4686bf1e56ece63b94592eef35fd25bf31aab2f6
[platform/adaptation/renesas_rcar/renesas_kernel.git] / arch / x86 / platform / uv / tlb_uv.c
1 /*
2  *      SGI UltraViolet TLB flush routines.
3  *
4  *      (c) 2008-2011 Cliff Wickman <cpw@sgi.com>, SGI.
5  *
6  *      This code is released under the GNU General Public License version 2 or
7  *      later.
8  */
9 #include <linux/seq_file.h>
10 #include <linux/proc_fs.h>
11 #include <linux/debugfs.h>
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/delay.h>
15
16 #include <asm/mmu_context.h>
17 #include <asm/uv/uv.h>
18 #include <asm/uv/uv_mmrs.h>
19 #include <asm/uv/uv_hub.h>
20 #include <asm/uv/uv_bau.h>
21 #include <asm/apic.h>
22 #include <asm/idle.h>
23 #include <asm/tsc.h>
24 #include <asm/irq_vectors.h>
25 #include <asm/timer.h>
26
27 /* timeouts in nanoseconds (indexed by UVH_AGING_PRESCALE_SEL urgency7 30:28) */
28 static int timeout_base_ns[] = {
29                 20,
30                 160,
31                 1280,
32                 10240,
33                 81920,
34                 655360,
35                 5242880,
36                 167772160
37 };
38
39 static int timeout_us;
40 static int nobau;
41 static int baudisabled;
42 static spinlock_t disable_lock;
43 static cycles_t congested_cycles;
44
45 /* tunables: */
46 static int max_concurr          = MAX_BAU_CONCURRENT;
47 static int max_concurr_const    = MAX_BAU_CONCURRENT;
48 static int plugged_delay        = PLUGGED_DELAY;
49 static int plugsb4reset         = PLUGSB4RESET;
50 static int timeoutsb4reset      = TIMEOUTSB4RESET;
51 static int ipi_reset_limit      = IPI_RESET_LIMIT;
52 static int complete_threshold   = COMPLETE_THRESHOLD;
53 static int congested_respns_us  = CONGESTED_RESPONSE_US;
54 static int congested_reps       = CONGESTED_REPS;
55 static int congested_period     = CONGESTED_PERIOD;
56
57 static struct tunables tunables[] = {
58         {&max_concurr, MAX_BAU_CONCURRENT}, /* must be [0] */
59         {&plugged_delay, PLUGGED_DELAY},
60         {&plugsb4reset, PLUGSB4RESET},
61         {&timeoutsb4reset, TIMEOUTSB4RESET},
62         {&ipi_reset_limit, IPI_RESET_LIMIT},
63         {&complete_threshold, COMPLETE_THRESHOLD},
64         {&congested_respns_us, CONGESTED_RESPONSE_US},
65         {&congested_reps, CONGESTED_REPS},
66         {&congested_period, CONGESTED_PERIOD}
67 };
68
69 static struct dentry *tunables_dir;
70 static struct dentry *tunables_file;
71
72 /* these correspond to the statistics printed by ptc_seq_show() */
73 static char *stat_description[] = {
74         "sent:     number of shootdown messages sent",
75         "stime:    time spent sending messages",
76         "numuvhubs: number of hubs targeted with shootdown",
77         "numuvhubs16: number times 16 or more hubs targeted",
78         "numuvhubs8: number times 8 or more hubs targeted",
79         "numuvhubs4: number times 4 or more hubs targeted",
80         "numuvhubs2: number times 2 or more hubs targeted",
81         "numuvhubs1: number times 1 hub targeted",
82         "numcpus:  number of cpus targeted with shootdown",
83         "dto:      number of destination timeouts",
84         "retries:  destination timeout retries sent",
85         "rok:   :  destination timeouts successfully retried",
86         "resetp:   ipi-style resource resets for plugs",
87         "resett:   ipi-style resource resets for timeouts",
88         "giveup:   fall-backs to ipi-style shootdowns",
89         "sto:      number of source timeouts",
90         "bz:       number of stay-busy's",
91         "throt:    number times spun in throttle",
92         "swack:   image of UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE",
93         "recv:     shootdown messages received",
94         "rtime:    time spent processing messages",
95         "all:      shootdown all-tlb messages",
96         "one:      shootdown one-tlb messages",
97         "mult:     interrupts that found multiple messages",
98         "none:     interrupts that found no messages",
99         "retry:    number of retry messages processed",
100         "canc:     number messages canceled by retries",
101         "nocan:    number retries that found nothing to cancel",
102         "reset:    number of ipi-style reset requests processed",
103         "rcan:     number messages canceled by reset requests",
104         "disable:  number times use of the BAU was disabled",
105         "enable:   number times use of the BAU was re-enabled"
106 };
107
108 static int __init
109 setup_nobau(char *arg)
110 {
111         nobau = 1;
112         return 0;
113 }
114 early_param("nobau", setup_nobau);
115
116 /* base pnode in this partition */
117 static int uv_base_pnode __read_mostly;
118
119 static DEFINE_PER_CPU(struct ptc_stats, ptcstats);
120 static DEFINE_PER_CPU(struct bau_control, bau_control);
121 static DEFINE_PER_CPU(cpumask_var_t, uv_flush_tlb_mask);
122
123 /*
124  * Determine the first node on a uvhub. 'Nodes' are used for kernel
125  * memory allocation.
126  */
127 static int __init uvhub_to_first_node(int uvhub)
128 {
129         int node, b;
130
131         for_each_online_node(node) {
132                 b = uv_node_to_blade_id(node);
133                 if (uvhub == b)
134                         return node;
135         }
136         return -1;
137 }
138
139 /*
140  * Determine the apicid of the first cpu on a uvhub.
141  */
142 static int __init uvhub_to_first_apicid(int uvhub)
143 {
144         int cpu;
145
146         for_each_present_cpu(cpu)
147                 if (uvhub == uv_cpu_to_blade_id(cpu))
148                         return per_cpu(x86_cpu_to_apicid, cpu);
149         return -1;
150 }
151
152 /*
153  * Free a software acknowledge hardware resource by clearing its Pending
154  * bit. This will return a reply to the sender.
155  * If the message has timed out, a reply has already been sent by the
156  * hardware but the resource has not been released. In that case our
157  * clear of the Timeout bit (as well) will free the resource. No reply will
158  * be sent (the hardware will only do one reply per message).
159  */
160 static void reply_to_message(struct msg_desc *mdp, struct bau_control *bcp,
161                                                 int do_acknowledge)
162 {
163         unsigned long dw;
164         struct bau_pq_entry *msg;
165
166         msg = mdp->msg;
167         if (!msg->canceled && do_acknowledge) {
168                 dw = (msg->swack_vec << UV_SW_ACK_NPENDING) | msg->swack_vec;
169                 write_mmr_sw_ack(dw);
170         }
171         msg->replied_to = 1;
172         msg->swack_vec = 0;
173 }
174
175 /*
176  * Process the receipt of a RETRY message
177  */
178 static void bau_process_retry_msg(struct msg_desc *mdp,
179                                         struct bau_control *bcp)
180 {
181         int i;
182         int cancel_count = 0;
183         unsigned long msg_res;
184         unsigned long mmr = 0;
185         struct bau_pq_entry *msg = mdp->msg;
186         struct bau_pq_entry *msg2;
187         struct ptc_stats *stat = bcp->statp;
188
189         stat->d_retries++;
190         /*
191          * cancel any message from msg+1 to the retry itself
192          */
193         for (msg2 = msg+1, i = 0; i < DEST_Q_SIZE; msg2++, i++) {
194                 if (msg2 > mdp->queue_last)
195                         msg2 = mdp->queue_first;
196                 if (msg2 == msg)
197                         break;
198
199                 /* same conditions for cancellation as do_reset */
200                 if ((msg2->replied_to == 0) && (msg2->canceled == 0) &&
201                     (msg2->swack_vec) && ((msg2->swack_vec &
202                         msg->swack_vec) == 0) &&
203                     (msg2->sending_cpu == msg->sending_cpu) &&
204                     (msg2->msg_type != MSG_NOOP)) {
205                         mmr = read_mmr_sw_ack();
206                         msg_res = msg2->swack_vec;
207                         /*
208                          * This is a message retry; clear the resources held
209                          * by the previous message only if they timed out.
210                          * If it has not timed out we have an unexpected
211                          * situation to report.
212                          */
213                         if (mmr & (msg_res << UV_SW_ACK_NPENDING)) {
214                                 unsigned long mr;
215                                 /*
216                                  * Is the resource timed out?
217                                  * Make everyone ignore the cancelled message.
218                                  */
219                                 msg2->canceled = 1;
220                                 stat->d_canceled++;
221                                 cancel_count++;
222                                 mr = (msg_res << UV_SW_ACK_NPENDING) | msg_res;
223                                 write_mmr_sw_ack(mr);
224                         }
225                 }
226         }
227         if (!cancel_count)
228                 stat->d_nocanceled++;
229 }
230
231 /*
232  * Do all the things a cpu should do for a TLB shootdown message.
233  * Other cpu's may come here at the same time for this message.
234  */
235 static void bau_process_message(struct msg_desc *mdp, struct bau_control *bcp,
236                                                 int do_acknowledge)
237 {
238         short socket_ack_count = 0;
239         short *sp;
240         struct atomic_short *asp;
241         struct ptc_stats *stat = bcp->statp;
242         struct bau_pq_entry *msg = mdp->msg;
243         struct bau_control *smaster = bcp->socket_master;
244
245         /*
246          * This must be a normal message, or retry of a normal message
247          */
248         if (msg->address == TLB_FLUSH_ALL) {
249                 local_flush_tlb();
250                 stat->d_alltlb++;
251         } else {
252                 __flush_tlb_one(msg->address);
253                 stat->d_onetlb++;
254         }
255         stat->d_requestee++;
256
257         /*
258          * One cpu on each uvhub has the additional job on a RETRY
259          * of releasing the resource held by the message that is
260          * being retried.  That message is identified by sending
261          * cpu number.
262          */
263         if (msg->msg_type == MSG_RETRY && bcp == bcp->uvhub_master)
264                 bau_process_retry_msg(mdp, bcp);
265
266         /*
267          * This is a swack message, so we have to reply to it.
268          * Count each responding cpu on the socket. This avoids
269          * pinging the count's cache line back and forth between
270          * the sockets.
271          */
272         sp = &smaster->socket_acknowledge_count[mdp->msg_slot];
273         asp = (struct atomic_short *)sp;
274         socket_ack_count = atom_asr(1, asp);
275         if (socket_ack_count == bcp->cpus_in_socket) {
276                 int msg_ack_count;
277                 /*
278                  * Both sockets dump their completed count total into
279                  * the message's count.
280                  */
281                 smaster->socket_acknowledge_count[mdp->msg_slot] = 0;
282                 asp = (struct atomic_short *)&msg->acknowledge_count;
283                 msg_ack_count = atom_asr(socket_ack_count, asp);
284
285                 if (msg_ack_count == bcp->cpus_in_uvhub) {
286                         /*
287                          * All cpus in uvhub saw it; reply
288                          * (unless we are in the UV2 workaround)
289                          */
290                         reply_to_message(mdp, bcp, do_acknowledge);
291                 }
292         }
293
294         return;
295 }
296
297 /*
298  * Determine the first cpu on a pnode.
299  */
300 static int pnode_to_first_cpu(int pnode, struct bau_control *smaster)
301 {
302         int cpu;
303         struct hub_and_pnode *hpp;
304
305         for_each_present_cpu(cpu) {
306                 hpp = &smaster->thp[cpu];
307                 if (pnode == hpp->pnode)
308                         return cpu;
309         }
310         return -1;
311 }
312
313 /*
314  * Last resort when we get a large number of destination timeouts is
315  * to clear resources held by a given cpu.
316  * Do this with IPI so that all messages in the BAU message queue
317  * can be identified by their nonzero swack_vec field.
318  *
319  * This is entered for a single cpu on the uvhub.
320  * The sender want's this uvhub to free a specific message's
321  * swack resources.
322  */
323 static void do_reset(void *ptr)
324 {
325         int i;
326         struct bau_control *bcp = &per_cpu(bau_control, smp_processor_id());
327         struct reset_args *rap = (struct reset_args *)ptr;
328         struct bau_pq_entry *msg;
329         struct ptc_stats *stat = bcp->statp;
330
331         stat->d_resets++;
332         /*
333          * We're looking for the given sender, and
334          * will free its swack resource.
335          * If all cpu's finally responded after the timeout, its
336          * message 'replied_to' was set.
337          */
338         for (msg = bcp->queue_first, i = 0; i < DEST_Q_SIZE; msg++, i++) {
339                 unsigned long msg_res;
340                 /* do_reset: same conditions for cancellation as
341                    bau_process_retry_msg() */
342                 if ((msg->replied_to == 0) &&
343                     (msg->canceled == 0) &&
344                     (msg->sending_cpu == rap->sender) &&
345                     (msg->swack_vec) &&
346                     (msg->msg_type != MSG_NOOP)) {
347                         unsigned long mmr;
348                         unsigned long mr;
349                         /*
350                          * make everyone else ignore this message
351                          */
352                         msg->canceled = 1;
353                         /*
354                          * only reset the resource if it is still pending
355                          */
356                         mmr = read_mmr_sw_ack();
357                         msg_res = msg->swack_vec;
358                         mr = (msg_res << UV_SW_ACK_NPENDING) | msg_res;
359                         if (mmr & msg_res) {
360                                 stat->d_rcanceled++;
361                                 write_mmr_sw_ack(mr);
362                         }
363                 }
364         }
365         return;
366 }
367
368 /*
369  * Use IPI to get all target uvhubs to release resources held by
370  * a given sending cpu number.
371  */
372 static void reset_with_ipi(struct pnmask *distribution, struct bau_control *bcp)
373 {
374         int pnode;
375         int apnode;
376         int maskbits;
377         int sender = bcp->cpu;
378         cpumask_t *mask = bcp->uvhub_master->cpumask;
379         struct bau_control *smaster = bcp->socket_master;
380         struct reset_args reset_args;
381
382         reset_args.sender = sender;
383         cpus_clear(*mask);
384         /* find a single cpu for each uvhub in this distribution mask */
385         maskbits = sizeof(struct pnmask) * BITSPERBYTE;
386         /* each bit is a pnode relative to the partition base pnode */
387         for (pnode = 0; pnode < maskbits; pnode++) {
388                 int cpu;
389                 if (!bau_uvhub_isset(pnode, distribution))
390                         continue;
391                 apnode = pnode + bcp->partition_base_pnode;
392                 cpu = pnode_to_first_cpu(apnode, smaster);
393                 cpu_set(cpu, *mask);
394         }
395
396         /* IPI all cpus; preemption is already disabled */
397         smp_call_function_many(mask, do_reset, (void *)&reset_args, 1);
398         return;
399 }
400
401 static inline unsigned long cycles_2_us(unsigned long long cyc)
402 {
403         unsigned long long ns;
404         unsigned long us;
405         int cpu = smp_processor_id();
406
407         ns =  (cyc * per_cpu(cyc2ns, cpu)) >> CYC2NS_SCALE_FACTOR;
408         us = ns / 1000;
409         return us;
410 }
411
412 /*
413  * wait for all cpus on this hub to finish their sends and go quiet
414  * leaves uvhub_quiesce set so that no new broadcasts are started by
415  * bau_flush_send_and_wait()
416  */
417 static inline void quiesce_local_uvhub(struct bau_control *hmaster)
418 {
419         atom_asr(1, (struct atomic_short *)&hmaster->uvhub_quiesce);
420 }
421
422 /*
423  * mark this quiet-requestor as done
424  */
425 static inline void end_uvhub_quiesce(struct bau_control *hmaster)
426 {
427         atom_asr(-1, (struct atomic_short *)&hmaster->uvhub_quiesce);
428 }
429
430 static unsigned long uv1_read_status(unsigned long mmr_offset, int right_shift)
431 {
432         unsigned long descriptor_status;
433
434         descriptor_status = uv_read_local_mmr(mmr_offset);
435         descriptor_status >>= right_shift;
436         descriptor_status &= UV_ACT_STATUS_MASK;
437         return descriptor_status;
438 }
439
440 /*
441  * Wait for completion of a broadcast software ack message
442  * return COMPLETE, RETRY(PLUGGED or TIMEOUT) or GIVEUP
443  */
444 static int uv1_wait_completion(struct bau_desc *bau_desc,
445                                 unsigned long mmr_offset, int right_shift,
446                                 struct bau_control *bcp, long try)
447 {
448         unsigned long descriptor_status;
449         cycles_t ttm;
450         struct ptc_stats *stat = bcp->statp;
451
452         descriptor_status = uv1_read_status(mmr_offset, right_shift);
453         /* spin on the status MMR, waiting for it to go idle */
454         while ((descriptor_status != DS_IDLE)) {
455                 /*
456                  * Our software ack messages may be blocked because
457                  * there are no swack resources available.  As long
458                  * as none of them has timed out hardware will NACK
459                  * our message and its state will stay IDLE.
460                  */
461                 if (descriptor_status == DS_SOURCE_TIMEOUT) {
462                         stat->s_stimeout++;
463                         return FLUSH_GIVEUP;
464                 } else if (descriptor_status == DS_DESTINATION_TIMEOUT) {
465                         stat->s_dtimeout++;
466                         ttm = get_cycles();
467
468                         /*
469                          * Our retries may be blocked by all destination
470                          * swack resources being consumed, and a timeout
471                          * pending.  In that case hardware returns the
472                          * ERROR that looks like a destination timeout.
473                          */
474                         if (cycles_2_us(ttm - bcp->send_message) < timeout_us) {
475                                 bcp->conseccompletes = 0;
476                                 return FLUSH_RETRY_PLUGGED;
477                         }
478
479                         bcp->conseccompletes = 0;
480                         return FLUSH_RETRY_TIMEOUT;
481                 } else {
482                         /*
483                          * descriptor_status is still BUSY
484                          */
485                         cpu_relax();
486                 }
487                 descriptor_status = uv1_read_status(mmr_offset, right_shift);
488         }
489         bcp->conseccompletes++;
490         return FLUSH_COMPLETE;
491 }
492
493 /*
494  * UV2 has an extra bit of status in the ACTIVATION_STATUS_2 register.
495  */
496 static unsigned long uv2_read_status(unsigned long offset, int rshft, int desc)
497 {
498         unsigned long descriptor_status;
499         unsigned long descriptor_status2;
500
501         descriptor_status = ((read_lmmr(offset) >> rshft) & UV_ACT_STATUS_MASK);
502         descriptor_status2 = (read_mmr_uv2_status() >> desc) & 0x1UL;
503         descriptor_status = (descriptor_status << 1) | descriptor_status2;
504         return descriptor_status;
505 }
506
507 /*
508  * Return whether the status of the descriptor that is normally used for this
509  * cpu (the one indexed by its hub-relative cpu number) is busy.
510  * The status of the original 32 descriptors is always reflected in the 64
511  * bits of UVH_LB_BAU_SB_ACTIVATION_STATUS_0.
512  * The bit provided by the activation_status_2 register is irrelevant to
513  * the status if it is only being tested for busy or not busy.
514  */
515 int normal_busy(struct bau_control *bcp)
516 {
517         int cpu = bcp->uvhub_cpu;
518         int mmr_offset;
519         int right_shift;
520
521         mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_0;
522         right_shift = cpu * UV_ACT_STATUS_SIZE;
523         return (((((read_lmmr(mmr_offset) >> right_shift) &
524                                 UV_ACT_STATUS_MASK)) << 1) == UV2H_DESC_BUSY);
525 }
526
527 /*
528  * Entered when a bau descriptor has gone into a permanent busy wait because
529  * of a hardware bug.
530  * Workaround the bug.
531  */
532 int handle_uv2_busy(struct bau_control *bcp)
533 {
534         int busy_one = bcp->using_desc;
535         int normal = bcp->uvhub_cpu;
536         int selected = -1;
537         int i;
538         unsigned long descriptor_status;
539         unsigned long status;
540         int mmr_offset;
541         struct bau_desc *bau_desc_old;
542         struct bau_desc *bau_desc_new;
543         struct bau_control *hmaster = bcp->uvhub_master;
544         struct ptc_stats *stat = bcp->statp;
545         cycles_t ttm;
546
547         stat->s_uv2_wars++;
548         spin_lock(&hmaster->uvhub_lock);
549         /* try for the original first */
550         if (busy_one != normal) {
551                 if (!normal_busy(bcp))
552                         selected = normal;
553         }
554         if (selected < 0) {
555                 /* can't use the normal, select an alternate */
556                 mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_1;
557                 descriptor_status = read_lmmr(mmr_offset);
558
559                 /* scan available descriptors 32-63 */
560                 for (i = 0; i < UV_CPUS_PER_AS; i++) {
561                         if ((hmaster->inuse_map & (1 << i)) == 0) {
562                                 status = ((descriptor_status >>
563                                                 (i * UV_ACT_STATUS_SIZE)) &
564                                                 UV_ACT_STATUS_MASK) << 1;
565                                 if (status != UV2H_DESC_BUSY) {
566                                         selected = i + UV_CPUS_PER_AS;
567                                         break;
568                                 }
569                         }
570                 }
571         }
572
573         if (busy_one != normal)
574                 /* mark the busy alternate as not in-use */
575                 hmaster->inuse_map &= ~(1 << (busy_one - UV_CPUS_PER_AS));
576
577         if (selected >= 0) {
578                 /* switch to the selected descriptor */
579                 if (selected != normal) {
580                         /* set the selected alternate as in-use */
581                         hmaster->inuse_map |=
582                                         (1 << (selected - UV_CPUS_PER_AS));
583                         if (selected > stat->s_uv2_wars_hw)
584                                 stat->s_uv2_wars_hw = selected;
585                 }
586                 bau_desc_old = bcp->descriptor_base;
587                 bau_desc_old += (ITEMS_PER_DESC * busy_one);
588                 bcp->using_desc = selected;
589                 bau_desc_new = bcp->descriptor_base;
590                 bau_desc_new += (ITEMS_PER_DESC * selected);
591                 *bau_desc_new = *bau_desc_old;
592         } else {
593                 /*
594                  * All are busy. Wait for the normal one for this cpu to
595                  * free up.
596                  */
597                 stat->s_uv2_war_waits++;
598                 spin_unlock(&hmaster->uvhub_lock);
599                 ttm = get_cycles();
600                 do {
601                         cpu_relax();
602                 } while (normal_busy(bcp));
603                 spin_lock(&hmaster->uvhub_lock);
604                 /* switch to the original descriptor */
605                 bcp->using_desc = normal;
606                 bau_desc_old = bcp->descriptor_base;
607                 bau_desc_old += (ITEMS_PER_DESC * bcp->using_desc);
608                 bcp->using_desc = (ITEMS_PER_DESC * normal);
609                 bau_desc_new = bcp->descriptor_base;
610                 bau_desc_new += (ITEMS_PER_DESC * normal);
611                 *bau_desc_new = *bau_desc_old; /* copy the entire descriptor */
612         }
613         spin_unlock(&hmaster->uvhub_lock);
614         return FLUSH_RETRY_BUSYBUG;
615 }
616
617 static int uv2_wait_completion(struct bau_desc *bau_desc,
618                                 unsigned long mmr_offset, int right_shift,
619                                 struct bau_control *bcp, long try)
620 {
621         unsigned long descriptor_stat;
622         cycles_t ttm;
623         int desc = bcp->using_desc;
624         long busy_reps = 0;
625         struct ptc_stats *stat = bcp->statp;
626
627         descriptor_stat = uv2_read_status(mmr_offset, right_shift, desc);
628
629         /* spin on the status MMR, waiting for it to go idle */
630         while (descriptor_stat != UV2H_DESC_IDLE) {
631                 /*
632                  * Our software ack messages may be blocked because
633                  * there are no swack resources available.  As long
634                  * as none of them has timed out hardware will NACK
635                  * our message and its state will stay IDLE.
636                  */
637                 if ((descriptor_stat == UV2H_DESC_SOURCE_TIMEOUT) ||
638                     (descriptor_stat == UV2H_DESC_DEST_STRONG_NACK) ||
639                     (descriptor_stat == UV2H_DESC_DEST_PUT_ERR)) {
640                         stat->s_stimeout++;
641                         return FLUSH_GIVEUP;
642                 } else if (descriptor_stat == UV2H_DESC_DEST_TIMEOUT) {
643                         stat->s_dtimeout++;
644                         ttm = get_cycles();
645                         bcp->conseccompletes = 0;
646                         return FLUSH_RETRY_TIMEOUT;
647                 } else {
648                         busy_reps++;
649                         if (busy_reps > 1000000) {
650                                 /* not to hammer on the clock */
651                                 busy_reps = 0;
652                                 ttm = get_cycles();
653                                 if ((ttm - bcp->send_message) >
654                                         (bcp->clocks_per_100_usec)) {
655                                         return handle_uv2_busy(bcp);
656                                 }
657                         }
658                         /*
659                          * descriptor_stat is still BUSY
660                          */
661                         cpu_relax();
662                 }
663                 descriptor_stat = uv2_read_status(mmr_offset, right_shift,
664                                                                         desc);
665         }
666         bcp->conseccompletes++;
667         return FLUSH_COMPLETE;
668 }
669
670 /*
671  * There are 2 status registers; each and array[32] of 2 bits. Set up for
672  * which register to read and position in that register based on cpu in
673  * current hub.
674  */
675 static int wait_completion(struct bau_desc *bau_desc,
676                                 struct bau_control *bcp, long try)
677 {
678         int right_shift;
679         unsigned long mmr_offset;
680         int desc = bcp->using_desc;
681
682         if (desc < UV_CPUS_PER_AS) {
683                 mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_0;
684                 right_shift = desc * UV_ACT_STATUS_SIZE;
685         } else {
686                 mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_1;
687                 right_shift = ((desc - UV_CPUS_PER_AS) * UV_ACT_STATUS_SIZE);
688         }
689
690         if (bcp->uvhub_version == 1)
691                 return uv1_wait_completion(bau_desc, mmr_offset, right_shift,
692                                                                 bcp, try);
693         else
694                 return uv2_wait_completion(bau_desc, mmr_offset, right_shift,
695                                                                 bcp, try);
696 }
697
698 static inline cycles_t sec_2_cycles(unsigned long sec)
699 {
700         unsigned long ns;
701         cycles_t cyc;
702
703         ns = sec * 1000000000;
704         cyc = (ns << CYC2NS_SCALE_FACTOR)/(per_cpu(cyc2ns, smp_processor_id()));
705         return cyc;
706 }
707
708 /*
709  * Our retries are blocked by all destination sw ack resources being
710  * in use, and a timeout is pending. In that case hardware immediately
711  * returns the ERROR that looks like a destination timeout.
712  */
713 static void destination_plugged(struct bau_desc *bau_desc,
714                         struct bau_control *bcp,
715                         struct bau_control *hmaster, struct ptc_stats *stat)
716 {
717         udelay(bcp->plugged_delay);
718         bcp->plugged_tries++;
719
720         if (bcp->plugged_tries >= bcp->plugsb4reset) {
721                 bcp->plugged_tries = 0;
722
723                 quiesce_local_uvhub(hmaster);
724
725                 spin_lock(&hmaster->queue_lock);
726                 reset_with_ipi(&bau_desc->distribution, bcp);
727                 spin_unlock(&hmaster->queue_lock);
728
729                 end_uvhub_quiesce(hmaster);
730
731                 bcp->ipi_attempts++;
732                 stat->s_resets_plug++;
733         }
734 }
735
736 static void destination_timeout(struct bau_desc *bau_desc,
737                         struct bau_control *bcp, struct bau_control *hmaster,
738                         struct ptc_stats *stat)
739 {
740         hmaster->max_concurr = 1;
741         bcp->timeout_tries++;
742         if (bcp->timeout_tries >= bcp->timeoutsb4reset) {
743                 bcp->timeout_tries = 0;
744
745                 quiesce_local_uvhub(hmaster);
746
747                 spin_lock(&hmaster->queue_lock);
748                 reset_with_ipi(&bau_desc->distribution, bcp);
749                 spin_unlock(&hmaster->queue_lock);
750
751                 end_uvhub_quiesce(hmaster);
752
753                 bcp->ipi_attempts++;
754                 stat->s_resets_timeout++;
755         }
756 }
757
758 /*
759  * Completions are taking a very long time due to a congested numalink
760  * network.
761  */
762 static void disable_for_congestion(struct bau_control *bcp,
763                                         struct ptc_stats *stat)
764 {
765         /* let only one cpu do this disabling */
766         spin_lock(&disable_lock);
767
768         if (!baudisabled && bcp->period_requests &&
769             ((bcp->period_time / bcp->period_requests) > congested_cycles)) {
770                 int tcpu;
771                 struct bau_control *tbcp;
772                 /* it becomes this cpu's job to turn on the use of the
773                    BAU again */
774                 baudisabled = 1;
775                 bcp->set_bau_off = 1;
776                 bcp->set_bau_on_time = get_cycles();
777                 bcp->set_bau_on_time += sec_2_cycles(bcp->cong_period);
778                 stat->s_bau_disabled++;
779                 for_each_present_cpu(tcpu) {
780                         tbcp = &per_cpu(bau_control, tcpu);
781                         tbcp->baudisabled = 1;
782                 }
783         }
784
785         spin_unlock(&disable_lock);
786 }
787
788 static void count_max_concurr(int stat, struct bau_control *bcp,
789                                 struct bau_control *hmaster)
790 {
791         bcp->plugged_tries = 0;
792         bcp->timeout_tries = 0;
793         if (stat != FLUSH_COMPLETE)
794                 return;
795         if (bcp->conseccompletes <= bcp->complete_threshold)
796                 return;
797         if (hmaster->max_concurr >= hmaster->max_concurr_const)
798                 return;
799         hmaster->max_concurr++;
800 }
801
802 static void record_send_stats(cycles_t time1, cycles_t time2,
803                 struct bau_control *bcp, struct ptc_stats *stat,
804                 int completion_status, int try)
805 {
806         cycles_t elapsed;
807
808         if (time2 > time1) {
809                 elapsed = time2 - time1;
810                 stat->s_time += elapsed;
811
812                 if ((completion_status == FLUSH_COMPLETE) && (try == 1)) {
813                         bcp->period_requests++;
814                         bcp->period_time += elapsed;
815                         if ((elapsed > congested_cycles) &&
816                             (bcp->period_requests > bcp->cong_reps))
817                                 disable_for_congestion(bcp, stat);
818                 }
819         } else
820                 stat->s_requestor--;
821
822         if (completion_status == FLUSH_COMPLETE && try > 1)
823                 stat->s_retriesok++;
824         else if (completion_status == FLUSH_GIVEUP)
825                 stat->s_giveup++;
826 }
827
828 /*
829  * Because of a uv1 hardware bug only a limited number of concurrent
830  * requests can be made.
831  */
832 static void uv1_throttle(struct bau_control *hmaster, struct ptc_stats *stat)
833 {
834         spinlock_t *lock = &hmaster->uvhub_lock;
835         atomic_t *v;
836
837         v = &hmaster->active_descriptor_count;
838         if (!atomic_inc_unless_ge(lock, v, hmaster->max_concurr)) {
839                 stat->s_throttles++;
840                 do {
841                         cpu_relax();
842                 } while (!atomic_inc_unless_ge(lock, v, hmaster->max_concurr));
843         }
844 }
845
846 /*
847  * Handle the completion status of a message send.
848  */
849 static void handle_cmplt(int completion_status, struct bau_desc *bau_desc,
850                         struct bau_control *bcp, struct bau_control *hmaster,
851                         struct ptc_stats *stat)
852 {
853         if (completion_status == FLUSH_RETRY_PLUGGED)
854                 destination_plugged(bau_desc, bcp, hmaster, stat);
855         else if (completion_status == FLUSH_RETRY_TIMEOUT)
856                 destination_timeout(bau_desc, bcp, hmaster, stat);
857 }
858
859 /*
860  * Send a broadcast and wait for it to complete.
861  *
862  * The flush_mask contains the cpus the broadcast is to be sent to including
863  * cpus that are on the local uvhub.
864  *
865  * Returns 0 if all flushing represented in the mask was done.
866  * Returns 1 if it gives up entirely and the original cpu mask is to be
867  * returned to the kernel.
868  */
869 int uv_flush_send_and_wait(struct cpumask *flush_mask, struct bau_control *bcp)
870 {
871         int seq_number = 0;
872         int completion_stat = 0;
873         int uv1 = 0;
874         long try = 0;
875         unsigned long index;
876         cycles_t time1;
877         cycles_t time2;
878         struct ptc_stats *stat = bcp->statp;
879         struct bau_control *hmaster = bcp->uvhub_master;
880         struct uv1_bau_msg_header *uv1_hdr = NULL;
881         struct uv2_bau_msg_header *uv2_hdr = NULL;
882         struct bau_desc *bau_desc;
883
884         if (bcp->uvhub_version == 1)
885                 uv1_throttle(hmaster, stat);
886
887         while (hmaster->uvhub_quiesce)
888                 cpu_relax();
889
890         time1 = get_cycles();
891         do {
892                 bau_desc = bcp->descriptor_base;
893                 bau_desc += (ITEMS_PER_DESC * bcp->using_desc);
894                 if (bcp->uvhub_version == 1) {
895                         uv1 = 1;
896                         uv1_hdr = &bau_desc->header.uv1_hdr;
897                 } else
898                         uv2_hdr = &bau_desc->header.uv2_hdr;
899                 if ((try == 0) || (completion_stat == FLUSH_RETRY_BUSYBUG)) {
900                         if (uv1)
901                                 uv1_hdr->msg_type = MSG_REGULAR;
902                         else
903                                 uv2_hdr->msg_type = MSG_REGULAR;
904                         seq_number = bcp->message_number++;
905                 } else {
906                         if (uv1)
907                                 uv1_hdr->msg_type = MSG_RETRY;
908                         else
909                                 uv2_hdr->msg_type = MSG_RETRY;
910                         stat->s_retry_messages++;
911                 }
912
913                 if (uv1)
914                         uv1_hdr->sequence = seq_number;
915                 else
916                         uv2_hdr->sequence = seq_number;
917                 index = (1UL << AS_PUSH_SHIFT) | bcp->using_desc;
918                 bcp->send_message = get_cycles();
919
920                 write_mmr_activation(index);
921
922                 try++;
923                 completion_stat = wait_completion(bau_desc, bcp, try);
924                 /* UV2: wait_completion() may change the bcp->using_desc */
925
926                 handle_cmplt(completion_stat, bau_desc, bcp, hmaster, stat);
927
928                 if (bcp->ipi_attempts >= bcp->ipi_reset_limit) {
929                         bcp->ipi_attempts = 0;
930                         completion_stat = FLUSH_GIVEUP;
931                         break;
932                 }
933                 cpu_relax();
934         } while ((completion_stat == FLUSH_RETRY_PLUGGED) ||
935                  (completion_stat == FLUSH_RETRY_BUSYBUG) ||
936                  (completion_stat == FLUSH_RETRY_TIMEOUT));
937
938         time2 = get_cycles();
939
940         count_max_concurr(completion_stat, bcp, hmaster);
941
942         while (hmaster->uvhub_quiesce)
943                 cpu_relax();
944
945         atomic_dec(&hmaster->active_descriptor_count);
946
947         record_send_stats(time1, time2, bcp, stat, completion_stat, try);
948
949         if (completion_stat == FLUSH_GIVEUP)
950                 /* FLUSH_GIVEUP will fall back to using IPI's for tlb flush */
951                 return 1;
952         return 0;
953 }
954
955 /*
956  * The BAU is disabled. When the disabled time period has expired, the cpu
957  * that disabled it must re-enable it.
958  * Return 0 if it is re-enabled for all cpus.
959  */
960 static int check_enable(struct bau_control *bcp, struct ptc_stats *stat)
961 {
962         int tcpu;
963         struct bau_control *tbcp;
964
965         if (bcp->set_bau_off) {
966                 if (get_cycles() >= bcp->set_bau_on_time) {
967                         stat->s_bau_reenabled++;
968                         baudisabled = 0;
969                         for_each_present_cpu(tcpu) {
970                                 tbcp = &per_cpu(bau_control, tcpu);
971                                 tbcp->baudisabled = 0;
972                                 tbcp->period_requests = 0;
973                                 tbcp->period_time = 0;
974                         }
975                         return 0;
976                 }
977         }
978         return -1;
979 }
980
981 static void record_send_statistics(struct ptc_stats *stat, int locals, int hubs,
982                                 int remotes, struct bau_desc *bau_desc)
983 {
984         stat->s_requestor++;
985         stat->s_ntargcpu += remotes + locals;
986         stat->s_ntargremotes += remotes;
987         stat->s_ntarglocals += locals;
988
989         /* uvhub statistics */
990         hubs = bau_uvhub_weight(&bau_desc->distribution);
991         if (locals) {
992                 stat->s_ntarglocaluvhub++;
993                 stat->s_ntargremoteuvhub += (hubs - 1);
994         } else
995                 stat->s_ntargremoteuvhub += hubs;
996
997         stat->s_ntarguvhub += hubs;
998
999         if (hubs >= 16)
1000                 stat->s_ntarguvhub16++;
1001         else if (hubs >= 8)
1002                 stat->s_ntarguvhub8++;
1003         else if (hubs >= 4)
1004                 stat->s_ntarguvhub4++;
1005         else if (hubs >= 2)
1006                 stat->s_ntarguvhub2++;
1007         else
1008                 stat->s_ntarguvhub1++;
1009 }
1010
1011 /*
1012  * Translate a cpu mask to the uvhub distribution mask in the BAU
1013  * activation descriptor.
1014  */
1015 static int set_distrib_bits(struct cpumask *flush_mask, struct bau_control *bcp,
1016                         struct bau_desc *bau_desc, int *localsp, int *remotesp)
1017 {
1018         int cpu;
1019         int pnode;
1020         int cnt = 0;
1021         struct hub_and_pnode *hpp;
1022
1023         for_each_cpu(cpu, flush_mask) {
1024                 /*
1025                  * The distribution vector is a bit map of pnodes, relative
1026                  * to the partition base pnode (and the partition base nasid
1027                  * in the header).
1028                  * Translate cpu to pnode and hub using a local memory array.
1029                  */
1030                 hpp = &bcp->socket_master->thp[cpu];
1031                 pnode = hpp->pnode - bcp->partition_base_pnode;
1032                 bau_uvhub_set(pnode, &bau_desc->distribution);
1033                 cnt++;
1034                 if (hpp->uvhub == bcp->uvhub)
1035                         (*localsp)++;
1036                 else
1037                         (*remotesp)++;
1038         }
1039         if (!cnt)
1040                 return 1;
1041         return 0;
1042 }
1043
1044 /*
1045  * globally purge translation cache of a virtual address or all TLB's
1046  * @cpumask: mask of all cpu's in which the address is to be removed
1047  * @mm: mm_struct containing virtual address range
1048  * @va: virtual address to be removed (or TLB_FLUSH_ALL for all TLB's on cpu)
1049  * @cpu: the current cpu
1050  *
1051  * This is the entry point for initiating any UV global TLB shootdown.
1052  *
1053  * Purges the translation caches of all specified processors of the given
1054  * virtual address, or purges all TLB's on specified processors.
1055  *
1056  * The caller has derived the cpumask from the mm_struct.  This function
1057  * is called only if there are bits set in the mask. (e.g. flush_tlb_page())
1058  *
1059  * The cpumask is converted into a uvhubmask of the uvhubs containing
1060  * those cpus.
1061  *
1062  * Note that this function should be called with preemption disabled.
1063  *
1064  * Returns NULL if all remote flushing was done.
1065  * Returns pointer to cpumask if some remote flushing remains to be
1066  * done.  The returned pointer is valid till preemption is re-enabled.
1067  */
1068 const struct cpumask *uv_flush_tlb_others(const struct cpumask *cpumask,
1069                                 struct mm_struct *mm, unsigned long va,
1070                                 unsigned int cpu)
1071 {
1072         int locals = 0;
1073         int remotes = 0;
1074         int hubs = 0;
1075         struct bau_desc *bau_desc;
1076         struct cpumask *flush_mask;
1077         struct ptc_stats *stat;
1078         struct bau_control *bcp;
1079
1080         /* kernel was booted 'nobau' */
1081         if (nobau)
1082                 return cpumask;
1083
1084         bcp = &per_cpu(bau_control, cpu);
1085         stat = bcp->statp;
1086
1087         /* bau was disabled due to slow response */
1088         if (bcp->baudisabled) {
1089                 if (check_enable(bcp, stat))
1090                         return cpumask;
1091         }
1092
1093         /*
1094          * Each sending cpu has a per-cpu mask which it fills from the caller's
1095          * cpu mask.  All cpus are converted to uvhubs and copied to the
1096          * activation descriptor.
1097          */
1098         flush_mask = (struct cpumask *)per_cpu(uv_flush_tlb_mask, cpu);
1099         /* don't actually do a shootdown of the local cpu */
1100         cpumask_andnot(flush_mask, cpumask, cpumask_of(cpu));
1101
1102         if (cpu_isset(cpu, *cpumask))
1103                 stat->s_ntargself++;
1104
1105         bau_desc = bcp->descriptor_base;
1106         bau_desc += (ITEMS_PER_DESC * bcp->using_desc);
1107         bau_uvhubs_clear(&bau_desc->distribution, UV_DISTRIBUTION_SIZE);
1108         if (set_distrib_bits(flush_mask, bcp, bau_desc, &locals, &remotes))
1109                 return NULL;
1110
1111         record_send_statistics(stat, locals, hubs, remotes, bau_desc);
1112
1113         bau_desc->payload.address = va;
1114         bau_desc->payload.sending_cpu = cpu;
1115         /*
1116          * uv_flush_send_and_wait returns 0 if all cpu's were messaged,
1117          * or 1 if it gave up and the original cpumask should be returned.
1118          */
1119         if (!uv_flush_send_and_wait(flush_mask, bcp))
1120                 return NULL;
1121         else
1122                 return cpumask;
1123 }
1124
1125 /*
1126  * Search the message queue for any 'other' message with the same software
1127  * acknowledge resource bit vector.
1128  */
1129 struct bau_pq_entry *find_another_by_swack(struct bau_pq_entry *msg,
1130                         struct bau_control *bcp, unsigned char swack_vec)
1131 {
1132         struct bau_pq_entry *msg_next = msg + 1;
1133
1134         if (msg_next > bcp->queue_last)
1135                 msg_next = bcp->queue_first;
1136         while ((msg_next->swack_vec != 0) && (msg_next != msg)) {
1137                 if (msg_next->swack_vec == swack_vec)
1138                         return msg_next;
1139                 msg_next++;
1140                 if (msg_next > bcp->queue_last)
1141                         msg_next = bcp->queue_first;
1142         }
1143         return NULL;
1144 }
1145
1146 /*
1147  * UV2 needs to work around a bug in which an arriving message has not
1148  * set a bit in the UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE register.
1149  * Such a message must be ignored.
1150  */
1151 void process_uv2_message(struct msg_desc *mdp, struct bau_control *bcp)
1152 {
1153         unsigned long mmr_image;
1154         unsigned char swack_vec;
1155         struct bau_pq_entry *msg = mdp->msg;
1156         struct bau_pq_entry *other_msg;
1157
1158         mmr_image = read_mmr_sw_ack();
1159         swack_vec = msg->swack_vec;
1160
1161         if ((swack_vec & mmr_image) == 0) {
1162                 /*
1163                  * This message was assigned a swack resource, but no
1164                  * reserved acknowlegment is pending.
1165                  * The bug has prevented this message from setting the MMR.
1166                  * And no other message has used the same sw_ack resource.
1167                  * Do the requested shootdown but do not reply to the msg.
1168                  * (the 0 means make no acknowledge)
1169                  */
1170                 bau_process_message(mdp, bcp, 0);
1171                 return;
1172         }
1173
1174         /*
1175          * Some message has set the MMR 'pending' bit; it might have been
1176          * another message.  Look for that message.
1177          */
1178         other_msg = find_another_by_swack(msg, bcp, msg->swack_vec);
1179         if (other_msg) {
1180                 /* There is another.  Do not ack the current one. */
1181                 bau_process_message(mdp, bcp, 0);
1182                 /*
1183                  * Let the natural processing of that message acknowledge
1184                  * it. Don't get the processing of sw_ack's out of order.
1185                  */
1186                 return;
1187         }
1188
1189         /*
1190          * There is no other message using this sw_ack, so it is safe to
1191          * acknowledge it.
1192          */
1193         bau_process_message(mdp, bcp, 1);
1194
1195         return;
1196 }
1197
1198 /*
1199  * The BAU message interrupt comes here. (registered by set_intr_gate)
1200  * See entry_64.S
1201  *
1202  * We received a broadcast assist message.
1203  *
1204  * Interrupts are disabled; this interrupt could represent
1205  * the receipt of several messages.
1206  *
1207  * All cores/threads on this hub get this interrupt.
1208  * The last one to see it does the software ack.
1209  * (the resource will not be freed until noninterruptable cpus see this
1210  *  interrupt; hardware may timeout the s/w ack and reply ERROR)
1211  */
1212 void uv_bau_message_interrupt(struct pt_regs *regs)
1213 {
1214         int count = 0;
1215         cycles_t time_start;
1216         struct bau_pq_entry *msg;
1217         struct bau_control *bcp;
1218         struct ptc_stats *stat;
1219         struct msg_desc msgdesc;
1220
1221         ack_APIC_irq();
1222         time_start = get_cycles();
1223
1224         bcp = &per_cpu(bau_control, smp_processor_id());
1225         stat = bcp->statp;
1226
1227         msgdesc.queue_first = bcp->queue_first;
1228         msgdesc.queue_last = bcp->queue_last;
1229
1230         msg = bcp->bau_msg_head;
1231         while (msg->swack_vec) {
1232                 count++;
1233
1234                 msgdesc.msg_slot = msg - msgdesc.queue_first;
1235                 msgdesc.msg = msg;
1236                 if (bcp->uvhub_version == 2)
1237                         process_uv2_message(&msgdesc, bcp);
1238                 else
1239                         bau_process_message(&msgdesc, bcp, 1);
1240
1241                 msg++;
1242                 if (msg > msgdesc.queue_last)
1243                         msg = msgdesc.queue_first;
1244                 bcp->bau_msg_head = msg;
1245         }
1246         stat->d_time += (get_cycles() - time_start);
1247         if (!count)
1248                 stat->d_nomsg++;
1249         else if (count > 1)
1250                 stat->d_multmsg++;
1251 }
1252
1253 /*
1254  * Each target uvhub (i.e. a uvhub that has cpu's) needs to have
1255  * shootdown message timeouts enabled.  The timeout does not cause
1256  * an interrupt, but causes an error message to be returned to
1257  * the sender.
1258  */
1259 static void __init enable_timeouts(void)
1260 {
1261         int uvhub;
1262         int nuvhubs;
1263         int pnode;
1264         unsigned long mmr_image;
1265
1266         nuvhubs = uv_num_possible_blades();
1267
1268         for (uvhub = 0; uvhub < nuvhubs; uvhub++) {
1269                 if (!uv_blade_nr_possible_cpus(uvhub))
1270                         continue;
1271
1272                 pnode = uv_blade_to_pnode(uvhub);
1273                 mmr_image = read_mmr_misc_control(pnode);
1274                 /*
1275                  * Set the timeout period and then lock it in, in three
1276                  * steps; captures and locks in the period.
1277                  *
1278                  * To program the period, the SOFT_ACK_MODE must be off.
1279                  */
1280                 mmr_image &= ~(1L << SOFTACK_MSHIFT);
1281                 write_mmr_misc_control(pnode, mmr_image);
1282                 /*
1283                  * Set the 4-bit period.
1284                  */
1285                 mmr_image &= ~((unsigned long)0xf << SOFTACK_PSHIFT);
1286                 mmr_image |= (SOFTACK_TIMEOUT_PERIOD << SOFTACK_PSHIFT);
1287                 write_mmr_misc_control(pnode, mmr_image);
1288                 /*
1289                  * UV1:
1290                  * Subsequent reversals of the timebase bit (3) cause an
1291                  * immediate timeout of one or all INTD resources as
1292                  * indicated in bits 2:0 (7 causes all of them to timeout).
1293                  */
1294                 mmr_image |= (1L << SOFTACK_MSHIFT);
1295                 if (is_uv2_hub()) {
1296                         mmr_image &= ~(1L << UV2_LEG_SHFT);
1297                         mmr_image |= (1L << UV2_EXT_SHFT);
1298                 }
1299                 write_mmr_misc_control(pnode, mmr_image);
1300         }
1301 }
1302
1303 static void *ptc_seq_start(struct seq_file *file, loff_t *offset)
1304 {
1305         if (*offset < num_possible_cpus())
1306                 return offset;
1307         return NULL;
1308 }
1309
1310 static void *ptc_seq_next(struct seq_file *file, void *data, loff_t *offset)
1311 {
1312         (*offset)++;
1313         if (*offset < num_possible_cpus())
1314                 return offset;
1315         return NULL;
1316 }
1317
1318 static void ptc_seq_stop(struct seq_file *file, void *data)
1319 {
1320 }
1321
1322 static inline unsigned long long usec_2_cycles(unsigned long microsec)
1323 {
1324         unsigned long ns;
1325         unsigned long long cyc;
1326
1327         ns = microsec * 1000;
1328         cyc = (ns << CYC2NS_SCALE_FACTOR)/(per_cpu(cyc2ns, smp_processor_id()));
1329         return cyc;
1330 }
1331
1332 /*
1333  * Display the statistics thru /proc/sgi_uv/ptc_statistics
1334  * 'data' points to the cpu number
1335  * Note: see the descriptions in stat_description[].
1336  */
1337 static int ptc_seq_show(struct seq_file *file, void *data)
1338 {
1339         struct ptc_stats *stat;
1340         int cpu;
1341
1342         cpu = *(loff_t *)data;
1343         if (!cpu) {
1344                 seq_printf(file,
1345                         "# cpu sent stime self locals remotes ncpus localhub ");
1346                 seq_printf(file,
1347                         "remotehub numuvhubs numuvhubs16 numuvhubs8 ");
1348                 seq_printf(file,
1349                         "numuvhubs4 numuvhubs2 numuvhubs1 dto retries rok ");
1350                 seq_printf(file,
1351                         "resetp resett giveup sto bz throt swack recv rtime ");
1352                 seq_printf(file,
1353                         "all one mult none retry canc nocan reset rcan ");
1354                 seq_printf(file,
1355                         "disable enable wars warshw warwaits\n");
1356         }
1357         if (cpu < num_possible_cpus() && cpu_online(cpu)) {
1358                 stat = &per_cpu(ptcstats, cpu);
1359                 /* source side statistics */
1360                 seq_printf(file,
1361                         "cpu %d %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld ",
1362                            cpu, stat->s_requestor, cycles_2_us(stat->s_time),
1363                            stat->s_ntargself, stat->s_ntarglocals,
1364                            stat->s_ntargremotes, stat->s_ntargcpu,
1365                            stat->s_ntarglocaluvhub, stat->s_ntargremoteuvhub,
1366                            stat->s_ntarguvhub, stat->s_ntarguvhub16);
1367                 seq_printf(file, "%ld %ld %ld %ld %ld ",
1368                            stat->s_ntarguvhub8, stat->s_ntarguvhub4,
1369                            stat->s_ntarguvhub2, stat->s_ntarguvhub1,
1370                            stat->s_dtimeout);
1371                 seq_printf(file, "%ld %ld %ld %ld %ld %ld %ld %ld ",
1372                            stat->s_retry_messages, stat->s_retriesok,
1373                            stat->s_resets_plug, stat->s_resets_timeout,
1374                            stat->s_giveup, stat->s_stimeout,
1375                            stat->s_busy, stat->s_throttles);
1376
1377                 /* destination side statistics */
1378                 seq_printf(file,
1379                            "%lx %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld ",
1380                            read_gmmr_sw_ack(uv_cpu_to_pnode(cpu)),
1381                            stat->d_requestee, cycles_2_us(stat->d_time),
1382                            stat->d_alltlb, stat->d_onetlb, stat->d_multmsg,
1383                            stat->d_nomsg, stat->d_retries, stat->d_canceled,
1384                            stat->d_nocanceled, stat->d_resets,
1385                            stat->d_rcanceled);
1386                 seq_printf(file, "%ld %ld %ld %ld %ld\n",
1387                         stat->s_bau_disabled, stat->s_bau_reenabled,
1388                         stat->s_uv2_wars, stat->s_uv2_wars_hw,
1389                         stat->s_uv2_war_waits);
1390         }
1391         return 0;
1392 }
1393
1394 /*
1395  * Display the tunables thru debugfs
1396  */
1397 static ssize_t tunables_read(struct file *file, char __user *userbuf,
1398                                 size_t count, loff_t *ppos)
1399 {
1400         char *buf;
1401         int ret;
1402
1403         buf = kasprintf(GFP_KERNEL, "%s %s %s\n%d %d %d %d %d %d %d %d %d\n",
1404                 "max_concur plugged_delay plugsb4reset",
1405                 "timeoutsb4reset ipi_reset_limit complete_threshold",
1406                 "congested_response_us congested_reps congested_period",
1407                 max_concurr, plugged_delay, plugsb4reset,
1408                 timeoutsb4reset, ipi_reset_limit, complete_threshold,
1409                 congested_respns_us, congested_reps, congested_period);
1410
1411         if (!buf)
1412                 return -ENOMEM;
1413
1414         ret = simple_read_from_buffer(userbuf, count, ppos, buf, strlen(buf));
1415         kfree(buf);
1416         return ret;
1417 }
1418
1419 /*
1420  * handle a write to /proc/sgi_uv/ptc_statistics
1421  * -1: reset the statistics
1422  *  0: display meaning of the statistics
1423  */
1424 static ssize_t ptc_proc_write(struct file *file, const char __user *user,
1425                                 size_t count, loff_t *data)
1426 {
1427         int cpu;
1428         int i;
1429         int elements;
1430         long input_arg;
1431         char optstr[64];
1432         struct ptc_stats *stat;
1433
1434         if (count == 0 || count > sizeof(optstr))
1435                 return -EINVAL;
1436         if (copy_from_user(optstr, user, count))
1437                 return -EFAULT;
1438         optstr[count - 1] = '\0';
1439
1440         if (strict_strtol(optstr, 10, &input_arg) < 0) {
1441                 printk(KERN_DEBUG "%s is invalid\n", optstr);
1442                 return -EINVAL;
1443         }
1444
1445         if (input_arg == 0) {
1446                 elements = sizeof(stat_description)/sizeof(*stat_description);
1447                 printk(KERN_DEBUG "# cpu:      cpu number\n");
1448                 printk(KERN_DEBUG "Sender statistics:\n");
1449                 for (i = 0; i < elements; i++)
1450                         printk(KERN_DEBUG "%s\n", stat_description[i]);
1451         } else if (input_arg == -1) {
1452                 for_each_present_cpu(cpu) {
1453                         stat = &per_cpu(ptcstats, cpu);
1454                         memset(stat, 0, sizeof(struct ptc_stats));
1455                 }
1456         }
1457
1458         return count;
1459 }
1460
1461 static int local_atoi(const char *name)
1462 {
1463         int val = 0;
1464
1465         for (;; name++) {
1466                 switch (*name) {
1467                 case '0' ... '9':
1468                         val = 10*val+(*name-'0');
1469                         break;
1470                 default:
1471                         return val;
1472                 }
1473         }
1474 }
1475
1476 /*
1477  * Parse the values written to /sys/kernel/debug/sgi_uv/bau_tunables.
1478  * Zero values reset them to defaults.
1479  */
1480 static int parse_tunables_write(struct bau_control *bcp, char *instr,
1481                                 int count)
1482 {
1483         char *p;
1484         char *q;
1485         int cnt = 0;
1486         int val;
1487         int e = sizeof(tunables) / sizeof(*tunables);
1488
1489         p = instr + strspn(instr, WHITESPACE);
1490         q = p;
1491         for (; *p; p = q + strspn(q, WHITESPACE)) {
1492                 q = p + strcspn(p, WHITESPACE);
1493                 cnt++;
1494                 if (q == p)
1495                         break;
1496         }
1497         if (cnt != e) {
1498                 printk(KERN_INFO "bau tunable error: should be %d values\n", e);
1499                 return -EINVAL;
1500         }
1501
1502         p = instr + strspn(instr, WHITESPACE);
1503         q = p;
1504         for (cnt = 0; *p; p = q + strspn(q, WHITESPACE), cnt++) {
1505                 q = p + strcspn(p, WHITESPACE);
1506                 val = local_atoi(p);
1507                 switch (cnt) {
1508                 case 0:
1509                         if (val == 0) {
1510                                 max_concurr = MAX_BAU_CONCURRENT;
1511                                 max_concurr_const = MAX_BAU_CONCURRENT;
1512                                 continue;
1513                         }
1514                         if (val < 1 || val > bcp->cpus_in_uvhub) {
1515                                 printk(KERN_DEBUG
1516                                 "Error: BAU max concurrent %d is invalid\n",
1517                                 val);
1518                                 return -EINVAL;
1519                         }
1520                         max_concurr = val;
1521                         max_concurr_const = val;
1522                         continue;
1523                 default:
1524                         if (val == 0)
1525                                 *tunables[cnt].tunp = tunables[cnt].deflt;
1526                         else
1527                                 *tunables[cnt].tunp = val;
1528                         continue;
1529                 }
1530                 if (q == p)
1531                         break;
1532         }
1533         return 0;
1534 }
1535
1536 /*
1537  * Handle a write to debugfs. (/sys/kernel/debug/sgi_uv/bau_tunables)
1538  */
1539 static ssize_t tunables_write(struct file *file, const char __user *user,
1540                                 size_t count, loff_t *data)
1541 {
1542         int cpu;
1543         int ret;
1544         char instr[100];
1545         struct bau_control *bcp;
1546
1547         if (count == 0 || count > sizeof(instr)-1)
1548                 return -EINVAL;
1549         if (copy_from_user(instr, user, count))
1550                 return -EFAULT;
1551
1552         instr[count] = '\0';
1553
1554         cpu = get_cpu();
1555         bcp = &per_cpu(bau_control, cpu);
1556         ret = parse_tunables_write(bcp, instr, count);
1557         put_cpu();
1558         if (ret)
1559                 return ret;
1560
1561         for_each_present_cpu(cpu) {
1562                 bcp = &per_cpu(bau_control, cpu);
1563                 bcp->max_concurr =              max_concurr;
1564                 bcp->max_concurr_const =        max_concurr;
1565                 bcp->plugged_delay =            plugged_delay;
1566                 bcp->plugsb4reset =             plugsb4reset;
1567                 bcp->timeoutsb4reset =          timeoutsb4reset;
1568                 bcp->ipi_reset_limit =          ipi_reset_limit;
1569                 bcp->complete_threshold =       complete_threshold;
1570                 bcp->cong_response_us =         congested_respns_us;
1571                 bcp->cong_reps =                congested_reps;
1572                 bcp->cong_period =              congested_period;
1573         }
1574         return count;
1575 }
1576
1577 static const struct seq_operations uv_ptc_seq_ops = {
1578         .start          = ptc_seq_start,
1579         .next           = ptc_seq_next,
1580         .stop           = ptc_seq_stop,
1581         .show           = ptc_seq_show
1582 };
1583
1584 static int ptc_proc_open(struct inode *inode, struct file *file)
1585 {
1586         return seq_open(file, &uv_ptc_seq_ops);
1587 }
1588
1589 static int tunables_open(struct inode *inode, struct file *file)
1590 {
1591         return 0;
1592 }
1593
1594 static const struct file_operations proc_uv_ptc_operations = {
1595         .open           = ptc_proc_open,
1596         .read           = seq_read,
1597         .write          = ptc_proc_write,
1598         .llseek         = seq_lseek,
1599         .release        = seq_release,
1600 };
1601
1602 static const struct file_operations tunables_fops = {
1603         .open           = tunables_open,
1604         .read           = tunables_read,
1605         .write          = tunables_write,
1606         .llseek         = default_llseek,
1607 };
1608
1609 static int __init uv_ptc_init(void)
1610 {
1611         struct proc_dir_entry *proc_uv_ptc;
1612
1613         if (!is_uv_system())
1614                 return 0;
1615
1616         proc_uv_ptc = proc_create(UV_PTC_BASENAME, 0444, NULL,
1617                                   &proc_uv_ptc_operations);
1618         if (!proc_uv_ptc) {
1619                 printk(KERN_ERR "unable to create %s proc entry\n",
1620                        UV_PTC_BASENAME);
1621                 return -EINVAL;
1622         }
1623
1624         tunables_dir = debugfs_create_dir(UV_BAU_TUNABLES_DIR, NULL);
1625         if (!tunables_dir) {
1626                 printk(KERN_ERR "unable to create debugfs directory %s\n",
1627                        UV_BAU_TUNABLES_DIR);
1628                 return -EINVAL;
1629         }
1630         tunables_file = debugfs_create_file(UV_BAU_TUNABLES_FILE, 0600,
1631                                         tunables_dir, NULL, &tunables_fops);
1632         if (!tunables_file) {
1633                 printk(KERN_ERR "unable to create debugfs file %s\n",
1634                        UV_BAU_TUNABLES_FILE);
1635                 return -EINVAL;
1636         }
1637         return 0;
1638 }
1639
1640 /*
1641  * Initialize the sending side's sending buffers.
1642  */
1643 static void activation_descriptor_init(int node, int pnode, int base_pnode)
1644 {
1645         int i;
1646         int cpu;
1647         int uv1 = 0;
1648         unsigned long gpa;
1649         unsigned long m;
1650         unsigned long n;
1651         size_t dsize;
1652         struct bau_desc *bau_desc;
1653         struct bau_desc *bd2;
1654         struct uv1_bau_msg_header *uv1_hdr;
1655         struct uv2_bau_msg_header *uv2_hdr;
1656         struct bau_control *bcp;
1657
1658         /*
1659          * each bau_desc is 64 bytes; there are 8 (ITEMS_PER_DESC)
1660          * per cpu; and one per cpu on the uvhub (ADP_SZ)
1661          */
1662         dsize = sizeof(struct bau_desc) * ADP_SZ * ITEMS_PER_DESC;
1663         bau_desc = kmalloc_node(dsize, GFP_KERNEL, node);
1664         BUG_ON(!bau_desc);
1665
1666         gpa = uv_gpa(bau_desc);
1667         n = uv_gpa_to_gnode(gpa);
1668         m = uv_gpa_to_offset(gpa);
1669         if (is_uv1_hub())
1670                 uv1 = 1;
1671
1672         /* the 14-bit pnode */
1673         write_mmr_descriptor_base(pnode, (n << UV_DESC_PSHIFT | m));
1674         /*
1675          * Initializing all 8 (ITEMS_PER_DESC) descriptors for each
1676          * cpu even though we only use the first one; one descriptor can
1677          * describe a broadcast to 256 uv hubs.
1678          */
1679         for (i = 0, bd2 = bau_desc; i < (ADP_SZ * ITEMS_PER_DESC); i++, bd2++) {
1680                 memset(bd2, 0, sizeof(struct bau_desc));
1681                 if (uv1) {
1682                         uv1_hdr = &bd2->header.uv1_hdr;
1683                         uv1_hdr->swack_flag =   1;
1684                         /*
1685                          * The base_dest_nasid set in the message header
1686                          * is the nasid of the first uvhub in the partition.
1687                          * The bit map will indicate destination pnode numbers
1688                          * relative to that base. They may not be consecutive
1689                          * if nasid striding is being used.
1690                          */
1691                         uv1_hdr->base_dest_nasid =
1692                                                 UV_PNODE_TO_NASID(base_pnode);
1693                         uv1_hdr->dest_subnodeid =       UV_LB_SUBNODEID;
1694                         uv1_hdr->command =              UV_NET_ENDPOINT_INTD;
1695                         uv1_hdr->int_both =             1;
1696                         /*
1697                          * all others need to be set to zero:
1698                          *   fairness chaining multilevel count replied_to
1699                          */
1700                 } else {
1701                         uv2_hdr = &bd2->header.uv2_hdr;
1702                         uv2_hdr->swack_flag =   1;
1703                         uv2_hdr->base_dest_nasid =
1704                                                 UV_PNODE_TO_NASID(base_pnode);
1705                         uv2_hdr->dest_subnodeid =       UV_LB_SUBNODEID;
1706                         uv2_hdr->command =              UV_NET_ENDPOINT_INTD;
1707                 }
1708         }
1709         for_each_present_cpu(cpu) {
1710                 if (pnode != uv_blade_to_pnode(uv_cpu_to_blade_id(cpu)))
1711                         continue;
1712                 bcp = &per_cpu(bau_control, cpu);
1713                 bcp->descriptor_base = bau_desc;
1714         }
1715 }
1716
1717 /*
1718  * initialize the destination side's receiving buffers
1719  * entered for each uvhub in the partition
1720  * - node is first node (kernel memory notion) on the uvhub
1721  * - pnode is the uvhub's physical identifier
1722  */
1723 static void pq_init(int node, int pnode)
1724 {
1725         int cpu;
1726         size_t plsize;
1727         char *cp;
1728         void *vp;
1729         unsigned long pn;
1730         unsigned long first;
1731         unsigned long pn_first;
1732         unsigned long last;
1733         struct bau_pq_entry *pqp;
1734         struct bau_control *bcp;
1735
1736         plsize = (DEST_Q_SIZE + 1) * sizeof(struct bau_pq_entry);
1737         vp = kmalloc_node(plsize, GFP_KERNEL, node);
1738         pqp = (struct bau_pq_entry *)vp;
1739         BUG_ON(!pqp);
1740
1741         cp = (char *)pqp + 31;
1742         pqp = (struct bau_pq_entry *)(((unsigned long)cp >> 5) << 5);
1743
1744         for_each_present_cpu(cpu) {
1745                 if (pnode != uv_cpu_to_pnode(cpu))
1746                         continue;
1747                 /* for every cpu on this pnode: */
1748                 bcp = &per_cpu(bau_control, cpu);
1749                 bcp->queue_first        = pqp;
1750                 bcp->bau_msg_head       = pqp;
1751                 bcp->queue_last         = pqp + (DEST_Q_SIZE - 1);
1752         }
1753         /*
1754          * need the gnode of where the memory was really allocated
1755          */
1756         pn = uv_gpa_to_gnode(uv_gpa(pqp));
1757         first = uv_physnodeaddr(pqp);
1758         pn_first = ((unsigned long)pn << UV_PAYLOADQ_PNODE_SHIFT) | first;
1759         last = uv_physnodeaddr(pqp + (DEST_Q_SIZE - 1));
1760         write_mmr_payload_first(pnode, pn_first);
1761         write_mmr_payload_tail(pnode, first);
1762         write_mmr_payload_last(pnode, last);
1763         write_gmmr_sw_ack(pnode, 0xffffUL);
1764
1765         /* in effect, all msg_type's are set to MSG_NOOP */
1766         memset(pqp, 0, sizeof(struct bau_pq_entry) * DEST_Q_SIZE);
1767 }
1768
1769 /*
1770  * Initialization of each UV hub's structures
1771  */
1772 static void __init init_uvhub(int uvhub, int vector, int base_pnode)
1773 {
1774         int node;
1775         int pnode;
1776         unsigned long apicid;
1777
1778         node = uvhub_to_first_node(uvhub);
1779         pnode = uv_blade_to_pnode(uvhub);
1780
1781         activation_descriptor_init(node, pnode, base_pnode);
1782
1783         pq_init(node, pnode);
1784         /*
1785          * The below initialization can't be in firmware because the
1786          * messaging IRQ will be determined by the OS.
1787          */
1788         apicid = uvhub_to_first_apicid(uvhub) | uv_apicid_hibits;
1789         write_mmr_data_config(pnode, ((apicid << 32) | vector));
1790 }
1791
1792 /*
1793  * We will set BAU_MISC_CONTROL with a timeout period.
1794  * But the BIOS has set UVH_AGING_PRESCALE_SEL and UVH_TRANSACTION_TIMEOUT.
1795  * So the destination timeout period has to be calculated from them.
1796  */
1797 static int calculate_destination_timeout(void)
1798 {
1799         unsigned long mmr_image;
1800         int mult1;
1801         int mult2;
1802         int index;
1803         int base;
1804         int ret;
1805         unsigned long ts_ns;
1806
1807         if (is_uv1_hub()) {
1808                 mult1 = SOFTACK_TIMEOUT_PERIOD & BAU_MISC_CONTROL_MULT_MASK;
1809                 mmr_image = uv_read_local_mmr(UVH_AGING_PRESCALE_SEL);
1810                 index = (mmr_image >> BAU_URGENCY_7_SHIFT) & BAU_URGENCY_7_MASK;
1811                 mmr_image = uv_read_local_mmr(UVH_TRANSACTION_TIMEOUT);
1812                 mult2 = (mmr_image >> BAU_TRANS_SHIFT) & BAU_TRANS_MASK;
1813                 base = timeout_base_ns[index];
1814                 ts_ns = base * mult1 * mult2;
1815                 ret = ts_ns / 1000;
1816         } else {
1817                 /* 4 bits  0/1 for 10/80us base, 3 bits of multiplier */
1818                 mmr_image = uv_read_local_mmr(UVH_LB_BAU_MISC_CONTROL);
1819                 mmr_image = (mmr_image & UV_SA_MASK) >> UV_SA_SHFT;
1820                 if (mmr_image & (1L << UV2_ACK_UNITS_SHFT))
1821                         base = 80;
1822                 else
1823                         base = 10;
1824                 mult1 = mmr_image & UV2_ACK_MASK;
1825                 ret = mult1 * base;
1826         }
1827         return ret;
1828 }
1829
1830 static void __init init_per_cpu_tunables(void)
1831 {
1832         int cpu;
1833         struct bau_control *bcp;
1834
1835         for_each_present_cpu(cpu) {
1836                 bcp = &per_cpu(bau_control, cpu);
1837                 bcp->baudisabled                = 0;
1838                 bcp->statp                      = &per_cpu(ptcstats, cpu);
1839                 /* time interval to catch a hardware stay-busy bug */
1840                 bcp->timeout_interval           = usec_2_cycles(2*timeout_us);
1841                 bcp->max_concurr                = max_concurr;
1842                 bcp->max_concurr_const          = max_concurr;
1843                 bcp->plugged_delay              = plugged_delay;
1844                 bcp->plugsb4reset               = plugsb4reset;
1845                 bcp->timeoutsb4reset            = timeoutsb4reset;
1846                 bcp->ipi_reset_limit            = ipi_reset_limit;
1847                 bcp->complete_threshold         = complete_threshold;
1848                 bcp->cong_response_us           = congested_respns_us;
1849                 bcp->cong_reps                  = congested_reps;
1850                 bcp->cong_period                = congested_period;
1851                 bcp->clocks_per_100_usec =      usec_2_cycles(100);
1852         }
1853 }
1854
1855 /*
1856  * Scan all cpus to collect blade and socket summaries.
1857  */
1858 static int __init get_cpu_topology(int base_pnode,
1859                                         struct uvhub_desc *uvhub_descs,
1860                                         unsigned char *uvhub_mask)
1861 {
1862         int cpu;
1863         int pnode;
1864         int uvhub;
1865         int socket;
1866         struct bau_control *bcp;
1867         struct uvhub_desc *bdp;
1868         struct socket_desc *sdp;
1869
1870         for_each_present_cpu(cpu) {
1871                 bcp = &per_cpu(bau_control, cpu);
1872
1873                 memset(bcp, 0, sizeof(struct bau_control));
1874
1875                 pnode = uv_cpu_hub_info(cpu)->pnode;
1876                 if ((pnode - base_pnode) >= UV_DISTRIBUTION_SIZE) {
1877                         printk(KERN_EMERG
1878                                 "cpu %d pnode %d-%d beyond %d; BAU disabled\n",
1879                                 cpu, pnode, base_pnode, UV_DISTRIBUTION_SIZE);
1880                         return 1;
1881                 }
1882
1883                 bcp->osnode = cpu_to_node(cpu);
1884                 bcp->partition_base_pnode = base_pnode;
1885
1886                 uvhub = uv_cpu_hub_info(cpu)->numa_blade_id;
1887                 *(uvhub_mask + (uvhub/8)) |= (1 << (uvhub%8));
1888                 bdp = &uvhub_descs[uvhub];
1889
1890                 bdp->num_cpus++;
1891                 bdp->uvhub = uvhub;
1892                 bdp->pnode = pnode;
1893
1894                 /* kludge: 'assuming' one node per socket, and assuming that
1895                    disabling a socket just leaves a gap in node numbers */
1896                 socket = bcp->osnode & 1;
1897                 bdp->socket_mask |= (1 << socket);
1898                 sdp = &bdp->socket[socket];
1899                 sdp->cpu_number[sdp->num_cpus] = cpu;
1900                 sdp->num_cpus++;
1901                 if (sdp->num_cpus > MAX_CPUS_PER_SOCKET) {
1902                         printk(KERN_EMERG "%d cpus per socket invalid\n",
1903                                 sdp->num_cpus);
1904                         return 1;
1905                 }
1906         }
1907         return 0;
1908 }
1909
1910 /*
1911  * Each socket is to get a local array of pnodes/hubs.
1912  */
1913 static void make_per_cpu_thp(struct bau_control *smaster)
1914 {
1915         int cpu;
1916         size_t hpsz = sizeof(struct hub_and_pnode) * num_possible_cpus();
1917
1918         smaster->thp = kmalloc_node(hpsz, GFP_KERNEL, smaster->osnode);
1919         memset(smaster->thp, 0, hpsz);
1920         for_each_present_cpu(cpu) {
1921                 smaster->thp[cpu].pnode = uv_cpu_hub_info(cpu)->pnode;
1922                 smaster->thp[cpu].uvhub = uv_cpu_hub_info(cpu)->numa_blade_id;
1923         }
1924 }
1925
1926 /*
1927  * Each uvhub is to get a local cpumask.
1928  */
1929 static void make_per_hub_cpumask(struct bau_control *hmaster)
1930 {
1931         int sz = sizeof(cpumask_t);
1932
1933         hmaster->cpumask = kzalloc_node(sz, GFP_KERNEL, hmaster->osnode);
1934 }
1935
1936 /*
1937  * Initialize all the per_cpu information for the cpu's on a given socket,
1938  * given what has been gathered into the socket_desc struct.
1939  * And reports the chosen hub and socket masters back to the caller.
1940  */
1941 static int scan_sock(struct socket_desc *sdp, struct uvhub_desc *bdp,
1942                         struct bau_control **smasterp,
1943                         struct bau_control **hmasterp)
1944 {
1945         int i;
1946         int cpu;
1947         struct bau_control *bcp;
1948
1949         for (i = 0; i < sdp->num_cpus; i++) {
1950                 cpu = sdp->cpu_number[i];
1951                 bcp = &per_cpu(bau_control, cpu);
1952                 bcp->cpu = cpu;
1953                 if (i == 0) {
1954                         *smasterp = bcp;
1955                         if (!(*hmasterp))
1956                                 *hmasterp = bcp;
1957                 }
1958                 bcp->cpus_in_uvhub = bdp->num_cpus;
1959                 bcp->cpus_in_socket = sdp->num_cpus;
1960                 bcp->socket_master = *smasterp;
1961                 bcp->uvhub = bdp->uvhub;
1962                 if (is_uv1_hub())
1963                         bcp->uvhub_version = 1;
1964                 else if (is_uv2_hub())
1965                         bcp->uvhub_version = 2;
1966                 else {
1967                         printk(KERN_EMERG "uvhub version not 1 or 2\n");
1968                         return 1;
1969                 }
1970                 bcp->uvhub_master = *hmasterp;
1971                 bcp->uvhub_cpu = uv_cpu_hub_info(cpu)->blade_processor_id;
1972                 bcp->using_desc = bcp->uvhub_cpu;
1973                 if (bcp->uvhub_cpu >= MAX_CPUS_PER_UVHUB) {
1974                         printk(KERN_EMERG "%d cpus per uvhub invalid\n",
1975                                 bcp->uvhub_cpu);
1976                         return 1;
1977                 }
1978         }
1979         return 0;
1980 }
1981
1982 /*
1983  * Summarize the blade and socket topology into the per_cpu structures.
1984  */
1985 static int __init summarize_uvhub_sockets(int nuvhubs,
1986                         struct uvhub_desc *uvhub_descs,
1987                         unsigned char *uvhub_mask)
1988 {
1989         int socket;
1990         int uvhub;
1991         unsigned short socket_mask;
1992
1993         for (uvhub = 0; uvhub < nuvhubs; uvhub++) {
1994                 struct uvhub_desc *bdp;
1995                 struct bau_control *smaster = NULL;
1996                 struct bau_control *hmaster = NULL;
1997
1998                 if (!(*(uvhub_mask + (uvhub/8)) & (1 << (uvhub%8))))
1999                         continue;
2000
2001                 bdp = &uvhub_descs[uvhub];
2002                 socket_mask = bdp->socket_mask;
2003                 socket = 0;
2004                 while (socket_mask) {
2005                         struct socket_desc *sdp;
2006                         if ((socket_mask & 1)) {
2007                                 sdp = &bdp->socket[socket];
2008                                 if (scan_sock(sdp, bdp, &smaster, &hmaster))
2009                                         return 1;
2010                                 make_per_cpu_thp(smaster);
2011                         }
2012                         socket++;
2013                         socket_mask = (socket_mask >> 1);
2014                 }
2015                 make_per_hub_cpumask(hmaster);
2016         }
2017         return 0;
2018 }
2019
2020 /*
2021  * initialize the bau_control structure for each cpu
2022  */
2023 static int __init init_per_cpu(int nuvhubs, int base_part_pnode)
2024 {
2025         unsigned char *uvhub_mask;
2026         void *vp;
2027         struct uvhub_desc *uvhub_descs;
2028
2029         timeout_us = calculate_destination_timeout();
2030
2031         vp = kmalloc(nuvhubs * sizeof(struct uvhub_desc), GFP_KERNEL);
2032         uvhub_descs = (struct uvhub_desc *)vp;
2033         memset(uvhub_descs, 0, nuvhubs * sizeof(struct uvhub_desc));
2034         uvhub_mask = kzalloc((nuvhubs+7)/8, GFP_KERNEL);
2035
2036         if (get_cpu_topology(base_part_pnode, uvhub_descs, uvhub_mask))
2037                 goto fail;
2038
2039         if (summarize_uvhub_sockets(nuvhubs, uvhub_descs, uvhub_mask))
2040                 goto fail;
2041
2042         kfree(uvhub_descs);
2043         kfree(uvhub_mask);
2044         init_per_cpu_tunables();
2045         return 0;
2046
2047 fail:
2048         kfree(uvhub_descs);
2049         kfree(uvhub_mask);
2050         return 1;
2051 }
2052
2053 /*
2054  * Initialization of BAU-related structures
2055  */
2056 static int __init uv_bau_init(void)
2057 {
2058         int uvhub;
2059         int pnode;
2060         int nuvhubs;
2061         int cur_cpu;
2062         int cpus;
2063         int vector;
2064         cpumask_var_t *mask;
2065
2066         if (!is_uv_system())
2067                 return 0;
2068
2069         if (nobau)
2070                 return 0;
2071
2072         for_each_possible_cpu(cur_cpu) {
2073                 mask = &per_cpu(uv_flush_tlb_mask, cur_cpu);
2074                 zalloc_cpumask_var_node(mask, GFP_KERNEL, cpu_to_node(cur_cpu));
2075         }
2076
2077         nuvhubs = uv_num_possible_blades();
2078         spin_lock_init(&disable_lock);
2079         congested_cycles = usec_2_cycles(congested_respns_us);
2080
2081         uv_base_pnode = 0x7fffffff;
2082         for (uvhub = 0; uvhub < nuvhubs; uvhub++) {
2083                 cpus = uv_blade_nr_possible_cpus(uvhub);
2084                 if (cpus && (uv_blade_to_pnode(uvhub) < uv_base_pnode))
2085                         uv_base_pnode = uv_blade_to_pnode(uvhub);
2086         }
2087
2088         enable_timeouts();
2089
2090         if (init_per_cpu(nuvhubs, uv_base_pnode)) {
2091                 nobau = 1;
2092                 return 0;
2093         }
2094
2095         vector = UV_BAU_MESSAGE;
2096         for_each_possible_blade(uvhub)
2097                 if (uv_blade_nr_possible_cpus(uvhub))
2098                         init_uvhub(uvhub, vector, uv_base_pnode);
2099
2100         alloc_intr_gate(vector, uv_bau_message_intr1);
2101
2102         for_each_possible_blade(uvhub) {
2103                 if (uv_blade_nr_possible_cpus(uvhub)) {
2104                         unsigned long val;
2105                         unsigned long mmr;
2106                         pnode = uv_blade_to_pnode(uvhub);
2107                         /* INIT the bau */
2108                         val = 1L << 63;
2109                         write_gmmr_activation(pnode, val);
2110                         mmr = 1; /* should be 1 to broadcast to both sockets */
2111                         if (!is_uv1_hub())
2112                                 write_mmr_data_broadcast(pnode, mmr);
2113                 }
2114         }
2115
2116         return 0;
2117 }
2118 core_initcall(uv_bau_init);
2119 fs_initcall(uv_ptc_init);