x86, mm: setup page table in top-down
[platform/adaptation/renesas_rcar/renesas_kernel.git] / arch / x86 / mm / init_64.c
1 /*
2  *  linux/arch/x86_64/mm/init.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Copyright (C) 2000  Pavel Machek <pavel@ucw.cz>
6  *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7  */
8
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/proc_fs.h>
26 #include <linux/pci.h>
27 #include <linux/pfn.h>
28 #include <linux/poison.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/module.h>
31 #include <linux/memory.h>
32 #include <linux/memory_hotplug.h>
33 #include <linux/nmi.h>
34 #include <linux/gfp.h>
35
36 #include <asm/processor.h>
37 #include <asm/bios_ebda.h>
38 #include <asm/uaccess.h>
39 #include <asm/pgtable.h>
40 #include <asm/pgalloc.h>
41 #include <asm/dma.h>
42 #include <asm/fixmap.h>
43 #include <asm/e820.h>
44 #include <asm/apic.h>
45 #include <asm/tlb.h>
46 #include <asm/mmu_context.h>
47 #include <asm/proto.h>
48 #include <asm/smp.h>
49 #include <asm/sections.h>
50 #include <asm/kdebug.h>
51 #include <asm/numa.h>
52 #include <asm/cacheflush.h>
53 #include <asm/init.h>
54 #include <asm/uv/uv.h>
55 #include <asm/setup.h>
56
57 static int __init parse_direct_gbpages_off(char *arg)
58 {
59         direct_gbpages = 0;
60         return 0;
61 }
62 early_param("nogbpages", parse_direct_gbpages_off);
63
64 static int __init parse_direct_gbpages_on(char *arg)
65 {
66         direct_gbpages = 1;
67         return 0;
68 }
69 early_param("gbpages", parse_direct_gbpages_on);
70
71 /*
72  * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
73  * physical space so we can cache the place of the first one and move
74  * around without checking the pgd every time.
75  */
76
77 pteval_t __supported_pte_mask __read_mostly = ~_PAGE_IOMAP;
78 EXPORT_SYMBOL_GPL(__supported_pte_mask);
79
80 int force_personality32;
81
82 /*
83  * noexec32=on|off
84  * Control non executable heap for 32bit processes.
85  * To control the stack too use noexec=off
86  *
87  * on   PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
88  * off  PROT_READ implies PROT_EXEC
89  */
90 static int __init nonx32_setup(char *str)
91 {
92         if (!strcmp(str, "on"))
93                 force_personality32 &= ~READ_IMPLIES_EXEC;
94         else if (!strcmp(str, "off"))
95                 force_personality32 |= READ_IMPLIES_EXEC;
96         return 1;
97 }
98 __setup("noexec32=", nonx32_setup);
99
100 /*
101  * When memory was added/removed make sure all the processes MM have
102  * suitable PGD entries in the local PGD level page.
103  */
104 void sync_global_pgds(unsigned long start, unsigned long end)
105 {
106         unsigned long address;
107
108         for (address = start; address <= end; address += PGDIR_SIZE) {
109                 const pgd_t *pgd_ref = pgd_offset_k(address);
110                 struct page *page;
111
112                 if (pgd_none(*pgd_ref))
113                         continue;
114
115                 spin_lock(&pgd_lock);
116                 list_for_each_entry(page, &pgd_list, lru) {
117                         pgd_t *pgd;
118                         spinlock_t *pgt_lock;
119
120                         pgd = (pgd_t *)page_address(page) + pgd_index(address);
121                         /* the pgt_lock only for Xen */
122                         pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
123                         spin_lock(pgt_lock);
124
125                         if (pgd_none(*pgd))
126                                 set_pgd(pgd, *pgd_ref);
127                         else
128                                 BUG_ON(pgd_page_vaddr(*pgd)
129                                        != pgd_page_vaddr(*pgd_ref));
130
131                         spin_unlock(pgt_lock);
132                 }
133                 spin_unlock(&pgd_lock);
134         }
135 }
136
137 /*
138  * NOTE: This function is marked __ref because it calls __init function
139  * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
140  */
141 static __ref void *spp_getpage(void)
142 {
143         void *ptr;
144
145         if (after_bootmem)
146                 ptr = (void *) get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
147         else
148                 ptr = alloc_bootmem_pages(PAGE_SIZE);
149
150         if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
151                 panic("set_pte_phys: cannot allocate page data %s\n",
152                         after_bootmem ? "after bootmem" : "");
153         }
154
155         pr_debug("spp_getpage %p\n", ptr);
156
157         return ptr;
158 }
159
160 static pud_t *fill_pud(pgd_t *pgd, unsigned long vaddr)
161 {
162         if (pgd_none(*pgd)) {
163                 pud_t *pud = (pud_t *)spp_getpage();
164                 pgd_populate(&init_mm, pgd, pud);
165                 if (pud != pud_offset(pgd, 0))
166                         printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
167                                pud, pud_offset(pgd, 0));
168         }
169         return pud_offset(pgd, vaddr);
170 }
171
172 static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
173 {
174         if (pud_none(*pud)) {
175                 pmd_t *pmd = (pmd_t *) spp_getpage();
176                 pud_populate(&init_mm, pud, pmd);
177                 if (pmd != pmd_offset(pud, 0))
178                         printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
179                                pmd, pmd_offset(pud, 0));
180         }
181         return pmd_offset(pud, vaddr);
182 }
183
184 static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
185 {
186         if (pmd_none(*pmd)) {
187                 pte_t *pte = (pte_t *) spp_getpage();
188                 pmd_populate_kernel(&init_mm, pmd, pte);
189                 if (pte != pte_offset_kernel(pmd, 0))
190                         printk(KERN_ERR "PAGETABLE BUG #02!\n");
191         }
192         return pte_offset_kernel(pmd, vaddr);
193 }
194
195 void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
196 {
197         pud_t *pud;
198         pmd_t *pmd;
199         pte_t *pte;
200
201         pud = pud_page + pud_index(vaddr);
202         pmd = fill_pmd(pud, vaddr);
203         pte = fill_pte(pmd, vaddr);
204
205         set_pte(pte, new_pte);
206
207         /*
208          * It's enough to flush this one mapping.
209          * (PGE mappings get flushed as well)
210          */
211         __flush_tlb_one(vaddr);
212 }
213
214 void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
215 {
216         pgd_t *pgd;
217         pud_t *pud_page;
218
219         pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
220
221         pgd = pgd_offset_k(vaddr);
222         if (pgd_none(*pgd)) {
223                 printk(KERN_ERR
224                         "PGD FIXMAP MISSING, it should be setup in head.S!\n");
225                 return;
226         }
227         pud_page = (pud_t*)pgd_page_vaddr(*pgd);
228         set_pte_vaddr_pud(pud_page, vaddr, pteval);
229 }
230
231 pmd_t * __init populate_extra_pmd(unsigned long vaddr)
232 {
233         pgd_t *pgd;
234         pud_t *pud;
235
236         pgd = pgd_offset_k(vaddr);
237         pud = fill_pud(pgd, vaddr);
238         return fill_pmd(pud, vaddr);
239 }
240
241 pte_t * __init populate_extra_pte(unsigned long vaddr)
242 {
243         pmd_t *pmd;
244
245         pmd = populate_extra_pmd(vaddr);
246         return fill_pte(pmd, vaddr);
247 }
248
249 /*
250  * Create large page table mappings for a range of physical addresses.
251  */
252 static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
253                                                 pgprot_t prot)
254 {
255         pgd_t *pgd;
256         pud_t *pud;
257         pmd_t *pmd;
258
259         BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
260         for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
261                 pgd = pgd_offset_k((unsigned long)__va(phys));
262                 if (pgd_none(*pgd)) {
263                         pud = (pud_t *) spp_getpage();
264                         set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
265                                                 _PAGE_USER));
266                 }
267                 pud = pud_offset(pgd, (unsigned long)__va(phys));
268                 if (pud_none(*pud)) {
269                         pmd = (pmd_t *) spp_getpage();
270                         set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
271                                                 _PAGE_USER));
272                 }
273                 pmd = pmd_offset(pud, phys);
274                 BUG_ON(!pmd_none(*pmd));
275                 set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
276         }
277 }
278
279 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
280 {
281         __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE);
282 }
283
284 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
285 {
286         __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE);
287 }
288
289 /*
290  * The head.S code sets up the kernel high mapping:
291  *
292  *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
293  *
294  * phys_addr holds the negative offset to the kernel, which is added
295  * to the compile time generated pmds. This results in invalid pmds up
296  * to the point where we hit the physaddr 0 mapping.
297  *
298  * We limit the mappings to the region from _text to _brk_end.  _brk_end
299  * is rounded up to the 2MB boundary. This catches the invalid pmds as
300  * well, as they are located before _text:
301  */
302 void __init cleanup_highmap(void)
303 {
304         unsigned long vaddr = __START_KERNEL_map;
305         unsigned long vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT);
306         unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
307         pmd_t *pmd = level2_kernel_pgt;
308
309         for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) {
310                 if (pmd_none(*pmd))
311                         continue;
312                 if (vaddr < (unsigned long) _text || vaddr > end)
313                         set_pmd(pmd, __pmd(0));
314         }
315 }
316
317 static __ref void *alloc_low_page(unsigned long *phys)
318 {
319         unsigned long pfn;
320         void *adr;
321
322         if (after_bootmem) {
323                 adr = (void *)get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
324                 *phys = __pa(adr);
325
326                 return adr;
327         }
328
329         if ((pgt_buf_end + 1) >= pgt_buf_top) {
330                 unsigned long ret;
331                 if (min_pfn_mapped >= max_pfn_mapped)
332                         panic("alloc_low_page: ran out of memory");
333                 ret = memblock_find_in_range(min_pfn_mapped << PAGE_SHIFT,
334                                         max_pfn_mapped << PAGE_SHIFT,
335                                         PAGE_SIZE, PAGE_SIZE);
336                 if (!ret)
337                         panic("alloc_low_page: can not alloc memory");
338                 memblock_reserve(ret, PAGE_SIZE);
339                 pfn = ret >> PAGE_SHIFT;
340         } else
341                 pfn = pgt_buf_end++;
342
343         adr = early_memremap(pfn * PAGE_SIZE, PAGE_SIZE);
344         clear_page(adr);
345         *phys  = pfn * PAGE_SIZE;
346         return adr;
347 }
348
349 static __ref void *map_low_page(void *virt)
350 {
351         void *adr;
352         unsigned long phys, left;
353
354         if (after_bootmem)
355                 return virt;
356
357         phys = __pa(virt);
358         left = phys & (PAGE_SIZE - 1);
359         adr = early_memremap(phys & PAGE_MASK, PAGE_SIZE);
360         adr = (void *)(((unsigned long)adr) | left);
361
362         return adr;
363 }
364
365 static __ref void unmap_low_page(void *adr)
366 {
367         if (after_bootmem)
368                 return;
369
370         early_iounmap((void *)((unsigned long)adr & PAGE_MASK), PAGE_SIZE);
371 }
372
373 static unsigned long __meminit
374 phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end,
375               pgprot_t prot)
376 {
377         unsigned long pages = 0, next;
378         unsigned long last_map_addr = end;
379         int i;
380
381         pte_t *pte = pte_page + pte_index(addr);
382
383         for (i = pte_index(addr); i < PTRS_PER_PTE; i++, addr = next, pte++) {
384                 next = (addr & PAGE_MASK) + PAGE_SIZE;
385                 if (addr >= end) {
386                         if (!after_bootmem &&
387                             !e820_any_mapped(addr & PAGE_MASK, next, E820_RAM) &&
388                             !e820_any_mapped(addr & PAGE_MASK, next, E820_RESERVED_KERN))
389                                 set_pte(pte, __pte(0));
390                         continue;
391                 }
392
393                 /*
394                  * We will re-use the existing mapping.
395                  * Xen for example has some special requirements, like mapping
396                  * pagetable pages as RO. So assume someone who pre-setup
397                  * these mappings are more intelligent.
398                  */
399                 if (pte_val(*pte)) {
400                         if (!after_bootmem)
401                                 pages++;
402                         continue;
403                 }
404
405                 if (0)
406                         printk("   pte=%p addr=%lx pte=%016lx\n",
407                                pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
408                 pages++;
409                 set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot));
410                 last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
411         }
412
413         update_page_count(PG_LEVEL_4K, pages);
414
415         return last_map_addr;
416 }
417
418 static unsigned long __meminit
419 phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
420               unsigned long page_size_mask, pgprot_t prot)
421 {
422         unsigned long pages = 0, next;
423         unsigned long last_map_addr = end;
424
425         int i = pmd_index(address);
426
427         for (; i < PTRS_PER_PMD; i++, address = next) {
428                 unsigned long pte_phys;
429                 pmd_t *pmd = pmd_page + pmd_index(address);
430                 pte_t *pte;
431                 pgprot_t new_prot = prot;
432
433                 next = (address & PMD_MASK) + PMD_SIZE;
434                 if (address >= end) {
435                         if (!after_bootmem &&
436                             !e820_any_mapped(address & PMD_MASK, next, E820_RAM) &&
437                             !e820_any_mapped(address & PMD_MASK, next, E820_RESERVED_KERN))
438                                 set_pmd(pmd, __pmd(0));
439                         continue;
440                 }
441
442                 if (pmd_val(*pmd)) {
443                         if (!pmd_large(*pmd)) {
444                                 spin_lock(&init_mm.page_table_lock);
445                                 pte = map_low_page((pte_t *)pmd_page_vaddr(*pmd));
446                                 last_map_addr = phys_pte_init(pte, address,
447                                                                 end, prot);
448                                 unmap_low_page(pte);
449                                 spin_unlock(&init_mm.page_table_lock);
450                                 continue;
451                         }
452                         /*
453                          * If we are ok with PG_LEVEL_2M mapping, then we will
454                          * use the existing mapping,
455                          *
456                          * Otherwise, we will split the large page mapping but
457                          * use the same existing protection bits except for
458                          * large page, so that we don't violate Intel's TLB
459                          * Application note (317080) which says, while changing
460                          * the page sizes, new and old translations should
461                          * not differ with respect to page frame and
462                          * attributes.
463                          */
464                         if (page_size_mask & (1 << PG_LEVEL_2M)) {
465                                 if (!after_bootmem)
466                                         pages++;
467                                 last_map_addr = next;
468                                 continue;
469                         }
470                         new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
471                 }
472
473                 if (page_size_mask & (1<<PG_LEVEL_2M)) {
474                         pages++;
475                         spin_lock(&init_mm.page_table_lock);
476                         set_pte((pte_t *)pmd,
477                                 pfn_pte((address & PMD_MASK) >> PAGE_SHIFT,
478                                         __pgprot(pgprot_val(prot) | _PAGE_PSE)));
479                         spin_unlock(&init_mm.page_table_lock);
480                         last_map_addr = next;
481                         continue;
482                 }
483
484                 pte = alloc_low_page(&pte_phys);
485                 last_map_addr = phys_pte_init(pte, address, end, new_prot);
486                 unmap_low_page(pte);
487
488                 spin_lock(&init_mm.page_table_lock);
489                 pmd_populate_kernel(&init_mm, pmd, __va(pte_phys));
490                 spin_unlock(&init_mm.page_table_lock);
491         }
492         update_page_count(PG_LEVEL_2M, pages);
493         return last_map_addr;
494 }
495
496 static unsigned long __meminit
497 phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
498                          unsigned long page_size_mask)
499 {
500         unsigned long pages = 0, next;
501         unsigned long last_map_addr = end;
502         int i = pud_index(addr);
503
504         for (; i < PTRS_PER_PUD; i++, addr = next) {
505                 unsigned long pmd_phys;
506                 pud_t *pud = pud_page + pud_index(addr);
507                 pmd_t *pmd;
508                 pgprot_t prot = PAGE_KERNEL;
509
510                 next = (addr & PUD_MASK) + PUD_SIZE;
511                 if (addr >= end) {
512                         if (!after_bootmem &&
513                             !e820_any_mapped(addr & PUD_MASK, next, E820_RAM) &&
514                             !e820_any_mapped(addr & PUD_MASK, next, E820_RESERVED_KERN))
515                                 set_pud(pud, __pud(0));
516                         continue;
517                 }
518
519                 if (pud_val(*pud)) {
520                         if (!pud_large(*pud)) {
521                                 pmd = map_low_page(pmd_offset(pud, 0));
522                                 last_map_addr = phys_pmd_init(pmd, addr, end,
523                                                          page_size_mask, prot);
524                                 unmap_low_page(pmd);
525                                 __flush_tlb_all();
526                                 continue;
527                         }
528                         /*
529                          * If we are ok with PG_LEVEL_1G mapping, then we will
530                          * use the existing mapping.
531                          *
532                          * Otherwise, we will split the gbpage mapping but use
533                          * the same existing protection  bits except for large
534                          * page, so that we don't violate Intel's TLB
535                          * Application note (317080) which says, while changing
536                          * the page sizes, new and old translations should
537                          * not differ with respect to page frame and
538                          * attributes.
539                          */
540                         if (page_size_mask & (1 << PG_LEVEL_1G)) {
541                                 if (!after_bootmem)
542                                         pages++;
543                                 last_map_addr = next;
544                                 continue;
545                         }
546                         prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
547                 }
548
549                 if (page_size_mask & (1<<PG_LEVEL_1G)) {
550                         pages++;
551                         spin_lock(&init_mm.page_table_lock);
552                         set_pte((pte_t *)pud,
553                                 pfn_pte((addr & PUD_MASK) >> PAGE_SHIFT,
554                                         PAGE_KERNEL_LARGE));
555                         spin_unlock(&init_mm.page_table_lock);
556                         last_map_addr = next;
557                         continue;
558                 }
559
560                 pmd = alloc_low_page(&pmd_phys);
561                 last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask,
562                                               prot);
563                 unmap_low_page(pmd);
564
565                 spin_lock(&init_mm.page_table_lock);
566                 pud_populate(&init_mm, pud, __va(pmd_phys));
567                 spin_unlock(&init_mm.page_table_lock);
568         }
569         __flush_tlb_all();
570
571         update_page_count(PG_LEVEL_1G, pages);
572
573         return last_map_addr;
574 }
575
576 unsigned long __meminit
577 kernel_physical_mapping_init(unsigned long start,
578                              unsigned long end,
579                              unsigned long page_size_mask)
580 {
581         bool pgd_changed = false;
582         unsigned long next, last_map_addr = end;
583         unsigned long addr;
584
585         start = (unsigned long)__va(start);
586         end = (unsigned long)__va(end);
587         addr = start;
588
589         for (; start < end; start = next) {
590                 pgd_t *pgd = pgd_offset_k(start);
591                 unsigned long pud_phys;
592                 pud_t *pud;
593
594                 next = (start + PGDIR_SIZE) & PGDIR_MASK;
595                 if (next > end)
596                         next = end;
597
598                 if (pgd_val(*pgd)) {
599                         pud = map_low_page((pud_t *)pgd_page_vaddr(*pgd));
600                         last_map_addr = phys_pud_init(pud, __pa(start),
601                                                  __pa(end), page_size_mask);
602                         unmap_low_page(pud);
603                         continue;
604                 }
605
606                 pud = alloc_low_page(&pud_phys);
607                 last_map_addr = phys_pud_init(pud, __pa(start), __pa(next),
608                                                  page_size_mask);
609                 unmap_low_page(pud);
610
611                 spin_lock(&init_mm.page_table_lock);
612                 pgd_populate(&init_mm, pgd, __va(pud_phys));
613                 spin_unlock(&init_mm.page_table_lock);
614                 pgd_changed = true;
615         }
616
617         if (pgd_changed)
618                 sync_global_pgds(addr, end);
619
620         __flush_tlb_all();
621
622         return last_map_addr;
623 }
624
625 #ifndef CONFIG_NUMA
626 void __init initmem_init(void)
627 {
628         memblock_set_node(0, (phys_addr_t)ULLONG_MAX, 0);
629 }
630 #endif
631
632 void __init paging_init(void)
633 {
634         sparse_memory_present_with_active_regions(MAX_NUMNODES);
635         sparse_init();
636
637         /*
638          * clear the default setting with node 0
639          * note: don't use nodes_clear here, that is really clearing when
640          *       numa support is not compiled in, and later node_set_state
641          *       will not set it back.
642          */
643         node_clear_state(0, N_NORMAL_MEMORY);
644
645         zone_sizes_init();
646 }
647
648 /*
649  * Memory hotplug specific functions
650  */
651 #ifdef CONFIG_MEMORY_HOTPLUG
652 /*
653  * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
654  * updating.
655  */
656 static void  update_end_of_memory_vars(u64 start, u64 size)
657 {
658         unsigned long end_pfn = PFN_UP(start + size);
659
660         if (end_pfn > max_pfn) {
661                 max_pfn = end_pfn;
662                 max_low_pfn = end_pfn;
663                 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
664         }
665 }
666
667 /*
668  * Memory is added always to NORMAL zone. This means you will never get
669  * additional DMA/DMA32 memory.
670  */
671 int arch_add_memory(int nid, u64 start, u64 size)
672 {
673         struct pglist_data *pgdat = NODE_DATA(nid);
674         struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
675         unsigned long start_pfn = start >> PAGE_SHIFT;
676         unsigned long nr_pages = size >> PAGE_SHIFT;
677         int ret;
678
679         init_memory_mapping(start, start + size);
680
681         ret = __add_pages(nid, zone, start_pfn, nr_pages);
682         WARN_ON_ONCE(ret);
683
684         /* update max_pfn, max_low_pfn and high_memory */
685         update_end_of_memory_vars(start, size);
686
687         return ret;
688 }
689 EXPORT_SYMBOL_GPL(arch_add_memory);
690
691 #endif /* CONFIG_MEMORY_HOTPLUG */
692
693 static struct kcore_list kcore_vsyscall;
694
695 void __init mem_init(void)
696 {
697         long codesize, reservedpages, datasize, initsize;
698         unsigned long absent_pages;
699
700         pci_iommu_alloc();
701
702         /* clear_bss() already clear the empty_zero_page */
703
704         reservedpages = 0;
705
706         /* this will put all low memory onto the freelists */
707 #ifdef CONFIG_NUMA
708         totalram_pages = numa_free_all_bootmem();
709 #else
710         totalram_pages = free_all_bootmem();
711 #endif
712
713         absent_pages = absent_pages_in_range(0, max_pfn);
714         reservedpages = max_pfn - totalram_pages - absent_pages;
715         after_bootmem = 1;
716
717         codesize =  (unsigned long) &_etext - (unsigned long) &_text;
718         datasize =  (unsigned long) &_edata - (unsigned long) &_etext;
719         initsize =  (unsigned long) &__init_end - (unsigned long) &__init_begin;
720
721         /* Register memory areas for /proc/kcore */
722         kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
723                          VSYSCALL_END - VSYSCALL_START, KCORE_OTHER);
724
725         printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
726                          "%ldk absent, %ldk reserved, %ldk data, %ldk init)\n",
727                 nr_free_pages() << (PAGE_SHIFT-10),
728                 max_pfn << (PAGE_SHIFT-10),
729                 codesize >> 10,
730                 absent_pages << (PAGE_SHIFT-10),
731                 reservedpages << (PAGE_SHIFT-10),
732                 datasize >> 10,
733                 initsize >> 10);
734 }
735
736 #ifdef CONFIG_DEBUG_RODATA
737 const int rodata_test_data = 0xC3;
738 EXPORT_SYMBOL_GPL(rodata_test_data);
739
740 int kernel_set_to_readonly;
741
742 void set_kernel_text_rw(void)
743 {
744         unsigned long start = PFN_ALIGN(_text);
745         unsigned long end = PFN_ALIGN(__stop___ex_table);
746
747         if (!kernel_set_to_readonly)
748                 return;
749
750         pr_debug("Set kernel text: %lx - %lx for read write\n",
751                  start, end);
752
753         /*
754          * Make the kernel identity mapping for text RW. Kernel text
755          * mapping will always be RO. Refer to the comment in
756          * static_protections() in pageattr.c
757          */
758         set_memory_rw(start, (end - start) >> PAGE_SHIFT);
759 }
760
761 void set_kernel_text_ro(void)
762 {
763         unsigned long start = PFN_ALIGN(_text);
764         unsigned long end = PFN_ALIGN(__stop___ex_table);
765
766         if (!kernel_set_to_readonly)
767                 return;
768
769         pr_debug("Set kernel text: %lx - %lx for read only\n",
770                  start, end);
771
772         /*
773          * Set the kernel identity mapping for text RO.
774          */
775         set_memory_ro(start, (end - start) >> PAGE_SHIFT);
776 }
777
778 void mark_rodata_ro(void)
779 {
780         unsigned long start = PFN_ALIGN(_text);
781         unsigned long rodata_start =
782                 ((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
783         unsigned long end = (unsigned long) &__end_rodata_hpage_align;
784         unsigned long text_end = PAGE_ALIGN((unsigned long) &__stop___ex_table);
785         unsigned long rodata_end = PAGE_ALIGN((unsigned long) &__end_rodata);
786         unsigned long data_start = (unsigned long) &_sdata;
787
788         printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
789                (end - start) >> 10);
790         set_memory_ro(start, (end - start) >> PAGE_SHIFT);
791
792         kernel_set_to_readonly = 1;
793
794         /*
795          * The rodata section (but not the kernel text!) should also be
796          * not-executable.
797          */
798         set_memory_nx(rodata_start, (end - rodata_start) >> PAGE_SHIFT);
799
800         rodata_test();
801
802 #ifdef CONFIG_CPA_DEBUG
803         printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
804         set_memory_rw(start, (end-start) >> PAGE_SHIFT);
805
806         printk(KERN_INFO "Testing CPA: again\n");
807         set_memory_ro(start, (end-start) >> PAGE_SHIFT);
808 #endif
809
810         free_init_pages("unused kernel memory",
811                         (unsigned long) page_address(virt_to_page(text_end)),
812                         (unsigned long)
813                                  page_address(virt_to_page(rodata_start)));
814         free_init_pages("unused kernel memory",
815                         (unsigned long) page_address(virt_to_page(rodata_end)),
816                         (unsigned long) page_address(virt_to_page(data_start)));
817 }
818
819 #endif
820
821 int kern_addr_valid(unsigned long addr)
822 {
823         unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
824         pgd_t *pgd;
825         pud_t *pud;
826         pmd_t *pmd;
827         pte_t *pte;
828
829         if (above != 0 && above != -1UL)
830                 return 0;
831
832         pgd = pgd_offset_k(addr);
833         if (pgd_none(*pgd))
834                 return 0;
835
836         pud = pud_offset(pgd, addr);
837         if (pud_none(*pud))
838                 return 0;
839
840         pmd = pmd_offset(pud, addr);
841         if (pmd_none(*pmd))
842                 return 0;
843
844         if (pmd_large(*pmd))
845                 return pfn_valid(pmd_pfn(*pmd));
846
847         pte = pte_offset_kernel(pmd, addr);
848         if (pte_none(*pte))
849                 return 0;
850
851         return pfn_valid(pte_pfn(*pte));
852 }
853
854 /*
855  * A pseudo VMA to allow ptrace access for the vsyscall page.  This only
856  * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
857  * not need special handling anymore:
858  */
859 static struct vm_area_struct gate_vma = {
860         .vm_start       = VSYSCALL_START,
861         .vm_end         = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
862         .vm_page_prot   = PAGE_READONLY_EXEC,
863         .vm_flags       = VM_READ | VM_EXEC
864 };
865
866 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
867 {
868 #ifdef CONFIG_IA32_EMULATION
869         if (!mm || mm->context.ia32_compat)
870                 return NULL;
871 #endif
872         return &gate_vma;
873 }
874
875 int in_gate_area(struct mm_struct *mm, unsigned long addr)
876 {
877         struct vm_area_struct *vma = get_gate_vma(mm);
878
879         if (!vma)
880                 return 0;
881
882         return (addr >= vma->vm_start) && (addr < vma->vm_end);
883 }
884
885 /*
886  * Use this when you have no reliable mm, typically from interrupt
887  * context. It is less reliable than using a task's mm and may give
888  * false positives.
889  */
890 int in_gate_area_no_mm(unsigned long addr)
891 {
892         return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
893 }
894
895 const char *arch_vma_name(struct vm_area_struct *vma)
896 {
897         if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
898                 return "[vdso]";
899         if (vma == &gate_vma)
900                 return "[vsyscall]";
901         return NULL;
902 }
903
904 #ifdef CONFIG_X86_UV
905 unsigned long memory_block_size_bytes(void)
906 {
907         if (is_uv_system()) {
908                 printk(KERN_INFO "UV: memory block size 2GB\n");
909                 return 2UL * 1024 * 1024 * 1024;
910         }
911         return MIN_MEMORY_BLOCK_SIZE;
912 }
913 #endif
914
915 #ifdef CONFIG_SPARSEMEM_VMEMMAP
916 /*
917  * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
918  */
919 static long __meminitdata addr_start, addr_end;
920 static void __meminitdata *p_start, *p_end;
921 static int __meminitdata node_start;
922
923 int __meminit
924 vmemmap_populate(struct page *start_page, unsigned long size, int node)
925 {
926         unsigned long addr = (unsigned long)start_page;
927         unsigned long end = (unsigned long)(start_page + size);
928         unsigned long next;
929         pgd_t *pgd;
930         pud_t *pud;
931         pmd_t *pmd;
932
933         for (; addr < end; addr = next) {
934                 void *p = NULL;
935
936                 pgd = vmemmap_pgd_populate(addr, node);
937                 if (!pgd)
938                         return -ENOMEM;
939
940                 pud = vmemmap_pud_populate(pgd, addr, node);
941                 if (!pud)
942                         return -ENOMEM;
943
944                 if (!cpu_has_pse) {
945                         next = (addr + PAGE_SIZE) & PAGE_MASK;
946                         pmd = vmemmap_pmd_populate(pud, addr, node);
947
948                         if (!pmd)
949                                 return -ENOMEM;
950
951                         p = vmemmap_pte_populate(pmd, addr, node);
952
953                         if (!p)
954                                 return -ENOMEM;
955
956                         addr_end = addr + PAGE_SIZE;
957                         p_end = p + PAGE_SIZE;
958                 } else {
959                         next = pmd_addr_end(addr, end);
960
961                         pmd = pmd_offset(pud, addr);
962                         if (pmd_none(*pmd)) {
963                                 pte_t entry;
964
965                                 p = vmemmap_alloc_block_buf(PMD_SIZE, node);
966                                 if (!p)
967                                         return -ENOMEM;
968
969                                 entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
970                                                 PAGE_KERNEL_LARGE);
971                                 set_pmd(pmd, __pmd(pte_val(entry)));
972
973                                 /* check to see if we have contiguous blocks */
974                                 if (p_end != p || node_start != node) {
975                                         if (p_start)
976                                                 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
977                                                        addr_start, addr_end-1, p_start, p_end-1, node_start);
978                                         addr_start = addr;
979                                         node_start = node;
980                                         p_start = p;
981                                 }
982
983                                 addr_end = addr + PMD_SIZE;
984                                 p_end = p + PMD_SIZE;
985                         } else
986                                 vmemmap_verify((pte_t *)pmd, node, addr, next);
987                 }
988
989         }
990         sync_global_pgds((unsigned long)start_page, end);
991         return 0;
992 }
993
994 void __meminit vmemmap_populate_print_last(void)
995 {
996         if (p_start) {
997                 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
998                         addr_start, addr_end-1, p_start, p_end-1, node_start);
999                 p_start = NULL;
1000                 p_end = NULL;
1001                 node_start = 0;
1002         }
1003 }
1004 #endif