmr;
284         unsigned long msg_res;
285         struct bau_control *bcp;
286         struct reset_args *rap;
287         struct bau_payload_queue_entry *msg;
288         struct ptc_stats *stat;
289
290         bcp = &per_cpu(bau_control, smp_processor_id());
291         rap = (struct reset_args *)ptr;
292         stat = bcp->statp;
293         stat->d_resets++;
294
295         /*
296          * We're looking for the given sender, and
297          * will free its sw_ack resource.
298          * If all cpu's finally responded after the timeout, its
299          * message 'replied_to' was set.
300          */
301         for (msg = bcp->va_queue_first, i = 0; i < DEST_Q_SIZE; msg++, i++) {
302                 /* uv_do_reset: same conditions for cancellation as
303                    uv_bau_process_retry_msg() */
304                 if ((msg->replied_to == 0) &&
305                     (msg->canceled == 0) &&
306                     (msg->sending_cpu == rap->sender) &&
307                     (msg->sw_ack_vector) &&
308                     (msg->msg_type != MSG_NOOP)) {
309                         /*
310                          * make everyone else ignore this message
311                          */
312                         msg->canceled = 1;
313                         slot = msg - bcp->va_queue_first;
314                         count++;
315                         /*
316                          * only reset the resource if it is still pending
317                          */
318                         mmr = uv_read_local_mmr
319                                         (UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE);
320                         msg_res = msg->sw_ack_vector;
321                         if (mmr & msg_res) {
322                                 stat->d_rcanceled++;
323                                 uv_write_local_mmr(
324                                     UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS,
325                                         (msg_res << UV_SW_ACK_NPENDING) |
326                                          msg_res);
327                         }
328                 }
329         }
330         return;
331 }
332
333 /*
334  * Use IPI to get all target uvhubs to release resources held by
335  * a given sending cpu number.
336  */
337 static void uv_reset_with_ipi(struct bau_target_uvhubmask *distribution,
338                               int sender)
339 {
340         int uvhub;
341         int cpu;
342         cpumask_t mask;
343         struct reset_args reset_args;
344
345         reset_args.sender = sender;
346
347         cpus_clear(mask);
348         /* find a single cpu for each uvhub in this distribution mask */
349         for (uvhub = 0;
350                     uvhub < sizeof(struct bau_target_uvhubmask) * BITSPERBYTE;
351                     uvhub++) {
352                 if (!bau_uvhub_isset(uvhub, distribution))
353                         continue;
354                 /* find a cpu for this uvhub */
355                 cpu = uvhub_to_first_cpu(uvhub);
356                 cpu_set(cpu, mask);
357         }
358         /* IPI all cpus; Preemption is already disabled */
359         smp_call_function_many(&mask, uv_do_reset, (void *)&reset_args, 1);
360         return;
361 }
362
363 static inline unsigned long
364 cycles_2_us(unsigned long long cyc)
365 {
366         unsigned long long ns;
367         unsigned long us;
368         ns =  (cyc * per_cpu(cyc2ns, smp_processor_id()))
369                                                 >> CYC2NS_SCALE_FACTOR;
370         us = ns / 1000;
371         return us;
372 }
373
374 /*
375  * wait for all cpus on this hub to finish their sends and go quiet
376  * leaves uvhub_quiesce set so that no new broadcasts are started by
377  * bau_flush_send_and_wait()
378  */
379 static inline void
380 quiesce_local_uvhub(struct bau_control *hmaster)
381 {
382         atomic_add_short_return(1, (struct atomic_short *)
383                  &hmaster->uvhub_quiesce);
384 }
385
386 /*
387  * mark this quiet-requestor as done
388  */
389 static inline void
390 end_uvhub_quiesce(struct bau_control *hmaster)
391 {
392         atomic_add_short_return(-1, (struct atomic_short *)
393                 &hmaster->uvhub_quiesce);
394 }
395
396 /*
397  * Wait for completion of a broadcast software ack message
398  * return COMPLETE, RETRY(PLUGGED or TIMEOUT) or GIVEUP
399  */
400 static int uv_wait_completion(struct bau_desc *bau_desc,
401         unsigned long mmr_offset, int right_shift, int this_cpu,
402         struct bau_control *bcp, struct bau_control *smaster, long try)
403 {
404         unsigned long descriptor_status;
405         cycles_t ttime;
406         struct ptc_stats *stat = bcp->statp;
407         struct bau_control *hmaster;
408
409         hmaster = bcp->uvhub_master;
410
411         /* spin on the status MMR, waiting for it to go idle */
412         while ((descriptor_status = (((unsigned long)
413                 uv_read_local_mmr(mmr_offset) >>
414                         right_shift) & UV_ACT_STATUS_MASK)) !=
415                         DESC_STATUS_IDLE) {
416                 /*
417                  * Our software ack messages may be blocked because there are
418                  * no swack resources available.  As long as none of them
419                  * has timed out hardware will NACK our message and its
420                  * state will stay IDLE.
421                  */
422                 if (descriptor_status == DESC_STATUS_SOURCE_TIMEOUT) {
423                         stat->s_stimeout++;
424                         return FLUSH_GIVEUP;
425                 } else if (descriptor_status ==
426                                         DESC_STATUS_DESTINATION_TIMEOUT) {
427                         stat->s_dtimeout++;
428                         ttime = get_cycles();
429
430                         /*
431                          * Our retries may be blocked by all destination
432                          * swack resources being consumed, and a timeout
433                          * pending.  In that case hardware returns the
434                          * ERROR that looks like a destination timeout.
435                          */
436                         if (cycles_2_us(ttime - bcp->send_message) <
437                                                         timeout_us) {
438                                 bcp->conseccompletes = 0;
439                                 return FLUSH_RETRY_PLUGGED;
440                         }
441
442                         bcp->conseccompletes = 0;
443                         return FLUSH_RETRY_TIMEOUT;
444                 } else {
445                         /*
446                          * descriptor_status is still BUSY
447                          */
448                         cpu_relax();
449                 }
450         }
451         bcp->conseccompletes++;
452         return FLUSH_COMPLETE;
453 }
454
455 static inline cycles_t
456 sec_2_cycles(unsigned long sec)
457 {
458         unsigned long ns;
459         cycles_t cyc;
460
461         ns = sec * 1000000000;
462         cyc = (ns << CYC2NS_SCALE_FACTOR)/(per_cpu(cyc2ns, smp_processor_id()));
463         return cyc;
464 }
465
466 /*
467  * conditionally add 1 to *v, unless *v is >= u
468  * return 0 if we cannot add 1 to *v because it is >= u
469  * return 1 if we can add 1 to *v because it is < u
470  * the add is atomic
471  *
472  * This is close to atomic_add_unless(), but this allows the 'u' value
473  * to be lowered below the current 'v'.  atomic_add_unless can only stop
474  * on equal.
475  */
476 static inline int atomic_inc_unless_ge(spinlock_t *lock, atomic_t *v, int u)
477 {
478         spin_lock(lock);
479         if (atomic_read(v) >= u) {
480                 spin_unlock(lock);
481                 return 0;
482         }
483         atomic_inc(v);
484         spin_unlock(lock);
485         return 1;
486 }
487
488 /*
489  * Our retries are blocked by all destination swack resources being
490  * in use, and a timeout is pending. In that case hardware immediately
491  * returns the ERROR that looks like a destination timeout.
492  */
493 static void
494 destination_plugged(struct bau_desc *bau_desc, struct bau_control *bcp,
495                         struct bau_control *hmaster, struct ptc_stats *stat)
496 {
497         udelay(bcp->plugged_delay);
498         bcp->plugged_tries++;
499         if (bcp->plugged_tries >= bcp->plugsb4reset) {
500                 bcp->plugged_tries = 0;
501                 quiesce_local_uvhub(hmaster);
502                 spin_lock(&hmaster->queue_lock);
503                 uv_reset_with_ipi(&bau_desc->distribution, bcp->cpu);
504                 spin_unlock(&hmaster->queue_lock);
505                 end_uvhub_quiesce(hmaster);
506                 bcp->ipi_attempts++;
507                 stat->s_resets_plug++;
508         }
509 }
510
511 static void
512 destination_timeout(struct bau_desc *bau_desc, struct bau_control *bcp,
513                         struct bau_control *hmaster, struct ptc_stats *stat)
514 {
515         hmaster->max_bau_concurrent = 1;
516         bcp->timeout_tries++;
517         if (bcp->timeout_tries >= bcp->timeoutsb4reset) {
518                 bcp->timeout_tries = 0;
519                 quiesce_local_uvhub(hmaster);
520                 spin_lock(&hmaster->queue_lock);
521                 uv_reset_with_ipi(&bau_desc->distribution, bcp->cpu);
522                 spin_unlock(&hmaster->queue_lock);
523                 end_uvhub_quiesce(hmaster);
524                 bcp->ipi_attempts++;
525                 stat->s_resets_timeout++;
526         }
527 }
528
529 /*
530  * Completions are taking a very long time due to a congested numalink
531  * network.
532  */
533 static void
534 disable_for_congestion(struct bau_control *bcp, struct ptc_stats *stat)
535 {
536         int tcpu;
537         struct bau_control *tbcp;
538
539         /* let only one cpu do this disabling */
540         spin_lock(&disable_lock);
541         if (!baudisabled && bcp->period_requests &&
542             ((bcp->period_time / bcp->period_requests) > congested_cycles)) {
543                 /* it becomes this cpu's job to turn on the use of the
544                    BAU again */
545                 baudisabled = 1;
546                 bcp->set_bau_off = 1;
547                 bcp->set_bau_on_time = get_cycles() +
548                         sec_2_cycles(bcp->congested_period);
549                 stat->s_bau_disabled++;
550                 for_each_present_cpu(tcpu) {
551                         tbcp = &per_cpu(bau_control, tcpu);
552                                 tbcp->baudisabled = 1;
553                 }
554         }
555         spin_unlock(&disable_lock);
556 }
557
558 /**
559  * uv_flush_send_and_wait
560  *
561  * Send a broadcast and wait for it to complete.
562  *
563  * The flush_mask contains the cpus the broadcast is to be sent to including
564  * cpus that are on the local uvhub.
565  *
566  * Returns 0 if all flushing represented in the mask was done.
567  * Returns 1 if it gives up entirely and the original cpu mask is to be
568  * returned to the kernel.
569  */
570 int uv_flush_send_and_wait(struct bau_desc *bau_desc,
571                            struct cpumask *flush_mask, struct bau_control *bcp)
572 {
573         int right_shift;
574         int completion_status = 0;
575         int seq_number = 0;
576         long try = 0;
577         int cpu = bcp->uvhub_cpu;
578         int this_cpu = bcp->cpu;
579         unsigned long mmr_offset;
580         unsigned long index;
581         cycles_t time1;
582         cycles_t time2;
583         cycles_t elapsed;
584         struct ptc_stats *stat = bcp->statp;
585         struct bau_control *smaster = bcp->socket_master;
586         struct bau_control *hmaster = bcp->uvhub_master;
587
588         if (!atomic_inc_unless_ge(&hmaster->uvhub_lock,
589                         &hmaster->active_descriptor_count,
590                         hmaster->max_bau_concurrent)) {
591                 stat->s_throttles++;
592                 do {
593                         cpu_relax();
594                 } while (!atomic_inc_unless_ge(&hmaster->uvhub_lock,
595                         &hmaster->active_descriptor_count,
596                         hmaster->max_bau_concurrent));
597         }
598         while (hmaster->uvhub_quiesce)
599                 cpu_relax();
600
601         if (cpu < UV_CPUS_PER_ACT_STATUS) {
602                 mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_0;
603                 right_shift = cpu * UV_ACT_STATUS_SIZE;
604         } else {
605                 mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_1;
606                 right_shift =
607                     ((cpu - UV_CPUS_PER_ACT_STATUS) * UV_ACT_STATUS_SIZE);
608         }
609         time1 = get_cycles();
610         do {
611                 if (try == 0) {
612                         bau_desc->header.msg_type = MSG_REGULAR;
613                         seq_number = bcp->message_number++;
614                 } else {
615                         bau_desc->header.msg_type = MSG_RETRY;
616                         stat->s_retry_messages++;
617                 }
618                 bau_desc->header.sequence = seq_number;
619                 index = (1UL << UVH_LB_BAU_SB_ACTIVATION_CONTROL_PUSH_SHFT) |
620                         bcp->uvhub_cpu;
621                 bcp->send_message = get_cycles();
622                 uv_write_local_mmr(UVH_LB_BAU_SB_ACTIVATION_CONTROL, index);
623                 try++;
624                 completion_status = uv_wait_completion(bau_desc, mmr_offset,
625                         right_shift, this_cpu, bcp, smaster, try);
626
627                 if (completion_status == FLUSH_RETRY_PLUGGED) {
628                         destination_plugged(bau_desc, bcp, hmaster, stat);
629                 } else if (completion_status == FLUSH_RETRY_TIMEOUT) {
630                         destination_timeout(bau_desc, bcp, hmaster, stat);
631                 }
632                 if (bcp->ipi_attempts >= bcp->ipi_reset_limit) {
633                         bcp->ipi_attempts = 0;
634                         completion_status = FLUSH_GIVEUP;
635                         break;
636                 }
637                 cpu_relax();
638         } while ((completion_status == FLUSH_RETRY_PLUGGED) ||
639                  (completion_status == FLUSH_RETRY_TIMEOUT));
640         time2 = get_cycles();
641         bcp->plugged_tries = 0;
642         bcp->timeout_tries = 0;
643         if ((completion_status == FLUSH_COMPLETE) &&
644             (bcp->conseccompletes > bcp->complete_threshold) &&
645             (hmaster->max_bau_concurrent <
646                                         hmaster->max_bau_concurrent_constant))
647                         hmaster->max_bau_concurrent++;
648         while (hmaster->uvhub_quiesce)
649                 cpu_relax();
650         atomic_dec(&hmaster->active_descriptor_count);
651         if (time2 > time1) {
652                 elapsed = time2 - time1;
653                 stat->s_time += elapsed;
654                 if ((completion_status == FLUSH_COMPLETE) && (try == 1)) {
655                         bcp->period_requests++;
656                         bcp->period_time += elapsed;
657                         if ((elapsed > congested_cycles) &&
658                             (bcp->period_requests > bcp->congested_reps)) {
659                                 disable_for_congestion(bcp, stat);
660                         }
661                 }
662         } else
663                 stat->s_requestor--;
664         if (completion_status == FLUSH_COMPLETE && try > 1)
665                 stat->s_retriesok++;
666         else if (completion_status == FLUSH_GIVEUP) {
667                 stat->s_giveup++;
668                 return 1;
669         }
670         return 0;
671 }
672
673 /**
674  * uv_flush_tlb_others - globally purge translation cache of a virtual
675  * address or all TLB's
676  * @cpumask: mask of all cpu's in which the address is to be removed
677  * @mm: mm_struct containing virtual address range
678  * @va: virtual address to be removed (or TLB_FLUSH_ALL for all TLB's on cpu)
679  * @cpu: the current cpu
680  *
681  * This is the entry point for initiating any UV global TLB shootdown.
682  *
683  * Purges the translation caches of all specified processors of the given
684  * virtual address, or purges all TLB's on specified processors.
685  *
686  * The caller has derived the cpumask from the mm_struct.  This function
687  * is called only if there are bits set in the mask. (e.g. flush_tlb_page())
688  *
689  * The cpumask is converted into a uvhubmask of the uvhubs containing
690  * those cpus.
691  *
692  * Note that this function should be called with preemption disabled.
693  *
694  * Returns NULL if all remote flushing was done.
695  * Returns pointer to cpumask if some remote flushing remains to be
696  * done.  The returned pointer is valid till preemption is re-enabled.
697  */
698 const struct cpumask *uv_flush_tlb_others(const struct cpumask *cpumask,
699                                           struct mm_struct *mm,
700                                           unsigned long va, unsigned int cpu)
701 {
702         int tcpu;
703         int uvhub;
704         int locals = 0;
705         int remotes = 0;
706         int hubs = 0;
707         struct bau_desc *bau_desc;
708         struct cpumask *flush_mask;
709         struct ptc_stats *stat;
710         struct bau_control *bcp;
711         struct bau_control *tbcp;
712
713         /* kernel was booted 'nobau' */
714         if (nobau)
715                 return cpumask;
716
717         bcp = &per_cpu(bau_control, cpu);
718         stat = bcp->statp;
719
720         /* bau was disabled due to slow response */
721         if (bcp->baudisabled) {
722                 /* the cpu that disabled it must re-enable it */
723                 if (bcp->set_bau_off) {
724                         if (get_cycles() >= bcp->set_bau_on_time) {
725                                 stat->s_bau_reenabled++;
726                                 baudisabled = 0;
727                                 for_each_present_cpu(tcpu) {
728                                         tbcp = &per_cpu(bau_control, tcpu);
729                                         tbcp->baudisabled = 0;
730                                         tbcp->period_requests = 0;
731                                         tbcp->period_time = 0;
732                                 }
733                         }
734                 }
735                 return cpumask;
736         }
737
738         /*
739          * Each sending cpu has a per-cpu mask which it fills from the caller's
740          * cpu mask.  All cpus are converted to uvhubs and copied to the
741          * activation descriptor.
742          */
743         flush_mask = (struct cpumask *)per_cpu(uv_flush_tlb_mask, cpu);
744         /* don't actually do a shootdown of the local cpu */
745         cpumask_andnot(flush_mask, cpumask, cpumask_of(cpu));
746         if (cpu_isset(cpu, *cpumask))
747                 stat->s_ntargself++;
748
749         bau_desc = bcp->descriptor_base;
750         bau_desc += UV_ITEMS_PER_DESCRIPTOR * bcp->uvhub_cpu;
751         bau_uvhubs_clear(&bau_desc->distribution, UV_DISTRIBUTION_SIZE);
752
753         /* cpu statistics */
754         for_each_cpu(tcpu, flush_mask) {
755                 uvhub = uv_cpu_to_blade_id(tcpu);
756                 bau_uvhub_set(uvhub, &bau_desc->distribution);
757                 if (uvhub == bcp->uvhub)
758                         locals++;
759                 else
760                         remotes++;
761         }
762         if ((locals + remotes) == 0)
763                 return NULL;
764         stat->s_requestor++;
765         stat->s_ntargcpu += remotes + locals;
766         stat->s_ntargremotes += remotes;
767         stat->s_ntarglocals += locals;
768         remotes = bau_uvhub_weight(&bau_desc->distribution);
769
770         /* uvhub statistics */
771         hubs = bau_uvhub_weight(&bau_desc->distribution);
772         if (locals) {
773                 stat->s_ntarglocaluvhub++;
774                 stat->s_ntargremoteuvhub += (hubs - 1);
775         } else
776                 stat->s_ntargremoteuvhub += hubs;
777         stat->s_ntarguvhub += hubs;
778         if (hubs >= 16)
779                 stat->s_ntarguvhub16++;
780         else if (hubs >= 8)
781                 stat->s_ntarguvhub8++;
782         else if (hubs >= 4)
783                 stat->s_ntarguvhub4++;
784         else if (hubs >= 2)
785                 stat->s_ntarguvhub2++;
786         else
787                 stat->s_ntarguvhub1++;
788
789         bau_desc->payload.address = va;
790         bau_desc->payload.sending_cpu = cpu;
791
792         /*
793          * uv_flush_send_and_wait returns 0 if all cpu's were messaged,
794          * or 1 if it gave up and the original cpumask should be returned.
795          */
796         if (!uv_flush_send_and_wait(bau_desc, flush_mask, bcp))
797                 return NULL;
798         else
799                 return cpumask;
800 }
801
802 /*
803  * The BAU message interrupt comes here. (registered by set_intr_gate)
804  * See entry_64.S
805  *
806  * We received a broadcast assist message.
807  *
808  * Interrupts are disabled; this interrupt could represent
809  * the receipt of several messages.
810  *
811  * All cores/threads on this hub get this interrupt.
812  * The last one to see it does the software ack.
813  * (the resource will not be freed until noninterruptable cpus see this
814  *  interrupt; hardware may timeout the s/w ack and reply ERROR)
815  */
816 void uv_bau_message_interrupt(struct pt_regs *regs)
817 {
818         int count = 0;
819         cycles_t time_start;
820         struct bau_payload_queue_entry *msg;
821         struct bau_control *bcp;
822         struct ptc_stats *stat;
823         struct msg_desc msgdesc;
824
825         time_start = get_cycles();
826         bcp = &per_cpu(bau_control, smp_processor_id());
827         stat = bcp->statp;
828         msgdesc.va_queue_first = bcp->va_queue_first;
829         msgdesc.va_queue_last = bcp->va_queue_last;
830         msg = bcp->bau_msg_head;
831         while (msg->sw_ack_vector) {
832                 count++;
833                 msgdesc.msg_slot = msg - msgdesc.va_queue_first;
834                 msgdesc.sw_ack_slot = ffs(msg->sw_ack_vector) - 1;
835                 msgdesc.msg = msg;
836                 uv_bau_process_message(&msgdesc, bcp);
837                 msg++;
838                 if (msg > msgdesc.va_queue_last)
839                         msg = msgdesc.va_queue_first;
840                 bcp->bau_msg_head = msg;
841         }
842         stat->d_time += (get_cycles() - time_start);
843         if (!count)
844                 stat->d_nomsg++;
845         else if (count > 1)
846                 stat->d_multmsg++;
847         ack_APIC_irq();
848 }
849
850 /*
851  * uv_enable_timeouts
852  *
853  * Each target uvhub (i.e. a uvhub that has no cpu's) needs to have
854  * shootdown message timeouts enabled.  The timeout does not cause
855  * an interrupt, but causes an error message to be returned to
856  * the sender.
857  */
858 static void uv_enable_timeouts(void)
859 {
860         int uvhub;
861         int nuvhubs;
862         int pnode;
863         unsigned long mmr_image;
864
865         nuvhubs = uv_num_possible_blades();
866
867         for (uvhub = 0; uvhub < nuvhubs; uvhub++) {
868                 if (!uv_blade_nr_possible_cpus(uvhub))
869                         continue;
870
871                 pnode = uv_blade_to_pnode(uvhub);
872                 mmr_image =
873                     uv_read_global_mmr64(pnode, UVH_LB_BAU_MISC_CONTROL);
874                 /*
875                  * Set the timeout period and then lock it in, in three
876                  * steps; captures and locks in the period.
877                  *
878                  * To program the period, the SOFT_ACK_MODE must be off.
879                  */
880                 mmr_image &= ~((unsigned long)1 <<
881                     UVH_LB_BAU_MISC_CONTROL_ENABLE_INTD_SOFT_ACK_MODE_SHFT);
882                 uv_write_global_mmr64
883                     (pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image);
884                 /*
885                  * Set the 4-bit period.
886                  */
887                 mmr_image &= ~((unsigned long)0xf <<
888                      UVH_LB_BAU_MISC_CONTROL_INTD_SOFT_ACK_TIMEOUT_PERIOD_SHFT);
889                 mmr_image |= (UV_INTD_SOFT_ACK_TIMEOUT_PERIOD <<
890                      UVH_LB_BAU_MISC_CONTROL_INTD_SOFT_ACK_TIMEOUT_PERIOD_SHFT);
891                 uv_write_global_mmr64
892                     (pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image);
893                 /*
894                  * Subsequent reversals of the timebase bit (3) cause an
895                  * immediate timeout of one or all INTD resources as
896                  * indicated in bits 2:0 (7 causes all of them to timeout).
897                  */
898                 mmr_image |= ((unsigned long)1 <<
899                     UVH_LB_BAU_MISC_CONTROL_ENABLE_INTD_SOFT_ACK_MODE_SHFT);
900                 uv_write_global_mmr64
901                     (pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image);
902         }
903 }
904
905 static void *uv_ptc_seq_start(struct seq_file *file, loff_t *offset)
906 {
907         if (*offset < num_possible_cpus())
908                 return offset;
909         return NULL;
910 }
911
912 static void *uv_ptc_seq_next(struct seq_file *file, void *data, loff_t *offset)
913 {
914         (*offset)++;
915         if (*offset < num_possible_cpus())
916                 return offset;
917         return NULL;
918 }
919
920 static void uv_ptc_seq_stop(struct seq_file *file, void *data)
921 {
922 }
923
924 static inline unsigned long long
925 microsec_2_cycles(unsigned long microsec)
926 {
927         unsigned long ns;
928         unsigned long long cyc;
929
930         ns = microsec * 1000;
931         cyc = (ns << CYC2NS_SCALE_FACTOR)/(per_cpu(cyc2ns, smp_processor_id()));
932         return cyc;
933 }
934
935 /*
936  * Display the statistics thru /proc.
937  * 'data' points to the cpu number
938  */
939 static int uv_ptc_seq_show(struct seq_file *file, void *data)
940 {
941         struct ptc_stats *stat;
942         int cpu;
943
944         cpu = *(loff_t *)data;
945
946         if (!cpu) {
947                 seq_printf(file,
948                         "# cpu sent stime self locals remotes ncpus localhub ");
949                 seq_printf(file,
950                         "remotehub numuvhubs numuvhubs16 numuvhubs8 ");
951                 seq_printf(file,
952                         "numuvhubs4 numuvhubs2 numuvhubs1 dto ");
953                 seq_printf(file,
954                         "retries rok resetp resett giveup sto bz throt ");
955                 seq_printf(file,
956                         "sw_ack recv rtime all ");
957                 seq_printf(file,
958                         "one mult none retry canc nocan reset rcan ");
959                 seq_printf(file,
960                         "disable enable\n");
961         }
962         if (cpu < num_possible_cpus() && cpu_online(cpu)) {
963                 stat = &per_cpu(ptcstats, cpu);
964                 /* source side statistics */
965                 seq_printf(file,
966                         "cpu %d %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld ",
967                            cpu, stat->s_requestor, cycles_2_us(stat->s_time),
968                            stat->s_ntargself, stat->s_ntarglocals,
969                            stat->s_ntargremotes, stat->s_ntargcpu,
970                            stat->s_ntarglocaluvhub, stat->s_ntargremoteuvhub,
971                            stat->s_ntarguvhub, stat->s_ntarguvhub16);
972                 seq_printf(file, "%ld %ld %ld %ld %ld ",
973                            stat->s_ntarguvhub8, stat->s_ntarguvhub4,
974                            stat->s_ntarguvhub2, stat->s_ntarguvhub1,
975                            stat->s_dtimeout);
976                 seq_printf(file, "%ld %ld %ld %ld %ld %ld %ld %ld ",
977                            stat->s_retry_messages, stat->s_retriesok,
978                            stat->s_resets_plug, stat->s_resets_timeout,
979                            stat->s_giveup, stat->s_stimeout,
980                            stat->s_busy, stat->s_throttles);
981
982                 /* destination side statistics */
983                 seq_printf(file,
984                            "%lx %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld ",
985                            uv_read_global_mmr64(uv_cpu_to_pnode(cpu),
986                                         UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE),
987                            stat->d_requestee, cycles_2_us(stat->d_time),
988                            stat->d_alltlb, stat->d_onetlb, stat->d_multmsg,
989                            stat->d_nomsg, stat->d_retries, stat->d_canceled,
990                            stat->d_nocanceled, stat->d_resets,
991                            stat->d_rcanceled);
992                 seq_printf(file, "%ld %ld\n",
993                         stat->s_bau_disabled, stat->s_bau_reenabled);
994         }
995
996         return 0;
997 }
998
999 /*
1000  * Display the tunables thru debugfs
1001  */
1002 static ssize_t tunables_read(struct file *file, char __user *userbuf,
1003                                                 size_t count, loff_t *ppos)
1004 {
1005         char *buf;
1006         int ret;
1007
1008         buf = kasprintf(GFP_KERNEL, "%s %s %s\n%d %d %d %d %d %d %d %d %d\n",
1009                 "max_bau_concurrent plugged_delay plugsb4reset",
1010                 "timeoutsb4reset ipi_reset_limit complete_threshold",
1011                 "congested_response_us congested_reps congested_period",
1012                 max_bau_concurrent, plugged_delay, plugsb4reset,
1013                 timeoutsb4reset, ipi_reset_limit, complete_threshold,
1014                 congested_response_us, congested_reps, congested_period);
1015
1016         if (!buf)
1017                 return -ENOMEM;
1018
1019         ret = simple_read_from_buffer(userbuf, count, ppos, buf, strlen(buf));
1020         kfree(buf);
1021         return ret;
1022 }
1023
1024 /*
1025  * -1: resetf the statistics
1026  *  0: display meaning of the statistics
1027  */
1028 static ssize_t uv_ptc_proc_write(struct file *file, const char __user *user,
1029                                  size_t count, loff_t *data)
1030 {
1031         int cpu;
1032         long input_arg;
1033         char optstr[64];
1034         struct ptc_stats *stat;
1035
1036         if (count == 0 || count > sizeof(optstr))
1037                 return -EINVAL;
1038         if (copy_from_user(optstr, user, count))
1039                 return -EFAULT;
1040         optstr[count - 1] = '\0';
1041         if (strict_strtol(optstr, 10, &input_arg) < 0) {
1042                 printk(KERN_DEBUG "%s is invalid\n", optstr);
1043                 return -EINVAL;
1044         }
1045
1046         if (input_arg == 0) {
1047                 printk(KERN_DEBUG "# cpu:      cpu number\n");
1048                 printk(KERN_DEBUG "Sender statistics:\n");
1049                 printk(KERN_DEBUG
1050                 "sent:     number of shootdown messages sent\n");
1051                 printk(KERN_DEBUG
1052                 "stime:    time spent sending messages\n");
1053                 printk(KERN_DEBUG
1054                 "numuvhubs: number of hubs targeted with shootdown\n");
1055                 printk(KERN_DEBUG
1056                 "numuvhubs16: number times 16 or more hubs targeted\n");
1057                 printk(KERN_DEBUG
1058                 "numuvhubs8: number times 8 or more hubs targeted\n");
1059                 printk(KERN_DEBUG
1060                 "numuvhubs4: number times 4 or more hubs targeted\n");
1061                 printk(KERN_DEBUG
1062                 "numuvhubs2: number times 2 or more hubs targeted\n");
1063                 printk(KERN_DEBUG
1064                 "numuvhubs1: number times 1 hub targeted\n");
1065                 printk(KERN_DEBUG
1066                 "numcpus:  number of cpus targeted with shootdown\n");
1067                 printk(KERN_DEBUG
1068                 "dto:      number of destination timeouts\n");
1069                 printk(KERN_DEBUG
1070                 "retries:  destination timeout retries sent\n");
1071                 printk(KERN_DEBUG
1072                 "rok:   :  destination timeouts successfully retried\n");
1073                 printk(KERN_DEBUG
1074                 "resetp:   ipi-style resource resets for plugs\n");
1075                 printk(KERN_DEBUG
1076                 "resett:   ipi-style resource resets for timeouts\n");
1077                 printk(KERN_DEBUG
1078                 "giveup:   fall-backs to ipi-style shootdowns\n");
1079                 printk(KERN_DEBUG
1080                 "sto:      number of source timeouts\n");
1081                 printk(KERN_DEBUG
1082                 "bz:       number of stay-busy's\n");
1083                 printk(KERN_DEBUG
1084                 "throt:    number times spun in throttle\n");
1085                 printk(KERN_DEBUG "Destination side statistics:\n");
1086                 printk(KERN_DEBUG
1087                 "sw_ack:   image of UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE\n");
1088                 printk(KERN_DEBUG
1089                 "recv:     shootdown messages received\n");
1090                 printk(KERN_DEBUG
1091                 "rtime:    time spent processing messages\n");
1092                 printk(KERN_DEBUG
1093                 "all:      shootdown all-tlb messages\n");
1094                 printk(KERN_DEBUG
1095                 "one:      shootdown one-tlb messages\n");
1096                 printk(KERN_DEBUG
1097                 "mult:     interrupts that found multiple messages\n");
1098                 printk(KERN_DEBUG
1099                 "none:     interrupts that found no messages\n");
1100                 printk(KERN_DEBUG
1101                 "retry:    number of retry messages processed\n");
1102                 printk(KERN_DEBUG
1103                 "canc:     number messages canceled by retries\n");
1104                 printk(KERN_DEBUG
1105                 "nocan:    number retries that found nothing to cancel\n");
1106                 printk(KERN_DEBUG
1107                 "reset:    number of ipi-style reset requests processed\n");
1108                 printk(KERN_DEBUG
1109                 "rcan:     number messages canceled by reset requests\n");
1110                 printk(KERN_DEBUG
1111                 "disable:  number times use of the BAU was disabled\n");
1112                 printk(KERN_DEBUG
1113                 "enable:   number times use of the BAU was re-enabled\n");
1114         } else if (input_arg == -1) {
1115                 for_each_present_cpu(cpu) {
1116                         stat = &per_cpu(ptcstats, cpu);
1117                         memset(stat, 0, sizeof(struct ptc_stats));
1118                 }
1119         }
1120
1121         return count;
1122 }
1123
1124 static int local_atoi(const char *name)
1125 {
1126         int val = 0;
1127
1128         for (;; name++) {
1129                 switch (*name) {
1130                 case '0' ... '9':
1131                         val = 10*val+(*name-'0');
1132                         break;
1133                 default:
1134                         return val;
1135                 }
1136         }
1137 }
1138
1139 /*
1140  * set the tunables
1141  * 0 values reset them to defaults
1142  */
1143 static ssize_t tunables_write(struct file *file, const char __user *user,
1144                                  size_t count, loff_t *data)
1145 {
1146         int cpu;
1147         int cnt = 0;
1148         int val;
1149         char *p;
1150         char *q;
1151         char instr[64];
1152         struct bau_control *bcp;
1153
1154         if (count == 0 || count > sizeof(instr)-1)
1155                 return -EINVAL;
1156         if (copy_from_user(instr, user, count))
1157                 return -EFAULT;
1158
1159         instr[count] = '\0';
1160         /* count the fields */
1161         p = instr + strspn(instr, WHITESPACE);
1162         q = p;
1163         for (; *p; p = q + strspn(q, WHITESPACE)) {
1164                 q = p + strcspn(p, WHITESPACE);
1165                 cnt++;
1166                 if (q == p)
1167                         break;
1168         }
1169         if (cnt != 9) {
1170                 printk(KERN_INFO "bau tunable error: should be 9 numbers\n");
1171                 return -EINVAL;
1172         }
1173
1174         p = instr + strspn(instr, WHITESPACE);
1175         q = p;
1176         for (cnt = 0; *p; p = q + strspn(q, WHITESPACE), cnt++) {
1177                 q = p + strcspn(p, WHITESPACE);
1178                 val = local_atoi(p);
1179                 switch (cnt) {
1180                 case 0:
1181                         if (val == 0) {
1182                                 max_bau_concurrent = MAX_BAU_CONCURRENT;
1183                                 max_bau_concurrent_constant =
1184                                                         MAX_BAU_CONCURRENT;
1185                                 continue;
1186                         }
1187                         bcp = &per_cpu(bau_control, smp_processor_id());
1188                         if (val < 1 || val > bcp->cpus_in_uvhub) {
1189                                 printk(KERN_DEBUG
1190                                 "Error: BAU max concurrent %d is invalid\n",
1191                                 val);
1192                                 return -EINVAL;
1193                         }
1194                         max_bau_concurrent = val;
1195                         max_bau_concurrent_constant = val;
1196                         continue;
1197                 case 1:
1198                         if (val == 0)
1199                                 plugged_delay = PLUGGED_DELAY;
1200                         else
1201                                 plugged_delay = val;
1202                         continue;
1203                 case 2:
1204                         if (val == 0)
1205                                 plugsb4reset = PLUGSB4RESET;
1206                         else
1207                                 plugsb4reset = val;
1208                         continue;
1209                 case 3:
1210                         if (val == 0)
1211                                 timeoutsb4reset = TIMEOUTSB4RESET;
1212                         else
1213                                 timeoutsb4reset = val;
1214                         continue;
1215                 case 4:
1216                         if (val == 0)
1217                                 ipi_reset_limit = IPI_RESET_LIMIT;
1218                         else
1219                                 ipi_reset_limit = val;
1220                         continue;
1221                 case 5:
1222                         if (val == 0)
1223                                 complete_threshold = COMPLETE_THRESHOLD;
1224                         else
1225                                 complete_threshold = val;
1226                         continue;
1227                 case 6:
1228                         if (val == 0)
1229                                 congested_response_us = CONGESTED_RESPONSE_US;
1230                         else
1231                                 congested_response_us = val;
1232                         continue;
1233                 case 7:
1234                         if (val == 0)
1235                                 congested_reps = CONGESTED_REPS;
1236                         else
1237                                 congested_reps = val;
1238                         continue;
1239                 case 8:
1240                         if (val == 0)
1241                                 congested_period = CONGESTED_PERIOD;
1242                         else
1243                                 congested_period = val;
1244                         continue;
1245                 }
1246                 if (q == p)
1247                         break;
1248         }
1249         for_each_present_cpu(cpu) {
1250                 bcp = &per_cpu(bau_control, cpu);
1251                 bcp->max_bau_concurrent = max_bau_concurrent;
1252                 bcp->max_bau_concurrent_constant = max_bau_concurrent;
1253                 bcp->plugged_delay = plugged_delay;
1254                 bcp->plugsb4reset = plugsb4reset;
1255                 bcp->timeoutsb4reset = timeoutsb4reset;
1256                 bcp->ipi_reset_limit = ipi_reset_limit;
1257                 bcp->complete_threshold = complete_threshold;
1258                 bcp->congested_response_us = congested_response_us;
1259                 bcp->congested_reps = congested_reps;
1260                 bcp->congested_period = congested_period;
1261         }
1262         return count;
1263 }
1264
1265 static const struct seq_operations uv_ptc_seq_ops = {
1266         .start          = uv_ptc_seq_start,
1267         .next           = uv_ptc_seq_next,
1268         .stop           = uv_ptc_seq_stop,
1269         .show           = uv_ptc_seq_show
1270 };
1271
1272 static int uv_ptc_proc_open(struct inode *inode, struct file *file)
1273 {
1274         return seq_open(file, &uv_ptc_seq_ops);
1275 }
1276
1277 static int tunables_open(struct inode *inode, struct file *file)
1278 {
1279         return 0;
1280 }
1281
1282 static const struct file_operations proc_uv_ptc_operations = {
1283         .open           = uv_ptc_proc_open,
1284         .read           = seq_read,
1285         .write          = uv_ptc_proc_write,
1286         .llseek         = seq_lseek,
1287         .release        = seq_release,
1288 };
1289
1290 static const struct file_operations tunables_fops = {
1291         .open           = tunables_open,
1292         .read           = tunables_read,
1293         .write          = tunables_write,
1294         .llseek         = default_llseek,
1295 };
1296
1297 static int __init uv_ptc_init(void)
1298 {
1299         struct proc_dir_entry *proc_uv_ptc;
1300
1301         if (!is_uv_system())
1302                 return 0;
1303
1304         proc_uv_ptc = proc_create(UV_PTC_BASENAME, 0444, NULL,
1305                                   &proc_uv_ptc_operations);
1306         if (!proc_uv_ptc) {
1307                 printk(KERN_ERR "unable to create %s proc entry\n",
1308                        UV_PTC_BASENAME);
1309                 return -EINVAL;
1310         }
1311
1312         tunables_dir = debugfs_create_dir(UV_BAU_TUNABLES_DIR, NULL);
1313         if (!tunables_dir) {
1314                 printk(KERN_ERR "unable to create debugfs directory %s\n",
1315                        UV_BAU_TUNABLES_DIR);
1316                 return -EINVAL;
1317         }
1318         tunables_file = debugfs_create_file(UV_BAU_TUNABLES_FILE, 0600,
1319                         tunables_dir, NULL, &tunables_fops);
1320         if (!tunables_file) {
1321                 printk(KERN_ERR "unable to create debugfs file %s\n",
1322                        UV_BAU_TUNABLES_FILE);
1323                 return -EINVAL;
1324         }
1325         return 0;
1326 }
1327
1328 /*
1329  * initialize the sending side's sending buffers
1330  */
1331 static void
1332 uv_activation_descriptor_init(int node, int pnode)
1333 {
1334         int i;
1335         int cpu;
1336         unsigned long pa;
1337         unsigned long m;
1338         unsigned long n;
1339         struct bau_desc *bau_desc;
1340         struct bau_desc *bd2;
1341         struct bau_control *bcp;
1342
1343         /*
1344          * each bau_desc is 64 bytes; there are 8 (UV_ITEMS_PER_DESCRIPTOR)
1345          * per cpu; and one per cpu on the uvhub (UV_ADP_SIZE)
1346          */
1347         bau_desc = kmalloc_node(sizeof(struct bau_desc) * UV_ADP_SIZE
1348                                 * UV_ITEMS_PER_DESCRIPTOR, GFP_KERNEL, node);
1349         BUG_ON(!bau_desc);
1350
1351         pa = uv_gpa(bau_desc); /* need the real nasid*/
1352         n = pa >> uv_nshift;
1353         m = pa & uv_mmask;
1354
1355         uv_write_global_mmr64(pnode, UVH_LB_BAU_SB_DESCRIPTOR_BASE,
1356                               (n << UV_DESC_BASE_PNODE_SHIFT | m));
1357
1358         /*
1359          * initializing all 8 (UV_ITEMS_PER_DESCRIPTOR) descriptors for each
1360          * cpu even though we only use the first one; one descriptor can
1361          * describe a broadcast to 256 uv hubs.
1362          */
1363         for (i = 0, bd2 = bau_desc; i < (UV_ADP_SIZE*UV_ITEMS_PER_DESCRIPTOR);
1364                 i++, bd2++) {
1365                 memset(bd2, 0, sizeof(struct bau_desc));
1366                 bd2->header.sw_ack_flag = 1;
1367                 /*
1368                  * base_dest_nodeid is the nasid of the first uvhub
1369                  * in the partition. The bit map will indicate uvhub numbers,
1370                  * which are 0-N in a partition. Pnodes are unique system-wide.
1371                  */
1372                 bd2->header.base_dest_nodeid = UV_PNODE_TO_NASID(uv_partition_base_pnode);
1373                 bd2->header.dest_subnodeid = 0x10; /* the LB */
1374                 bd2->header.command = UV_NET_ENDPOINT_INTD;
1375                 bd2->header.int_both = 1;
1376                 /*
1377                  * all others need to be set to zero:
1378                  *   fairness chaining multilevel count replied_to
1379                  */
1380         }
1381         for_each_present_cpu(cpu) {
1382                 if (pnode != uv_blade_to_pnode(uv_cpu_to_blade_id(cpu)))
1383                         continue;
1384                 bcp = &per_cpu(bau_control, cpu);
1385                 bcp->descriptor_base = bau_desc;
1386         }
1387 }
1388
1389 /*
1390  * initialize the destination side's receiving buffers
1391  * entered for each uvhub in the partition
1392  * - node is first node (kernel memory notion) on the uvhub
1393  * - pnode is the uvhub's physical identifier
1394  */
1395 static void
1396 uv_payload_queue_init(int node, int pnode)
1397 {
1398         int pn;
1399         int cpu;
1400         char *cp;
1401         unsigned long pa;
1402         struct bau_payload_queue_entry *pqp;
1403         struct bau_payload_queue_entry *pqp_malloc;
1404         struct bau_control *bcp;
1405
1406         pqp = kmalloc_node((DEST_Q_SIZE + 1)
1407                            * sizeof(struct bau_payload_queue_entry),
1408                            GFP_KERNEL, node);
1409         BUG_ON(!pqp);
1410         pqp_malloc = pqp;
1411
1412         cp = (char *)pqp + 31;
1413         pqp = (struct bau_payload_queue_entry *)(((unsigned long)cp >> 5) << 5);
1414
1415         for_each_present_cpu(cpu) {
1416                 if (pnode != uv_cpu_to_pnode(cpu))
1417                         continue;
1418                 /* for every cpu on this pnode: */
1419                 bcp = &per_cpu(bau_control, cpu);
1420                 bcp->va_queue_first = pqp;
1421                 bcp->bau_msg_head = pqp;
1422                 bcp->va_queue_last = pqp + (DEST_Q_SIZE - 1);
1423         }
1424         /*
1425          * need the pnode of where the memory was really allocated
1426          */
1427         pa = uv_gpa(pqp);
1428         pn = pa >> uv_nshift;
1429         uv_write_global_mmr64(pnode,
1430                               UVH_LB_BAU_INTD_PAYLOAD_QUEUE_FIRST,
1431                               ((unsigned long)pn << UV_PAYLOADQ_PNODE_SHIFT) |
1432                               uv_physnodeaddr(pqp));
1433         uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_TAIL,
1434                               uv_physnodeaddr(pqp));
1435         uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_LAST,
1436                               (unsigned long)
1437                               uv_physnodeaddr(pqp + (DEST_Q_SIZE - 1)));
1438         /* in effect, all msg_type's are set to MSG_NOOP */
1439         memset(pqp, 0, sizeof(struct bau_payload_queue_entry) * DEST_Q_SIZE);
1440 }
1441
1442 /*
1443  * Initialization of each UV hub's structures
1444  */
1445 static void __init uv_init_uvhub(int uvhub, int vector)
1446 {
1447         int node;
1448         int pnode;
1449         unsigned long apicid;
1450
1451         node = uvhub_to_first_node(uvhub);
1452         pnode = uv_blade_to_pnode(uvhub);
1453         uv_activation_descriptor_init(node, pnode);
1454         uv_payload_queue_init(node, pnode);
1455         /*
1456          * the below initialization can't be in firmware because the
1457          * messaging IRQ will be determined by the OS
1458          */
1459         apicid = uvhub_to_first_apicid(uvhub) | uv_apicid_hibits;
1460         uv_write_global_mmr64(pnode, UVH_BAU_DATA_CONFIG,
1461                                       ((apicid << 32) | vector));
1462 }
1463
1464 /*
1465  * We will set BAU_MISC_CONTROL with a timeout period.
1466  * But the BIOS has set UVH_AGING_PRESCALE_SEL and UVH_TRANSACTION_TIMEOUT.
1467  * So the destination timeout period has be be calculated from them.
1468  */
1469 static int
1470 calculate_destination_timeout(void)
1471 {
1472         unsigned long mmr_image;
1473         int mult1;
1474         int mult2;
1475         int index;
1476         int base;
1477         int ret;
1478         unsigned long ts_ns;
1479
1480         mult1 = UV_INTD_SOFT_ACK_TIMEOUT_PERIOD & BAU_MISC_CONTROL_MULT_MASK;
1481         mmr_image = uv_read_local_mmr(UVH_AGING_PRESCALE_SEL);
1482         index = (mmr_image >> BAU_URGENCY_7_SHIFT) & BAU_URGENCY_7_MASK;
1483         mmr_image = uv_read_local_mmr(UVH_TRANSACTION_TIMEOUT);
1484         mult2 = (mmr_image >> BAU_TRANS_SHIFT) & BAU_TRANS_MASK;
1485         base = timeout_base_ns[index];
1486         ts_ns = base * mult1 * mult2;
1487         ret = ts_ns / 1000;
1488         return ret;
1489 }
1490
1491 /*
1492  * initialize the bau_control structure for each cpu
1493  */
1494 static int __init uv_init_per_cpu(int nuvhubs)
1495 {
1496         int i;
1497         int cpu;
1498         int pnode;
1499         int uvhub;
1500         int have_hmaster;
1501         short socket = 0;
1502         unsigned short socket_mask;
1503         unsigned char *uvhub_mask;
1504         struct bau_control *bcp;
1505         struct uvhub_desc *bdp;
1506         struct socket_desc *sdp;
1507         struct bau_control *hmaster = NULL;
1508         struct bau_control *smaster = NULL;
1509         struct socket_desc {
1510                 short num_cpus;
1511                 short cpu_number[MAX_CPUS_PER_SOCKET];
1512         };
1513         struct uvhub_desc {
1514                 unsigned short socket_mask;
1515                 short num_cpus;
1516                 short uvhub;
1517                 short pnode;
1518                 struct socket_desc socket[2];
1519         };
1520         struct uvhub_desc *uvhub_descs;
1521
1522         timeout_us = calculate_destination_timeout();
1523
1524         uvhub_descs = kmalloc(nuvhubs * sizeof(struct uvhub_desc), GFP_KERNEL);
1525         memset(uvhub_descs, 0, nuvhubs * sizeof(struct uvhub_desc));
1526         uvhub_mask = kzalloc((nuvhubs+7)/8, GFP_KERNEL);
1527         for_each_present_cpu(cpu) {
1528                 bcp = &per_cpu(bau_control, cpu);
1529                 memset(bcp, 0, sizeof(struct bau_control));
1530                 pnode = uv_cpu_hub_info(cpu)->pnode;
1531                 uvhub = uv_cpu_hub_info(cpu)->numa_blade_id;
1532                 *(uvhub_mask + (uvhub/8)) |= (1 << (uvhub%8));
1533                 bdp = &uvhub_descs[uvhub];
1534                 bdp->num_cpus++;
1535                 bdp->uvhub = uvhub;
1536                 bdp->pnode = pnode;
1537                 /* kludge: 'assuming' one node per socket, and assuming that
1538                    disabling a socket just leaves a gap in node numbers */
1539                 socket = (cpu_to_node(cpu) & 1);
1540                 bdp->socket_mask |= (1 << socket);
1541                 sdp = &bdp->socket[socket];
1542                 sdp->cpu_number[sdp->num_cpus] = cpu;
1543                 sdp->num_cpus++;
1544                 if (sdp->num_cpus > MAX_CPUS_PER_SOCKET) {
1545                         printk(KERN_EMERG "%d cpus per socket invalid\n", sdp->num_cpus);
1546                         return 1;
1547                 }
1548         }
1549         for (uvhub = 0; uvhub < nuvhubs; uvhub++) {
1550                 if (!(*(uvhub_mask + (uvhub/8)) & (1 << (uvhub%8))))
1551                         continue;
1552                 have_hmaster = 0;
1553                 bdp = &uvhub_descs[uvhub];
1554                 socket_mask = bdp->socket_mask;
1555                 socket = 0;
1556                 while (socket_mask) {
1557                         if (!(socket_mask & 1))
1558                                 goto nextsocket;
1559                         sdp = &bdp->socket[socket];
1560                         for (i = 0; i < sdp->num_cpus; i++) {
1561                                 cpu = sdp->cpu_number[i];
1562                                 bcp = &per_cpu(bau_control, cpu);
1563                                 bcp->cpu = cpu;
1564                                 if (i == 0) {
1565                                         smaster = bcp;
1566                                         if (!have_hmaster) {
1567                                                 have_hmaster++;
1568                                                 hmaster = bcp;
1569                                         }
1570                                 }
1571                                 bcp->cpus_in_uvhub = bdp->num_cpus;
1572                                 bcp->cpus_in_socket = sdp->num_cpus;
1573                                 bcp->socket_master = smaster;
1574                                 bcp->uvhub = bdp->uvhub;
1575                                 bcp->uvhub_master = hmaster;
1576                                 bcp->uvhub_cpu = uv_cpu_hub_info(cpu)->
1577                                                 blade_processor_id;
1578                                 if (bcp->uvhub_cpu >= MAX_CPUS_PER_UVHUB) {
1579                                         printk(KERN_EMERG
1580                                                 "%d cpus per uvhub invalid\n",
1581                                                 bcp->uvhub_cpu);
1582                                         return 1;
1583                                 }
1584                         }
1585 nextsocket:
1586                         socket++;
1587                         socket_mask = (socket_mask >> 1);
1588                 }
1589         }
1590         kfree(uvhub_descs);
1591         kfree(uvhub_mask);
1592         for_each_present_cpu(cpu) {
1593                 bcp = &per_cpu(bau_control, cpu);
1594                 bcp->baudisabled = 0;
1595                 bcp->statp = &per_cpu(ptcstats, cpu);
1596                 /* time interval to catch a hardware stay-busy bug */
1597                 bcp->timeout_interval = microsec_2_cycles(2*timeout_us);
1598                 bcp->max_bau_concurrent = max_bau_concurrent;
1599                 bcp->max_bau_concurrent_constant = max_bau_concurrent;
1600                 bcp->plugged_delay = plugged_delay;
1601                 bcp->plugsb4reset = plugsb4reset;
1602                 bcp->timeoutsb4reset = timeoutsb4reset;
1603                 bcp->ipi_reset_limit = ipi_reset_limit;
1604                 bcp->complete_threshold = complete_threshold;
1605                 bcp->congested_response_us = congested_response_us;
1606                 bcp->congested_reps = congested_reps;
1607                 bcp->congested_period = congested_period;
1608         }
1609         return 0;
1610 }
1611
1612 /*
1613  * Initialization of BAU-related structures
1614  */
1615 static int __init uv_bau_init(void)
1616 {
1617         int uvhub;
1618         int pnode;
1619         int nuvhubs;
1620         int cur_cpu;
1621         int vector;
1622         unsigned long mmr;
1623
1624         if (!is_uv_system())
1625                 return 0;
1626
1627         if (nobau)
1628                 return 0;
1629
1630         for_each_possible_cpu(cur_cpu)
1631                 zalloc_cpumask_var_node(&per_cpu(uv_flush_tlb_mask, cur_cpu),
1632                                        GFP_KERNEL, cpu_to_node(cur_cpu));
1633
1634         uv_nshift = uv_hub_info->m_val;
1635         uv_mmask = (1UL << uv_hub_info->m_val) - 1;
1636         nuvhubs = uv_num_possible_blades();
1637         spin_lock_init(&disable_lock);
1638         congested_cycles = microsec_2_cycles(congested_response_us);
1639
1640         if (uv_init_per_cpu(nuvhubs)) {
1641                 nobau = 1;
1642                 return 0;
1643         }
1644
1645         uv_partition_base_pnode = 0x7fffffff;
1646         for (uvhub = 0; uvhub < nuvhubs; uvhub++)
1647                 if (uv_blade_nr_possible_cpus(uvhub) &&
1648                         (uv_blade_to_pnode(uvhub) < uv_partition_base_pnode))
1649                         uv_partition_base_pnode = uv_blade_to_pnode(uvhub);
1650
1651         vector = UV_BAU_MESSAGE;
1652         for_each_possible_blade(uvhub)
1653                 if (uv_blade_nr_possible_cpus(uvhub))
1654                         uv_init_uvhub(uvhub, vector);
1655
1656         uv_enable_timeouts();
1657         alloc_intr_gate(vector, uv_bau_message_intr1);
1658
1659         for_each_possible_blade(uvhub) {
1660                 if (uv_blade_nr_possible_cpus(uvhub)) {
1661                         pnode = uv_blade_to_pnode(uvhub);
1662                         /* INIT the bau */
1663                         uv_write_global_mmr64(pnode,
1664                                         UVH_LB_BAU_SB_ACTIVATION_CONTROL,
1665                                         ((unsigned long)1 << 63));
1666                         mmr = 1; /* should be 1 to broadcast to both sockets */
1667                         uv_write_global_mmr64(pnode, UVH_BAU_DATA_BROADCAST,
1668                                                 mmr);
1669                 }
1670         }
1671
1672         return 0;
1673 }
1674 core_initcall(uv_bau_init);
1675 fs_initcall(uv_ptc_init);