Merge branch 'kvm-guest-sev-migration' into kvm-master
[platform/kernel/linux-starfive.git] / arch / x86 / mm / pat / set_memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2002 Andi Kleen, SuSE Labs.
4  * Thanks to Ben LaHaise for precious feedback.
5  */
6 #include <linux/highmem.h>
7 #include <linux/memblock.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/interrupt.h>
11 #include <linux/seq_file.h>
12 #include <linux/debugfs.h>
13 #include <linux/pfn.h>
14 #include <linux/percpu.h>
15 #include <linux/gfp.h>
16 #include <linux/pci.h>
17 #include <linux/vmalloc.h>
18 #include <linux/libnvdimm.h>
19 #include <linux/vmstat.h>
20 #include <linux/kernel.h>
21 #include <linux/cc_platform.h>
22
23 #include <asm/e820/api.h>
24 #include <asm/processor.h>
25 #include <asm/tlbflush.h>
26 #include <asm/sections.h>
27 #include <asm/setup.h>
28 #include <linux/uaccess.h>
29 #include <asm/pgalloc.h>
30 #include <asm/proto.h>
31 #include <asm/memtype.h>
32 #include <asm/set_memory.h>
33 #include <asm/hyperv-tlfs.h>
34 #include <asm/mshyperv.h>
35
36 #include "../mm_internal.h"
37
38 /*
39  * The current flushing context - we pass it instead of 5 arguments:
40  */
41 struct cpa_data {
42         unsigned long   *vaddr;
43         pgd_t           *pgd;
44         pgprot_t        mask_set;
45         pgprot_t        mask_clr;
46         unsigned long   numpages;
47         unsigned long   curpage;
48         unsigned long   pfn;
49         unsigned int    flags;
50         unsigned int    force_split             : 1,
51                         force_static_prot       : 1,
52                         force_flush_all         : 1;
53         struct page     **pages;
54 };
55
56 enum cpa_warn {
57         CPA_CONFLICT,
58         CPA_PROTECT,
59         CPA_DETECT,
60 };
61
62 static const int cpa_warn_level = CPA_PROTECT;
63
64 /*
65  * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
66  * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
67  * entries change the page attribute in parallel to some other cpu
68  * splitting a large page entry along with changing the attribute.
69  */
70 static DEFINE_SPINLOCK(cpa_lock);
71
72 #define CPA_FLUSHTLB 1
73 #define CPA_ARRAY 2
74 #define CPA_PAGES_ARRAY 4
75 #define CPA_NO_CHECK_ALIAS 8 /* Do not search for aliases */
76
77 static inline pgprot_t cachemode2pgprot(enum page_cache_mode pcm)
78 {
79         return __pgprot(cachemode2protval(pcm));
80 }
81
82 #ifdef CONFIG_PROC_FS
83 static unsigned long direct_pages_count[PG_LEVEL_NUM];
84
85 void update_page_count(int level, unsigned long pages)
86 {
87         /* Protect against CPA */
88         spin_lock(&pgd_lock);
89         direct_pages_count[level] += pages;
90         spin_unlock(&pgd_lock);
91 }
92
93 static void split_page_count(int level)
94 {
95         if (direct_pages_count[level] == 0)
96                 return;
97
98         direct_pages_count[level]--;
99         if (system_state == SYSTEM_RUNNING) {
100                 if (level == PG_LEVEL_2M)
101                         count_vm_event(DIRECT_MAP_LEVEL2_SPLIT);
102                 else if (level == PG_LEVEL_1G)
103                         count_vm_event(DIRECT_MAP_LEVEL3_SPLIT);
104         }
105         direct_pages_count[level - 1] += PTRS_PER_PTE;
106 }
107
108 void arch_report_meminfo(struct seq_file *m)
109 {
110         seq_printf(m, "DirectMap4k:    %8lu kB\n",
111                         direct_pages_count[PG_LEVEL_4K] << 2);
112 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
113         seq_printf(m, "DirectMap2M:    %8lu kB\n",
114                         direct_pages_count[PG_LEVEL_2M] << 11);
115 #else
116         seq_printf(m, "DirectMap4M:    %8lu kB\n",
117                         direct_pages_count[PG_LEVEL_2M] << 12);
118 #endif
119         if (direct_gbpages)
120                 seq_printf(m, "DirectMap1G:    %8lu kB\n",
121                         direct_pages_count[PG_LEVEL_1G] << 20);
122 }
123 #else
124 static inline void split_page_count(int level) { }
125 #endif
126
127 #ifdef CONFIG_X86_CPA_STATISTICS
128
129 static unsigned long cpa_1g_checked;
130 static unsigned long cpa_1g_sameprot;
131 static unsigned long cpa_1g_preserved;
132 static unsigned long cpa_2m_checked;
133 static unsigned long cpa_2m_sameprot;
134 static unsigned long cpa_2m_preserved;
135 static unsigned long cpa_4k_install;
136
137 static inline void cpa_inc_1g_checked(void)
138 {
139         cpa_1g_checked++;
140 }
141
142 static inline void cpa_inc_2m_checked(void)
143 {
144         cpa_2m_checked++;
145 }
146
147 static inline void cpa_inc_4k_install(void)
148 {
149         data_race(cpa_4k_install++);
150 }
151
152 static inline void cpa_inc_lp_sameprot(int level)
153 {
154         if (level == PG_LEVEL_1G)
155                 cpa_1g_sameprot++;
156         else
157                 cpa_2m_sameprot++;
158 }
159
160 static inline void cpa_inc_lp_preserved(int level)
161 {
162         if (level == PG_LEVEL_1G)
163                 cpa_1g_preserved++;
164         else
165                 cpa_2m_preserved++;
166 }
167
168 static int cpastats_show(struct seq_file *m, void *p)
169 {
170         seq_printf(m, "1G pages checked:     %16lu\n", cpa_1g_checked);
171         seq_printf(m, "1G pages sameprot:    %16lu\n", cpa_1g_sameprot);
172         seq_printf(m, "1G pages preserved:   %16lu\n", cpa_1g_preserved);
173         seq_printf(m, "2M pages checked:     %16lu\n", cpa_2m_checked);
174         seq_printf(m, "2M pages sameprot:    %16lu\n", cpa_2m_sameprot);
175         seq_printf(m, "2M pages preserved:   %16lu\n", cpa_2m_preserved);
176         seq_printf(m, "4K pages set-checked: %16lu\n", cpa_4k_install);
177         return 0;
178 }
179
180 static int cpastats_open(struct inode *inode, struct file *file)
181 {
182         return single_open(file, cpastats_show, NULL);
183 }
184
185 static const struct file_operations cpastats_fops = {
186         .open           = cpastats_open,
187         .read           = seq_read,
188         .llseek         = seq_lseek,
189         .release        = single_release,
190 };
191
192 static int __init cpa_stats_init(void)
193 {
194         debugfs_create_file("cpa_stats", S_IRUSR, arch_debugfs_dir, NULL,
195                             &cpastats_fops);
196         return 0;
197 }
198 late_initcall(cpa_stats_init);
199 #else
200 static inline void cpa_inc_1g_checked(void) { }
201 static inline void cpa_inc_2m_checked(void) { }
202 static inline void cpa_inc_4k_install(void) { }
203 static inline void cpa_inc_lp_sameprot(int level) { }
204 static inline void cpa_inc_lp_preserved(int level) { }
205 #endif
206
207
208 static inline int
209 within(unsigned long addr, unsigned long start, unsigned long end)
210 {
211         return addr >= start && addr < end;
212 }
213
214 static inline int
215 within_inclusive(unsigned long addr, unsigned long start, unsigned long end)
216 {
217         return addr >= start && addr <= end;
218 }
219
220 #ifdef CONFIG_X86_64
221
222 static inline unsigned long highmap_start_pfn(void)
223 {
224         return __pa_symbol(_text) >> PAGE_SHIFT;
225 }
226
227 static inline unsigned long highmap_end_pfn(void)
228 {
229         /* Do not reference physical address outside the kernel. */
230         return __pa_symbol(roundup(_brk_end, PMD_SIZE) - 1) >> PAGE_SHIFT;
231 }
232
233 static bool __cpa_pfn_in_highmap(unsigned long pfn)
234 {
235         /*
236          * Kernel text has an alias mapping at a high address, known
237          * here as "highmap".
238          */
239         return within_inclusive(pfn, highmap_start_pfn(), highmap_end_pfn());
240 }
241
242 #else
243
244 static bool __cpa_pfn_in_highmap(unsigned long pfn)
245 {
246         /* There is no highmap on 32-bit */
247         return false;
248 }
249
250 #endif
251
252 /*
253  * See set_mce_nospec().
254  *
255  * Machine check recovery code needs to change cache mode of poisoned pages to
256  * UC to avoid speculative access logging another error. But passing the
257  * address of the 1:1 mapping to set_memory_uc() is a fine way to encourage a
258  * speculative access. So we cheat and flip the top bit of the address. This
259  * works fine for the code that updates the page tables. But at the end of the
260  * process we need to flush the TLB and cache and the non-canonical address
261  * causes a #GP fault when used by the INVLPG and CLFLUSH instructions.
262  *
263  * But in the common case we already have a canonical address. This code
264  * will fix the top bit if needed and is a no-op otherwise.
265  */
266 static inline unsigned long fix_addr(unsigned long addr)
267 {
268 #ifdef CONFIG_X86_64
269         return (long)(addr << 1) >> 1;
270 #else
271         return addr;
272 #endif
273 }
274
275 static unsigned long __cpa_addr(struct cpa_data *cpa, unsigned long idx)
276 {
277         if (cpa->flags & CPA_PAGES_ARRAY) {
278                 struct page *page = cpa->pages[idx];
279
280                 if (unlikely(PageHighMem(page)))
281                         return 0;
282
283                 return (unsigned long)page_address(page);
284         }
285
286         if (cpa->flags & CPA_ARRAY)
287                 return cpa->vaddr[idx];
288
289         return *cpa->vaddr + idx * PAGE_SIZE;
290 }
291
292 /*
293  * Flushing functions
294  */
295
296 static void clflush_cache_range_opt(void *vaddr, unsigned int size)
297 {
298         const unsigned long clflush_size = boot_cpu_data.x86_clflush_size;
299         void *p = (void *)((unsigned long)vaddr & ~(clflush_size - 1));
300         void *vend = vaddr + size;
301
302         if (p >= vend)
303                 return;
304
305         for (; p < vend; p += clflush_size)
306                 clflushopt(p);
307 }
308
309 /**
310  * clflush_cache_range - flush a cache range with clflush
311  * @vaddr:      virtual start address
312  * @size:       number of bytes to flush
313  *
314  * CLFLUSHOPT is an unordered instruction which needs fencing with MFENCE or
315  * SFENCE to avoid ordering issues.
316  */
317 void clflush_cache_range(void *vaddr, unsigned int size)
318 {
319         mb();
320         clflush_cache_range_opt(vaddr, size);
321         mb();
322 }
323 EXPORT_SYMBOL_GPL(clflush_cache_range);
324
325 #ifdef CONFIG_ARCH_HAS_PMEM_API
326 void arch_invalidate_pmem(void *addr, size_t size)
327 {
328         clflush_cache_range(addr, size);
329 }
330 EXPORT_SYMBOL_GPL(arch_invalidate_pmem);
331 #endif
332
333 static void __cpa_flush_all(void *arg)
334 {
335         unsigned long cache = (unsigned long)arg;
336
337         /*
338          * Flush all to work around Errata in early athlons regarding
339          * large page flushing.
340          */
341         __flush_tlb_all();
342
343         if (cache && boot_cpu_data.x86 >= 4)
344                 wbinvd();
345 }
346
347 static void cpa_flush_all(unsigned long cache)
348 {
349         BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
350
351         on_each_cpu(__cpa_flush_all, (void *) cache, 1);
352 }
353
354 static void __cpa_flush_tlb(void *data)
355 {
356         struct cpa_data *cpa = data;
357         unsigned int i;
358
359         for (i = 0; i < cpa->numpages; i++)
360                 flush_tlb_one_kernel(fix_addr(__cpa_addr(cpa, i)));
361 }
362
363 static void cpa_flush(struct cpa_data *data, int cache)
364 {
365         struct cpa_data *cpa = data;
366         unsigned int i;
367
368         BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
369
370         if (cache && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
371                 cpa_flush_all(cache);
372                 return;
373         }
374
375         if (cpa->force_flush_all || cpa->numpages > tlb_single_page_flush_ceiling)
376                 flush_tlb_all();
377         else
378                 on_each_cpu(__cpa_flush_tlb, cpa, 1);
379
380         if (!cache)
381                 return;
382
383         mb();
384         for (i = 0; i < cpa->numpages; i++) {
385                 unsigned long addr = __cpa_addr(cpa, i);
386                 unsigned int level;
387
388                 pte_t *pte = lookup_address(addr, &level);
389
390                 /*
391                  * Only flush present addresses:
392                  */
393                 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
394                         clflush_cache_range_opt((void *)fix_addr(addr), PAGE_SIZE);
395         }
396         mb();
397 }
398
399 static bool overlaps(unsigned long r1_start, unsigned long r1_end,
400                      unsigned long r2_start, unsigned long r2_end)
401 {
402         return (r1_start <= r2_end && r1_end >= r2_start) ||
403                 (r2_start <= r1_end && r2_end >= r1_start);
404 }
405
406 #ifdef CONFIG_PCI_BIOS
407 /*
408  * The BIOS area between 640k and 1Mb needs to be executable for PCI BIOS
409  * based config access (CONFIG_PCI_GOBIOS) support.
410  */
411 #define BIOS_PFN        PFN_DOWN(BIOS_BEGIN)
412 #define BIOS_PFN_END    PFN_DOWN(BIOS_END - 1)
413
414 static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn)
415 {
416         if (pcibios_enabled && overlaps(spfn, epfn, BIOS_PFN, BIOS_PFN_END))
417                 return _PAGE_NX;
418         return 0;
419 }
420 #else
421 static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn)
422 {
423         return 0;
424 }
425 #endif
426
427 /*
428  * The .rodata section needs to be read-only. Using the pfn catches all
429  * aliases.  This also includes __ro_after_init, so do not enforce until
430  * kernel_set_to_readonly is true.
431  */
432 static pgprotval_t protect_rodata(unsigned long spfn, unsigned long epfn)
433 {
434         unsigned long epfn_ro, spfn_ro = PFN_DOWN(__pa_symbol(__start_rodata));
435
436         /*
437          * Note: __end_rodata is at page aligned and not inclusive, so
438          * subtract 1 to get the last enforced PFN in the rodata area.
439          */
440         epfn_ro = PFN_DOWN(__pa_symbol(__end_rodata)) - 1;
441
442         if (kernel_set_to_readonly && overlaps(spfn, epfn, spfn_ro, epfn_ro))
443                 return _PAGE_RW;
444         return 0;
445 }
446
447 /*
448  * Protect kernel text against becoming non executable by forbidding
449  * _PAGE_NX.  This protects only the high kernel mapping (_text -> _etext)
450  * out of which the kernel actually executes.  Do not protect the low
451  * mapping.
452  *
453  * This does not cover __inittext since that is gone after boot.
454  */
455 static pgprotval_t protect_kernel_text(unsigned long start, unsigned long end)
456 {
457         unsigned long t_end = (unsigned long)_etext - 1;
458         unsigned long t_start = (unsigned long)_text;
459
460         if (overlaps(start, end, t_start, t_end))
461                 return _PAGE_NX;
462         return 0;
463 }
464
465 #if defined(CONFIG_X86_64)
466 /*
467  * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
468  * kernel text mappings for the large page aligned text, rodata sections
469  * will be always read-only. For the kernel identity mappings covering the
470  * holes caused by this alignment can be anything that user asks.
471  *
472  * This will preserve the large page mappings for kernel text/data at no
473  * extra cost.
474  */
475 static pgprotval_t protect_kernel_text_ro(unsigned long start,
476                                           unsigned long end)
477 {
478         unsigned long t_end = (unsigned long)__end_rodata_hpage_align - 1;
479         unsigned long t_start = (unsigned long)_text;
480         unsigned int level;
481
482         if (!kernel_set_to_readonly || !overlaps(start, end, t_start, t_end))
483                 return 0;
484         /*
485          * Don't enforce the !RW mapping for the kernel text mapping, if
486          * the current mapping is already using small page mapping.  No
487          * need to work hard to preserve large page mappings in this case.
488          *
489          * This also fixes the Linux Xen paravirt guest boot failure caused
490          * by unexpected read-only mappings for kernel identity
491          * mappings. In this paravirt guest case, the kernel text mapping
492          * and the kernel identity mapping share the same page-table pages,
493          * so the protections for kernel text and identity mappings have to
494          * be the same.
495          */
496         if (lookup_address(start, &level) && (level != PG_LEVEL_4K))
497                 return _PAGE_RW;
498         return 0;
499 }
500 #else
501 static pgprotval_t protect_kernel_text_ro(unsigned long start,
502                                           unsigned long end)
503 {
504         return 0;
505 }
506 #endif
507
508 static inline bool conflicts(pgprot_t prot, pgprotval_t val)
509 {
510         return (pgprot_val(prot) & ~val) != pgprot_val(prot);
511 }
512
513 static inline void check_conflict(int warnlvl, pgprot_t prot, pgprotval_t val,
514                                   unsigned long start, unsigned long end,
515                                   unsigned long pfn, const char *txt)
516 {
517         static const char *lvltxt[] = {
518                 [CPA_CONFLICT]  = "conflict",
519                 [CPA_PROTECT]   = "protect",
520                 [CPA_DETECT]    = "detect",
521         };
522
523         if (warnlvl > cpa_warn_level || !conflicts(prot, val))
524                 return;
525
526         pr_warn("CPA %8s %10s: 0x%016lx - 0x%016lx PFN %lx req %016llx prevent %016llx\n",
527                 lvltxt[warnlvl], txt, start, end, pfn, (unsigned long long)pgprot_val(prot),
528                 (unsigned long long)val);
529 }
530
531 /*
532  * Certain areas of memory on x86 require very specific protection flags,
533  * for example the BIOS area or kernel text. Callers don't always get this
534  * right (again, ioremap() on BIOS memory is not uncommon) so this function
535  * checks and fixes these known static required protection bits.
536  */
537 static inline pgprot_t static_protections(pgprot_t prot, unsigned long start,
538                                           unsigned long pfn, unsigned long npg,
539                                           unsigned long lpsize, int warnlvl)
540 {
541         pgprotval_t forbidden, res;
542         unsigned long end;
543
544         /*
545          * There is no point in checking RW/NX conflicts when the requested
546          * mapping is setting the page !PRESENT.
547          */
548         if (!(pgprot_val(prot) & _PAGE_PRESENT))
549                 return prot;
550
551         /* Operate on the virtual address */
552         end = start + npg * PAGE_SIZE - 1;
553
554         res = protect_kernel_text(start, end);
555         check_conflict(warnlvl, prot, res, start, end, pfn, "Text NX");
556         forbidden = res;
557
558         /*
559          * Special case to preserve a large page. If the change spawns the
560          * full large page mapping then there is no point to split it
561          * up. Happens with ftrace and is going to be removed once ftrace
562          * switched to text_poke().
563          */
564         if (lpsize != (npg * PAGE_SIZE) || (start & (lpsize - 1))) {
565                 res = protect_kernel_text_ro(start, end);
566                 check_conflict(warnlvl, prot, res, start, end, pfn, "Text RO");
567                 forbidden |= res;
568         }
569
570         /* Check the PFN directly */
571         res = protect_pci_bios(pfn, pfn + npg - 1);
572         check_conflict(warnlvl, prot, res, start, end, pfn, "PCIBIOS NX");
573         forbidden |= res;
574
575         res = protect_rodata(pfn, pfn + npg - 1);
576         check_conflict(warnlvl, prot, res, start, end, pfn, "Rodata RO");
577         forbidden |= res;
578
579         return __pgprot(pgprot_val(prot) & ~forbidden);
580 }
581
582 /*
583  * Lookup the page table entry for a virtual address in a specific pgd.
584  * Return a pointer to the entry and the level of the mapping.
585  */
586 pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address,
587                              unsigned int *level)
588 {
589         p4d_t *p4d;
590         pud_t *pud;
591         pmd_t *pmd;
592
593         *level = PG_LEVEL_NONE;
594
595         if (pgd_none(*pgd))
596                 return NULL;
597
598         p4d = p4d_offset(pgd, address);
599         if (p4d_none(*p4d))
600                 return NULL;
601
602         *level = PG_LEVEL_512G;
603         if (p4d_large(*p4d) || !p4d_present(*p4d))
604                 return (pte_t *)p4d;
605
606         pud = pud_offset(p4d, address);
607         if (pud_none(*pud))
608                 return NULL;
609
610         *level = PG_LEVEL_1G;
611         if (pud_large(*pud) || !pud_present(*pud))
612                 return (pte_t *)pud;
613
614         pmd = pmd_offset(pud, address);
615         if (pmd_none(*pmd))
616                 return NULL;
617
618         *level = PG_LEVEL_2M;
619         if (pmd_large(*pmd) || !pmd_present(*pmd))
620                 return (pte_t *)pmd;
621
622         *level = PG_LEVEL_4K;
623
624         return pte_offset_kernel(pmd, address);
625 }
626
627 /*
628  * Lookup the page table entry for a virtual address. Return a pointer
629  * to the entry and the level of the mapping.
630  *
631  * Note: We return pud and pmd either when the entry is marked large
632  * or when the present bit is not set. Otherwise we would return a
633  * pointer to a nonexisting mapping.
634  */
635 pte_t *lookup_address(unsigned long address, unsigned int *level)
636 {
637         return lookup_address_in_pgd(pgd_offset_k(address), address, level);
638 }
639 EXPORT_SYMBOL_GPL(lookup_address);
640
641 /*
642  * Lookup the page table entry for a virtual address in a given mm. Return a
643  * pointer to the entry and the level of the mapping.
644  */
645 pte_t *lookup_address_in_mm(struct mm_struct *mm, unsigned long address,
646                             unsigned int *level)
647 {
648         return lookup_address_in_pgd(pgd_offset(mm, address), address, level);
649 }
650 EXPORT_SYMBOL_GPL(lookup_address_in_mm);
651
652 static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address,
653                                   unsigned int *level)
654 {
655         if (cpa->pgd)
656                 return lookup_address_in_pgd(cpa->pgd + pgd_index(address),
657                                                address, level);
658
659         return lookup_address(address, level);
660 }
661
662 /*
663  * Lookup the PMD entry for a virtual address. Return a pointer to the entry
664  * or NULL if not present.
665  */
666 pmd_t *lookup_pmd_address(unsigned long address)
667 {
668         pgd_t *pgd;
669         p4d_t *p4d;
670         pud_t *pud;
671
672         pgd = pgd_offset_k(address);
673         if (pgd_none(*pgd))
674                 return NULL;
675
676         p4d = p4d_offset(pgd, address);
677         if (p4d_none(*p4d) || p4d_large(*p4d) || !p4d_present(*p4d))
678                 return NULL;
679
680         pud = pud_offset(p4d, address);
681         if (pud_none(*pud) || pud_large(*pud) || !pud_present(*pud))
682                 return NULL;
683
684         return pmd_offset(pud, address);
685 }
686
687 /*
688  * This is necessary because __pa() does not work on some
689  * kinds of memory, like vmalloc() or the alloc_remap()
690  * areas on 32-bit NUMA systems.  The percpu areas can
691  * end up in this kind of memory, for instance.
692  *
693  * This could be optimized, but it is only intended to be
694  * used at initialization time, and keeping it
695  * unoptimized should increase the testing coverage for
696  * the more obscure platforms.
697  */
698 phys_addr_t slow_virt_to_phys(void *__virt_addr)
699 {
700         unsigned long virt_addr = (unsigned long)__virt_addr;
701         phys_addr_t phys_addr;
702         unsigned long offset;
703         enum pg_level level;
704         pte_t *pte;
705
706         pte = lookup_address(virt_addr, &level);
707         BUG_ON(!pte);
708
709         /*
710          * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t
711          * before being left-shifted PAGE_SHIFT bits -- this trick is to
712          * make 32-PAE kernel work correctly.
713          */
714         switch (level) {
715         case PG_LEVEL_1G:
716                 phys_addr = (phys_addr_t)pud_pfn(*(pud_t *)pte) << PAGE_SHIFT;
717                 offset = virt_addr & ~PUD_PAGE_MASK;
718                 break;
719         case PG_LEVEL_2M:
720                 phys_addr = (phys_addr_t)pmd_pfn(*(pmd_t *)pte) << PAGE_SHIFT;
721                 offset = virt_addr & ~PMD_PAGE_MASK;
722                 break;
723         default:
724                 phys_addr = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
725                 offset = virt_addr & ~PAGE_MASK;
726         }
727
728         return (phys_addr_t)(phys_addr | offset);
729 }
730 EXPORT_SYMBOL_GPL(slow_virt_to_phys);
731
732 /*
733  * Set the new pmd in all the pgds we know about:
734  */
735 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
736 {
737         /* change init_mm */
738         set_pte_atomic(kpte, pte);
739 #ifdef CONFIG_X86_32
740         if (!SHARED_KERNEL_PMD) {
741                 struct page *page;
742
743                 list_for_each_entry(page, &pgd_list, lru) {
744                         pgd_t *pgd;
745                         p4d_t *p4d;
746                         pud_t *pud;
747                         pmd_t *pmd;
748
749                         pgd = (pgd_t *)page_address(page) + pgd_index(address);
750                         p4d = p4d_offset(pgd, address);
751                         pud = pud_offset(p4d, address);
752                         pmd = pmd_offset(pud, address);
753                         set_pte_atomic((pte_t *)pmd, pte);
754                 }
755         }
756 #endif
757 }
758
759 static pgprot_t pgprot_clear_protnone_bits(pgprot_t prot)
760 {
761         /*
762          * _PAGE_GLOBAL means "global page" for present PTEs.
763          * But, it is also used to indicate _PAGE_PROTNONE
764          * for non-present PTEs.
765          *
766          * This ensures that a _PAGE_GLOBAL PTE going from
767          * present to non-present is not confused as
768          * _PAGE_PROTNONE.
769          */
770         if (!(pgprot_val(prot) & _PAGE_PRESENT))
771                 pgprot_val(prot) &= ~_PAGE_GLOBAL;
772
773         return prot;
774 }
775
776 static int __should_split_large_page(pte_t *kpte, unsigned long address,
777                                      struct cpa_data *cpa)
778 {
779         unsigned long numpages, pmask, psize, lpaddr, pfn, old_pfn;
780         pgprot_t old_prot, new_prot, req_prot, chk_prot;
781         pte_t new_pte, *tmp;
782         enum pg_level level;
783
784         /*
785          * Check for races, another CPU might have split this page
786          * up already:
787          */
788         tmp = _lookup_address_cpa(cpa, address, &level);
789         if (tmp != kpte)
790                 return 1;
791
792         switch (level) {
793         case PG_LEVEL_2M:
794                 old_prot = pmd_pgprot(*(pmd_t *)kpte);
795                 old_pfn = pmd_pfn(*(pmd_t *)kpte);
796                 cpa_inc_2m_checked();
797                 break;
798         case PG_LEVEL_1G:
799                 old_prot = pud_pgprot(*(pud_t *)kpte);
800                 old_pfn = pud_pfn(*(pud_t *)kpte);
801                 cpa_inc_1g_checked();
802                 break;
803         default:
804                 return -EINVAL;
805         }
806
807         psize = page_level_size(level);
808         pmask = page_level_mask(level);
809
810         /*
811          * Calculate the number of pages, which fit into this large
812          * page starting at address:
813          */
814         lpaddr = (address + psize) & pmask;
815         numpages = (lpaddr - address) >> PAGE_SHIFT;
816         if (numpages < cpa->numpages)
817                 cpa->numpages = numpages;
818
819         /*
820          * We are safe now. Check whether the new pgprot is the same:
821          * Convert protection attributes to 4k-format, as cpa->mask* are set
822          * up accordingly.
823          */
824
825         /* Clear PSE (aka _PAGE_PAT) and move PAT bit to correct position */
826         req_prot = pgprot_large_2_4k(old_prot);
827
828         pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
829         pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
830
831         /*
832          * req_prot is in format of 4k pages. It must be converted to large
833          * page format: the caching mode includes the PAT bit located at
834          * different bit positions in the two formats.
835          */
836         req_prot = pgprot_4k_2_large(req_prot);
837         req_prot = pgprot_clear_protnone_bits(req_prot);
838         if (pgprot_val(req_prot) & _PAGE_PRESENT)
839                 pgprot_val(req_prot) |= _PAGE_PSE;
840
841         /*
842          * old_pfn points to the large page base pfn. So we need to add the
843          * offset of the virtual address:
844          */
845         pfn = old_pfn + ((address & (psize - 1)) >> PAGE_SHIFT);
846         cpa->pfn = pfn;
847
848         /*
849          * Calculate the large page base address and the number of 4K pages
850          * in the large page
851          */
852         lpaddr = address & pmask;
853         numpages = psize >> PAGE_SHIFT;
854
855         /*
856          * Sanity check that the existing mapping is correct versus the static
857          * protections. static_protections() guards against !PRESENT, so no
858          * extra conditional required here.
859          */
860         chk_prot = static_protections(old_prot, lpaddr, old_pfn, numpages,
861                                       psize, CPA_CONFLICT);
862
863         if (WARN_ON_ONCE(pgprot_val(chk_prot) != pgprot_val(old_prot))) {
864                 /*
865                  * Split the large page and tell the split code to
866                  * enforce static protections.
867                  */
868                 cpa->force_static_prot = 1;
869                 return 1;
870         }
871
872         /*
873          * Optimization: If the requested pgprot is the same as the current
874          * pgprot, then the large page can be preserved and no updates are
875          * required independent of alignment and length of the requested
876          * range. The above already established that the current pgprot is
877          * correct, which in consequence makes the requested pgprot correct
878          * as well if it is the same. The static protection scan below will
879          * not come to a different conclusion.
880          */
881         if (pgprot_val(req_prot) == pgprot_val(old_prot)) {
882                 cpa_inc_lp_sameprot(level);
883                 return 0;
884         }
885
886         /*
887          * If the requested range does not cover the full page, split it up
888          */
889         if (address != lpaddr || cpa->numpages != numpages)
890                 return 1;
891
892         /*
893          * Check whether the requested pgprot is conflicting with a static
894          * protection requirement in the large page.
895          */
896         new_prot = static_protections(req_prot, lpaddr, old_pfn, numpages,
897                                       psize, CPA_DETECT);
898
899         /*
900          * If there is a conflict, split the large page.
901          *
902          * There used to be a 4k wise evaluation trying really hard to
903          * preserve the large pages, but experimentation has shown, that this
904          * does not help at all. There might be corner cases which would
905          * preserve one large page occasionally, but it's really not worth the
906          * extra code and cycles for the common case.
907          */
908         if (pgprot_val(req_prot) != pgprot_val(new_prot))
909                 return 1;
910
911         /* All checks passed. Update the large page mapping. */
912         new_pte = pfn_pte(old_pfn, new_prot);
913         __set_pmd_pte(kpte, address, new_pte);
914         cpa->flags |= CPA_FLUSHTLB;
915         cpa_inc_lp_preserved(level);
916         return 0;
917 }
918
919 static int should_split_large_page(pte_t *kpte, unsigned long address,
920                                    struct cpa_data *cpa)
921 {
922         int do_split;
923
924         if (cpa->force_split)
925                 return 1;
926
927         spin_lock(&pgd_lock);
928         do_split = __should_split_large_page(kpte, address, cpa);
929         spin_unlock(&pgd_lock);
930
931         return do_split;
932 }
933
934 static void split_set_pte(struct cpa_data *cpa, pte_t *pte, unsigned long pfn,
935                           pgprot_t ref_prot, unsigned long address,
936                           unsigned long size)
937 {
938         unsigned int npg = PFN_DOWN(size);
939         pgprot_t prot;
940
941         /*
942          * If should_split_large_page() discovered an inconsistent mapping,
943          * remove the invalid protection in the split mapping.
944          */
945         if (!cpa->force_static_prot)
946                 goto set;
947
948         /* Hand in lpsize = 0 to enforce the protection mechanism */
949         prot = static_protections(ref_prot, address, pfn, npg, 0, CPA_PROTECT);
950
951         if (pgprot_val(prot) == pgprot_val(ref_prot))
952                 goto set;
953
954         /*
955          * If this is splitting a PMD, fix it up. PUD splits cannot be
956          * fixed trivially as that would require to rescan the newly
957          * installed PMD mappings after returning from split_large_page()
958          * so an eventual further split can allocate the necessary PTE
959          * pages. Warn for now and revisit it in case this actually
960          * happens.
961          */
962         if (size == PAGE_SIZE)
963                 ref_prot = prot;
964         else
965                 pr_warn_once("CPA: Cannot fixup static protections for PUD split\n");
966 set:
967         set_pte(pte, pfn_pte(pfn, ref_prot));
968 }
969
970 static int
971 __split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address,
972                    struct page *base)
973 {
974         unsigned long lpaddr, lpinc, ref_pfn, pfn, pfninc = 1;
975         pte_t *pbase = (pte_t *)page_address(base);
976         unsigned int i, level;
977         pgprot_t ref_prot;
978         pte_t *tmp;
979
980         spin_lock(&pgd_lock);
981         /*
982          * Check for races, another CPU might have split this page
983          * up for us already:
984          */
985         tmp = _lookup_address_cpa(cpa, address, &level);
986         if (tmp != kpte) {
987                 spin_unlock(&pgd_lock);
988                 return 1;
989         }
990
991         paravirt_alloc_pte(&init_mm, page_to_pfn(base));
992
993         switch (level) {
994         case PG_LEVEL_2M:
995                 ref_prot = pmd_pgprot(*(pmd_t *)kpte);
996                 /*
997                  * Clear PSE (aka _PAGE_PAT) and move
998                  * PAT bit to correct position.
999                  */
1000                 ref_prot = pgprot_large_2_4k(ref_prot);
1001                 ref_pfn = pmd_pfn(*(pmd_t *)kpte);
1002                 lpaddr = address & PMD_MASK;
1003                 lpinc = PAGE_SIZE;
1004                 break;
1005
1006         case PG_LEVEL_1G:
1007                 ref_prot = pud_pgprot(*(pud_t *)kpte);
1008                 ref_pfn = pud_pfn(*(pud_t *)kpte);
1009                 pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
1010                 lpaddr = address & PUD_MASK;
1011                 lpinc = PMD_SIZE;
1012                 /*
1013                  * Clear the PSE flags if the PRESENT flag is not set
1014                  * otherwise pmd_present/pmd_huge will return true
1015                  * even on a non present pmd.
1016                  */
1017                 if (!(pgprot_val(ref_prot) & _PAGE_PRESENT))
1018                         pgprot_val(ref_prot) &= ~_PAGE_PSE;
1019                 break;
1020
1021         default:
1022                 spin_unlock(&pgd_lock);
1023                 return 1;
1024         }
1025
1026         ref_prot = pgprot_clear_protnone_bits(ref_prot);
1027
1028         /*
1029          * Get the target pfn from the original entry:
1030          */
1031         pfn = ref_pfn;
1032         for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc, lpaddr += lpinc)
1033                 split_set_pte(cpa, pbase + i, pfn, ref_prot, lpaddr, lpinc);
1034
1035         if (virt_addr_valid(address)) {
1036                 unsigned long pfn = PFN_DOWN(__pa(address));
1037
1038                 if (pfn_range_is_mapped(pfn, pfn + 1))
1039                         split_page_count(level);
1040         }
1041
1042         /*
1043          * Install the new, split up pagetable.
1044          *
1045          * We use the standard kernel pagetable protections for the new
1046          * pagetable protections, the actual ptes set above control the
1047          * primary protection behavior:
1048          */
1049         __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
1050
1051         /*
1052          * Do a global flush tlb after splitting the large page
1053          * and before we do the actual change page attribute in the PTE.
1054          *
1055          * Without this, we violate the TLB application note, that says:
1056          * "The TLBs may contain both ordinary and large-page
1057          *  translations for a 4-KByte range of linear addresses. This
1058          *  may occur if software modifies the paging structures so that
1059          *  the page size used for the address range changes. If the two
1060          *  translations differ with respect to page frame or attributes
1061          *  (e.g., permissions), processor behavior is undefined and may
1062          *  be implementation-specific."
1063          *
1064          * We do this global tlb flush inside the cpa_lock, so that we
1065          * don't allow any other cpu, with stale tlb entries change the
1066          * page attribute in parallel, that also falls into the
1067          * just split large page entry.
1068          */
1069         flush_tlb_all();
1070         spin_unlock(&pgd_lock);
1071
1072         return 0;
1073 }
1074
1075 static int split_large_page(struct cpa_data *cpa, pte_t *kpte,
1076                             unsigned long address)
1077 {
1078         struct page *base;
1079
1080         if (!debug_pagealloc_enabled())
1081                 spin_unlock(&cpa_lock);
1082         base = alloc_pages(GFP_KERNEL, 0);
1083         if (!debug_pagealloc_enabled())
1084                 spin_lock(&cpa_lock);
1085         if (!base)
1086                 return -ENOMEM;
1087
1088         if (__split_large_page(cpa, kpte, address, base))
1089                 __free_page(base);
1090
1091         return 0;
1092 }
1093
1094 static bool try_to_free_pte_page(pte_t *pte)
1095 {
1096         int i;
1097
1098         for (i = 0; i < PTRS_PER_PTE; i++)
1099                 if (!pte_none(pte[i]))
1100                         return false;
1101
1102         free_page((unsigned long)pte);
1103         return true;
1104 }
1105
1106 static bool try_to_free_pmd_page(pmd_t *pmd)
1107 {
1108         int i;
1109
1110         for (i = 0; i < PTRS_PER_PMD; i++)
1111                 if (!pmd_none(pmd[i]))
1112                         return false;
1113
1114         free_page((unsigned long)pmd);
1115         return true;
1116 }
1117
1118 static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end)
1119 {
1120         pte_t *pte = pte_offset_kernel(pmd, start);
1121
1122         while (start < end) {
1123                 set_pte(pte, __pte(0));
1124
1125                 start += PAGE_SIZE;
1126                 pte++;
1127         }
1128
1129         if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) {
1130                 pmd_clear(pmd);
1131                 return true;
1132         }
1133         return false;
1134 }
1135
1136 static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd,
1137                               unsigned long start, unsigned long end)
1138 {
1139         if (unmap_pte_range(pmd, start, end))
1140                 if (try_to_free_pmd_page(pud_pgtable(*pud)))
1141                         pud_clear(pud);
1142 }
1143
1144 static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end)
1145 {
1146         pmd_t *pmd = pmd_offset(pud, start);
1147
1148         /*
1149          * Not on a 2MB page boundary?
1150          */
1151         if (start & (PMD_SIZE - 1)) {
1152                 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
1153                 unsigned long pre_end = min_t(unsigned long, end, next_page);
1154
1155                 __unmap_pmd_range(pud, pmd, start, pre_end);
1156
1157                 start = pre_end;
1158                 pmd++;
1159         }
1160
1161         /*
1162          * Try to unmap in 2M chunks.
1163          */
1164         while (end - start >= PMD_SIZE) {
1165                 if (pmd_large(*pmd))
1166                         pmd_clear(pmd);
1167                 else
1168                         __unmap_pmd_range(pud, pmd, start, start + PMD_SIZE);
1169
1170                 start += PMD_SIZE;
1171                 pmd++;
1172         }
1173
1174         /*
1175          * 4K leftovers?
1176          */
1177         if (start < end)
1178                 return __unmap_pmd_range(pud, pmd, start, end);
1179
1180         /*
1181          * Try again to free the PMD page if haven't succeeded above.
1182          */
1183         if (!pud_none(*pud))
1184                 if (try_to_free_pmd_page(pud_pgtable(*pud)))
1185                         pud_clear(pud);
1186 }
1187
1188 static void unmap_pud_range(p4d_t *p4d, unsigned long start, unsigned long end)
1189 {
1190         pud_t *pud = pud_offset(p4d, start);
1191
1192         /*
1193          * Not on a GB page boundary?
1194          */
1195         if (start & (PUD_SIZE - 1)) {
1196                 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1197                 unsigned long pre_end   = min_t(unsigned long, end, next_page);
1198
1199                 unmap_pmd_range(pud, start, pre_end);
1200
1201                 start = pre_end;
1202                 pud++;
1203         }
1204
1205         /*
1206          * Try to unmap in 1G chunks?
1207          */
1208         while (end - start >= PUD_SIZE) {
1209
1210                 if (pud_large(*pud))
1211                         pud_clear(pud);
1212                 else
1213                         unmap_pmd_range(pud, start, start + PUD_SIZE);
1214
1215                 start += PUD_SIZE;
1216                 pud++;
1217         }
1218
1219         /*
1220          * 2M leftovers?
1221          */
1222         if (start < end)
1223                 unmap_pmd_range(pud, start, end);
1224
1225         /*
1226          * No need to try to free the PUD page because we'll free it in
1227          * populate_pgd's error path
1228          */
1229 }
1230
1231 static int alloc_pte_page(pmd_t *pmd)
1232 {
1233         pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
1234         if (!pte)
1235                 return -1;
1236
1237         set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
1238         return 0;
1239 }
1240
1241 static int alloc_pmd_page(pud_t *pud)
1242 {
1243         pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
1244         if (!pmd)
1245                 return -1;
1246
1247         set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
1248         return 0;
1249 }
1250
1251 static void populate_pte(struct cpa_data *cpa,
1252                          unsigned long start, unsigned long end,
1253                          unsigned num_pages, pmd_t *pmd, pgprot_t pgprot)
1254 {
1255         pte_t *pte;
1256
1257         pte = pte_offset_kernel(pmd, start);
1258
1259         pgprot = pgprot_clear_protnone_bits(pgprot);
1260
1261         while (num_pages-- && start < end) {
1262                 set_pte(pte, pfn_pte(cpa->pfn, pgprot));
1263
1264                 start    += PAGE_SIZE;
1265                 cpa->pfn++;
1266                 pte++;
1267         }
1268 }
1269
1270 static long populate_pmd(struct cpa_data *cpa,
1271                          unsigned long start, unsigned long end,
1272                          unsigned num_pages, pud_t *pud, pgprot_t pgprot)
1273 {
1274         long cur_pages = 0;
1275         pmd_t *pmd;
1276         pgprot_t pmd_pgprot;
1277
1278         /*
1279          * Not on a 2M boundary?
1280          */
1281         if (start & (PMD_SIZE - 1)) {
1282                 unsigned long pre_end = start + (num_pages << PAGE_SHIFT);
1283                 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
1284
1285                 pre_end   = min_t(unsigned long, pre_end, next_page);
1286                 cur_pages = (pre_end - start) >> PAGE_SHIFT;
1287                 cur_pages = min_t(unsigned int, num_pages, cur_pages);
1288
1289                 /*
1290                  * Need a PTE page?
1291                  */
1292                 pmd = pmd_offset(pud, start);
1293                 if (pmd_none(*pmd))
1294                         if (alloc_pte_page(pmd))
1295                                 return -1;
1296
1297                 populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot);
1298
1299                 start = pre_end;
1300         }
1301
1302         /*
1303          * We mapped them all?
1304          */
1305         if (num_pages == cur_pages)
1306                 return cur_pages;
1307
1308         pmd_pgprot = pgprot_4k_2_large(pgprot);
1309
1310         while (end - start >= PMD_SIZE) {
1311
1312                 /*
1313                  * We cannot use a 1G page so allocate a PMD page if needed.
1314                  */
1315                 if (pud_none(*pud))
1316                         if (alloc_pmd_page(pud))
1317                                 return -1;
1318
1319                 pmd = pmd_offset(pud, start);
1320
1321                 set_pmd(pmd, pmd_mkhuge(pfn_pmd(cpa->pfn,
1322                                         canon_pgprot(pmd_pgprot))));
1323
1324                 start     += PMD_SIZE;
1325                 cpa->pfn  += PMD_SIZE >> PAGE_SHIFT;
1326                 cur_pages += PMD_SIZE >> PAGE_SHIFT;
1327         }
1328
1329         /*
1330          * Map trailing 4K pages.
1331          */
1332         if (start < end) {
1333                 pmd = pmd_offset(pud, start);
1334                 if (pmd_none(*pmd))
1335                         if (alloc_pte_page(pmd))
1336                                 return -1;
1337
1338                 populate_pte(cpa, start, end, num_pages - cur_pages,
1339                              pmd, pgprot);
1340         }
1341         return num_pages;
1342 }
1343
1344 static int populate_pud(struct cpa_data *cpa, unsigned long start, p4d_t *p4d,
1345                         pgprot_t pgprot)
1346 {
1347         pud_t *pud;
1348         unsigned long end;
1349         long cur_pages = 0;
1350         pgprot_t pud_pgprot;
1351
1352         end = start + (cpa->numpages << PAGE_SHIFT);
1353
1354         /*
1355          * Not on a Gb page boundary? => map everything up to it with
1356          * smaller pages.
1357          */
1358         if (start & (PUD_SIZE - 1)) {
1359                 unsigned long pre_end;
1360                 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1361
1362                 pre_end   = min_t(unsigned long, end, next_page);
1363                 cur_pages = (pre_end - start) >> PAGE_SHIFT;
1364                 cur_pages = min_t(int, (int)cpa->numpages, cur_pages);
1365
1366                 pud = pud_offset(p4d, start);
1367
1368                 /*
1369                  * Need a PMD page?
1370                  */
1371                 if (pud_none(*pud))
1372                         if (alloc_pmd_page(pud))
1373                                 return -1;
1374
1375                 cur_pages = populate_pmd(cpa, start, pre_end, cur_pages,
1376                                          pud, pgprot);
1377                 if (cur_pages < 0)
1378                         return cur_pages;
1379
1380                 start = pre_end;
1381         }
1382
1383         /* We mapped them all? */
1384         if (cpa->numpages == cur_pages)
1385                 return cur_pages;
1386
1387         pud = pud_offset(p4d, start);
1388         pud_pgprot = pgprot_4k_2_large(pgprot);
1389
1390         /*
1391          * Map everything starting from the Gb boundary, possibly with 1G pages
1392          */
1393         while (boot_cpu_has(X86_FEATURE_GBPAGES) && end - start >= PUD_SIZE) {
1394                 set_pud(pud, pud_mkhuge(pfn_pud(cpa->pfn,
1395                                    canon_pgprot(pud_pgprot))));
1396
1397                 start     += PUD_SIZE;
1398                 cpa->pfn  += PUD_SIZE >> PAGE_SHIFT;
1399                 cur_pages += PUD_SIZE >> PAGE_SHIFT;
1400                 pud++;
1401         }
1402
1403         /* Map trailing leftover */
1404         if (start < end) {
1405                 long tmp;
1406
1407                 pud = pud_offset(p4d, start);
1408                 if (pud_none(*pud))
1409                         if (alloc_pmd_page(pud))
1410                                 return -1;
1411
1412                 tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages,
1413                                    pud, pgprot);
1414                 if (tmp < 0)
1415                         return cur_pages;
1416
1417                 cur_pages += tmp;
1418         }
1419         return cur_pages;
1420 }
1421
1422 /*
1423  * Restrictions for kernel page table do not necessarily apply when mapping in
1424  * an alternate PGD.
1425  */
1426 static int populate_pgd(struct cpa_data *cpa, unsigned long addr)
1427 {
1428         pgprot_t pgprot = __pgprot(_KERNPG_TABLE);
1429         pud_t *pud = NULL;      /* shut up gcc */
1430         p4d_t *p4d;
1431         pgd_t *pgd_entry;
1432         long ret;
1433
1434         pgd_entry = cpa->pgd + pgd_index(addr);
1435
1436         if (pgd_none(*pgd_entry)) {
1437                 p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
1438                 if (!p4d)
1439                         return -1;
1440
1441                 set_pgd(pgd_entry, __pgd(__pa(p4d) | _KERNPG_TABLE));
1442         }
1443
1444         /*
1445          * Allocate a PUD page and hand it down for mapping.
1446          */
1447         p4d = p4d_offset(pgd_entry, addr);
1448         if (p4d_none(*p4d)) {
1449                 pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
1450                 if (!pud)
1451                         return -1;
1452
1453                 set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
1454         }
1455
1456         pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr);
1457         pgprot_val(pgprot) |=  pgprot_val(cpa->mask_set);
1458
1459         ret = populate_pud(cpa, addr, p4d, pgprot);
1460         if (ret < 0) {
1461                 /*
1462                  * Leave the PUD page in place in case some other CPU or thread
1463                  * already found it, but remove any useless entries we just
1464                  * added to it.
1465                  */
1466                 unmap_pud_range(p4d, addr,
1467                                 addr + (cpa->numpages << PAGE_SHIFT));
1468                 return ret;
1469         }
1470
1471         cpa->numpages = ret;
1472         return 0;
1473 }
1474
1475 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
1476                                int primary)
1477 {
1478         if (cpa->pgd) {
1479                 /*
1480                  * Right now, we only execute this code path when mapping
1481                  * the EFI virtual memory map regions, no other users
1482                  * provide a ->pgd value. This may change in the future.
1483                  */
1484                 return populate_pgd(cpa, vaddr);
1485         }
1486
1487         /*
1488          * Ignore all non primary paths.
1489          */
1490         if (!primary) {
1491                 cpa->numpages = 1;
1492                 return 0;
1493         }
1494
1495         /*
1496          * Ignore the NULL PTE for kernel identity mapping, as it is expected
1497          * to have holes.
1498          * Also set numpages to '1' indicating that we processed cpa req for
1499          * one virtual address page and its pfn. TBD: numpages can be set based
1500          * on the initial value and the level returned by lookup_address().
1501          */
1502         if (within(vaddr, PAGE_OFFSET,
1503                    PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
1504                 cpa->numpages = 1;
1505                 cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
1506                 return 0;
1507
1508         } else if (__cpa_pfn_in_highmap(cpa->pfn)) {
1509                 /* Faults in the highmap are OK, so do not warn: */
1510                 return -EFAULT;
1511         } else {
1512                 WARN(1, KERN_WARNING "CPA: called for zero pte. "
1513                         "vaddr = %lx cpa->vaddr = %lx\n", vaddr,
1514                         *cpa->vaddr);
1515
1516                 return -EFAULT;
1517         }
1518 }
1519
1520 static int __change_page_attr(struct cpa_data *cpa, int primary)
1521 {
1522         unsigned long address;
1523         int do_split, err;
1524         unsigned int level;
1525         pte_t *kpte, old_pte;
1526
1527         address = __cpa_addr(cpa, cpa->curpage);
1528 repeat:
1529         kpte = _lookup_address_cpa(cpa, address, &level);
1530         if (!kpte)
1531                 return __cpa_process_fault(cpa, address, primary);
1532
1533         old_pte = *kpte;
1534         if (pte_none(old_pte))
1535                 return __cpa_process_fault(cpa, address, primary);
1536
1537         if (level == PG_LEVEL_4K) {
1538                 pte_t new_pte;
1539                 pgprot_t new_prot = pte_pgprot(old_pte);
1540                 unsigned long pfn = pte_pfn(old_pte);
1541
1542                 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
1543                 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
1544
1545                 cpa_inc_4k_install();
1546                 /* Hand in lpsize = 0 to enforce the protection mechanism */
1547                 new_prot = static_protections(new_prot, address, pfn, 1, 0,
1548                                               CPA_PROTECT);
1549
1550                 new_prot = pgprot_clear_protnone_bits(new_prot);
1551
1552                 /*
1553                  * We need to keep the pfn from the existing PTE,
1554                  * after all we're only going to change it's attributes
1555                  * not the memory it points to
1556                  */
1557                 new_pte = pfn_pte(pfn, new_prot);
1558                 cpa->pfn = pfn;
1559                 /*
1560                  * Do we really change anything ?
1561                  */
1562                 if (pte_val(old_pte) != pte_val(new_pte)) {
1563                         set_pte_atomic(kpte, new_pte);
1564                         cpa->flags |= CPA_FLUSHTLB;
1565                 }
1566                 cpa->numpages = 1;
1567                 return 0;
1568         }
1569
1570         /*
1571          * Check, whether we can keep the large page intact
1572          * and just change the pte:
1573          */
1574         do_split = should_split_large_page(kpte, address, cpa);
1575         /*
1576          * When the range fits into the existing large page,
1577          * return. cp->numpages and cpa->tlbflush have been updated in
1578          * try_large_page:
1579          */
1580         if (do_split <= 0)
1581                 return do_split;
1582
1583         /*
1584          * We have to split the large page:
1585          */
1586         err = split_large_page(cpa, kpte, address);
1587         if (!err)
1588                 goto repeat;
1589
1590         return err;
1591 }
1592
1593 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
1594
1595 static int cpa_process_alias(struct cpa_data *cpa)
1596 {
1597         struct cpa_data alias_cpa;
1598         unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
1599         unsigned long vaddr;
1600         int ret;
1601
1602         if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1))
1603                 return 0;
1604
1605         /*
1606          * No need to redo, when the primary call touched the direct
1607          * mapping already:
1608          */
1609         vaddr = __cpa_addr(cpa, cpa->curpage);
1610         if (!(within(vaddr, PAGE_OFFSET,
1611                     PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
1612
1613                 alias_cpa = *cpa;
1614                 alias_cpa.vaddr = &laddr;
1615                 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1616                 alias_cpa.curpage = 0;
1617
1618                 cpa->force_flush_all = 1;
1619
1620                 ret = __change_page_attr_set_clr(&alias_cpa, 0);
1621                 if (ret)
1622                         return ret;
1623         }
1624
1625 #ifdef CONFIG_X86_64
1626         /*
1627          * If the primary call didn't touch the high mapping already
1628          * and the physical address is inside the kernel map, we need
1629          * to touch the high mapped kernel as well:
1630          */
1631         if (!within(vaddr, (unsigned long)_text, _brk_end) &&
1632             __cpa_pfn_in_highmap(cpa->pfn)) {
1633                 unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
1634                                                __START_KERNEL_map - phys_base;
1635                 alias_cpa = *cpa;
1636                 alias_cpa.vaddr = &temp_cpa_vaddr;
1637                 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1638                 alias_cpa.curpage = 0;
1639
1640                 cpa->force_flush_all = 1;
1641                 /*
1642                  * The high mapping range is imprecise, so ignore the
1643                  * return value.
1644                  */
1645                 __change_page_attr_set_clr(&alias_cpa, 0);
1646         }
1647 #endif
1648
1649         return 0;
1650 }
1651
1652 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
1653 {
1654         unsigned long numpages = cpa->numpages;
1655         unsigned long rempages = numpages;
1656         int ret = 0;
1657
1658         while (rempages) {
1659                 /*
1660                  * Store the remaining nr of pages for the large page
1661                  * preservation check.
1662                  */
1663                 cpa->numpages = rempages;
1664                 /* for array changes, we can't use large page */
1665                 if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
1666                         cpa->numpages = 1;
1667
1668                 if (!debug_pagealloc_enabled())
1669                         spin_lock(&cpa_lock);
1670                 ret = __change_page_attr(cpa, checkalias);
1671                 if (!debug_pagealloc_enabled())
1672                         spin_unlock(&cpa_lock);
1673                 if (ret)
1674                         goto out;
1675
1676                 if (checkalias) {
1677                         ret = cpa_process_alias(cpa);
1678                         if (ret)
1679                                 goto out;
1680                 }
1681
1682                 /*
1683                  * Adjust the number of pages with the result of the
1684                  * CPA operation. Either a large page has been
1685                  * preserved or a single page update happened.
1686                  */
1687                 BUG_ON(cpa->numpages > rempages || !cpa->numpages);
1688                 rempages -= cpa->numpages;
1689                 cpa->curpage += cpa->numpages;
1690         }
1691
1692 out:
1693         /* Restore the original numpages */
1694         cpa->numpages = numpages;
1695         return ret;
1696 }
1697
1698 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
1699                                     pgprot_t mask_set, pgprot_t mask_clr,
1700                                     int force_split, int in_flag,
1701                                     struct page **pages)
1702 {
1703         struct cpa_data cpa;
1704         int ret, cache, checkalias;
1705
1706         memset(&cpa, 0, sizeof(cpa));
1707
1708         /*
1709          * Check, if we are requested to set a not supported
1710          * feature.  Clearing non-supported features is OK.
1711          */
1712         mask_set = canon_pgprot(mask_set);
1713
1714         if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
1715                 return 0;
1716
1717         /* Ensure we are PAGE_SIZE aligned */
1718         if (in_flag & CPA_ARRAY) {
1719                 int i;
1720                 for (i = 0; i < numpages; i++) {
1721                         if (addr[i] & ~PAGE_MASK) {
1722                                 addr[i] &= PAGE_MASK;
1723                                 WARN_ON_ONCE(1);
1724                         }
1725                 }
1726         } else if (!(in_flag & CPA_PAGES_ARRAY)) {
1727                 /*
1728                  * in_flag of CPA_PAGES_ARRAY implies it is aligned.
1729                  * No need to check in that case
1730                  */
1731                 if (*addr & ~PAGE_MASK) {
1732                         *addr &= PAGE_MASK;
1733                         /*
1734                          * People should not be passing in unaligned addresses:
1735                          */
1736                         WARN_ON_ONCE(1);
1737                 }
1738         }
1739
1740         /* Must avoid aliasing mappings in the highmem code */
1741         kmap_flush_unused();
1742
1743         vm_unmap_aliases();
1744
1745         cpa.vaddr = addr;
1746         cpa.pages = pages;
1747         cpa.numpages = numpages;
1748         cpa.mask_set = mask_set;
1749         cpa.mask_clr = mask_clr;
1750         cpa.flags = 0;
1751         cpa.curpage = 0;
1752         cpa.force_split = force_split;
1753
1754         if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
1755                 cpa.flags |= in_flag;
1756
1757         /* No alias checking for _NX bit modifications */
1758         checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
1759         /* Has caller explicitly disabled alias checking? */
1760         if (in_flag & CPA_NO_CHECK_ALIAS)
1761                 checkalias = 0;
1762
1763         ret = __change_page_attr_set_clr(&cpa, checkalias);
1764
1765         /*
1766          * Check whether we really changed something:
1767          */
1768         if (!(cpa.flags & CPA_FLUSHTLB))
1769                 goto out;
1770
1771         /*
1772          * No need to flush, when we did not set any of the caching
1773          * attributes:
1774          */
1775         cache = !!pgprot2cachemode(mask_set);
1776
1777         /*
1778          * On error; flush everything to be sure.
1779          */
1780         if (ret) {
1781                 cpa_flush_all(cache);
1782                 goto out;
1783         }
1784
1785         cpa_flush(&cpa, cache);
1786 out:
1787         return ret;
1788 }
1789
1790 static inline int change_page_attr_set(unsigned long *addr, int numpages,
1791                                        pgprot_t mask, int array)
1792 {
1793         return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
1794                 (array ? CPA_ARRAY : 0), NULL);
1795 }
1796
1797 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
1798                                          pgprot_t mask, int array)
1799 {
1800         return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
1801                 (array ? CPA_ARRAY : 0), NULL);
1802 }
1803
1804 static inline int cpa_set_pages_array(struct page **pages, int numpages,
1805                                        pgprot_t mask)
1806 {
1807         return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
1808                 CPA_PAGES_ARRAY, pages);
1809 }
1810
1811 static inline int cpa_clear_pages_array(struct page **pages, int numpages,
1812                                          pgprot_t mask)
1813 {
1814         return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
1815                 CPA_PAGES_ARRAY, pages);
1816 }
1817
1818 /*
1819  * _set_memory_prot is an internal helper for callers that have been passed
1820  * a pgprot_t value from upper layers and a reservation has already been taken.
1821  * If you want to set the pgprot to a specific page protocol, use the
1822  * set_memory_xx() functions.
1823  */
1824 int __set_memory_prot(unsigned long addr, int numpages, pgprot_t prot)
1825 {
1826         return change_page_attr_set_clr(&addr, numpages, prot,
1827                                         __pgprot(~pgprot_val(prot)), 0, 0,
1828                                         NULL);
1829 }
1830
1831 int _set_memory_uc(unsigned long addr, int numpages)
1832 {
1833         /*
1834          * for now UC MINUS. see comments in ioremap()
1835          * If you really need strong UC use ioremap_uc(), but note
1836          * that you cannot override IO areas with set_memory_*() as
1837          * these helpers cannot work with IO memory.
1838          */
1839         return change_page_attr_set(&addr, numpages,
1840                                     cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1841                                     0);
1842 }
1843
1844 int set_memory_uc(unsigned long addr, int numpages)
1845 {
1846         int ret;
1847
1848         /*
1849          * for now UC MINUS. see comments in ioremap()
1850          */
1851         ret = memtype_reserve(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1852                               _PAGE_CACHE_MODE_UC_MINUS, NULL);
1853         if (ret)
1854                 goto out_err;
1855
1856         ret = _set_memory_uc(addr, numpages);
1857         if (ret)
1858                 goto out_free;
1859
1860         return 0;
1861
1862 out_free:
1863         memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1864 out_err:
1865         return ret;
1866 }
1867 EXPORT_SYMBOL(set_memory_uc);
1868
1869 int _set_memory_wc(unsigned long addr, int numpages)
1870 {
1871         int ret;
1872
1873         ret = change_page_attr_set(&addr, numpages,
1874                                    cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1875                                    0);
1876         if (!ret) {
1877                 ret = change_page_attr_set_clr(&addr, numpages,
1878                                                cachemode2pgprot(_PAGE_CACHE_MODE_WC),
1879                                                __pgprot(_PAGE_CACHE_MASK),
1880                                                0, 0, NULL);
1881         }
1882         return ret;
1883 }
1884
1885 int set_memory_wc(unsigned long addr, int numpages)
1886 {
1887         int ret;
1888
1889         ret = memtype_reserve(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1890                 _PAGE_CACHE_MODE_WC, NULL);
1891         if (ret)
1892                 return ret;
1893
1894         ret = _set_memory_wc(addr, numpages);
1895         if (ret)
1896                 memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1897
1898         return ret;
1899 }
1900 EXPORT_SYMBOL(set_memory_wc);
1901
1902 int _set_memory_wt(unsigned long addr, int numpages)
1903 {
1904         return change_page_attr_set(&addr, numpages,
1905                                     cachemode2pgprot(_PAGE_CACHE_MODE_WT), 0);
1906 }
1907
1908 int _set_memory_wb(unsigned long addr, int numpages)
1909 {
1910         /* WB cache mode is hard wired to all cache attribute bits being 0 */
1911         return change_page_attr_clear(&addr, numpages,
1912                                       __pgprot(_PAGE_CACHE_MASK), 0);
1913 }
1914
1915 int set_memory_wb(unsigned long addr, int numpages)
1916 {
1917         int ret;
1918
1919         ret = _set_memory_wb(addr, numpages);
1920         if (ret)
1921                 return ret;
1922
1923         memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1924         return 0;
1925 }
1926 EXPORT_SYMBOL(set_memory_wb);
1927
1928 int set_memory_x(unsigned long addr, int numpages)
1929 {
1930         if (!(__supported_pte_mask & _PAGE_NX))
1931                 return 0;
1932
1933         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1934 }
1935
1936 int set_memory_nx(unsigned long addr, int numpages)
1937 {
1938         if (!(__supported_pte_mask & _PAGE_NX))
1939                 return 0;
1940
1941         return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1942 }
1943
1944 int set_memory_ro(unsigned long addr, int numpages)
1945 {
1946         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1947 }
1948
1949 int set_memory_rw(unsigned long addr, int numpages)
1950 {
1951         return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1952 }
1953
1954 int set_memory_np(unsigned long addr, int numpages)
1955 {
1956         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1957 }
1958
1959 int set_memory_np_noalias(unsigned long addr, int numpages)
1960 {
1961         int cpa_flags = CPA_NO_CHECK_ALIAS;
1962
1963         return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1964                                         __pgprot(_PAGE_PRESENT), 0,
1965                                         cpa_flags, NULL);
1966 }
1967
1968 int set_memory_4k(unsigned long addr, int numpages)
1969 {
1970         return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1971                                         __pgprot(0), 1, 0, NULL);
1972 }
1973
1974 int set_memory_nonglobal(unsigned long addr, int numpages)
1975 {
1976         return change_page_attr_clear(&addr, numpages,
1977                                       __pgprot(_PAGE_GLOBAL), 0);
1978 }
1979
1980 int set_memory_global(unsigned long addr, int numpages)
1981 {
1982         return change_page_attr_set(&addr, numpages,
1983                                     __pgprot(_PAGE_GLOBAL), 0);
1984 }
1985
1986 /*
1987  * __set_memory_enc_pgtable() is used for the hypervisors that get
1988  * informed about "encryption" status via page tables.
1989  */
1990 static int __set_memory_enc_pgtable(unsigned long addr, int numpages, bool enc)
1991 {
1992         struct cpa_data cpa;
1993         int ret;
1994
1995         /* Should not be working on unaligned addresses */
1996         if (WARN_ONCE(addr & ~PAGE_MASK, "misaligned address: %#lx\n", addr))
1997                 addr &= PAGE_MASK;
1998
1999         memset(&cpa, 0, sizeof(cpa));
2000         cpa.vaddr = &addr;
2001         cpa.numpages = numpages;
2002         cpa.mask_set = enc ? __pgprot(_PAGE_ENC) : __pgprot(0);
2003         cpa.mask_clr = enc ? __pgprot(0) : __pgprot(_PAGE_ENC);
2004         cpa.pgd = init_mm.pgd;
2005
2006         /* Must avoid aliasing mappings in the highmem code */
2007         kmap_flush_unused();
2008         vm_unmap_aliases();
2009
2010         /*
2011          * Before changing the encryption attribute, we need to flush caches.
2012          */
2013         cpa_flush(&cpa, !this_cpu_has(X86_FEATURE_SME_COHERENT));
2014
2015         ret = __change_page_attr_set_clr(&cpa, 1);
2016
2017         /*
2018          * After changing the encryption attribute, we need to flush TLBs again
2019          * in case any speculative TLB caching occurred (but no need to flush
2020          * caches again).  We could just use cpa_flush_all(), but in case TLB
2021          * flushing gets optimized in the cpa_flush() path use the same logic
2022          * as above.
2023          */
2024         cpa_flush(&cpa, 0);
2025
2026         /*
2027          * Notify hypervisor that a given memory range is mapped encrypted
2028          * or decrypted.
2029          */
2030         notify_range_enc_status_changed(addr, numpages, enc);
2031
2032         return ret;
2033 }
2034
2035 static int __set_memory_enc_dec(unsigned long addr, int numpages, bool enc)
2036 {
2037         if (hv_is_isolation_supported())
2038                 return hv_set_mem_host_visibility(addr, numpages, !enc);
2039
2040         if (cc_platform_has(CC_ATTR_MEM_ENCRYPT))
2041                 return __set_memory_enc_pgtable(addr, numpages, enc);
2042
2043         return 0;
2044 }
2045
2046 int set_memory_encrypted(unsigned long addr, int numpages)
2047 {
2048         return __set_memory_enc_dec(addr, numpages, true);
2049 }
2050 EXPORT_SYMBOL_GPL(set_memory_encrypted);
2051
2052 int set_memory_decrypted(unsigned long addr, int numpages)
2053 {
2054         return __set_memory_enc_dec(addr, numpages, false);
2055 }
2056 EXPORT_SYMBOL_GPL(set_memory_decrypted);
2057
2058 int set_pages_uc(struct page *page, int numpages)
2059 {
2060         unsigned long addr = (unsigned long)page_address(page);
2061
2062         return set_memory_uc(addr, numpages);
2063 }
2064 EXPORT_SYMBOL(set_pages_uc);
2065
2066 static int _set_pages_array(struct page **pages, int numpages,
2067                 enum page_cache_mode new_type)
2068 {
2069         unsigned long start;
2070         unsigned long end;
2071         enum page_cache_mode set_type;
2072         int i;
2073         int free_idx;
2074         int ret;
2075
2076         for (i = 0; i < numpages; i++) {
2077                 if (PageHighMem(pages[i]))
2078                         continue;
2079                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2080                 end = start + PAGE_SIZE;
2081                 if (memtype_reserve(start, end, new_type, NULL))
2082                         goto err_out;
2083         }
2084
2085         /* If WC, set to UC- first and then WC */
2086         set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
2087                                 _PAGE_CACHE_MODE_UC_MINUS : new_type;
2088
2089         ret = cpa_set_pages_array(pages, numpages,
2090                                   cachemode2pgprot(set_type));
2091         if (!ret && new_type == _PAGE_CACHE_MODE_WC)
2092                 ret = change_page_attr_set_clr(NULL, numpages,
2093                                                cachemode2pgprot(
2094                                                 _PAGE_CACHE_MODE_WC),
2095                                                __pgprot(_PAGE_CACHE_MASK),
2096                                                0, CPA_PAGES_ARRAY, pages);
2097         if (ret)
2098                 goto err_out;
2099         return 0; /* Success */
2100 err_out:
2101         free_idx = i;
2102         for (i = 0; i < free_idx; i++) {
2103                 if (PageHighMem(pages[i]))
2104                         continue;
2105                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2106                 end = start + PAGE_SIZE;
2107                 memtype_free(start, end);
2108         }
2109         return -EINVAL;
2110 }
2111
2112 int set_pages_array_uc(struct page **pages, int numpages)
2113 {
2114         return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_UC_MINUS);
2115 }
2116 EXPORT_SYMBOL(set_pages_array_uc);
2117
2118 int set_pages_array_wc(struct page **pages, int numpages)
2119 {
2120         return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_WC);
2121 }
2122 EXPORT_SYMBOL(set_pages_array_wc);
2123
2124 int set_pages_array_wt(struct page **pages, int numpages)
2125 {
2126         return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_WT);
2127 }
2128 EXPORT_SYMBOL_GPL(set_pages_array_wt);
2129
2130 int set_pages_wb(struct page *page, int numpages)
2131 {
2132         unsigned long addr = (unsigned long)page_address(page);
2133
2134         return set_memory_wb(addr, numpages);
2135 }
2136 EXPORT_SYMBOL(set_pages_wb);
2137
2138 int set_pages_array_wb(struct page **pages, int numpages)
2139 {
2140         int retval;
2141         unsigned long start;
2142         unsigned long end;
2143         int i;
2144
2145         /* WB cache mode is hard wired to all cache attribute bits being 0 */
2146         retval = cpa_clear_pages_array(pages, numpages,
2147                         __pgprot(_PAGE_CACHE_MASK));
2148         if (retval)
2149                 return retval;
2150
2151         for (i = 0; i < numpages; i++) {
2152                 if (PageHighMem(pages[i]))
2153                         continue;
2154                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2155                 end = start + PAGE_SIZE;
2156                 memtype_free(start, end);
2157         }
2158
2159         return 0;
2160 }
2161 EXPORT_SYMBOL(set_pages_array_wb);
2162
2163 int set_pages_ro(struct page *page, int numpages)
2164 {
2165         unsigned long addr = (unsigned long)page_address(page);
2166
2167         return set_memory_ro(addr, numpages);
2168 }
2169
2170 int set_pages_rw(struct page *page, int numpages)
2171 {
2172         unsigned long addr = (unsigned long)page_address(page);
2173
2174         return set_memory_rw(addr, numpages);
2175 }
2176
2177 static int __set_pages_p(struct page *page, int numpages)
2178 {
2179         unsigned long tempaddr = (unsigned long) page_address(page);
2180         struct cpa_data cpa = { .vaddr = &tempaddr,
2181                                 .pgd = NULL,
2182                                 .numpages = numpages,
2183                                 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2184                                 .mask_clr = __pgprot(0),
2185                                 .flags = 0};
2186
2187         /*
2188          * No alias checking needed for setting present flag. otherwise,
2189          * we may need to break large pages for 64-bit kernel text
2190          * mappings (this adds to complexity if we want to do this from
2191          * atomic context especially). Let's keep it simple!
2192          */
2193         return __change_page_attr_set_clr(&cpa, 0);
2194 }
2195
2196 static int __set_pages_np(struct page *page, int numpages)
2197 {
2198         unsigned long tempaddr = (unsigned long) page_address(page);
2199         struct cpa_data cpa = { .vaddr = &tempaddr,
2200                                 .pgd = NULL,
2201                                 .numpages = numpages,
2202                                 .mask_set = __pgprot(0),
2203                                 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2204                                 .flags = 0};
2205
2206         /*
2207          * No alias checking needed for setting not present flag. otherwise,
2208          * we may need to break large pages for 64-bit kernel text
2209          * mappings (this adds to complexity if we want to do this from
2210          * atomic context especially). Let's keep it simple!
2211          */
2212         return __change_page_attr_set_clr(&cpa, 0);
2213 }
2214
2215 int set_direct_map_invalid_noflush(struct page *page)
2216 {
2217         return __set_pages_np(page, 1);
2218 }
2219
2220 int set_direct_map_default_noflush(struct page *page)
2221 {
2222         return __set_pages_p(page, 1);
2223 }
2224
2225 #ifdef CONFIG_DEBUG_PAGEALLOC
2226 void __kernel_map_pages(struct page *page, int numpages, int enable)
2227 {
2228         if (PageHighMem(page))
2229                 return;
2230         if (!enable) {
2231                 debug_check_no_locks_freed(page_address(page),
2232                                            numpages * PAGE_SIZE);
2233         }
2234
2235         /*
2236          * The return value is ignored as the calls cannot fail.
2237          * Large pages for identity mappings are not used at boot time
2238          * and hence no memory allocations during large page split.
2239          */
2240         if (enable)
2241                 __set_pages_p(page, numpages);
2242         else
2243                 __set_pages_np(page, numpages);
2244
2245         /*
2246          * We should perform an IPI and flush all tlbs,
2247          * but that can deadlock->flush only current cpu.
2248          * Preemption needs to be disabled around __flush_tlb_all() due to
2249          * CR3 reload in __native_flush_tlb().
2250          */
2251         preempt_disable();
2252         __flush_tlb_all();
2253         preempt_enable();
2254
2255         arch_flush_lazy_mmu_mode();
2256 }
2257 #endif /* CONFIG_DEBUG_PAGEALLOC */
2258
2259 bool kernel_page_present(struct page *page)
2260 {
2261         unsigned int level;
2262         pte_t *pte;
2263
2264         if (PageHighMem(page))
2265                 return false;
2266
2267         pte = lookup_address((unsigned long)page_address(page), &level);
2268         return (pte_val(*pte) & _PAGE_PRESENT);
2269 }
2270
2271 int __init kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address,
2272                                    unsigned numpages, unsigned long page_flags)
2273 {
2274         int retval = -EINVAL;
2275
2276         struct cpa_data cpa = {
2277                 .vaddr = &address,
2278                 .pfn = pfn,
2279                 .pgd = pgd,
2280                 .numpages = numpages,
2281                 .mask_set = __pgprot(0),
2282                 .mask_clr = __pgprot(~page_flags & (_PAGE_NX|_PAGE_RW)),
2283                 .flags = 0,
2284         };
2285
2286         WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");
2287
2288         if (!(__supported_pte_mask & _PAGE_NX))
2289                 goto out;
2290
2291         if (!(page_flags & _PAGE_ENC))
2292                 cpa.mask_clr = pgprot_encrypted(cpa.mask_clr);
2293
2294         cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags);
2295
2296         retval = __change_page_attr_set_clr(&cpa, 0);
2297         __flush_tlb_all();
2298
2299 out:
2300         return retval;
2301 }
2302
2303 /*
2304  * __flush_tlb_all() flushes mappings only on current CPU and hence this
2305  * function shouldn't be used in an SMP environment. Presently, it's used only
2306  * during boot (way before smp_init()) by EFI subsystem and hence is ok.
2307  */
2308 int __init kernel_unmap_pages_in_pgd(pgd_t *pgd, unsigned long address,
2309                                      unsigned long numpages)
2310 {
2311         int retval;
2312
2313         /*
2314          * The typical sequence for unmapping is to find a pte through
2315          * lookup_address_in_pgd() (ideally, it should never return NULL because
2316          * the address is already mapped) and change it's protections. As pfn is
2317          * the *target* of a mapping, it's not useful while unmapping.
2318          */
2319         struct cpa_data cpa = {
2320                 .vaddr          = &address,
2321                 .pfn            = 0,
2322                 .pgd            = pgd,
2323                 .numpages       = numpages,
2324                 .mask_set       = __pgprot(0),
2325                 .mask_clr       = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2326                 .flags          = 0,
2327         };
2328
2329         WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");
2330
2331         retval = __change_page_attr_set_clr(&cpa, 0);
2332         __flush_tlb_all();
2333
2334         return retval;
2335 }
2336
2337 /*
2338  * The testcases use internal knowledge of the implementation that shouldn't
2339  * be exposed to the rest of the kernel. Include these directly here.
2340  */
2341 #ifdef CONFIG_CPA_DEBUG
2342 #include "cpa-test.c"
2343 #endif