e3e77527f8dff8e44bd560d4f62a11ee8cf90c26
[platform/kernel/linux-rpi.git] / arch / x86 / mm / kasan_init_64.c
1 // SPDX-License-Identifier: GPL-2.0
2 #define DISABLE_BRANCH_PROFILING
3 #define pr_fmt(fmt) "kasan: " fmt
4
5 /* cpu_feature_enabled() cannot be used this early */
6 #define USE_EARLY_PGTABLE_L5
7
8 #include <linux/bootmem.h>
9 #include <linux/kasan.h>
10 #include <linux/kdebug.h>
11 #include <linux/memblock.h>
12 #include <linux/mm.h>
13 #include <linux/sched.h>
14 #include <linux/sched/task.h>
15 #include <linux/vmalloc.h>
16
17 #include <asm/e820/types.h>
18 #include <asm/pgalloc.h>
19 #include <asm/tlbflush.h>
20 #include <asm/sections.h>
21 #include <asm/pgtable.h>
22 #include <asm/cpu_entry_area.h>
23
24 extern struct range pfn_mapped[E820_MAX_ENTRIES];
25
26 static p4d_t tmp_p4d_table[MAX_PTRS_PER_P4D] __initdata __aligned(PAGE_SIZE);
27
28 static __init void *early_alloc(size_t size, int nid, bool panic)
29 {
30         if (panic)
31                 return memblock_virt_alloc_try_nid(size, size,
32                         __pa(MAX_DMA_ADDRESS), BOOTMEM_ALLOC_ACCESSIBLE, nid);
33         else
34                 return memblock_virt_alloc_try_nid_nopanic(size, size,
35                         __pa(MAX_DMA_ADDRESS), BOOTMEM_ALLOC_ACCESSIBLE, nid);
36 }
37
38 static void __init kasan_populate_pmd(pmd_t *pmd, unsigned long addr,
39                                       unsigned long end, int nid)
40 {
41         pte_t *pte;
42
43         if (pmd_none(*pmd)) {
44                 void *p;
45
46                 if (boot_cpu_has(X86_FEATURE_PSE) &&
47                     ((end - addr) == PMD_SIZE) &&
48                     IS_ALIGNED(addr, PMD_SIZE)) {
49                         p = early_alloc(PMD_SIZE, nid, false);
50                         if (p && pmd_set_huge(pmd, __pa(p), PAGE_KERNEL))
51                                 return;
52                         else if (p)
53                                 memblock_free(__pa(p), PMD_SIZE);
54                 }
55
56                 p = early_alloc(PAGE_SIZE, nid, true);
57                 pmd_populate_kernel(&init_mm, pmd, p);
58         }
59
60         pte = pte_offset_kernel(pmd, addr);
61         do {
62                 pte_t entry;
63                 void *p;
64
65                 if (!pte_none(*pte))
66                         continue;
67
68                 p = early_alloc(PAGE_SIZE, nid, true);
69                 entry = pfn_pte(PFN_DOWN(__pa(p)), PAGE_KERNEL);
70                 set_pte_at(&init_mm, addr, pte, entry);
71         } while (pte++, addr += PAGE_SIZE, addr != end);
72 }
73
74 static void __init kasan_populate_pud(pud_t *pud, unsigned long addr,
75                                       unsigned long end, int nid)
76 {
77         pmd_t *pmd;
78         unsigned long next;
79
80         if (pud_none(*pud)) {
81                 void *p;
82
83                 if (boot_cpu_has(X86_FEATURE_GBPAGES) &&
84                     ((end - addr) == PUD_SIZE) &&
85                     IS_ALIGNED(addr, PUD_SIZE)) {
86                         p = early_alloc(PUD_SIZE, nid, false);
87                         if (p && pud_set_huge(pud, __pa(p), PAGE_KERNEL))
88                                 return;
89                         else if (p)
90                                 memblock_free(__pa(p), PUD_SIZE);
91                 }
92
93                 p = early_alloc(PAGE_SIZE, nid, true);
94                 pud_populate(&init_mm, pud, p);
95         }
96
97         pmd = pmd_offset(pud, addr);
98         do {
99                 next = pmd_addr_end(addr, end);
100                 if (!pmd_large(*pmd))
101                         kasan_populate_pmd(pmd, addr, next, nid);
102         } while (pmd++, addr = next, addr != end);
103 }
104
105 static void __init kasan_populate_p4d(p4d_t *p4d, unsigned long addr,
106                                       unsigned long end, int nid)
107 {
108         pud_t *pud;
109         unsigned long next;
110
111         if (p4d_none(*p4d)) {
112                 void *p = early_alloc(PAGE_SIZE, nid, true);
113
114                 p4d_populate(&init_mm, p4d, p);
115         }
116
117         pud = pud_offset(p4d, addr);
118         do {
119                 next = pud_addr_end(addr, end);
120                 if (!pud_large(*pud))
121                         kasan_populate_pud(pud, addr, next, nid);
122         } while (pud++, addr = next, addr != end);
123 }
124
125 static void __init kasan_populate_pgd(pgd_t *pgd, unsigned long addr,
126                                       unsigned long end, int nid)
127 {
128         void *p;
129         p4d_t *p4d;
130         unsigned long next;
131
132         if (pgd_none(*pgd)) {
133                 p = early_alloc(PAGE_SIZE, nid, true);
134                 pgd_populate(&init_mm, pgd, p);
135         }
136
137         p4d = p4d_offset(pgd, addr);
138         do {
139                 next = p4d_addr_end(addr, end);
140                 kasan_populate_p4d(p4d, addr, next, nid);
141         } while (p4d++, addr = next, addr != end);
142 }
143
144 static void __init kasan_populate_shadow(unsigned long addr, unsigned long end,
145                                          int nid)
146 {
147         pgd_t *pgd;
148         unsigned long next;
149
150         addr = addr & PAGE_MASK;
151         end = round_up(end, PAGE_SIZE);
152         pgd = pgd_offset_k(addr);
153         do {
154                 next = pgd_addr_end(addr, end);
155                 kasan_populate_pgd(pgd, addr, next, nid);
156         } while (pgd++, addr = next, addr != end);
157 }
158
159 static void __init map_range(struct range *range)
160 {
161         unsigned long start;
162         unsigned long end;
163
164         start = (unsigned long)kasan_mem_to_shadow(pfn_to_kaddr(range->start));
165         end = (unsigned long)kasan_mem_to_shadow(pfn_to_kaddr(range->end));
166
167         kasan_populate_shadow(start, end, early_pfn_to_nid(range->start));
168 }
169
170 static void __init clear_pgds(unsigned long start,
171                         unsigned long end)
172 {
173         pgd_t *pgd;
174         /* See comment in kasan_init() */
175         unsigned long pgd_end = end & PGDIR_MASK;
176
177         for (; start < pgd_end; start += PGDIR_SIZE) {
178                 pgd = pgd_offset_k(start);
179                 /*
180                  * With folded p4d, pgd_clear() is nop, use p4d_clear()
181                  * instead.
182                  */
183                 if (pgtable_l5_enabled())
184                         pgd_clear(pgd);
185                 else
186                         p4d_clear(p4d_offset(pgd, start));
187         }
188
189         pgd = pgd_offset_k(start);
190         for (; start < end; start += P4D_SIZE)
191                 p4d_clear(p4d_offset(pgd, start));
192 }
193
194 static inline p4d_t *early_p4d_offset(pgd_t *pgd, unsigned long addr)
195 {
196         unsigned long p4d;
197
198         if (!pgtable_l5_enabled())
199                 return (p4d_t *)pgd;
200
201         p4d = __pa_nodebug(pgd_val(*pgd)) & PTE_PFN_MASK;
202         p4d += __START_KERNEL_map - phys_base;
203         return (p4d_t *)p4d + p4d_index(addr);
204 }
205
206 static void __init kasan_early_p4d_populate(pgd_t *pgd,
207                 unsigned long addr,
208                 unsigned long end)
209 {
210         pgd_t pgd_entry;
211         p4d_t *p4d, p4d_entry;
212         unsigned long next;
213
214         if (pgd_none(*pgd)) {
215                 pgd_entry = __pgd(_KERNPG_TABLE | __pa_nodebug(kasan_zero_p4d));
216                 set_pgd(pgd, pgd_entry);
217         }
218
219         p4d = early_p4d_offset(pgd, addr);
220         do {
221                 next = p4d_addr_end(addr, end);
222
223                 if (!p4d_none(*p4d))
224                         continue;
225
226                 p4d_entry = __p4d(_KERNPG_TABLE | __pa_nodebug(kasan_zero_pud));
227                 set_p4d(p4d, p4d_entry);
228         } while (p4d++, addr = next, addr != end && p4d_none(*p4d));
229 }
230
231 static void __init kasan_map_early_shadow(pgd_t *pgd)
232 {
233         /* See comment in kasan_init() */
234         unsigned long addr = KASAN_SHADOW_START & PGDIR_MASK;
235         unsigned long end = KASAN_SHADOW_END;
236         unsigned long next;
237
238         pgd += pgd_index(addr);
239         do {
240                 next = pgd_addr_end(addr, end);
241                 kasan_early_p4d_populate(pgd, addr, next);
242         } while (pgd++, addr = next, addr != end);
243 }
244
245 #ifdef CONFIG_KASAN_INLINE
246 static int kasan_die_handler(struct notifier_block *self,
247                              unsigned long val,
248                              void *data)
249 {
250         if (val == DIE_GPF) {
251                 pr_emerg("CONFIG_KASAN_INLINE enabled\n");
252                 pr_emerg("GPF could be caused by NULL-ptr deref or user memory access\n");
253         }
254         return NOTIFY_OK;
255 }
256
257 static struct notifier_block kasan_die_notifier = {
258         .notifier_call = kasan_die_handler,
259 };
260 #endif
261
262 void __init kasan_early_init(void)
263 {
264         int i;
265         pteval_t pte_val = __pa_nodebug(kasan_zero_page) | __PAGE_KERNEL | _PAGE_ENC;
266         pmdval_t pmd_val = __pa_nodebug(kasan_zero_pte) | _KERNPG_TABLE;
267         pudval_t pud_val = __pa_nodebug(kasan_zero_pmd) | _KERNPG_TABLE;
268         p4dval_t p4d_val = __pa_nodebug(kasan_zero_pud) | _KERNPG_TABLE;
269
270         /* Mask out unsupported __PAGE_KERNEL bits: */
271         pte_val &= __default_kernel_pte_mask;
272         pmd_val &= __default_kernel_pte_mask;
273         pud_val &= __default_kernel_pte_mask;
274         p4d_val &= __default_kernel_pte_mask;
275
276         for (i = 0; i < PTRS_PER_PTE; i++)
277                 kasan_zero_pte[i] = __pte(pte_val);
278
279         for (i = 0; i < PTRS_PER_PMD; i++)
280                 kasan_zero_pmd[i] = __pmd(pmd_val);
281
282         for (i = 0; i < PTRS_PER_PUD; i++)
283                 kasan_zero_pud[i] = __pud(pud_val);
284
285         for (i = 0; pgtable_l5_enabled() && i < PTRS_PER_P4D; i++)
286                 kasan_zero_p4d[i] = __p4d(p4d_val);
287
288         kasan_map_early_shadow(early_top_pgt);
289         kasan_map_early_shadow(init_top_pgt);
290 }
291
292 void __init kasan_init(void)
293 {
294         int i;
295         void *shadow_cpu_entry_begin, *shadow_cpu_entry_end;
296
297 #ifdef CONFIG_KASAN_INLINE
298         register_die_notifier(&kasan_die_notifier);
299 #endif
300
301         memcpy(early_top_pgt, init_top_pgt, sizeof(early_top_pgt));
302
303         /*
304          * We use the same shadow offset for 4- and 5-level paging to
305          * facilitate boot-time switching between paging modes.
306          * As result in 5-level paging mode KASAN_SHADOW_START and
307          * KASAN_SHADOW_END are not aligned to PGD boundary.
308          *
309          * KASAN_SHADOW_START doesn't share PGD with anything else.
310          * We claim whole PGD entry to make things easier.
311          *
312          * KASAN_SHADOW_END lands in the last PGD entry and it collides with
313          * bunch of things like kernel code, modules, EFI mapping, etc.
314          * We need to take extra steps to not overwrite them.
315          */
316         if (pgtable_l5_enabled()) {
317                 void *ptr;
318
319                 ptr = (void *)pgd_page_vaddr(*pgd_offset_k(KASAN_SHADOW_END));
320                 memcpy(tmp_p4d_table, (void *)ptr, sizeof(tmp_p4d_table));
321                 set_pgd(&early_top_pgt[pgd_index(KASAN_SHADOW_END)],
322                                 __pgd(__pa(tmp_p4d_table) | _KERNPG_TABLE));
323         }
324
325         load_cr3(early_top_pgt);
326         __flush_tlb_all();
327
328         clear_pgds(KASAN_SHADOW_START & PGDIR_MASK, KASAN_SHADOW_END);
329
330         kasan_populate_zero_shadow((void *)(KASAN_SHADOW_START & PGDIR_MASK),
331                         kasan_mem_to_shadow((void *)PAGE_OFFSET));
332
333         for (i = 0; i < E820_MAX_ENTRIES; i++) {
334                 if (pfn_mapped[i].end == 0)
335                         break;
336
337                 map_range(&pfn_mapped[i]);
338         }
339
340         shadow_cpu_entry_begin = (void *)CPU_ENTRY_AREA_BASE;
341         shadow_cpu_entry_begin = kasan_mem_to_shadow(shadow_cpu_entry_begin);
342         shadow_cpu_entry_begin = (void *)round_down((unsigned long)shadow_cpu_entry_begin,
343                                                 PAGE_SIZE);
344
345         shadow_cpu_entry_end = (void *)(CPU_ENTRY_AREA_BASE +
346                                         CPU_ENTRY_AREA_MAP_SIZE);
347         shadow_cpu_entry_end = kasan_mem_to_shadow(shadow_cpu_entry_end);
348         shadow_cpu_entry_end = (void *)round_up((unsigned long)shadow_cpu_entry_end,
349                                         PAGE_SIZE);
350
351         kasan_populate_zero_shadow(
352                 kasan_mem_to_shadow((void *)PAGE_OFFSET + MAXMEM),
353                 shadow_cpu_entry_begin);
354
355         kasan_populate_shadow((unsigned long)shadow_cpu_entry_begin,
356                               (unsigned long)shadow_cpu_entry_end, 0);
357
358         kasan_populate_zero_shadow(shadow_cpu_entry_end,
359                                 kasan_mem_to_shadow((void *)__START_KERNEL_map));
360
361         kasan_populate_shadow((unsigned long)kasan_mem_to_shadow(_stext),
362                               (unsigned long)kasan_mem_to_shadow(_end),
363                               early_pfn_to_nid(__pa(_stext)));
364
365         kasan_populate_zero_shadow(kasan_mem_to_shadow((void *)MODULES_END),
366                                 (void *)KASAN_SHADOW_END);
367
368         load_cr3(init_top_pgt);
369         __flush_tlb_all();
370
371         /*
372          * kasan_zero_page has been used as early shadow memory, thus it may
373          * contain some garbage. Now we can clear and write protect it, since
374          * after the TLB flush no one should write to it.
375          */
376         memset(kasan_zero_page, 0, PAGE_SIZE);
377         for (i = 0; i < PTRS_PER_PTE; i++) {
378                 pte_t pte;
379                 pgprot_t prot;
380
381                 prot = __pgprot(__PAGE_KERNEL_RO | _PAGE_ENC);
382                 pgprot_val(prot) &= __default_kernel_pte_mask;
383
384                 pte = __pte(__pa(kasan_zero_page) | pgprot_val(prot));
385                 set_pte(&kasan_zero_pte[i], pte);
386         }
387         /* Flush TLBs again to be sure that write protection applied. */
388         __flush_tlb_all();
389
390         init_task.kasan_depth = 0;
391         pr_info("KernelAddressSanitizer initialized\n");
392 }