2 * Copyright 2002 Andi Kleen, SuSE Labs.
3 * Thanks to Ben LaHaise for precious feedback.
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/sched.h>
9 #include <linux/interrupt.h>
10 #include <linux/seq_file.h>
11 #include <linux/debugfs.h>
12 #include <linux/pfn.h>
13 #include <linux/percpu.h>
14 #include <linux/gfp.h>
15 #include <linux/pci.h>
16 #include <linux/vmalloc.h>
18 #include <asm/e820/api.h>
19 #include <asm/processor.h>
20 #include <asm/tlbflush.h>
21 #include <asm/sections.h>
22 #include <asm/setup.h>
23 #include <linux/uaccess.h>
24 #include <asm/pgalloc.h>
25 #include <asm/proto.h>
27 #include <asm/set_memory.h>
30 * The current flushing context - we pass it instead of 5 arguments:
37 unsigned long numpages;
40 unsigned force_split : 1;
46 * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
47 * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
48 * entries change the page attribute in parallel to some other cpu
49 * splitting a large page entry along with changing the attribute.
51 static DEFINE_SPINLOCK(cpa_lock);
53 #define CPA_FLUSHTLB 1
55 #define CPA_PAGES_ARRAY 4
58 static unsigned long direct_pages_count[PG_LEVEL_NUM];
60 void update_page_count(int level, unsigned long pages)
62 /* Protect against CPA */
64 direct_pages_count[level] += pages;
65 spin_unlock(&pgd_lock);
68 static void split_page_count(int level)
70 if (direct_pages_count[level] == 0)
73 direct_pages_count[level]--;
74 direct_pages_count[level - 1] += PTRS_PER_PTE;
77 void arch_report_meminfo(struct seq_file *m)
79 seq_printf(m, "DirectMap4k: %8lu kB\n",
80 direct_pages_count[PG_LEVEL_4K] << 2);
81 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
82 seq_printf(m, "DirectMap2M: %8lu kB\n",
83 direct_pages_count[PG_LEVEL_2M] << 11);
85 seq_printf(m, "DirectMap4M: %8lu kB\n",
86 direct_pages_count[PG_LEVEL_2M] << 12);
89 seq_printf(m, "DirectMap1G: %8lu kB\n",
90 direct_pages_count[PG_LEVEL_1G] << 20);
93 static inline void split_page_count(int level) { }
98 static inline unsigned long highmap_start_pfn(void)
100 return __pa_symbol(_text) >> PAGE_SHIFT;
103 static inline unsigned long highmap_end_pfn(void)
105 /* Do not reference physical address outside the kernel. */
106 return __pa_symbol(roundup(_brk_end, PMD_SIZE) - 1) >> PAGE_SHIFT;
112 within(unsigned long addr, unsigned long start, unsigned long end)
114 return addr >= start && addr < end;
118 within_inclusive(unsigned long addr, unsigned long start, unsigned long end)
120 return addr >= start && addr <= end;
128 * clflush_cache_range - flush a cache range with clflush
129 * @vaddr: virtual start address
130 * @size: number of bytes to flush
132 * clflushopt is an unordered instruction which needs fencing with mfence or
133 * sfence to avoid ordering issues.
135 void clflush_cache_range(void *vaddr, unsigned int size)
137 const unsigned long clflush_size = boot_cpu_data.x86_clflush_size;
138 void *p = (void *)((unsigned long)vaddr & ~(clflush_size - 1));
139 void *vend = vaddr + size;
146 for (; p < vend; p += clflush_size)
151 EXPORT_SYMBOL_GPL(clflush_cache_range);
153 static void __cpa_flush_all(void *arg)
155 unsigned long cache = (unsigned long)arg;
158 * Flush all to work around Errata in early athlons regarding
159 * large page flushing.
163 if (cache && boot_cpu_data.x86 >= 4)
167 static void cpa_flush_all(unsigned long cache)
169 BUG_ON(irqs_disabled());
171 on_each_cpu(__cpa_flush_all, (void *) cache, 1);
174 static void __cpa_flush_range(void *arg)
177 * We could optimize that further and do individual per page
178 * tlb invalidates for a low number of pages. Caveat: we must
179 * flush the high aliases on 64bit as well.
184 static void cpa_flush_range(unsigned long start, int numpages, int cache)
186 unsigned int i, level;
189 BUG_ON(irqs_disabled());
190 WARN_ON(PAGE_ALIGN(start) != start);
192 on_each_cpu(__cpa_flush_range, NULL, 1);
198 * We only need to flush on one CPU,
199 * clflush is a MESI-coherent instruction that
200 * will cause all other CPUs to flush the same
203 for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
204 pte_t *pte = lookup_address(addr, &level);
207 * Only flush present addresses:
209 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
210 clflush_cache_range((void *) addr, PAGE_SIZE);
214 static void cpa_flush_array(unsigned long *start, int numpages, int cache,
215 int in_flags, struct page **pages)
217 unsigned int i, level;
218 #ifdef CONFIG_PREEMPT
220 * Avoid wbinvd() because it causes latencies on all CPUs,
221 * regardless of any CPU isolation that may be in effect.
223 * This should be extended for CAT enabled systems independent of
224 * PREEMPT because wbinvd() does not respect the CAT partitions and
225 * this is exposed to unpriviledged users through the graphics
228 unsigned long do_wbinvd = 0;
230 unsigned long do_wbinvd = cache && numpages >= 1024; /* 4M threshold */
233 BUG_ON(irqs_disabled());
235 on_each_cpu(__cpa_flush_all, (void *) do_wbinvd, 1);
237 if (!cache || do_wbinvd)
241 * We only need to flush on one CPU,
242 * clflush is a MESI-coherent instruction that
243 * will cause all other CPUs to flush the same
246 for (i = 0; i < numpages; i++) {
250 if (in_flags & CPA_PAGES_ARRAY)
251 addr = (unsigned long)page_address(pages[i]);
255 pte = lookup_address(addr, &level);
258 * Only flush present addresses:
260 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
261 clflush_cache_range((void *)addr, PAGE_SIZE);
266 * Certain areas of memory on x86 require very specific protection flags,
267 * for example the BIOS area or kernel text. Callers don't always get this
268 * right (again, ioremap() on BIOS memory is not uncommon) so this function
269 * checks and fixes these known static required protection bits.
271 static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
274 pgprot_t forbidden = __pgprot(0);
277 * The BIOS area between 640k and 1Mb needs to be executable for
278 * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
280 #ifdef CONFIG_PCI_BIOS
281 if (pcibios_enabled && within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
282 pgprot_val(forbidden) |= _PAGE_NX;
286 * The kernel text needs to be executable for obvious reasons
287 * Does not cover __inittext since that is gone later on. On
288 * 64bit we do not enforce !NX on the low mapping
290 if (within(address, (unsigned long)_text, (unsigned long)_etext))
291 pgprot_val(forbidden) |= _PAGE_NX;
294 * The .rodata section needs to be read-only. Using the pfn
295 * catches all aliases.
297 if (within(pfn, __pa_symbol(__start_rodata) >> PAGE_SHIFT,
298 __pa_symbol(__end_rodata) >> PAGE_SHIFT))
299 pgprot_val(forbidden) |= _PAGE_RW;
301 #if defined(CONFIG_X86_64)
303 * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
304 * kernel text mappings for the large page aligned text, rodata sections
305 * will be always read-only. For the kernel identity mappings covering
306 * the holes caused by this alignment can be anything that user asks.
308 * This will preserve the large page mappings for kernel text/data
311 if (kernel_set_to_readonly &&
312 within(address, (unsigned long)_text,
313 (unsigned long)__end_rodata_hpage_align)) {
317 * Don't enforce the !RW mapping for the kernel text mapping,
318 * if the current mapping is already using small page mapping.
319 * No need to work hard to preserve large page mappings in this
322 * This also fixes the Linux Xen paravirt guest boot failure
323 * (because of unexpected read-only mappings for kernel identity
324 * mappings). In this paravirt guest case, the kernel text
325 * mapping and the kernel identity mapping share the same
326 * page-table pages. Thus we can't really use different
327 * protections for the kernel text and identity mappings. Also,
328 * these shared mappings are made of small page mappings.
329 * Thus this don't enforce !RW mapping for small page kernel
330 * text mapping logic will help Linux Xen parvirt guest boot
333 if (lookup_address(address, &level) && (level != PG_LEVEL_4K))
334 pgprot_val(forbidden) |= _PAGE_RW;
338 prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
344 * Lookup the page table entry for a virtual address in a specific pgd.
345 * Return a pointer to the entry and the level of the mapping.
347 pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address,
354 *level = PG_LEVEL_NONE;
359 p4d = p4d_offset(pgd, address);
363 *level = PG_LEVEL_512G;
364 if (p4d_large(*p4d) || !p4d_present(*p4d))
367 pud = pud_offset(p4d, address);
371 *level = PG_LEVEL_1G;
372 if (pud_large(*pud) || !pud_present(*pud))
375 pmd = pmd_offset(pud, address);
379 *level = PG_LEVEL_2M;
380 if (pmd_large(*pmd) || !pmd_present(*pmd))
383 *level = PG_LEVEL_4K;
385 return pte_offset_kernel(pmd, address);
389 * Lookup the page table entry for a virtual address. Return a pointer
390 * to the entry and the level of the mapping.
392 * Note: We return pud and pmd either when the entry is marked large
393 * or when the present bit is not set. Otherwise we would return a
394 * pointer to a nonexisting mapping.
396 pte_t *lookup_address(unsigned long address, unsigned int *level)
398 return lookup_address_in_pgd(pgd_offset_k(address), address, level);
400 EXPORT_SYMBOL_GPL(lookup_address);
402 static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address,
406 return lookup_address_in_pgd(cpa->pgd + pgd_index(address),
409 return lookup_address(address, level);
413 * Lookup the PMD entry for a virtual address. Return a pointer to the entry
414 * or NULL if not present.
416 pmd_t *lookup_pmd_address(unsigned long address)
422 pgd = pgd_offset_k(address);
426 p4d = p4d_offset(pgd, address);
427 if (p4d_none(*p4d) || p4d_large(*p4d) || !p4d_present(*p4d))
430 pud = pud_offset(p4d, address);
431 if (pud_none(*pud) || pud_large(*pud) || !pud_present(*pud))
434 return pmd_offset(pud, address);
438 * This is necessary because __pa() does not work on some
439 * kinds of memory, like vmalloc() or the alloc_remap()
440 * areas on 32-bit NUMA systems. The percpu areas can
441 * end up in this kind of memory, for instance.
443 * This could be optimized, but it is only intended to be
444 * used at inititalization time, and keeping it
445 * unoptimized should increase the testing coverage for
446 * the more obscure platforms.
448 phys_addr_t slow_virt_to_phys(void *__virt_addr)
450 unsigned long virt_addr = (unsigned long)__virt_addr;
451 phys_addr_t phys_addr;
452 unsigned long offset;
456 pte = lookup_address(virt_addr, &level);
460 * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t
461 * before being left-shifted PAGE_SHIFT bits -- this trick is to
462 * make 32-PAE kernel work correctly.
466 phys_addr = (phys_addr_t)pud_pfn(*(pud_t *)pte) << PAGE_SHIFT;
467 offset = virt_addr & ~PUD_PAGE_MASK;
470 phys_addr = (phys_addr_t)pmd_pfn(*(pmd_t *)pte) << PAGE_SHIFT;
471 offset = virt_addr & ~PMD_PAGE_MASK;
474 phys_addr = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
475 offset = virt_addr & ~PAGE_MASK;
478 return (phys_addr_t)(phys_addr | offset);
480 EXPORT_SYMBOL_GPL(slow_virt_to_phys);
483 * Set the new pmd in all the pgds we know about:
485 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
488 set_pte_atomic(kpte, pte);
490 if (!SHARED_KERNEL_PMD) {
493 list_for_each_entry(page, &pgd_list, lru) {
499 pgd = (pgd_t *)page_address(page) + pgd_index(address);
500 p4d = p4d_offset(pgd, address);
501 pud = pud_offset(p4d, address);
502 pmd = pmd_offset(pud, address);
503 set_pte_atomic((pte_t *)pmd, pte);
510 try_preserve_large_page(pte_t *kpte, unsigned long address,
511 struct cpa_data *cpa)
513 unsigned long nextpage_addr, numpages, pmask, psize, addr, pfn, old_pfn;
514 pte_t new_pte, old_pte, *tmp;
515 pgprot_t old_prot, new_prot, req_prot;
519 if (cpa->force_split)
522 spin_lock(&pgd_lock);
524 * Check for races, another CPU might have split this page
527 tmp = _lookup_address_cpa(cpa, address, &level);
533 old_prot = pmd_pgprot(*(pmd_t *)kpte);
534 old_pfn = pmd_pfn(*(pmd_t *)kpte);
537 old_prot = pud_pgprot(*(pud_t *)kpte);
538 old_pfn = pud_pfn(*(pud_t *)kpte);
545 psize = page_level_size(level);
546 pmask = page_level_mask(level);
549 * Calculate the number of pages, which fit into this large
550 * page starting at address:
552 nextpage_addr = (address + psize) & pmask;
553 numpages = (nextpage_addr - address) >> PAGE_SHIFT;
554 if (numpages < cpa->numpages)
555 cpa->numpages = numpages;
558 * We are safe now. Check whether the new pgprot is the same:
559 * Convert protection attributes to 4k-format, as cpa->mask* are set
563 req_prot = pgprot_large_2_4k(old_prot);
565 pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
566 pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
569 * req_prot is in format of 4k pages. It must be converted to large
570 * page format: the caching mode includes the PAT bit located at
571 * different bit positions in the two formats.
573 req_prot = pgprot_4k_2_large(req_prot);
576 * Set the PSE and GLOBAL flags only if the PRESENT flag is
577 * set otherwise pmd_present/pmd_huge will return true even on
578 * a non present pmd. The canon_pgprot will clear _PAGE_GLOBAL
579 * for the ancient hardware that doesn't support it.
581 if (pgprot_val(req_prot) & _PAGE_PRESENT)
582 pgprot_val(req_prot) |= _PAGE_PSE | _PAGE_GLOBAL;
584 pgprot_val(req_prot) &= ~(_PAGE_PSE | _PAGE_GLOBAL);
586 req_prot = canon_pgprot(req_prot);
589 * old_pfn points to the large page base pfn. So we need
590 * to add the offset of the virtual address:
592 pfn = old_pfn + ((address & (psize - 1)) >> PAGE_SHIFT);
595 new_prot = static_protections(req_prot, address, pfn);
598 * We need to check the full range, whether
599 * static_protection() requires a different pgprot for one of
600 * the pages in the range we try to preserve:
602 addr = address & pmask;
604 for (i = 0; i < (psize >> PAGE_SHIFT); i++, addr += PAGE_SIZE, pfn++) {
605 pgprot_t chk_prot = static_protections(req_prot, addr, pfn);
607 if (pgprot_val(chk_prot) != pgprot_val(new_prot))
612 * If there are no changes, return. maxpages has been updated
615 if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
621 * We need to change the attributes. Check, whether we can
622 * change the large page in one go. We request a split, when
623 * the address is not aligned and the number of pages is
624 * smaller than the number of pages in the large page. Note
625 * that we limited the number of possible pages already to
626 * the number of pages in the large page.
628 if (address == (address & pmask) && cpa->numpages == (psize >> PAGE_SHIFT)) {
630 * The address is aligned and the number of pages
631 * covers the full page.
633 new_pte = pfn_pte(old_pfn, new_prot);
634 __set_pmd_pte(kpte, address, new_pte);
635 cpa->flags |= CPA_FLUSHTLB;
640 spin_unlock(&pgd_lock);
646 __split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address,
649 pte_t *pbase = (pte_t *)page_address(base);
650 unsigned long ref_pfn, pfn, pfninc = 1;
651 unsigned int i, level;
655 spin_lock(&pgd_lock);
657 * Check for races, another CPU might have split this page
660 tmp = _lookup_address_cpa(cpa, address, &level);
662 spin_unlock(&pgd_lock);
666 paravirt_alloc_pte(&init_mm, page_to_pfn(base));
670 ref_prot = pmd_pgprot(*(pmd_t *)kpte);
671 /* clear PSE and promote PAT bit to correct position */
672 ref_prot = pgprot_large_2_4k(ref_prot);
673 ref_pfn = pmd_pfn(*(pmd_t *)kpte);
677 ref_prot = pud_pgprot(*(pud_t *)kpte);
678 ref_pfn = pud_pfn(*(pud_t *)kpte);
679 pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
682 * Clear the PSE flags if the PRESENT flag is not set
683 * otherwise pmd_present/pmd_huge will return true
684 * even on a non present pmd.
686 if (!(pgprot_val(ref_prot) & _PAGE_PRESENT))
687 pgprot_val(ref_prot) &= ~_PAGE_PSE;
691 spin_unlock(&pgd_lock);
696 * Set the GLOBAL flags only if the PRESENT flag is set
697 * otherwise pmd/pte_present will return true even on a non
698 * present pmd/pte. The canon_pgprot will clear _PAGE_GLOBAL
699 * for the ancient hardware that doesn't support it.
701 if (pgprot_val(ref_prot) & _PAGE_PRESENT)
702 pgprot_val(ref_prot) |= _PAGE_GLOBAL;
704 pgprot_val(ref_prot) &= ~_PAGE_GLOBAL;
707 * Get the target pfn from the original entry:
710 for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
711 set_pte(&pbase[i], pfn_pte(pfn, canon_pgprot(ref_prot)));
713 if (virt_addr_valid(address)) {
714 unsigned long pfn = PFN_DOWN(__pa(address));
716 if (pfn_range_is_mapped(pfn, pfn + 1))
717 split_page_count(level);
721 * Install the new, split up pagetable.
723 * We use the standard kernel pagetable protections for the new
724 * pagetable protections, the actual ptes set above control the
725 * primary protection behavior:
727 __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
730 * Intel Atom errata AAH41 workaround.
732 * The real fix should be in hw or in a microcode update, but
733 * we also probabilistically try to reduce the window of having
734 * a large TLB mixed with 4K TLBs while instruction fetches are
738 spin_unlock(&pgd_lock);
743 static int split_large_page(struct cpa_data *cpa, pte_t *kpte,
744 unsigned long address)
748 if (!debug_pagealloc_enabled())
749 spin_unlock(&cpa_lock);
750 base = alloc_pages(GFP_KERNEL | __GFP_NOTRACK, 0);
751 if (!debug_pagealloc_enabled())
752 spin_lock(&cpa_lock);
756 if (__split_large_page(cpa, kpte, address, base))
762 static bool try_to_free_pte_page(pte_t *pte)
766 for (i = 0; i < PTRS_PER_PTE; i++)
767 if (!pte_none(pte[i]))
770 free_page((unsigned long)pte);
774 static bool try_to_free_pmd_page(pmd_t *pmd)
778 for (i = 0; i < PTRS_PER_PMD; i++)
779 if (!pmd_none(pmd[i]))
782 free_page((unsigned long)pmd);
786 static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end)
788 pte_t *pte = pte_offset_kernel(pmd, start);
790 while (start < end) {
791 set_pte(pte, __pte(0));
797 if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) {
804 static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd,
805 unsigned long start, unsigned long end)
807 if (unmap_pte_range(pmd, start, end))
808 if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
812 static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end)
814 pmd_t *pmd = pmd_offset(pud, start);
817 * Not on a 2MB page boundary?
819 if (start & (PMD_SIZE - 1)) {
820 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
821 unsigned long pre_end = min_t(unsigned long, end, next_page);
823 __unmap_pmd_range(pud, pmd, start, pre_end);
830 * Try to unmap in 2M chunks.
832 while (end - start >= PMD_SIZE) {
836 __unmap_pmd_range(pud, pmd, start, start + PMD_SIZE);
846 return __unmap_pmd_range(pud, pmd, start, end);
849 * Try again to free the PMD page if haven't succeeded above.
852 if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
856 static void unmap_pud_range(p4d_t *p4d, unsigned long start, unsigned long end)
858 pud_t *pud = pud_offset(p4d, start);
861 * Not on a GB page boundary?
863 if (start & (PUD_SIZE - 1)) {
864 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
865 unsigned long pre_end = min_t(unsigned long, end, next_page);
867 unmap_pmd_range(pud, start, pre_end);
874 * Try to unmap in 1G chunks?
876 while (end - start >= PUD_SIZE) {
881 unmap_pmd_range(pud, start, start + PUD_SIZE);
891 unmap_pmd_range(pud, start, end);
894 * No need to try to free the PUD page because we'll free it in
895 * populate_pgd's error path
899 static int alloc_pte_page(pmd_t *pmd)
901 pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
905 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
909 static int alloc_pmd_page(pud_t *pud)
911 pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
915 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
919 static void populate_pte(struct cpa_data *cpa,
920 unsigned long start, unsigned long end,
921 unsigned num_pages, pmd_t *pmd, pgprot_t pgprot)
925 pte = pte_offset_kernel(pmd, start);
928 * Set the GLOBAL flags only if the PRESENT flag is
929 * set otherwise pte_present will return true even on
930 * a non present pte. The canon_pgprot will clear
931 * _PAGE_GLOBAL for the ancient hardware that doesn't
934 if (pgprot_val(pgprot) & _PAGE_PRESENT)
935 pgprot_val(pgprot) |= _PAGE_GLOBAL;
937 pgprot_val(pgprot) &= ~_PAGE_GLOBAL;
939 pgprot = canon_pgprot(pgprot);
941 while (num_pages-- && start < end) {
942 set_pte(pte, pfn_pte(cpa->pfn, pgprot));
950 static long populate_pmd(struct cpa_data *cpa,
951 unsigned long start, unsigned long end,
952 unsigned num_pages, pud_t *pud, pgprot_t pgprot)
959 * Not on a 2M boundary?
961 if (start & (PMD_SIZE - 1)) {
962 unsigned long pre_end = start + (num_pages << PAGE_SHIFT);
963 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
965 pre_end = min_t(unsigned long, pre_end, next_page);
966 cur_pages = (pre_end - start) >> PAGE_SHIFT;
967 cur_pages = min_t(unsigned int, num_pages, cur_pages);
972 pmd = pmd_offset(pud, start);
974 if (alloc_pte_page(pmd))
977 populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot);
983 * We mapped them all?
985 if (num_pages == cur_pages)
988 pmd_pgprot = pgprot_4k_2_large(pgprot);
990 while (end - start >= PMD_SIZE) {
993 * We cannot use a 1G page so allocate a PMD page if needed.
996 if (alloc_pmd_page(pud))
999 pmd = pmd_offset(pud, start);
1001 set_pmd(pmd, __pmd(cpa->pfn << PAGE_SHIFT | _PAGE_PSE |
1002 massage_pgprot(pmd_pgprot)));
1005 cpa->pfn += PMD_SIZE >> PAGE_SHIFT;
1006 cur_pages += PMD_SIZE >> PAGE_SHIFT;
1010 * Map trailing 4K pages.
1013 pmd = pmd_offset(pud, start);
1015 if (alloc_pte_page(pmd))
1018 populate_pte(cpa, start, end, num_pages - cur_pages,
1024 static int populate_pud(struct cpa_data *cpa, unsigned long start, p4d_t *p4d,
1030 pgprot_t pud_pgprot;
1032 end = start + (cpa->numpages << PAGE_SHIFT);
1035 * Not on a Gb page boundary? => map everything up to it with
1038 if (start & (PUD_SIZE - 1)) {
1039 unsigned long pre_end;
1040 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1042 pre_end = min_t(unsigned long, end, next_page);
1043 cur_pages = (pre_end - start) >> PAGE_SHIFT;
1044 cur_pages = min_t(int, (int)cpa->numpages, cur_pages);
1046 pud = pud_offset(p4d, start);
1052 if (alloc_pmd_page(pud))
1055 cur_pages = populate_pmd(cpa, start, pre_end, cur_pages,
1063 /* We mapped them all? */
1064 if (cpa->numpages == cur_pages)
1067 pud = pud_offset(p4d, start);
1068 pud_pgprot = pgprot_4k_2_large(pgprot);
1071 * Map everything starting from the Gb boundary, possibly with 1G pages
1073 while (boot_cpu_has(X86_FEATURE_GBPAGES) && end - start >= PUD_SIZE) {
1074 set_pud(pud, __pud(cpa->pfn << PAGE_SHIFT | _PAGE_PSE |
1075 massage_pgprot(pud_pgprot)));
1078 cpa->pfn += PUD_SIZE >> PAGE_SHIFT;
1079 cur_pages += PUD_SIZE >> PAGE_SHIFT;
1083 /* Map trailing leftover */
1087 pud = pud_offset(p4d, start);
1089 if (alloc_pmd_page(pud))
1092 tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages,
1103 * Restrictions for kernel page table do not necessarily apply when mapping in
1106 static int populate_pgd(struct cpa_data *cpa, unsigned long addr)
1108 pgprot_t pgprot = __pgprot(_KERNPG_TABLE);
1109 pud_t *pud = NULL; /* shut up gcc */
1114 pgd_entry = cpa->pgd + pgd_index(addr);
1116 if (pgd_none(*pgd_entry)) {
1117 p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
1121 set_pgd(pgd_entry, __pgd(__pa(p4d) | _KERNPG_TABLE));
1125 * Allocate a PUD page and hand it down for mapping.
1127 p4d = p4d_offset(pgd_entry, addr);
1128 if (p4d_none(*p4d)) {
1129 pud = (pud_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
1133 set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
1136 pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr);
1137 pgprot_val(pgprot) |= pgprot_val(cpa->mask_set);
1139 ret = populate_pud(cpa, addr, p4d, pgprot);
1142 * Leave the PUD page in place in case some other CPU or thread
1143 * already found it, but remove any useless entries we just
1146 unmap_pud_range(p4d, addr,
1147 addr + (cpa->numpages << PAGE_SHIFT));
1151 cpa->numpages = ret;
1155 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
1160 * Right now, we only execute this code path when mapping
1161 * the EFI virtual memory map regions, no other users
1162 * provide a ->pgd value. This may change in the future.
1164 return populate_pgd(cpa, vaddr);
1168 * Ignore all non primary paths.
1176 * Ignore the NULL PTE for kernel identity mapping, as it is expected
1178 * Also set numpages to '1' indicating that we processed cpa req for
1179 * one virtual address page and its pfn. TBD: numpages can be set based
1180 * on the initial value and the level returned by lookup_address().
1182 if (within(vaddr, PAGE_OFFSET,
1183 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
1185 cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
1188 WARN(1, KERN_WARNING "CPA: called for zero pte. "
1189 "vaddr = %lx cpa->vaddr = %lx\n", vaddr,
1196 static int __change_page_attr(struct cpa_data *cpa, int primary)
1198 unsigned long address;
1201 pte_t *kpte, old_pte;
1203 if (cpa->flags & CPA_PAGES_ARRAY) {
1204 struct page *page = cpa->pages[cpa->curpage];
1205 if (unlikely(PageHighMem(page)))
1207 address = (unsigned long)page_address(page);
1208 } else if (cpa->flags & CPA_ARRAY)
1209 address = cpa->vaddr[cpa->curpage];
1211 address = *cpa->vaddr;
1213 kpte = _lookup_address_cpa(cpa, address, &level);
1215 return __cpa_process_fault(cpa, address, primary);
1218 if (pte_none(old_pte))
1219 return __cpa_process_fault(cpa, address, primary);
1221 if (level == PG_LEVEL_4K) {
1223 pgprot_t new_prot = pte_pgprot(old_pte);
1224 unsigned long pfn = pte_pfn(old_pte);
1226 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
1227 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
1229 new_prot = static_protections(new_prot, address, pfn);
1232 * Set the GLOBAL flags only if the PRESENT flag is
1233 * set otherwise pte_present will return true even on
1234 * a non present pte. The canon_pgprot will clear
1235 * _PAGE_GLOBAL for the ancient hardware that doesn't
1238 if (pgprot_val(new_prot) & _PAGE_PRESENT)
1239 pgprot_val(new_prot) |= _PAGE_GLOBAL;
1241 pgprot_val(new_prot) &= ~_PAGE_GLOBAL;
1244 * We need to keep the pfn from the existing PTE,
1245 * after all we're only going to change it's attributes
1246 * not the memory it points to
1248 new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
1251 * Do we really change anything ?
1253 if (pte_val(old_pte) != pte_val(new_pte)) {
1254 set_pte_atomic(kpte, new_pte);
1255 cpa->flags |= CPA_FLUSHTLB;
1262 * Check, whether we can keep the large page intact
1263 * and just change the pte:
1265 do_split = try_preserve_large_page(kpte, address, cpa);
1267 * When the range fits into the existing large page,
1268 * return. cp->numpages and cpa->tlbflush have been updated in
1275 * We have to split the large page:
1277 err = split_large_page(cpa, kpte, address);
1280 * Do a global flush tlb after splitting the large page
1281 * and before we do the actual change page attribute in the PTE.
1283 * With out this, we violate the TLB application note, that says
1284 * "The TLBs may contain both ordinary and large-page
1285 * translations for a 4-KByte range of linear addresses. This
1286 * may occur if software modifies the paging structures so that
1287 * the page size used for the address range changes. If the two
1288 * translations differ with respect to page frame or attributes
1289 * (e.g., permissions), processor behavior is undefined and may
1290 * be implementation-specific."
1292 * We do this global tlb flush inside the cpa_lock, so that we
1293 * don't allow any other cpu, with stale tlb entries change the
1294 * page attribute in parallel, that also falls into the
1295 * just split large page entry.
1304 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
1306 static int cpa_process_alias(struct cpa_data *cpa)
1308 struct cpa_data alias_cpa;
1309 unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
1310 unsigned long vaddr;
1313 if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1))
1317 * No need to redo, when the primary call touched the direct
1320 if (cpa->flags & CPA_PAGES_ARRAY) {
1321 struct page *page = cpa->pages[cpa->curpage];
1322 if (unlikely(PageHighMem(page)))
1324 vaddr = (unsigned long)page_address(page);
1325 } else if (cpa->flags & CPA_ARRAY)
1326 vaddr = cpa->vaddr[cpa->curpage];
1328 vaddr = *cpa->vaddr;
1330 if (!(within(vaddr, PAGE_OFFSET,
1331 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
1334 alias_cpa.vaddr = &laddr;
1335 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1337 ret = __change_page_attr_set_clr(&alias_cpa, 0);
1342 #ifdef CONFIG_X86_64
1344 * If the primary call didn't touch the high mapping already
1345 * and the physical address is inside the kernel map, we need
1346 * to touch the high mapped kernel as well:
1348 if (!within(vaddr, (unsigned long)_text, _brk_end) &&
1349 within_inclusive(cpa->pfn, highmap_start_pfn(),
1350 highmap_end_pfn())) {
1351 unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
1352 __START_KERNEL_map - phys_base;
1354 alias_cpa.vaddr = &temp_cpa_vaddr;
1355 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1358 * The high mapping range is imprecise, so ignore the
1361 __change_page_attr_set_clr(&alias_cpa, 0);
1368 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
1370 unsigned long numpages = cpa->numpages;
1375 * Store the remaining nr of pages for the large page
1376 * preservation check.
1378 cpa->numpages = numpages;
1379 /* for array changes, we can't use large page */
1380 if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
1383 if (!debug_pagealloc_enabled())
1384 spin_lock(&cpa_lock);
1385 ret = __change_page_attr(cpa, checkalias);
1386 if (!debug_pagealloc_enabled())
1387 spin_unlock(&cpa_lock);
1392 ret = cpa_process_alias(cpa);
1398 * Adjust the number of pages with the result of the
1399 * CPA operation. Either a large page has been
1400 * preserved or a single page update happened.
1402 BUG_ON(cpa->numpages > numpages || !cpa->numpages);
1403 numpages -= cpa->numpages;
1404 if (cpa->flags & (CPA_PAGES_ARRAY | CPA_ARRAY))
1407 *cpa->vaddr += cpa->numpages * PAGE_SIZE;
1413 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
1414 pgprot_t mask_set, pgprot_t mask_clr,
1415 int force_split, int in_flag,
1416 struct page **pages)
1418 struct cpa_data cpa;
1419 int ret, cache, checkalias;
1420 unsigned long baddr = 0;
1422 memset(&cpa, 0, sizeof(cpa));
1425 * Check, if we are requested to change a not supported
1428 mask_set = canon_pgprot(mask_set);
1429 mask_clr = canon_pgprot(mask_clr);
1430 if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
1433 /* Ensure we are PAGE_SIZE aligned */
1434 if (in_flag & CPA_ARRAY) {
1436 for (i = 0; i < numpages; i++) {
1437 if (addr[i] & ~PAGE_MASK) {
1438 addr[i] &= PAGE_MASK;
1442 } else if (!(in_flag & CPA_PAGES_ARRAY)) {
1444 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
1445 * No need to cehck in that case
1447 if (*addr & ~PAGE_MASK) {
1450 * People should not be passing in unaligned addresses:
1455 * Save address for cache flush. *addr is modified in the call
1456 * to __change_page_attr_set_clr() below.
1461 /* Must avoid aliasing mappings in the highmem code */
1462 kmap_flush_unused();
1468 cpa.numpages = numpages;
1469 cpa.mask_set = mask_set;
1470 cpa.mask_clr = mask_clr;
1473 cpa.force_split = force_split;
1475 if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
1476 cpa.flags |= in_flag;
1478 /* No alias checking for _NX bit modifications */
1479 checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
1481 ret = __change_page_attr_set_clr(&cpa, checkalias);
1484 * Check whether we really changed something:
1486 if (!(cpa.flags & CPA_FLUSHTLB))
1490 * No need to flush, when we did not set any of the caching
1493 cache = !!pgprot2cachemode(mask_set);
1496 * On success we use CLFLUSH, when the CPU supports it to
1497 * avoid the WBINVD. If the CPU does not support it and in the
1498 * error case we fall back to cpa_flush_all (which uses
1501 if (!ret && boot_cpu_has(X86_FEATURE_CLFLUSH)) {
1502 if (cpa.flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) {
1503 cpa_flush_array(addr, numpages, cache,
1506 cpa_flush_range(baddr, numpages, cache);
1508 cpa_flush_all(cache);
1514 static inline int change_page_attr_set(unsigned long *addr, int numpages,
1515 pgprot_t mask, int array)
1517 return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
1518 (array ? CPA_ARRAY : 0), NULL);
1521 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
1522 pgprot_t mask, int array)
1524 return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
1525 (array ? CPA_ARRAY : 0), NULL);
1528 static inline int cpa_set_pages_array(struct page **pages, int numpages,
1531 return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
1532 CPA_PAGES_ARRAY, pages);
1535 static inline int cpa_clear_pages_array(struct page **pages, int numpages,
1538 return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
1539 CPA_PAGES_ARRAY, pages);
1542 int _set_memory_uc(unsigned long addr, int numpages)
1545 * for now UC MINUS. see comments in ioremap_nocache()
1546 * If you really need strong UC use ioremap_uc(), but note
1547 * that you cannot override IO areas with set_memory_*() as
1548 * these helpers cannot work with IO memory.
1550 return change_page_attr_set(&addr, numpages,
1551 cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1555 int set_memory_uc(unsigned long addr, int numpages)
1560 * for now UC MINUS. see comments in ioremap_nocache()
1562 ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1563 _PAGE_CACHE_MODE_UC_MINUS, NULL);
1567 ret = _set_memory_uc(addr, numpages);
1574 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1578 EXPORT_SYMBOL(set_memory_uc);
1580 static int _set_memory_array(unsigned long *addr, int addrinarray,
1581 enum page_cache_mode new_type)
1583 enum page_cache_mode set_type;
1587 for (i = 0; i < addrinarray; i++) {
1588 ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE,
1594 /* If WC, set to UC- first and then WC */
1595 set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
1596 _PAGE_CACHE_MODE_UC_MINUS : new_type;
1598 ret = change_page_attr_set(addr, addrinarray,
1599 cachemode2pgprot(set_type), 1);
1601 if (!ret && new_type == _PAGE_CACHE_MODE_WC)
1602 ret = change_page_attr_set_clr(addr, addrinarray,
1604 _PAGE_CACHE_MODE_WC),
1605 __pgprot(_PAGE_CACHE_MASK),
1606 0, CPA_ARRAY, NULL);
1613 for (j = 0; j < i; j++)
1614 free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE);
1619 int set_memory_array_uc(unsigned long *addr, int addrinarray)
1621 return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_UC_MINUS);
1623 EXPORT_SYMBOL(set_memory_array_uc);
1625 int set_memory_array_wc(unsigned long *addr, int addrinarray)
1627 return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_WC);
1629 EXPORT_SYMBOL(set_memory_array_wc);
1631 int set_memory_array_wt(unsigned long *addr, int addrinarray)
1633 return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_WT);
1635 EXPORT_SYMBOL_GPL(set_memory_array_wt);
1637 int _set_memory_wc(unsigned long addr, int numpages)
1640 unsigned long addr_copy = addr;
1642 ret = change_page_attr_set(&addr, numpages,
1643 cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1646 ret = change_page_attr_set_clr(&addr_copy, numpages,
1648 _PAGE_CACHE_MODE_WC),
1649 __pgprot(_PAGE_CACHE_MASK),
1655 int set_memory_wc(unsigned long addr, int numpages)
1659 ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1660 _PAGE_CACHE_MODE_WC, NULL);
1664 ret = _set_memory_wc(addr, numpages);
1666 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1670 EXPORT_SYMBOL(set_memory_wc);
1672 int _set_memory_wt(unsigned long addr, int numpages)
1674 return change_page_attr_set(&addr, numpages,
1675 cachemode2pgprot(_PAGE_CACHE_MODE_WT), 0);
1678 int set_memory_wt(unsigned long addr, int numpages)
1682 ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1683 _PAGE_CACHE_MODE_WT, NULL);
1687 ret = _set_memory_wt(addr, numpages);
1689 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1693 EXPORT_SYMBOL_GPL(set_memory_wt);
1695 int _set_memory_wb(unsigned long addr, int numpages)
1697 /* WB cache mode is hard wired to all cache attribute bits being 0 */
1698 return change_page_attr_clear(&addr, numpages,
1699 __pgprot(_PAGE_CACHE_MASK), 0);
1702 int set_memory_wb(unsigned long addr, int numpages)
1706 ret = _set_memory_wb(addr, numpages);
1710 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1713 EXPORT_SYMBOL(set_memory_wb);
1715 int set_memory_array_wb(unsigned long *addr, int addrinarray)
1720 /* WB cache mode is hard wired to all cache attribute bits being 0 */
1721 ret = change_page_attr_clear(addr, addrinarray,
1722 __pgprot(_PAGE_CACHE_MASK), 1);
1726 for (i = 0; i < addrinarray; i++)
1727 free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE);
1731 EXPORT_SYMBOL(set_memory_array_wb);
1733 int set_memory_x(unsigned long addr, int numpages)
1735 if (!(__supported_pte_mask & _PAGE_NX))
1738 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1740 EXPORT_SYMBOL(set_memory_x);
1742 int set_memory_nx(unsigned long addr, int numpages)
1744 if (!(__supported_pte_mask & _PAGE_NX))
1747 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1749 EXPORT_SYMBOL(set_memory_nx);
1751 int set_memory_ro(unsigned long addr, int numpages)
1753 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1756 int set_memory_rw(unsigned long addr, int numpages)
1758 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1761 int set_memory_np(unsigned long addr, int numpages)
1763 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1766 int set_memory_4k(unsigned long addr, int numpages)
1768 return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1769 __pgprot(0), 1, 0, NULL);
1772 int set_pages_uc(struct page *page, int numpages)
1774 unsigned long addr = (unsigned long)page_address(page);
1776 return set_memory_uc(addr, numpages);
1778 EXPORT_SYMBOL(set_pages_uc);
1780 static int _set_pages_array(struct page **pages, int addrinarray,
1781 enum page_cache_mode new_type)
1783 unsigned long start;
1785 enum page_cache_mode set_type;
1790 for (i = 0; i < addrinarray; i++) {
1791 if (PageHighMem(pages[i]))
1793 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1794 end = start + PAGE_SIZE;
1795 if (reserve_memtype(start, end, new_type, NULL))
1799 /* If WC, set to UC- first and then WC */
1800 set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
1801 _PAGE_CACHE_MODE_UC_MINUS : new_type;
1803 ret = cpa_set_pages_array(pages, addrinarray,
1804 cachemode2pgprot(set_type));
1805 if (!ret && new_type == _PAGE_CACHE_MODE_WC)
1806 ret = change_page_attr_set_clr(NULL, addrinarray,
1808 _PAGE_CACHE_MODE_WC),
1809 __pgprot(_PAGE_CACHE_MASK),
1810 0, CPA_PAGES_ARRAY, pages);
1813 return 0; /* Success */
1816 for (i = 0; i < free_idx; i++) {
1817 if (PageHighMem(pages[i]))
1819 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1820 end = start + PAGE_SIZE;
1821 free_memtype(start, end);
1826 int set_pages_array_uc(struct page **pages, int addrinarray)
1828 return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_UC_MINUS);
1830 EXPORT_SYMBOL(set_pages_array_uc);
1832 int set_pages_array_wc(struct page **pages, int addrinarray)
1834 return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_WC);
1836 EXPORT_SYMBOL(set_pages_array_wc);
1838 int set_pages_array_wt(struct page **pages, int addrinarray)
1840 return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_WT);
1842 EXPORT_SYMBOL_GPL(set_pages_array_wt);
1844 int set_pages_wb(struct page *page, int numpages)
1846 unsigned long addr = (unsigned long)page_address(page);
1848 return set_memory_wb(addr, numpages);
1850 EXPORT_SYMBOL(set_pages_wb);
1852 int set_pages_array_wb(struct page **pages, int addrinarray)
1855 unsigned long start;
1859 /* WB cache mode is hard wired to all cache attribute bits being 0 */
1860 retval = cpa_clear_pages_array(pages, addrinarray,
1861 __pgprot(_PAGE_CACHE_MASK));
1865 for (i = 0; i < addrinarray; i++) {
1866 if (PageHighMem(pages[i]))
1868 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1869 end = start + PAGE_SIZE;
1870 free_memtype(start, end);
1875 EXPORT_SYMBOL(set_pages_array_wb);
1877 int set_pages_x(struct page *page, int numpages)
1879 unsigned long addr = (unsigned long)page_address(page);
1881 return set_memory_x(addr, numpages);
1883 EXPORT_SYMBOL(set_pages_x);
1885 int set_pages_nx(struct page *page, int numpages)
1887 unsigned long addr = (unsigned long)page_address(page);
1889 return set_memory_nx(addr, numpages);
1891 EXPORT_SYMBOL(set_pages_nx);
1893 int set_pages_ro(struct page *page, int numpages)
1895 unsigned long addr = (unsigned long)page_address(page);
1897 return set_memory_ro(addr, numpages);
1900 int set_pages_rw(struct page *page, int numpages)
1902 unsigned long addr = (unsigned long)page_address(page);
1904 return set_memory_rw(addr, numpages);
1907 #ifdef CONFIG_DEBUG_PAGEALLOC
1909 static int __set_pages_p(struct page *page, int numpages)
1911 unsigned long tempaddr = (unsigned long) page_address(page);
1912 struct cpa_data cpa = { .vaddr = &tempaddr,
1914 .numpages = numpages,
1915 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1916 .mask_clr = __pgprot(0),
1920 * No alias checking needed for setting present flag. otherwise,
1921 * we may need to break large pages for 64-bit kernel text
1922 * mappings (this adds to complexity if we want to do this from
1923 * atomic context especially). Let's keep it simple!
1925 return __change_page_attr_set_clr(&cpa, 0);
1928 static int __set_pages_np(struct page *page, int numpages)
1930 unsigned long tempaddr = (unsigned long) page_address(page);
1931 struct cpa_data cpa = { .vaddr = &tempaddr,
1933 .numpages = numpages,
1934 .mask_set = __pgprot(0),
1935 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1939 * No alias checking needed for setting not present flag. otherwise,
1940 * we may need to break large pages for 64-bit kernel text
1941 * mappings (this adds to complexity if we want to do this from
1942 * atomic context especially). Let's keep it simple!
1944 return __change_page_attr_set_clr(&cpa, 0);
1947 void __kernel_map_pages(struct page *page, int numpages, int enable)
1949 if (PageHighMem(page))
1952 debug_check_no_locks_freed(page_address(page),
1953 numpages * PAGE_SIZE);
1957 * The return value is ignored as the calls cannot fail.
1958 * Large pages for identity mappings are not used at boot time
1959 * and hence no memory allocations during large page split.
1962 __set_pages_p(page, numpages);
1964 __set_pages_np(page, numpages);
1967 * We should perform an IPI and flush all tlbs,
1968 * but that can deadlock->flush only current cpu:
1972 arch_flush_lazy_mmu_mode();
1975 #ifdef CONFIG_HIBERNATION
1977 bool kernel_page_present(struct page *page)
1982 if (PageHighMem(page))
1985 pte = lookup_address((unsigned long)page_address(page), &level);
1986 return (pte_val(*pte) & _PAGE_PRESENT);
1989 #endif /* CONFIG_HIBERNATION */
1991 #endif /* CONFIG_DEBUG_PAGEALLOC */
1993 int kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address,
1994 unsigned numpages, unsigned long page_flags)
1996 int retval = -EINVAL;
1998 struct cpa_data cpa = {
2002 .numpages = numpages,
2003 .mask_set = __pgprot(0),
2004 .mask_clr = __pgprot(0),
2008 if (!(__supported_pte_mask & _PAGE_NX))
2011 if (!(page_flags & _PAGE_NX))
2012 cpa.mask_clr = __pgprot(_PAGE_NX);
2014 if (!(page_flags & _PAGE_RW))
2015 cpa.mask_clr = __pgprot(_PAGE_RW);
2017 cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags);
2019 retval = __change_page_attr_set_clr(&cpa, 0);
2027 * The testcases use internal knowledge of the implementation that shouldn't
2028 * be exposed to the rest of the kernel. Include these directly here.
2030 #ifdef CONFIG_CPA_DEBUG
2031 #include "pageattr-test.c"