1 // SPDX-License-Identifier: GPL-2.0
3 * x86_64 specific EFI support functions
4 * Based on Extensible Firmware Interface Specification version 1.0
6 * Copyright (C) 2005-2008 Intel Co.
7 * Fenghua Yu <fenghua.yu@intel.com>
8 * Bibo Mao <bibo.mao@intel.com>
9 * Chandramouli Narayanan <mouli@linux.intel.com>
10 * Huang Ying <ying.huang@intel.com>
12 * Code to convert EFI to E820 map has been implemented in elilo bootloader
13 * based on a EFI patch by Edgar Hucek. Based on the E820 map, the page table
14 * is setup appropriately for EFI runtime code.
19 #define pr_fmt(fmt) "efi: " fmt
21 #include <linux/kernel.h>
22 #include <linux/init.h>
24 #include <linux/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/memblock.h>
27 #include <linux/ioport.h>
28 #include <linux/mc146818rtc.h>
29 #include <linux/efi.h>
30 #include <linux/export.h>
31 #include <linux/uaccess.h>
33 #include <linux/reboot.h>
34 #include <linux/slab.h>
35 #include <linux/ucs2_string.h>
36 #include <linux/mem_encrypt.h>
37 #include <linux/sched/task.h>
39 #include <asm/setup.h>
41 #include <asm/e820/api.h>
42 #include <asm/tlbflush.h>
43 #include <asm/proto.h>
45 #include <asm/cacheflush.h>
46 #include <asm/fixmap.h>
47 #include <asm/realmode.h>
49 #include <asm/pgalloc.h>
50 #include <asm/sev-es.h>
53 * We allocate runtime services regions top-down, starting from -4G, i.e.
54 * 0xffff_ffff_0000_0000 and limit EFI VA mapping space to 64G.
56 static u64 efi_va = EFI_VA_START;
58 struct efi_scratch efi_scratch;
60 EXPORT_SYMBOL_GPL(efi_mm);
63 * We need our own copy of the higher levels of the page tables
64 * because we want to avoid inserting EFI region mappings (EFI_VA_END
65 * to EFI_VA_START) into the standard kernel page tables. Everything
66 * else can be shared, see efi_sync_low_kernel_mappings().
68 * We don't want the pgd on the pgd_list and cannot use pgd_alloc() for the
71 int __init efi_alloc_page_tables(void)
78 gfp_mask = GFP_KERNEL | __GFP_ZERO;
79 efi_pgd = (pgd_t *)__get_free_pages(gfp_mask, PGD_ALLOCATION_ORDER);
83 pgd = efi_pgd + pgd_index(EFI_VA_END);
84 p4d = p4d_alloc(&init_mm, pgd, EFI_VA_END);
88 pud = pud_alloc(&init_mm, p4d, EFI_VA_END);
93 mm_init_cpumask(&efi_mm);
94 init_new_context(NULL, &efi_mm);
99 if (pgtable_l5_enabled())
100 free_page((unsigned long)pgd_page_vaddr(*pgd));
102 free_pages((unsigned long)efi_pgd, PGD_ALLOCATION_ORDER);
108 * Add low kernel mappings for passing arguments to EFI functions.
110 void efi_sync_low_kernel_mappings(void)
112 unsigned num_entries;
113 pgd_t *pgd_k, *pgd_efi;
114 p4d_t *p4d_k, *p4d_efi;
115 pud_t *pud_k, *pud_efi;
116 pgd_t *efi_pgd = efi_mm.pgd;
119 * We can share all PGD entries apart from the one entry that
120 * covers the EFI runtime mapping space.
122 * Make sure the EFI runtime region mappings are guaranteed to
123 * only span a single PGD entry and that the entry also maps
124 * other important kernel regions.
126 MAYBE_BUILD_BUG_ON(pgd_index(EFI_VA_END) != pgd_index(MODULES_END));
127 MAYBE_BUILD_BUG_ON((EFI_VA_START & PGDIR_MASK) !=
128 (EFI_VA_END & PGDIR_MASK));
130 pgd_efi = efi_pgd + pgd_index(PAGE_OFFSET);
131 pgd_k = pgd_offset_k(PAGE_OFFSET);
133 num_entries = pgd_index(EFI_VA_END) - pgd_index(PAGE_OFFSET);
134 memcpy(pgd_efi, pgd_k, sizeof(pgd_t) * num_entries);
137 * As with PGDs, we share all P4D entries apart from the one entry
138 * that covers the EFI runtime mapping space.
140 BUILD_BUG_ON(p4d_index(EFI_VA_END) != p4d_index(MODULES_END));
141 BUILD_BUG_ON((EFI_VA_START & P4D_MASK) != (EFI_VA_END & P4D_MASK));
143 pgd_efi = efi_pgd + pgd_index(EFI_VA_END);
144 pgd_k = pgd_offset_k(EFI_VA_END);
145 p4d_efi = p4d_offset(pgd_efi, 0);
146 p4d_k = p4d_offset(pgd_k, 0);
148 num_entries = p4d_index(EFI_VA_END);
149 memcpy(p4d_efi, p4d_k, sizeof(p4d_t) * num_entries);
152 * We share all the PUD entries apart from those that map the
153 * EFI regions. Copy around them.
155 BUILD_BUG_ON((EFI_VA_START & ~PUD_MASK) != 0);
156 BUILD_BUG_ON((EFI_VA_END & ~PUD_MASK) != 0);
158 p4d_efi = p4d_offset(pgd_efi, EFI_VA_END);
159 p4d_k = p4d_offset(pgd_k, EFI_VA_END);
160 pud_efi = pud_offset(p4d_efi, 0);
161 pud_k = pud_offset(p4d_k, 0);
163 num_entries = pud_index(EFI_VA_END);
164 memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
166 pud_efi = pud_offset(p4d_efi, EFI_VA_START);
167 pud_k = pud_offset(p4d_k, EFI_VA_START);
169 num_entries = PTRS_PER_PUD - pud_index(EFI_VA_START);
170 memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
174 * Wrapper for slow_virt_to_phys() that handles NULL addresses.
176 static inline phys_addr_t
177 virt_to_phys_or_null_size(void *va, unsigned long size)
184 if (virt_addr_valid(va))
185 return virt_to_phys(va);
187 pa = slow_virt_to_phys(va);
189 /* check if the object crosses a page boundary */
190 if (WARN_ON((pa ^ (pa + size - 1)) & PAGE_MASK))
196 #define virt_to_phys_or_null(addr) \
197 virt_to_phys_or_null_size((addr), sizeof(*(addr)))
199 int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages)
201 unsigned long pfn, text, pf, rodata;
204 pgd_t *pgd = efi_mm.pgd;
207 * It can happen that the physical address of new_memmap lands in memory
208 * which is not mapped in the EFI page table. Therefore we need to go
209 * and ident-map those pages containing the map before calling
210 * phys_efi_set_virtual_address_map().
212 pfn = pa_memmap >> PAGE_SHIFT;
213 pf = _PAGE_NX | _PAGE_RW | _PAGE_ENC;
214 if (kernel_map_pages_in_pgd(pgd, pfn, pa_memmap, num_pages, pf)) {
215 pr_err("Error ident-mapping new memmap (0x%lx)!\n", pa_memmap);
220 * Certain firmware versions are way too sentimential and still believe
221 * they are exclusive and unquestionable owners of the first physical page,
222 * even though they explicitly mark it as EFI_CONVENTIONAL_MEMORY
223 * (but then write-access it later during SetVirtualAddressMap()).
225 * Create a 1:1 mapping for this page, to avoid triple faults during early
226 * boot with such firmware. We are free to hand this page to the BIOS,
227 * as trim_bios_range() will reserve the first page and isolate it away
228 * from memory allocators anyway.
230 if (kernel_map_pages_in_pgd(pgd, 0x0, 0x0, 1, pf)) {
231 pr_err("Failed to create 1:1 mapping for the first page!\n");
236 * When SEV-ES is active, the GHCB as set by the kernel will be used
237 * by firmware. Create a 1:1 unencrypted mapping for each GHCB.
239 if (sev_es_efi_map_ghcbs(pgd)) {
240 pr_err("Failed to create 1:1 mapping for the GHCBs!\n");
245 * When making calls to the firmware everything needs to be 1:1
246 * mapped and addressable with 32-bit pointers. Map the kernel
247 * text and allocate a new stack because we can't rely on the
248 * stack pointer being < 4GB.
253 page = alloc_page(GFP_KERNEL|__GFP_DMA32);
255 pr_err("Unable to allocate EFI runtime stack < 4GB\n");
259 efi_scratch.phys_stack = page_to_phys(page + 1); /* stack grows down */
261 npages = (_etext - _text) >> PAGE_SHIFT;
263 pfn = text >> PAGE_SHIFT;
266 if (kernel_map_pages_in_pgd(pgd, pfn, text, npages, pf)) {
267 pr_err("Failed to map kernel text 1:1\n");
271 npages = (__end_rodata - __start_rodata) >> PAGE_SHIFT;
272 rodata = __pa(__start_rodata);
273 pfn = rodata >> PAGE_SHIFT;
275 pf = _PAGE_NX | _PAGE_ENC;
276 if (kernel_map_pages_in_pgd(pgd, pfn, rodata, npages, pf)) {
277 pr_err("Failed to map kernel rodata 1:1\n");
284 static void __init __map_region(efi_memory_desc_t *md, u64 va)
286 unsigned long flags = _PAGE_RW;
288 pgd_t *pgd = efi_mm.pgd;
291 * EFI_RUNTIME_SERVICES_CODE regions typically cover PE/COFF
292 * executable images in memory that consist of both R-X and
293 * RW- sections, so we cannot apply read-only or non-exec
294 * permissions just yet. However, modern EFI systems provide
295 * a memory attributes table that describes those sections
296 * with the appropriate restricted permissions, which are
297 * applied in efi_runtime_update_mappings() below. All other
298 * regions can be mapped non-executable at this point, with
299 * the exception of boot services code regions, but those will
300 * be unmapped again entirely in efi_free_boot_services().
302 if (md->type != EFI_BOOT_SERVICES_CODE &&
303 md->type != EFI_RUNTIME_SERVICES_CODE)
306 if (!(md->attribute & EFI_MEMORY_WB))
309 if (sev_active() && md->type != EFI_MEMORY_MAPPED_IO)
312 pfn = md->phys_addr >> PAGE_SHIFT;
313 if (kernel_map_pages_in_pgd(pgd, pfn, va, md->num_pages, flags))
314 pr_warn("Error mapping PA 0x%llx -> VA 0x%llx!\n",
318 void __init efi_map_region(efi_memory_desc_t *md)
320 unsigned long size = md->num_pages << PAGE_SHIFT;
321 u64 pa = md->phys_addr;
324 * Make sure the 1:1 mappings are present as a catch-all for b0rked
325 * firmware which doesn't update all internal pointers after switching
326 * to virtual mode and would otherwise crap on us.
328 __map_region(md, md->phys_addr);
331 * Enforce the 1:1 mapping as the default virtual address when
332 * booting in EFI mixed mode, because even though we may be
333 * running a 64-bit kernel, the firmware may only be 32-bit.
335 if (efi_is_mixed()) {
336 md->virt_addr = md->phys_addr;
342 /* Is PA 2M-aligned? */
343 if (!(pa & (PMD_SIZE - 1))) {
346 u64 pa_offset = pa & (PMD_SIZE - 1);
347 u64 prev_va = efi_va;
349 /* get us the same offset within this 2M page */
350 efi_va = (efi_va & PMD_MASK) + pa_offset;
352 if (efi_va > prev_va)
356 if (efi_va < EFI_VA_END) {
357 pr_warn(FW_WARN "VA address range overflow!\n");
362 __map_region(md, efi_va);
363 md->virt_addr = efi_va;
367 * kexec kernel will use efi_map_region_fixed to map efi runtime memory ranges.
368 * md->virt_addr is the original virtual address which had been mapped in kexec
371 void __init efi_map_region_fixed(efi_memory_desc_t *md)
373 __map_region(md, md->phys_addr);
374 __map_region(md, md->virt_addr);
377 void __init parse_efi_setup(u64 phys_addr, u32 data_len)
379 efi_setup = phys_addr + sizeof(struct setup_data);
382 static int __init efi_update_mappings(efi_memory_desc_t *md, unsigned long pf)
385 pgd_t *pgd = efi_mm.pgd;
388 /* Update the 1:1 mapping */
389 pfn = md->phys_addr >> PAGE_SHIFT;
390 err1 = kernel_map_pages_in_pgd(pgd, pfn, md->phys_addr, md->num_pages, pf);
392 pr_err("Error while updating 1:1 mapping PA 0x%llx -> VA 0x%llx!\n",
393 md->phys_addr, md->virt_addr);
396 err2 = kernel_map_pages_in_pgd(pgd, pfn, md->virt_addr, md->num_pages, pf);
398 pr_err("Error while updating VA mapping PA 0x%llx -> VA 0x%llx!\n",
399 md->phys_addr, md->virt_addr);
405 static int __init efi_update_mem_attr(struct mm_struct *mm, efi_memory_desc_t *md)
407 unsigned long pf = 0;
409 if (md->attribute & EFI_MEMORY_XP)
412 if (!(md->attribute & EFI_MEMORY_RO))
418 return efi_update_mappings(md, pf);
421 void __init efi_runtime_update_mappings(void)
423 efi_memory_desc_t *md;
426 * Use the EFI Memory Attribute Table for mapping permissions if it
427 * exists, since it is intended to supersede EFI_PROPERTIES_TABLE.
429 if (efi_enabled(EFI_MEM_ATTR)) {
430 efi_memattr_apply_permissions(NULL, efi_update_mem_attr);
435 * EFI_MEMORY_ATTRIBUTES_TABLE is intended to replace
436 * EFI_PROPERTIES_TABLE. So, use EFI_PROPERTIES_TABLE to update
437 * permissions only if EFI_MEMORY_ATTRIBUTES_TABLE is not
438 * published by the firmware. Even if we find a buggy implementation of
439 * EFI_MEMORY_ATTRIBUTES_TABLE, don't fall back to
440 * EFI_PROPERTIES_TABLE, because of the same reason.
443 if (!efi_enabled(EFI_NX_PE_DATA))
446 for_each_efi_memory_desc(md) {
447 unsigned long pf = 0;
449 if (!(md->attribute & EFI_MEMORY_RUNTIME))
452 if (!(md->attribute & EFI_MEMORY_WB))
455 if ((md->attribute & EFI_MEMORY_XP) ||
456 (md->type == EFI_RUNTIME_SERVICES_DATA))
459 if (!(md->attribute & EFI_MEMORY_RO) &&
460 (md->type != EFI_RUNTIME_SERVICES_CODE))
466 efi_update_mappings(md, pf);
470 void __init efi_dump_pagetable(void)
472 #ifdef CONFIG_EFI_PGT_DUMP
473 ptdump_walk_pgd_level(NULL, &efi_mm);
478 * Makes the calling thread switch to/from efi_mm context. Can be used
479 * in a kernel thread and user context. Preemption needs to remain disabled
480 * while the EFI-mm is borrowed. mmgrab()/mmdrop() is not used because the mm
481 * can not change under us.
482 * It should be ensured that there are no concurent calls to this function.
484 void efi_switch_mm(struct mm_struct *mm)
486 efi_scratch.prev_mm = current->active_mm;
487 current->active_mm = mm;
488 switch_mm(efi_scratch.prev_mm, mm, NULL);
491 static DEFINE_SPINLOCK(efi_runtime_lock);
494 * DS and ES contain user values. We need to save them.
495 * The 32-bit EFI code needs a valid DS, ES, and SS. There's no
496 * need to save the old SS: __KERNEL_DS is always acceptable.
498 #define __efi_thunk(func, ...) \
500 unsigned short __ds, __es; \
501 efi_status_t ____s; \
503 savesegment(ds, __ds); \
504 savesegment(es, __es); \
506 loadsegment(ss, __KERNEL_DS); \
507 loadsegment(ds, __KERNEL_DS); \
508 loadsegment(es, __KERNEL_DS); \
510 ____s = efi64_thunk(efi.runtime->mixed_mode.func, __VA_ARGS__); \
512 loadsegment(ds, __ds); \
513 loadsegment(es, __es); \
515 ____s ^= (____s & BIT(31)) | (____s & BIT_ULL(31)) << 32; \
520 * Switch to the EFI page tables early so that we can access the 1:1
521 * runtime services mappings which are not mapped in any other page
524 * Also, disable interrupts because the IDT points to 64-bit handlers,
525 * which aren't going to function correctly when we switch to 32-bit.
527 #define efi_thunk(func...) \
531 arch_efi_call_virt_setup(); \
533 __s = __efi_thunk(func); \
535 arch_efi_call_virt_teardown(); \
540 static efi_status_t __init __no_sanitize_address
541 efi_thunk_set_virtual_address_map(unsigned long memory_map_size,
542 unsigned long descriptor_size,
543 u32 descriptor_version,
544 efi_memory_desc_t *virtual_map)
549 efi_sync_low_kernel_mappings();
550 local_irq_save(flags);
552 efi_switch_mm(&efi_mm);
554 status = __efi_thunk(set_virtual_address_map, memory_map_size,
555 descriptor_size, descriptor_version, virtual_map);
557 efi_switch_mm(efi_scratch.prev_mm);
558 local_irq_restore(flags);
563 static efi_status_t efi_thunk_get_time(efi_time_t *tm, efi_time_cap_t *tc)
565 return EFI_UNSUPPORTED;
568 static efi_status_t efi_thunk_set_time(efi_time_t *tm)
570 return EFI_UNSUPPORTED;
574 efi_thunk_get_wakeup_time(efi_bool_t *enabled, efi_bool_t *pending,
577 return EFI_UNSUPPORTED;
581 efi_thunk_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
583 return EFI_UNSUPPORTED;
586 static unsigned long efi_name_size(efi_char16_t *name)
588 return ucs2_strsize(name, EFI_VAR_NAME_LEN) + 1;
592 efi_thunk_get_variable(efi_char16_t *name, efi_guid_t *vendor,
593 u32 *attr, unsigned long *data_size, void *data)
595 u8 buf[24] __aligned(8);
596 efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd));
598 u32 phys_name, phys_vendor, phys_attr;
599 u32 phys_data_size, phys_data;
602 spin_lock_irqsave(&efi_runtime_lock, flags);
606 phys_data_size = virt_to_phys_or_null(data_size);
607 phys_vendor = virt_to_phys_or_null(vnd);
608 phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
609 phys_attr = virt_to_phys_or_null(attr);
610 phys_data = virt_to_phys_or_null_size(data, *data_size);
612 if (!phys_name || (data && !phys_data))
613 status = EFI_INVALID_PARAMETER;
615 status = efi_thunk(get_variable, phys_name, phys_vendor,
616 phys_attr, phys_data_size, phys_data);
618 spin_unlock_irqrestore(&efi_runtime_lock, flags);
624 efi_thunk_set_variable(efi_char16_t *name, efi_guid_t *vendor,
625 u32 attr, unsigned long data_size, void *data)
627 u8 buf[24] __aligned(8);
628 efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd));
629 u32 phys_name, phys_vendor, phys_data;
633 spin_lock_irqsave(&efi_runtime_lock, flags);
637 phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
638 phys_vendor = virt_to_phys_or_null(vnd);
639 phys_data = virt_to_phys_or_null_size(data, data_size);
641 if (!phys_name || (data && !phys_data))
642 status = EFI_INVALID_PARAMETER;
644 status = efi_thunk(set_variable, phys_name, phys_vendor,
645 attr, data_size, phys_data);
647 spin_unlock_irqrestore(&efi_runtime_lock, flags);
653 efi_thunk_set_variable_nonblocking(efi_char16_t *name, efi_guid_t *vendor,
654 u32 attr, unsigned long data_size,
657 u8 buf[24] __aligned(8);
658 efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd));
659 u32 phys_name, phys_vendor, phys_data;
663 if (!spin_trylock_irqsave(&efi_runtime_lock, flags))
664 return EFI_NOT_READY;
668 phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
669 phys_vendor = virt_to_phys_or_null(vnd);
670 phys_data = virt_to_phys_or_null_size(data, data_size);
672 if (!phys_name || (data && !phys_data))
673 status = EFI_INVALID_PARAMETER;
675 status = efi_thunk(set_variable, phys_name, phys_vendor,
676 attr, data_size, phys_data);
678 spin_unlock_irqrestore(&efi_runtime_lock, flags);
684 efi_thunk_get_next_variable(unsigned long *name_size,
688 u8 buf[24] __aligned(8);
689 efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd));
691 u32 phys_name_size, phys_name, phys_vendor;
694 spin_lock_irqsave(&efi_runtime_lock, flags);
698 phys_name_size = virt_to_phys_or_null(name_size);
699 phys_vendor = virt_to_phys_or_null(vnd);
700 phys_name = virt_to_phys_or_null_size(name, *name_size);
703 status = EFI_INVALID_PARAMETER;
705 status = efi_thunk(get_next_variable, phys_name_size,
706 phys_name, phys_vendor);
708 spin_unlock_irqrestore(&efi_runtime_lock, flags);
715 efi_thunk_get_next_high_mono_count(u32 *count)
717 return EFI_UNSUPPORTED;
721 efi_thunk_reset_system(int reset_type, efi_status_t status,
722 unsigned long data_size, efi_char16_t *data)
727 spin_lock_irqsave(&efi_runtime_lock, flags);
729 phys_data = virt_to_phys_or_null_size(data, data_size);
731 efi_thunk(reset_system, reset_type, status, data_size, phys_data);
733 spin_unlock_irqrestore(&efi_runtime_lock, flags);
737 efi_thunk_update_capsule(efi_capsule_header_t **capsules,
738 unsigned long count, unsigned long sg_list)
741 * To properly support this function we would need to repackage
742 * 'capsules' because the firmware doesn't understand 64-bit
745 return EFI_UNSUPPORTED;
749 efi_thunk_query_variable_info(u32 attr, u64 *storage_space,
750 u64 *remaining_space,
751 u64 *max_variable_size)
754 u32 phys_storage, phys_remaining, phys_max;
757 if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
758 return EFI_UNSUPPORTED;
760 spin_lock_irqsave(&efi_runtime_lock, flags);
762 phys_storage = virt_to_phys_or_null(storage_space);
763 phys_remaining = virt_to_phys_or_null(remaining_space);
764 phys_max = virt_to_phys_or_null(max_variable_size);
766 status = efi_thunk(query_variable_info, attr, phys_storage,
767 phys_remaining, phys_max);
769 spin_unlock_irqrestore(&efi_runtime_lock, flags);
775 efi_thunk_query_variable_info_nonblocking(u32 attr, u64 *storage_space,
776 u64 *remaining_space,
777 u64 *max_variable_size)
780 u32 phys_storage, phys_remaining, phys_max;
783 if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
784 return EFI_UNSUPPORTED;
786 if (!spin_trylock_irqsave(&efi_runtime_lock, flags))
787 return EFI_NOT_READY;
789 phys_storage = virt_to_phys_or_null(storage_space);
790 phys_remaining = virt_to_phys_or_null(remaining_space);
791 phys_max = virt_to_phys_or_null(max_variable_size);
793 status = efi_thunk(query_variable_info, attr, phys_storage,
794 phys_remaining, phys_max);
796 spin_unlock_irqrestore(&efi_runtime_lock, flags);
802 efi_thunk_query_capsule_caps(efi_capsule_header_t **capsules,
803 unsigned long count, u64 *max_size,
807 * To properly support this function we would need to repackage
808 * 'capsules' because the firmware doesn't understand 64-bit
811 return EFI_UNSUPPORTED;
814 void __init efi_thunk_runtime_setup(void)
816 if (!IS_ENABLED(CONFIG_EFI_MIXED))
819 efi.get_time = efi_thunk_get_time;
820 efi.set_time = efi_thunk_set_time;
821 efi.get_wakeup_time = efi_thunk_get_wakeup_time;
822 efi.set_wakeup_time = efi_thunk_set_wakeup_time;
823 efi.get_variable = efi_thunk_get_variable;
824 efi.get_next_variable = efi_thunk_get_next_variable;
825 efi.set_variable = efi_thunk_set_variable;
826 efi.set_variable_nonblocking = efi_thunk_set_variable_nonblocking;
827 efi.get_next_high_mono_count = efi_thunk_get_next_high_mono_count;
828 efi.reset_system = efi_thunk_reset_system;
829 efi.query_variable_info = efi_thunk_query_variable_info;
830 efi.query_variable_info_nonblocking = efi_thunk_query_variable_info_nonblocking;
831 efi.update_capsule = efi_thunk_update_capsule;
832 efi.query_capsule_caps = efi_thunk_query_capsule_caps;
835 efi_status_t __init __no_sanitize_address
836 efi_set_virtual_address_map(unsigned long memory_map_size,
837 unsigned long descriptor_size,
838 u32 descriptor_version,
839 efi_memory_desc_t *virtual_map,
840 unsigned long systab_phys)
842 const efi_system_table_t *systab = (efi_system_table_t *)systab_phys;
847 return efi_thunk_set_virtual_address_map(memory_map_size,
851 efi_switch_mm(&efi_mm);
855 /* Disable interrupts around EFI calls: */
856 local_irq_save(flags);
857 status = efi_call(efi.runtime->set_virtual_address_map,
858 memory_map_size, descriptor_size,
859 descriptor_version, virtual_map);
860 local_irq_restore(flags);
864 /* grab the virtually remapped EFI runtime services table pointer */
865 efi.runtime = READ_ONCE(systab->runtime);
867 efi_switch_mm(efi_scratch.prev_mm);