x86/tdx: Make pages shared in ioremap()
[platform/kernel/linux-starfive.git] / arch / x86 / mm / ioremap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Re-map IO memory to kernel address space so that we can access it.
4  * This is needed for high PCI addresses that aren't mapped in the
5  * 640k-1MB IO memory area on PC's
6  *
7  * (C) Copyright 1995 1996 Linus Torvalds
8  */
9
10 #include <linux/memblock.h>
11 #include <linux/init.h>
12 #include <linux/io.h>
13 #include <linux/ioport.h>
14 #include <linux/slab.h>
15 #include <linux/vmalloc.h>
16 #include <linux/mmiotrace.h>
17 #include <linux/cc_platform.h>
18 #include <linux/efi.h>
19 #include <linux/pgtable.h>
20
21 #include <asm/set_memory.h>
22 #include <asm/e820/api.h>
23 #include <asm/efi.h>
24 #include <asm/fixmap.h>
25 #include <asm/tlbflush.h>
26 #include <asm/pgalloc.h>
27 #include <asm/memtype.h>
28 #include <asm/setup.h>
29
30 #include "physaddr.h"
31
32 /*
33  * Descriptor controlling ioremap() behavior.
34  */
35 struct ioremap_desc {
36         unsigned int flags;
37 };
38
39 /*
40  * Fix up the linear direct mapping of the kernel to avoid cache attribute
41  * conflicts.
42  */
43 int ioremap_change_attr(unsigned long vaddr, unsigned long size,
44                         enum page_cache_mode pcm)
45 {
46         unsigned long nrpages = size >> PAGE_SHIFT;
47         int err;
48
49         switch (pcm) {
50         case _PAGE_CACHE_MODE_UC:
51         default:
52                 err = _set_memory_uc(vaddr, nrpages);
53                 break;
54         case _PAGE_CACHE_MODE_WC:
55                 err = _set_memory_wc(vaddr, nrpages);
56                 break;
57         case _PAGE_CACHE_MODE_WT:
58                 err = _set_memory_wt(vaddr, nrpages);
59                 break;
60         case _PAGE_CACHE_MODE_WB:
61                 err = _set_memory_wb(vaddr, nrpages);
62                 break;
63         }
64
65         return err;
66 }
67
68 /* Does the range (or a subset of) contain normal RAM? */
69 static unsigned int __ioremap_check_ram(struct resource *res)
70 {
71         unsigned long start_pfn, stop_pfn;
72         unsigned long i;
73
74         if ((res->flags & IORESOURCE_SYSTEM_RAM) != IORESOURCE_SYSTEM_RAM)
75                 return 0;
76
77         start_pfn = (res->start + PAGE_SIZE - 1) >> PAGE_SHIFT;
78         stop_pfn = (res->end + 1) >> PAGE_SHIFT;
79         if (stop_pfn > start_pfn) {
80                 for (i = 0; i < (stop_pfn - start_pfn); ++i)
81                         if (pfn_valid(start_pfn + i) &&
82                             !PageReserved(pfn_to_page(start_pfn + i)))
83                                 return IORES_MAP_SYSTEM_RAM;
84         }
85
86         return 0;
87 }
88
89 /*
90  * In a SEV guest, NONE and RESERVED should not be mapped encrypted because
91  * there the whole memory is already encrypted.
92  */
93 static unsigned int __ioremap_check_encrypted(struct resource *res)
94 {
95         if (!cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
96                 return 0;
97
98         switch (res->desc) {
99         case IORES_DESC_NONE:
100         case IORES_DESC_RESERVED:
101                 break;
102         default:
103                 return IORES_MAP_ENCRYPTED;
104         }
105
106         return 0;
107 }
108
109 /*
110  * The EFI runtime services data area is not covered by walk_mem_res(), but must
111  * be mapped encrypted when SEV is active.
112  */
113 static void __ioremap_check_other(resource_size_t addr, struct ioremap_desc *desc)
114 {
115         if (!cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
116                 return;
117
118         if (!IS_ENABLED(CONFIG_EFI))
119                 return;
120
121         if (efi_mem_type(addr) == EFI_RUNTIME_SERVICES_DATA ||
122             (efi_mem_type(addr) == EFI_BOOT_SERVICES_DATA &&
123              efi_mem_attributes(addr) & EFI_MEMORY_RUNTIME))
124                 desc->flags |= IORES_MAP_ENCRYPTED;
125 }
126
127 static int __ioremap_collect_map_flags(struct resource *res, void *arg)
128 {
129         struct ioremap_desc *desc = arg;
130
131         if (!(desc->flags & IORES_MAP_SYSTEM_RAM))
132                 desc->flags |= __ioremap_check_ram(res);
133
134         if (!(desc->flags & IORES_MAP_ENCRYPTED))
135                 desc->flags |= __ioremap_check_encrypted(res);
136
137         return ((desc->flags & (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED)) ==
138                                (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED));
139 }
140
141 /*
142  * To avoid multiple resource walks, this function walks resources marked as
143  * IORESOURCE_MEM and IORESOURCE_BUSY and looking for system RAM and/or a
144  * resource described not as IORES_DESC_NONE (e.g. IORES_DESC_ACPI_TABLES).
145  *
146  * After that, deal with misc other ranges in __ioremap_check_other() which do
147  * not fall into the above category.
148  */
149 static void __ioremap_check_mem(resource_size_t addr, unsigned long size,
150                                 struct ioremap_desc *desc)
151 {
152         u64 start, end;
153
154         start = (u64)addr;
155         end = start + size - 1;
156         memset(desc, 0, sizeof(struct ioremap_desc));
157
158         walk_mem_res(start, end, desc, __ioremap_collect_map_flags);
159
160         __ioremap_check_other(addr, desc);
161 }
162
163 /*
164  * Remap an arbitrary physical address space into the kernel virtual
165  * address space. It transparently creates kernel huge I/O mapping when
166  * the physical address is aligned by a huge page size (1GB or 2MB) and
167  * the requested size is at least the huge page size.
168  *
169  * NOTE: MTRRs can override PAT memory types with a 4KB granularity.
170  * Therefore, the mapping code falls back to use a smaller page toward 4KB
171  * when a mapping range is covered by non-WB type of MTRRs.
172  *
173  * NOTE! We need to allow non-page-aligned mappings too: we will obviously
174  * have to convert them into an offset in a page-aligned mapping, but the
175  * caller shouldn't need to know that small detail.
176  */
177 static void __iomem *
178 __ioremap_caller(resource_size_t phys_addr, unsigned long size,
179                  enum page_cache_mode pcm, void *caller, bool encrypted)
180 {
181         unsigned long offset, vaddr;
182         resource_size_t last_addr;
183         const resource_size_t unaligned_phys_addr = phys_addr;
184         const unsigned long unaligned_size = size;
185         struct ioremap_desc io_desc;
186         struct vm_struct *area;
187         enum page_cache_mode new_pcm;
188         pgprot_t prot;
189         int retval;
190         void __iomem *ret_addr;
191
192         /* Don't allow wraparound or zero size */
193         last_addr = phys_addr + size - 1;
194         if (!size || last_addr < phys_addr)
195                 return NULL;
196
197         if (!phys_addr_valid(phys_addr)) {
198                 printk(KERN_WARNING "ioremap: invalid physical address %llx\n",
199                        (unsigned long long)phys_addr);
200                 WARN_ON_ONCE(1);
201                 return NULL;
202         }
203
204         __ioremap_check_mem(phys_addr, size, &io_desc);
205
206         /*
207          * Don't allow anybody to remap normal RAM that we're using..
208          */
209         if (io_desc.flags & IORES_MAP_SYSTEM_RAM) {
210                 WARN_ONCE(1, "ioremap on RAM at %pa - %pa\n",
211                           &phys_addr, &last_addr);
212                 return NULL;
213         }
214
215         /*
216          * Mappings have to be page-aligned
217          */
218         offset = phys_addr & ~PAGE_MASK;
219         phys_addr &= PHYSICAL_PAGE_MASK;
220         size = PAGE_ALIGN(last_addr+1) - phys_addr;
221
222         retval = memtype_reserve(phys_addr, (u64)phys_addr + size,
223                                                 pcm, &new_pcm);
224         if (retval) {
225                 printk(KERN_ERR "ioremap memtype_reserve failed %d\n", retval);
226                 return NULL;
227         }
228
229         if (pcm != new_pcm) {
230                 if (!is_new_memtype_allowed(phys_addr, size, pcm, new_pcm)) {
231                         printk(KERN_ERR
232                 "ioremap error for 0x%llx-0x%llx, requested 0x%x, got 0x%x\n",
233                                 (unsigned long long)phys_addr,
234                                 (unsigned long long)(phys_addr + size),
235                                 pcm, new_pcm);
236                         goto err_free_memtype;
237                 }
238                 pcm = new_pcm;
239         }
240
241         /*
242          * If the page being mapped is in memory and SEV is active then
243          * make sure the memory encryption attribute is enabled in the
244          * resulting mapping.
245          * In TDX guests, memory is marked private by default. If encryption
246          * is not requested (using encrypted), explicitly set decrypt
247          * attribute in all IOREMAPPED memory.
248          */
249         prot = PAGE_KERNEL_IO;
250         if ((io_desc.flags & IORES_MAP_ENCRYPTED) || encrypted)
251                 prot = pgprot_encrypted(prot);
252         else
253                 prot = pgprot_decrypted(prot);
254
255         switch (pcm) {
256         case _PAGE_CACHE_MODE_UC:
257         default:
258                 prot = __pgprot(pgprot_val(prot) |
259                                 cachemode2protval(_PAGE_CACHE_MODE_UC));
260                 break;
261         case _PAGE_CACHE_MODE_UC_MINUS:
262                 prot = __pgprot(pgprot_val(prot) |
263                                 cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS));
264                 break;
265         case _PAGE_CACHE_MODE_WC:
266                 prot = __pgprot(pgprot_val(prot) |
267                                 cachemode2protval(_PAGE_CACHE_MODE_WC));
268                 break;
269         case _PAGE_CACHE_MODE_WT:
270                 prot = __pgprot(pgprot_val(prot) |
271                                 cachemode2protval(_PAGE_CACHE_MODE_WT));
272                 break;
273         case _PAGE_CACHE_MODE_WB:
274                 break;
275         }
276
277         /*
278          * Ok, go for it..
279          */
280         area = get_vm_area_caller(size, VM_IOREMAP, caller);
281         if (!area)
282                 goto err_free_memtype;
283         area->phys_addr = phys_addr;
284         vaddr = (unsigned long) area->addr;
285
286         if (memtype_kernel_map_sync(phys_addr, size, pcm))
287                 goto err_free_area;
288
289         if (ioremap_page_range(vaddr, vaddr + size, phys_addr, prot))
290                 goto err_free_area;
291
292         ret_addr = (void __iomem *) (vaddr + offset);
293         mmiotrace_ioremap(unaligned_phys_addr, unaligned_size, ret_addr);
294
295         /*
296          * Check if the request spans more than any BAR in the iomem resource
297          * tree.
298          */
299         if (iomem_map_sanity_check(unaligned_phys_addr, unaligned_size))
300                 pr_warn("caller %pS mapping multiple BARs\n", caller);
301
302         return ret_addr;
303 err_free_area:
304         free_vm_area(area);
305 err_free_memtype:
306         memtype_free(phys_addr, phys_addr + size);
307         return NULL;
308 }
309
310 /**
311  * ioremap     -   map bus memory into CPU space
312  * @phys_addr:    bus address of the memory
313  * @size:      size of the resource to map
314  *
315  * ioremap performs a platform specific sequence of operations to
316  * make bus memory CPU accessible via the readb/readw/readl/writeb/
317  * writew/writel functions and the other mmio helpers. The returned
318  * address is not guaranteed to be usable directly as a virtual
319  * address.
320  *
321  * This version of ioremap ensures that the memory is marked uncachable
322  * on the CPU as well as honouring existing caching rules from things like
323  * the PCI bus. Note that there are other caches and buffers on many
324  * busses. In particular driver authors should read up on PCI writes
325  *
326  * It's useful if some control registers are in such an area and
327  * write combining or read caching is not desirable:
328  *
329  * Must be freed with iounmap.
330  */
331 void __iomem *ioremap(resource_size_t phys_addr, unsigned long size)
332 {
333         /*
334          * Ideally, this should be:
335          *      pat_enabled() ? _PAGE_CACHE_MODE_UC : _PAGE_CACHE_MODE_UC_MINUS;
336          *
337          * Till we fix all X drivers to use ioremap_wc(), we will use
338          * UC MINUS. Drivers that are certain they need or can already
339          * be converted over to strong UC can use ioremap_uc().
340          */
341         enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC_MINUS;
342
343         return __ioremap_caller(phys_addr, size, pcm,
344                                 __builtin_return_address(0), false);
345 }
346 EXPORT_SYMBOL(ioremap);
347
348 /**
349  * ioremap_uc     -   map bus memory into CPU space as strongly uncachable
350  * @phys_addr:    bus address of the memory
351  * @size:      size of the resource to map
352  *
353  * ioremap_uc performs a platform specific sequence of operations to
354  * make bus memory CPU accessible via the readb/readw/readl/writeb/
355  * writew/writel functions and the other mmio helpers. The returned
356  * address is not guaranteed to be usable directly as a virtual
357  * address.
358  *
359  * This version of ioremap ensures that the memory is marked with a strong
360  * preference as completely uncachable on the CPU when possible. For non-PAT
361  * systems this ends up setting page-attribute flags PCD=1, PWT=1. For PAT
362  * systems this will set the PAT entry for the pages as strong UC.  This call
363  * will honor existing caching rules from things like the PCI bus. Note that
364  * there are other caches and buffers on many busses. In particular driver
365  * authors should read up on PCI writes.
366  *
367  * It's useful if some control registers are in such an area and
368  * write combining or read caching is not desirable:
369  *
370  * Must be freed with iounmap.
371  */
372 void __iomem *ioremap_uc(resource_size_t phys_addr, unsigned long size)
373 {
374         enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC;
375
376         return __ioremap_caller(phys_addr, size, pcm,
377                                 __builtin_return_address(0), false);
378 }
379 EXPORT_SYMBOL_GPL(ioremap_uc);
380
381 /**
382  * ioremap_wc   -       map memory into CPU space write combined
383  * @phys_addr:  bus address of the memory
384  * @size:       size of the resource to map
385  *
386  * This version of ioremap ensures that the memory is marked write combining.
387  * Write combining allows faster writes to some hardware devices.
388  *
389  * Must be freed with iounmap.
390  */
391 void __iomem *ioremap_wc(resource_size_t phys_addr, unsigned long size)
392 {
393         return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WC,
394                                         __builtin_return_address(0), false);
395 }
396 EXPORT_SYMBOL(ioremap_wc);
397
398 /**
399  * ioremap_wt   -       map memory into CPU space write through
400  * @phys_addr:  bus address of the memory
401  * @size:       size of the resource to map
402  *
403  * This version of ioremap ensures that the memory is marked write through.
404  * Write through stores data into memory while keeping the cache up-to-date.
405  *
406  * Must be freed with iounmap.
407  */
408 void __iomem *ioremap_wt(resource_size_t phys_addr, unsigned long size)
409 {
410         return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WT,
411                                         __builtin_return_address(0), false);
412 }
413 EXPORT_SYMBOL(ioremap_wt);
414
415 void __iomem *ioremap_encrypted(resource_size_t phys_addr, unsigned long size)
416 {
417         return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB,
418                                 __builtin_return_address(0), true);
419 }
420 EXPORT_SYMBOL(ioremap_encrypted);
421
422 void __iomem *ioremap_cache(resource_size_t phys_addr, unsigned long size)
423 {
424         return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB,
425                                 __builtin_return_address(0), false);
426 }
427 EXPORT_SYMBOL(ioremap_cache);
428
429 void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size,
430                                 unsigned long prot_val)
431 {
432         return __ioremap_caller(phys_addr, size,
433                                 pgprot2cachemode(__pgprot(prot_val)),
434                                 __builtin_return_address(0), false);
435 }
436 EXPORT_SYMBOL(ioremap_prot);
437
438 /**
439  * iounmap - Free a IO remapping
440  * @addr: virtual address from ioremap_*
441  *
442  * Caller must ensure there is only one unmapping for the same pointer.
443  */
444 void iounmap(volatile void __iomem *addr)
445 {
446         struct vm_struct *p, *o;
447
448         if ((void __force *)addr <= high_memory)
449                 return;
450
451         /*
452          * The PCI/ISA range special-casing was removed from __ioremap()
453          * so this check, in theory, can be removed. However, there are
454          * cases where iounmap() is called for addresses not obtained via
455          * ioremap() (vga16fb for example). Add a warning so that these
456          * cases can be caught and fixed.
457          */
458         if ((void __force *)addr >= phys_to_virt(ISA_START_ADDRESS) &&
459             (void __force *)addr < phys_to_virt(ISA_END_ADDRESS)) {
460                 WARN(1, "iounmap() called for ISA range not obtained using ioremap()\n");
461                 return;
462         }
463
464         mmiotrace_iounmap(addr);
465
466         addr = (volatile void __iomem *)
467                 (PAGE_MASK & (unsigned long __force)addr);
468
469         /* Use the vm area unlocked, assuming the caller
470            ensures there isn't another iounmap for the same address
471            in parallel. Reuse of the virtual address is prevented by
472            leaving it in the global lists until we're done with it.
473            cpa takes care of the direct mappings. */
474         p = find_vm_area((void __force *)addr);
475
476         if (!p) {
477                 printk(KERN_ERR "iounmap: bad address %p\n", addr);
478                 dump_stack();
479                 return;
480         }
481
482         memtype_free(p->phys_addr, p->phys_addr + get_vm_area_size(p));
483
484         /* Finally remove it */
485         o = remove_vm_area((void __force *)addr);
486         BUG_ON(p != o || o == NULL);
487         kfree(p);
488 }
489 EXPORT_SYMBOL(iounmap);
490
491 /*
492  * Convert a physical pointer to a virtual kernel pointer for /dev/mem
493  * access
494  */
495 void *xlate_dev_mem_ptr(phys_addr_t phys)
496 {
497         unsigned long start  = phys &  PAGE_MASK;
498         unsigned long offset = phys & ~PAGE_MASK;
499         void *vaddr;
500
501         /* memremap() maps if RAM, otherwise falls back to ioremap() */
502         vaddr = memremap(start, PAGE_SIZE, MEMREMAP_WB);
503
504         /* Only add the offset on success and return NULL if memremap() failed */
505         if (vaddr)
506                 vaddr += offset;
507
508         return vaddr;
509 }
510
511 void unxlate_dev_mem_ptr(phys_addr_t phys, void *addr)
512 {
513         memunmap((void *)((unsigned long)addr & PAGE_MASK));
514 }
515
516 #ifdef CONFIG_AMD_MEM_ENCRYPT
517 /*
518  * Examine the physical address to determine if it is an area of memory
519  * that should be mapped decrypted.  If the memory is not part of the
520  * kernel usable area it was accessed and created decrypted, so these
521  * areas should be mapped decrypted. And since the encryption key can
522  * change across reboots, persistent memory should also be mapped
523  * decrypted.
524  *
525  * If SEV is active, that implies that BIOS/UEFI also ran encrypted so
526  * only persistent memory should be mapped decrypted.
527  */
528 static bool memremap_should_map_decrypted(resource_size_t phys_addr,
529                                           unsigned long size)
530 {
531         int is_pmem;
532
533         /*
534          * Check if the address is part of a persistent memory region.
535          * This check covers areas added by E820, EFI and ACPI.
536          */
537         is_pmem = region_intersects(phys_addr, size, IORESOURCE_MEM,
538                                     IORES_DESC_PERSISTENT_MEMORY);
539         if (is_pmem != REGION_DISJOINT)
540                 return true;
541
542         /*
543          * Check if the non-volatile attribute is set for an EFI
544          * reserved area.
545          */
546         if (efi_enabled(EFI_BOOT)) {
547                 switch (efi_mem_type(phys_addr)) {
548                 case EFI_RESERVED_TYPE:
549                         if (efi_mem_attributes(phys_addr) & EFI_MEMORY_NV)
550                                 return true;
551                         break;
552                 default:
553                         break;
554                 }
555         }
556
557         /* Check if the address is outside kernel usable area */
558         switch (e820__get_entry_type(phys_addr, phys_addr + size - 1)) {
559         case E820_TYPE_RESERVED:
560         case E820_TYPE_ACPI:
561         case E820_TYPE_NVS:
562         case E820_TYPE_UNUSABLE:
563                 /* For SEV, these areas are encrypted */
564                 if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
565                         break;
566                 fallthrough;
567
568         case E820_TYPE_PRAM:
569                 return true;
570         default:
571                 break;
572         }
573
574         return false;
575 }
576
577 /*
578  * Examine the physical address to determine if it is EFI data. Check
579  * it against the boot params structure and EFI tables and memory types.
580  */
581 static bool memremap_is_efi_data(resource_size_t phys_addr,
582                                  unsigned long size)
583 {
584         u64 paddr;
585
586         /* Check if the address is part of EFI boot/runtime data */
587         if (!efi_enabled(EFI_BOOT))
588                 return false;
589
590         paddr = boot_params.efi_info.efi_memmap_hi;
591         paddr <<= 32;
592         paddr |= boot_params.efi_info.efi_memmap;
593         if (phys_addr == paddr)
594                 return true;
595
596         paddr = boot_params.efi_info.efi_systab_hi;
597         paddr <<= 32;
598         paddr |= boot_params.efi_info.efi_systab;
599         if (phys_addr == paddr)
600                 return true;
601
602         if (efi_is_table_address(phys_addr))
603                 return true;
604
605         switch (efi_mem_type(phys_addr)) {
606         case EFI_BOOT_SERVICES_DATA:
607         case EFI_RUNTIME_SERVICES_DATA:
608                 return true;
609         default:
610                 break;
611         }
612
613         return false;
614 }
615
616 /*
617  * Examine the physical address to determine if it is boot data by checking
618  * it against the boot params setup_data chain.
619  */
620 static bool memremap_is_setup_data(resource_size_t phys_addr,
621                                    unsigned long size)
622 {
623         struct setup_indirect *indirect;
624         struct setup_data *data;
625         u64 paddr, paddr_next;
626
627         paddr = boot_params.hdr.setup_data;
628         while (paddr) {
629                 unsigned int len;
630
631                 if (phys_addr == paddr)
632                         return true;
633
634                 data = memremap(paddr, sizeof(*data),
635                                 MEMREMAP_WB | MEMREMAP_DEC);
636                 if (!data) {
637                         pr_warn("failed to memremap setup_data entry\n");
638                         return false;
639                 }
640
641                 paddr_next = data->next;
642                 len = data->len;
643
644                 if ((phys_addr > paddr) && (phys_addr < (paddr + len))) {
645                         memunmap(data);
646                         return true;
647                 }
648
649                 if (data->type == SETUP_INDIRECT) {
650                         memunmap(data);
651                         data = memremap(paddr, sizeof(*data) + len,
652                                         MEMREMAP_WB | MEMREMAP_DEC);
653                         if (!data) {
654                                 pr_warn("failed to memremap indirect setup_data\n");
655                                 return false;
656                         }
657
658                         indirect = (struct setup_indirect *)data->data;
659
660                         if (indirect->type != SETUP_INDIRECT) {
661                                 paddr = indirect->addr;
662                                 len = indirect->len;
663                         }
664                 }
665
666                 memunmap(data);
667
668                 if ((phys_addr > paddr) && (phys_addr < (paddr + len)))
669                         return true;
670
671                 paddr = paddr_next;
672         }
673
674         return false;
675 }
676
677 /*
678  * Examine the physical address to determine if it is boot data by checking
679  * it against the boot params setup_data chain (early boot version).
680  */
681 static bool __init early_memremap_is_setup_data(resource_size_t phys_addr,
682                                                 unsigned long size)
683 {
684         struct setup_indirect *indirect;
685         struct setup_data *data;
686         u64 paddr, paddr_next;
687
688         paddr = boot_params.hdr.setup_data;
689         while (paddr) {
690                 unsigned int len, size;
691
692                 if (phys_addr == paddr)
693                         return true;
694
695                 data = early_memremap_decrypted(paddr, sizeof(*data));
696                 if (!data) {
697                         pr_warn("failed to early memremap setup_data entry\n");
698                         return false;
699                 }
700
701                 size = sizeof(*data);
702
703                 paddr_next = data->next;
704                 len = data->len;
705
706                 if ((phys_addr > paddr) && (phys_addr < (paddr + len))) {
707                         early_memunmap(data, sizeof(*data));
708                         return true;
709                 }
710
711                 if (data->type == SETUP_INDIRECT) {
712                         size += len;
713                         early_memunmap(data, sizeof(*data));
714                         data = early_memremap_decrypted(paddr, size);
715                         if (!data) {
716                                 pr_warn("failed to early memremap indirect setup_data\n");
717                                 return false;
718                         }
719
720                         indirect = (struct setup_indirect *)data->data;
721
722                         if (indirect->type != SETUP_INDIRECT) {
723                                 paddr = indirect->addr;
724                                 len = indirect->len;
725                         }
726                 }
727
728                 early_memunmap(data, size);
729
730                 if ((phys_addr > paddr) && (phys_addr < (paddr + len)))
731                         return true;
732
733                 paddr = paddr_next;
734         }
735
736         return false;
737 }
738
739 /*
740  * Architecture function to determine if RAM remap is allowed. By default, a
741  * RAM remap will map the data as encrypted. Determine if a RAM remap should
742  * not be done so that the data will be mapped decrypted.
743  */
744 bool arch_memremap_can_ram_remap(resource_size_t phys_addr, unsigned long size,
745                                  unsigned long flags)
746 {
747         if (!cc_platform_has(CC_ATTR_MEM_ENCRYPT))
748                 return true;
749
750         if (flags & MEMREMAP_ENC)
751                 return true;
752
753         if (flags & MEMREMAP_DEC)
754                 return false;
755
756         if (cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) {
757                 if (memremap_is_setup_data(phys_addr, size) ||
758                     memremap_is_efi_data(phys_addr, size))
759                         return false;
760         }
761
762         return !memremap_should_map_decrypted(phys_addr, size);
763 }
764
765 /*
766  * Architecture override of __weak function to adjust the protection attributes
767  * used when remapping memory. By default, early_memremap() will map the data
768  * as encrypted. Determine if an encrypted mapping should not be done and set
769  * the appropriate protection attributes.
770  */
771 pgprot_t __init early_memremap_pgprot_adjust(resource_size_t phys_addr,
772                                              unsigned long size,
773                                              pgprot_t prot)
774 {
775         bool encrypted_prot;
776
777         if (!cc_platform_has(CC_ATTR_MEM_ENCRYPT))
778                 return prot;
779
780         encrypted_prot = true;
781
782         if (cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) {
783                 if (early_memremap_is_setup_data(phys_addr, size) ||
784                     memremap_is_efi_data(phys_addr, size))
785                         encrypted_prot = false;
786         }
787
788         if (encrypted_prot && memremap_should_map_decrypted(phys_addr, size))
789                 encrypted_prot = false;
790
791         return encrypted_prot ? pgprot_encrypted(prot)
792                               : pgprot_decrypted(prot);
793 }
794
795 bool phys_mem_access_encrypted(unsigned long phys_addr, unsigned long size)
796 {
797         return arch_memremap_can_ram_remap(phys_addr, size, 0);
798 }
799
800 /* Remap memory with encryption */
801 void __init *early_memremap_encrypted(resource_size_t phys_addr,
802                                       unsigned long size)
803 {
804         return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC);
805 }
806
807 /*
808  * Remap memory with encryption and write-protected - cannot be called
809  * before pat_init() is called
810  */
811 void __init *early_memremap_encrypted_wp(resource_size_t phys_addr,
812                                          unsigned long size)
813 {
814         if (!x86_has_pat_wp())
815                 return NULL;
816         return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC_WP);
817 }
818
819 /* Remap memory without encryption */
820 void __init *early_memremap_decrypted(resource_size_t phys_addr,
821                                       unsigned long size)
822 {
823         return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC);
824 }
825
826 /*
827  * Remap memory without encryption and write-protected - cannot be called
828  * before pat_init() is called
829  */
830 void __init *early_memremap_decrypted_wp(resource_size_t phys_addr,
831                                          unsigned long size)
832 {
833         if (!x86_has_pat_wp())
834                 return NULL;
835         return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC_WP);
836 }
837 #endif  /* CONFIG_AMD_MEM_ENCRYPT */
838
839 static pte_t bm_pte[PAGE_SIZE/sizeof(pte_t)] __page_aligned_bss;
840
841 static inline pmd_t * __init early_ioremap_pmd(unsigned long addr)
842 {
843         /* Don't assume we're using swapper_pg_dir at this point */
844         pgd_t *base = __va(read_cr3_pa());
845         pgd_t *pgd = &base[pgd_index(addr)];
846         p4d_t *p4d = p4d_offset(pgd, addr);
847         pud_t *pud = pud_offset(p4d, addr);
848         pmd_t *pmd = pmd_offset(pud, addr);
849
850         return pmd;
851 }
852
853 static inline pte_t * __init early_ioremap_pte(unsigned long addr)
854 {
855         return &bm_pte[pte_index(addr)];
856 }
857
858 bool __init is_early_ioremap_ptep(pte_t *ptep)
859 {
860         return ptep >= &bm_pte[0] && ptep < &bm_pte[PAGE_SIZE/sizeof(pte_t)];
861 }
862
863 void __init early_ioremap_init(void)
864 {
865         pmd_t *pmd;
866
867 #ifdef CONFIG_X86_64
868         BUILD_BUG_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
869 #else
870         WARN_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
871 #endif
872
873         early_ioremap_setup();
874
875         pmd = early_ioremap_pmd(fix_to_virt(FIX_BTMAP_BEGIN));
876         memset(bm_pte, 0, sizeof(bm_pte));
877         pmd_populate_kernel(&init_mm, pmd, bm_pte);
878
879         /*
880          * The boot-ioremap range spans multiple pmds, for which
881          * we are not prepared:
882          */
883 #define __FIXADDR_TOP (-PAGE_SIZE)
884         BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT)
885                      != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT));
886 #undef __FIXADDR_TOP
887         if (pmd != early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END))) {
888                 WARN_ON(1);
889                 printk(KERN_WARNING "pmd %p != %p\n",
890                        pmd, early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END)));
891                 printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n",
892                         fix_to_virt(FIX_BTMAP_BEGIN));
893                 printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_END):   %08lx\n",
894                         fix_to_virt(FIX_BTMAP_END));
895
896                 printk(KERN_WARNING "FIX_BTMAP_END:       %d\n", FIX_BTMAP_END);
897                 printk(KERN_WARNING "FIX_BTMAP_BEGIN:     %d\n",
898                        FIX_BTMAP_BEGIN);
899         }
900 }
901
902 void __init __early_set_fixmap(enum fixed_addresses idx,
903                                phys_addr_t phys, pgprot_t flags)
904 {
905         unsigned long addr = __fix_to_virt(idx);
906         pte_t *pte;
907
908         if (idx >= __end_of_fixed_addresses) {
909                 BUG();
910                 return;
911         }
912         pte = early_ioremap_pte(addr);
913
914         /* Sanitize 'prot' against any unsupported bits: */
915         pgprot_val(flags) &= __supported_pte_mask;
916
917         if (pgprot_val(flags))
918                 set_pte(pte, pfn_pte(phys >> PAGE_SHIFT, flags));
919         else
920                 pte_clear(&init_mm, addr, pte);
921         flush_tlb_one_kernel(addr);
922 }