e1e8d4e3a213930a38d738b47305dc5c8ba2e736
[platform/kernel/linux-rpi.git] / arch / x86 / platform / efi / efi_64.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * x86_64 specific EFI support functions
4  * Based on Extensible Firmware Interface Specification version 1.0
5  *
6  * Copyright (C) 2005-2008 Intel Co.
7  *      Fenghua Yu <fenghua.yu@intel.com>
8  *      Bibo Mao <bibo.mao@intel.com>
9  *      Chandramouli Narayanan <mouli@linux.intel.com>
10  *      Huang Ying <ying.huang@intel.com>
11  *
12  * Code to convert EFI to E820 map has been implemented in elilo bootloader
13  * based on a EFI patch by Edgar Hucek. Based on the E820 map, the page table
14  * is setup appropriately for EFI runtime code.
15  * - mouli 06/14/2007.
16  *
17  */
18
19 #define pr_fmt(fmt) "efi: " fmt
20
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/mm.h>
24 #include <linux/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/memblock.h>
27 #include <linux/ioport.h>
28 #include <linux/mc146818rtc.h>
29 #include <linux/efi.h>
30 #include <linux/export.h>
31 #include <linux/uaccess.h>
32 #include <linux/io.h>
33 #include <linux/reboot.h>
34 #include <linux/slab.h>
35 #include <linux/ucs2_string.h>
36 #include <linux/mem_encrypt.h>
37 #include <linux/sched/task.h>
38
39 #include <asm/setup.h>
40 #include <asm/page.h>
41 #include <asm/e820/api.h>
42 #include <asm/tlbflush.h>
43 #include <asm/proto.h>
44 #include <asm/efi.h>
45 #include <asm/cacheflush.h>
46 #include <asm/fixmap.h>
47 #include <asm/realmode.h>
48 #include <asm/time.h>
49 #include <asm/pgalloc.h>
50 #include <asm/sev-es.h>
51
52 /*
53  * We allocate runtime services regions top-down, starting from -4G, i.e.
54  * 0xffff_ffff_0000_0000 and limit EFI VA mapping space to 64G.
55  */
56 static u64 efi_va = EFI_VA_START;
57
58 struct efi_scratch efi_scratch;
59
60 EXPORT_SYMBOL_GPL(efi_mm);
61
62 /*
63  * We need our own copy of the higher levels of the page tables
64  * because we want to avoid inserting EFI region mappings (EFI_VA_END
65  * to EFI_VA_START) into the standard kernel page tables. Everything
66  * else can be shared, see efi_sync_low_kernel_mappings().
67  *
68  * We don't want the pgd on the pgd_list and cannot use pgd_alloc() for the
69  * allocation.
70  */
71 int __init efi_alloc_page_tables(void)
72 {
73         pgd_t *pgd, *efi_pgd;
74         p4d_t *p4d;
75         pud_t *pud;
76         gfp_t gfp_mask;
77
78         gfp_mask = GFP_KERNEL | __GFP_ZERO;
79         efi_pgd = (pgd_t *)__get_free_pages(gfp_mask, PGD_ALLOCATION_ORDER);
80         if (!efi_pgd)
81                 goto fail;
82
83         pgd = efi_pgd + pgd_index(EFI_VA_END);
84         p4d = p4d_alloc(&init_mm, pgd, EFI_VA_END);
85         if (!p4d)
86                 goto free_pgd;
87
88         pud = pud_alloc(&init_mm, p4d, EFI_VA_END);
89         if (!pud)
90                 goto free_p4d;
91
92         efi_mm.pgd = efi_pgd;
93         mm_init_cpumask(&efi_mm);
94         init_new_context(NULL, &efi_mm);
95
96         return 0;
97
98 free_p4d:
99         if (pgtable_l5_enabled())
100                 free_page((unsigned long)pgd_page_vaddr(*pgd));
101 free_pgd:
102         free_pages((unsigned long)efi_pgd, PGD_ALLOCATION_ORDER);
103 fail:
104         return -ENOMEM;
105 }
106
107 /*
108  * Add low kernel mappings for passing arguments to EFI functions.
109  */
110 void efi_sync_low_kernel_mappings(void)
111 {
112         unsigned num_entries;
113         pgd_t *pgd_k, *pgd_efi;
114         p4d_t *p4d_k, *p4d_efi;
115         pud_t *pud_k, *pud_efi;
116         pgd_t *efi_pgd = efi_mm.pgd;
117
118         /*
119          * We can share all PGD entries apart from the one entry that
120          * covers the EFI runtime mapping space.
121          *
122          * Make sure the EFI runtime region mappings are guaranteed to
123          * only span a single PGD entry and that the entry also maps
124          * other important kernel regions.
125          */
126         MAYBE_BUILD_BUG_ON(pgd_index(EFI_VA_END) != pgd_index(MODULES_END));
127         MAYBE_BUILD_BUG_ON((EFI_VA_START & PGDIR_MASK) !=
128                         (EFI_VA_END & PGDIR_MASK));
129
130         pgd_efi = efi_pgd + pgd_index(PAGE_OFFSET);
131         pgd_k = pgd_offset_k(PAGE_OFFSET);
132
133         num_entries = pgd_index(EFI_VA_END) - pgd_index(PAGE_OFFSET);
134         memcpy(pgd_efi, pgd_k, sizeof(pgd_t) * num_entries);
135
136         /*
137          * As with PGDs, we share all P4D entries apart from the one entry
138          * that covers the EFI runtime mapping space.
139          */
140         BUILD_BUG_ON(p4d_index(EFI_VA_END) != p4d_index(MODULES_END));
141         BUILD_BUG_ON((EFI_VA_START & P4D_MASK) != (EFI_VA_END & P4D_MASK));
142
143         pgd_efi = efi_pgd + pgd_index(EFI_VA_END);
144         pgd_k = pgd_offset_k(EFI_VA_END);
145         p4d_efi = p4d_offset(pgd_efi, 0);
146         p4d_k = p4d_offset(pgd_k, 0);
147
148         num_entries = p4d_index(EFI_VA_END);
149         memcpy(p4d_efi, p4d_k, sizeof(p4d_t) * num_entries);
150
151         /*
152          * We share all the PUD entries apart from those that map the
153          * EFI regions. Copy around them.
154          */
155         BUILD_BUG_ON((EFI_VA_START & ~PUD_MASK) != 0);
156         BUILD_BUG_ON((EFI_VA_END & ~PUD_MASK) != 0);
157
158         p4d_efi = p4d_offset(pgd_efi, EFI_VA_END);
159         p4d_k = p4d_offset(pgd_k, EFI_VA_END);
160         pud_efi = pud_offset(p4d_efi, 0);
161         pud_k = pud_offset(p4d_k, 0);
162
163         num_entries = pud_index(EFI_VA_END);
164         memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
165
166         pud_efi = pud_offset(p4d_efi, EFI_VA_START);
167         pud_k = pud_offset(p4d_k, EFI_VA_START);
168
169         num_entries = PTRS_PER_PUD - pud_index(EFI_VA_START);
170         memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
171 }
172
173 /*
174  * Wrapper for slow_virt_to_phys() that handles NULL addresses.
175  */
176 static inline phys_addr_t
177 virt_to_phys_or_null_size(void *va, unsigned long size)
178 {
179         phys_addr_t pa;
180
181         if (!va)
182                 return 0;
183
184         if (virt_addr_valid(va))
185                 return virt_to_phys(va);
186
187         pa = slow_virt_to_phys(va);
188
189         /* check if the object crosses a page boundary */
190         if (WARN_ON((pa ^ (pa + size - 1)) & PAGE_MASK))
191                 return 0;
192
193         return pa;
194 }
195
196 #define virt_to_phys_or_null(addr)                              \
197         virt_to_phys_or_null_size((addr), sizeof(*(addr)))
198
199 int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages)
200 {
201         unsigned long pfn, text, pf, rodata;
202         struct page *page;
203         unsigned npages;
204         pgd_t *pgd = efi_mm.pgd;
205
206         /*
207          * It can happen that the physical address of new_memmap lands in memory
208          * which is not mapped in the EFI page table. Therefore we need to go
209          * and ident-map those pages containing the map before calling
210          * phys_efi_set_virtual_address_map().
211          */
212         pfn = pa_memmap >> PAGE_SHIFT;
213         pf = _PAGE_NX | _PAGE_RW | _PAGE_ENC;
214         if (kernel_map_pages_in_pgd(pgd, pfn, pa_memmap, num_pages, pf)) {
215                 pr_err("Error ident-mapping new memmap (0x%lx)!\n", pa_memmap);
216                 return 1;
217         }
218
219         /*
220          * Certain firmware versions are way too sentimential and still believe
221          * they are exclusive and unquestionable owners of the first physical page,
222          * even though they explicitly mark it as EFI_CONVENTIONAL_MEMORY
223          * (but then write-access it later during SetVirtualAddressMap()).
224          *
225          * Create a 1:1 mapping for this page, to avoid triple faults during early
226          * boot with such firmware. We are free to hand this page to the BIOS,
227          * as trim_bios_range() will reserve the first page and isolate it away
228          * from memory allocators anyway.
229          */
230         if (kernel_map_pages_in_pgd(pgd, 0x0, 0x0, 1, pf)) {
231                 pr_err("Failed to create 1:1 mapping for the first page!\n");
232                 return 1;
233         }
234
235         /*
236          * When SEV-ES is active, the GHCB as set by the kernel will be used
237          * by firmware. Create a 1:1 unencrypted mapping for each GHCB.
238          */
239         if (sev_es_efi_map_ghcbs(pgd)) {
240                 pr_err("Failed to create 1:1 mapping for the GHCBs!\n");
241                 return 1;
242         }
243
244         /*
245          * When making calls to the firmware everything needs to be 1:1
246          * mapped and addressable with 32-bit pointers. Map the kernel
247          * text and allocate a new stack because we can't rely on the
248          * stack pointer being < 4GB.
249          */
250         if (!efi_is_mixed())
251                 return 0;
252
253         page = alloc_page(GFP_KERNEL|__GFP_DMA32);
254         if (!page) {
255                 pr_err("Unable to allocate EFI runtime stack < 4GB\n");
256                 return 1;
257         }
258
259         efi_scratch.phys_stack = page_to_phys(page + 1); /* stack grows down */
260
261         npages = (_etext - _text) >> PAGE_SHIFT;
262         text = __pa(_text);
263         pfn = text >> PAGE_SHIFT;
264
265         pf = _PAGE_ENC;
266         if (kernel_map_pages_in_pgd(pgd, pfn, text, npages, pf)) {
267                 pr_err("Failed to map kernel text 1:1\n");
268                 return 1;
269         }
270
271         npages = (__end_rodata - __start_rodata) >> PAGE_SHIFT;
272         rodata = __pa(__start_rodata);
273         pfn = rodata >> PAGE_SHIFT;
274
275         pf = _PAGE_NX | _PAGE_ENC;
276         if (kernel_map_pages_in_pgd(pgd, pfn, rodata, npages, pf)) {
277                 pr_err("Failed to map kernel rodata 1:1\n");
278                 return 1;
279         }
280
281         return 0;
282 }
283
284 static void __init __map_region(efi_memory_desc_t *md, u64 va)
285 {
286         unsigned long flags = _PAGE_RW;
287         unsigned long pfn;
288         pgd_t *pgd = efi_mm.pgd;
289
290         /*
291          * EFI_RUNTIME_SERVICES_CODE regions typically cover PE/COFF
292          * executable images in memory that consist of both R-X and
293          * RW- sections, so we cannot apply read-only or non-exec
294          * permissions just yet. However, modern EFI systems provide
295          * a memory attributes table that describes those sections
296          * with the appropriate restricted permissions, which are
297          * applied in efi_runtime_update_mappings() below. All other
298          * regions can be mapped non-executable at this point, with
299          * the exception of boot services code regions, but those will
300          * be unmapped again entirely in efi_free_boot_services().
301          */
302         if (md->type != EFI_BOOT_SERVICES_CODE &&
303             md->type != EFI_RUNTIME_SERVICES_CODE)
304                 flags |= _PAGE_NX;
305
306         if (!(md->attribute & EFI_MEMORY_WB))
307                 flags |= _PAGE_PCD;
308
309         if (sev_active() && md->type != EFI_MEMORY_MAPPED_IO)
310                 flags |= _PAGE_ENC;
311
312         pfn = md->phys_addr >> PAGE_SHIFT;
313         if (kernel_map_pages_in_pgd(pgd, pfn, va, md->num_pages, flags))
314                 pr_warn("Error mapping PA 0x%llx -> VA 0x%llx!\n",
315                            md->phys_addr, va);
316 }
317
318 void __init efi_map_region(efi_memory_desc_t *md)
319 {
320         unsigned long size = md->num_pages << PAGE_SHIFT;
321         u64 pa = md->phys_addr;
322
323         /*
324          * Make sure the 1:1 mappings are present as a catch-all for b0rked
325          * firmware which doesn't update all internal pointers after switching
326          * to virtual mode and would otherwise crap on us.
327          */
328         __map_region(md, md->phys_addr);
329
330         /*
331          * Enforce the 1:1 mapping as the default virtual address when
332          * booting in EFI mixed mode, because even though we may be
333          * running a 64-bit kernel, the firmware may only be 32-bit.
334          */
335         if (efi_is_mixed()) {
336                 md->virt_addr = md->phys_addr;
337                 return;
338         }
339
340         efi_va -= size;
341
342         /* Is PA 2M-aligned? */
343         if (!(pa & (PMD_SIZE - 1))) {
344                 efi_va &= PMD_MASK;
345         } else {
346                 u64 pa_offset = pa & (PMD_SIZE - 1);
347                 u64 prev_va = efi_va;
348
349                 /* get us the same offset within this 2M page */
350                 efi_va = (efi_va & PMD_MASK) + pa_offset;
351
352                 if (efi_va > prev_va)
353                         efi_va -= PMD_SIZE;
354         }
355
356         if (efi_va < EFI_VA_END) {
357                 pr_warn(FW_WARN "VA address range overflow!\n");
358                 return;
359         }
360
361         /* Do the VA map */
362         __map_region(md, efi_va);
363         md->virt_addr = efi_va;
364 }
365
366 /*
367  * kexec kernel will use efi_map_region_fixed to map efi runtime memory ranges.
368  * md->virt_addr is the original virtual address which had been mapped in kexec
369  * 1st kernel.
370  */
371 void __init efi_map_region_fixed(efi_memory_desc_t *md)
372 {
373         __map_region(md, md->phys_addr);
374         __map_region(md, md->virt_addr);
375 }
376
377 void __init parse_efi_setup(u64 phys_addr, u32 data_len)
378 {
379         efi_setup = phys_addr + sizeof(struct setup_data);
380 }
381
382 static int __init efi_update_mappings(efi_memory_desc_t *md, unsigned long pf)
383 {
384         unsigned long pfn;
385         pgd_t *pgd = efi_mm.pgd;
386         int err1, err2;
387
388         /* Update the 1:1 mapping */
389         pfn = md->phys_addr >> PAGE_SHIFT;
390         err1 = kernel_map_pages_in_pgd(pgd, pfn, md->phys_addr, md->num_pages, pf);
391         if (err1) {
392                 pr_err("Error while updating 1:1 mapping PA 0x%llx -> VA 0x%llx!\n",
393                            md->phys_addr, md->virt_addr);
394         }
395
396         err2 = kernel_map_pages_in_pgd(pgd, pfn, md->virt_addr, md->num_pages, pf);
397         if (err2) {
398                 pr_err("Error while updating VA mapping PA 0x%llx -> VA 0x%llx!\n",
399                            md->phys_addr, md->virt_addr);
400         }
401
402         return err1 || err2;
403 }
404
405 static int __init efi_update_mem_attr(struct mm_struct *mm, efi_memory_desc_t *md)
406 {
407         unsigned long pf = 0;
408
409         if (md->attribute & EFI_MEMORY_XP)
410                 pf |= _PAGE_NX;
411
412         if (!(md->attribute & EFI_MEMORY_RO))
413                 pf |= _PAGE_RW;
414
415         if (sev_active())
416                 pf |= _PAGE_ENC;
417
418         return efi_update_mappings(md, pf);
419 }
420
421 void __init efi_runtime_update_mappings(void)
422 {
423         efi_memory_desc_t *md;
424
425         /*
426          * Use the EFI Memory Attribute Table for mapping permissions if it
427          * exists, since it is intended to supersede EFI_PROPERTIES_TABLE.
428          */
429         if (efi_enabled(EFI_MEM_ATTR)) {
430                 efi_memattr_apply_permissions(NULL, efi_update_mem_attr);
431                 return;
432         }
433
434         /*
435          * EFI_MEMORY_ATTRIBUTES_TABLE is intended to replace
436          * EFI_PROPERTIES_TABLE. So, use EFI_PROPERTIES_TABLE to update
437          * permissions only if EFI_MEMORY_ATTRIBUTES_TABLE is not
438          * published by the firmware. Even if we find a buggy implementation of
439          * EFI_MEMORY_ATTRIBUTES_TABLE, don't fall back to
440          * EFI_PROPERTIES_TABLE, because of the same reason.
441          */
442
443         if (!efi_enabled(EFI_NX_PE_DATA))
444                 return;
445
446         for_each_efi_memory_desc(md) {
447                 unsigned long pf = 0;
448
449                 if (!(md->attribute & EFI_MEMORY_RUNTIME))
450                         continue;
451
452                 if (!(md->attribute & EFI_MEMORY_WB))
453                         pf |= _PAGE_PCD;
454
455                 if ((md->attribute & EFI_MEMORY_XP) ||
456                         (md->type == EFI_RUNTIME_SERVICES_DATA))
457                         pf |= _PAGE_NX;
458
459                 if (!(md->attribute & EFI_MEMORY_RO) &&
460                         (md->type != EFI_RUNTIME_SERVICES_CODE))
461                         pf |= _PAGE_RW;
462
463                 if (sev_active())
464                         pf |= _PAGE_ENC;
465
466                 efi_update_mappings(md, pf);
467         }
468 }
469
470 void __init efi_dump_pagetable(void)
471 {
472 #ifdef CONFIG_EFI_PGT_DUMP
473         ptdump_walk_pgd_level(NULL, &efi_mm);
474 #endif
475 }
476
477 /*
478  * Makes the calling thread switch to/from efi_mm context. Can be used
479  * in a kernel thread and user context. Preemption needs to remain disabled
480  * while the EFI-mm is borrowed. mmgrab()/mmdrop() is not used because the mm
481  * can not change under us.
482  * It should be ensured that there are no concurent calls to this function.
483  */
484 void efi_switch_mm(struct mm_struct *mm)
485 {
486         efi_scratch.prev_mm = current->active_mm;
487         current->active_mm = mm;
488         switch_mm(efi_scratch.prev_mm, mm, NULL);
489 }
490
491 static DEFINE_SPINLOCK(efi_runtime_lock);
492
493 /*
494  * DS and ES contain user values.  We need to save them.
495  * The 32-bit EFI code needs a valid DS, ES, and SS.  There's no
496  * need to save the old SS: __KERNEL_DS is always acceptable.
497  */
498 #define __efi_thunk(func, ...)                                          \
499 ({                                                                      \
500         unsigned short __ds, __es;                                      \
501         efi_status_t ____s;                                             \
502                                                                         \
503         savesegment(ds, __ds);                                          \
504         savesegment(es, __es);                                          \
505                                                                         \
506         loadsegment(ss, __KERNEL_DS);                                   \
507         loadsegment(ds, __KERNEL_DS);                                   \
508         loadsegment(es, __KERNEL_DS);                                   \
509                                                                         \
510         ____s = efi64_thunk(efi.runtime->mixed_mode.func, __VA_ARGS__); \
511                                                                         \
512         loadsegment(ds, __ds);                                          \
513         loadsegment(es, __es);                                          \
514                                                                         \
515         ____s ^= (____s & BIT(31)) | (____s & BIT_ULL(31)) << 32;       \
516         ____s;                                                          \
517 })
518
519 /*
520  * Switch to the EFI page tables early so that we can access the 1:1
521  * runtime services mappings which are not mapped in any other page
522  * tables.
523  *
524  * Also, disable interrupts because the IDT points to 64-bit handlers,
525  * which aren't going to function correctly when we switch to 32-bit.
526  */
527 #define efi_thunk(func...)                                              \
528 ({                                                                      \
529         efi_status_t __s;                                               \
530                                                                         \
531         arch_efi_call_virt_setup();                                     \
532                                                                         \
533         __s = __efi_thunk(func);                                        \
534                                                                         \
535         arch_efi_call_virt_teardown();                                  \
536                                                                         \
537         __s;                                                            \
538 })
539
540 static efi_status_t __init __no_sanitize_address
541 efi_thunk_set_virtual_address_map(unsigned long memory_map_size,
542                                   unsigned long descriptor_size,
543                                   u32 descriptor_version,
544                                   efi_memory_desc_t *virtual_map)
545 {
546         efi_status_t status;
547         unsigned long flags;
548
549         efi_sync_low_kernel_mappings();
550         local_irq_save(flags);
551
552         efi_switch_mm(&efi_mm);
553
554         status = __efi_thunk(set_virtual_address_map, memory_map_size,
555                              descriptor_size, descriptor_version, virtual_map);
556
557         efi_switch_mm(efi_scratch.prev_mm);
558         local_irq_restore(flags);
559
560         return status;
561 }
562
563 static efi_status_t efi_thunk_get_time(efi_time_t *tm, efi_time_cap_t *tc)
564 {
565         return EFI_UNSUPPORTED;
566 }
567
568 static efi_status_t efi_thunk_set_time(efi_time_t *tm)
569 {
570         return EFI_UNSUPPORTED;
571 }
572
573 static efi_status_t
574 efi_thunk_get_wakeup_time(efi_bool_t *enabled, efi_bool_t *pending,
575                           efi_time_t *tm)
576 {
577         return EFI_UNSUPPORTED;
578 }
579
580 static efi_status_t
581 efi_thunk_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
582 {
583         return EFI_UNSUPPORTED;
584 }
585
586 static unsigned long efi_name_size(efi_char16_t *name)
587 {
588         return ucs2_strsize(name, EFI_VAR_NAME_LEN) + 1;
589 }
590
591 static efi_status_t
592 efi_thunk_get_variable(efi_char16_t *name, efi_guid_t *vendor,
593                        u32 *attr, unsigned long *data_size, void *data)
594 {
595         u8 buf[24] __aligned(8);
596         efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd));
597         efi_status_t status;
598         u32 phys_name, phys_vendor, phys_attr;
599         u32 phys_data_size, phys_data;
600         unsigned long flags;
601
602         spin_lock_irqsave(&efi_runtime_lock, flags);
603
604         *vnd = *vendor;
605
606         phys_data_size = virt_to_phys_or_null(data_size);
607         phys_vendor = virt_to_phys_or_null(vnd);
608         phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
609         phys_attr = virt_to_phys_or_null(attr);
610         phys_data = virt_to_phys_or_null_size(data, *data_size);
611
612         if (!phys_name || (data && !phys_data))
613                 status = EFI_INVALID_PARAMETER;
614         else
615                 status = efi_thunk(get_variable, phys_name, phys_vendor,
616                                    phys_attr, phys_data_size, phys_data);
617
618         spin_unlock_irqrestore(&efi_runtime_lock, flags);
619
620         return status;
621 }
622
623 static efi_status_t
624 efi_thunk_set_variable(efi_char16_t *name, efi_guid_t *vendor,
625                        u32 attr, unsigned long data_size, void *data)
626 {
627         u8 buf[24] __aligned(8);
628         efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd));
629         u32 phys_name, phys_vendor, phys_data;
630         efi_status_t status;
631         unsigned long flags;
632
633         spin_lock_irqsave(&efi_runtime_lock, flags);
634
635         *vnd = *vendor;
636
637         phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
638         phys_vendor = virt_to_phys_or_null(vnd);
639         phys_data = virt_to_phys_or_null_size(data, data_size);
640
641         if (!phys_name || (data && !phys_data))
642                 status = EFI_INVALID_PARAMETER;
643         else
644                 status = efi_thunk(set_variable, phys_name, phys_vendor,
645                                    attr, data_size, phys_data);
646
647         spin_unlock_irqrestore(&efi_runtime_lock, flags);
648
649         return status;
650 }
651
652 static efi_status_t
653 efi_thunk_set_variable_nonblocking(efi_char16_t *name, efi_guid_t *vendor,
654                                    u32 attr, unsigned long data_size,
655                                    void *data)
656 {
657         u8 buf[24] __aligned(8);
658         efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd));
659         u32 phys_name, phys_vendor, phys_data;
660         efi_status_t status;
661         unsigned long flags;
662
663         if (!spin_trylock_irqsave(&efi_runtime_lock, flags))
664                 return EFI_NOT_READY;
665
666         *vnd = *vendor;
667
668         phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
669         phys_vendor = virt_to_phys_or_null(vnd);
670         phys_data = virt_to_phys_or_null_size(data, data_size);
671
672         if (!phys_name || (data && !phys_data))
673                 status = EFI_INVALID_PARAMETER;
674         else
675                 status = efi_thunk(set_variable, phys_name, phys_vendor,
676                                    attr, data_size, phys_data);
677
678         spin_unlock_irqrestore(&efi_runtime_lock, flags);
679
680         return status;
681 }
682
683 static efi_status_t
684 efi_thunk_get_next_variable(unsigned long *name_size,
685                             efi_char16_t *name,
686                             efi_guid_t *vendor)
687 {
688         u8 buf[24] __aligned(8);
689         efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd));
690         efi_status_t status;
691         u32 phys_name_size, phys_name, phys_vendor;
692         unsigned long flags;
693
694         spin_lock_irqsave(&efi_runtime_lock, flags);
695
696         *vnd = *vendor;
697
698         phys_name_size = virt_to_phys_or_null(name_size);
699         phys_vendor = virt_to_phys_or_null(vnd);
700         phys_name = virt_to_phys_or_null_size(name, *name_size);
701
702         if (!phys_name)
703                 status = EFI_INVALID_PARAMETER;
704         else
705                 status = efi_thunk(get_next_variable, phys_name_size,
706                                    phys_name, phys_vendor);
707
708         spin_unlock_irqrestore(&efi_runtime_lock, flags);
709
710         *vendor = *vnd;
711         return status;
712 }
713
714 static efi_status_t
715 efi_thunk_get_next_high_mono_count(u32 *count)
716 {
717         return EFI_UNSUPPORTED;
718 }
719
720 static void
721 efi_thunk_reset_system(int reset_type, efi_status_t status,
722                        unsigned long data_size, efi_char16_t *data)
723 {
724         u32 phys_data;
725         unsigned long flags;
726
727         spin_lock_irqsave(&efi_runtime_lock, flags);
728
729         phys_data = virt_to_phys_or_null_size(data, data_size);
730
731         efi_thunk(reset_system, reset_type, status, data_size, phys_data);
732
733         spin_unlock_irqrestore(&efi_runtime_lock, flags);
734 }
735
736 static efi_status_t
737 efi_thunk_update_capsule(efi_capsule_header_t **capsules,
738                          unsigned long count, unsigned long sg_list)
739 {
740         /*
741          * To properly support this function we would need to repackage
742          * 'capsules' because the firmware doesn't understand 64-bit
743          * pointers.
744          */
745         return EFI_UNSUPPORTED;
746 }
747
748 static efi_status_t
749 efi_thunk_query_variable_info(u32 attr, u64 *storage_space,
750                               u64 *remaining_space,
751                               u64 *max_variable_size)
752 {
753         efi_status_t status;
754         u32 phys_storage, phys_remaining, phys_max;
755         unsigned long flags;
756
757         if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
758                 return EFI_UNSUPPORTED;
759
760         spin_lock_irqsave(&efi_runtime_lock, flags);
761
762         phys_storage = virt_to_phys_or_null(storage_space);
763         phys_remaining = virt_to_phys_or_null(remaining_space);
764         phys_max = virt_to_phys_or_null(max_variable_size);
765
766         status = efi_thunk(query_variable_info, attr, phys_storage,
767                            phys_remaining, phys_max);
768
769         spin_unlock_irqrestore(&efi_runtime_lock, flags);
770
771         return status;
772 }
773
774 static efi_status_t
775 efi_thunk_query_variable_info_nonblocking(u32 attr, u64 *storage_space,
776                                           u64 *remaining_space,
777                                           u64 *max_variable_size)
778 {
779         efi_status_t status;
780         u32 phys_storage, phys_remaining, phys_max;
781         unsigned long flags;
782
783         if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
784                 return EFI_UNSUPPORTED;
785
786         if (!spin_trylock_irqsave(&efi_runtime_lock, flags))
787                 return EFI_NOT_READY;
788
789         phys_storage = virt_to_phys_or_null(storage_space);
790         phys_remaining = virt_to_phys_or_null(remaining_space);
791         phys_max = virt_to_phys_or_null(max_variable_size);
792
793         status = efi_thunk(query_variable_info, attr, phys_storage,
794                            phys_remaining, phys_max);
795
796         spin_unlock_irqrestore(&efi_runtime_lock, flags);
797
798         return status;
799 }
800
801 static efi_status_t
802 efi_thunk_query_capsule_caps(efi_capsule_header_t **capsules,
803                              unsigned long count, u64 *max_size,
804                              int *reset_type)
805 {
806         /*
807          * To properly support this function we would need to repackage
808          * 'capsules' because the firmware doesn't understand 64-bit
809          * pointers.
810          */
811         return EFI_UNSUPPORTED;
812 }
813
814 void __init efi_thunk_runtime_setup(void)
815 {
816         if (!IS_ENABLED(CONFIG_EFI_MIXED))
817                 return;
818
819         efi.get_time = efi_thunk_get_time;
820         efi.set_time = efi_thunk_set_time;
821         efi.get_wakeup_time = efi_thunk_get_wakeup_time;
822         efi.set_wakeup_time = efi_thunk_set_wakeup_time;
823         efi.get_variable = efi_thunk_get_variable;
824         efi.get_next_variable = efi_thunk_get_next_variable;
825         efi.set_variable = efi_thunk_set_variable;
826         efi.set_variable_nonblocking = efi_thunk_set_variable_nonblocking;
827         efi.get_next_high_mono_count = efi_thunk_get_next_high_mono_count;
828         efi.reset_system = efi_thunk_reset_system;
829         efi.query_variable_info = efi_thunk_query_variable_info;
830         efi.query_variable_info_nonblocking = efi_thunk_query_variable_info_nonblocking;
831         efi.update_capsule = efi_thunk_update_capsule;
832         efi.query_capsule_caps = efi_thunk_query_capsule_caps;
833 }
834
835 efi_status_t __init __no_sanitize_address
836 efi_set_virtual_address_map(unsigned long memory_map_size,
837                             unsigned long descriptor_size,
838                             u32 descriptor_version,
839                             efi_memory_desc_t *virtual_map,
840                             unsigned long systab_phys)
841 {
842         const efi_system_table_t *systab = (efi_system_table_t *)systab_phys;
843         efi_status_t status;
844         unsigned long flags;
845
846         if (efi_is_mixed())
847                 return efi_thunk_set_virtual_address_map(memory_map_size,
848                                                          descriptor_size,
849                                                          descriptor_version,
850                                                          virtual_map);
851         efi_switch_mm(&efi_mm);
852
853         kernel_fpu_begin();
854
855         /* Disable interrupts around EFI calls: */
856         local_irq_save(flags);
857         status = efi_call(efi.runtime->set_virtual_address_map,
858                           memory_map_size, descriptor_size,
859                           descriptor_version, virtual_map);
860         local_irq_restore(flags);
861
862         kernel_fpu_end();
863
864         /* grab the virtually remapped EFI runtime services table pointer */
865         efi.runtime = READ_ONCE(systab->runtime);
866
867         efi_switch_mm(efi_scratch.prev_mm);
868
869         return status;
870 }