efi: Discover BTI support in runtime services regions
[platform/kernel/linux-starfive.git] / arch / x86 / platform / efi / efi_64.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * x86_64 specific EFI support functions
4  * Based on Extensible Firmware Interface Specification version 1.0
5  *
6  * Copyright (C) 2005-2008 Intel Co.
7  *      Fenghua Yu <fenghua.yu@intel.com>
8  *      Bibo Mao <bibo.mao@intel.com>
9  *      Chandramouli Narayanan <mouli@linux.intel.com>
10  *      Huang Ying <ying.huang@intel.com>
11  *
12  * Code to convert EFI to E820 map has been implemented in elilo bootloader
13  * based on a EFI patch by Edgar Hucek. Based on the E820 map, the page table
14  * is setup appropriately for EFI runtime code.
15  * - mouli 06/14/2007.
16  *
17  */
18
19 #define pr_fmt(fmt) "efi: " fmt
20
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/mm.h>
24 #include <linux/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/memblock.h>
27 #include <linux/ioport.h>
28 #include <linux/mc146818rtc.h>
29 #include <linux/efi.h>
30 #include <linux/export.h>
31 #include <linux/uaccess.h>
32 #include <linux/io.h>
33 #include <linux/reboot.h>
34 #include <linux/slab.h>
35 #include <linux/ucs2_string.h>
36 #include <linux/cc_platform.h>
37 #include <linux/sched/task.h>
38
39 #include <asm/setup.h>
40 #include <asm/page.h>
41 #include <asm/e820/api.h>
42 #include <asm/tlbflush.h>
43 #include <asm/proto.h>
44 #include <asm/efi.h>
45 #include <asm/cacheflush.h>
46 #include <asm/fixmap.h>
47 #include <asm/realmode.h>
48 #include <asm/time.h>
49 #include <asm/pgalloc.h>
50 #include <asm/sev.h>
51
52 /*
53  * We allocate runtime services regions top-down, starting from -4G, i.e.
54  * 0xffff_ffff_0000_0000 and limit EFI VA mapping space to 64G.
55  */
56 static u64 efi_va = EFI_VA_START;
57 static struct mm_struct *efi_prev_mm;
58
59 /*
60  * We need our own copy of the higher levels of the page tables
61  * because we want to avoid inserting EFI region mappings (EFI_VA_END
62  * to EFI_VA_START) into the standard kernel page tables. Everything
63  * else can be shared, see efi_sync_low_kernel_mappings().
64  *
65  * We don't want the pgd on the pgd_list and cannot use pgd_alloc() for the
66  * allocation.
67  */
68 int __init efi_alloc_page_tables(void)
69 {
70         pgd_t *pgd, *efi_pgd;
71         p4d_t *p4d;
72         pud_t *pud;
73         gfp_t gfp_mask;
74
75         gfp_mask = GFP_KERNEL | __GFP_ZERO;
76         efi_pgd = (pgd_t *)__get_free_pages(gfp_mask, PGD_ALLOCATION_ORDER);
77         if (!efi_pgd)
78                 goto fail;
79
80         pgd = efi_pgd + pgd_index(EFI_VA_END);
81         p4d = p4d_alloc(&init_mm, pgd, EFI_VA_END);
82         if (!p4d)
83                 goto free_pgd;
84
85         pud = pud_alloc(&init_mm, p4d, EFI_VA_END);
86         if (!pud)
87                 goto free_p4d;
88
89         efi_mm.pgd = efi_pgd;
90         mm_init_cpumask(&efi_mm);
91         init_new_context(NULL, &efi_mm);
92
93         return 0;
94
95 free_p4d:
96         if (pgtable_l5_enabled())
97                 free_page((unsigned long)pgd_page_vaddr(*pgd));
98 free_pgd:
99         free_pages((unsigned long)efi_pgd, PGD_ALLOCATION_ORDER);
100 fail:
101         return -ENOMEM;
102 }
103
104 /*
105  * Add low kernel mappings for passing arguments to EFI functions.
106  */
107 void efi_sync_low_kernel_mappings(void)
108 {
109         unsigned num_entries;
110         pgd_t *pgd_k, *pgd_efi;
111         p4d_t *p4d_k, *p4d_efi;
112         pud_t *pud_k, *pud_efi;
113         pgd_t *efi_pgd = efi_mm.pgd;
114
115         pgd_efi = efi_pgd + pgd_index(PAGE_OFFSET);
116         pgd_k = pgd_offset_k(PAGE_OFFSET);
117
118         num_entries = pgd_index(EFI_VA_END) - pgd_index(PAGE_OFFSET);
119         memcpy(pgd_efi, pgd_k, sizeof(pgd_t) * num_entries);
120
121         pgd_efi = efi_pgd + pgd_index(EFI_VA_END);
122         pgd_k = pgd_offset_k(EFI_VA_END);
123         p4d_efi = p4d_offset(pgd_efi, 0);
124         p4d_k = p4d_offset(pgd_k, 0);
125
126         num_entries = p4d_index(EFI_VA_END);
127         memcpy(p4d_efi, p4d_k, sizeof(p4d_t) * num_entries);
128
129         /*
130          * We share all the PUD entries apart from those that map the
131          * EFI regions. Copy around them.
132          */
133         BUILD_BUG_ON((EFI_VA_START & ~PUD_MASK) != 0);
134         BUILD_BUG_ON((EFI_VA_END & ~PUD_MASK) != 0);
135
136         p4d_efi = p4d_offset(pgd_efi, EFI_VA_END);
137         p4d_k = p4d_offset(pgd_k, EFI_VA_END);
138         pud_efi = pud_offset(p4d_efi, 0);
139         pud_k = pud_offset(p4d_k, 0);
140
141         num_entries = pud_index(EFI_VA_END);
142         memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
143
144         pud_efi = pud_offset(p4d_efi, EFI_VA_START);
145         pud_k = pud_offset(p4d_k, EFI_VA_START);
146
147         num_entries = PTRS_PER_PUD - pud_index(EFI_VA_START);
148         memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
149 }
150
151 /*
152  * Wrapper for slow_virt_to_phys() that handles NULL addresses.
153  */
154 static inline phys_addr_t
155 virt_to_phys_or_null_size(void *va, unsigned long size)
156 {
157         phys_addr_t pa;
158
159         if (!va)
160                 return 0;
161
162         if (virt_addr_valid(va))
163                 return virt_to_phys(va);
164
165         pa = slow_virt_to_phys(va);
166
167         /* check if the object crosses a page boundary */
168         if (WARN_ON((pa ^ (pa + size - 1)) & PAGE_MASK))
169                 return 0;
170
171         return pa;
172 }
173
174 #define virt_to_phys_or_null(addr)                              \
175         virt_to_phys_or_null_size((addr), sizeof(*(addr)))
176
177 int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages)
178 {
179         extern const u8 __efi64_thunk_ret_tramp[];
180         unsigned long pfn, text, pf, rodata, tramp;
181         struct page *page;
182         unsigned npages;
183         pgd_t *pgd = efi_mm.pgd;
184
185         /*
186          * It can happen that the physical address of new_memmap lands in memory
187          * which is not mapped in the EFI page table. Therefore we need to go
188          * and ident-map those pages containing the map before calling
189          * phys_efi_set_virtual_address_map().
190          */
191         pfn = pa_memmap >> PAGE_SHIFT;
192         pf = _PAGE_NX | _PAGE_RW | _PAGE_ENC;
193         if (kernel_map_pages_in_pgd(pgd, pfn, pa_memmap, num_pages, pf)) {
194                 pr_err("Error ident-mapping new memmap (0x%lx)!\n", pa_memmap);
195                 return 1;
196         }
197
198         /*
199          * Certain firmware versions are way too sentimental and still believe
200          * they are exclusive and unquestionable owners of the first physical page,
201          * even though they explicitly mark it as EFI_CONVENTIONAL_MEMORY
202          * (but then write-access it later during SetVirtualAddressMap()).
203          *
204          * Create a 1:1 mapping for this page, to avoid triple faults during early
205          * boot with such firmware. We are free to hand this page to the BIOS,
206          * as trim_bios_range() will reserve the first page and isolate it away
207          * from memory allocators anyway.
208          */
209         if (kernel_map_pages_in_pgd(pgd, 0x0, 0x0, 1, pf)) {
210                 pr_err("Failed to create 1:1 mapping for the first page!\n");
211                 return 1;
212         }
213
214         /*
215          * When SEV-ES is active, the GHCB as set by the kernel will be used
216          * by firmware. Create a 1:1 unencrypted mapping for each GHCB.
217          */
218         if (sev_es_efi_map_ghcbs(pgd)) {
219                 pr_err("Failed to create 1:1 mapping for the GHCBs!\n");
220                 return 1;
221         }
222
223         /*
224          * When making calls to the firmware everything needs to be 1:1
225          * mapped and addressable with 32-bit pointers. Map the kernel
226          * text and allocate a new stack because we can't rely on the
227          * stack pointer being < 4GB.
228          */
229         if (!efi_is_mixed())
230                 return 0;
231
232         page = alloc_page(GFP_KERNEL|__GFP_DMA32);
233         if (!page) {
234                 pr_err("Unable to allocate EFI runtime stack < 4GB\n");
235                 return 1;
236         }
237
238         efi_mixed_mode_stack_pa = page_to_phys(page + 1); /* stack grows down */
239
240         npages = (_etext - _text) >> PAGE_SHIFT;
241         text = __pa(_text);
242
243         if (kernel_unmap_pages_in_pgd(pgd, text, npages)) {
244                 pr_err("Failed to unmap kernel text 1:1 mapping\n");
245                 return 1;
246         }
247
248         npages = (__end_rodata - __start_rodata) >> PAGE_SHIFT;
249         rodata = __pa(__start_rodata);
250         pfn = rodata >> PAGE_SHIFT;
251
252         pf = _PAGE_NX | _PAGE_ENC;
253         if (kernel_map_pages_in_pgd(pgd, pfn, rodata, npages, pf)) {
254                 pr_err("Failed to map kernel rodata 1:1\n");
255                 return 1;
256         }
257
258         tramp = __pa(__efi64_thunk_ret_tramp);
259         pfn = tramp >> PAGE_SHIFT;
260
261         pf = _PAGE_ENC;
262         if (kernel_map_pages_in_pgd(pgd, pfn, tramp, 1, pf)) {
263                 pr_err("Failed to map mixed mode return trampoline\n");
264                 return 1;
265         }
266
267         return 0;
268 }
269
270 static void __init __map_region(efi_memory_desc_t *md, u64 va)
271 {
272         unsigned long flags = _PAGE_RW;
273         unsigned long pfn;
274         pgd_t *pgd = efi_mm.pgd;
275
276         /*
277          * EFI_RUNTIME_SERVICES_CODE regions typically cover PE/COFF
278          * executable images in memory that consist of both R-X and
279          * RW- sections, so we cannot apply read-only or non-exec
280          * permissions just yet. However, modern EFI systems provide
281          * a memory attributes table that describes those sections
282          * with the appropriate restricted permissions, which are
283          * applied in efi_runtime_update_mappings() below. All other
284          * regions can be mapped non-executable at this point, with
285          * the exception of boot services code regions, but those will
286          * be unmapped again entirely in efi_free_boot_services().
287          */
288         if (md->type != EFI_BOOT_SERVICES_CODE &&
289             md->type != EFI_RUNTIME_SERVICES_CODE)
290                 flags |= _PAGE_NX;
291
292         if (!(md->attribute & EFI_MEMORY_WB))
293                 flags |= _PAGE_PCD;
294
295         if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT) &&
296             md->type != EFI_MEMORY_MAPPED_IO)
297                 flags |= _PAGE_ENC;
298
299         pfn = md->phys_addr >> PAGE_SHIFT;
300         if (kernel_map_pages_in_pgd(pgd, pfn, va, md->num_pages, flags))
301                 pr_warn("Error mapping PA 0x%llx -> VA 0x%llx!\n",
302                            md->phys_addr, va);
303 }
304
305 void __init efi_map_region(efi_memory_desc_t *md)
306 {
307         unsigned long size = md->num_pages << PAGE_SHIFT;
308         u64 pa = md->phys_addr;
309
310         /*
311          * Make sure the 1:1 mappings are present as a catch-all for b0rked
312          * firmware which doesn't update all internal pointers after switching
313          * to virtual mode and would otherwise crap on us.
314          */
315         __map_region(md, md->phys_addr);
316
317         /*
318          * Enforce the 1:1 mapping as the default virtual address when
319          * booting in EFI mixed mode, because even though we may be
320          * running a 64-bit kernel, the firmware may only be 32-bit.
321          */
322         if (efi_is_mixed()) {
323                 md->virt_addr = md->phys_addr;
324                 return;
325         }
326
327         efi_va -= size;
328
329         /* Is PA 2M-aligned? */
330         if (!(pa & (PMD_SIZE - 1))) {
331                 efi_va &= PMD_MASK;
332         } else {
333                 u64 pa_offset = pa & (PMD_SIZE - 1);
334                 u64 prev_va = efi_va;
335
336                 /* get us the same offset within this 2M page */
337                 efi_va = (efi_va & PMD_MASK) + pa_offset;
338
339                 if (efi_va > prev_va)
340                         efi_va -= PMD_SIZE;
341         }
342
343         if (efi_va < EFI_VA_END) {
344                 pr_warn(FW_WARN "VA address range overflow!\n");
345                 return;
346         }
347
348         /* Do the VA map */
349         __map_region(md, efi_va);
350         md->virt_addr = efi_va;
351 }
352
353 /*
354  * kexec kernel will use efi_map_region_fixed to map efi runtime memory ranges.
355  * md->virt_addr is the original virtual address which had been mapped in kexec
356  * 1st kernel.
357  */
358 void __init efi_map_region_fixed(efi_memory_desc_t *md)
359 {
360         __map_region(md, md->phys_addr);
361         __map_region(md, md->virt_addr);
362 }
363
364 void __init parse_efi_setup(u64 phys_addr, u32 data_len)
365 {
366         efi_setup = phys_addr + sizeof(struct setup_data);
367 }
368
369 static int __init efi_update_mappings(efi_memory_desc_t *md, unsigned long pf)
370 {
371         unsigned long pfn;
372         pgd_t *pgd = efi_mm.pgd;
373         int err1, err2;
374
375         /* Update the 1:1 mapping */
376         pfn = md->phys_addr >> PAGE_SHIFT;
377         err1 = kernel_map_pages_in_pgd(pgd, pfn, md->phys_addr, md->num_pages, pf);
378         if (err1) {
379                 pr_err("Error while updating 1:1 mapping PA 0x%llx -> VA 0x%llx!\n",
380                            md->phys_addr, md->virt_addr);
381         }
382
383         err2 = kernel_map_pages_in_pgd(pgd, pfn, md->virt_addr, md->num_pages, pf);
384         if (err2) {
385                 pr_err("Error while updating VA mapping PA 0x%llx -> VA 0x%llx!\n",
386                            md->phys_addr, md->virt_addr);
387         }
388
389         return err1 || err2;
390 }
391
392 static int __init efi_update_mem_attr(struct mm_struct *mm, efi_memory_desc_t *md,
393                                       bool has_ibt)
394 {
395         unsigned long pf = 0;
396
397         if (md->attribute & EFI_MEMORY_XP)
398                 pf |= _PAGE_NX;
399
400         if (!(md->attribute & EFI_MEMORY_RO))
401                 pf |= _PAGE_RW;
402
403         if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
404                 pf |= _PAGE_ENC;
405
406         return efi_update_mappings(md, pf);
407 }
408
409 void __init efi_runtime_update_mappings(void)
410 {
411         efi_memory_desc_t *md;
412
413         /*
414          * Use the EFI Memory Attribute Table for mapping permissions if it
415          * exists, since it is intended to supersede EFI_PROPERTIES_TABLE.
416          */
417         if (efi_enabled(EFI_MEM_ATTR)) {
418                 efi_memattr_apply_permissions(NULL, efi_update_mem_attr);
419                 return;
420         }
421
422         /*
423          * EFI_MEMORY_ATTRIBUTES_TABLE is intended to replace
424          * EFI_PROPERTIES_TABLE. So, use EFI_PROPERTIES_TABLE to update
425          * permissions only if EFI_MEMORY_ATTRIBUTES_TABLE is not
426          * published by the firmware. Even if we find a buggy implementation of
427          * EFI_MEMORY_ATTRIBUTES_TABLE, don't fall back to
428          * EFI_PROPERTIES_TABLE, because of the same reason.
429          */
430
431         if (!efi_enabled(EFI_NX_PE_DATA))
432                 return;
433
434         for_each_efi_memory_desc(md) {
435                 unsigned long pf = 0;
436
437                 if (!(md->attribute & EFI_MEMORY_RUNTIME))
438                         continue;
439
440                 if (!(md->attribute & EFI_MEMORY_WB))
441                         pf |= _PAGE_PCD;
442
443                 if ((md->attribute & EFI_MEMORY_XP) ||
444                         (md->type == EFI_RUNTIME_SERVICES_DATA))
445                         pf |= _PAGE_NX;
446
447                 if (!(md->attribute & EFI_MEMORY_RO) &&
448                         (md->type != EFI_RUNTIME_SERVICES_CODE))
449                         pf |= _PAGE_RW;
450
451                 if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
452                         pf |= _PAGE_ENC;
453
454                 efi_update_mappings(md, pf);
455         }
456 }
457
458 void __init efi_dump_pagetable(void)
459 {
460 #ifdef CONFIG_EFI_PGT_DUMP
461         ptdump_walk_pgd_level(NULL, &efi_mm);
462 #endif
463 }
464
465 /*
466  * Makes the calling thread switch to/from efi_mm context. Can be used
467  * in a kernel thread and user context. Preemption needs to remain disabled
468  * while the EFI-mm is borrowed. mmgrab()/mmdrop() is not used because the mm
469  * can not change under us.
470  * It should be ensured that there are no concurrent calls to this function.
471  */
472 void efi_enter_mm(void)
473 {
474         efi_prev_mm = current->active_mm;
475         current->active_mm = &efi_mm;
476         switch_mm(efi_prev_mm, &efi_mm, NULL);
477 }
478
479 void efi_leave_mm(void)
480 {
481         current->active_mm = efi_prev_mm;
482         switch_mm(&efi_mm, efi_prev_mm, NULL);
483 }
484
485 static DEFINE_SPINLOCK(efi_runtime_lock);
486
487 /*
488  * DS and ES contain user values.  We need to save them.
489  * The 32-bit EFI code needs a valid DS, ES, and SS.  There's no
490  * need to save the old SS: __KERNEL_DS is always acceptable.
491  */
492 #define __efi_thunk(func, ...)                                          \
493 ({                                                                      \
494         unsigned short __ds, __es;                                      \
495         efi_status_t ____s;                                             \
496                                                                         \
497         savesegment(ds, __ds);                                          \
498         savesegment(es, __es);                                          \
499                                                                         \
500         loadsegment(ss, __KERNEL_DS);                                   \
501         loadsegment(ds, __KERNEL_DS);                                   \
502         loadsegment(es, __KERNEL_DS);                                   \
503                                                                         \
504         ____s = efi64_thunk(efi.runtime->mixed_mode.func, __VA_ARGS__); \
505                                                                         \
506         loadsegment(ds, __ds);                                          \
507         loadsegment(es, __es);                                          \
508                                                                         \
509         ____s ^= (____s & BIT(31)) | (____s & BIT_ULL(31)) << 32;       \
510         ____s;                                                          \
511 })
512
513 /*
514  * Switch to the EFI page tables early so that we can access the 1:1
515  * runtime services mappings which are not mapped in any other page
516  * tables.
517  *
518  * Also, disable interrupts because the IDT points to 64-bit handlers,
519  * which aren't going to function correctly when we switch to 32-bit.
520  */
521 #define efi_thunk(func...)                                              \
522 ({                                                                      \
523         efi_status_t __s;                                               \
524                                                                         \
525         arch_efi_call_virt_setup();                                     \
526                                                                         \
527         __s = __efi_thunk(func);                                        \
528                                                                         \
529         arch_efi_call_virt_teardown();                                  \
530                                                                         \
531         __s;                                                            \
532 })
533
534 static efi_status_t __init __no_sanitize_address
535 efi_thunk_set_virtual_address_map(unsigned long memory_map_size,
536                                   unsigned long descriptor_size,
537                                   u32 descriptor_version,
538                                   efi_memory_desc_t *virtual_map)
539 {
540         efi_status_t status;
541         unsigned long flags;
542
543         efi_sync_low_kernel_mappings();
544         local_irq_save(flags);
545
546         efi_enter_mm();
547
548         status = __efi_thunk(set_virtual_address_map, memory_map_size,
549                              descriptor_size, descriptor_version, virtual_map);
550
551         efi_leave_mm();
552         local_irq_restore(flags);
553
554         return status;
555 }
556
557 static efi_status_t efi_thunk_get_time(efi_time_t *tm, efi_time_cap_t *tc)
558 {
559         return EFI_UNSUPPORTED;
560 }
561
562 static efi_status_t efi_thunk_set_time(efi_time_t *tm)
563 {
564         return EFI_UNSUPPORTED;
565 }
566
567 static efi_status_t
568 efi_thunk_get_wakeup_time(efi_bool_t *enabled, efi_bool_t *pending,
569                           efi_time_t *tm)
570 {
571         return EFI_UNSUPPORTED;
572 }
573
574 static efi_status_t
575 efi_thunk_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
576 {
577         return EFI_UNSUPPORTED;
578 }
579
580 static unsigned long efi_name_size(efi_char16_t *name)
581 {
582         return ucs2_strsize(name, EFI_VAR_NAME_LEN) + 1;
583 }
584
585 static efi_status_t
586 efi_thunk_get_variable(efi_char16_t *name, efi_guid_t *vendor,
587                        u32 *attr, unsigned long *data_size, void *data)
588 {
589         u8 buf[24] __aligned(8);
590         efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd));
591         efi_status_t status;
592         u32 phys_name, phys_vendor, phys_attr;
593         u32 phys_data_size, phys_data;
594         unsigned long flags;
595
596         spin_lock_irqsave(&efi_runtime_lock, flags);
597
598         *vnd = *vendor;
599
600         phys_data_size = virt_to_phys_or_null(data_size);
601         phys_vendor = virt_to_phys_or_null(vnd);
602         phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
603         phys_attr = virt_to_phys_or_null(attr);
604         phys_data = virt_to_phys_or_null_size(data, *data_size);
605
606         if (!phys_name || (data && !phys_data))
607                 status = EFI_INVALID_PARAMETER;
608         else
609                 status = efi_thunk(get_variable, phys_name, phys_vendor,
610                                    phys_attr, phys_data_size, phys_data);
611
612         spin_unlock_irqrestore(&efi_runtime_lock, flags);
613
614         return status;
615 }
616
617 static efi_status_t
618 efi_thunk_set_variable(efi_char16_t *name, efi_guid_t *vendor,
619                        u32 attr, unsigned long data_size, void *data)
620 {
621         u8 buf[24] __aligned(8);
622         efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd));
623         u32 phys_name, phys_vendor, phys_data;
624         efi_status_t status;
625         unsigned long flags;
626
627         spin_lock_irqsave(&efi_runtime_lock, flags);
628
629         *vnd = *vendor;
630
631         phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
632         phys_vendor = virt_to_phys_or_null(vnd);
633         phys_data = virt_to_phys_or_null_size(data, data_size);
634
635         if (!phys_name || (data && !phys_data))
636                 status = EFI_INVALID_PARAMETER;
637         else
638                 status = efi_thunk(set_variable, phys_name, phys_vendor,
639                                    attr, data_size, phys_data);
640
641         spin_unlock_irqrestore(&efi_runtime_lock, flags);
642
643         return status;
644 }
645
646 static efi_status_t
647 efi_thunk_set_variable_nonblocking(efi_char16_t *name, efi_guid_t *vendor,
648                                    u32 attr, unsigned long data_size,
649                                    void *data)
650 {
651         u8 buf[24] __aligned(8);
652         efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd));
653         u32 phys_name, phys_vendor, phys_data;
654         efi_status_t status;
655         unsigned long flags;
656
657         if (!spin_trylock_irqsave(&efi_runtime_lock, flags))
658                 return EFI_NOT_READY;
659
660         *vnd = *vendor;
661
662         phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
663         phys_vendor = virt_to_phys_or_null(vnd);
664         phys_data = virt_to_phys_or_null_size(data, data_size);
665
666         if (!phys_name || (data && !phys_data))
667                 status = EFI_INVALID_PARAMETER;
668         else
669                 status = efi_thunk(set_variable, phys_name, phys_vendor,
670                                    attr, data_size, phys_data);
671
672         spin_unlock_irqrestore(&efi_runtime_lock, flags);
673
674         return status;
675 }
676
677 static efi_status_t
678 efi_thunk_get_next_variable(unsigned long *name_size,
679                             efi_char16_t *name,
680                             efi_guid_t *vendor)
681 {
682         u8 buf[24] __aligned(8);
683         efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd));
684         efi_status_t status;
685         u32 phys_name_size, phys_name, phys_vendor;
686         unsigned long flags;
687
688         spin_lock_irqsave(&efi_runtime_lock, flags);
689
690         *vnd = *vendor;
691
692         phys_name_size = virt_to_phys_or_null(name_size);
693         phys_vendor = virt_to_phys_or_null(vnd);
694         phys_name = virt_to_phys_or_null_size(name, *name_size);
695
696         if (!phys_name)
697                 status = EFI_INVALID_PARAMETER;
698         else
699                 status = efi_thunk(get_next_variable, phys_name_size,
700                                    phys_name, phys_vendor);
701
702         spin_unlock_irqrestore(&efi_runtime_lock, flags);
703
704         *vendor = *vnd;
705         return status;
706 }
707
708 static efi_status_t
709 efi_thunk_get_next_high_mono_count(u32 *count)
710 {
711         return EFI_UNSUPPORTED;
712 }
713
714 static void
715 efi_thunk_reset_system(int reset_type, efi_status_t status,
716                        unsigned long data_size, efi_char16_t *data)
717 {
718         u32 phys_data;
719         unsigned long flags;
720
721         spin_lock_irqsave(&efi_runtime_lock, flags);
722
723         phys_data = virt_to_phys_or_null_size(data, data_size);
724
725         efi_thunk(reset_system, reset_type, status, data_size, phys_data);
726
727         spin_unlock_irqrestore(&efi_runtime_lock, flags);
728 }
729
730 static efi_status_t
731 efi_thunk_update_capsule(efi_capsule_header_t **capsules,
732                          unsigned long count, unsigned long sg_list)
733 {
734         /*
735          * To properly support this function we would need to repackage
736          * 'capsules' because the firmware doesn't understand 64-bit
737          * pointers.
738          */
739         return EFI_UNSUPPORTED;
740 }
741
742 static efi_status_t
743 efi_thunk_query_variable_info(u32 attr, u64 *storage_space,
744                               u64 *remaining_space,
745                               u64 *max_variable_size)
746 {
747         efi_status_t status;
748         u32 phys_storage, phys_remaining, phys_max;
749         unsigned long flags;
750
751         if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
752                 return EFI_UNSUPPORTED;
753
754         spin_lock_irqsave(&efi_runtime_lock, flags);
755
756         phys_storage = virt_to_phys_or_null(storage_space);
757         phys_remaining = virt_to_phys_or_null(remaining_space);
758         phys_max = virt_to_phys_or_null(max_variable_size);
759
760         status = efi_thunk(query_variable_info, attr, phys_storage,
761                            phys_remaining, phys_max);
762
763         spin_unlock_irqrestore(&efi_runtime_lock, flags);
764
765         return status;
766 }
767
768 static efi_status_t
769 efi_thunk_query_variable_info_nonblocking(u32 attr, u64 *storage_space,
770                                           u64 *remaining_space,
771                                           u64 *max_variable_size)
772 {
773         efi_status_t status;
774         u32 phys_storage, phys_remaining, phys_max;
775         unsigned long flags;
776
777         if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
778                 return EFI_UNSUPPORTED;
779
780         if (!spin_trylock_irqsave(&efi_runtime_lock, flags))
781                 return EFI_NOT_READY;
782
783         phys_storage = virt_to_phys_or_null(storage_space);
784         phys_remaining = virt_to_phys_or_null(remaining_space);
785         phys_max = virt_to_phys_or_null(max_variable_size);
786
787         status = efi_thunk(query_variable_info, attr, phys_storage,
788                            phys_remaining, phys_max);
789
790         spin_unlock_irqrestore(&efi_runtime_lock, flags);
791
792         return status;
793 }
794
795 static efi_status_t
796 efi_thunk_query_capsule_caps(efi_capsule_header_t **capsules,
797                              unsigned long count, u64 *max_size,
798                              int *reset_type)
799 {
800         /*
801          * To properly support this function we would need to repackage
802          * 'capsules' because the firmware doesn't understand 64-bit
803          * pointers.
804          */
805         return EFI_UNSUPPORTED;
806 }
807
808 void __init efi_thunk_runtime_setup(void)
809 {
810         if (!IS_ENABLED(CONFIG_EFI_MIXED))
811                 return;
812
813         efi.get_time = efi_thunk_get_time;
814         efi.set_time = efi_thunk_set_time;
815         efi.get_wakeup_time = efi_thunk_get_wakeup_time;
816         efi.set_wakeup_time = efi_thunk_set_wakeup_time;
817         efi.get_variable = efi_thunk_get_variable;
818         efi.get_next_variable = efi_thunk_get_next_variable;
819         efi.set_variable = efi_thunk_set_variable;
820         efi.set_variable_nonblocking = efi_thunk_set_variable_nonblocking;
821         efi.get_next_high_mono_count = efi_thunk_get_next_high_mono_count;
822         efi.reset_system = efi_thunk_reset_system;
823         efi.query_variable_info = efi_thunk_query_variable_info;
824         efi.query_variable_info_nonblocking = efi_thunk_query_variable_info_nonblocking;
825         efi.update_capsule = efi_thunk_update_capsule;
826         efi.query_capsule_caps = efi_thunk_query_capsule_caps;
827 }
828
829 efi_status_t __init __no_sanitize_address
830 efi_set_virtual_address_map(unsigned long memory_map_size,
831                             unsigned long descriptor_size,
832                             u32 descriptor_version,
833                             efi_memory_desc_t *virtual_map,
834                             unsigned long systab_phys)
835 {
836         const efi_system_table_t *systab = (efi_system_table_t *)systab_phys;
837         efi_status_t status;
838         unsigned long flags;
839
840         if (efi_is_mixed())
841                 return efi_thunk_set_virtual_address_map(memory_map_size,
842                                                          descriptor_size,
843                                                          descriptor_version,
844                                                          virtual_map);
845         efi_enter_mm();
846
847         efi_fpu_begin();
848
849         /* Disable interrupts around EFI calls: */
850         local_irq_save(flags);
851         status = efi_call(efi.runtime->set_virtual_address_map,
852                           memory_map_size, descriptor_size,
853                           descriptor_version, virtual_map);
854         local_irq_restore(flags);
855
856         efi_fpu_end();
857
858         /* grab the virtually remapped EFI runtime services table pointer */
859         efi.runtime = READ_ONCE(systab->runtime);
860
861         efi_leave_mm();
862
863         return status;
864 }