d7dd8e0db8daa557740ec2f7b5384c991b37cacc
[platform/kernel/linux-starfive.git] / arch / x86 / net / bpf_jit_comp.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * BPF JIT compiler
4  *
5  * Copyright (C) 2011-2013 Eric Dumazet (eric.dumazet@gmail.com)
6  * Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
7  */
8 #include <linux/netdevice.h>
9 #include <linux/filter.h>
10 #include <linux/if_vlan.h>
11 #include <linux/bpf.h>
12 #include <linux/memory.h>
13 #include <linux/sort.h>
14 #include <asm/extable.h>
15 #include <asm/set_memory.h>
16 #include <asm/nospec-branch.h>
17 #include <asm/text-patching.h>
18
19 static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
20 {
21         if (len == 1)
22                 *ptr = bytes;
23         else if (len == 2)
24                 *(u16 *)ptr = bytes;
25         else {
26                 *(u32 *)ptr = bytes;
27                 barrier();
28         }
29         return ptr + len;
30 }
31
32 #define EMIT(bytes, len) \
33         do { prog = emit_code(prog, bytes, len); } while (0)
34
35 #define EMIT1(b1)               EMIT(b1, 1)
36 #define EMIT2(b1, b2)           EMIT((b1) + ((b2) << 8), 2)
37 #define EMIT3(b1, b2, b3)       EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
38 #define EMIT4(b1, b2, b3, b4)   EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
39
40 #define EMIT1_off32(b1, off) \
41         do { EMIT1(b1); EMIT(off, 4); } while (0)
42 #define EMIT2_off32(b1, b2, off) \
43         do { EMIT2(b1, b2); EMIT(off, 4); } while (0)
44 #define EMIT3_off32(b1, b2, b3, off) \
45         do { EMIT3(b1, b2, b3); EMIT(off, 4); } while (0)
46 #define EMIT4_off32(b1, b2, b3, b4, off) \
47         do { EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0)
48
49 #ifdef CONFIG_X86_KERNEL_IBT
50 #define EMIT_ENDBR()    EMIT(gen_endbr(), 4)
51 #else
52 #define EMIT_ENDBR()
53 #endif
54
55 static bool is_imm8(int value)
56 {
57         return value <= 127 && value >= -128;
58 }
59
60 static bool is_simm32(s64 value)
61 {
62         return value == (s64)(s32)value;
63 }
64
65 static bool is_uimm32(u64 value)
66 {
67         return value == (u64)(u32)value;
68 }
69
70 /* mov dst, src */
71 #define EMIT_mov(DST, SRC)                                                               \
72         do {                                                                             \
73                 if (DST != SRC)                                                          \
74                         EMIT3(add_2mod(0x48, DST, SRC), 0x89, add_2reg(0xC0, DST, SRC)); \
75         } while (0)
76
77 static int bpf_size_to_x86_bytes(int bpf_size)
78 {
79         if (bpf_size == BPF_W)
80                 return 4;
81         else if (bpf_size == BPF_H)
82                 return 2;
83         else if (bpf_size == BPF_B)
84                 return 1;
85         else if (bpf_size == BPF_DW)
86                 return 4; /* imm32 */
87         else
88                 return 0;
89 }
90
91 /*
92  * List of x86 cond jumps opcodes (. + s8)
93  * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
94  */
95 #define X86_JB  0x72
96 #define X86_JAE 0x73
97 #define X86_JE  0x74
98 #define X86_JNE 0x75
99 #define X86_JBE 0x76
100 #define X86_JA  0x77
101 #define X86_JL  0x7C
102 #define X86_JGE 0x7D
103 #define X86_JLE 0x7E
104 #define X86_JG  0x7F
105
106 /* Pick a register outside of BPF range for JIT internal work */
107 #define AUX_REG (MAX_BPF_JIT_REG + 1)
108 #define X86_REG_R9 (MAX_BPF_JIT_REG + 2)
109
110 /*
111  * The following table maps BPF registers to x86-64 registers.
112  *
113  * x86-64 register R12 is unused, since if used as base address
114  * register in load/store instructions, it always needs an
115  * extra byte of encoding and is callee saved.
116  *
117  * x86-64 register R9 is not used by BPF programs, but can be used by BPF
118  * trampoline. x86-64 register R10 is used for blinding (if enabled).
119  */
120 static const int reg2hex[] = {
121         [BPF_REG_0] = 0,  /* RAX */
122         [BPF_REG_1] = 7,  /* RDI */
123         [BPF_REG_2] = 6,  /* RSI */
124         [BPF_REG_3] = 2,  /* RDX */
125         [BPF_REG_4] = 1,  /* RCX */
126         [BPF_REG_5] = 0,  /* R8  */
127         [BPF_REG_6] = 3,  /* RBX callee saved */
128         [BPF_REG_7] = 5,  /* R13 callee saved */
129         [BPF_REG_8] = 6,  /* R14 callee saved */
130         [BPF_REG_9] = 7,  /* R15 callee saved */
131         [BPF_REG_FP] = 5, /* RBP readonly */
132         [BPF_REG_AX] = 2, /* R10 temp register */
133         [AUX_REG] = 3,    /* R11 temp register */
134         [X86_REG_R9] = 1, /* R9 register, 6th function argument */
135 };
136
137 static const int reg2pt_regs[] = {
138         [BPF_REG_0] = offsetof(struct pt_regs, ax),
139         [BPF_REG_1] = offsetof(struct pt_regs, di),
140         [BPF_REG_2] = offsetof(struct pt_regs, si),
141         [BPF_REG_3] = offsetof(struct pt_regs, dx),
142         [BPF_REG_4] = offsetof(struct pt_regs, cx),
143         [BPF_REG_5] = offsetof(struct pt_regs, r8),
144         [BPF_REG_6] = offsetof(struct pt_regs, bx),
145         [BPF_REG_7] = offsetof(struct pt_regs, r13),
146         [BPF_REG_8] = offsetof(struct pt_regs, r14),
147         [BPF_REG_9] = offsetof(struct pt_regs, r15),
148 };
149
150 /*
151  * is_ereg() == true if BPF register 'reg' maps to x86-64 r8..r15
152  * which need extra byte of encoding.
153  * rax,rcx,...,rbp have simpler encoding
154  */
155 static bool is_ereg(u32 reg)
156 {
157         return (1 << reg) & (BIT(BPF_REG_5) |
158                              BIT(AUX_REG) |
159                              BIT(BPF_REG_7) |
160                              BIT(BPF_REG_8) |
161                              BIT(BPF_REG_9) |
162                              BIT(X86_REG_R9) |
163                              BIT(BPF_REG_AX));
164 }
165
166 /*
167  * is_ereg_8l() == true if BPF register 'reg' is mapped to access x86-64
168  * lower 8-bit registers dil,sil,bpl,spl,r8b..r15b, which need extra byte
169  * of encoding. al,cl,dl,bl have simpler encoding.
170  */
171 static bool is_ereg_8l(u32 reg)
172 {
173         return is_ereg(reg) ||
174             (1 << reg) & (BIT(BPF_REG_1) |
175                           BIT(BPF_REG_2) |
176                           BIT(BPF_REG_FP));
177 }
178
179 static bool is_axreg(u32 reg)
180 {
181         return reg == BPF_REG_0;
182 }
183
184 /* Add modifiers if 'reg' maps to x86-64 registers R8..R15 */
185 static u8 add_1mod(u8 byte, u32 reg)
186 {
187         if (is_ereg(reg))
188                 byte |= 1;
189         return byte;
190 }
191
192 static u8 add_2mod(u8 byte, u32 r1, u32 r2)
193 {
194         if (is_ereg(r1))
195                 byte |= 1;
196         if (is_ereg(r2))
197                 byte |= 4;
198         return byte;
199 }
200
201 /* Encode 'dst_reg' register into x86-64 opcode 'byte' */
202 static u8 add_1reg(u8 byte, u32 dst_reg)
203 {
204         return byte + reg2hex[dst_reg];
205 }
206
207 /* Encode 'dst_reg' and 'src_reg' registers into x86-64 opcode 'byte' */
208 static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg)
209 {
210         return byte + reg2hex[dst_reg] + (reg2hex[src_reg] << 3);
211 }
212
213 /* Some 1-byte opcodes for binary ALU operations */
214 static u8 simple_alu_opcodes[] = {
215         [BPF_ADD] = 0x01,
216         [BPF_SUB] = 0x29,
217         [BPF_AND] = 0x21,
218         [BPF_OR] = 0x09,
219         [BPF_XOR] = 0x31,
220         [BPF_LSH] = 0xE0,
221         [BPF_RSH] = 0xE8,
222         [BPF_ARSH] = 0xF8,
223 };
224
225 static void jit_fill_hole(void *area, unsigned int size)
226 {
227         /* Fill whole space with INT3 instructions */
228         memset(area, 0xcc, size);
229 }
230
231 int bpf_arch_text_invalidate(void *dst, size_t len)
232 {
233         return IS_ERR_OR_NULL(text_poke_set(dst, 0xcc, len));
234 }
235
236 struct jit_context {
237         int cleanup_addr; /* Epilogue code offset */
238
239         /*
240          * Program specific offsets of labels in the code; these rely on the
241          * JIT doing at least 2 passes, recording the position on the first
242          * pass, only to generate the correct offset on the second pass.
243          */
244         int tail_call_direct_label;
245         int tail_call_indirect_label;
246 };
247
248 /* Maximum number of bytes emitted while JITing one eBPF insn */
249 #define BPF_MAX_INSN_SIZE       128
250 #define BPF_INSN_SAFETY         64
251
252 /* Number of bytes emit_patch() needs to generate instructions */
253 #define X86_PATCH_SIZE          5
254 /* Number of bytes that will be skipped on tailcall */
255 #define X86_TAIL_CALL_OFFSET    (11 + ENDBR_INSN_SIZE)
256
257 static void push_callee_regs(u8 **pprog, bool *callee_regs_used)
258 {
259         u8 *prog = *pprog;
260
261         if (callee_regs_used[0])
262                 EMIT1(0x53);         /* push rbx */
263         if (callee_regs_used[1])
264                 EMIT2(0x41, 0x55);   /* push r13 */
265         if (callee_regs_used[2])
266                 EMIT2(0x41, 0x56);   /* push r14 */
267         if (callee_regs_used[3])
268                 EMIT2(0x41, 0x57);   /* push r15 */
269         *pprog = prog;
270 }
271
272 static void pop_callee_regs(u8 **pprog, bool *callee_regs_used)
273 {
274         u8 *prog = *pprog;
275
276         if (callee_regs_used[3])
277                 EMIT2(0x41, 0x5F);   /* pop r15 */
278         if (callee_regs_used[2])
279                 EMIT2(0x41, 0x5E);   /* pop r14 */
280         if (callee_regs_used[1])
281                 EMIT2(0x41, 0x5D);   /* pop r13 */
282         if (callee_regs_used[0])
283                 EMIT1(0x5B);         /* pop rbx */
284         *pprog = prog;
285 }
286
287 /*
288  * Emit x86-64 prologue code for BPF program.
289  * bpf_tail_call helper will skip the first X86_TAIL_CALL_OFFSET bytes
290  * while jumping to another program
291  */
292 static void emit_prologue(u8 **pprog, u32 stack_depth, bool ebpf_from_cbpf,
293                           bool tail_call_reachable, bool is_subprog)
294 {
295         u8 *prog = *pprog;
296
297         /* BPF trampoline can be made to work without these nops,
298          * but let's waste 5 bytes for now and optimize later
299          */
300         EMIT_ENDBR();
301         memcpy(prog, x86_nops[5], X86_PATCH_SIZE);
302         prog += X86_PATCH_SIZE;
303         if (!ebpf_from_cbpf) {
304                 if (tail_call_reachable && !is_subprog)
305                         EMIT2(0x31, 0xC0); /* xor eax, eax */
306                 else
307                         EMIT2(0x66, 0x90); /* nop2 */
308         }
309         EMIT1(0x55);             /* push rbp */
310         EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
311
312         /* X86_TAIL_CALL_OFFSET is here */
313         EMIT_ENDBR();
314
315         /* sub rsp, rounded_stack_depth */
316         if (stack_depth)
317                 EMIT3_off32(0x48, 0x81, 0xEC, round_up(stack_depth, 8));
318         if (tail_call_reachable)
319                 EMIT1(0x50);         /* push rax */
320         *pprog = prog;
321 }
322
323 static int emit_patch(u8 **pprog, void *func, void *ip, u8 opcode)
324 {
325         u8 *prog = *pprog;
326         s64 offset;
327
328         offset = func - (ip + X86_PATCH_SIZE);
329         if (!is_simm32(offset)) {
330                 pr_err("Target call %p is out of range\n", func);
331                 return -ERANGE;
332         }
333         EMIT1_off32(opcode, offset);
334         *pprog = prog;
335         return 0;
336 }
337
338 static int emit_call(u8 **pprog, void *func, void *ip)
339 {
340         return emit_patch(pprog, func, ip, 0xE8);
341 }
342
343 static int emit_jump(u8 **pprog, void *func, void *ip)
344 {
345         return emit_patch(pprog, func, ip, 0xE9);
346 }
347
348 static int __bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
349                                 void *old_addr, void *new_addr)
350 {
351         const u8 *nop_insn = x86_nops[5];
352         u8 old_insn[X86_PATCH_SIZE];
353         u8 new_insn[X86_PATCH_SIZE];
354         u8 *prog;
355         int ret;
356
357         memcpy(old_insn, nop_insn, X86_PATCH_SIZE);
358         if (old_addr) {
359                 prog = old_insn;
360                 ret = t == BPF_MOD_CALL ?
361                       emit_call(&prog, old_addr, ip) :
362                       emit_jump(&prog, old_addr, ip);
363                 if (ret)
364                         return ret;
365         }
366
367         memcpy(new_insn, nop_insn, X86_PATCH_SIZE);
368         if (new_addr) {
369                 prog = new_insn;
370                 ret = t == BPF_MOD_CALL ?
371                       emit_call(&prog, new_addr, ip) :
372                       emit_jump(&prog, new_addr, ip);
373                 if (ret)
374                         return ret;
375         }
376
377         ret = -EBUSY;
378         mutex_lock(&text_mutex);
379         if (memcmp(ip, old_insn, X86_PATCH_SIZE))
380                 goto out;
381         ret = 1;
382         if (memcmp(ip, new_insn, X86_PATCH_SIZE)) {
383                 text_poke_bp(ip, new_insn, X86_PATCH_SIZE, NULL);
384                 ret = 0;
385         }
386 out:
387         mutex_unlock(&text_mutex);
388         return ret;
389 }
390
391 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
392                        void *old_addr, void *new_addr)
393 {
394         if (!is_kernel_text((long)ip) &&
395             !is_bpf_text_address((long)ip))
396                 /* BPF poking in modules is not supported */
397                 return -EINVAL;
398
399         /*
400          * See emit_prologue(), for IBT builds the trampoline hook is preceded
401          * with an ENDBR instruction.
402          */
403         if (is_endbr(*(u32 *)ip))
404                 ip += ENDBR_INSN_SIZE;
405
406         return __bpf_arch_text_poke(ip, t, old_addr, new_addr);
407 }
408
409 #define EMIT_LFENCE()   EMIT3(0x0F, 0xAE, 0xE8)
410
411 static void emit_indirect_jump(u8 **pprog, int reg, u8 *ip)
412 {
413         u8 *prog = *pprog;
414
415         if (cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) {
416                 EMIT_LFENCE();
417                 EMIT2(0xFF, 0xE0 + reg);
418         } else if (cpu_feature_enabled(X86_FEATURE_RETPOLINE)) {
419                 OPTIMIZER_HIDE_VAR(reg);
420                 emit_jump(&prog, &__x86_indirect_thunk_array[reg], ip);
421         } else {
422                 EMIT2(0xFF, 0xE0 + reg);        /* jmp *%\reg */
423                 if (IS_ENABLED(CONFIG_RETPOLINE) || IS_ENABLED(CONFIG_SLS))
424                         EMIT1(0xCC);            /* int3 */
425         }
426
427         *pprog = prog;
428 }
429
430 static void emit_return(u8 **pprog, u8 *ip)
431 {
432         u8 *prog = *pprog;
433
434         if (cpu_feature_enabled(X86_FEATURE_RETHUNK)) {
435                 emit_jump(&prog, &__x86_return_thunk, ip);
436         } else {
437                 EMIT1(0xC3);            /* ret */
438                 if (IS_ENABLED(CONFIG_SLS))
439                         EMIT1(0xCC);    /* int3 */
440         }
441
442         *pprog = prog;
443 }
444
445 /*
446  * Generate the following code:
447  *
448  * ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ...
449  *   if (index >= array->map.max_entries)
450  *     goto out;
451  *   if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT)
452  *     goto out;
453  *   prog = array->ptrs[index];
454  *   if (prog == NULL)
455  *     goto out;
456  *   goto *(prog->bpf_func + prologue_size);
457  * out:
458  */
459 static void emit_bpf_tail_call_indirect(u8 **pprog, bool *callee_regs_used,
460                                         u32 stack_depth, u8 *ip,
461                                         struct jit_context *ctx)
462 {
463         int tcc_off = -4 - round_up(stack_depth, 8);
464         u8 *prog = *pprog, *start = *pprog;
465         int offset;
466
467         /*
468          * rdi - pointer to ctx
469          * rsi - pointer to bpf_array
470          * rdx - index in bpf_array
471          */
472
473         /*
474          * if (index >= array->map.max_entries)
475          *      goto out;
476          */
477         EMIT2(0x89, 0xD2);                        /* mov edx, edx */
478         EMIT3(0x39, 0x56,                         /* cmp dword ptr [rsi + 16], edx */
479               offsetof(struct bpf_array, map.max_entries));
480
481         offset = ctx->tail_call_indirect_label - (prog + 2 - start);
482         EMIT2(X86_JBE, offset);                   /* jbe out */
483
484         /*
485          * if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT)
486          *      goto out;
487          */
488         EMIT2_off32(0x8B, 0x85, tcc_off);         /* mov eax, dword ptr [rbp - tcc_off] */
489         EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT);     /* cmp eax, MAX_TAIL_CALL_CNT */
490
491         offset = ctx->tail_call_indirect_label - (prog + 2 - start);
492         EMIT2(X86_JAE, offset);                   /* jae out */
493         EMIT3(0x83, 0xC0, 0x01);                  /* add eax, 1 */
494         EMIT2_off32(0x89, 0x85, tcc_off);         /* mov dword ptr [rbp - tcc_off], eax */
495
496         /* prog = array->ptrs[index]; */
497         EMIT4_off32(0x48, 0x8B, 0x8C, 0xD6,       /* mov rcx, [rsi + rdx * 8 + offsetof(...)] */
498                     offsetof(struct bpf_array, ptrs));
499
500         /*
501          * if (prog == NULL)
502          *      goto out;
503          */
504         EMIT3(0x48, 0x85, 0xC9);                  /* test rcx,rcx */
505
506         offset = ctx->tail_call_indirect_label - (prog + 2 - start);
507         EMIT2(X86_JE, offset);                    /* je out */
508
509         pop_callee_regs(&prog, callee_regs_used);
510
511         EMIT1(0x58);                              /* pop rax */
512         if (stack_depth)
513                 EMIT3_off32(0x48, 0x81, 0xC4,     /* add rsp, sd */
514                             round_up(stack_depth, 8));
515
516         /* goto *(prog->bpf_func + X86_TAIL_CALL_OFFSET); */
517         EMIT4(0x48, 0x8B, 0x49,                   /* mov rcx, qword ptr [rcx + 32] */
518               offsetof(struct bpf_prog, bpf_func));
519         EMIT4(0x48, 0x83, 0xC1,                   /* add rcx, X86_TAIL_CALL_OFFSET */
520               X86_TAIL_CALL_OFFSET);
521         /*
522          * Now we're ready to jump into next BPF program
523          * rdi == ctx (1st arg)
524          * rcx == prog->bpf_func + X86_TAIL_CALL_OFFSET
525          */
526         emit_indirect_jump(&prog, 1 /* rcx */, ip + (prog - start));
527
528         /* out: */
529         ctx->tail_call_indirect_label = prog - start;
530         *pprog = prog;
531 }
532
533 static void emit_bpf_tail_call_direct(struct bpf_jit_poke_descriptor *poke,
534                                       u8 **pprog, u8 *ip,
535                                       bool *callee_regs_used, u32 stack_depth,
536                                       struct jit_context *ctx)
537 {
538         int tcc_off = -4 - round_up(stack_depth, 8);
539         u8 *prog = *pprog, *start = *pprog;
540         int offset;
541
542         /*
543          * if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT)
544          *      goto out;
545          */
546         EMIT2_off32(0x8B, 0x85, tcc_off);             /* mov eax, dword ptr [rbp - tcc_off] */
547         EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT);         /* cmp eax, MAX_TAIL_CALL_CNT */
548
549         offset = ctx->tail_call_direct_label - (prog + 2 - start);
550         EMIT2(X86_JAE, offset);                       /* jae out */
551         EMIT3(0x83, 0xC0, 0x01);                      /* add eax, 1 */
552         EMIT2_off32(0x89, 0x85, tcc_off);             /* mov dword ptr [rbp - tcc_off], eax */
553
554         poke->tailcall_bypass = ip + (prog - start);
555         poke->adj_off = X86_TAIL_CALL_OFFSET;
556         poke->tailcall_target = ip + ctx->tail_call_direct_label - X86_PATCH_SIZE;
557         poke->bypass_addr = (u8 *)poke->tailcall_target + X86_PATCH_SIZE;
558
559         emit_jump(&prog, (u8 *)poke->tailcall_target + X86_PATCH_SIZE,
560                   poke->tailcall_bypass);
561
562         pop_callee_regs(&prog, callee_regs_used);
563         EMIT1(0x58);                                  /* pop rax */
564         if (stack_depth)
565                 EMIT3_off32(0x48, 0x81, 0xC4, round_up(stack_depth, 8));
566
567         memcpy(prog, x86_nops[5], X86_PATCH_SIZE);
568         prog += X86_PATCH_SIZE;
569
570         /* out: */
571         ctx->tail_call_direct_label = prog - start;
572
573         *pprog = prog;
574 }
575
576 static void bpf_tail_call_direct_fixup(struct bpf_prog *prog)
577 {
578         struct bpf_jit_poke_descriptor *poke;
579         struct bpf_array *array;
580         struct bpf_prog *target;
581         int i, ret;
582
583         for (i = 0; i < prog->aux->size_poke_tab; i++) {
584                 poke = &prog->aux->poke_tab[i];
585                 if (poke->aux && poke->aux != prog->aux)
586                         continue;
587
588                 WARN_ON_ONCE(READ_ONCE(poke->tailcall_target_stable));
589
590                 if (poke->reason != BPF_POKE_REASON_TAIL_CALL)
591                         continue;
592
593                 array = container_of(poke->tail_call.map, struct bpf_array, map);
594                 mutex_lock(&array->aux->poke_mutex);
595                 target = array->ptrs[poke->tail_call.key];
596                 if (target) {
597                         ret = __bpf_arch_text_poke(poke->tailcall_target,
598                                                    BPF_MOD_JUMP, NULL,
599                                                    (u8 *)target->bpf_func +
600                                                    poke->adj_off);
601                         BUG_ON(ret < 0);
602                         ret = __bpf_arch_text_poke(poke->tailcall_bypass,
603                                                    BPF_MOD_JUMP,
604                                                    (u8 *)poke->tailcall_target +
605                                                    X86_PATCH_SIZE, NULL);
606                         BUG_ON(ret < 0);
607                 }
608                 WRITE_ONCE(poke->tailcall_target_stable, true);
609                 mutex_unlock(&array->aux->poke_mutex);
610         }
611 }
612
613 static void emit_mov_imm32(u8 **pprog, bool sign_propagate,
614                            u32 dst_reg, const u32 imm32)
615 {
616         u8 *prog = *pprog;
617         u8 b1, b2, b3;
618
619         /*
620          * Optimization: if imm32 is positive, use 'mov %eax, imm32'
621          * (which zero-extends imm32) to save 2 bytes.
622          */
623         if (sign_propagate && (s32)imm32 < 0) {
624                 /* 'mov %rax, imm32' sign extends imm32 */
625                 b1 = add_1mod(0x48, dst_reg);
626                 b2 = 0xC7;
627                 b3 = 0xC0;
628                 EMIT3_off32(b1, b2, add_1reg(b3, dst_reg), imm32);
629                 goto done;
630         }
631
632         /*
633          * Optimization: if imm32 is zero, use 'xor %eax, %eax'
634          * to save 3 bytes.
635          */
636         if (imm32 == 0) {
637                 if (is_ereg(dst_reg))
638                         EMIT1(add_2mod(0x40, dst_reg, dst_reg));
639                 b2 = 0x31; /* xor */
640                 b3 = 0xC0;
641                 EMIT2(b2, add_2reg(b3, dst_reg, dst_reg));
642                 goto done;
643         }
644
645         /* mov %eax, imm32 */
646         if (is_ereg(dst_reg))
647                 EMIT1(add_1mod(0x40, dst_reg));
648         EMIT1_off32(add_1reg(0xB8, dst_reg), imm32);
649 done:
650         *pprog = prog;
651 }
652
653 static void emit_mov_imm64(u8 **pprog, u32 dst_reg,
654                            const u32 imm32_hi, const u32 imm32_lo)
655 {
656         u8 *prog = *pprog;
657
658         if (is_uimm32(((u64)imm32_hi << 32) | (u32)imm32_lo)) {
659                 /*
660                  * For emitting plain u32, where sign bit must not be
661                  * propagated LLVM tends to load imm64 over mov32
662                  * directly, so save couple of bytes by just doing
663                  * 'mov %eax, imm32' instead.
664                  */
665                 emit_mov_imm32(&prog, false, dst_reg, imm32_lo);
666         } else {
667                 /* movabsq rax, imm64 */
668                 EMIT2(add_1mod(0x48, dst_reg), add_1reg(0xB8, dst_reg));
669                 EMIT(imm32_lo, 4);
670                 EMIT(imm32_hi, 4);
671         }
672
673         *pprog = prog;
674 }
675
676 static void emit_mov_reg(u8 **pprog, bool is64, u32 dst_reg, u32 src_reg)
677 {
678         u8 *prog = *pprog;
679
680         if (is64) {
681                 /* mov dst, src */
682                 EMIT_mov(dst_reg, src_reg);
683         } else {
684                 /* mov32 dst, src */
685                 if (is_ereg(dst_reg) || is_ereg(src_reg))
686                         EMIT1(add_2mod(0x40, dst_reg, src_reg));
687                 EMIT2(0x89, add_2reg(0xC0, dst_reg, src_reg));
688         }
689
690         *pprog = prog;
691 }
692
693 /* Emit the suffix (ModR/M etc) for addressing *(ptr_reg + off) and val_reg */
694 static void emit_insn_suffix(u8 **pprog, u32 ptr_reg, u32 val_reg, int off)
695 {
696         u8 *prog = *pprog;
697
698         if (is_imm8(off)) {
699                 /* 1-byte signed displacement.
700                  *
701                  * If off == 0 we could skip this and save one extra byte, but
702                  * special case of x86 R13 which always needs an offset is not
703                  * worth the hassle
704                  */
705                 EMIT2(add_2reg(0x40, ptr_reg, val_reg), off);
706         } else {
707                 /* 4-byte signed displacement */
708                 EMIT1_off32(add_2reg(0x80, ptr_reg, val_reg), off);
709         }
710         *pprog = prog;
711 }
712
713 /*
714  * Emit a REX byte if it will be necessary to address these registers
715  */
716 static void maybe_emit_mod(u8 **pprog, u32 dst_reg, u32 src_reg, bool is64)
717 {
718         u8 *prog = *pprog;
719
720         if (is64)
721                 EMIT1(add_2mod(0x48, dst_reg, src_reg));
722         else if (is_ereg(dst_reg) || is_ereg(src_reg))
723                 EMIT1(add_2mod(0x40, dst_reg, src_reg));
724         *pprog = prog;
725 }
726
727 /*
728  * Similar version of maybe_emit_mod() for a single register
729  */
730 static void maybe_emit_1mod(u8 **pprog, u32 reg, bool is64)
731 {
732         u8 *prog = *pprog;
733
734         if (is64)
735                 EMIT1(add_1mod(0x48, reg));
736         else if (is_ereg(reg))
737                 EMIT1(add_1mod(0x40, reg));
738         *pprog = prog;
739 }
740
741 /* LDX: dst_reg = *(u8*)(src_reg + off) */
742 static void emit_ldx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
743 {
744         u8 *prog = *pprog;
745
746         switch (size) {
747         case BPF_B:
748                 /* Emit 'movzx rax, byte ptr [rax + off]' */
749                 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB6);
750                 break;
751         case BPF_H:
752                 /* Emit 'movzx rax, word ptr [rax + off]' */
753                 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB7);
754                 break;
755         case BPF_W:
756                 /* Emit 'mov eax, dword ptr [rax+0x14]' */
757                 if (is_ereg(dst_reg) || is_ereg(src_reg))
758                         EMIT2(add_2mod(0x40, src_reg, dst_reg), 0x8B);
759                 else
760                         EMIT1(0x8B);
761                 break;
762         case BPF_DW:
763                 /* Emit 'mov rax, qword ptr [rax+0x14]' */
764                 EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x8B);
765                 break;
766         }
767         emit_insn_suffix(&prog, src_reg, dst_reg, off);
768         *pprog = prog;
769 }
770
771 /* STX: *(u8*)(dst_reg + off) = src_reg */
772 static void emit_stx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
773 {
774         u8 *prog = *pprog;
775
776         switch (size) {
777         case BPF_B:
778                 /* Emit 'mov byte ptr [rax + off], al' */
779                 if (is_ereg(dst_reg) || is_ereg_8l(src_reg))
780                         /* Add extra byte for eregs or SIL,DIL,BPL in src_reg */
781                         EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x88);
782                 else
783                         EMIT1(0x88);
784                 break;
785         case BPF_H:
786                 if (is_ereg(dst_reg) || is_ereg(src_reg))
787                         EMIT3(0x66, add_2mod(0x40, dst_reg, src_reg), 0x89);
788                 else
789                         EMIT2(0x66, 0x89);
790                 break;
791         case BPF_W:
792                 if (is_ereg(dst_reg) || is_ereg(src_reg))
793                         EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x89);
794                 else
795                         EMIT1(0x89);
796                 break;
797         case BPF_DW:
798                 EMIT2(add_2mod(0x48, dst_reg, src_reg), 0x89);
799                 break;
800         }
801         emit_insn_suffix(&prog, dst_reg, src_reg, off);
802         *pprog = prog;
803 }
804
805 static int emit_atomic(u8 **pprog, u8 atomic_op,
806                        u32 dst_reg, u32 src_reg, s16 off, u8 bpf_size)
807 {
808         u8 *prog = *pprog;
809
810         EMIT1(0xF0); /* lock prefix */
811
812         maybe_emit_mod(&prog, dst_reg, src_reg, bpf_size == BPF_DW);
813
814         /* emit opcode */
815         switch (atomic_op) {
816         case BPF_ADD:
817         case BPF_AND:
818         case BPF_OR:
819         case BPF_XOR:
820                 /* lock *(u32/u64*)(dst_reg + off) <op>= src_reg */
821                 EMIT1(simple_alu_opcodes[atomic_op]);
822                 break;
823         case BPF_ADD | BPF_FETCH:
824                 /* src_reg = atomic_fetch_add(dst_reg + off, src_reg); */
825                 EMIT2(0x0F, 0xC1);
826                 break;
827         case BPF_XCHG:
828                 /* src_reg = atomic_xchg(dst_reg + off, src_reg); */
829                 EMIT1(0x87);
830                 break;
831         case BPF_CMPXCHG:
832                 /* r0 = atomic_cmpxchg(dst_reg + off, r0, src_reg); */
833                 EMIT2(0x0F, 0xB1);
834                 break;
835         default:
836                 pr_err("bpf_jit: unknown atomic opcode %02x\n", atomic_op);
837                 return -EFAULT;
838         }
839
840         emit_insn_suffix(&prog, dst_reg, src_reg, off);
841
842         *pprog = prog;
843         return 0;
844 }
845
846 bool ex_handler_bpf(const struct exception_table_entry *x, struct pt_regs *regs)
847 {
848         u32 reg = x->fixup >> 8;
849
850         /* jump over faulting load and clear dest register */
851         *(unsigned long *)((void *)regs + reg) = 0;
852         regs->ip += x->fixup & 0xff;
853         return true;
854 }
855
856 static void detect_reg_usage(struct bpf_insn *insn, int insn_cnt,
857                              bool *regs_used, bool *tail_call_seen)
858 {
859         int i;
860
861         for (i = 1; i <= insn_cnt; i++, insn++) {
862                 if (insn->code == (BPF_JMP | BPF_TAIL_CALL))
863                         *tail_call_seen = true;
864                 if (insn->dst_reg == BPF_REG_6 || insn->src_reg == BPF_REG_6)
865                         regs_used[0] = true;
866                 if (insn->dst_reg == BPF_REG_7 || insn->src_reg == BPF_REG_7)
867                         regs_used[1] = true;
868                 if (insn->dst_reg == BPF_REG_8 || insn->src_reg == BPF_REG_8)
869                         regs_used[2] = true;
870                 if (insn->dst_reg == BPF_REG_9 || insn->src_reg == BPF_REG_9)
871                         regs_used[3] = true;
872         }
873 }
874
875 static void emit_nops(u8 **pprog, int len)
876 {
877         u8 *prog = *pprog;
878         int i, noplen;
879
880         while (len > 0) {
881                 noplen = len;
882
883                 if (noplen > ASM_NOP_MAX)
884                         noplen = ASM_NOP_MAX;
885
886                 for (i = 0; i < noplen; i++)
887                         EMIT1(x86_nops[noplen][i]);
888                 len -= noplen;
889         }
890
891         *pprog = prog;
892 }
893
894 /* emit the 3-byte VEX prefix
895  *
896  * r: same as rex.r, extra bit for ModRM reg field
897  * x: same as rex.x, extra bit for SIB index field
898  * b: same as rex.b, extra bit for ModRM r/m, or SIB base
899  * m: opcode map select, encoding escape bytes e.g. 0x0f38
900  * w: same as rex.w (32 bit or 64 bit) or opcode specific
901  * src_reg2: additional source reg (encoded as BPF reg)
902  * l: vector length (128 bit or 256 bit) or reserved
903  * pp: opcode prefix (none, 0x66, 0xf2 or 0xf3)
904  */
905 static void emit_3vex(u8 **pprog, bool r, bool x, bool b, u8 m,
906                       bool w, u8 src_reg2, bool l, u8 pp)
907 {
908         u8 *prog = *pprog;
909         const u8 b0 = 0xc4; /* first byte of 3-byte VEX prefix */
910         u8 b1, b2;
911         u8 vvvv = reg2hex[src_reg2];
912
913         /* reg2hex gives only the lower 3 bit of vvvv */
914         if (is_ereg(src_reg2))
915                 vvvv |= 1 << 3;
916
917         /*
918          * 2nd byte of 3-byte VEX prefix
919          * ~ means bit inverted encoding
920          *
921          *    7                           0
922          *  +---+---+---+---+---+---+---+---+
923          *  |~R |~X |~B |         m         |
924          *  +---+---+---+---+---+---+---+---+
925          */
926         b1 = (!r << 7) | (!x << 6) | (!b << 5) | (m & 0x1f);
927         /*
928          * 3rd byte of 3-byte VEX prefix
929          *
930          *    7                           0
931          *  +---+---+---+---+---+---+---+---+
932          *  | W |     ~vvvv     | L |   pp  |
933          *  +---+---+---+---+---+---+---+---+
934          */
935         b2 = (w << 7) | ((~vvvv & 0xf) << 3) | (l << 2) | (pp & 3);
936
937         EMIT3(b0, b1, b2);
938         *pprog = prog;
939 }
940
941 /* emit BMI2 shift instruction */
942 static void emit_shiftx(u8 **pprog, u32 dst_reg, u8 src_reg, bool is64, u8 op)
943 {
944         u8 *prog = *pprog;
945         bool r = is_ereg(dst_reg);
946         u8 m = 2; /* escape code 0f38 */
947
948         emit_3vex(&prog, r, false, r, m, is64, src_reg, false, op);
949         EMIT2(0xf7, add_2reg(0xC0, dst_reg, dst_reg));
950         *pprog = prog;
951 }
952
953 #define INSN_SZ_DIFF (((addrs[i] - addrs[i - 1]) - (prog - temp)))
954
955 static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image, u8 *rw_image,
956                   int oldproglen, struct jit_context *ctx, bool jmp_padding)
957 {
958         bool tail_call_reachable = bpf_prog->aux->tail_call_reachable;
959         struct bpf_insn *insn = bpf_prog->insnsi;
960         bool callee_regs_used[4] = {};
961         int insn_cnt = bpf_prog->len;
962         bool tail_call_seen = false;
963         bool seen_exit = false;
964         u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY];
965         int i, excnt = 0;
966         int ilen, proglen = 0;
967         u8 *prog = temp;
968         int err;
969
970         detect_reg_usage(insn, insn_cnt, callee_regs_used,
971                          &tail_call_seen);
972
973         /* tail call's presence in current prog implies it is reachable */
974         tail_call_reachable |= tail_call_seen;
975
976         emit_prologue(&prog, bpf_prog->aux->stack_depth,
977                       bpf_prog_was_classic(bpf_prog), tail_call_reachable,
978                       bpf_prog->aux->func_idx != 0);
979         push_callee_regs(&prog, callee_regs_used);
980
981         ilen = prog - temp;
982         if (rw_image)
983                 memcpy(rw_image + proglen, temp, ilen);
984         proglen += ilen;
985         addrs[0] = proglen;
986         prog = temp;
987
988         for (i = 1; i <= insn_cnt; i++, insn++) {
989                 const s32 imm32 = insn->imm;
990                 u32 dst_reg = insn->dst_reg;
991                 u32 src_reg = insn->src_reg;
992                 u8 b2 = 0, b3 = 0;
993                 u8 *start_of_ldx;
994                 s64 jmp_offset;
995                 u8 jmp_cond;
996                 u8 *func;
997                 int nops;
998
999                 switch (insn->code) {
1000                         /* ALU */
1001                 case BPF_ALU | BPF_ADD | BPF_X:
1002                 case BPF_ALU | BPF_SUB | BPF_X:
1003                 case BPF_ALU | BPF_AND | BPF_X:
1004                 case BPF_ALU | BPF_OR | BPF_X:
1005                 case BPF_ALU | BPF_XOR | BPF_X:
1006                 case BPF_ALU64 | BPF_ADD | BPF_X:
1007                 case BPF_ALU64 | BPF_SUB | BPF_X:
1008                 case BPF_ALU64 | BPF_AND | BPF_X:
1009                 case BPF_ALU64 | BPF_OR | BPF_X:
1010                 case BPF_ALU64 | BPF_XOR | BPF_X:
1011                         maybe_emit_mod(&prog, dst_reg, src_reg,
1012                                        BPF_CLASS(insn->code) == BPF_ALU64);
1013                         b2 = simple_alu_opcodes[BPF_OP(insn->code)];
1014                         EMIT2(b2, add_2reg(0xC0, dst_reg, src_reg));
1015                         break;
1016
1017                 case BPF_ALU64 | BPF_MOV | BPF_X:
1018                 case BPF_ALU | BPF_MOV | BPF_X:
1019                         emit_mov_reg(&prog,
1020                                      BPF_CLASS(insn->code) == BPF_ALU64,
1021                                      dst_reg, src_reg);
1022                         break;
1023
1024                         /* neg dst */
1025                 case BPF_ALU | BPF_NEG:
1026                 case BPF_ALU64 | BPF_NEG:
1027                         maybe_emit_1mod(&prog, dst_reg,
1028                                         BPF_CLASS(insn->code) == BPF_ALU64);
1029                         EMIT2(0xF7, add_1reg(0xD8, dst_reg));
1030                         break;
1031
1032                 case BPF_ALU | BPF_ADD | BPF_K:
1033                 case BPF_ALU | BPF_SUB | BPF_K:
1034                 case BPF_ALU | BPF_AND | BPF_K:
1035                 case BPF_ALU | BPF_OR | BPF_K:
1036                 case BPF_ALU | BPF_XOR | BPF_K:
1037                 case BPF_ALU64 | BPF_ADD | BPF_K:
1038                 case BPF_ALU64 | BPF_SUB | BPF_K:
1039                 case BPF_ALU64 | BPF_AND | BPF_K:
1040                 case BPF_ALU64 | BPF_OR | BPF_K:
1041                 case BPF_ALU64 | BPF_XOR | BPF_K:
1042                         maybe_emit_1mod(&prog, dst_reg,
1043                                         BPF_CLASS(insn->code) == BPF_ALU64);
1044
1045                         /*
1046                          * b3 holds 'normal' opcode, b2 short form only valid
1047                          * in case dst is eax/rax.
1048                          */
1049                         switch (BPF_OP(insn->code)) {
1050                         case BPF_ADD:
1051                                 b3 = 0xC0;
1052                                 b2 = 0x05;
1053                                 break;
1054                         case BPF_SUB:
1055                                 b3 = 0xE8;
1056                                 b2 = 0x2D;
1057                                 break;
1058                         case BPF_AND:
1059                                 b3 = 0xE0;
1060                                 b2 = 0x25;
1061                                 break;
1062                         case BPF_OR:
1063                                 b3 = 0xC8;
1064                                 b2 = 0x0D;
1065                                 break;
1066                         case BPF_XOR:
1067                                 b3 = 0xF0;
1068                                 b2 = 0x35;
1069                                 break;
1070                         }
1071
1072                         if (is_imm8(imm32))
1073                                 EMIT3(0x83, add_1reg(b3, dst_reg), imm32);
1074                         else if (is_axreg(dst_reg))
1075                                 EMIT1_off32(b2, imm32);
1076                         else
1077                                 EMIT2_off32(0x81, add_1reg(b3, dst_reg), imm32);
1078                         break;
1079
1080                 case BPF_ALU64 | BPF_MOV | BPF_K:
1081                 case BPF_ALU | BPF_MOV | BPF_K:
1082                         emit_mov_imm32(&prog, BPF_CLASS(insn->code) == BPF_ALU64,
1083                                        dst_reg, imm32);
1084                         break;
1085
1086                 case BPF_LD | BPF_IMM | BPF_DW:
1087                         emit_mov_imm64(&prog, dst_reg, insn[1].imm, insn[0].imm);
1088                         insn++;
1089                         i++;
1090                         break;
1091
1092                         /* dst %= src, dst /= src, dst %= imm32, dst /= imm32 */
1093                 case BPF_ALU | BPF_MOD | BPF_X:
1094                 case BPF_ALU | BPF_DIV | BPF_X:
1095                 case BPF_ALU | BPF_MOD | BPF_K:
1096                 case BPF_ALU | BPF_DIV | BPF_K:
1097                 case BPF_ALU64 | BPF_MOD | BPF_X:
1098                 case BPF_ALU64 | BPF_DIV | BPF_X:
1099                 case BPF_ALU64 | BPF_MOD | BPF_K:
1100                 case BPF_ALU64 | BPF_DIV | BPF_K: {
1101                         bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
1102
1103                         if (dst_reg != BPF_REG_0)
1104                                 EMIT1(0x50); /* push rax */
1105                         if (dst_reg != BPF_REG_3)
1106                                 EMIT1(0x52); /* push rdx */
1107
1108                         if (BPF_SRC(insn->code) == BPF_X) {
1109                                 if (src_reg == BPF_REG_0 ||
1110                                     src_reg == BPF_REG_3) {
1111                                         /* mov r11, src_reg */
1112                                         EMIT_mov(AUX_REG, src_reg);
1113                                         src_reg = AUX_REG;
1114                                 }
1115                         } else {
1116                                 /* mov r11, imm32 */
1117                                 EMIT3_off32(0x49, 0xC7, 0xC3, imm32);
1118                                 src_reg = AUX_REG;
1119                         }
1120
1121                         if (dst_reg != BPF_REG_0)
1122                                 /* mov rax, dst_reg */
1123                                 emit_mov_reg(&prog, is64, BPF_REG_0, dst_reg);
1124
1125                         /*
1126                          * xor edx, edx
1127                          * equivalent to 'xor rdx, rdx', but one byte less
1128                          */
1129                         EMIT2(0x31, 0xd2);
1130
1131                         /* div src_reg */
1132                         maybe_emit_1mod(&prog, src_reg, is64);
1133                         EMIT2(0xF7, add_1reg(0xF0, src_reg));
1134
1135                         if (BPF_OP(insn->code) == BPF_MOD &&
1136                             dst_reg != BPF_REG_3)
1137                                 /* mov dst_reg, rdx */
1138                                 emit_mov_reg(&prog, is64, dst_reg, BPF_REG_3);
1139                         else if (BPF_OP(insn->code) == BPF_DIV &&
1140                                  dst_reg != BPF_REG_0)
1141                                 /* mov dst_reg, rax */
1142                                 emit_mov_reg(&prog, is64, dst_reg, BPF_REG_0);
1143
1144                         if (dst_reg != BPF_REG_3)
1145                                 EMIT1(0x5A); /* pop rdx */
1146                         if (dst_reg != BPF_REG_0)
1147                                 EMIT1(0x58); /* pop rax */
1148                         break;
1149                 }
1150
1151                 case BPF_ALU | BPF_MUL | BPF_K:
1152                 case BPF_ALU64 | BPF_MUL | BPF_K:
1153                         maybe_emit_mod(&prog, dst_reg, dst_reg,
1154                                        BPF_CLASS(insn->code) == BPF_ALU64);
1155
1156                         if (is_imm8(imm32))
1157                                 /* imul dst_reg, dst_reg, imm8 */
1158                                 EMIT3(0x6B, add_2reg(0xC0, dst_reg, dst_reg),
1159                                       imm32);
1160                         else
1161                                 /* imul dst_reg, dst_reg, imm32 */
1162                                 EMIT2_off32(0x69,
1163                                             add_2reg(0xC0, dst_reg, dst_reg),
1164                                             imm32);
1165                         break;
1166
1167                 case BPF_ALU | BPF_MUL | BPF_X:
1168                 case BPF_ALU64 | BPF_MUL | BPF_X:
1169                         maybe_emit_mod(&prog, src_reg, dst_reg,
1170                                        BPF_CLASS(insn->code) == BPF_ALU64);
1171
1172                         /* imul dst_reg, src_reg */
1173                         EMIT3(0x0F, 0xAF, add_2reg(0xC0, src_reg, dst_reg));
1174                         break;
1175
1176                         /* Shifts */
1177                 case BPF_ALU | BPF_LSH | BPF_K:
1178                 case BPF_ALU | BPF_RSH | BPF_K:
1179                 case BPF_ALU | BPF_ARSH | BPF_K:
1180                 case BPF_ALU64 | BPF_LSH | BPF_K:
1181                 case BPF_ALU64 | BPF_RSH | BPF_K:
1182                 case BPF_ALU64 | BPF_ARSH | BPF_K:
1183                         maybe_emit_1mod(&prog, dst_reg,
1184                                         BPF_CLASS(insn->code) == BPF_ALU64);
1185
1186                         b3 = simple_alu_opcodes[BPF_OP(insn->code)];
1187                         if (imm32 == 1)
1188                                 EMIT2(0xD1, add_1reg(b3, dst_reg));
1189                         else
1190                                 EMIT3(0xC1, add_1reg(b3, dst_reg), imm32);
1191                         break;
1192
1193                 case BPF_ALU | BPF_LSH | BPF_X:
1194                 case BPF_ALU | BPF_RSH | BPF_X:
1195                 case BPF_ALU | BPF_ARSH | BPF_X:
1196                 case BPF_ALU64 | BPF_LSH | BPF_X:
1197                 case BPF_ALU64 | BPF_RSH | BPF_X:
1198                 case BPF_ALU64 | BPF_ARSH | BPF_X:
1199                         /* BMI2 shifts aren't better when shift count is already in rcx */
1200                         if (boot_cpu_has(X86_FEATURE_BMI2) && src_reg != BPF_REG_4) {
1201                                 /* shrx/sarx/shlx dst_reg, dst_reg, src_reg */
1202                                 bool w = (BPF_CLASS(insn->code) == BPF_ALU64);
1203                                 u8 op;
1204
1205                                 switch (BPF_OP(insn->code)) {
1206                                 case BPF_LSH:
1207                                         op = 1; /* prefix 0x66 */
1208                                         break;
1209                                 case BPF_RSH:
1210                                         op = 3; /* prefix 0xf2 */
1211                                         break;
1212                                 case BPF_ARSH:
1213                                         op = 2; /* prefix 0xf3 */
1214                                         break;
1215                                 }
1216
1217                                 emit_shiftx(&prog, dst_reg, src_reg, w, op);
1218
1219                                 break;
1220                         }
1221
1222                         if (src_reg != BPF_REG_4) { /* common case */
1223                                 /* Check for bad case when dst_reg == rcx */
1224                                 if (dst_reg == BPF_REG_4) {
1225                                         /* mov r11, dst_reg */
1226                                         EMIT_mov(AUX_REG, dst_reg);
1227                                         dst_reg = AUX_REG;
1228                                 } else {
1229                                         EMIT1(0x51); /* push rcx */
1230                                 }
1231                                 /* mov rcx, src_reg */
1232                                 EMIT_mov(BPF_REG_4, src_reg);
1233                         }
1234
1235                         /* shl %rax, %cl | shr %rax, %cl | sar %rax, %cl */
1236                         maybe_emit_1mod(&prog, dst_reg,
1237                                         BPF_CLASS(insn->code) == BPF_ALU64);
1238
1239                         b3 = simple_alu_opcodes[BPF_OP(insn->code)];
1240                         EMIT2(0xD3, add_1reg(b3, dst_reg));
1241
1242                         if (src_reg != BPF_REG_4) {
1243                                 if (insn->dst_reg == BPF_REG_4)
1244                                         /* mov dst_reg, r11 */
1245                                         EMIT_mov(insn->dst_reg, AUX_REG);
1246                                 else
1247                                         EMIT1(0x59); /* pop rcx */
1248                         }
1249
1250                         break;
1251
1252                 case BPF_ALU | BPF_END | BPF_FROM_BE:
1253                         switch (imm32) {
1254                         case 16:
1255                                 /* Emit 'ror %ax, 8' to swap lower 2 bytes */
1256                                 EMIT1(0x66);
1257                                 if (is_ereg(dst_reg))
1258                                         EMIT1(0x41);
1259                                 EMIT3(0xC1, add_1reg(0xC8, dst_reg), 8);
1260
1261                                 /* Emit 'movzwl eax, ax' */
1262                                 if (is_ereg(dst_reg))
1263                                         EMIT3(0x45, 0x0F, 0xB7);
1264                                 else
1265                                         EMIT2(0x0F, 0xB7);
1266                                 EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
1267                                 break;
1268                         case 32:
1269                                 /* Emit 'bswap eax' to swap lower 4 bytes */
1270                                 if (is_ereg(dst_reg))
1271                                         EMIT2(0x41, 0x0F);
1272                                 else
1273                                         EMIT1(0x0F);
1274                                 EMIT1(add_1reg(0xC8, dst_reg));
1275                                 break;
1276                         case 64:
1277                                 /* Emit 'bswap rax' to swap 8 bytes */
1278                                 EMIT3(add_1mod(0x48, dst_reg), 0x0F,
1279                                       add_1reg(0xC8, dst_reg));
1280                                 break;
1281                         }
1282                         break;
1283
1284                 case BPF_ALU | BPF_END | BPF_FROM_LE:
1285                         switch (imm32) {
1286                         case 16:
1287                                 /*
1288                                  * Emit 'movzwl eax, ax' to zero extend 16-bit
1289                                  * into 64 bit
1290                                  */
1291                                 if (is_ereg(dst_reg))
1292                                         EMIT3(0x45, 0x0F, 0xB7);
1293                                 else
1294                                         EMIT2(0x0F, 0xB7);
1295                                 EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
1296                                 break;
1297                         case 32:
1298                                 /* Emit 'mov eax, eax' to clear upper 32-bits */
1299                                 if (is_ereg(dst_reg))
1300                                         EMIT1(0x45);
1301                                 EMIT2(0x89, add_2reg(0xC0, dst_reg, dst_reg));
1302                                 break;
1303                         case 64:
1304                                 /* nop */
1305                                 break;
1306                         }
1307                         break;
1308
1309                         /* speculation barrier */
1310                 case BPF_ST | BPF_NOSPEC:
1311                         EMIT_LFENCE();
1312                         break;
1313
1314                         /* ST: *(u8*)(dst_reg + off) = imm */
1315                 case BPF_ST | BPF_MEM | BPF_B:
1316                         if (is_ereg(dst_reg))
1317                                 EMIT2(0x41, 0xC6);
1318                         else
1319                                 EMIT1(0xC6);
1320                         goto st;
1321                 case BPF_ST | BPF_MEM | BPF_H:
1322                         if (is_ereg(dst_reg))
1323                                 EMIT3(0x66, 0x41, 0xC7);
1324                         else
1325                                 EMIT2(0x66, 0xC7);
1326                         goto st;
1327                 case BPF_ST | BPF_MEM | BPF_W:
1328                         if (is_ereg(dst_reg))
1329                                 EMIT2(0x41, 0xC7);
1330                         else
1331                                 EMIT1(0xC7);
1332                         goto st;
1333                 case BPF_ST | BPF_MEM | BPF_DW:
1334                         EMIT2(add_1mod(0x48, dst_reg), 0xC7);
1335
1336 st:                     if (is_imm8(insn->off))
1337                                 EMIT2(add_1reg(0x40, dst_reg), insn->off);
1338                         else
1339                                 EMIT1_off32(add_1reg(0x80, dst_reg), insn->off);
1340
1341                         EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(insn->code)));
1342                         break;
1343
1344                         /* STX: *(u8*)(dst_reg + off) = src_reg */
1345                 case BPF_STX | BPF_MEM | BPF_B:
1346                 case BPF_STX | BPF_MEM | BPF_H:
1347                 case BPF_STX | BPF_MEM | BPF_W:
1348                 case BPF_STX | BPF_MEM | BPF_DW:
1349                         emit_stx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
1350                         break;
1351
1352                         /* LDX: dst_reg = *(u8*)(src_reg + off) */
1353                 case BPF_LDX | BPF_MEM | BPF_B:
1354                 case BPF_LDX | BPF_PROBE_MEM | BPF_B:
1355                 case BPF_LDX | BPF_MEM | BPF_H:
1356                 case BPF_LDX | BPF_PROBE_MEM | BPF_H:
1357                 case BPF_LDX | BPF_MEM | BPF_W:
1358                 case BPF_LDX | BPF_PROBE_MEM | BPF_W:
1359                 case BPF_LDX | BPF_MEM | BPF_DW:
1360                 case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1361                         if (BPF_MODE(insn->code) == BPF_PROBE_MEM) {
1362                                 /* Though the verifier prevents negative insn->off in BPF_PROBE_MEM
1363                                  * add abs(insn->off) to the limit to make sure that negative
1364                                  * offset won't be an issue.
1365                                  * insn->off is s16, so it won't affect valid pointers.
1366                                  */
1367                                 u64 limit = TASK_SIZE_MAX + PAGE_SIZE + abs(insn->off);
1368                                 u8 *end_of_jmp1, *end_of_jmp2;
1369
1370                                 /* Conservatively check that src_reg + insn->off is a kernel address:
1371                                  * 1. src_reg + insn->off >= limit
1372                                  * 2. src_reg + insn->off doesn't become small positive.
1373                                  * Cannot do src_reg + insn->off >= limit in one branch,
1374                                  * since it needs two spare registers, but JIT has only one.
1375                                  */
1376
1377                                 /* movabsq r11, limit */
1378                                 EMIT2(add_1mod(0x48, AUX_REG), add_1reg(0xB8, AUX_REG));
1379                                 EMIT((u32)limit, 4);
1380                                 EMIT(limit >> 32, 4);
1381                                 /* cmp src_reg, r11 */
1382                                 maybe_emit_mod(&prog, src_reg, AUX_REG, true);
1383                                 EMIT2(0x39, add_2reg(0xC0, src_reg, AUX_REG));
1384                                 /* if unsigned '<' goto end_of_jmp2 */
1385                                 EMIT2(X86_JB, 0);
1386                                 end_of_jmp1 = prog;
1387
1388                                 /* mov r11, src_reg */
1389                                 emit_mov_reg(&prog, true, AUX_REG, src_reg);
1390                                 /* add r11, insn->off */
1391                                 maybe_emit_1mod(&prog, AUX_REG, true);
1392                                 EMIT2_off32(0x81, add_1reg(0xC0, AUX_REG), insn->off);
1393                                 /* jmp if not carry to start_of_ldx
1394                                  * Otherwise ERR_PTR(-EINVAL) + 128 will be the user addr
1395                                  * that has to be rejected.
1396                                  */
1397                                 EMIT2(0x73 /* JNC */, 0);
1398                                 end_of_jmp2 = prog;
1399
1400                                 /* xor dst_reg, dst_reg */
1401                                 emit_mov_imm32(&prog, false, dst_reg, 0);
1402                                 /* jmp byte_after_ldx */
1403                                 EMIT2(0xEB, 0);
1404
1405                                 /* populate jmp_offset for JB above to jump to xor dst_reg */
1406                                 end_of_jmp1[-1] = end_of_jmp2 - end_of_jmp1;
1407                                 /* populate jmp_offset for JNC above to jump to start_of_ldx */
1408                                 start_of_ldx = prog;
1409                                 end_of_jmp2[-1] = start_of_ldx - end_of_jmp2;
1410                         }
1411                         emit_ldx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
1412                         if (BPF_MODE(insn->code) == BPF_PROBE_MEM) {
1413                                 struct exception_table_entry *ex;
1414                                 u8 *_insn = image + proglen + (start_of_ldx - temp);
1415                                 s64 delta;
1416
1417                                 /* populate jmp_offset for JMP above */
1418                                 start_of_ldx[-1] = prog - start_of_ldx;
1419
1420                                 if (!bpf_prog->aux->extable)
1421                                         break;
1422
1423                                 if (excnt >= bpf_prog->aux->num_exentries) {
1424                                         pr_err("ex gen bug\n");
1425                                         return -EFAULT;
1426                                 }
1427                                 ex = &bpf_prog->aux->extable[excnt++];
1428
1429                                 delta = _insn - (u8 *)&ex->insn;
1430                                 if (!is_simm32(delta)) {
1431                                         pr_err("extable->insn doesn't fit into 32-bit\n");
1432                                         return -EFAULT;
1433                                 }
1434                                 /* switch ex to rw buffer for writes */
1435                                 ex = (void *)rw_image + ((void *)ex - (void *)image);
1436
1437                                 ex->insn = delta;
1438
1439                                 ex->data = EX_TYPE_BPF;
1440
1441                                 if (dst_reg > BPF_REG_9) {
1442                                         pr_err("verifier error\n");
1443                                         return -EFAULT;
1444                                 }
1445                                 /*
1446                                  * Compute size of x86 insn and its target dest x86 register.
1447                                  * ex_handler_bpf() will use lower 8 bits to adjust
1448                                  * pt_regs->ip to jump over this x86 instruction
1449                                  * and upper bits to figure out which pt_regs to zero out.
1450                                  * End result: x86 insn "mov rbx, qword ptr [rax+0x14]"
1451                                  * of 4 bytes will be ignored and rbx will be zero inited.
1452                                  */
1453                                 ex->fixup = (prog - start_of_ldx) | (reg2pt_regs[dst_reg] << 8);
1454                         }
1455                         break;
1456
1457                 case BPF_STX | BPF_ATOMIC | BPF_W:
1458                 case BPF_STX | BPF_ATOMIC | BPF_DW:
1459                         if (insn->imm == (BPF_AND | BPF_FETCH) ||
1460                             insn->imm == (BPF_OR | BPF_FETCH) ||
1461                             insn->imm == (BPF_XOR | BPF_FETCH)) {
1462                                 bool is64 = BPF_SIZE(insn->code) == BPF_DW;
1463                                 u32 real_src_reg = src_reg;
1464                                 u32 real_dst_reg = dst_reg;
1465                                 u8 *branch_target;
1466
1467                                 /*
1468                                  * Can't be implemented with a single x86 insn.
1469                                  * Need to do a CMPXCHG loop.
1470                                  */
1471
1472                                 /* Will need RAX as a CMPXCHG operand so save R0 */
1473                                 emit_mov_reg(&prog, true, BPF_REG_AX, BPF_REG_0);
1474                                 if (src_reg == BPF_REG_0)
1475                                         real_src_reg = BPF_REG_AX;
1476                                 if (dst_reg == BPF_REG_0)
1477                                         real_dst_reg = BPF_REG_AX;
1478
1479                                 branch_target = prog;
1480                                 /* Load old value */
1481                                 emit_ldx(&prog, BPF_SIZE(insn->code),
1482                                          BPF_REG_0, real_dst_reg, insn->off);
1483                                 /*
1484                                  * Perform the (commutative) operation locally,
1485                                  * put the result in the AUX_REG.
1486                                  */
1487                                 emit_mov_reg(&prog, is64, AUX_REG, BPF_REG_0);
1488                                 maybe_emit_mod(&prog, AUX_REG, real_src_reg, is64);
1489                                 EMIT2(simple_alu_opcodes[BPF_OP(insn->imm)],
1490                                       add_2reg(0xC0, AUX_REG, real_src_reg));
1491                                 /* Attempt to swap in new value */
1492                                 err = emit_atomic(&prog, BPF_CMPXCHG,
1493                                                   real_dst_reg, AUX_REG,
1494                                                   insn->off,
1495                                                   BPF_SIZE(insn->code));
1496                                 if (WARN_ON(err))
1497                                         return err;
1498                                 /*
1499                                  * ZF tells us whether we won the race. If it's
1500                                  * cleared we need to try again.
1501                                  */
1502                                 EMIT2(X86_JNE, -(prog - branch_target) - 2);
1503                                 /* Return the pre-modification value */
1504                                 emit_mov_reg(&prog, is64, real_src_reg, BPF_REG_0);
1505                                 /* Restore R0 after clobbering RAX */
1506                                 emit_mov_reg(&prog, true, BPF_REG_0, BPF_REG_AX);
1507                                 break;
1508                         }
1509
1510                         err = emit_atomic(&prog, insn->imm, dst_reg, src_reg,
1511                                           insn->off, BPF_SIZE(insn->code));
1512                         if (err)
1513                                 return err;
1514                         break;
1515
1516                         /* call */
1517                 case BPF_JMP | BPF_CALL:
1518                         func = (u8 *) __bpf_call_base + imm32;
1519                         if (tail_call_reachable) {
1520                                 /* mov rax, qword ptr [rbp - rounded_stack_depth - 8] */
1521                                 EMIT3_off32(0x48, 0x8B, 0x85,
1522                                             -round_up(bpf_prog->aux->stack_depth, 8) - 8);
1523                                 if (!imm32 || emit_call(&prog, func, image + addrs[i - 1] + 7))
1524                                         return -EINVAL;
1525                         } else {
1526                                 if (!imm32 || emit_call(&prog, func, image + addrs[i - 1]))
1527                                         return -EINVAL;
1528                         }
1529                         break;
1530
1531                 case BPF_JMP | BPF_TAIL_CALL:
1532                         if (imm32)
1533                                 emit_bpf_tail_call_direct(&bpf_prog->aux->poke_tab[imm32 - 1],
1534                                                           &prog, image + addrs[i - 1],
1535                                                           callee_regs_used,
1536                                                           bpf_prog->aux->stack_depth,
1537                                                           ctx);
1538                         else
1539                                 emit_bpf_tail_call_indirect(&prog,
1540                                                             callee_regs_used,
1541                                                             bpf_prog->aux->stack_depth,
1542                                                             image + addrs[i - 1],
1543                                                             ctx);
1544                         break;
1545
1546                         /* cond jump */
1547                 case BPF_JMP | BPF_JEQ | BPF_X:
1548                 case BPF_JMP | BPF_JNE | BPF_X:
1549                 case BPF_JMP | BPF_JGT | BPF_X:
1550                 case BPF_JMP | BPF_JLT | BPF_X:
1551                 case BPF_JMP | BPF_JGE | BPF_X:
1552                 case BPF_JMP | BPF_JLE | BPF_X:
1553                 case BPF_JMP | BPF_JSGT | BPF_X:
1554                 case BPF_JMP | BPF_JSLT | BPF_X:
1555                 case BPF_JMP | BPF_JSGE | BPF_X:
1556                 case BPF_JMP | BPF_JSLE | BPF_X:
1557                 case BPF_JMP32 | BPF_JEQ | BPF_X:
1558                 case BPF_JMP32 | BPF_JNE | BPF_X:
1559                 case BPF_JMP32 | BPF_JGT | BPF_X:
1560                 case BPF_JMP32 | BPF_JLT | BPF_X:
1561                 case BPF_JMP32 | BPF_JGE | BPF_X:
1562                 case BPF_JMP32 | BPF_JLE | BPF_X:
1563                 case BPF_JMP32 | BPF_JSGT | BPF_X:
1564                 case BPF_JMP32 | BPF_JSLT | BPF_X:
1565                 case BPF_JMP32 | BPF_JSGE | BPF_X:
1566                 case BPF_JMP32 | BPF_JSLE | BPF_X:
1567                         /* cmp dst_reg, src_reg */
1568                         maybe_emit_mod(&prog, dst_reg, src_reg,
1569                                        BPF_CLASS(insn->code) == BPF_JMP);
1570                         EMIT2(0x39, add_2reg(0xC0, dst_reg, src_reg));
1571                         goto emit_cond_jmp;
1572
1573                 case BPF_JMP | BPF_JSET | BPF_X:
1574                 case BPF_JMP32 | BPF_JSET | BPF_X:
1575                         /* test dst_reg, src_reg */
1576                         maybe_emit_mod(&prog, dst_reg, src_reg,
1577                                        BPF_CLASS(insn->code) == BPF_JMP);
1578                         EMIT2(0x85, add_2reg(0xC0, dst_reg, src_reg));
1579                         goto emit_cond_jmp;
1580
1581                 case BPF_JMP | BPF_JSET | BPF_K:
1582                 case BPF_JMP32 | BPF_JSET | BPF_K:
1583                         /* test dst_reg, imm32 */
1584                         maybe_emit_1mod(&prog, dst_reg,
1585                                         BPF_CLASS(insn->code) == BPF_JMP);
1586                         EMIT2_off32(0xF7, add_1reg(0xC0, dst_reg), imm32);
1587                         goto emit_cond_jmp;
1588
1589                 case BPF_JMP | BPF_JEQ | BPF_K:
1590                 case BPF_JMP | BPF_JNE | BPF_K:
1591                 case BPF_JMP | BPF_JGT | BPF_K:
1592                 case BPF_JMP | BPF_JLT | BPF_K:
1593                 case BPF_JMP | BPF_JGE | BPF_K:
1594                 case BPF_JMP | BPF_JLE | BPF_K:
1595                 case BPF_JMP | BPF_JSGT | BPF_K:
1596                 case BPF_JMP | BPF_JSLT | BPF_K:
1597                 case BPF_JMP | BPF_JSGE | BPF_K:
1598                 case BPF_JMP | BPF_JSLE | BPF_K:
1599                 case BPF_JMP32 | BPF_JEQ | BPF_K:
1600                 case BPF_JMP32 | BPF_JNE | BPF_K:
1601                 case BPF_JMP32 | BPF_JGT | BPF_K:
1602                 case BPF_JMP32 | BPF_JLT | BPF_K:
1603                 case BPF_JMP32 | BPF_JGE | BPF_K:
1604                 case BPF_JMP32 | BPF_JLE | BPF_K:
1605                 case BPF_JMP32 | BPF_JSGT | BPF_K:
1606                 case BPF_JMP32 | BPF_JSLT | BPF_K:
1607                 case BPF_JMP32 | BPF_JSGE | BPF_K:
1608                 case BPF_JMP32 | BPF_JSLE | BPF_K:
1609                         /* test dst_reg, dst_reg to save one extra byte */
1610                         if (imm32 == 0) {
1611                                 maybe_emit_mod(&prog, dst_reg, dst_reg,
1612                                                BPF_CLASS(insn->code) == BPF_JMP);
1613                                 EMIT2(0x85, add_2reg(0xC0, dst_reg, dst_reg));
1614                                 goto emit_cond_jmp;
1615                         }
1616
1617                         /* cmp dst_reg, imm8/32 */
1618                         maybe_emit_1mod(&prog, dst_reg,
1619                                         BPF_CLASS(insn->code) == BPF_JMP);
1620
1621                         if (is_imm8(imm32))
1622                                 EMIT3(0x83, add_1reg(0xF8, dst_reg), imm32);
1623                         else
1624                                 EMIT2_off32(0x81, add_1reg(0xF8, dst_reg), imm32);
1625
1626 emit_cond_jmp:          /* Convert BPF opcode to x86 */
1627                         switch (BPF_OP(insn->code)) {
1628                         case BPF_JEQ:
1629                                 jmp_cond = X86_JE;
1630                                 break;
1631                         case BPF_JSET:
1632                         case BPF_JNE:
1633                                 jmp_cond = X86_JNE;
1634                                 break;
1635                         case BPF_JGT:
1636                                 /* GT is unsigned '>', JA in x86 */
1637                                 jmp_cond = X86_JA;
1638                                 break;
1639                         case BPF_JLT:
1640                                 /* LT is unsigned '<', JB in x86 */
1641                                 jmp_cond = X86_JB;
1642                                 break;
1643                         case BPF_JGE:
1644                                 /* GE is unsigned '>=', JAE in x86 */
1645                                 jmp_cond = X86_JAE;
1646                                 break;
1647                         case BPF_JLE:
1648                                 /* LE is unsigned '<=', JBE in x86 */
1649                                 jmp_cond = X86_JBE;
1650                                 break;
1651                         case BPF_JSGT:
1652                                 /* Signed '>', GT in x86 */
1653                                 jmp_cond = X86_JG;
1654                                 break;
1655                         case BPF_JSLT:
1656                                 /* Signed '<', LT in x86 */
1657                                 jmp_cond = X86_JL;
1658                                 break;
1659                         case BPF_JSGE:
1660                                 /* Signed '>=', GE in x86 */
1661                                 jmp_cond = X86_JGE;
1662                                 break;
1663                         case BPF_JSLE:
1664                                 /* Signed '<=', LE in x86 */
1665                                 jmp_cond = X86_JLE;
1666                                 break;
1667                         default: /* to silence GCC warning */
1668                                 return -EFAULT;
1669                         }
1670                         jmp_offset = addrs[i + insn->off] - addrs[i];
1671                         if (is_imm8(jmp_offset)) {
1672                                 if (jmp_padding) {
1673                                         /* To keep the jmp_offset valid, the extra bytes are
1674                                          * padded before the jump insn, so we subtract the
1675                                          * 2 bytes of jmp_cond insn from INSN_SZ_DIFF.
1676                                          *
1677                                          * If the previous pass already emits an imm8
1678                                          * jmp_cond, then this BPF insn won't shrink, so
1679                                          * "nops" is 0.
1680                                          *
1681                                          * On the other hand, if the previous pass emits an
1682                                          * imm32 jmp_cond, the extra 4 bytes(*) is padded to
1683                                          * keep the image from shrinking further.
1684                                          *
1685                                          * (*) imm32 jmp_cond is 6 bytes, and imm8 jmp_cond
1686                                          *     is 2 bytes, so the size difference is 4 bytes.
1687                                          */
1688                                         nops = INSN_SZ_DIFF - 2;
1689                                         if (nops != 0 && nops != 4) {
1690                                                 pr_err("unexpected jmp_cond padding: %d bytes\n",
1691                                                        nops);
1692                                                 return -EFAULT;
1693                                         }
1694                                         emit_nops(&prog, nops);
1695                                 }
1696                                 EMIT2(jmp_cond, jmp_offset);
1697                         } else if (is_simm32(jmp_offset)) {
1698                                 EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
1699                         } else {
1700                                 pr_err("cond_jmp gen bug %llx\n", jmp_offset);
1701                                 return -EFAULT;
1702                         }
1703
1704                         break;
1705
1706                 case BPF_JMP | BPF_JA:
1707                         if (insn->off == -1)
1708                                 /* -1 jmp instructions will always jump
1709                                  * backwards two bytes. Explicitly handling
1710                                  * this case avoids wasting too many passes
1711                                  * when there are long sequences of replaced
1712                                  * dead code.
1713                                  */
1714                                 jmp_offset = -2;
1715                         else
1716                                 jmp_offset = addrs[i + insn->off] - addrs[i];
1717
1718                         if (!jmp_offset) {
1719                                 /*
1720                                  * If jmp_padding is enabled, the extra nops will
1721                                  * be inserted. Otherwise, optimize out nop jumps.
1722                                  */
1723                                 if (jmp_padding) {
1724                                         /* There are 3 possible conditions.
1725                                          * (1) This BPF_JA is already optimized out in
1726                                          *     the previous run, so there is no need
1727                                          *     to pad any extra byte (0 byte).
1728                                          * (2) The previous pass emits an imm8 jmp,
1729                                          *     so we pad 2 bytes to match the previous
1730                                          *     insn size.
1731                                          * (3) Similarly, the previous pass emits an
1732                                          *     imm32 jmp, and 5 bytes is padded.
1733                                          */
1734                                         nops = INSN_SZ_DIFF;
1735                                         if (nops != 0 && nops != 2 && nops != 5) {
1736                                                 pr_err("unexpected nop jump padding: %d bytes\n",
1737                                                        nops);
1738                                                 return -EFAULT;
1739                                         }
1740                                         emit_nops(&prog, nops);
1741                                 }
1742                                 break;
1743                         }
1744 emit_jmp:
1745                         if (is_imm8(jmp_offset)) {
1746                                 if (jmp_padding) {
1747                                         /* To avoid breaking jmp_offset, the extra bytes
1748                                          * are padded before the actual jmp insn, so
1749                                          * 2 bytes is subtracted from INSN_SZ_DIFF.
1750                                          *
1751                                          * If the previous pass already emits an imm8
1752                                          * jmp, there is nothing to pad (0 byte).
1753                                          *
1754                                          * If it emits an imm32 jmp (5 bytes) previously
1755                                          * and now an imm8 jmp (2 bytes), then we pad
1756                                          * (5 - 2 = 3) bytes to stop the image from
1757                                          * shrinking further.
1758                                          */
1759                                         nops = INSN_SZ_DIFF - 2;
1760                                         if (nops != 0 && nops != 3) {
1761                                                 pr_err("unexpected jump padding: %d bytes\n",
1762                                                        nops);
1763                                                 return -EFAULT;
1764                                         }
1765                                         emit_nops(&prog, INSN_SZ_DIFF - 2);
1766                                 }
1767                                 EMIT2(0xEB, jmp_offset);
1768                         } else if (is_simm32(jmp_offset)) {
1769                                 EMIT1_off32(0xE9, jmp_offset);
1770                         } else {
1771                                 pr_err("jmp gen bug %llx\n", jmp_offset);
1772                                 return -EFAULT;
1773                         }
1774                         break;
1775
1776                 case BPF_JMP | BPF_EXIT:
1777                         if (seen_exit) {
1778                                 jmp_offset = ctx->cleanup_addr - addrs[i];
1779                                 goto emit_jmp;
1780                         }
1781                         seen_exit = true;
1782                         /* Update cleanup_addr */
1783                         ctx->cleanup_addr = proglen;
1784                         pop_callee_regs(&prog, callee_regs_used);
1785                         EMIT1(0xC9);         /* leave */
1786                         emit_return(&prog, image + addrs[i - 1] + (prog - temp));
1787                         break;
1788
1789                 default:
1790                         /*
1791                          * By design x86-64 JIT should support all BPF instructions.
1792                          * This error will be seen if new instruction was added
1793                          * to the interpreter, but not to the JIT, or if there is
1794                          * junk in bpf_prog.
1795                          */
1796                         pr_err("bpf_jit: unknown opcode %02x\n", insn->code);
1797                         return -EINVAL;
1798                 }
1799
1800                 ilen = prog - temp;
1801                 if (ilen > BPF_MAX_INSN_SIZE) {
1802                         pr_err("bpf_jit: fatal insn size error\n");
1803                         return -EFAULT;
1804                 }
1805
1806                 if (image) {
1807                         /*
1808                          * When populating the image, assert that:
1809                          *
1810                          *  i) We do not write beyond the allocated space, and
1811                          * ii) addrs[i] did not change from the prior run, in order
1812                          *     to validate assumptions made for computing branch
1813                          *     displacements.
1814                          */
1815                         if (unlikely(proglen + ilen > oldproglen ||
1816                                      proglen + ilen != addrs[i])) {
1817                                 pr_err("bpf_jit: fatal error\n");
1818                                 return -EFAULT;
1819                         }
1820                         memcpy(rw_image + proglen, temp, ilen);
1821                 }
1822                 proglen += ilen;
1823                 addrs[i] = proglen;
1824                 prog = temp;
1825         }
1826
1827         if (image && excnt != bpf_prog->aux->num_exentries) {
1828                 pr_err("extable is not populated\n");
1829                 return -EFAULT;
1830         }
1831         return proglen;
1832 }
1833
1834 static void save_regs(const struct btf_func_model *m, u8 **prog, int nr_args,
1835                       int stack_size)
1836 {
1837         int i, j, arg_size, nr_regs;
1838         /* Store function arguments to stack.
1839          * For a function that accepts two pointers the sequence will be:
1840          * mov QWORD PTR [rbp-0x10],rdi
1841          * mov QWORD PTR [rbp-0x8],rsi
1842          */
1843         for (i = 0, j = 0; i < min(nr_args, 6); i++) {
1844                 if (m->arg_flags[i] & BTF_FMODEL_STRUCT_ARG) {
1845                         nr_regs = (m->arg_size[i] + 7) / 8;
1846                         arg_size = 8;
1847                 } else {
1848                         nr_regs = 1;
1849                         arg_size = m->arg_size[i];
1850                 }
1851
1852                 while (nr_regs) {
1853                         emit_stx(prog, bytes_to_bpf_size(arg_size),
1854                                  BPF_REG_FP,
1855                                  j == 5 ? X86_REG_R9 : BPF_REG_1 + j,
1856                                  -(stack_size - j * 8));
1857                         nr_regs--;
1858                         j++;
1859                 }
1860         }
1861 }
1862
1863 static void restore_regs(const struct btf_func_model *m, u8 **prog, int nr_args,
1864                          int stack_size)
1865 {
1866         int i, j, arg_size, nr_regs;
1867
1868         /* Restore function arguments from stack.
1869          * For a function that accepts two pointers the sequence will be:
1870          * EMIT4(0x48, 0x8B, 0x7D, 0xF0); mov rdi,QWORD PTR [rbp-0x10]
1871          * EMIT4(0x48, 0x8B, 0x75, 0xF8); mov rsi,QWORD PTR [rbp-0x8]
1872          */
1873         for (i = 0, j = 0; i < min(nr_args, 6); i++) {
1874                 if (m->arg_flags[i] & BTF_FMODEL_STRUCT_ARG) {
1875                         nr_regs = (m->arg_size[i] + 7) / 8;
1876                         arg_size = 8;
1877                 } else {
1878                         nr_regs = 1;
1879                         arg_size = m->arg_size[i];
1880                 }
1881
1882                 while (nr_regs) {
1883                         emit_ldx(prog, bytes_to_bpf_size(arg_size),
1884                                  j == 5 ? X86_REG_R9 : BPF_REG_1 + j,
1885                                  BPF_REG_FP,
1886                                  -(stack_size - j * 8));
1887                         nr_regs--;
1888                         j++;
1889                 }
1890         }
1891 }
1892
1893 static int invoke_bpf_prog(const struct btf_func_model *m, u8 **pprog,
1894                            struct bpf_tramp_link *l, int stack_size,
1895                            int run_ctx_off, bool save_ret)
1896 {
1897         void (*exit)(struct bpf_prog *prog, u64 start,
1898                      struct bpf_tramp_run_ctx *run_ctx) = __bpf_prog_exit;
1899         u64 (*enter)(struct bpf_prog *prog,
1900                      struct bpf_tramp_run_ctx *run_ctx) = __bpf_prog_enter;
1901         u8 *prog = *pprog;
1902         u8 *jmp_insn;
1903         int ctx_cookie_off = offsetof(struct bpf_tramp_run_ctx, bpf_cookie);
1904         struct bpf_prog *p = l->link.prog;
1905         u64 cookie = l->cookie;
1906
1907         /* mov rdi, cookie */
1908         emit_mov_imm64(&prog, BPF_REG_1, (long) cookie >> 32, (u32) (long) cookie);
1909
1910         /* Prepare struct bpf_tramp_run_ctx.
1911          *
1912          * bpf_tramp_run_ctx is already preserved by
1913          * arch_prepare_bpf_trampoline().
1914          *
1915          * mov QWORD PTR [rbp - run_ctx_off + ctx_cookie_off], rdi
1916          */
1917         emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_1, -run_ctx_off + ctx_cookie_off);
1918
1919         if (p->aux->sleepable) {
1920                 enter = __bpf_prog_enter_sleepable;
1921                 exit = __bpf_prog_exit_sleepable;
1922         } else if (p->type == BPF_PROG_TYPE_STRUCT_OPS) {
1923                 enter = __bpf_prog_enter_struct_ops;
1924                 exit = __bpf_prog_exit_struct_ops;
1925         } else if (p->expected_attach_type == BPF_LSM_CGROUP) {
1926                 enter = __bpf_prog_enter_lsm_cgroup;
1927                 exit = __bpf_prog_exit_lsm_cgroup;
1928         }
1929
1930         /* arg1: mov rdi, progs[i] */
1931         emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p);
1932         /* arg2: lea rsi, [rbp - ctx_cookie_off] */
1933         EMIT4(0x48, 0x8D, 0x75, -run_ctx_off);
1934
1935         if (emit_call(&prog, enter, prog))
1936                 return -EINVAL;
1937         /* remember prog start time returned by __bpf_prog_enter */
1938         emit_mov_reg(&prog, true, BPF_REG_6, BPF_REG_0);
1939
1940         /* if (__bpf_prog_enter*(prog) == 0)
1941          *      goto skip_exec_of_prog;
1942          */
1943         EMIT3(0x48, 0x85, 0xC0);  /* test rax,rax */
1944         /* emit 2 nops that will be replaced with JE insn */
1945         jmp_insn = prog;
1946         emit_nops(&prog, 2);
1947
1948         /* arg1: lea rdi, [rbp - stack_size] */
1949         EMIT4(0x48, 0x8D, 0x7D, -stack_size);
1950         /* arg2: progs[i]->insnsi for interpreter */
1951         if (!p->jited)
1952                 emit_mov_imm64(&prog, BPF_REG_2,
1953                                (long) p->insnsi >> 32,
1954                                (u32) (long) p->insnsi);
1955         /* call JITed bpf program or interpreter */
1956         if (emit_call(&prog, p->bpf_func, prog))
1957                 return -EINVAL;
1958
1959         /*
1960          * BPF_TRAMP_MODIFY_RETURN trampolines can modify the return
1961          * of the previous call which is then passed on the stack to
1962          * the next BPF program.
1963          *
1964          * BPF_TRAMP_FENTRY trampoline may need to return the return
1965          * value of BPF_PROG_TYPE_STRUCT_OPS prog.
1966          */
1967         if (save_ret)
1968                 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
1969
1970         /* replace 2 nops with JE insn, since jmp target is known */
1971         jmp_insn[0] = X86_JE;
1972         jmp_insn[1] = prog - jmp_insn - 2;
1973
1974         /* arg1: mov rdi, progs[i] */
1975         emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p);
1976         /* arg2: mov rsi, rbx <- start time in nsec */
1977         emit_mov_reg(&prog, true, BPF_REG_2, BPF_REG_6);
1978         /* arg3: lea rdx, [rbp - run_ctx_off] */
1979         EMIT4(0x48, 0x8D, 0x55, -run_ctx_off);
1980         if (emit_call(&prog, exit, prog))
1981                 return -EINVAL;
1982
1983         *pprog = prog;
1984         return 0;
1985 }
1986
1987 static void emit_align(u8 **pprog, u32 align)
1988 {
1989         u8 *target, *prog = *pprog;
1990
1991         target = PTR_ALIGN(prog, align);
1992         if (target != prog)
1993                 emit_nops(&prog, target - prog);
1994
1995         *pprog = prog;
1996 }
1997
1998 static int emit_cond_near_jump(u8 **pprog, void *func, void *ip, u8 jmp_cond)
1999 {
2000         u8 *prog = *pprog;
2001         s64 offset;
2002
2003         offset = func - (ip + 2 + 4);
2004         if (!is_simm32(offset)) {
2005                 pr_err("Target %p is out of range\n", func);
2006                 return -EINVAL;
2007         }
2008         EMIT2_off32(0x0F, jmp_cond + 0x10, offset);
2009         *pprog = prog;
2010         return 0;
2011 }
2012
2013 static int invoke_bpf(const struct btf_func_model *m, u8 **pprog,
2014                       struct bpf_tramp_links *tl, int stack_size,
2015                       int run_ctx_off, bool save_ret)
2016 {
2017         int i;
2018         u8 *prog = *pprog;
2019
2020         for (i = 0; i < tl->nr_links; i++) {
2021                 if (invoke_bpf_prog(m, &prog, tl->links[i], stack_size,
2022                                     run_ctx_off, save_ret))
2023                         return -EINVAL;
2024         }
2025         *pprog = prog;
2026         return 0;
2027 }
2028
2029 static int invoke_bpf_mod_ret(const struct btf_func_model *m, u8 **pprog,
2030                               struct bpf_tramp_links *tl, int stack_size,
2031                               int run_ctx_off, u8 **branches)
2032 {
2033         u8 *prog = *pprog;
2034         int i;
2035
2036         /* The first fmod_ret program will receive a garbage return value.
2037          * Set this to 0 to avoid confusing the program.
2038          */
2039         emit_mov_imm32(&prog, false, BPF_REG_0, 0);
2040         emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
2041         for (i = 0; i < tl->nr_links; i++) {
2042                 if (invoke_bpf_prog(m, &prog, tl->links[i], stack_size, run_ctx_off, true))
2043                         return -EINVAL;
2044
2045                 /* mod_ret prog stored return value into [rbp - 8]. Emit:
2046                  * if (*(u64 *)(rbp - 8) !=  0)
2047                  *      goto do_fexit;
2048                  */
2049                 /* cmp QWORD PTR [rbp - 0x8], 0x0 */
2050                 EMIT4(0x48, 0x83, 0x7d, 0xf8); EMIT1(0x00);
2051
2052                 /* Save the location of the branch and Generate 6 nops
2053                  * (4 bytes for an offset and 2 bytes for the jump) These nops
2054                  * are replaced with a conditional jump once do_fexit (i.e. the
2055                  * start of the fexit invocation) is finalized.
2056                  */
2057                 branches[i] = prog;
2058                 emit_nops(&prog, 4 + 2);
2059         }
2060
2061         *pprog = prog;
2062         return 0;
2063 }
2064
2065 /* Example:
2066  * __be16 eth_type_trans(struct sk_buff *skb, struct net_device *dev);
2067  * its 'struct btf_func_model' will be nr_args=2
2068  * The assembly code when eth_type_trans is executing after trampoline:
2069  *
2070  * push rbp
2071  * mov rbp, rsp
2072  * sub rsp, 16                     // space for skb and dev
2073  * push rbx                        // temp regs to pass start time
2074  * mov qword ptr [rbp - 16], rdi   // save skb pointer to stack
2075  * mov qword ptr [rbp - 8], rsi    // save dev pointer to stack
2076  * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
2077  * mov rbx, rax                    // remember start time in bpf stats are enabled
2078  * lea rdi, [rbp - 16]             // R1==ctx of bpf prog
2079  * call addr_of_jited_FENTRY_prog
2080  * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
2081  * mov rsi, rbx                    // prog start time
2082  * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
2083  * mov rdi, qword ptr [rbp - 16]   // restore skb pointer from stack
2084  * mov rsi, qword ptr [rbp - 8]    // restore dev pointer from stack
2085  * pop rbx
2086  * leave
2087  * ret
2088  *
2089  * eth_type_trans has 5 byte nop at the beginning. These 5 bytes will be
2090  * replaced with 'call generated_bpf_trampoline'. When it returns
2091  * eth_type_trans will continue executing with original skb and dev pointers.
2092  *
2093  * The assembly code when eth_type_trans is called from trampoline:
2094  *
2095  * push rbp
2096  * mov rbp, rsp
2097  * sub rsp, 24                     // space for skb, dev, return value
2098  * push rbx                        // temp regs to pass start time
2099  * mov qword ptr [rbp - 24], rdi   // save skb pointer to stack
2100  * mov qword ptr [rbp - 16], rsi   // save dev pointer to stack
2101  * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
2102  * mov rbx, rax                    // remember start time if bpf stats are enabled
2103  * lea rdi, [rbp - 24]             // R1==ctx of bpf prog
2104  * call addr_of_jited_FENTRY_prog  // bpf prog can access skb and dev
2105  * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
2106  * mov rsi, rbx                    // prog start time
2107  * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
2108  * mov rdi, qword ptr [rbp - 24]   // restore skb pointer from stack
2109  * mov rsi, qword ptr [rbp - 16]   // restore dev pointer from stack
2110  * call eth_type_trans+5           // execute body of eth_type_trans
2111  * mov qword ptr [rbp - 8], rax    // save return value
2112  * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
2113  * mov rbx, rax                    // remember start time in bpf stats are enabled
2114  * lea rdi, [rbp - 24]             // R1==ctx of bpf prog
2115  * call addr_of_jited_FEXIT_prog   // bpf prog can access skb, dev, return value
2116  * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
2117  * mov rsi, rbx                    // prog start time
2118  * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
2119  * mov rax, qword ptr [rbp - 8]    // restore eth_type_trans's return value
2120  * pop rbx
2121  * leave
2122  * add rsp, 8                      // skip eth_type_trans's frame
2123  * ret                             // return to its caller
2124  */
2125 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end,
2126                                 const struct btf_func_model *m, u32 flags,
2127                                 struct bpf_tramp_links *tlinks,
2128                                 void *func_addr)
2129 {
2130         int ret, i, nr_args = m->nr_args, extra_nregs = 0;
2131         int regs_off, ip_off, args_off, stack_size = nr_args * 8, run_ctx_off;
2132         struct bpf_tramp_links *fentry = &tlinks[BPF_TRAMP_FENTRY];
2133         struct bpf_tramp_links *fexit = &tlinks[BPF_TRAMP_FEXIT];
2134         struct bpf_tramp_links *fmod_ret = &tlinks[BPF_TRAMP_MODIFY_RETURN];
2135         void *orig_call = func_addr;
2136         u8 **branches = NULL;
2137         u8 *prog;
2138         bool save_ret;
2139
2140         /* x86-64 supports up to 6 arguments. 7+ can be added in the future */
2141         if (nr_args > 6)
2142                 return -ENOTSUPP;
2143
2144         for (i = 0; i < MAX_BPF_FUNC_ARGS; i++) {
2145                 if (m->arg_flags[i] & BTF_FMODEL_STRUCT_ARG)
2146                         extra_nregs += (m->arg_size[i] + 7) / 8 - 1;
2147         }
2148         if (nr_args + extra_nregs > 6)
2149                 return -ENOTSUPP;
2150         stack_size += extra_nregs * 8;
2151
2152         /* Generated trampoline stack layout:
2153          *
2154          * RBP + 8         [ return address  ]
2155          * RBP + 0         [ RBP             ]
2156          *
2157          * RBP - 8         [ return value    ]  BPF_TRAMP_F_CALL_ORIG or
2158          *                                      BPF_TRAMP_F_RET_FENTRY_RET flags
2159          *
2160          *                 [ reg_argN        ]  always
2161          *                 [ ...             ]
2162          * RBP - regs_off  [ reg_arg1        ]  program's ctx pointer
2163          *
2164          * RBP - args_off  [ arg regs count  ]  always
2165          *
2166          * RBP - ip_off    [ traced function ]  BPF_TRAMP_F_IP_ARG flag
2167          *
2168          * RBP - run_ctx_off [ bpf_tramp_run_ctx ]
2169          */
2170
2171         /* room for return value of orig_call or fentry prog */
2172         save_ret = flags & (BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_RET_FENTRY_RET);
2173         if (save_ret)
2174                 stack_size += 8;
2175
2176         regs_off = stack_size;
2177
2178         /* args count  */
2179         stack_size += 8;
2180         args_off = stack_size;
2181
2182         if (flags & BPF_TRAMP_F_IP_ARG)
2183                 stack_size += 8; /* room for IP address argument */
2184
2185         ip_off = stack_size;
2186
2187         stack_size += (sizeof(struct bpf_tramp_run_ctx) + 7) & ~0x7;
2188         run_ctx_off = stack_size;
2189
2190         if (flags & BPF_TRAMP_F_SKIP_FRAME) {
2191                 /* skip patched call instruction and point orig_call to actual
2192                  * body of the kernel function.
2193                  */
2194                 if (is_endbr(*(u32 *)orig_call))
2195                         orig_call += ENDBR_INSN_SIZE;
2196                 orig_call += X86_PATCH_SIZE;
2197         }
2198
2199         prog = image;
2200
2201         EMIT_ENDBR();
2202         EMIT1(0x55);             /* push rbp */
2203         EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
2204         EMIT4(0x48, 0x83, 0xEC, stack_size); /* sub rsp, stack_size */
2205         EMIT1(0x53);             /* push rbx */
2206
2207         /* Store number of argument registers of the traced function:
2208          *   mov rax, nr_args + extra_nregs
2209          *   mov QWORD PTR [rbp - args_off], rax
2210          */
2211         emit_mov_imm64(&prog, BPF_REG_0, 0, (u32) nr_args + extra_nregs);
2212         emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -args_off);
2213
2214         if (flags & BPF_TRAMP_F_IP_ARG) {
2215                 /* Store IP address of the traced function:
2216                  * movabsq rax, func_addr
2217                  * mov QWORD PTR [rbp - ip_off], rax
2218                  */
2219                 emit_mov_imm64(&prog, BPF_REG_0, (long) func_addr >> 32, (u32) (long) func_addr);
2220                 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -ip_off);
2221         }
2222
2223         save_regs(m, &prog, nr_args, regs_off);
2224
2225         if (flags & BPF_TRAMP_F_CALL_ORIG) {
2226                 /* arg1: mov rdi, im */
2227                 emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im);
2228                 if (emit_call(&prog, __bpf_tramp_enter, prog)) {
2229                         ret = -EINVAL;
2230                         goto cleanup;
2231                 }
2232         }
2233
2234         if (fentry->nr_links)
2235                 if (invoke_bpf(m, &prog, fentry, regs_off, run_ctx_off,
2236                                flags & BPF_TRAMP_F_RET_FENTRY_RET))
2237                         return -EINVAL;
2238
2239         if (fmod_ret->nr_links) {
2240                 branches = kcalloc(fmod_ret->nr_links, sizeof(u8 *),
2241                                    GFP_KERNEL);
2242                 if (!branches)
2243                         return -ENOMEM;
2244
2245                 if (invoke_bpf_mod_ret(m, &prog, fmod_ret, regs_off,
2246                                        run_ctx_off, branches)) {
2247                         ret = -EINVAL;
2248                         goto cleanup;
2249                 }
2250         }
2251
2252         if (flags & BPF_TRAMP_F_CALL_ORIG) {
2253                 restore_regs(m, &prog, nr_args, regs_off);
2254
2255                 if (flags & BPF_TRAMP_F_ORIG_STACK) {
2256                         emit_ldx(&prog, BPF_DW, BPF_REG_0, BPF_REG_FP, 8);
2257                         EMIT2(0xff, 0xd0); /* call *rax */
2258                 } else {
2259                         /* call original function */
2260                         if (emit_call(&prog, orig_call, prog)) {
2261                                 ret = -EINVAL;
2262                                 goto cleanup;
2263                         }
2264                 }
2265                 /* remember return value in a stack for bpf prog to access */
2266                 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
2267                 im->ip_after_call = prog;
2268                 memcpy(prog, x86_nops[5], X86_PATCH_SIZE);
2269                 prog += X86_PATCH_SIZE;
2270         }
2271
2272         if (fmod_ret->nr_links) {
2273                 /* From Intel 64 and IA-32 Architectures Optimization
2274                  * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler
2275                  * Coding Rule 11: All branch targets should be 16-byte
2276                  * aligned.
2277                  */
2278                 emit_align(&prog, 16);
2279                 /* Update the branches saved in invoke_bpf_mod_ret with the
2280                  * aligned address of do_fexit.
2281                  */
2282                 for (i = 0; i < fmod_ret->nr_links; i++)
2283                         emit_cond_near_jump(&branches[i], prog, branches[i],
2284                                             X86_JNE);
2285         }
2286
2287         if (fexit->nr_links)
2288                 if (invoke_bpf(m, &prog, fexit, regs_off, run_ctx_off, false)) {
2289                         ret = -EINVAL;
2290                         goto cleanup;
2291                 }
2292
2293         if (flags & BPF_TRAMP_F_RESTORE_REGS)
2294                 restore_regs(m, &prog, nr_args, regs_off);
2295
2296         /* This needs to be done regardless. If there were fmod_ret programs,
2297          * the return value is only updated on the stack and still needs to be
2298          * restored to R0.
2299          */
2300         if (flags & BPF_TRAMP_F_CALL_ORIG) {
2301                 im->ip_epilogue = prog;
2302                 /* arg1: mov rdi, im */
2303                 emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im);
2304                 if (emit_call(&prog, __bpf_tramp_exit, prog)) {
2305                         ret = -EINVAL;
2306                         goto cleanup;
2307                 }
2308         }
2309         /* restore return value of orig_call or fentry prog back into RAX */
2310         if (save_ret)
2311                 emit_ldx(&prog, BPF_DW, BPF_REG_0, BPF_REG_FP, -8);
2312
2313         EMIT1(0x5B); /* pop rbx */
2314         EMIT1(0xC9); /* leave */
2315         if (flags & BPF_TRAMP_F_SKIP_FRAME)
2316                 /* skip our return address and return to parent */
2317                 EMIT4(0x48, 0x83, 0xC4, 8); /* add rsp, 8 */
2318         emit_return(&prog, prog);
2319         /* Make sure the trampoline generation logic doesn't overflow */
2320         if (WARN_ON_ONCE(prog > (u8 *)image_end - BPF_INSN_SAFETY)) {
2321                 ret = -EFAULT;
2322                 goto cleanup;
2323         }
2324         ret = prog - (u8 *)image;
2325
2326 cleanup:
2327         kfree(branches);
2328         return ret;
2329 }
2330
2331 static int emit_bpf_dispatcher(u8 **pprog, int a, int b, s64 *progs, u8 *image, u8 *buf)
2332 {
2333         u8 *jg_reloc, *prog = *pprog;
2334         int pivot, err, jg_bytes = 1;
2335         s64 jg_offset;
2336
2337         if (a == b) {
2338                 /* Leaf node of recursion, i.e. not a range of indices
2339                  * anymore.
2340                  */
2341                 EMIT1(add_1mod(0x48, BPF_REG_3));       /* cmp rdx,func */
2342                 if (!is_simm32(progs[a]))
2343                         return -1;
2344                 EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3),
2345                             progs[a]);
2346                 err = emit_cond_near_jump(&prog,        /* je func */
2347                                           (void *)progs[a], image + (prog - buf),
2348                                           X86_JE);
2349                 if (err)
2350                         return err;
2351
2352                 emit_indirect_jump(&prog, 2 /* rdx */, image + (prog - buf));
2353
2354                 *pprog = prog;
2355                 return 0;
2356         }
2357
2358         /* Not a leaf node, so we pivot, and recursively descend into
2359          * the lower and upper ranges.
2360          */
2361         pivot = (b - a) / 2;
2362         EMIT1(add_1mod(0x48, BPF_REG_3));               /* cmp rdx,func */
2363         if (!is_simm32(progs[a + pivot]))
2364                 return -1;
2365         EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3), progs[a + pivot]);
2366
2367         if (pivot > 2) {                                /* jg upper_part */
2368                 /* Require near jump. */
2369                 jg_bytes = 4;
2370                 EMIT2_off32(0x0F, X86_JG + 0x10, 0);
2371         } else {
2372                 EMIT2(X86_JG, 0);
2373         }
2374         jg_reloc = prog;
2375
2376         err = emit_bpf_dispatcher(&prog, a, a + pivot,  /* emit lower_part */
2377                                   progs, image, buf);
2378         if (err)
2379                 return err;
2380
2381         /* From Intel 64 and IA-32 Architectures Optimization
2382          * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler
2383          * Coding Rule 11: All branch targets should be 16-byte
2384          * aligned.
2385          */
2386         emit_align(&prog, 16);
2387         jg_offset = prog - jg_reloc;
2388         emit_code(jg_reloc - jg_bytes, jg_offset, jg_bytes);
2389
2390         err = emit_bpf_dispatcher(&prog, a + pivot + 1, /* emit upper_part */
2391                                   b, progs, image, buf);
2392         if (err)
2393                 return err;
2394
2395         *pprog = prog;
2396         return 0;
2397 }
2398
2399 static int cmp_ips(const void *a, const void *b)
2400 {
2401         const s64 *ipa = a;
2402         const s64 *ipb = b;
2403
2404         if (*ipa > *ipb)
2405                 return 1;
2406         if (*ipa < *ipb)
2407                 return -1;
2408         return 0;
2409 }
2410
2411 int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs)
2412 {
2413         u8 *prog = buf;
2414
2415         sort(funcs, num_funcs, sizeof(funcs[0]), cmp_ips, NULL);
2416         return emit_bpf_dispatcher(&prog, 0, num_funcs - 1, funcs, image, buf);
2417 }
2418
2419 struct x64_jit_data {
2420         struct bpf_binary_header *rw_header;
2421         struct bpf_binary_header *header;
2422         int *addrs;
2423         u8 *image;
2424         int proglen;
2425         struct jit_context ctx;
2426 };
2427
2428 #define MAX_PASSES 20
2429 #define PADDING_PASSES (MAX_PASSES - 5)
2430
2431 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
2432 {
2433         struct bpf_binary_header *rw_header = NULL;
2434         struct bpf_binary_header *header = NULL;
2435         struct bpf_prog *tmp, *orig_prog = prog;
2436         struct x64_jit_data *jit_data;
2437         int proglen, oldproglen = 0;
2438         struct jit_context ctx = {};
2439         bool tmp_blinded = false;
2440         bool extra_pass = false;
2441         bool padding = false;
2442         u8 *rw_image = NULL;
2443         u8 *image = NULL;
2444         int *addrs;
2445         int pass;
2446         int i;
2447
2448         if (!prog->jit_requested)
2449                 return orig_prog;
2450
2451         tmp = bpf_jit_blind_constants(prog);
2452         /*
2453          * If blinding was requested and we failed during blinding,
2454          * we must fall back to the interpreter.
2455          */
2456         if (IS_ERR(tmp))
2457                 return orig_prog;
2458         if (tmp != prog) {
2459                 tmp_blinded = true;
2460                 prog = tmp;
2461         }
2462
2463         jit_data = prog->aux->jit_data;
2464         if (!jit_data) {
2465                 jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
2466                 if (!jit_data) {
2467                         prog = orig_prog;
2468                         goto out;
2469                 }
2470                 prog->aux->jit_data = jit_data;
2471         }
2472         addrs = jit_data->addrs;
2473         if (addrs) {
2474                 ctx = jit_data->ctx;
2475                 oldproglen = jit_data->proglen;
2476                 image = jit_data->image;
2477                 header = jit_data->header;
2478                 rw_header = jit_data->rw_header;
2479                 rw_image = (void *)rw_header + ((void *)image - (void *)header);
2480                 extra_pass = true;
2481                 padding = true;
2482                 goto skip_init_addrs;
2483         }
2484         addrs = kvmalloc_array(prog->len + 1, sizeof(*addrs), GFP_KERNEL);
2485         if (!addrs) {
2486                 prog = orig_prog;
2487                 goto out_addrs;
2488         }
2489
2490         /*
2491          * Before first pass, make a rough estimation of addrs[]
2492          * each BPF instruction is translated to less than 64 bytes
2493          */
2494         for (proglen = 0, i = 0; i <= prog->len; i++) {
2495                 proglen += 64;
2496                 addrs[i] = proglen;
2497         }
2498         ctx.cleanup_addr = proglen;
2499 skip_init_addrs:
2500
2501         /*
2502          * JITed image shrinks with every pass and the loop iterates
2503          * until the image stops shrinking. Very large BPF programs
2504          * may converge on the last pass. In such case do one more
2505          * pass to emit the final image.
2506          */
2507         for (pass = 0; pass < MAX_PASSES || image; pass++) {
2508                 if (!padding && pass >= PADDING_PASSES)
2509                         padding = true;
2510                 proglen = do_jit(prog, addrs, image, rw_image, oldproglen, &ctx, padding);
2511                 if (proglen <= 0) {
2512 out_image:
2513                         image = NULL;
2514                         if (header) {
2515                                 bpf_arch_text_copy(&header->size, &rw_header->size,
2516                                                    sizeof(rw_header->size));
2517                                 bpf_jit_binary_pack_free(header, rw_header);
2518                         }
2519                         /* Fall back to interpreter mode */
2520                         prog = orig_prog;
2521                         if (extra_pass) {
2522                                 prog->bpf_func = NULL;
2523                                 prog->jited = 0;
2524                                 prog->jited_len = 0;
2525                         }
2526                         goto out_addrs;
2527                 }
2528                 if (image) {
2529                         if (proglen != oldproglen) {
2530                                 pr_err("bpf_jit: proglen=%d != oldproglen=%d\n",
2531                                        proglen, oldproglen);
2532                                 goto out_image;
2533                         }
2534                         break;
2535                 }
2536                 if (proglen == oldproglen) {
2537                         /*
2538                          * The number of entries in extable is the number of BPF_LDX
2539                          * insns that access kernel memory via "pointer to BTF type".
2540                          * The verifier changed their opcode from LDX|MEM|size
2541                          * to LDX|PROBE_MEM|size to make JITing easier.
2542                          */
2543                         u32 align = __alignof__(struct exception_table_entry);
2544                         u32 extable_size = prog->aux->num_exentries *
2545                                 sizeof(struct exception_table_entry);
2546
2547                         /* allocate module memory for x86 insns and extable */
2548                         header = bpf_jit_binary_pack_alloc(roundup(proglen, align) + extable_size,
2549                                                            &image, align, &rw_header, &rw_image,
2550                                                            jit_fill_hole);
2551                         if (!header) {
2552                                 prog = orig_prog;
2553                                 goto out_addrs;
2554                         }
2555                         prog->aux->extable = (void *) image + roundup(proglen, align);
2556                 }
2557                 oldproglen = proglen;
2558                 cond_resched();
2559         }
2560
2561         if (bpf_jit_enable > 1)
2562                 bpf_jit_dump(prog->len, proglen, pass + 1, image);
2563
2564         if (image) {
2565                 if (!prog->is_func || extra_pass) {
2566                         /*
2567                          * bpf_jit_binary_pack_finalize fails in two scenarios:
2568                          *   1) header is not pointing to proper module memory;
2569                          *   2) the arch doesn't support bpf_arch_text_copy().
2570                          *
2571                          * Both cases are serious bugs and justify WARN_ON.
2572                          */
2573                         if (WARN_ON(bpf_jit_binary_pack_finalize(prog, header, rw_header))) {
2574                                 /* header has been freed */
2575                                 header = NULL;
2576                                 goto out_image;
2577                         }
2578
2579                         bpf_tail_call_direct_fixup(prog);
2580                 } else {
2581                         jit_data->addrs = addrs;
2582                         jit_data->ctx = ctx;
2583                         jit_data->proglen = proglen;
2584                         jit_data->image = image;
2585                         jit_data->header = header;
2586                         jit_data->rw_header = rw_header;
2587                 }
2588                 prog->bpf_func = (void *)image;
2589                 prog->jited = 1;
2590                 prog->jited_len = proglen;
2591         } else {
2592                 prog = orig_prog;
2593         }
2594
2595         if (!image || !prog->is_func || extra_pass) {
2596                 if (image)
2597                         bpf_prog_fill_jited_linfo(prog, addrs + 1);
2598 out_addrs:
2599                 kvfree(addrs);
2600                 kfree(jit_data);
2601                 prog->aux->jit_data = NULL;
2602         }
2603 out:
2604         if (tmp_blinded)
2605                 bpf_jit_prog_release_other(prog, prog == orig_prog ?
2606                                            tmp : orig_prog);
2607         return prog;
2608 }
2609
2610 bool bpf_jit_supports_kfunc_call(void)
2611 {
2612         return true;
2613 }
2614
2615 void *bpf_arch_text_copy(void *dst, void *src, size_t len)
2616 {
2617         if (text_poke_copy(dst, src, len) == NULL)
2618                 return ERR_PTR(-EINVAL);
2619         return dst;
2620 }
2621
2622 /* Indicate the JIT backend supports mixing bpf2bpf and tailcalls. */
2623 bool bpf_jit_supports_subprog_tailcalls(void)
2624 {
2625         return true;
2626 }
2627
2628 void bpf_jit_free(struct bpf_prog *prog)
2629 {
2630         if (prog->jited) {
2631                 struct x64_jit_data *jit_data = prog->aux->jit_data;
2632                 struct bpf_binary_header *hdr;
2633
2634                 /*
2635                  * If we fail the final pass of JIT (from jit_subprogs),
2636                  * the program may not be finalized yet. Call finalize here
2637                  * before freeing it.
2638                  */
2639                 if (jit_data) {
2640                         bpf_jit_binary_pack_finalize(prog, jit_data->header,
2641                                                      jit_data->rw_header);
2642                         kvfree(jit_data->addrs);
2643                         kfree(jit_data);
2644                 }
2645                 hdr = bpf_jit_binary_pack_hdr(prog);
2646                 bpf_jit_binary_pack_free(hdr, NULL);
2647                 WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(prog));
2648         }
2649
2650         bpf_prog_unlock_free(prog);
2651 }