mm: don't include asm/pgtable.h if linux/mm.h is already included
[platform/kernel/linux-starfive.git] / arch / x86 / platform / efi / efi_64.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * x86_64 specific EFI support functions
4  * Based on Extensible Firmware Interface Specification version 1.0
5  *
6  * Copyright (C) 2005-2008 Intel Co.
7  *      Fenghua Yu <fenghua.yu@intel.com>
8  *      Bibo Mao <bibo.mao@intel.com>
9  *      Chandramouli Narayanan <mouli@linux.intel.com>
10  *      Huang Ying <ying.huang@intel.com>
11  *
12  * Code to convert EFI to E820 map has been implemented in elilo bootloader
13  * based on a EFI patch by Edgar Hucek. Based on the E820 map, the page table
14  * is setup appropriately for EFI runtime code.
15  * - mouli 06/14/2007.
16  *
17  */
18
19 #define pr_fmt(fmt) "efi: " fmt
20
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/mm.h>
24 #include <linux/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/memblock.h>
27 #include <linux/ioport.h>
28 #include <linux/mc146818rtc.h>
29 #include <linux/efi.h>
30 #include <linux/export.h>
31 #include <linux/uaccess.h>
32 #include <linux/io.h>
33 #include <linux/reboot.h>
34 #include <linux/slab.h>
35 #include <linux/ucs2_string.h>
36 #include <linux/mem_encrypt.h>
37 #include <linux/sched/task.h>
38
39 #include <asm/setup.h>
40 #include <asm/page.h>
41 #include <asm/e820/api.h>
42 #include <asm/tlbflush.h>
43 #include <asm/proto.h>
44 #include <asm/efi.h>
45 #include <asm/cacheflush.h>
46 #include <asm/fixmap.h>
47 #include <asm/realmode.h>
48 #include <asm/time.h>
49 #include <asm/pgalloc.h>
50
51 /*
52  * We allocate runtime services regions top-down, starting from -4G, i.e.
53  * 0xffff_ffff_0000_0000 and limit EFI VA mapping space to 64G.
54  */
55 static u64 efi_va = EFI_VA_START;
56
57 struct efi_scratch efi_scratch;
58
59 EXPORT_SYMBOL_GPL(efi_mm);
60
61 /*
62  * We need our own copy of the higher levels of the page tables
63  * because we want to avoid inserting EFI region mappings (EFI_VA_END
64  * to EFI_VA_START) into the standard kernel page tables. Everything
65  * else can be shared, see efi_sync_low_kernel_mappings().
66  *
67  * We don't want the pgd on the pgd_list and cannot use pgd_alloc() for the
68  * allocation.
69  */
70 int __init efi_alloc_page_tables(void)
71 {
72         pgd_t *pgd, *efi_pgd;
73         p4d_t *p4d;
74         pud_t *pud;
75         gfp_t gfp_mask;
76
77         if (efi_have_uv1_memmap())
78                 return 0;
79
80         gfp_mask = GFP_KERNEL | __GFP_ZERO;
81         efi_pgd = (pgd_t *)__get_free_pages(gfp_mask, PGD_ALLOCATION_ORDER);
82         if (!efi_pgd)
83                 return -ENOMEM;
84
85         pgd = efi_pgd + pgd_index(EFI_VA_END);
86         p4d = p4d_alloc(&init_mm, pgd, EFI_VA_END);
87         if (!p4d) {
88                 free_page((unsigned long)efi_pgd);
89                 return -ENOMEM;
90         }
91
92         pud = pud_alloc(&init_mm, p4d, EFI_VA_END);
93         if (!pud) {
94                 if (pgtable_l5_enabled())
95                         free_page((unsigned long) pgd_page_vaddr(*pgd));
96                 free_pages((unsigned long)efi_pgd, PGD_ALLOCATION_ORDER);
97                 return -ENOMEM;
98         }
99
100         efi_mm.pgd = efi_pgd;
101         mm_init_cpumask(&efi_mm);
102         init_new_context(NULL, &efi_mm);
103
104         return 0;
105 }
106
107 /*
108  * Add low kernel mappings for passing arguments to EFI functions.
109  */
110 void efi_sync_low_kernel_mappings(void)
111 {
112         unsigned num_entries;
113         pgd_t *pgd_k, *pgd_efi;
114         p4d_t *p4d_k, *p4d_efi;
115         pud_t *pud_k, *pud_efi;
116         pgd_t *efi_pgd = efi_mm.pgd;
117
118         if (efi_have_uv1_memmap())
119                 return;
120
121         /*
122          * We can share all PGD entries apart from the one entry that
123          * covers the EFI runtime mapping space.
124          *
125          * Make sure the EFI runtime region mappings are guaranteed to
126          * only span a single PGD entry and that the entry also maps
127          * other important kernel regions.
128          */
129         MAYBE_BUILD_BUG_ON(pgd_index(EFI_VA_END) != pgd_index(MODULES_END));
130         MAYBE_BUILD_BUG_ON((EFI_VA_START & PGDIR_MASK) !=
131                         (EFI_VA_END & PGDIR_MASK));
132
133         pgd_efi = efi_pgd + pgd_index(PAGE_OFFSET);
134         pgd_k = pgd_offset_k(PAGE_OFFSET);
135
136         num_entries = pgd_index(EFI_VA_END) - pgd_index(PAGE_OFFSET);
137         memcpy(pgd_efi, pgd_k, sizeof(pgd_t) * num_entries);
138
139         /*
140          * As with PGDs, we share all P4D entries apart from the one entry
141          * that covers the EFI runtime mapping space.
142          */
143         BUILD_BUG_ON(p4d_index(EFI_VA_END) != p4d_index(MODULES_END));
144         BUILD_BUG_ON((EFI_VA_START & P4D_MASK) != (EFI_VA_END & P4D_MASK));
145
146         pgd_efi = efi_pgd + pgd_index(EFI_VA_END);
147         pgd_k = pgd_offset_k(EFI_VA_END);
148         p4d_efi = p4d_offset(pgd_efi, 0);
149         p4d_k = p4d_offset(pgd_k, 0);
150
151         num_entries = p4d_index(EFI_VA_END);
152         memcpy(p4d_efi, p4d_k, sizeof(p4d_t) * num_entries);
153
154         /*
155          * We share all the PUD entries apart from those that map the
156          * EFI regions. Copy around them.
157          */
158         BUILD_BUG_ON((EFI_VA_START & ~PUD_MASK) != 0);
159         BUILD_BUG_ON((EFI_VA_END & ~PUD_MASK) != 0);
160
161         p4d_efi = p4d_offset(pgd_efi, EFI_VA_END);
162         p4d_k = p4d_offset(pgd_k, EFI_VA_END);
163         pud_efi = pud_offset(p4d_efi, 0);
164         pud_k = pud_offset(p4d_k, 0);
165
166         num_entries = pud_index(EFI_VA_END);
167         memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
168
169         pud_efi = pud_offset(p4d_efi, EFI_VA_START);
170         pud_k = pud_offset(p4d_k, EFI_VA_START);
171
172         num_entries = PTRS_PER_PUD - pud_index(EFI_VA_START);
173         memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
174 }
175
176 /*
177  * Wrapper for slow_virt_to_phys() that handles NULL addresses.
178  */
179 static inline phys_addr_t
180 virt_to_phys_or_null_size(void *va, unsigned long size)
181 {
182         phys_addr_t pa;
183
184         if (!va)
185                 return 0;
186
187         if (virt_addr_valid(va))
188                 return virt_to_phys(va);
189
190         pa = slow_virt_to_phys(va);
191
192         /* check if the object crosses a page boundary */
193         if (WARN_ON((pa ^ (pa + size - 1)) & PAGE_MASK))
194                 return 0;
195
196         return pa;
197 }
198
199 #define virt_to_phys_or_null(addr)                              \
200         virt_to_phys_or_null_size((addr), sizeof(*(addr)))
201
202 int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages)
203 {
204         unsigned long pfn, text, pf, rodata;
205         struct page *page;
206         unsigned npages;
207         pgd_t *pgd = efi_mm.pgd;
208
209         if (efi_have_uv1_memmap())
210                 return 0;
211
212         /*
213          * It can happen that the physical address of new_memmap lands in memory
214          * which is not mapped in the EFI page table. Therefore we need to go
215          * and ident-map those pages containing the map before calling
216          * phys_efi_set_virtual_address_map().
217          */
218         pfn = pa_memmap >> PAGE_SHIFT;
219         pf = _PAGE_NX | _PAGE_RW | _PAGE_ENC;
220         if (kernel_map_pages_in_pgd(pgd, pfn, pa_memmap, num_pages, pf)) {
221                 pr_err("Error ident-mapping new memmap (0x%lx)!\n", pa_memmap);
222                 return 1;
223         }
224
225         /*
226          * Certain firmware versions are way too sentimential and still believe
227          * they are exclusive and unquestionable owners of the first physical page,
228          * even though they explicitly mark it as EFI_CONVENTIONAL_MEMORY
229          * (but then write-access it later during SetVirtualAddressMap()).
230          *
231          * Create a 1:1 mapping for this page, to avoid triple faults during early
232          * boot with such firmware. We are free to hand this page to the BIOS,
233          * as trim_bios_range() will reserve the first page and isolate it away
234          * from memory allocators anyway.
235          */
236         if (kernel_map_pages_in_pgd(pgd, 0x0, 0x0, 1, pf)) {
237                 pr_err("Failed to create 1:1 mapping for the first page!\n");
238                 return 1;
239         }
240
241         /*
242          * When making calls to the firmware everything needs to be 1:1
243          * mapped and addressable with 32-bit pointers. Map the kernel
244          * text and allocate a new stack because we can't rely on the
245          * stack pointer being < 4GB.
246          */
247         if (!efi_is_mixed())
248                 return 0;
249
250         page = alloc_page(GFP_KERNEL|__GFP_DMA32);
251         if (!page) {
252                 pr_err("Unable to allocate EFI runtime stack < 4GB\n");
253                 return 1;
254         }
255
256         efi_scratch.phys_stack = page_to_phys(page + 1); /* stack grows down */
257
258         npages = (_etext - _text) >> PAGE_SHIFT;
259         text = __pa(_text);
260         pfn = text >> PAGE_SHIFT;
261
262         pf = _PAGE_ENC;
263         if (kernel_map_pages_in_pgd(pgd, pfn, text, npages, pf)) {
264                 pr_err("Failed to map kernel text 1:1\n");
265                 return 1;
266         }
267
268         npages = (__end_rodata - __start_rodata) >> PAGE_SHIFT;
269         rodata = __pa(__start_rodata);
270         pfn = rodata >> PAGE_SHIFT;
271         if (kernel_map_pages_in_pgd(pgd, pfn, rodata, npages, pf)) {
272                 pr_err("Failed to map kernel rodata 1:1\n");
273                 return 1;
274         }
275
276         return 0;
277 }
278
279 static void __init __map_region(efi_memory_desc_t *md, u64 va)
280 {
281         unsigned long flags = _PAGE_RW;
282         unsigned long pfn;
283         pgd_t *pgd = efi_mm.pgd;
284
285         /*
286          * EFI_RUNTIME_SERVICES_CODE regions typically cover PE/COFF
287          * executable images in memory that consist of both R-X and
288          * RW- sections, so we cannot apply read-only or non-exec
289          * permissions just yet. However, modern EFI systems provide
290          * a memory attributes table that describes those sections
291          * with the appropriate restricted permissions, which are
292          * applied in efi_runtime_update_mappings() below. All other
293          * regions can be mapped non-executable at this point, with
294          * the exception of boot services code regions, but those will
295          * be unmapped again entirely in efi_free_boot_services().
296          */
297         if (md->type != EFI_BOOT_SERVICES_CODE &&
298             md->type != EFI_RUNTIME_SERVICES_CODE)
299                 flags |= _PAGE_NX;
300
301         if (!(md->attribute & EFI_MEMORY_WB))
302                 flags |= _PAGE_PCD;
303
304         if (sev_active() && md->type != EFI_MEMORY_MAPPED_IO)
305                 flags |= _PAGE_ENC;
306
307         pfn = md->phys_addr >> PAGE_SHIFT;
308         if (kernel_map_pages_in_pgd(pgd, pfn, va, md->num_pages, flags))
309                 pr_warn("Error mapping PA 0x%llx -> VA 0x%llx!\n",
310                            md->phys_addr, va);
311 }
312
313 void __init efi_map_region(efi_memory_desc_t *md)
314 {
315         unsigned long size = md->num_pages << PAGE_SHIFT;
316         u64 pa = md->phys_addr;
317
318         if (efi_have_uv1_memmap())
319                 return old_map_region(md);
320
321         /*
322          * Make sure the 1:1 mappings are present as a catch-all for b0rked
323          * firmware which doesn't update all internal pointers after switching
324          * to virtual mode and would otherwise crap on us.
325          */
326         __map_region(md, md->phys_addr);
327
328         /*
329          * Enforce the 1:1 mapping as the default virtual address when
330          * booting in EFI mixed mode, because even though we may be
331          * running a 64-bit kernel, the firmware may only be 32-bit.
332          */
333         if (efi_is_mixed()) {
334                 md->virt_addr = md->phys_addr;
335                 return;
336         }
337
338         efi_va -= size;
339
340         /* Is PA 2M-aligned? */
341         if (!(pa & (PMD_SIZE - 1))) {
342                 efi_va &= PMD_MASK;
343         } else {
344                 u64 pa_offset = pa & (PMD_SIZE - 1);
345                 u64 prev_va = efi_va;
346
347                 /* get us the same offset within this 2M page */
348                 efi_va = (efi_va & PMD_MASK) + pa_offset;
349
350                 if (efi_va > prev_va)
351                         efi_va -= PMD_SIZE;
352         }
353
354         if (efi_va < EFI_VA_END) {
355                 pr_warn(FW_WARN "VA address range overflow!\n");
356                 return;
357         }
358
359         /* Do the VA map */
360         __map_region(md, efi_va);
361         md->virt_addr = efi_va;
362 }
363
364 /*
365  * kexec kernel will use efi_map_region_fixed to map efi runtime memory ranges.
366  * md->virt_addr is the original virtual address which had been mapped in kexec
367  * 1st kernel.
368  */
369 void __init efi_map_region_fixed(efi_memory_desc_t *md)
370 {
371         __map_region(md, md->phys_addr);
372         __map_region(md, md->virt_addr);
373 }
374
375 void __init parse_efi_setup(u64 phys_addr, u32 data_len)
376 {
377         efi_setup = phys_addr + sizeof(struct setup_data);
378 }
379
380 static int __init efi_update_mappings(efi_memory_desc_t *md, unsigned long pf)
381 {
382         unsigned long pfn;
383         pgd_t *pgd = efi_mm.pgd;
384         int err1, err2;
385
386         /* Update the 1:1 mapping */
387         pfn = md->phys_addr >> PAGE_SHIFT;
388         err1 = kernel_map_pages_in_pgd(pgd, pfn, md->phys_addr, md->num_pages, pf);
389         if (err1) {
390                 pr_err("Error while updating 1:1 mapping PA 0x%llx -> VA 0x%llx!\n",
391                            md->phys_addr, md->virt_addr);
392         }
393
394         err2 = kernel_map_pages_in_pgd(pgd, pfn, md->virt_addr, md->num_pages, pf);
395         if (err2) {
396                 pr_err("Error while updating VA mapping PA 0x%llx -> VA 0x%llx!\n",
397                            md->phys_addr, md->virt_addr);
398         }
399
400         return err1 || err2;
401 }
402
403 static int __init efi_update_mem_attr(struct mm_struct *mm, efi_memory_desc_t *md)
404 {
405         unsigned long pf = 0;
406
407         if (md->attribute & EFI_MEMORY_XP)
408                 pf |= _PAGE_NX;
409
410         if (!(md->attribute & EFI_MEMORY_RO))
411                 pf |= _PAGE_RW;
412
413         if (sev_active())
414                 pf |= _PAGE_ENC;
415
416         return efi_update_mappings(md, pf);
417 }
418
419 void __init efi_runtime_update_mappings(void)
420 {
421         efi_memory_desc_t *md;
422
423         if (efi_have_uv1_memmap()) {
424                 if (__supported_pte_mask & _PAGE_NX)
425                         runtime_code_page_mkexec();
426                 return;
427         }
428
429         /*
430          * Use the EFI Memory Attribute Table for mapping permissions if it
431          * exists, since it is intended to supersede EFI_PROPERTIES_TABLE.
432          */
433         if (efi_enabled(EFI_MEM_ATTR)) {
434                 efi_memattr_apply_permissions(NULL, efi_update_mem_attr);
435                 return;
436         }
437
438         /*
439          * EFI_MEMORY_ATTRIBUTES_TABLE is intended to replace
440          * EFI_PROPERTIES_TABLE. So, use EFI_PROPERTIES_TABLE to update
441          * permissions only if EFI_MEMORY_ATTRIBUTES_TABLE is not
442          * published by the firmware. Even if we find a buggy implementation of
443          * EFI_MEMORY_ATTRIBUTES_TABLE, don't fall back to
444          * EFI_PROPERTIES_TABLE, because of the same reason.
445          */
446
447         if (!efi_enabled(EFI_NX_PE_DATA))
448                 return;
449
450         for_each_efi_memory_desc(md) {
451                 unsigned long pf = 0;
452
453                 if (!(md->attribute & EFI_MEMORY_RUNTIME))
454                         continue;
455
456                 if (!(md->attribute & EFI_MEMORY_WB))
457                         pf |= _PAGE_PCD;
458
459                 if ((md->attribute & EFI_MEMORY_XP) ||
460                         (md->type == EFI_RUNTIME_SERVICES_DATA))
461                         pf |= _PAGE_NX;
462
463                 if (!(md->attribute & EFI_MEMORY_RO) &&
464                         (md->type != EFI_RUNTIME_SERVICES_CODE))
465                         pf |= _PAGE_RW;
466
467                 if (sev_active())
468                         pf |= _PAGE_ENC;
469
470                 efi_update_mappings(md, pf);
471         }
472 }
473
474 void __init efi_dump_pagetable(void)
475 {
476 #ifdef CONFIG_EFI_PGT_DUMP
477         if (efi_have_uv1_memmap())
478                 ptdump_walk_pgd_level(NULL, &init_mm);
479         else
480                 ptdump_walk_pgd_level(NULL, &efi_mm);
481 #endif
482 }
483
484 /*
485  * Makes the calling thread switch to/from efi_mm context. Can be used
486  * in a kernel thread and user context. Preemption needs to remain disabled
487  * while the EFI-mm is borrowed. mmgrab()/mmdrop() is not used because the mm
488  * can not change under us.
489  * It should be ensured that there are no concurent calls to this function.
490  */
491 void efi_switch_mm(struct mm_struct *mm)
492 {
493         efi_scratch.prev_mm = current->active_mm;
494         current->active_mm = mm;
495         switch_mm(efi_scratch.prev_mm, mm, NULL);
496 }
497
498 static DEFINE_SPINLOCK(efi_runtime_lock);
499
500 /*
501  * DS and ES contain user values.  We need to save them.
502  * The 32-bit EFI code needs a valid DS, ES, and SS.  There's no
503  * need to save the old SS: __KERNEL_DS is always acceptable.
504  */
505 #define __efi_thunk(func, ...)                                          \
506 ({                                                                      \
507         unsigned short __ds, __es;                                      \
508         efi_status_t ____s;                                             \
509                                                                         \
510         savesegment(ds, __ds);                                          \
511         savesegment(es, __es);                                          \
512                                                                         \
513         loadsegment(ss, __KERNEL_DS);                                   \
514         loadsegment(ds, __KERNEL_DS);                                   \
515         loadsegment(es, __KERNEL_DS);                                   \
516                                                                         \
517         ____s = efi64_thunk(efi.runtime->mixed_mode.func, __VA_ARGS__); \
518                                                                         \
519         loadsegment(ds, __ds);                                          \
520         loadsegment(es, __es);                                          \
521                                                                         \
522         ____s ^= (____s & BIT(31)) | (____s & BIT_ULL(31)) << 32;       \
523         ____s;                                                          \
524 })
525
526 /*
527  * Switch to the EFI page tables early so that we can access the 1:1
528  * runtime services mappings which are not mapped in any other page
529  * tables.
530  *
531  * Also, disable interrupts because the IDT points to 64-bit handlers,
532  * which aren't going to function correctly when we switch to 32-bit.
533  */
534 #define efi_thunk(func...)                                              \
535 ({                                                                      \
536         efi_status_t __s;                                               \
537                                                                         \
538         arch_efi_call_virt_setup();                                     \
539                                                                         \
540         __s = __efi_thunk(func);                                        \
541                                                                         \
542         arch_efi_call_virt_teardown();                                  \
543                                                                         \
544         __s;                                                            \
545 })
546
547 static efi_status_t __init __no_sanitize_address
548 efi_thunk_set_virtual_address_map(unsigned long memory_map_size,
549                                   unsigned long descriptor_size,
550                                   u32 descriptor_version,
551                                   efi_memory_desc_t *virtual_map)
552 {
553         efi_status_t status;
554         unsigned long flags;
555
556         efi_sync_low_kernel_mappings();
557         local_irq_save(flags);
558
559         efi_switch_mm(&efi_mm);
560
561         status = __efi_thunk(set_virtual_address_map, memory_map_size,
562                              descriptor_size, descriptor_version, virtual_map);
563
564         efi_switch_mm(efi_scratch.prev_mm);
565         local_irq_restore(flags);
566
567         return status;
568 }
569
570 static efi_status_t efi_thunk_get_time(efi_time_t *tm, efi_time_cap_t *tc)
571 {
572         return EFI_UNSUPPORTED;
573 }
574
575 static efi_status_t efi_thunk_set_time(efi_time_t *tm)
576 {
577         return EFI_UNSUPPORTED;
578 }
579
580 static efi_status_t
581 efi_thunk_get_wakeup_time(efi_bool_t *enabled, efi_bool_t *pending,
582                           efi_time_t *tm)
583 {
584         return EFI_UNSUPPORTED;
585 }
586
587 static efi_status_t
588 efi_thunk_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
589 {
590         return EFI_UNSUPPORTED;
591 }
592
593 static unsigned long efi_name_size(efi_char16_t *name)
594 {
595         return ucs2_strsize(name, EFI_VAR_NAME_LEN) + 1;
596 }
597
598 static efi_status_t
599 efi_thunk_get_variable(efi_char16_t *name, efi_guid_t *vendor,
600                        u32 *attr, unsigned long *data_size, void *data)
601 {
602         u8 buf[24] __aligned(8);
603         efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd));
604         efi_status_t status;
605         u32 phys_name, phys_vendor, phys_attr;
606         u32 phys_data_size, phys_data;
607         unsigned long flags;
608
609         spin_lock_irqsave(&efi_runtime_lock, flags);
610
611         *vnd = *vendor;
612
613         phys_data_size = virt_to_phys_or_null(data_size);
614         phys_vendor = virt_to_phys_or_null(vnd);
615         phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
616         phys_attr = virt_to_phys_or_null(attr);
617         phys_data = virt_to_phys_or_null_size(data, *data_size);
618
619         if (!phys_name || (data && !phys_data))
620                 status = EFI_INVALID_PARAMETER;
621         else
622                 status = efi_thunk(get_variable, phys_name, phys_vendor,
623                                    phys_attr, phys_data_size, phys_data);
624
625         spin_unlock_irqrestore(&efi_runtime_lock, flags);
626
627         return status;
628 }
629
630 static efi_status_t
631 efi_thunk_set_variable(efi_char16_t *name, efi_guid_t *vendor,
632                        u32 attr, unsigned long data_size, void *data)
633 {
634         u8 buf[24] __aligned(8);
635         efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd));
636         u32 phys_name, phys_vendor, phys_data;
637         efi_status_t status;
638         unsigned long flags;
639
640         spin_lock_irqsave(&efi_runtime_lock, flags);
641
642         *vnd = *vendor;
643
644         phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
645         phys_vendor = virt_to_phys_or_null(vnd);
646         phys_data = virt_to_phys_or_null_size(data, data_size);
647
648         if (!phys_name || (data && !phys_data))
649                 status = EFI_INVALID_PARAMETER;
650         else
651                 status = efi_thunk(set_variable, phys_name, phys_vendor,
652                                    attr, data_size, phys_data);
653
654         spin_unlock_irqrestore(&efi_runtime_lock, flags);
655
656         return status;
657 }
658
659 static efi_status_t
660 efi_thunk_set_variable_nonblocking(efi_char16_t *name, efi_guid_t *vendor,
661                                    u32 attr, unsigned long data_size,
662                                    void *data)
663 {
664         u8 buf[24] __aligned(8);
665         efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd));
666         u32 phys_name, phys_vendor, phys_data;
667         efi_status_t status;
668         unsigned long flags;
669
670         if (!spin_trylock_irqsave(&efi_runtime_lock, flags))
671                 return EFI_NOT_READY;
672
673         *vnd = *vendor;
674
675         phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
676         phys_vendor = virt_to_phys_or_null(vnd);
677         phys_data = virt_to_phys_or_null_size(data, data_size);
678
679         if (!phys_name || (data && !phys_data))
680                 status = EFI_INVALID_PARAMETER;
681         else
682                 status = efi_thunk(set_variable, phys_name, phys_vendor,
683                                    attr, data_size, phys_data);
684
685         spin_unlock_irqrestore(&efi_runtime_lock, flags);
686
687         return status;
688 }
689
690 static efi_status_t
691 efi_thunk_get_next_variable(unsigned long *name_size,
692                             efi_char16_t *name,
693                             efi_guid_t *vendor)
694 {
695         u8 buf[24] __aligned(8);
696         efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd));
697         efi_status_t status;
698         u32 phys_name_size, phys_name, phys_vendor;
699         unsigned long flags;
700
701         spin_lock_irqsave(&efi_runtime_lock, flags);
702
703         *vnd = *vendor;
704
705         phys_name_size = virt_to_phys_or_null(name_size);
706         phys_vendor = virt_to_phys_or_null(vnd);
707         phys_name = virt_to_phys_or_null_size(name, *name_size);
708
709         if (!phys_name)
710                 status = EFI_INVALID_PARAMETER;
711         else
712                 status = efi_thunk(get_next_variable, phys_name_size,
713                                    phys_name, phys_vendor);
714
715         spin_unlock_irqrestore(&efi_runtime_lock, flags);
716
717         *vendor = *vnd;
718         return status;
719 }
720
721 static efi_status_t
722 efi_thunk_get_next_high_mono_count(u32 *count)
723 {
724         return EFI_UNSUPPORTED;
725 }
726
727 static void
728 efi_thunk_reset_system(int reset_type, efi_status_t status,
729                        unsigned long data_size, efi_char16_t *data)
730 {
731         u32 phys_data;
732         unsigned long flags;
733
734         spin_lock_irqsave(&efi_runtime_lock, flags);
735
736         phys_data = virt_to_phys_or_null_size(data, data_size);
737
738         efi_thunk(reset_system, reset_type, status, data_size, phys_data);
739
740         spin_unlock_irqrestore(&efi_runtime_lock, flags);
741 }
742
743 static efi_status_t
744 efi_thunk_update_capsule(efi_capsule_header_t **capsules,
745                          unsigned long count, unsigned long sg_list)
746 {
747         /*
748          * To properly support this function we would need to repackage
749          * 'capsules' because the firmware doesn't understand 64-bit
750          * pointers.
751          */
752         return EFI_UNSUPPORTED;
753 }
754
755 static efi_status_t
756 efi_thunk_query_variable_info(u32 attr, u64 *storage_space,
757                               u64 *remaining_space,
758                               u64 *max_variable_size)
759 {
760         efi_status_t status;
761         u32 phys_storage, phys_remaining, phys_max;
762         unsigned long flags;
763
764         if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
765                 return EFI_UNSUPPORTED;
766
767         spin_lock_irqsave(&efi_runtime_lock, flags);
768
769         phys_storage = virt_to_phys_or_null(storage_space);
770         phys_remaining = virt_to_phys_or_null(remaining_space);
771         phys_max = virt_to_phys_or_null(max_variable_size);
772
773         status = efi_thunk(query_variable_info, attr, phys_storage,
774                            phys_remaining, phys_max);
775
776         spin_unlock_irqrestore(&efi_runtime_lock, flags);
777
778         return status;
779 }
780
781 static efi_status_t
782 efi_thunk_query_variable_info_nonblocking(u32 attr, u64 *storage_space,
783                                           u64 *remaining_space,
784                                           u64 *max_variable_size)
785 {
786         efi_status_t status;
787         u32 phys_storage, phys_remaining, phys_max;
788         unsigned long flags;
789
790         if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
791                 return EFI_UNSUPPORTED;
792
793         if (!spin_trylock_irqsave(&efi_runtime_lock, flags))
794                 return EFI_NOT_READY;
795
796         phys_storage = virt_to_phys_or_null(storage_space);
797         phys_remaining = virt_to_phys_or_null(remaining_space);
798         phys_max = virt_to_phys_or_null(max_variable_size);
799
800         status = efi_thunk(query_variable_info, attr, phys_storage,
801                            phys_remaining, phys_max);
802
803         spin_unlock_irqrestore(&efi_runtime_lock, flags);
804
805         return status;
806 }
807
808 static efi_status_t
809 efi_thunk_query_capsule_caps(efi_capsule_header_t **capsules,
810                              unsigned long count, u64 *max_size,
811                              int *reset_type)
812 {
813         /*
814          * To properly support this function we would need to repackage
815          * 'capsules' because the firmware doesn't understand 64-bit
816          * pointers.
817          */
818         return EFI_UNSUPPORTED;
819 }
820
821 void __init efi_thunk_runtime_setup(void)
822 {
823         if (!IS_ENABLED(CONFIG_EFI_MIXED))
824                 return;
825
826         efi.get_time = efi_thunk_get_time;
827         efi.set_time = efi_thunk_set_time;
828         efi.get_wakeup_time = efi_thunk_get_wakeup_time;
829         efi.set_wakeup_time = efi_thunk_set_wakeup_time;
830         efi.get_variable = efi_thunk_get_variable;
831         efi.get_next_variable = efi_thunk_get_next_variable;
832         efi.set_variable = efi_thunk_set_variable;
833         efi.set_variable_nonblocking = efi_thunk_set_variable_nonblocking;
834         efi.get_next_high_mono_count = efi_thunk_get_next_high_mono_count;
835         efi.reset_system = efi_thunk_reset_system;
836         efi.query_variable_info = efi_thunk_query_variable_info;
837         efi.query_variable_info_nonblocking = efi_thunk_query_variable_info_nonblocking;
838         efi.update_capsule = efi_thunk_update_capsule;
839         efi.query_capsule_caps = efi_thunk_query_capsule_caps;
840 }
841
842 efi_status_t __init __no_sanitize_address
843 efi_set_virtual_address_map(unsigned long memory_map_size,
844                             unsigned long descriptor_size,
845                             u32 descriptor_version,
846                             efi_memory_desc_t *virtual_map,
847                             unsigned long systab_phys)
848 {
849         const efi_system_table_t *systab = (efi_system_table_t *)systab_phys;
850         efi_status_t status;
851         unsigned long flags;
852         pgd_t *save_pgd = NULL;
853
854         if (efi_is_mixed())
855                 return efi_thunk_set_virtual_address_map(memory_map_size,
856                                                          descriptor_size,
857                                                          descriptor_version,
858                                                          virtual_map);
859
860         if (efi_have_uv1_memmap()) {
861                 save_pgd = efi_uv1_memmap_phys_prolog();
862                 if (!save_pgd)
863                         return EFI_ABORTED;
864         } else {
865                 efi_switch_mm(&efi_mm);
866         }
867
868         kernel_fpu_begin();
869
870         /* Disable interrupts around EFI calls: */
871         local_irq_save(flags);
872         status = efi_call(efi.runtime->set_virtual_address_map,
873                           memory_map_size, descriptor_size,
874                           descriptor_version, virtual_map);
875         local_irq_restore(flags);
876
877         kernel_fpu_end();
878
879         /* grab the virtually remapped EFI runtime services table pointer */
880         efi.runtime = READ_ONCE(systab->runtime);
881
882         if (save_pgd)
883                 efi_uv1_memmap_phys_epilog(save_pgd);
884         else
885                 efi_switch_mm(efi_scratch.prev_mm);
886
887         return status;
888 }