72b5a57e9e3132cfee2037751786172dcc306199
[platform/kernel/linux-starfive.git] / arch / x86 / net / bpf_jit_comp.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * bpf_jit_comp.c: BPF JIT compiler
4  *
5  * Copyright (C) 2011-2013 Eric Dumazet (eric.dumazet@gmail.com)
6  * Internal BPF Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
7  */
8 #include <linux/netdevice.h>
9 #include <linux/filter.h>
10 #include <linux/if_vlan.h>
11 #include <linux/bpf.h>
12 #include <linux/memory.h>
13 #include <linux/sort.h>
14 #include <asm/extable.h>
15 #include <asm/set_memory.h>
16 #include <asm/nospec-branch.h>
17 #include <asm/text-patching.h>
18 #include <asm/asm-prototypes.h>
19
20 static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
21 {
22         if (len == 1)
23                 *ptr = bytes;
24         else if (len == 2)
25                 *(u16 *)ptr = bytes;
26         else {
27                 *(u32 *)ptr = bytes;
28                 barrier();
29         }
30         return ptr + len;
31 }
32
33 #define EMIT(bytes, len) \
34         do { prog = emit_code(prog, bytes, len); cnt += len; } while (0)
35
36 #define EMIT1(b1)               EMIT(b1, 1)
37 #define EMIT2(b1, b2)           EMIT((b1) + ((b2) << 8), 2)
38 #define EMIT3(b1, b2, b3)       EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
39 #define EMIT4(b1, b2, b3, b4)   EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
40
41 #define EMIT1_off32(b1, off) \
42         do { EMIT1(b1); EMIT(off, 4); } while (0)
43 #define EMIT2_off32(b1, b2, off) \
44         do { EMIT2(b1, b2); EMIT(off, 4); } while (0)
45 #define EMIT3_off32(b1, b2, b3, off) \
46         do { EMIT3(b1, b2, b3); EMIT(off, 4); } while (0)
47 #define EMIT4_off32(b1, b2, b3, b4, off) \
48         do { EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0)
49
50 static bool is_imm8(int value)
51 {
52         return value <= 127 && value >= -128;
53 }
54
55 static bool is_simm32(s64 value)
56 {
57         return value == (s64)(s32)value;
58 }
59
60 static bool is_uimm32(u64 value)
61 {
62         return value == (u64)(u32)value;
63 }
64
65 /* mov dst, src */
66 #define EMIT_mov(DST, SRC)                                                               \
67         do {                                                                             \
68                 if (DST != SRC)                                                          \
69                         EMIT3(add_2mod(0x48, DST, SRC), 0x89, add_2reg(0xC0, DST, SRC)); \
70         } while (0)
71
72 static int bpf_size_to_x86_bytes(int bpf_size)
73 {
74         if (bpf_size == BPF_W)
75                 return 4;
76         else if (bpf_size == BPF_H)
77                 return 2;
78         else if (bpf_size == BPF_B)
79                 return 1;
80         else if (bpf_size == BPF_DW)
81                 return 4; /* imm32 */
82         else
83                 return 0;
84 }
85
86 /*
87  * List of x86 cond jumps opcodes (. + s8)
88  * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
89  */
90 #define X86_JB  0x72
91 #define X86_JAE 0x73
92 #define X86_JE  0x74
93 #define X86_JNE 0x75
94 #define X86_JBE 0x76
95 #define X86_JA  0x77
96 #define X86_JL  0x7C
97 #define X86_JGE 0x7D
98 #define X86_JLE 0x7E
99 #define X86_JG  0x7F
100
101 /* Pick a register outside of BPF range for JIT internal work */
102 #define AUX_REG (MAX_BPF_JIT_REG + 1)
103 #define X86_REG_R9 (MAX_BPF_JIT_REG + 2)
104
105 /*
106  * The following table maps BPF registers to x86-64 registers.
107  *
108  * x86-64 register R12 is unused, since if used as base address
109  * register in load/store instructions, it always needs an
110  * extra byte of encoding and is callee saved.
111  *
112  * x86-64 register R9 is not used by BPF programs, but can be used by BPF
113  * trampoline. x86-64 register R10 is used for blinding (if enabled).
114  */
115 static const int reg2hex[] = {
116         [BPF_REG_0] = 0,  /* RAX */
117         [BPF_REG_1] = 7,  /* RDI */
118         [BPF_REG_2] = 6,  /* RSI */
119         [BPF_REG_3] = 2,  /* RDX */
120         [BPF_REG_4] = 1,  /* RCX */
121         [BPF_REG_5] = 0,  /* R8  */
122         [BPF_REG_6] = 3,  /* RBX callee saved */
123         [BPF_REG_7] = 5,  /* R13 callee saved */
124         [BPF_REG_8] = 6,  /* R14 callee saved */
125         [BPF_REG_9] = 7,  /* R15 callee saved */
126         [BPF_REG_FP] = 5, /* RBP readonly */
127         [BPF_REG_AX] = 2, /* R10 temp register */
128         [AUX_REG] = 3,    /* R11 temp register */
129         [X86_REG_R9] = 1, /* R9 register, 6th function argument */
130 };
131
132 static const int reg2pt_regs[] = {
133         [BPF_REG_0] = offsetof(struct pt_regs, ax),
134         [BPF_REG_1] = offsetof(struct pt_regs, di),
135         [BPF_REG_2] = offsetof(struct pt_regs, si),
136         [BPF_REG_3] = offsetof(struct pt_regs, dx),
137         [BPF_REG_4] = offsetof(struct pt_regs, cx),
138         [BPF_REG_5] = offsetof(struct pt_regs, r8),
139         [BPF_REG_6] = offsetof(struct pt_regs, bx),
140         [BPF_REG_7] = offsetof(struct pt_regs, r13),
141         [BPF_REG_8] = offsetof(struct pt_regs, r14),
142         [BPF_REG_9] = offsetof(struct pt_regs, r15),
143 };
144
145 /*
146  * is_ereg() == true if BPF register 'reg' maps to x86-64 r8..r15
147  * which need extra byte of encoding.
148  * rax,rcx,...,rbp have simpler encoding
149  */
150 static bool is_ereg(u32 reg)
151 {
152         return (1 << reg) & (BIT(BPF_REG_5) |
153                              BIT(AUX_REG) |
154                              BIT(BPF_REG_7) |
155                              BIT(BPF_REG_8) |
156                              BIT(BPF_REG_9) |
157                              BIT(X86_REG_R9) |
158                              BIT(BPF_REG_AX));
159 }
160
161 /*
162  * is_ereg_8l() == true if BPF register 'reg' is mapped to access x86-64
163  * lower 8-bit registers dil,sil,bpl,spl,r8b..r15b, which need extra byte
164  * of encoding. al,cl,dl,bl have simpler encoding.
165  */
166 static bool is_ereg_8l(u32 reg)
167 {
168         return is_ereg(reg) ||
169             (1 << reg) & (BIT(BPF_REG_1) |
170                           BIT(BPF_REG_2) |
171                           BIT(BPF_REG_FP));
172 }
173
174 static bool is_axreg(u32 reg)
175 {
176         return reg == BPF_REG_0;
177 }
178
179 /* Add modifiers if 'reg' maps to x86-64 registers R8..R15 */
180 static u8 add_1mod(u8 byte, u32 reg)
181 {
182         if (is_ereg(reg))
183                 byte |= 1;
184         return byte;
185 }
186
187 static u8 add_2mod(u8 byte, u32 r1, u32 r2)
188 {
189         if (is_ereg(r1))
190                 byte |= 1;
191         if (is_ereg(r2))
192                 byte |= 4;
193         return byte;
194 }
195
196 /* Encode 'dst_reg' register into x86-64 opcode 'byte' */
197 static u8 add_1reg(u8 byte, u32 dst_reg)
198 {
199         return byte + reg2hex[dst_reg];
200 }
201
202 /* Encode 'dst_reg' and 'src_reg' registers into x86-64 opcode 'byte' */
203 static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg)
204 {
205         return byte + reg2hex[dst_reg] + (reg2hex[src_reg] << 3);
206 }
207
208 /* Some 1-byte opcodes for binary ALU operations */
209 static u8 simple_alu_opcodes[] = {
210         [BPF_ADD] = 0x01,
211         [BPF_SUB] = 0x29,
212         [BPF_AND] = 0x21,
213         [BPF_OR] = 0x09,
214         [BPF_XOR] = 0x31,
215         [BPF_LSH] = 0xE0,
216         [BPF_RSH] = 0xE8,
217         [BPF_ARSH] = 0xF8,
218 };
219
220 static void jit_fill_hole(void *area, unsigned int size)
221 {
222         /* Fill whole space with INT3 instructions */
223         memset(area, 0xcc, size);
224 }
225
226 struct jit_context {
227         int cleanup_addr; /* Epilogue code offset */
228 };
229
230 /* Maximum number of bytes emitted while JITing one eBPF insn */
231 #define BPF_MAX_INSN_SIZE       128
232 #define BPF_INSN_SAFETY         64
233
234 /* Number of bytes emit_patch() needs to generate instructions */
235 #define X86_PATCH_SIZE          5
236 /* Number of bytes that will be skipped on tailcall */
237 #define X86_TAIL_CALL_OFFSET    11
238
239 static void push_callee_regs(u8 **pprog, bool *callee_regs_used)
240 {
241         u8 *prog = *pprog;
242         int cnt = 0;
243
244         if (callee_regs_used[0])
245                 EMIT1(0x53);         /* push rbx */
246         if (callee_regs_used[1])
247                 EMIT2(0x41, 0x55);   /* push r13 */
248         if (callee_regs_used[2])
249                 EMIT2(0x41, 0x56);   /* push r14 */
250         if (callee_regs_used[3])
251                 EMIT2(0x41, 0x57);   /* push r15 */
252         *pprog = prog;
253 }
254
255 static void pop_callee_regs(u8 **pprog, bool *callee_regs_used)
256 {
257         u8 *prog = *pprog;
258         int cnt = 0;
259
260         if (callee_regs_used[3])
261                 EMIT2(0x41, 0x5F);   /* pop r15 */
262         if (callee_regs_used[2])
263                 EMIT2(0x41, 0x5E);   /* pop r14 */
264         if (callee_regs_used[1])
265                 EMIT2(0x41, 0x5D);   /* pop r13 */
266         if (callee_regs_used[0])
267                 EMIT1(0x5B);         /* pop rbx */
268         *pprog = prog;
269 }
270
271 /*
272  * Emit x86-64 prologue code for BPF program.
273  * bpf_tail_call helper will skip the first X86_TAIL_CALL_OFFSET bytes
274  * while jumping to another program
275  */
276 static void emit_prologue(u8 **pprog, u32 stack_depth, bool ebpf_from_cbpf,
277                           bool tail_call_reachable, bool is_subprog)
278 {
279         u8 *prog = *pprog;
280         int cnt = X86_PATCH_SIZE;
281
282         /* BPF trampoline can be made to work without these nops,
283          * but let's waste 5 bytes for now and optimize later
284          */
285         memcpy(prog, ideal_nops[NOP_ATOMIC5], cnt);
286         prog += cnt;
287         if (!ebpf_from_cbpf) {
288                 if (tail_call_reachable && !is_subprog)
289                         EMIT2(0x31, 0xC0); /* xor eax, eax */
290                 else
291                         EMIT2(0x66, 0x90); /* nop2 */
292         }
293         EMIT1(0x55);             /* push rbp */
294         EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
295         /* sub rsp, rounded_stack_depth */
296         if (stack_depth)
297                 EMIT3_off32(0x48, 0x81, 0xEC, round_up(stack_depth, 8));
298         if (tail_call_reachable)
299                 EMIT1(0x50);         /* push rax */
300         *pprog = prog;
301 }
302
303 static int emit_patch(u8 **pprog, void *func, void *ip, u8 opcode)
304 {
305         u8 *prog = *pprog;
306         int cnt = 0;
307         s64 offset;
308
309         offset = func - (ip + X86_PATCH_SIZE);
310         if (!is_simm32(offset)) {
311                 pr_err("Target call %p is out of range\n", func);
312                 return -ERANGE;
313         }
314         EMIT1_off32(opcode, offset);
315         *pprog = prog;
316         return 0;
317 }
318
319 static int emit_call(u8 **pprog, void *func, void *ip)
320 {
321         return emit_patch(pprog, func, ip, 0xE8);
322 }
323
324 static int emit_jump(u8 **pprog, void *func, void *ip)
325 {
326         return emit_patch(pprog, func, ip, 0xE9);
327 }
328
329 static int __bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
330                                 void *old_addr, void *new_addr,
331                                 const bool text_live)
332 {
333         const u8 *nop_insn = ideal_nops[NOP_ATOMIC5];
334         u8 old_insn[X86_PATCH_SIZE];
335         u8 new_insn[X86_PATCH_SIZE];
336         u8 *prog;
337         int ret;
338
339         memcpy(old_insn, nop_insn, X86_PATCH_SIZE);
340         if (old_addr) {
341                 prog = old_insn;
342                 ret = t == BPF_MOD_CALL ?
343                       emit_call(&prog, old_addr, ip) :
344                       emit_jump(&prog, old_addr, ip);
345                 if (ret)
346                         return ret;
347         }
348
349         memcpy(new_insn, nop_insn, X86_PATCH_SIZE);
350         if (new_addr) {
351                 prog = new_insn;
352                 ret = t == BPF_MOD_CALL ?
353                       emit_call(&prog, new_addr, ip) :
354                       emit_jump(&prog, new_addr, ip);
355                 if (ret)
356                         return ret;
357         }
358
359         ret = -EBUSY;
360         mutex_lock(&text_mutex);
361         if (memcmp(ip, old_insn, X86_PATCH_SIZE))
362                 goto out;
363         ret = 1;
364         if (memcmp(ip, new_insn, X86_PATCH_SIZE)) {
365                 if (text_live)
366                         text_poke_bp(ip, new_insn, X86_PATCH_SIZE, NULL);
367                 else
368                         memcpy(ip, new_insn, X86_PATCH_SIZE);
369                 ret = 0;
370         }
371 out:
372         mutex_unlock(&text_mutex);
373         return ret;
374 }
375
376 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
377                        void *old_addr, void *new_addr)
378 {
379         if (!is_kernel_text((long)ip) &&
380             !is_bpf_text_address((long)ip))
381                 /* BPF poking in modules is not supported */
382                 return -EINVAL;
383
384         return __bpf_arch_text_poke(ip, t, old_addr, new_addr, true);
385 }
386
387 static int get_pop_bytes(bool *callee_regs_used)
388 {
389         int bytes = 0;
390
391         if (callee_regs_used[3])
392                 bytes += 2;
393         if (callee_regs_used[2])
394                 bytes += 2;
395         if (callee_regs_used[1])
396                 bytes += 2;
397         if (callee_regs_used[0])
398                 bytes += 1;
399
400         return bytes;
401 }
402
403 /*
404  * Generate the following code:
405  *
406  * ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ...
407  *   if (index >= array->map.max_entries)
408  *     goto out;
409  *   if (++tail_call_cnt > MAX_TAIL_CALL_CNT)
410  *     goto out;
411  *   prog = array->ptrs[index];
412  *   if (prog == NULL)
413  *     goto out;
414  *   goto *(prog->bpf_func + prologue_size);
415  * out:
416  */
417 static void emit_bpf_tail_call_indirect(u8 **pprog, bool *callee_regs_used,
418                                         u32 stack_depth)
419 {
420         int tcc_off = -4 - round_up(stack_depth, 8);
421         u8 *prog = *pprog;
422         int pop_bytes = 0;
423         int off1 = 42;
424         int off2 = 31;
425         int off3 = 9;
426         int cnt = 0;
427
428         /* count the additional bytes used for popping callee regs from stack
429          * that need to be taken into account for each of the offsets that
430          * are used for bailing out of the tail call
431          */
432         pop_bytes = get_pop_bytes(callee_regs_used);
433         off1 += pop_bytes;
434         off2 += pop_bytes;
435         off3 += pop_bytes;
436
437         if (stack_depth) {
438                 off1 += 7;
439                 off2 += 7;
440                 off3 += 7;
441         }
442
443         /*
444          * rdi - pointer to ctx
445          * rsi - pointer to bpf_array
446          * rdx - index in bpf_array
447          */
448
449         /*
450          * if (index >= array->map.max_entries)
451          *      goto out;
452          */
453         EMIT2(0x89, 0xD2);                        /* mov edx, edx */
454         EMIT3(0x39, 0x56,                         /* cmp dword ptr [rsi + 16], edx */
455               offsetof(struct bpf_array, map.max_entries));
456 #define OFFSET1 (off1 + RETPOLINE_RCX_BPF_JIT_SIZE) /* Number of bytes to jump */
457         EMIT2(X86_JBE, OFFSET1);                  /* jbe out */
458
459         /*
460          * if (tail_call_cnt > MAX_TAIL_CALL_CNT)
461          *      goto out;
462          */
463         EMIT2_off32(0x8B, 0x85, tcc_off);         /* mov eax, dword ptr [rbp - tcc_off] */
464         EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT);     /* cmp eax, MAX_TAIL_CALL_CNT */
465 #define OFFSET2 (off2 + RETPOLINE_RCX_BPF_JIT_SIZE)
466         EMIT2(X86_JA, OFFSET2);                   /* ja out */
467         EMIT3(0x83, 0xC0, 0x01);                  /* add eax, 1 */
468         EMIT2_off32(0x89, 0x85, tcc_off);         /* mov dword ptr [rbp - tcc_off], eax */
469
470         /* prog = array->ptrs[index]; */
471         EMIT4_off32(0x48, 0x8B, 0x8C, 0xD6,       /* mov rcx, [rsi + rdx * 8 + offsetof(...)] */
472                     offsetof(struct bpf_array, ptrs));
473
474         /*
475          * if (prog == NULL)
476          *      goto out;
477          */
478         EMIT3(0x48, 0x85, 0xC9);                  /* test rcx,rcx */
479 #define OFFSET3 (off3 + RETPOLINE_RCX_BPF_JIT_SIZE)
480         EMIT2(X86_JE, OFFSET3);                   /* je out */
481
482         *pprog = prog;
483         pop_callee_regs(pprog, callee_regs_used);
484         prog = *pprog;
485
486         EMIT1(0x58);                              /* pop rax */
487         if (stack_depth)
488                 EMIT3_off32(0x48, 0x81, 0xC4,     /* add rsp, sd */
489                             round_up(stack_depth, 8));
490
491         /* goto *(prog->bpf_func + X86_TAIL_CALL_OFFSET); */
492         EMIT4(0x48, 0x8B, 0x49,                   /* mov rcx, qword ptr [rcx + 32] */
493               offsetof(struct bpf_prog, bpf_func));
494         EMIT4(0x48, 0x83, 0xC1,                   /* add rcx, X86_TAIL_CALL_OFFSET */
495               X86_TAIL_CALL_OFFSET);
496         /*
497          * Now we're ready to jump into next BPF program
498          * rdi == ctx (1st arg)
499          * rcx == prog->bpf_func + X86_TAIL_CALL_OFFSET
500          */
501         RETPOLINE_RCX_BPF_JIT();
502
503         /* out: */
504         *pprog = prog;
505 }
506
507 static void emit_bpf_tail_call_direct(struct bpf_jit_poke_descriptor *poke,
508                                       u8 **pprog, int addr, u8 *image,
509                                       bool *callee_regs_used, u32 stack_depth)
510 {
511         int tcc_off = -4 - round_up(stack_depth, 8);
512         u8 *prog = *pprog;
513         int pop_bytes = 0;
514         int off1 = 20;
515         int poke_off;
516         int cnt = 0;
517
518         /* count the additional bytes used for popping callee regs to stack
519          * that need to be taken into account for jump offset that is used for
520          * bailing out from of the tail call when limit is reached
521          */
522         pop_bytes = get_pop_bytes(callee_regs_used);
523         off1 += pop_bytes;
524
525         /*
526          * total bytes for:
527          * - nop5/ jmpq $off
528          * - pop callee regs
529          * - sub rsp, $val if depth > 0
530          * - pop rax
531          */
532         poke_off = X86_PATCH_SIZE + pop_bytes + 1;
533         if (stack_depth) {
534                 poke_off += 7;
535                 off1 += 7;
536         }
537
538         /*
539          * if (tail_call_cnt > MAX_TAIL_CALL_CNT)
540          *      goto out;
541          */
542         EMIT2_off32(0x8B, 0x85, tcc_off);             /* mov eax, dword ptr [rbp - tcc_off] */
543         EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT);         /* cmp eax, MAX_TAIL_CALL_CNT */
544         EMIT2(X86_JA, off1);                          /* ja out */
545         EMIT3(0x83, 0xC0, 0x01);                      /* add eax, 1 */
546         EMIT2_off32(0x89, 0x85, tcc_off);             /* mov dword ptr [rbp - tcc_off], eax */
547
548         poke->tailcall_bypass = image + (addr - poke_off - X86_PATCH_SIZE);
549         poke->adj_off = X86_TAIL_CALL_OFFSET;
550         poke->tailcall_target = image + (addr - X86_PATCH_SIZE);
551         poke->bypass_addr = (u8 *)poke->tailcall_target + X86_PATCH_SIZE;
552
553         emit_jump(&prog, (u8 *)poke->tailcall_target + X86_PATCH_SIZE,
554                   poke->tailcall_bypass);
555
556         *pprog = prog;
557         pop_callee_regs(pprog, callee_regs_used);
558         prog = *pprog;
559         EMIT1(0x58);                                  /* pop rax */
560         if (stack_depth)
561                 EMIT3_off32(0x48, 0x81, 0xC4, round_up(stack_depth, 8));
562
563         memcpy(prog, ideal_nops[NOP_ATOMIC5], X86_PATCH_SIZE);
564         prog += X86_PATCH_SIZE;
565         /* out: */
566
567         *pprog = prog;
568 }
569
570 static void bpf_tail_call_direct_fixup(struct bpf_prog *prog)
571 {
572         struct bpf_jit_poke_descriptor *poke;
573         struct bpf_array *array;
574         struct bpf_prog *target;
575         int i, ret;
576
577         for (i = 0; i < prog->aux->size_poke_tab; i++) {
578                 poke = &prog->aux->poke_tab[i];
579                 WARN_ON_ONCE(READ_ONCE(poke->tailcall_target_stable));
580
581                 if (poke->reason != BPF_POKE_REASON_TAIL_CALL)
582                         continue;
583
584                 array = container_of(poke->tail_call.map, struct bpf_array, map);
585                 mutex_lock(&array->aux->poke_mutex);
586                 target = array->ptrs[poke->tail_call.key];
587                 if (target) {
588                         /* Plain memcpy is used when image is not live yet
589                          * and still not locked as read-only. Once poke
590                          * location is active (poke->tailcall_target_stable),
591                          * any parallel bpf_arch_text_poke() might occur
592                          * still on the read-write image until we finally
593                          * locked it as read-only. Both modifications on
594                          * the given image are under text_mutex to avoid
595                          * interference.
596                          */
597                         ret = __bpf_arch_text_poke(poke->tailcall_target,
598                                                    BPF_MOD_JUMP, NULL,
599                                                    (u8 *)target->bpf_func +
600                                                    poke->adj_off, false);
601                         BUG_ON(ret < 0);
602                         ret = __bpf_arch_text_poke(poke->tailcall_bypass,
603                                                    BPF_MOD_JUMP,
604                                                    (u8 *)poke->tailcall_target +
605                                                    X86_PATCH_SIZE, NULL, false);
606                         BUG_ON(ret < 0);
607                 }
608                 WRITE_ONCE(poke->tailcall_target_stable, true);
609                 mutex_unlock(&array->aux->poke_mutex);
610         }
611 }
612
613 static void emit_mov_imm32(u8 **pprog, bool sign_propagate,
614                            u32 dst_reg, const u32 imm32)
615 {
616         u8 *prog = *pprog;
617         u8 b1, b2, b3;
618         int cnt = 0;
619
620         /*
621          * Optimization: if imm32 is positive, use 'mov %eax, imm32'
622          * (which zero-extends imm32) to save 2 bytes.
623          */
624         if (sign_propagate && (s32)imm32 < 0) {
625                 /* 'mov %rax, imm32' sign extends imm32 */
626                 b1 = add_1mod(0x48, dst_reg);
627                 b2 = 0xC7;
628                 b3 = 0xC0;
629                 EMIT3_off32(b1, b2, add_1reg(b3, dst_reg), imm32);
630                 goto done;
631         }
632
633         /*
634          * Optimization: if imm32 is zero, use 'xor %eax, %eax'
635          * to save 3 bytes.
636          */
637         if (imm32 == 0) {
638                 if (is_ereg(dst_reg))
639                         EMIT1(add_2mod(0x40, dst_reg, dst_reg));
640                 b2 = 0x31; /* xor */
641                 b3 = 0xC0;
642                 EMIT2(b2, add_2reg(b3, dst_reg, dst_reg));
643                 goto done;
644         }
645
646         /* mov %eax, imm32 */
647         if (is_ereg(dst_reg))
648                 EMIT1(add_1mod(0x40, dst_reg));
649         EMIT1_off32(add_1reg(0xB8, dst_reg), imm32);
650 done:
651         *pprog = prog;
652 }
653
654 static void emit_mov_imm64(u8 **pprog, u32 dst_reg,
655                            const u32 imm32_hi, const u32 imm32_lo)
656 {
657         u8 *prog = *pprog;
658         int cnt = 0;
659
660         if (is_uimm32(((u64)imm32_hi << 32) | (u32)imm32_lo)) {
661                 /*
662                  * For emitting plain u32, where sign bit must not be
663                  * propagated LLVM tends to load imm64 over mov32
664                  * directly, so save couple of bytes by just doing
665                  * 'mov %eax, imm32' instead.
666                  */
667                 emit_mov_imm32(&prog, false, dst_reg, imm32_lo);
668         } else {
669                 /* movabsq %rax, imm64 */
670                 EMIT2(add_1mod(0x48, dst_reg), add_1reg(0xB8, dst_reg));
671                 EMIT(imm32_lo, 4);
672                 EMIT(imm32_hi, 4);
673         }
674
675         *pprog = prog;
676 }
677
678 static void emit_mov_reg(u8 **pprog, bool is64, u32 dst_reg, u32 src_reg)
679 {
680         u8 *prog = *pprog;
681         int cnt = 0;
682
683         if (is64) {
684                 /* mov dst, src */
685                 EMIT_mov(dst_reg, src_reg);
686         } else {
687                 /* mov32 dst, src */
688                 if (is_ereg(dst_reg) || is_ereg(src_reg))
689                         EMIT1(add_2mod(0x40, dst_reg, src_reg));
690                 EMIT2(0x89, add_2reg(0xC0, dst_reg, src_reg));
691         }
692
693         *pprog = prog;
694 }
695
696 /* Emit the suffix (ModR/M etc) for addressing *(ptr_reg + off) and val_reg */
697 static void emit_insn_suffix(u8 **pprog, u32 ptr_reg, u32 val_reg, int off)
698 {
699         u8 *prog = *pprog;
700         int cnt = 0;
701
702         if (is_imm8(off)) {
703                 /* 1-byte signed displacement.
704                  *
705                  * If off == 0 we could skip this and save one extra byte, but
706                  * special case of x86 R13 which always needs an offset is not
707                  * worth the hassle
708                  */
709                 EMIT2(add_2reg(0x40, ptr_reg, val_reg), off);
710         } else {
711                 /* 4-byte signed displacement */
712                 EMIT1_off32(add_2reg(0x80, ptr_reg, val_reg), off);
713         }
714         *pprog = prog;
715 }
716
717 /*
718  * Emit a REX byte if it will be necessary to address these registers
719  */
720 static void maybe_emit_mod(u8 **pprog, u32 dst_reg, u32 src_reg, bool is64)
721 {
722         u8 *prog = *pprog;
723         int cnt = 0;
724
725         if (is64)
726                 EMIT1(add_2mod(0x48, dst_reg, src_reg));
727         else if (is_ereg(dst_reg) || is_ereg(src_reg))
728                 EMIT1(add_2mod(0x40, dst_reg, src_reg));
729         *pprog = prog;
730 }
731
732 /* LDX: dst_reg = *(u8*)(src_reg + off) */
733 static void emit_ldx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
734 {
735         u8 *prog = *pprog;
736         int cnt = 0;
737
738         switch (size) {
739         case BPF_B:
740                 /* Emit 'movzx rax, byte ptr [rax + off]' */
741                 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB6);
742                 break;
743         case BPF_H:
744                 /* Emit 'movzx rax, word ptr [rax + off]' */
745                 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB7);
746                 break;
747         case BPF_W:
748                 /* Emit 'mov eax, dword ptr [rax+0x14]' */
749                 if (is_ereg(dst_reg) || is_ereg(src_reg))
750                         EMIT2(add_2mod(0x40, src_reg, dst_reg), 0x8B);
751                 else
752                         EMIT1(0x8B);
753                 break;
754         case BPF_DW:
755                 /* Emit 'mov rax, qword ptr [rax+0x14]' */
756                 EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x8B);
757                 break;
758         }
759         emit_insn_suffix(&prog, src_reg, dst_reg, off);
760         *pprog = prog;
761 }
762
763 /* STX: *(u8*)(dst_reg + off) = src_reg */
764 static void emit_stx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
765 {
766         u8 *prog = *pprog;
767         int cnt = 0;
768
769         switch (size) {
770         case BPF_B:
771                 /* Emit 'mov byte ptr [rax + off], al' */
772                 if (is_ereg(dst_reg) || is_ereg_8l(src_reg))
773                         /* Add extra byte for eregs or SIL,DIL,BPL in src_reg */
774                         EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x88);
775                 else
776                         EMIT1(0x88);
777                 break;
778         case BPF_H:
779                 if (is_ereg(dst_reg) || is_ereg(src_reg))
780                         EMIT3(0x66, add_2mod(0x40, dst_reg, src_reg), 0x89);
781                 else
782                         EMIT2(0x66, 0x89);
783                 break;
784         case BPF_W:
785                 if (is_ereg(dst_reg) || is_ereg(src_reg))
786                         EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x89);
787                 else
788                         EMIT1(0x89);
789                 break;
790         case BPF_DW:
791                 EMIT2(add_2mod(0x48, dst_reg, src_reg), 0x89);
792                 break;
793         }
794         emit_insn_suffix(&prog, dst_reg, src_reg, off);
795         *pprog = prog;
796 }
797
798 static int emit_atomic(u8 **pprog, u8 atomic_op,
799                        u32 dst_reg, u32 src_reg, s16 off, u8 bpf_size)
800 {
801         u8 *prog = *pprog;
802         int cnt = 0;
803
804         EMIT1(0xF0); /* lock prefix */
805
806         maybe_emit_mod(&prog, dst_reg, src_reg, bpf_size == BPF_DW);
807
808         /* emit opcode */
809         switch (atomic_op) {
810         case BPF_ADD:
811         case BPF_SUB:
812         case BPF_AND:
813         case BPF_OR:
814         case BPF_XOR:
815                 /* lock *(u32/u64*)(dst_reg + off) <op>= src_reg */
816                 EMIT1(simple_alu_opcodes[atomic_op]);
817                 break;
818         case BPF_ADD | BPF_FETCH:
819                 /* src_reg = atomic_fetch_add(dst_reg + off, src_reg); */
820                 EMIT2(0x0F, 0xC1);
821                 break;
822         case BPF_XCHG:
823                 /* src_reg = atomic_xchg(dst_reg + off, src_reg); */
824                 EMIT1(0x87);
825                 break;
826         case BPF_CMPXCHG:
827                 /* r0 = atomic_cmpxchg(dst_reg + off, r0, src_reg); */
828                 EMIT2(0x0F, 0xB1);
829                 break;
830         default:
831                 pr_err("bpf_jit: unknown atomic opcode %02x\n", atomic_op);
832                 return -EFAULT;
833         }
834
835         emit_insn_suffix(&prog, dst_reg, src_reg, off);
836
837         *pprog = prog;
838         return 0;
839 }
840
841 static bool ex_handler_bpf(const struct exception_table_entry *x,
842                            struct pt_regs *regs, int trapnr,
843                            unsigned long error_code, unsigned long fault_addr)
844 {
845         u32 reg = x->fixup >> 8;
846
847         /* jump over faulting load and clear dest register */
848         *(unsigned long *)((void *)regs + reg) = 0;
849         regs->ip += x->fixup & 0xff;
850         return true;
851 }
852
853 static void detect_reg_usage(struct bpf_insn *insn, int insn_cnt,
854                              bool *regs_used, bool *tail_call_seen)
855 {
856         int i;
857
858         for (i = 1; i <= insn_cnt; i++, insn++) {
859                 if (insn->code == (BPF_JMP | BPF_TAIL_CALL))
860                         *tail_call_seen = true;
861                 if (insn->dst_reg == BPF_REG_6 || insn->src_reg == BPF_REG_6)
862                         regs_used[0] = true;
863                 if (insn->dst_reg == BPF_REG_7 || insn->src_reg == BPF_REG_7)
864                         regs_used[1] = true;
865                 if (insn->dst_reg == BPF_REG_8 || insn->src_reg == BPF_REG_8)
866                         regs_used[2] = true;
867                 if (insn->dst_reg == BPF_REG_9 || insn->src_reg == BPF_REG_9)
868                         regs_used[3] = true;
869         }
870 }
871
872 static int emit_nops(u8 **pprog, int len)
873 {
874         u8 *prog = *pprog;
875         int i, noplen, cnt = 0;
876
877         while (len > 0) {
878                 noplen = len;
879
880                 if (noplen > ASM_NOP_MAX)
881                         noplen = ASM_NOP_MAX;
882
883                 for (i = 0; i < noplen; i++)
884                         EMIT1(ideal_nops[noplen][i]);
885                 len -= noplen;
886         }
887
888         *pprog = prog;
889
890         return cnt;
891 }
892
893 #define INSN_SZ_DIFF (((addrs[i] - addrs[i - 1]) - (prog - temp)))
894
895 static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image,
896                   int oldproglen, struct jit_context *ctx, bool jmp_padding)
897 {
898         bool tail_call_reachable = bpf_prog->aux->tail_call_reachable;
899         struct bpf_insn *insn = bpf_prog->insnsi;
900         bool callee_regs_used[4] = {};
901         int insn_cnt = bpf_prog->len;
902         bool tail_call_seen = false;
903         bool seen_exit = false;
904         u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY];
905         int i, cnt = 0, excnt = 0;
906         int ilen, proglen = 0;
907         u8 *prog = temp;
908         int err;
909
910         detect_reg_usage(insn, insn_cnt, callee_regs_used,
911                          &tail_call_seen);
912
913         /* tail call's presence in current prog implies it is reachable */
914         tail_call_reachable |= tail_call_seen;
915
916         emit_prologue(&prog, bpf_prog->aux->stack_depth,
917                       bpf_prog_was_classic(bpf_prog), tail_call_reachable,
918                       bpf_prog->aux->func_idx != 0);
919         push_callee_regs(&prog, callee_regs_used);
920
921         ilen = prog - temp;
922         if (image)
923                 memcpy(image + proglen, temp, ilen);
924         proglen += ilen;
925         addrs[0] = proglen;
926         prog = temp;
927
928         for (i = 1; i <= insn_cnt; i++, insn++) {
929                 const s32 imm32 = insn->imm;
930                 u32 dst_reg = insn->dst_reg;
931                 u32 src_reg = insn->src_reg;
932                 u8 b2 = 0, b3 = 0;
933                 u8 *start_of_ldx;
934                 s64 jmp_offset;
935                 u8 jmp_cond;
936                 u8 *func;
937                 int nops;
938
939                 switch (insn->code) {
940                         /* ALU */
941                 case BPF_ALU | BPF_ADD | BPF_X:
942                 case BPF_ALU | BPF_SUB | BPF_X:
943                 case BPF_ALU | BPF_AND | BPF_X:
944                 case BPF_ALU | BPF_OR | BPF_X:
945                 case BPF_ALU | BPF_XOR | BPF_X:
946                 case BPF_ALU64 | BPF_ADD | BPF_X:
947                 case BPF_ALU64 | BPF_SUB | BPF_X:
948                 case BPF_ALU64 | BPF_AND | BPF_X:
949                 case BPF_ALU64 | BPF_OR | BPF_X:
950                 case BPF_ALU64 | BPF_XOR | BPF_X:
951                         maybe_emit_mod(&prog, dst_reg, src_reg,
952                                        BPF_CLASS(insn->code) == BPF_ALU64);
953                         b2 = simple_alu_opcodes[BPF_OP(insn->code)];
954                         EMIT2(b2, add_2reg(0xC0, dst_reg, src_reg));
955                         break;
956
957                 case BPF_ALU64 | BPF_MOV | BPF_X:
958                 case BPF_ALU | BPF_MOV | BPF_X:
959                         emit_mov_reg(&prog,
960                                      BPF_CLASS(insn->code) == BPF_ALU64,
961                                      dst_reg, src_reg);
962                         break;
963
964                         /* neg dst */
965                 case BPF_ALU | BPF_NEG:
966                 case BPF_ALU64 | BPF_NEG:
967                         if (BPF_CLASS(insn->code) == BPF_ALU64)
968                                 EMIT1(add_1mod(0x48, dst_reg));
969                         else if (is_ereg(dst_reg))
970                                 EMIT1(add_1mod(0x40, dst_reg));
971                         EMIT2(0xF7, add_1reg(0xD8, dst_reg));
972                         break;
973
974                 case BPF_ALU | BPF_ADD | BPF_K:
975                 case BPF_ALU | BPF_SUB | BPF_K:
976                 case BPF_ALU | BPF_AND | BPF_K:
977                 case BPF_ALU | BPF_OR | BPF_K:
978                 case BPF_ALU | BPF_XOR | BPF_K:
979                 case BPF_ALU64 | BPF_ADD | BPF_K:
980                 case BPF_ALU64 | BPF_SUB | BPF_K:
981                 case BPF_ALU64 | BPF_AND | BPF_K:
982                 case BPF_ALU64 | BPF_OR | BPF_K:
983                 case BPF_ALU64 | BPF_XOR | BPF_K:
984                         if (BPF_CLASS(insn->code) == BPF_ALU64)
985                                 EMIT1(add_1mod(0x48, dst_reg));
986                         else if (is_ereg(dst_reg))
987                                 EMIT1(add_1mod(0x40, dst_reg));
988
989                         /*
990                          * b3 holds 'normal' opcode, b2 short form only valid
991                          * in case dst is eax/rax.
992                          */
993                         switch (BPF_OP(insn->code)) {
994                         case BPF_ADD:
995                                 b3 = 0xC0;
996                                 b2 = 0x05;
997                                 break;
998                         case BPF_SUB:
999                                 b3 = 0xE8;
1000                                 b2 = 0x2D;
1001                                 break;
1002                         case BPF_AND:
1003                                 b3 = 0xE0;
1004                                 b2 = 0x25;
1005                                 break;
1006                         case BPF_OR:
1007                                 b3 = 0xC8;
1008                                 b2 = 0x0D;
1009                                 break;
1010                         case BPF_XOR:
1011                                 b3 = 0xF0;
1012                                 b2 = 0x35;
1013                                 break;
1014                         }
1015
1016                         if (is_imm8(imm32))
1017                                 EMIT3(0x83, add_1reg(b3, dst_reg), imm32);
1018                         else if (is_axreg(dst_reg))
1019                                 EMIT1_off32(b2, imm32);
1020                         else
1021                                 EMIT2_off32(0x81, add_1reg(b3, dst_reg), imm32);
1022                         break;
1023
1024                 case BPF_ALU64 | BPF_MOV | BPF_K:
1025                 case BPF_ALU | BPF_MOV | BPF_K:
1026                         emit_mov_imm32(&prog, BPF_CLASS(insn->code) == BPF_ALU64,
1027                                        dst_reg, imm32);
1028                         break;
1029
1030                 case BPF_LD | BPF_IMM | BPF_DW:
1031                         emit_mov_imm64(&prog, dst_reg, insn[1].imm, insn[0].imm);
1032                         insn++;
1033                         i++;
1034                         break;
1035
1036                         /* dst %= src, dst /= src, dst %= imm32, dst /= imm32 */
1037                 case BPF_ALU | BPF_MOD | BPF_X:
1038                 case BPF_ALU | BPF_DIV | BPF_X:
1039                 case BPF_ALU | BPF_MOD | BPF_K:
1040                 case BPF_ALU | BPF_DIV | BPF_K:
1041                 case BPF_ALU64 | BPF_MOD | BPF_X:
1042                 case BPF_ALU64 | BPF_DIV | BPF_X:
1043                 case BPF_ALU64 | BPF_MOD | BPF_K:
1044                 case BPF_ALU64 | BPF_DIV | BPF_K:
1045                         EMIT1(0x50); /* push rax */
1046                         EMIT1(0x52); /* push rdx */
1047
1048                         if (BPF_SRC(insn->code) == BPF_X)
1049                                 /* mov r11, src_reg */
1050                                 EMIT_mov(AUX_REG, src_reg);
1051                         else
1052                                 /* mov r11, imm32 */
1053                                 EMIT3_off32(0x49, 0xC7, 0xC3, imm32);
1054
1055                         /* mov rax, dst_reg */
1056                         EMIT_mov(BPF_REG_0, dst_reg);
1057
1058                         /*
1059                          * xor edx, edx
1060                          * equivalent to 'xor rdx, rdx', but one byte less
1061                          */
1062                         EMIT2(0x31, 0xd2);
1063
1064                         if (BPF_CLASS(insn->code) == BPF_ALU64)
1065                                 /* div r11 */
1066                                 EMIT3(0x49, 0xF7, 0xF3);
1067                         else
1068                                 /* div r11d */
1069                                 EMIT3(0x41, 0xF7, 0xF3);
1070
1071                         if (BPF_OP(insn->code) == BPF_MOD)
1072                                 /* mov r11, rdx */
1073                                 EMIT3(0x49, 0x89, 0xD3);
1074                         else
1075                                 /* mov r11, rax */
1076                                 EMIT3(0x49, 0x89, 0xC3);
1077
1078                         EMIT1(0x5A); /* pop rdx */
1079                         EMIT1(0x58); /* pop rax */
1080
1081                         /* mov dst_reg, r11 */
1082                         EMIT_mov(dst_reg, AUX_REG);
1083                         break;
1084
1085                 case BPF_ALU | BPF_MUL | BPF_K:
1086                 case BPF_ALU | BPF_MUL | BPF_X:
1087                 case BPF_ALU64 | BPF_MUL | BPF_K:
1088                 case BPF_ALU64 | BPF_MUL | BPF_X:
1089                 {
1090                         bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
1091
1092                         if (dst_reg != BPF_REG_0)
1093                                 EMIT1(0x50); /* push rax */
1094                         if (dst_reg != BPF_REG_3)
1095                                 EMIT1(0x52); /* push rdx */
1096
1097                         /* mov r11, dst_reg */
1098                         EMIT_mov(AUX_REG, dst_reg);
1099
1100                         if (BPF_SRC(insn->code) == BPF_X)
1101                                 emit_mov_reg(&prog, is64, BPF_REG_0, src_reg);
1102                         else
1103                                 emit_mov_imm32(&prog, is64, BPF_REG_0, imm32);
1104
1105                         if (is64)
1106                                 EMIT1(add_1mod(0x48, AUX_REG));
1107                         else if (is_ereg(AUX_REG))
1108                                 EMIT1(add_1mod(0x40, AUX_REG));
1109                         /* mul(q) r11 */
1110                         EMIT2(0xF7, add_1reg(0xE0, AUX_REG));
1111
1112                         if (dst_reg != BPF_REG_3)
1113                                 EMIT1(0x5A); /* pop rdx */
1114                         if (dst_reg != BPF_REG_0) {
1115                                 /* mov dst_reg, rax */
1116                                 EMIT_mov(dst_reg, BPF_REG_0);
1117                                 EMIT1(0x58); /* pop rax */
1118                         }
1119                         break;
1120                 }
1121                         /* Shifts */
1122                 case BPF_ALU | BPF_LSH | BPF_K:
1123                 case BPF_ALU | BPF_RSH | BPF_K:
1124                 case BPF_ALU | BPF_ARSH | BPF_K:
1125                 case BPF_ALU64 | BPF_LSH | BPF_K:
1126                 case BPF_ALU64 | BPF_RSH | BPF_K:
1127                 case BPF_ALU64 | BPF_ARSH | BPF_K:
1128                         if (BPF_CLASS(insn->code) == BPF_ALU64)
1129                                 EMIT1(add_1mod(0x48, dst_reg));
1130                         else if (is_ereg(dst_reg))
1131                                 EMIT1(add_1mod(0x40, dst_reg));
1132
1133                         b3 = simple_alu_opcodes[BPF_OP(insn->code)];
1134                         if (imm32 == 1)
1135                                 EMIT2(0xD1, add_1reg(b3, dst_reg));
1136                         else
1137                                 EMIT3(0xC1, add_1reg(b3, dst_reg), imm32);
1138                         break;
1139
1140                 case BPF_ALU | BPF_LSH | BPF_X:
1141                 case BPF_ALU | BPF_RSH | BPF_X:
1142                 case BPF_ALU | BPF_ARSH | BPF_X:
1143                 case BPF_ALU64 | BPF_LSH | BPF_X:
1144                 case BPF_ALU64 | BPF_RSH | BPF_X:
1145                 case BPF_ALU64 | BPF_ARSH | BPF_X:
1146
1147                         /* Check for bad case when dst_reg == rcx */
1148                         if (dst_reg == BPF_REG_4) {
1149                                 /* mov r11, dst_reg */
1150                                 EMIT_mov(AUX_REG, dst_reg);
1151                                 dst_reg = AUX_REG;
1152                         }
1153
1154                         if (src_reg != BPF_REG_4) { /* common case */
1155                                 EMIT1(0x51); /* push rcx */
1156
1157                                 /* mov rcx, src_reg */
1158                                 EMIT_mov(BPF_REG_4, src_reg);
1159                         }
1160
1161                         /* shl %rax, %cl | shr %rax, %cl | sar %rax, %cl */
1162                         if (BPF_CLASS(insn->code) == BPF_ALU64)
1163                                 EMIT1(add_1mod(0x48, dst_reg));
1164                         else if (is_ereg(dst_reg))
1165                                 EMIT1(add_1mod(0x40, dst_reg));
1166
1167                         b3 = simple_alu_opcodes[BPF_OP(insn->code)];
1168                         EMIT2(0xD3, add_1reg(b3, dst_reg));
1169
1170                         if (src_reg != BPF_REG_4)
1171                                 EMIT1(0x59); /* pop rcx */
1172
1173                         if (insn->dst_reg == BPF_REG_4)
1174                                 /* mov dst_reg, r11 */
1175                                 EMIT_mov(insn->dst_reg, AUX_REG);
1176                         break;
1177
1178                 case BPF_ALU | BPF_END | BPF_FROM_BE:
1179                         switch (imm32) {
1180                         case 16:
1181                                 /* Emit 'ror %ax, 8' to swap lower 2 bytes */
1182                                 EMIT1(0x66);
1183                                 if (is_ereg(dst_reg))
1184                                         EMIT1(0x41);
1185                                 EMIT3(0xC1, add_1reg(0xC8, dst_reg), 8);
1186
1187                                 /* Emit 'movzwl eax, ax' */
1188                                 if (is_ereg(dst_reg))
1189                                         EMIT3(0x45, 0x0F, 0xB7);
1190                                 else
1191                                         EMIT2(0x0F, 0xB7);
1192                                 EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
1193                                 break;
1194                         case 32:
1195                                 /* Emit 'bswap eax' to swap lower 4 bytes */
1196                                 if (is_ereg(dst_reg))
1197                                         EMIT2(0x41, 0x0F);
1198                                 else
1199                                         EMIT1(0x0F);
1200                                 EMIT1(add_1reg(0xC8, dst_reg));
1201                                 break;
1202                         case 64:
1203                                 /* Emit 'bswap rax' to swap 8 bytes */
1204                                 EMIT3(add_1mod(0x48, dst_reg), 0x0F,
1205                                       add_1reg(0xC8, dst_reg));
1206                                 break;
1207                         }
1208                         break;
1209
1210                 case BPF_ALU | BPF_END | BPF_FROM_LE:
1211                         switch (imm32) {
1212                         case 16:
1213                                 /*
1214                                  * Emit 'movzwl eax, ax' to zero extend 16-bit
1215                                  * into 64 bit
1216                                  */
1217                                 if (is_ereg(dst_reg))
1218                                         EMIT3(0x45, 0x0F, 0xB7);
1219                                 else
1220                                         EMIT2(0x0F, 0xB7);
1221                                 EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
1222                                 break;
1223                         case 32:
1224                                 /* Emit 'mov eax, eax' to clear upper 32-bits */
1225                                 if (is_ereg(dst_reg))
1226                                         EMIT1(0x45);
1227                                 EMIT2(0x89, add_2reg(0xC0, dst_reg, dst_reg));
1228                                 break;
1229                         case 64:
1230                                 /* nop */
1231                                 break;
1232                         }
1233                         break;
1234
1235                         /* ST: *(u8*)(dst_reg + off) = imm */
1236                 case BPF_ST | BPF_MEM | BPF_B:
1237                         if (is_ereg(dst_reg))
1238                                 EMIT2(0x41, 0xC6);
1239                         else
1240                                 EMIT1(0xC6);
1241                         goto st;
1242                 case BPF_ST | BPF_MEM | BPF_H:
1243                         if (is_ereg(dst_reg))
1244                                 EMIT3(0x66, 0x41, 0xC7);
1245                         else
1246                                 EMIT2(0x66, 0xC7);
1247                         goto st;
1248                 case BPF_ST | BPF_MEM | BPF_W:
1249                         if (is_ereg(dst_reg))
1250                                 EMIT2(0x41, 0xC7);
1251                         else
1252                                 EMIT1(0xC7);
1253                         goto st;
1254                 case BPF_ST | BPF_MEM | BPF_DW:
1255                         EMIT2(add_1mod(0x48, dst_reg), 0xC7);
1256
1257 st:                     if (is_imm8(insn->off))
1258                                 EMIT2(add_1reg(0x40, dst_reg), insn->off);
1259                         else
1260                                 EMIT1_off32(add_1reg(0x80, dst_reg), insn->off);
1261
1262                         EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(insn->code)));
1263                         break;
1264
1265                         /* STX: *(u8*)(dst_reg + off) = src_reg */
1266                 case BPF_STX | BPF_MEM | BPF_B:
1267                 case BPF_STX | BPF_MEM | BPF_H:
1268                 case BPF_STX | BPF_MEM | BPF_W:
1269                 case BPF_STX | BPF_MEM | BPF_DW:
1270                         emit_stx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
1271                         break;
1272
1273                         /* LDX: dst_reg = *(u8*)(src_reg + off) */
1274                 case BPF_LDX | BPF_MEM | BPF_B:
1275                 case BPF_LDX | BPF_PROBE_MEM | BPF_B:
1276                 case BPF_LDX | BPF_MEM | BPF_H:
1277                 case BPF_LDX | BPF_PROBE_MEM | BPF_H:
1278                 case BPF_LDX | BPF_MEM | BPF_W:
1279                 case BPF_LDX | BPF_PROBE_MEM | BPF_W:
1280                 case BPF_LDX | BPF_MEM | BPF_DW:
1281                 case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1282                         if (BPF_MODE(insn->code) == BPF_PROBE_MEM) {
1283                                 /* test src_reg, src_reg */
1284                                 maybe_emit_mod(&prog, src_reg, src_reg, true); /* always 1 byte */
1285                                 EMIT2(0x85, add_2reg(0xC0, src_reg, src_reg));
1286                                 /* jne start_of_ldx */
1287                                 EMIT2(X86_JNE, 0);
1288                                 /* xor dst_reg, dst_reg */
1289                                 emit_mov_imm32(&prog, false, dst_reg, 0);
1290                                 /* jmp byte_after_ldx */
1291                                 EMIT2(0xEB, 0);
1292
1293                                 /* populate jmp_offset for JNE above */
1294                                 temp[4] = prog - temp - 5 /* sizeof(test + jne) */;
1295                                 start_of_ldx = prog;
1296                         }
1297                         emit_ldx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
1298                         if (BPF_MODE(insn->code) == BPF_PROBE_MEM) {
1299                                 struct exception_table_entry *ex;
1300                                 u8 *_insn = image + proglen;
1301                                 s64 delta;
1302
1303                                 /* populate jmp_offset for JMP above */
1304                                 start_of_ldx[-1] = prog - start_of_ldx;
1305
1306                                 if (!bpf_prog->aux->extable)
1307                                         break;
1308
1309                                 if (excnt >= bpf_prog->aux->num_exentries) {
1310                                         pr_err("ex gen bug\n");
1311                                         return -EFAULT;
1312                                 }
1313                                 ex = &bpf_prog->aux->extable[excnt++];
1314
1315                                 delta = _insn - (u8 *)&ex->insn;
1316                                 if (!is_simm32(delta)) {
1317                                         pr_err("extable->insn doesn't fit into 32-bit\n");
1318                                         return -EFAULT;
1319                                 }
1320                                 ex->insn = delta;
1321
1322                                 delta = (u8 *)ex_handler_bpf - (u8 *)&ex->handler;
1323                                 if (!is_simm32(delta)) {
1324                                         pr_err("extable->handler doesn't fit into 32-bit\n");
1325                                         return -EFAULT;
1326                                 }
1327                                 ex->handler = delta;
1328
1329                                 if (dst_reg > BPF_REG_9) {
1330                                         pr_err("verifier error\n");
1331                                         return -EFAULT;
1332                                 }
1333                                 /*
1334                                  * Compute size of x86 insn and its target dest x86 register.
1335                                  * ex_handler_bpf() will use lower 8 bits to adjust
1336                                  * pt_regs->ip to jump over this x86 instruction
1337                                  * and upper bits to figure out which pt_regs to zero out.
1338                                  * End result: x86 insn "mov rbx, qword ptr [rax+0x14]"
1339                                  * of 4 bytes will be ignored and rbx will be zero inited.
1340                                  */
1341                                 ex->fixup = (prog - temp) | (reg2pt_regs[dst_reg] << 8);
1342                         }
1343                         break;
1344
1345                 case BPF_STX | BPF_ATOMIC | BPF_W:
1346                 case BPF_STX | BPF_ATOMIC | BPF_DW:
1347                         if (insn->imm == (BPF_AND | BPF_FETCH) ||
1348                             insn->imm == (BPF_OR | BPF_FETCH) ||
1349                             insn->imm == (BPF_XOR | BPF_FETCH)) {
1350                                 u8 *branch_target;
1351                                 bool is64 = BPF_SIZE(insn->code) == BPF_DW;
1352                                 u32 real_src_reg = src_reg;
1353
1354                                 /*
1355                                  * Can't be implemented with a single x86 insn.
1356                                  * Need to do a CMPXCHG loop.
1357                                  */
1358
1359                                 /* Will need RAX as a CMPXCHG operand so save R0 */
1360                                 emit_mov_reg(&prog, true, BPF_REG_AX, BPF_REG_0);
1361                                 if (src_reg == BPF_REG_0)
1362                                         real_src_reg = BPF_REG_AX;
1363
1364                                 branch_target = prog;
1365                                 /* Load old value */
1366                                 emit_ldx(&prog, BPF_SIZE(insn->code),
1367                                          BPF_REG_0, dst_reg, insn->off);
1368                                 /*
1369                                  * Perform the (commutative) operation locally,
1370                                  * put the result in the AUX_REG.
1371                                  */
1372                                 emit_mov_reg(&prog, is64, AUX_REG, BPF_REG_0);
1373                                 maybe_emit_mod(&prog, AUX_REG, real_src_reg, is64);
1374                                 EMIT2(simple_alu_opcodes[BPF_OP(insn->imm)],
1375                                       add_2reg(0xC0, AUX_REG, real_src_reg));
1376                                 /* Attempt to swap in new value */
1377                                 err = emit_atomic(&prog, BPF_CMPXCHG,
1378                                                   dst_reg, AUX_REG, insn->off,
1379                                                   BPF_SIZE(insn->code));
1380                                 if (WARN_ON(err))
1381                                         return err;
1382                                 /*
1383                                  * ZF tells us whether we won the race. If it's
1384                                  * cleared we need to try again.
1385                                  */
1386                                 EMIT2(X86_JNE, -(prog - branch_target) - 2);
1387                                 /* Return the pre-modification value */
1388                                 emit_mov_reg(&prog, is64, real_src_reg, BPF_REG_0);
1389                                 /* Restore R0 after clobbering RAX */
1390                                 emit_mov_reg(&prog, true, BPF_REG_0, BPF_REG_AX);
1391                                 break;
1392
1393                         }
1394
1395                         err = emit_atomic(&prog, insn->imm, dst_reg, src_reg,
1396                                                   insn->off, BPF_SIZE(insn->code));
1397                         if (err)
1398                                 return err;
1399                         break;
1400
1401                         /* call */
1402                 case BPF_JMP | BPF_CALL:
1403                         func = (u8 *) __bpf_call_base + imm32;
1404                         if (tail_call_reachable) {
1405                                 EMIT3_off32(0x48, 0x8B, 0x85,
1406                                             -(bpf_prog->aux->stack_depth + 8));
1407                                 if (!imm32 || emit_call(&prog, func, image + addrs[i - 1] + 7))
1408                                         return -EINVAL;
1409                         } else {
1410                                 if (!imm32 || emit_call(&prog, func, image + addrs[i - 1]))
1411                                         return -EINVAL;
1412                         }
1413                         break;
1414
1415                 case BPF_JMP | BPF_TAIL_CALL:
1416                         if (imm32)
1417                                 emit_bpf_tail_call_direct(&bpf_prog->aux->poke_tab[imm32 - 1],
1418                                                           &prog, addrs[i], image,
1419                                                           callee_regs_used,
1420                                                           bpf_prog->aux->stack_depth);
1421                         else
1422                                 emit_bpf_tail_call_indirect(&prog,
1423                                                             callee_regs_used,
1424                                                             bpf_prog->aux->stack_depth);
1425                         break;
1426
1427                         /* cond jump */
1428                 case BPF_JMP | BPF_JEQ | BPF_X:
1429                 case BPF_JMP | BPF_JNE | BPF_X:
1430                 case BPF_JMP | BPF_JGT | BPF_X:
1431                 case BPF_JMP | BPF_JLT | BPF_X:
1432                 case BPF_JMP | BPF_JGE | BPF_X:
1433                 case BPF_JMP | BPF_JLE | BPF_X:
1434                 case BPF_JMP | BPF_JSGT | BPF_X:
1435                 case BPF_JMP | BPF_JSLT | BPF_X:
1436                 case BPF_JMP | BPF_JSGE | BPF_X:
1437                 case BPF_JMP | BPF_JSLE | BPF_X:
1438                 case BPF_JMP32 | BPF_JEQ | BPF_X:
1439                 case BPF_JMP32 | BPF_JNE | BPF_X:
1440                 case BPF_JMP32 | BPF_JGT | BPF_X:
1441                 case BPF_JMP32 | BPF_JLT | BPF_X:
1442                 case BPF_JMP32 | BPF_JGE | BPF_X:
1443                 case BPF_JMP32 | BPF_JLE | BPF_X:
1444                 case BPF_JMP32 | BPF_JSGT | BPF_X:
1445                 case BPF_JMP32 | BPF_JSLT | BPF_X:
1446                 case BPF_JMP32 | BPF_JSGE | BPF_X:
1447                 case BPF_JMP32 | BPF_JSLE | BPF_X:
1448                         /* cmp dst_reg, src_reg */
1449                         maybe_emit_mod(&prog, dst_reg, src_reg,
1450                                        BPF_CLASS(insn->code) == BPF_JMP);
1451                         EMIT2(0x39, add_2reg(0xC0, dst_reg, src_reg));
1452                         goto emit_cond_jmp;
1453
1454                 case BPF_JMP | BPF_JSET | BPF_X:
1455                 case BPF_JMP32 | BPF_JSET | BPF_X:
1456                         /* test dst_reg, src_reg */
1457                         maybe_emit_mod(&prog, dst_reg, src_reg,
1458                                        BPF_CLASS(insn->code) == BPF_JMP);
1459                         EMIT2(0x85, add_2reg(0xC0, dst_reg, src_reg));
1460                         goto emit_cond_jmp;
1461
1462                 case BPF_JMP | BPF_JSET | BPF_K:
1463                 case BPF_JMP32 | BPF_JSET | BPF_K:
1464                         /* test dst_reg, imm32 */
1465                         if (BPF_CLASS(insn->code) == BPF_JMP)
1466                                 EMIT1(add_1mod(0x48, dst_reg));
1467                         else if (is_ereg(dst_reg))
1468                                 EMIT1(add_1mod(0x40, dst_reg));
1469                         EMIT2_off32(0xF7, add_1reg(0xC0, dst_reg), imm32);
1470                         goto emit_cond_jmp;
1471
1472                 case BPF_JMP | BPF_JEQ | BPF_K:
1473                 case BPF_JMP | BPF_JNE | BPF_K:
1474                 case BPF_JMP | BPF_JGT | BPF_K:
1475                 case BPF_JMP | BPF_JLT | BPF_K:
1476                 case BPF_JMP | BPF_JGE | BPF_K:
1477                 case BPF_JMP | BPF_JLE | BPF_K:
1478                 case BPF_JMP | BPF_JSGT | BPF_K:
1479                 case BPF_JMP | BPF_JSLT | BPF_K:
1480                 case BPF_JMP | BPF_JSGE | BPF_K:
1481                 case BPF_JMP | BPF_JSLE | BPF_K:
1482                 case BPF_JMP32 | BPF_JEQ | BPF_K:
1483                 case BPF_JMP32 | BPF_JNE | BPF_K:
1484                 case BPF_JMP32 | BPF_JGT | BPF_K:
1485                 case BPF_JMP32 | BPF_JLT | BPF_K:
1486                 case BPF_JMP32 | BPF_JGE | BPF_K:
1487                 case BPF_JMP32 | BPF_JLE | BPF_K:
1488                 case BPF_JMP32 | BPF_JSGT | BPF_K:
1489                 case BPF_JMP32 | BPF_JSLT | BPF_K:
1490                 case BPF_JMP32 | BPF_JSGE | BPF_K:
1491                 case BPF_JMP32 | BPF_JSLE | BPF_K:
1492                         /* test dst_reg, dst_reg to save one extra byte */
1493                         if (imm32 == 0) {
1494                                 maybe_emit_mod(&prog, dst_reg, dst_reg,
1495                                                BPF_CLASS(insn->code) == BPF_JMP);
1496                                 EMIT2(0x85, add_2reg(0xC0, dst_reg, dst_reg));
1497                                 goto emit_cond_jmp;
1498                         }
1499
1500                         /* cmp dst_reg, imm8/32 */
1501                         if (BPF_CLASS(insn->code) == BPF_JMP)
1502                                 EMIT1(add_1mod(0x48, dst_reg));
1503                         else if (is_ereg(dst_reg))
1504                                 EMIT1(add_1mod(0x40, dst_reg));
1505
1506                         if (is_imm8(imm32))
1507                                 EMIT3(0x83, add_1reg(0xF8, dst_reg), imm32);
1508                         else
1509                                 EMIT2_off32(0x81, add_1reg(0xF8, dst_reg), imm32);
1510
1511 emit_cond_jmp:          /* Convert BPF opcode to x86 */
1512                         switch (BPF_OP(insn->code)) {
1513                         case BPF_JEQ:
1514                                 jmp_cond = X86_JE;
1515                                 break;
1516                         case BPF_JSET:
1517                         case BPF_JNE:
1518                                 jmp_cond = X86_JNE;
1519                                 break;
1520                         case BPF_JGT:
1521                                 /* GT is unsigned '>', JA in x86 */
1522                                 jmp_cond = X86_JA;
1523                                 break;
1524                         case BPF_JLT:
1525                                 /* LT is unsigned '<', JB in x86 */
1526                                 jmp_cond = X86_JB;
1527                                 break;
1528                         case BPF_JGE:
1529                                 /* GE is unsigned '>=', JAE in x86 */
1530                                 jmp_cond = X86_JAE;
1531                                 break;
1532                         case BPF_JLE:
1533                                 /* LE is unsigned '<=', JBE in x86 */
1534                                 jmp_cond = X86_JBE;
1535                                 break;
1536                         case BPF_JSGT:
1537                                 /* Signed '>', GT in x86 */
1538                                 jmp_cond = X86_JG;
1539                                 break;
1540                         case BPF_JSLT:
1541                                 /* Signed '<', LT in x86 */
1542                                 jmp_cond = X86_JL;
1543                                 break;
1544                         case BPF_JSGE:
1545                                 /* Signed '>=', GE in x86 */
1546                                 jmp_cond = X86_JGE;
1547                                 break;
1548                         case BPF_JSLE:
1549                                 /* Signed '<=', LE in x86 */
1550                                 jmp_cond = X86_JLE;
1551                                 break;
1552                         default: /* to silence GCC warning */
1553                                 return -EFAULT;
1554                         }
1555                         jmp_offset = addrs[i + insn->off] - addrs[i];
1556                         if (is_imm8(jmp_offset)) {
1557                                 if (jmp_padding) {
1558                                         /* To keep the jmp_offset valid, the extra bytes are
1559                                          * padded before the jump insn, so we substract the
1560                                          * 2 bytes of jmp_cond insn from INSN_SZ_DIFF.
1561                                          *
1562                                          * If the previous pass already emits an imm8
1563                                          * jmp_cond, then this BPF insn won't shrink, so
1564                                          * "nops" is 0.
1565                                          *
1566                                          * On the other hand, if the previous pass emits an
1567                                          * imm32 jmp_cond, the extra 4 bytes(*) is padded to
1568                                          * keep the image from shrinking further.
1569                                          *
1570                                          * (*) imm32 jmp_cond is 6 bytes, and imm8 jmp_cond
1571                                          *     is 2 bytes, so the size difference is 4 bytes.
1572                                          */
1573                                         nops = INSN_SZ_DIFF - 2;
1574                                         if (nops != 0 && nops != 4) {
1575                                                 pr_err("unexpected jmp_cond padding: %d bytes\n",
1576                                                        nops);
1577                                                 return -EFAULT;
1578                                         }
1579                                         cnt += emit_nops(&prog, nops);
1580                                 }
1581                                 EMIT2(jmp_cond, jmp_offset);
1582                         } else if (is_simm32(jmp_offset)) {
1583                                 EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
1584                         } else {
1585                                 pr_err("cond_jmp gen bug %llx\n", jmp_offset);
1586                                 return -EFAULT;
1587                         }
1588
1589                         break;
1590
1591                 case BPF_JMP | BPF_JA:
1592                         if (insn->off == -1)
1593                                 /* -1 jmp instructions will always jump
1594                                  * backwards two bytes. Explicitly handling
1595                                  * this case avoids wasting too many passes
1596                                  * when there are long sequences of replaced
1597                                  * dead code.
1598                                  */
1599                                 jmp_offset = -2;
1600                         else
1601                                 jmp_offset = addrs[i + insn->off] - addrs[i];
1602
1603                         if (!jmp_offset) {
1604                                 /*
1605                                  * If jmp_padding is enabled, the extra nops will
1606                                  * be inserted. Otherwise, optimize out nop jumps.
1607                                  */
1608                                 if (jmp_padding) {
1609                                         /* There are 3 possible conditions.
1610                                          * (1) This BPF_JA is already optimized out in
1611                                          *     the previous run, so there is no need
1612                                          *     to pad any extra byte (0 byte).
1613                                          * (2) The previous pass emits an imm8 jmp,
1614                                          *     so we pad 2 bytes to match the previous
1615                                          *     insn size.
1616                                          * (3) Similarly, the previous pass emits an
1617                                          *     imm32 jmp, and 5 bytes is padded.
1618                                          */
1619                                         nops = INSN_SZ_DIFF;
1620                                         if (nops != 0 && nops != 2 && nops != 5) {
1621                                                 pr_err("unexpected nop jump padding: %d bytes\n",
1622                                                        nops);
1623                                                 return -EFAULT;
1624                                         }
1625                                         cnt += emit_nops(&prog, nops);
1626                                 }
1627                                 break;
1628                         }
1629 emit_jmp:
1630                         if (is_imm8(jmp_offset)) {
1631                                 if (jmp_padding) {
1632                                         /* To avoid breaking jmp_offset, the extra bytes
1633                                          * are padded before the actual jmp insn, so
1634                                          * 2 bytes is substracted from INSN_SZ_DIFF.
1635                                          *
1636                                          * If the previous pass already emits an imm8
1637                                          * jmp, there is nothing to pad (0 byte).
1638                                          *
1639                                          * If it emits an imm32 jmp (5 bytes) previously
1640                                          * and now an imm8 jmp (2 bytes), then we pad
1641                                          * (5 - 2 = 3) bytes to stop the image from
1642                                          * shrinking further.
1643                                          */
1644                                         nops = INSN_SZ_DIFF - 2;
1645                                         if (nops != 0 && nops != 3) {
1646                                                 pr_err("unexpected jump padding: %d bytes\n",
1647                                                        nops);
1648                                                 return -EFAULT;
1649                                         }
1650                                         cnt += emit_nops(&prog, INSN_SZ_DIFF - 2);
1651                                 }
1652                                 EMIT2(0xEB, jmp_offset);
1653                         } else if (is_simm32(jmp_offset)) {
1654                                 EMIT1_off32(0xE9, jmp_offset);
1655                         } else {
1656                                 pr_err("jmp gen bug %llx\n", jmp_offset);
1657                                 return -EFAULT;
1658                         }
1659                         break;
1660
1661                 case BPF_JMP | BPF_EXIT:
1662                         if (seen_exit) {
1663                                 jmp_offset = ctx->cleanup_addr - addrs[i];
1664                                 goto emit_jmp;
1665                         }
1666                         seen_exit = true;
1667                         /* Update cleanup_addr */
1668                         ctx->cleanup_addr = proglen;
1669                         pop_callee_regs(&prog, callee_regs_used);
1670                         EMIT1(0xC9);         /* leave */
1671                         EMIT1(0xC3);         /* ret */
1672                         break;
1673
1674                 default:
1675                         /*
1676                          * By design x86-64 JIT should support all BPF instructions.
1677                          * This error will be seen if new instruction was added
1678                          * to the interpreter, but not to the JIT, or if there is
1679                          * junk in bpf_prog.
1680                          */
1681                         pr_err("bpf_jit: unknown opcode %02x\n", insn->code);
1682                         return -EINVAL;
1683                 }
1684
1685                 ilen = prog - temp;
1686                 if (ilen > BPF_MAX_INSN_SIZE) {
1687                         pr_err("bpf_jit: fatal insn size error\n");
1688                         return -EFAULT;
1689                 }
1690
1691                 if (image) {
1692                         if (unlikely(proglen + ilen > oldproglen)) {
1693                                 pr_err("bpf_jit: fatal error\n");
1694                                 return -EFAULT;
1695                         }
1696                         memcpy(image + proglen, temp, ilen);
1697                 }
1698                 proglen += ilen;
1699                 addrs[i] = proglen;
1700                 prog = temp;
1701         }
1702
1703         if (image && excnt != bpf_prog->aux->num_exentries) {
1704                 pr_err("extable is not populated\n");
1705                 return -EFAULT;
1706         }
1707         return proglen;
1708 }
1709
1710 static void save_regs(const struct btf_func_model *m, u8 **prog, int nr_args,
1711                       int stack_size)
1712 {
1713         int i;
1714         /* Store function arguments to stack.
1715          * For a function that accepts two pointers the sequence will be:
1716          * mov QWORD PTR [rbp-0x10],rdi
1717          * mov QWORD PTR [rbp-0x8],rsi
1718          */
1719         for (i = 0; i < min(nr_args, 6); i++)
1720                 emit_stx(prog, bytes_to_bpf_size(m->arg_size[i]),
1721                          BPF_REG_FP,
1722                          i == 5 ? X86_REG_R9 : BPF_REG_1 + i,
1723                          -(stack_size - i * 8));
1724 }
1725
1726 static void restore_regs(const struct btf_func_model *m, u8 **prog, int nr_args,
1727                          int stack_size)
1728 {
1729         int i;
1730
1731         /* Restore function arguments from stack.
1732          * For a function that accepts two pointers the sequence will be:
1733          * EMIT4(0x48, 0x8B, 0x7D, 0xF0); mov rdi,QWORD PTR [rbp-0x10]
1734          * EMIT4(0x48, 0x8B, 0x75, 0xF8); mov rsi,QWORD PTR [rbp-0x8]
1735          */
1736         for (i = 0; i < min(nr_args, 6); i++)
1737                 emit_ldx(prog, bytes_to_bpf_size(m->arg_size[i]),
1738                          i == 5 ? X86_REG_R9 : BPF_REG_1 + i,
1739                          BPF_REG_FP,
1740                          -(stack_size - i * 8));
1741 }
1742
1743 static int invoke_bpf_prog(const struct btf_func_model *m, u8 **pprog,
1744                            struct bpf_prog *p, int stack_size, bool mod_ret)
1745 {
1746         u8 *prog = *pprog;
1747         u8 *jmp_insn;
1748         int cnt = 0;
1749
1750         /* arg1: mov rdi, progs[i] */
1751         emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p);
1752         if (emit_call(&prog,
1753                       p->aux->sleepable ? __bpf_prog_enter_sleepable :
1754                       __bpf_prog_enter, prog))
1755                         return -EINVAL;
1756         /* remember prog start time returned by __bpf_prog_enter */
1757         emit_mov_reg(&prog, true, BPF_REG_6, BPF_REG_0);
1758
1759         /* if (__bpf_prog_enter*(prog) == 0)
1760          *      goto skip_exec_of_prog;
1761          */
1762         EMIT3(0x48, 0x85, 0xC0);  /* test rax,rax */
1763         /* emit 2 nops that will be replaced with JE insn */
1764         jmp_insn = prog;
1765         emit_nops(&prog, 2);
1766
1767         /* arg1: lea rdi, [rbp - stack_size] */
1768         EMIT4(0x48, 0x8D, 0x7D, -stack_size);
1769         /* arg2: progs[i]->insnsi for interpreter */
1770         if (!p->jited)
1771                 emit_mov_imm64(&prog, BPF_REG_2,
1772                                (long) p->insnsi >> 32,
1773                                (u32) (long) p->insnsi);
1774         /* call JITed bpf program or interpreter */
1775         if (emit_call(&prog, p->bpf_func, prog))
1776                 return -EINVAL;
1777
1778         /* BPF_TRAMP_MODIFY_RETURN trampolines can modify the return
1779          * of the previous call which is then passed on the stack to
1780          * the next BPF program.
1781          */
1782         if (mod_ret)
1783                 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
1784
1785         /* replace 2 nops with JE insn, since jmp target is known */
1786         jmp_insn[0] = X86_JE;
1787         jmp_insn[1] = prog - jmp_insn - 2;
1788
1789         /* arg1: mov rdi, progs[i] */
1790         emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p);
1791         /* arg2: mov rsi, rbx <- start time in nsec */
1792         emit_mov_reg(&prog, true, BPF_REG_2, BPF_REG_6);
1793         if (emit_call(&prog,
1794                       p->aux->sleepable ? __bpf_prog_exit_sleepable :
1795                       __bpf_prog_exit, prog))
1796                         return -EINVAL;
1797
1798         *pprog = prog;
1799         return 0;
1800 }
1801
1802 static void emit_align(u8 **pprog, u32 align)
1803 {
1804         u8 *target, *prog = *pprog;
1805
1806         target = PTR_ALIGN(prog, align);
1807         if (target != prog)
1808                 emit_nops(&prog, target - prog);
1809
1810         *pprog = prog;
1811 }
1812
1813 static int emit_cond_near_jump(u8 **pprog, void *func, void *ip, u8 jmp_cond)
1814 {
1815         u8 *prog = *pprog;
1816         int cnt = 0;
1817         s64 offset;
1818
1819         offset = func - (ip + 2 + 4);
1820         if (!is_simm32(offset)) {
1821                 pr_err("Target %p is out of range\n", func);
1822                 return -EINVAL;
1823         }
1824         EMIT2_off32(0x0F, jmp_cond + 0x10, offset);
1825         *pprog = prog;
1826         return 0;
1827 }
1828
1829 static int invoke_bpf(const struct btf_func_model *m, u8 **pprog,
1830                       struct bpf_tramp_progs *tp, int stack_size)
1831 {
1832         int i;
1833         u8 *prog = *pprog;
1834
1835         for (i = 0; i < tp->nr_progs; i++) {
1836                 if (invoke_bpf_prog(m, &prog, tp->progs[i], stack_size, false))
1837                         return -EINVAL;
1838         }
1839         *pprog = prog;
1840         return 0;
1841 }
1842
1843 static int invoke_bpf_mod_ret(const struct btf_func_model *m, u8 **pprog,
1844                               struct bpf_tramp_progs *tp, int stack_size,
1845                               u8 **branches)
1846 {
1847         u8 *prog = *pprog;
1848         int i, cnt = 0;
1849
1850         /* The first fmod_ret program will receive a garbage return value.
1851          * Set this to 0 to avoid confusing the program.
1852          */
1853         emit_mov_imm32(&prog, false, BPF_REG_0, 0);
1854         emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
1855         for (i = 0; i < tp->nr_progs; i++) {
1856                 if (invoke_bpf_prog(m, &prog, tp->progs[i], stack_size, true))
1857                         return -EINVAL;
1858
1859                 /* mod_ret prog stored return value into [rbp - 8]. Emit:
1860                  * if (*(u64 *)(rbp - 8) !=  0)
1861                  *      goto do_fexit;
1862                  */
1863                 /* cmp QWORD PTR [rbp - 0x8], 0x0 */
1864                 EMIT4(0x48, 0x83, 0x7d, 0xf8); EMIT1(0x00);
1865
1866                 /* Save the location of the branch and Generate 6 nops
1867                  * (4 bytes for an offset and 2 bytes for the jump) These nops
1868                  * are replaced with a conditional jump once do_fexit (i.e. the
1869                  * start of the fexit invocation) is finalized.
1870                  */
1871                 branches[i] = prog;
1872                 emit_nops(&prog, 4 + 2);
1873         }
1874
1875         *pprog = prog;
1876         return 0;
1877 }
1878
1879 /* Example:
1880  * __be16 eth_type_trans(struct sk_buff *skb, struct net_device *dev);
1881  * its 'struct btf_func_model' will be nr_args=2
1882  * The assembly code when eth_type_trans is executing after trampoline:
1883  *
1884  * push rbp
1885  * mov rbp, rsp
1886  * sub rsp, 16                     // space for skb and dev
1887  * push rbx                        // temp regs to pass start time
1888  * mov qword ptr [rbp - 16], rdi   // save skb pointer to stack
1889  * mov qword ptr [rbp - 8], rsi    // save dev pointer to stack
1890  * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
1891  * mov rbx, rax                    // remember start time in bpf stats are enabled
1892  * lea rdi, [rbp - 16]             // R1==ctx of bpf prog
1893  * call addr_of_jited_FENTRY_prog
1894  * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
1895  * mov rsi, rbx                    // prog start time
1896  * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
1897  * mov rdi, qword ptr [rbp - 16]   // restore skb pointer from stack
1898  * mov rsi, qword ptr [rbp - 8]    // restore dev pointer from stack
1899  * pop rbx
1900  * leave
1901  * ret
1902  *
1903  * eth_type_trans has 5 byte nop at the beginning. These 5 bytes will be
1904  * replaced with 'call generated_bpf_trampoline'. When it returns
1905  * eth_type_trans will continue executing with original skb and dev pointers.
1906  *
1907  * The assembly code when eth_type_trans is called from trampoline:
1908  *
1909  * push rbp
1910  * mov rbp, rsp
1911  * sub rsp, 24                     // space for skb, dev, return value
1912  * push rbx                        // temp regs to pass start time
1913  * mov qword ptr [rbp - 24], rdi   // save skb pointer to stack
1914  * mov qword ptr [rbp - 16], rsi   // save dev pointer to stack
1915  * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
1916  * mov rbx, rax                    // remember start time if bpf stats are enabled
1917  * lea rdi, [rbp - 24]             // R1==ctx of bpf prog
1918  * call addr_of_jited_FENTRY_prog  // bpf prog can access skb and dev
1919  * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
1920  * mov rsi, rbx                    // prog start time
1921  * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
1922  * mov rdi, qword ptr [rbp - 24]   // restore skb pointer from stack
1923  * mov rsi, qword ptr [rbp - 16]   // restore dev pointer from stack
1924  * call eth_type_trans+5           // execute body of eth_type_trans
1925  * mov qword ptr [rbp - 8], rax    // save return value
1926  * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
1927  * mov rbx, rax                    // remember start time in bpf stats are enabled
1928  * lea rdi, [rbp - 24]             // R1==ctx of bpf prog
1929  * call addr_of_jited_FEXIT_prog   // bpf prog can access skb, dev, return value
1930  * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
1931  * mov rsi, rbx                    // prog start time
1932  * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
1933  * mov rax, qword ptr [rbp - 8]    // restore eth_type_trans's return value
1934  * pop rbx
1935  * leave
1936  * add rsp, 8                      // skip eth_type_trans's frame
1937  * ret                             // return to its caller
1938  */
1939 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end,
1940                                 const struct btf_func_model *m, u32 flags,
1941                                 struct bpf_tramp_progs *tprogs,
1942                                 void *orig_call)
1943 {
1944         int ret, i, cnt = 0, nr_args = m->nr_args;
1945         int stack_size = nr_args * 8;
1946         struct bpf_tramp_progs *fentry = &tprogs[BPF_TRAMP_FENTRY];
1947         struct bpf_tramp_progs *fexit = &tprogs[BPF_TRAMP_FEXIT];
1948         struct bpf_tramp_progs *fmod_ret = &tprogs[BPF_TRAMP_MODIFY_RETURN];
1949         u8 **branches = NULL;
1950         u8 *prog;
1951
1952         /* x86-64 supports up to 6 arguments. 7+ can be added in the future */
1953         if (nr_args > 6)
1954                 return -ENOTSUPP;
1955
1956         if ((flags & BPF_TRAMP_F_RESTORE_REGS) &&
1957             (flags & BPF_TRAMP_F_SKIP_FRAME))
1958                 return -EINVAL;
1959
1960         if (flags & BPF_TRAMP_F_CALL_ORIG)
1961                 stack_size += 8; /* room for return value of orig_call */
1962
1963         if (flags & BPF_TRAMP_F_SKIP_FRAME)
1964                 /* skip patched call instruction and point orig_call to actual
1965                  * body of the kernel function.
1966                  */
1967                 orig_call += X86_PATCH_SIZE;
1968
1969         prog = image;
1970
1971         EMIT1(0x55);             /* push rbp */
1972         EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
1973         EMIT4(0x48, 0x83, 0xEC, stack_size); /* sub rsp, stack_size */
1974         EMIT1(0x53);             /* push rbx */
1975
1976         save_regs(m, &prog, nr_args, stack_size);
1977
1978         if (flags & BPF_TRAMP_F_CALL_ORIG) {
1979                 /* arg1: mov rdi, im */
1980                 emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im);
1981                 if (emit_call(&prog, __bpf_tramp_enter, prog)) {
1982                         ret = -EINVAL;
1983                         goto cleanup;
1984                 }
1985         }
1986
1987         if (fentry->nr_progs)
1988                 if (invoke_bpf(m, &prog, fentry, stack_size))
1989                         return -EINVAL;
1990
1991         if (fmod_ret->nr_progs) {
1992                 branches = kcalloc(fmod_ret->nr_progs, sizeof(u8 *),
1993                                    GFP_KERNEL);
1994                 if (!branches)
1995                         return -ENOMEM;
1996
1997                 if (invoke_bpf_mod_ret(m, &prog, fmod_ret, stack_size,
1998                                        branches)) {
1999                         ret = -EINVAL;
2000                         goto cleanup;
2001                 }
2002         }
2003
2004         if (flags & BPF_TRAMP_F_CALL_ORIG) {
2005                 restore_regs(m, &prog, nr_args, stack_size);
2006
2007                 /* call original function */
2008                 if (emit_call(&prog, orig_call, prog)) {
2009                         ret = -EINVAL;
2010                         goto cleanup;
2011                 }
2012                 /* remember return value in a stack for bpf prog to access */
2013                 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
2014                 im->ip_after_call = prog;
2015                 emit_nops(&prog, 5);
2016         }
2017
2018         if (fmod_ret->nr_progs) {
2019                 /* From Intel 64 and IA-32 Architectures Optimization
2020                  * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler
2021                  * Coding Rule 11: All branch targets should be 16-byte
2022                  * aligned.
2023                  */
2024                 emit_align(&prog, 16);
2025                 /* Update the branches saved in invoke_bpf_mod_ret with the
2026                  * aligned address of do_fexit.
2027                  */
2028                 for (i = 0; i < fmod_ret->nr_progs; i++)
2029                         emit_cond_near_jump(&branches[i], prog, branches[i],
2030                                             X86_JNE);
2031         }
2032
2033         if (fexit->nr_progs)
2034                 if (invoke_bpf(m, &prog, fexit, stack_size)) {
2035                         ret = -EINVAL;
2036                         goto cleanup;
2037                 }
2038
2039         if (flags & BPF_TRAMP_F_RESTORE_REGS)
2040                 restore_regs(m, &prog, nr_args, stack_size);
2041
2042         /* This needs to be done regardless. If there were fmod_ret programs,
2043          * the return value is only updated on the stack and still needs to be
2044          * restored to R0.
2045          */
2046         if (flags & BPF_TRAMP_F_CALL_ORIG) {
2047                 im->ip_epilogue = prog;
2048                 /* arg1: mov rdi, im */
2049                 emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im);
2050                 if (emit_call(&prog, __bpf_tramp_exit, prog)) {
2051                         ret = -EINVAL;
2052                         goto cleanup;
2053                 }
2054                 /* restore original return value back into RAX */
2055                 emit_ldx(&prog, BPF_DW, BPF_REG_0, BPF_REG_FP, -8);
2056         }
2057
2058         EMIT1(0x5B); /* pop rbx */
2059         EMIT1(0xC9); /* leave */
2060         if (flags & BPF_TRAMP_F_SKIP_FRAME)
2061                 /* skip our return address and return to parent */
2062                 EMIT4(0x48, 0x83, 0xC4, 8); /* add rsp, 8 */
2063         EMIT1(0xC3); /* ret */
2064         /* Make sure the trampoline generation logic doesn't overflow */
2065         if (WARN_ON_ONCE(prog > (u8 *)image_end - BPF_INSN_SAFETY)) {
2066                 ret = -EFAULT;
2067                 goto cleanup;
2068         }
2069         ret = prog - (u8 *)image;
2070
2071 cleanup:
2072         kfree(branches);
2073         return ret;
2074 }
2075
2076 static int emit_fallback_jump(u8 **pprog)
2077 {
2078         u8 *prog = *pprog;
2079         int err = 0;
2080
2081 #ifdef CONFIG_RETPOLINE
2082         /* Note that this assumes the the compiler uses external
2083          * thunks for indirect calls. Both clang and GCC use the same
2084          * naming convention for external thunks.
2085          */
2086         err = emit_jump(&prog, __x86_indirect_thunk_rdx, prog);
2087 #else
2088         int cnt = 0;
2089
2090         EMIT2(0xFF, 0xE2);      /* jmp rdx */
2091 #endif
2092         *pprog = prog;
2093         return err;
2094 }
2095
2096 static int emit_bpf_dispatcher(u8 **pprog, int a, int b, s64 *progs)
2097 {
2098         u8 *jg_reloc, *prog = *pprog;
2099         int pivot, err, jg_bytes = 1, cnt = 0;
2100         s64 jg_offset;
2101
2102         if (a == b) {
2103                 /* Leaf node of recursion, i.e. not a range of indices
2104                  * anymore.
2105                  */
2106                 EMIT1(add_1mod(0x48, BPF_REG_3));       /* cmp rdx,func */
2107                 if (!is_simm32(progs[a]))
2108                         return -1;
2109                 EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3),
2110                             progs[a]);
2111                 err = emit_cond_near_jump(&prog,        /* je func */
2112                                           (void *)progs[a], prog,
2113                                           X86_JE);
2114                 if (err)
2115                         return err;
2116
2117                 err = emit_fallback_jump(&prog);        /* jmp thunk/indirect */
2118                 if (err)
2119                         return err;
2120
2121                 *pprog = prog;
2122                 return 0;
2123         }
2124
2125         /* Not a leaf node, so we pivot, and recursively descend into
2126          * the lower and upper ranges.
2127          */
2128         pivot = (b - a) / 2;
2129         EMIT1(add_1mod(0x48, BPF_REG_3));               /* cmp rdx,func */
2130         if (!is_simm32(progs[a + pivot]))
2131                 return -1;
2132         EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3), progs[a + pivot]);
2133
2134         if (pivot > 2) {                                /* jg upper_part */
2135                 /* Require near jump. */
2136                 jg_bytes = 4;
2137                 EMIT2_off32(0x0F, X86_JG + 0x10, 0);
2138         } else {
2139                 EMIT2(X86_JG, 0);
2140         }
2141         jg_reloc = prog;
2142
2143         err = emit_bpf_dispatcher(&prog, a, a + pivot,  /* emit lower_part */
2144                                   progs);
2145         if (err)
2146                 return err;
2147
2148         /* From Intel 64 and IA-32 Architectures Optimization
2149          * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler
2150          * Coding Rule 11: All branch targets should be 16-byte
2151          * aligned.
2152          */
2153         emit_align(&prog, 16);
2154         jg_offset = prog - jg_reloc;
2155         emit_code(jg_reloc - jg_bytes, jg_offset, jg_bytes);
2156
2157         err = emit_bpf_dispatcher(&prog, a + pivot + 1, /* emit upper_part */
2158                                   b, progs);
2159         if (err)
2160                 return err;
2161
2162         *pprog = prog;
2163         return 0;
2164 }
2165
2166 static int cmp_ips(const void *a, const void *b)
2167 {
2168         const s64 *ipa = a;
2169         const s64 *ipb = b;
2170
2171         if (*ipa > *ipb)
2172                 return 1;
2173         if (*ipa < *ipb)
2174                 return -1;
2175         return 0;
2176 }
2177
2178 int arch_prepare_bpf_dispatcher(void *image, s64 *funcs, int num_funcs)
2179 {
2180         u8 *prog = image;
2181
2182         sort(funcs, num_funcs, sizeof(funcs[0]), cmp_ips, NULL);
2183         return emit_bpf_dispatcher(&prog, 0, num_funcs - 1, funcs);
2184 }
2185
2186 struct x64_jit_data {
2187         struct bpf_binary_header *header;
2188         int *addrs;
2189         u8 *image;
2190         int proglen;
2191         struct jit_context ctx;
2192 };
2193
2194 #define MAX_PASSES 20
2195 #define PADDING_PASSES (MAX_PASSES - 5)
2196
2197 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
2198 {
2199         struct bpf_binary_header *header = NULL;
2200         struct bpf_prog *tmp, *orig_prog = prog;
2201         struct x64_jit_data *jit_data;
2202         int proglen, oldproglen = 0;
2203         struct jit_context ctx = {};
2204         bool tmp_blinded = false;
2205         bool extra_pass = false;
2206         bool padding = false;
2207         u8 *image = NULL;
2208         int *addrs;
2209         int pass;
2210         int i;
2211
2212         if (!prog->jit_requested)
2213                 return orig_prog;
2214
2215         tmp = bpf_jit_blind_constants(prog);
2216         /*
2217          * If blinding was requested and we failed during blinding,
2218          * we must fall back to the interpreter.
2219          */
2220         if (IS_ERR(tmp))
2221                 return orig_prog;
2222         if (tmp != prog) {
2223                 tmp_blinded = true;
2224                 prog = tmp;
2225         }
2226
2227         jit_data = prog->aux->jit_data;
2228         if (!jit_data) {
2229                 jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
2230                 if (!jit_data) {
2231                         prog = orig_prog;
2232                         goto out;
2233                 }
2234                 prog->aux->jit_data = jit_data;
2235         }
2236         addrs = jit_data->addrs;
2237         if (addrs) {
2238                 ctx = jit_data->ctx;
2239                 oldproglen = jit_data->proglen;
2240                 image = jit_data->image;
2241                 header = jit_data->header;
2242                 extra_pass = true;
2243                 padding = true;
2244                 goto skip_init_addrs;
2245         }
2246         addrs = kvmalloc_array(prog->len + 1, sizeof(*addrs), GFP_KERNEL);
2247         if (!addrs) {
2248                 prog = orig_prog;
2249                 goto out_addrs;
2250         }
2251
2252         /*
2253          * Before first pass, make a rough estimation of addrs[]
2254          * each BPF instruction is translated to less than 64 bytes
2255          */
2256         for (proglen = 0, i = 0; i <= prog->len; i++) {
2257                 proglen += 64;
2258                 addrs[i] = proglen;
2259         }
2260         ctx.cleanup_addr = proglen;
2261 skip_init_addrs:
2262
2263         /*
2264          * JITed image shrinks with every pass and the loop iterates
2265          * until the image stops shrinking. Very large BPF programs
2266          * may converge on the last pass. In such case do one more
2267          * pass to emit the final image.
2268          */
2269         for (pass = 0; pass < MAX_PASSES || image; pass++) {
2270                 if (!padding && pass >= PADDING_PASSES)
2271                         padding = true;
2272                 proglen = do_jit(prog, addrs, image, oldproglen, &ctx, padding);
2273                 if (proglen <= 0) {
2274 out_image:
2275                         image = NULL;
2276                         if (header)
2277                                 bpf_jit_binary_free(header);
2278                         prog = orig_prog;
2279                         goto out_addrs;
2280                 }
2281                 if (image) {
2282                         if (proglen != oldproglen) {
2283                                 pr_err("bpf_jit: proglen=%d != oldproglen=%d\n",
2284                                        proglen, oldproglen);
2285                                 goto out_image;
2286                         }
2287                         break;
2288                 }
2289                 if (proglen == oldproglen) {
2290                         /*
2291                          * The number of entries in extable is the number of BPF_LDX
2292                          * insns that access kernel memory via "pointer to BTF type".
2293                          * The verifier changed their opcode from LDX|MEM|size
2294                          * to LDX|PROBE_MEM|size to make JITing easier.
2295                          */
2296                         u32 align = __alignof__(struct exception_table_entry);
2297                         u32 extable_size = prog->aux->num_exentries *
2298                                 sizeof(struct exception_table_entry);
2299
2300                         /* allocate module memory for x86 insns and extable */
2301                         header = bpf_jit_binary_alloc(roundup(proglen, align) + extable_size,
2302                                                       &image, align, jit_fill_hole);
2303                         if (!header) {
2304                                 prog = orig_prog;
2305                                 goto out_addrs;
2306                         }
2307                         prog->aux->extable = (void *) image + roundup(proglen, align);
2308                 }
2309                 oldproglen = proglen;
2310                 cond_resched();
2311         }
2312
2313         if (bpf_jit_enable > 1)
2314                 bpf_jit_dump(prog->len, proglen, pass + 1, image);
2315
2316         if (image) {
2317                 if (!prog->is_func || extra_pass) {
2318                         bpf_tail_call_direct_fixup(prog);
2319                         bpf_jit_binary_lock_ro(header);
2320                 } else {
2321                         jit_data->addrs = addrs;
2322                         jit_data->ctx = ctx;
2323                         jit_data->proglen = proglen;
2324                         jit_data->image = image;
2325                         jit_data->header = header;
2326                 }
2327                 prog->bpf_func = (void *)image;
2328                 prog->jited = 1;
2329                 prog->jited_len = proglen;
2330         } else {
2331                 prog = orig_prog;
2332         }
2333
2334         if (!image || !prog->is_func || extra_pass) {
2335                 if (image)
2336                         bpf_prog_fill_jited_linfo(prog, addrs + 1);
2337 out_addrs:
2338                 kvfree(addrs);
2339                 kfree(jit_data);
2340                 prog->aux->jit_data = NULL;
2341         }
2342 out:
2343         if (tmp_blinded)
2344                 bpf_jit_prog_release_other(prog, prog == orig_prog ?
2345                                            tmp : orig_prog);
2346         return prog;
2347 }