x86/mm/64: implement arch_sync_kernel_mappings()
[platform/kernel/linux-starfive.git] / arch / x86 / mm / init_64.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/arch/x86_64/mm/init.c
4  *
5  *  Copyright (C) 1995  Linus Torvalds
6  *  Copyright (C) 2000  Pavel Machek <pavel@ucw.cz>
7  *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
8  */
9
10 #include <linux/signal.h>
11 #include <linux/sched.h>
12 #include <linux/kernel.h>
13 #include <linux/errno.h>
14 #include <linux/string.h>
15 #include <linux/types.h>
16 #include <linux/ptrace.h>
17 #include <linux/mman.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/smp.h>
21 #include <linux/init.h>
22 #include <linux/initrd.h>
23 #include <linux/pagemap.h>
24 #include <linux/memblock.h>
25 #include <linux/proc_fs.h>
26 #include <linux/pci.h>
27 #include <linux/pfn.h>
28 #include <linux/poison.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/memory.h>
31 #include <linux/memory_hotplug.h>
32 #include <linux/memremap.h>
33 #include <linux/nmi.h>
34 #include <linux/gfp.h>
35 #include <linux/kcore.h>
36
37 #include <asm/processor.h>
38 #include <asm/bios_ebda.h>
39 #include <linux/uaccess.h>
40 #include <asm/pgtable.h>
41 #include <asm/pgalloc.h>
42 #include <asm/dma.h>
43 #include <asm/fixmap.h>
44 #include <asm/e820/api.h>
45 #include <asm/apic.h>
46 #include <asm/tlb.h>
47 #include <asm/mmu_context.h>
48 #include <asm/proto.h>
49 #include <asm/smp.h>
50 #include <asm/sections.h>
51 #include <asm/kdebug.h>
52 #include <asm/numa.h>
53 #include <asm/set_memory.h>
54 #include <asm/init.h>
55 #include <asm/uv/uv.h>
56 #include <asm/setup.h>
57 #include <asm/ftrace.h>
58
59 #include "mm_internal.h"
60
61 #include "ident_map.c"
62
63 #define DEFINE_POPULATE(fname, type1, type2, init)              \
64 static inline void fname##_init(struct mm_struct *mm,           \
65                 type1##_t *arg1, type2##_t *arg2, bool init)    \
66 {                                                               \
67         if (init)                                               \
68                 fname##_safe(mm, arg1, arg2);                   \
69         else                                                    \
70                 fname(mm, arg1, arg2);                          \
71 }
72
73 DEFINE_POPULATE(p4d_populate, p4d, pud, init)
74 DEFINE_POPULATE(pgd_populate, pgd, p4d, init)
75 DEFINE_POPULATE(pud_populate, pud, pmd, init)
76 DEFINE_POPULATE(pmd_populate_kernel, pmd, pte, init)
77
78 #define DEFINE_ENTRY(type1, type2, init)                        \
79 static inline void set_##type1##_init(type1##_t *arg1,          \
80                         type2##_t arg2, bool init)              \
81 {                                                               \
82         if (init)                                               \
83                 set_##type1##_safe(arg1, arg2);                 \
84         else                                                    \
85                 set_##type1(arg1, arg2);                        \
86 }
87
88 DEFINE_ENTRY(p4d, p4d, init)
89 DEFINE_ENTRY(pud, pud, init)
90 DEFINE_ENTRY(pmd, pmd, init)
91 DEFINE_ENTRY(pte, pte, init)
92
93
94 /*
95  * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
96  * physical space so we can cache the place of the first one and move
97  * around without checking the pgd every time.
98  */
99
100 /* Bits supported by the hardware: */
101 pteval_t __supported_pte_mask __read_mostly = ~0;
102 /* Bits allowed in normal kernel mappings: */
103 pteval_t __default_kernel_pte_mask __read_mostly = ~0;
104 EXPORT_SYMBOL_GPL(__supported_pte_mask);
105 /* Used in PAGE_KERNEL_* macros which are reasonably used out-of-tree: */
106 EXPORT_SYMBOL(__default_kernel_pte_mask);
107
108 int force_personality32;
109
110 /*
111  * noexec32=on|off
112  * Control non executable heap for 32bit processes.
113  * To control the stack too use noexec=off
114  *
115  * on   PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
116  * off  PROT_READ implies PROT_EXEC
117  */
118 static int __init nonx32_setup(char *str)
119 {
120         if (!strcmp(str, "on"))
121                 force_personality32 &= ~READ_IMPLIES_EXEC;
122         else if (!strcmp(str, "off"))
123                 force_personality32 |= READ_IMPLIES_EXEC;
124         return 1;
125 }
126 __setup("noexec32=", nonx32_setup);
127
128 static void sync_global_pgds_l5(unsigned long start, unsigned long end)
129 {
130         unsigned long addr;
131
132         for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
133                 const pgd_t *pgd_ref = pgd_offset_k(addr);
134                 struct page *page;
135
136                 /* Check for overflow */
137                 if (addr < start)
138                         break;
139
140                 if (pgd_none(*pgd_ref))
141                         continue;
142
143                 spin_lock(&pgd_lock);
144                 list_for_each_entry(page, &pgd_list, lru) {
145                         pgd_t *pgd;
146                         spinlock_t *pgt_lock;
147
148                         pgd = (pgd_t *)page_address(page) + pgd_index(addr);
149                         /* the pgt_lock only for Xen */
150                         pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
151                         spin_lock(pgt_lock);
152
153                         if (!pgd_none(*pgd_ref) && !pgd_none(*pgd))
154                                 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
155
156                         if (pgd_none(*pgd))
157                                 set_pgd(pgd, *pgd_ref);
158
159                         spin_unlock(pgt_lock);
160                 }
161                 spin_unlock(&pgd_lock);
162         }
163 }
164
165 static void sync_global_pgds_l4(unsigned long start, unsigned long end)
166 {
167         unsigned long addr;
168
169         for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
170                 pgd_t *pgd_ref = pgd_offset_k(addr);
171                 const p4d_t *p4d_ref;
172                 struct page *page;
173
174                 /*
175                  * With folded p4d, pgd_none() is always false, we need to
176                  * handle synchonization on p4d level.
177                  */
178                 MAYBE_BUILD_BUG_ON(pgd_none(*pgd_ref));
179                 p4d_ref = p4d_offset(pgd_ref, addr);
180
181                 if (p4d_none(*p4d_ref))
182                         continue;
183
184                 spin_lock(&pgd_lock);
185                 list_for_each_entry(page, &pgd_list, lru) {
186                         pgd_t *pgd;
187                         p4d_t *p4d;
188                         spinlock_t *pgt_lock;
189
190                         pgd = (pgd_t *)page_address(page) + pgd_index(addr);
191                         p4d = p4d_offset(pgd, addr);
192                         /* the pgt_lock only for Xen */
193                         pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
194                         spin_lock(pgt_lock);
195
196                         if (!p4d_none(*p4d_ref) && !p4d_none(*p4d))
197                                 BUG_ON(p4d_page_vaddr(*p4d)
198                                        != p4d_page_vaddr(*p4d_ref));
199
200                         if (p4d_none(*p4d))
201                                 set_p4d(p4d, *p4d_ref);
202
203                         spin_unlock(pgt_lock);
204                 }
205                 spin_unlock(&pgd_lock);
206         }
207 }
208
209 /*
210  * When memory was added make sure all the processes MM have
211  * suitable PGD entries in the local PGD level page.
212  */
213 void sync_global_pgds(unsigned long start, unsigned long end)
214 {
215         if (pgtable_l5_enabled())
216                 sync_global_pgds_l5(start, end);
217         else
218                 sync_global_pgds_l4(start, end);
219 }
220
221 void arch_sync_kernel_mappings(unsigned long start, unsigned long end)
222 {
223         sync_global_pgds(start, end);
224 }
225
226 /*
227  * NOTE: This function is marked __ref because it calls __init function
228  * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
229  */
230 static __ref void *spp_getpage(void)
231 {
232         void *ptr;
233
234         if (after_bootmem)
235                 ptr = (void *) get_zeroed_page(GFP_ATOMIC);
236         else
237                 ptr = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
238
239         if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
240                 panic("set_pte_phys: cannot allocate page data %s\n",
241                         after_bootmem ? "after bootmem" : "");
242         }
243
244         pr_debug("spp_getpage %p\n", ptr);
245
246         return ptr;
247 }
248
249 static p4d_t *fill_p4d(pgd_t *pgd, unsigned long vaddr)
250 {
251         if (pgd_none(*pgd)) {
252                 p4d_t *p4d = (p4d_t *)spp_getpage();
253                 pgd_populate(&init_mm, pgd, p4d);
254                 if (p4d != p4d_offset(pgd, 0))
255                         printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
256                                p4d, p4d_offset(pgd, 0));
257         }
258         return p4d_offset(pgd, vaddr);
259 }
260
261 static pud_t *fill_pud(p4d_t *p4d, unsigned long vaddr)
262 {
263         if (p4d_none(*p4d)) {
264                 pud_t *pud = (pud_t *)spp_getpage();
265                 p4d_populate(&init_mm, p4d, pud);
266                 if (pud != pud_offset(p4d, 0))
267                         printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
268                                pud, pud_offset(p4d, 0));
269         }
270         return pud_offset(p4d, vaddr);
271 }
272
273 static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
274 {
275         if (pud_none(*pud)) {
276                 pmd_t *pmd = (pmd_t *) spp_getpage();
277                 pud_populate(&init_mm, pud, pmd);
278                 if (pmd != pmd_offset(pud, 0))
279                         printk(KERN_ERR "PAGETABLE BUG #02! %p <-> %p\n",
280                                pmd, pmd_offset(pud, 0));
281         }
282         return pmd_offset(pud, vaddr);
283 }
284
285 static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
286 {
287         if (pmd_none(*pmd)) {
288                 pte_t *pte = (pte_t *) spp_getpage();
289                 pmd_populate_kernel(&init_mm, pmd, pte);
290                 if (pte != pte_offset_kernel(pmd, 0))
291                         printk(KERN_ERR "PAGETABLE BUG #03!\n");
292         }
293         return pte_offset_kernel(pmd, vaddr);
294 }
295
296 static void __set_pte_vaddr(pud_t *pud, unsigned long vaddr, pte_t new_pte)
297 {
298         pmd_t *pmd = fill_pmd(pud, vaddr);
299         pte_t *pte = fill_pte(pmd, vaddr);
300
301         set_pte(pte, new_pte);
302
303         /*
304          * It's enough to flush this one mapping.
305          * (PGE mappings get flushed as well)
306          */
307         __flush_tlb_one_kernel(vaddr);
308 }
309
310 void set_pte_vaddr_p4d(p4d_t *p4d_page, unsigned long vaddr, pte_t new_pte)
311 {
312         p4d_t *p4d = p4d_page + p4d_index(vaddr);
313         pud_t *pud = fill_pud(p4d, vaddr);
314
315         __set_pte_vaddr(pud, vaddr, new_pte);
316 }
317
318 void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
319 {
320         pud_t *pud = pud_page + pud_index(vaddr);
321
322         __set_pte_vaddr(pud, vaddr, new_pte);
323 }
324
325 void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
326 {
327         pgd_t *pgd;
328         p4d_t *p4d_page;
329
330         pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
331
332         pgd = pgd_offset_k(vaddr);
333         if (pgd_none(*pgd)) {
334                 printk(KERN_ERR
335                         "PGD FIXMAP MISSING, it should be setup in head.S!\n");
336                 return;
337         }
338
339         p4d_page = p4d_offset(pgd, 0);
340         set_pte_vaddr_p4d(p4d_page, vaddr, pteval);
341 }
342
343 pmd_t * __init populate_extra_pmd(unsigned long vaddr)
344 {
345         pgd_t *pgd;
346         p4d_t *p4d;
347         pud_t *pud;
348
349         pgd = pgd_offset_k(vaddr);
350         p4d = fill_p4d(pgd, vaddr);
351         pud = fill_pud(p4d, vaddr);
352         return fill_pmd(pud, vaddr);
353 }
354
355 pte_t * __init populate_extra_pte(unsigned long vaddr)
356 {
357         pmd_t *pmd;
358
359         pmd = populate_extra_pmd(vaddr);
360         return fill_pte(pmd, vaddr);
361 }
362
363 /*
364  * Create large page table mappings for a range of physical addresses.
365  */
366 static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
367                                         enum page_cache_mode cache)
368 {
369         pgd_t *pgd;
370         p4d_t *p4d;
371         pud_t *pud;
372         pmd_t *pmd;
373         pgprot_t prot;
374
375         pgprot_val(prot) = pgprot_val(PAGE_KERNEL_LARGE) |
376                 pgprot_val(pgprot_4k_2_large(cachemode2pgprot(cache)));
377         BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
378         for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
379                 pgd = pgd_offset_k((unsigned long)__va(phys));
380                 if (pgd_none(*pgd)) {
381                         p4d = (p4d_t *) spp_getpage();
382                         set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE |
383                                                 _PAGE_USER));
384                 }
385                 p4d = p4d_offset(pgd, (unsigned long)__va(phys));
386                 if (p4d_none(*p4d)) {
387                         pud = (pud_t *) spp_getpage();
388                         set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE |
389                                                 _PAGE_USER));
390                 }
391                 pud = pud_offset(p4d, (unsigned long)__va(phys));
392                 if (pud_none(*pud)) {
393                         pmd = (pmd_t *) spp_getpage();
394                         set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
395                                                 _PAGE_USER));
396                 }
397                 pmd = pmd_offset(pud, phys);
398                 BUG_ON(!pmd_none(*pmd));
399                 set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
400         }
401 }
402
403 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
404 {
405         __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_WB);
406 }
407
408 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
409 {
410         __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_UC);
411 }
412
413 /*
414  * The head.S code sets up the kernel high mapping:
415  *
416  *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
417  *
418  * phys_base holds the negative offset to the kernel, which is added
419  * to the compile time generated pmds. This results in invalid pmds up
420  * to the point where we hit the physaddr 0 mapping.
421  *
422  * We limit the mappings to the region from _text to _brk_end.  _brk_end
423  * is rounded up to the 2MB boundary. This catches the invalid pmds as
424  * well, as they are located before _text:
425  */
426 void __init cleanup_highmap(void)
427 {
428         unsigned long vaddr = __START_KERNEL_map;
429         unsigned long vaddr_end = __START_KERNEL_map + KERNEL_IMAGE_SIZE;
430         unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
431         pmd_t *pmd = level2_kernel_pgt;
432
433         /*
434          * Native path, max_pfn_mapped is not set yet.
435          * Xen has valid max_pfn_mapped set in
436          *      arch/x86/xen/mmu.c:xen_setup_kernel_pagetable().
437          */
438         if (max_pfn_mapped)
439                 vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT);
440
441         for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) {
442                 if (pmd_none(*pmd))
443                         continue;
444                 if (vaddr < (unsigned long) _text || vaddr > end)
445                         set_pmd(pmd, __pmd(0));
446         }
447 }
448
449 /*
450  * Create PTE level page table mapping for physical addresses.
451  * It returns the last physical address mapped.
452  */
453 static unsigned long __meminit
454 phys_pte_init(pte_t *pte_page, unsigned long paddr, unsigned long paddr_end,
455               pgprot_t prot, bool init)
456 {
457         unsigned long pages = 0, paddr_next;
458         unsigned long paddr_last = paddr_end;
459         pte_t *pte;
460         int i;
461
462         pte = pte_page + pte_index(paddr);
463         i = pte_index(paddr);
464
465         for (; i < PTRS_PER_PTE; i++, paddr = paddr_next, pte++) {
466                 paddr_next = (paddr & PAGE_MASK) + PAGE_SIZE;
467                 if (paddr >= paddr_end) {
468                         if (!after_bootmem &&
469                             !e820__mapped_any(paddr & PAGE_MASK, paddr_next,
470                                              E820_TYPE_RAM) &&
471                             !e820__mapped_any(paddr & PAGE_MASK, paddr_next,
472                                              E820_TYPE_RESERVED_KERN))
473                                 set_pte_init(pte, __pte(0), init);
474                         continue;
475                 }
476
477                 /*
478                  * We will re-use the existing mapping.
479                  * Xen for example has some special requirements, like mapping
480                  * pagetable pages as RO. So assume someone who pre-setup
481                  * these mappings are more intelligent.
482                  */
483                 if (!pte_none(*pte)) {
484                         if (!after_bootmem)
485                                 pages++;
486                         continue;
487                 }
488
489                 if (0)
490                         pr_info("   pte=%p addr=%lx pte=%016lx\n", pte, paddr,
491                                 pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL).pte);
492                 pages++;
493                 set_pte_init(pte, pfn_pte(paddr >> PAGE_SHIFT, prot), init);
494                 paddr_last = (paddr & PAGE_MASK) + PAGE_SIZE;
495         }
496
497         update_page_count(PG_LEVEL_4K, pages);
498
499         return paddr_last;
500 }
501
502 /*
503  * Create PMD level page table mapping for physical addresses. The virtual
504  * and physical address have to be aligned at this level.
505  * It returns the last physical address mapped.
506  */
507 static unsigned long __meminit
508 phys_pmd_init(pmd_t *pmd_page, unsigned long paddr, unsigned long paddr_end,
509               unsigned long page_size_mask, pgprot_t prot, bool init)
510 {
511         unsigned long pages = 0, paddr_next;
512         unsigned long paddr_last = paddr_end;
513
514         int i = pmd_index(paddr);
515
516         for (; i < PTRS_PER_PMD; i++, paddr = paddr_next) {
517                 pmd_t *pmd = pmd_page + pmd_index(paddr);
518                 pte_t *pte;
519                 pgprot_t new_prot = prot;
520
521                 paddr_next = (paddr & PMD_MASK) + PMD_SIZE;
522                 if (paddr >= paddr_end) {
523                         if (!after_bootmem &&
524                             !e820__mapped_any(paddr & PMD_MASK, paddr_next,
525                                              E820_TYPE_RAM) &&
526                             !e820__mapped_any(paddr & PMD_MASK, paddr_next,
527                                              E820_TYPE_RESERVED_KERN))
528                                 set_pmd_init(pmd, __pmd(0), init);
529                         continue;
530                 }
531
532                 if (!pmd_none(*pmd)) {
533                         if (!pmd_large(*pmd)) {
534                                 spin_lock(&init_mm.page_table_lock);
535                                 pte = (pte_t *)pmd_page_vaddr(*pmd);
536                                 paddr_last = phys_pte_init(pte, paddr,
537                                                            paddr_end, prot,
538                                                            init);
539                                 spin_unlock(&init_mm.page_table_lock);
540                                 continue;
541                         }
542                         /*
543                          * If we are ok with PG_LEVEL_2M mapping, then we will
544                          * use the existing mapping,
545                          *
546                          * Otherwise, we will split the large page mapping but
547                          * use the same existing protection bits except for
548                          * large page, so that we don't violate Intel's TLB
549                          * Application note (317080) which says, while changing
550                          * the page sizes, new and old translations should
551                          * not differ with respect to page frame and
552                          * attributes.
553                          */
554                         if (page_size_mask & (1 << PG_LEVEL_2M)) {
555                                 if (!after_bootmem)
556                                         pages++;
557                                 paddr_last = paddr_next;
558                                 continue;
559                         }
560                         new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
561                 }
562
563                 if (page_size_mask & (1<<PG_LEVEL_2M)) {
564                         pages++;
565                         spin_lock(&init_mm.page_table_lock);
566                         set_pte_init((pte_t *)pmd,
567                                      pfn_pte((paddr & PMD_MASK) >> PAGE_SHIFT,
568                                              __pgprot(pgprot_val(prot) | _PAGE_PSE)),
569                                      init);
570                         spin_unlock(&init_mm.page_table_lock);
571                         paddr_last = paddr_next;
572                         continue;
573                 }
574
575                 pte = alloc_low_page();
576                 paddr_last = phys_pte_init(pte, paddr, paddr_end, new_prot, init);
577
578                 spin_lock(&init_mm.page_table_lock);
579                 pmd_populate_kernel_init(&init_mm, pmd, pte, init);
580                 spin_unlock(&init_mm.page_table_lock);
581         }
582         update_page_count(PG_LEVEL_2M, pages);
583         return paddr_last;
584 }
585
586 /*
587  * Create PUD level page table mapping for physical addresses. The virtual
588  * and physical address do not have to be aligned at this level. KASLR can
589  * randomize virtual addresses up to this level.
590  * It returns the last physical address mapped.
591  */
592 static unsigned long __meminit
593 phys_pud_init(pud_t *pud_page, unsigned long paddr, unsigned long paddr_end,
594               unsigned long page_size_mask, pgprot_t _prot, bool init)
595 {
596         unsigned long pages = 0, paddr_next;
597         unsigned long paddr_last = paddr_end;
598         unsigned long vaddr = (unsigned long)__va(paddr);
599         int i = pud_index(vaddr);
600
601         for (; i < PTRS_PER_PUD; i++, paddr = paddr_next) {
602                 pud_t *pud;
603                 pmd_t *pmd;
604                 pgprot_t prot = _prot;
605
606                 vaddr = (unsigned long)__va(paddr);
607                 pud = pud_page + pud_index(vaddr);
608                 paddr_next = (paddr & PUD_MASK) + PUD_SIZE;
609
610                 if (paddr >= paddr_end) {
611                         if (!after_bootmem &&
612                             !e820__mapped_any(paddr & PUD_MASK, paddr_next,
613                                              E820_TYPE_RAM) &&
614                             !e820__mapped_any(paddr & PUD_MASK, paddr_next,
615                                              E820_TYPE_RESERVED_KERN))
616                                 set_pud_init(pud, __pud(0), init);
617                         continue;
618                 }
619
620                 if (!pud_none(*pud)) {
621                         if (!pud_large(*pud)) {
622                                 pmd = pmd_offset(pud, 0);
623                                 paddr_last = phys_pmd_init(pmd, paddr,
624                                                            paddr_end,
625                                                            page_size_mask,
626                                                            prot, init);
627                                 continue;
628                         }
629                         /*
630                          * If we are ok with PG_LEVEL_1G mapping, then we will
631                          * use the existing mapping.
632                          *
633                          * Otherwise, we will split the gbpage mapping but use
634                          * the same existing protection  bits except for large
635                          * page, so that we don't violate Intel's TLB
636                          * Application note (317080) which says, while changing
637                          * the page sizes, new and old translations should
638                          * not differ with respect to page frame and
639                          * attributes.
640                          */
641                         if (page_size_mask & (1 << PG_LEVEL_1G)) {
642                                 if (!after_bootmem)
643                                         pages++;
644                                 paddr_last = paddr_next;
645                                 continue;
646                         }
647                         prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
648                 }
649
650                 if (page_size_mask & (1<<PG_LEVEL_1G)) {
651                         pages++;
652                         spin_lock(&init_mm.page_table_lock);
653
654                         prot = __pgprot(pgprot_val(prot) | __PAGE_KERNEL_LARGE);
655
656                         set_pte_init((pte_t *)pud,
657                                      pfn_pte((paddr & PUD_MASK) >> PAGE_SHIFT,
658                                              prot),
659                                      init);
660                         spin_unlock(&init_mm.page_table_lock);
661                         paddr_last = paddr_next;
662                         continue;
663                 }
664
665                 pmd = alloc_low_page();
666                 paddr_last = phys_pmd_init(pmd, paddr, paddr_end,
667                                            page_size_mask, prot, init);
668
669                 spin_lock(&init_mm.page_table_lock);
670                 pud_populate_init(&init_mm, pud, pmd, init);
671                 spin_unlock(&init_mm.page_table_lock);
672         }
673
674         update_page_count(PG_LEVEL_1G, pages);
675
676         return paddr_last;
677 }
678
679 static unsigned long __meminit
680 phys_p4d_init(p4d_t *p4d_page, unsigned long paddr, unsigned long paddr_end,
681               unsigned long page_size_mask, pgprot_t prot, bool init)
682 {
683         unsigned long vaddr, vaddr_end, vaddr_next, paddr_next, paddr_last;
684
685         paddr_last = paddr_end;
686         vaddr = (unsigned long)__va(paddr);
687         vaddr_end = (unsigned long)__va(paddr_end);
688
689         if (!pgtable_l5_enabled())
690                 return phys_pud_init((pud_t *) p4d_page, paddr, paddr_end,
691                                      page_size_mask, prot, init);
692
693         for (; vaddr < vaddr_end; vaddr = vaddr_next) {
694                 p4d_t *p4d = p4d_page + p4d_index(vaddr);
695                 pud_t *pud;
696
697                 vaddr_next = (vaddr & P4D_MASK) + P4D_SIZE;
698                 paddr = __pa(vaddr);
699
700                 if (paddr >= paddr_end) {
701                         paddr_next = __pa(vaddr_next);
702                         if (!after_bootmem &&
703                             !e820__mapped_any(paddr & P4D_MASK, paddr_next,
704                                              E820_TYPE_RAM) &&
705                             !e820__mapped_any(paddr & P4D_MASK, paddr_next,
706                                              E820_TYPE_RESERVED_KERN))
707                                 set_p4d_init(p4d, __p4d(0), init);
708                         continue;
709                 }
710
711                 if (!p4d_none(*p4d)) {
712                         pud = pud_offset(p4d, 0);
713                         paddr_last = phys_pud_init(pud, paddr, __pa(vaddr_end),
714                                         page_size_mask, prot, init);
715                         continue;
716                 }
717
718                 pud = alloc_low_page();
719                 paddr_last = phys_pud_init(pud, paddr, __pa(vaddr_end),
720                                            page_size_mask, prot, init);
721
722                 spin_lock(&init_mm.page_table_lock);
723                 p4d_populate_init(&init_mm, p4d, pud, init);
724                 spin_unlock(&init_mm.page_table_lock);
725         }
726
727         return paddr_last;
728 }
729
730 static unsigned long __meminit
731 __kernel_physical_mapping_init(unsigned long paddr_start,
732                                unsigned long paddr_end,
733                                unsigned long page_size_mask,
734                                pgprot_t prot, bool init)
735 {
736         bool pgd_changed = false;
737         unsigned long vaddr, vaddr_start, vaddr_end, vaddr_next, paddr_last;
738
739         paddr_last = paddr_end;
740         vaddr = (unsigned long)__va(paddr_start);
741         vaddr_end = (unsigned long)__va(paddr_end);
742         vaddr_start = vaddr;
743
744         for (; vaddr < vaddr_end; vaddr = vaddr_next) {
745                 pgd_t *pgd = pgd_offset_k(vaddr);
746                 p4d_t *p4d;
747
748                 vaddr_next = (vaddr & PGDIR_MASK) + PGDIR_SIZE;
749
750                 if (pgd_val(*pgd)) {
751                         p4d = (p4d_t *)pgd_page_vaddr(*pgd);
752                         paddr_last = phys_p4d_init(p4d, __pa(vaddr),
753                                                    __pa(vaddr_end),
754                                                    page_size_mask,
755                                                    prot, init);
756                         continue;
757                 }
758
759                 p4d = alloc_low_page();
760                 paddr_last = phys_p4d_init(p4d, __pa(vaddr), __pa(vaddr_end),
761                                            page_size_mask, prot, init);
762
763                 spin_lock(&init_mm.page_table_lock);
764                 if (pgtable_l5_enabled())
765                         pgd_populate_init(&init_mm, pgd, p4d, init);
766                 else
767                         p4d_populate_init(&init_mm, p4d_offset(pgd, vaddr),
768                                           (pud_t *) p4d, init);
769
770                 spin_unlock(&init_mm.page_table_lock);
771                 pgd_changed = true;
772         }
773
774         if (pgd_changed)
775                 sync_global_pgds(vaddr_start, vaddr_end - 1);
776
777         return paddr_last;
778 }
779
780
781 /*
782  * Create page table mapping for the physical memory for specific physical
783  * addresses. Note that it can only be used to populate non-present entries.
784  * The virtual and physical addresses have to be aligned on PMD level
785  * down. It returns the last physical address mapped.
786  */
787 unsigned long __meminit
788 kernel_physical_mapping_init(unsigned long paddr_start,
789                              unsigned long paddr_end,
790                              unsigned long page_size_mask, pgprot_t prot)
791 {
792         return __kernel_physical_mapping_init(paddr_start, paddr_end,
793                                               page_size_mask, prot, true);
794 }
795
796 /*
797  * This function is similar to kernel_physical_mapping_init() above with the
798  * exception that it uses set_{pud,pmd}() instead of the set_{pud,pte}_safe()
799  * when updating the mapping. The caller is responsible to flush the TLBs after
800  * the function returns.
801  */
802 unsigned long __meminit
803 kernel_physical_mapping_change(unsigned long paddr_start,
804                                unsigned long paddr_end,
805                                unsigned long page_size_mask)
806 {
807         return __kernel_physical_mapping_init(paddr_start, paddr_end,
808                                               page_size_mask, PAGE_KERNEL,
809                                               false);
810 }
811
812 #ifndef CONFIG_NUMA
813 void __init initmem_init(void)
814 {
815         memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0);
816 }
817 #endif
818
819 void __init paging_init(void)
820 {
821         sparse_memory_present_with_active_regions(MAX_NUMNODES);
822         sparse_init();
823
824         /*
825          * clear the default setting with node 0
826          * note: don't use nodes_clear here, that is really clearing when
827          *       numa support is not compiled in, and later node_set_state
828          *       will not set it back.
829          */
830         node_clear_state(0, N_MEMORY);
831         node_clear_state(0, N_NORMAL_MEMORY);
832
833         zone_sizes_init();
834 }
835
836 /*
837  * Memory hotplug specific functions
838  */
839 #ifdef CONFIG_MEMORY_HOTPLUG
840 /*
841  * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
842  * updating.
843  */
844 static void update_end_of_memory_vars(u64 start, u64 size)
845 {
846         unsigned long end_pfn = PFN_UP(start + size);
847
848         if (end_pfn > max_pfn) {
849                 max_pfn = end_pfn;
850                 max_low_pfn = end_pfn;
851                 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
852         }
853 }
854
855 int add_pages(int nid, unsigned long start_pfn, unsigned long nr_pages,
856               struct mhp_params *params)
857 {
858         int ret;
859
860         ret = __add_pages(nid, start_pfn, nr_pages, params);
861         WARN_ON_ONCE(ret);
862
863         /* update max_pfn, max_low_pfn and high_memory */
864         update_end_of_memory_vars(start_pfn << PAGE_SHIFT,
865                                   nr_pages << PAGE_SHIFT);
866
867         return ret;
868 }
869
870 int arch_add_memory(int nid, u64 start, u64 size,
871                     struct mhp_params *params)
872 {
873         unsigned long start_pfn = start >> PAGE_SHIFT;
874         unsigned long nr_pages = size >> PAGE_SHIFT;
875
876         init_memory_mapping(start, start + size, params->pgprot);
877
878         return add_pages(nid, start_pfn, nr_pages, params);
879 }
880
881 #define PAGE_INUSE 0xFD
882
883 static void __meminit free_pagetable(struct page *page, int order)
884 {
885         unsigned long magic;
886         unsigned int nr_pages = 1 << order;
887
888         /* bootmem page has reserved flag */
889         if (PageReserved(page)) {
890                 __ClearPageReserved(page);
891
892                 magic = (unsigned long)page->freelist;
893                 if (magic == SECTION_INFO || magic == MIX_SECTION_INFO) {
894                         while (nr_pages--)
895                                 put_page_bootmem(page++);
896                 } else
897                         while (nr_pages--)
898                                 free_reserved_page(page++);
899         } else
900                 free_pages((unsigned long)page_address(page), order);
901 }
902
903 static void __meminit free_hugepage_table(struct page *page,
904                 struct vmem_altmap *altmap)
905 {
906         if (altmap)
907                 vmem_altmap_free(altmap, PMD_SIZE / PAGE_SIZE);
908         else
909                 free_pagetable(page, get_order(PMD_SIZE));
910 }
911
912 static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd)
913 {
914         pte_t *pte;
915         int i;
916
917         for (i = 0; i < PTRS_PER_PTE; i++) {
918                 pte = pte_start + i;
919                 if (!pte_none(*pte))
920                         return;
921         }
922
923         /* free a pte talbe */
924         free_pagetable(pmd_page(*pmd), 0);
925         spin_lock(&init_mm.page_table_lock);
926         pmd_clear(pmd);
927         spin_unlock(&init_mm.page_table_lock);
928 }
929
930 static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud)
931 {
932         pmd_t *pmd;
933         int i;
934
935         for (i = 0; i < PTRS_PER_PMD; i++) {
936                 pmd = pmd_start + i;
937                 if (!pmd_none(*pmd))
938                         return;
939         }
940
941         /* free a pmd talbe */
942         free_pagetable(pud_page(*pud), 0);
943         spin_lock(&init_mm.page_table_lock);
944         pud_clear(pud);
945         spin_unlock(&init_mm.page_table_lock);
946 }
947
948 static void __meminit free_pud_table(pud_t *pud_start, p4d_t *p4d)
949 {
950         pud_t *pud;
951         int i;
952
953         for (i = 0; i < PTRS_PER_PUD; i++) {
954                 pud = pud_start + i;
955                 if (!pud_none(*pud))
956                         return;
957         }
958
959         /* free a pud talbe */
960         free_pagetable(p4d_page(*p4d), 0);
961         spin_lock(&init_mm.page_table_lock);
962         p4d_clear(p4d);
963         spin_unlock(&init_mm.page_table_lock);
964 }
965
966 static void __meminit
967 remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end,
968                  bool direct)
969 {
970         unsigned long next, pages = 0;
971         pte_t *pte;
972         void *page_addr;
973         phys_addr_t phys_addr;
974
975         pte = pte_start + pte_index(addr);
976         for (; addr < end; addr = next, pte++) {
977                 next = (addr + PAGE_SIZE) & PAGE_MASK;
978                 if (next > end)
979                         next = end;
980
981                 if (!pte_present(*pte))
982                         continue;
983
984                 /*
985                  * We mapped [0,1G) memory as identity mapping when
986                  * initializing, in arch/x86/kernel/head_64.S. These
987                  * pagetables cannot be removed.
988                  */
989                 phys_addr = pte_val(*pte) + (addr & PAGE_MASK);
990                 if (phys_addr < (phys_addr_t)0x40000000)
991                         return;
992
993                 if (PAGE_ALIGNED(addr) && PAGE_ALIGNED(next)) {
994                         /*
995                          * Do not free direct mapping pages since they were
996                          * freed when offlining, or simplely not in use.
997                          */
998                         if (!direct)
999                                 free_pagetable(pte_page(*pte), 0);
1000
1001                         spin_lock(&init_mm.page_table_lock);
1002                         pte_clear(&init_mm, addr, pte);
1003                         spin_unlock(&init_mm.page_table_lock);
1004
1005                         /* For non-direct mapping, pages means nothing. */
1006                         pages++;
1007                 } else {
1008                         /*
1009                          * If we are here, we are freeing vmemmap pages since
1010                          * direct mapped memory ranges to be freed are aligned.
1011                          *
1012                          * If we are not removing the whole page, it means
1013                          * other page structs in this page are being used and
1014                          * we canot remove them. So fill the unused page_structs
1015                          * with 0xFD, and remove the page when it is wholly
1016                          * filled with 0xFD.
1017                          */
1018                         memset((void *)addr, PAGE_INUSE, next - addr);
1019
1020                         page_addr = page_address(pte_page(*pte));
1021                         if (!memchr_inv(page_addr, PAGE_INUSE, PAGE_SIZE)) {
1022                                 free_pagetable(pte_page(*pte), 0);
1023
1024                                 spin_lock(&init_mm.page_table_lock);
1025                                 pte_clear(&init_mm, addr, pte);
1026                                 spin_unlock(&init_mm.page_table_lock);
1027                         }
1028                 }
1029         }
1030
1031         /* Call free_pte_table() in remove_pmd_table(). */
1032         flush_tlb_all();
1033         if (direct)
1034                 update_page_count(PG_LEVEL_4K, -pages);
1035 }
1036
1037 static void __meminit
1038 remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end,
1039                  bool direct, struct vmem_altmap *altmap)
1040 {
1041         unsigned long next, pages = 0;
1042         pte_t *pte_base;
1043         pmd_t *pmd;
1044         void *page_addr;
1045
1046         pmd = pmd_start + pmd_index(addr);
1047         for (; addr < end; addr = next, pmd++) {
1048                 next = pmd_addr_end(addr, end);
1049
1050                 if (!pmd_present(*pmd))
1051                         continue;
1052
1053                 if (pmd_large(*pmd)) {
1054                         if (IS_ALIGNED(addr, PMD_SIZE) &&
1055                             IS_ALIGNED(next, PMD_SIZE)) {
1056                                 if (!direct)
1057                                         free_hugepage_table(pmd_page(*pmd),
1058                                                             altmap);
1059
1060                                 spin_lock(&init_mm.page_table_lock);
1061                                 pmd_clear(pmd);
1062                                 spin_unlock(&init_mm.page_table_lock);
1063                                 pages++;
1064                         } else {
1065                                 /* If here, we are freeing vmemmap pages. */
1066                                 memset((void *)addr, PAGE_INUSE, next - addr);
1067
1068                                 page_addr = page_address(pmd_page(*pmd));
1069                                 if (!memchr_inv(page_addr, PAGE_INUSE,
1070                                                 PMD_SIZE)) {
1071                                         free_hugepage_table(pmd_page(*pmd),
1072                                                             altmap);
1073
1074                                         spin_lock(&init_mm.page_table_lock);
1075                                         pmd_clear(pmd);
1076                                         spin_unlock(&init_mm.page_table_lock);
1077                                 }
1078                         }
1079
1080                         continue;
1081                 }
1082
1083                 pte_base = (pte_t *)pmd_page_vaddr(*pmd);
1084                 remove_pte_table(pte_base, addr, next, direct);
1085                 free_pte_table(pte_base, pmd);
1086         }
1087
1088         /* Call free_pmd_table() in remove_pud_table(). */
1089         if (direct)
1090                 update_page_count(PG_LEVEL_2M, -pages);
1091 }
1092
1093 static void __meminit
1094 remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end,
1095                  struct vmem_altmap *altmap, bool direct)
1096 {
1097         unsigned long next, pages = 0;
1098         pmd_t *pmd_base;
1099         pud_t *pud;
1100         void *page_addr;
1101
1102         pud = pud_start + pud_index(addr);
1103         for (; addr < end; addr = next, pud++) {
1104                 next = pud_addr_end(addr, end);
1105
1106                 if (!pud_present(*pud))
1107                         continue;
1108
1109                 if (pud_large(*pud)) {
1110                         if (IS_ALIGNED(addr, PUD_SIZE) &&
1111                             IS_ALIGNED(next, PUD_SIZE)) {
1112                                 if (!direct)
1113                                         free_pagetable(pud_page(*pud),
1114                                                        get_order(PUD_SIZE));
1115
1116                                 spin_lock(&init_mm.page_table_lock);
1117                                 pud_clear(pud);
1118                                 spin_unlock(&init_mm.page_table_lock);
1119                                 pages++;
1120                         } else {
1121                                 /* If here, we are freeing vmemmap pages. */
1122                                 memset((void *)addr, PAGE_INUSE, next - addr);
1123
1124                                 page_addr = page_address(pud_page(*pud));
1125                                 if (!memchr_inv(page_addr, PAGE_INUSE,
1126                                                 PUD_SIZE)) {
1127                                         free_pagetable(pud_page(*pud),
1128                                                        get_order(PUD_SIZE));
1129
1130                                         spin_lock(&init_mm.page_table_lock);
1131                                         pud_clear(pud);
1132                                         spin_unlock(&init_mm.page_table_lock);
1133                                 }
1134                         }
1135
1136                         continue;
1137                 }
1138
1139                 pmd_base = pmd_offset(pud, 0);
1140                 remove_pmd_table(pmd_base, addr, next, direct, altmap);
1141                 free_pmd_table(pmd_base, pud);
1142         }
1143
1144         if (direct)
1145                 update_page_count(PG_LEVEL_1G, -pages);
1146 }
1147
1148 static void __meminit
1149 remove_p4d_table(p4d_t *p4d_start, unsigned long addr, unsigned long end,
1150                  struct vmem_altmap *altmap, bool direct)
1151 {
1152         unsigned long next, pages = 0;
1153         pud_t *pud_base;
1154         p4d_t *p4d;
1155
1156         p4d = p4d_start + p4d_index(addr);
1157         for (; addr < end; addr = next, p4d++) {
1158                 next = p4d_addr_end(addr, end);
1159
1160                 if (!p4d_present(*p4d))
1161                         continue;
1162
1163                 BUILD_BUG_ON(p4d_large(*p4d));
1164
1165                 pud_base = pud_offset(p4d, 0);
1166                 remove_pud_table(pud_base, addr, next, altmap, direct);
1167                 /*
1168                  * For 4-level page tables we do not want to free PUDs, but in the
1169                  * 5-level case we should free them. This code will have to change
1170                  * to adapt for boot-time switching between 4 and 5 level page tables.
1171                  */
1172                 if (pgtable_l5_enabled())
1173                         free_pud_table(pud_base, p4d);
1174         }
1175
1176         if (direct)
1177                 update_page_count(PG_LEVEL_512G, -pages);
1178 }
1179
1180 /* start and end are both virtual address. */
1181 static void __meminit
1182 remove_pagetable(unsigned long start, unsigned long end, bool direct,
1183                 struct vmem_altmap *altmap)
1184 {
1185         unsigned long next;
1186         unsigned long addr;
1187         pgd_t *pgd;
1188         p4d_t *p4d;
1189
1190         for (addr = start; addr < end; addr = next) {
1191                 next = pgd_addr_end(addr, end);
1192
1193                 pgd = pgd_offset_k(addr);
1194                 if (!pgd_present(*pgd))
1195                         continue;
1196
1197                 p4d = p4d_offset(pgd, 0);
1198                 remove_p4d_table(p4d, addr, next, altmap, direct);
1199         }
1200
1201         flush_tlb_all();
1202 }
1203
1204 void __ref vmemmap_free(unsigned long start, unsigned long end,
1205                 struct vmem_altmap *altmap)
1206 {
1207         remove_pagetable(start, end, false, altmap);
1208 }
1209
1210 static void __meminit
1211 kernel_physical_mapping_remove(unsigned long start, unsigned long end)
1212 {
1213         start = (unsigned long)__va(start);
1214         end = (unsigned long)__va(end);
1215
1216         remove_pagetable(start, end, true, NULL);
1217 }
1218
1219 void __ref arch_remove_memory(int nid, u64 start, u64 size,
1220                               struct vmem_altmap *altmap)
1221 {
1222         unsigned long start_pfn = start >> PAGE_SHIFT;
1223         unsigned long nr_pages = size >> PAGE_SHIFT;
1224
1225         __remove_pages(start_pfn, nr_pages, altmap);
1226         kernel_physical_mapping_remove(start, start + size);
1227 }
1228 #endif /* CONFIG_MEMORY_HOTPLUG */
1229
1230 static struct kcore_list kcore_vsyscall;
1231
1232 static void __init register_page_bootmem_info(void)
1233 {
1234 #ifdef CONFIG_NUMA
1235         int i;
1236
1237         for_each_online_node(i)
1238                 register_page_bootmem_info_node(NODE_DATA(i));
1239 #endif
1240 }
1241
1242 void __init mem_init(void)
1243 {
1244         pci_iommu_alloc();
1245
1246         /* clear_bss() already clear the empty_zero_page */
1247
1248         /* this will put all memory onto the freelists */
1249         memblock_free_all();
1250         after_bootmem = 1;
1251         x86_init.hyper.init_after_bootmem();
1252
1253         /*
1254          * Must be done after boot memory is put on freelist, because here we
1255          * might set fields in deferred struct pages that have not yet been
1256          * initialized, and memblock_free_all() initializes all the reserved
1257          * deferred pages for us.
1258          */
1259         register_page_bootmem_info();
1260
1261         /* Register memory areas for /proc/kcore */
1262         if (get_gate_vma(&init_mm))
1263                 kclist_add(&kcore_vsyscall, (void *)VSYSCALL_ADDR, PAGE_SIZE, KCORE_USER);
1264
1265         mem_init_print_info(NULL);
1266 }
1267
1268 int kernel_set_to_readonly;
1269
1270 void mark_rodata_ro(void)
1271 {
1272         unsigned long start = PFN_ALIGN(_text);
1273         unsigned long rodata_start = PFN_ALIGN(__start_rodata);
1274         unsigned long end = (unsigned long)__end_rodata_hpage_align;
1275         unsigned long text_end = PFN_ALIGN(_etext);
1276         unsigned long rodata_end = PFN_ALIGN(__end_rodata);
1277         unsigned long all_end;
1278
1279         printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
1280                (end - start) >> 10);
1281         set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1282
1283         kernel_set_to_readonly = 1;
1284
1285         /*
1286          * The rodata/data/bss/brk section (but not the kernel text!)
1287          * should also be not-executable.
1288          *
1289          * We align all_end to PMD_SIZE because the existing mapping
1290          * is a full PMD. If we would align _brk_end to PAGE_SIZE we
1291          * split the PMD and the reminder between _brk_end and the end
1292          * of the PMD will remain mapped executable.
1293          *
1294          * Any PMD which was setup after the one which covers _brk_end
1295          * has been zapped already via cleanup_highmem().
1296          */
1297         all_end = roundup((unsigned long)_brk_end, PMD_SIZE);
1298         set_memory_nx(text_end, (all_end - text_end) >> PAGE_SHIFT);
1299
1300         set_ftrace_ops_ro();
1301
1302 #ifdef CONFIG_CPA_DEBUG
1303         printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
1304         set_memory_rw(start, (end-start) >> PAGE_SHIFT);
1305
1306         printk(KERN_INFO "Testing CPA: again\n");
1307         set_memory_ro(start, (end-start) >> PAGE_SHIFT);
1308 #endif
1309
1310         free_kernel_image_pages("unused kernel image (text/rodata gap)",
1311                                 (void *)text_end, (void *)rodata_start);
1312         free_kernel_image_pages("unused kernel image (rodata/data gap)",
1313                                 (void *)rodata_end, (void *)_sdata);
1314
1315         debug_checkwx();
1316 }
1317
1318 int kern_addr_valid(unsigned long addr)
1319 {
1320         unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
1321         pgd_t *pgd;
1322         p4d_t *p4d;
1323         pud_t *pud;
1324         pmd_t *pmd;
1325         pte_t *pte;
1326
1327         if (above != 0 && above != -1UL)
1328                 return 0;
1329
1330         pgd = pgd_offset_k(addr);
1331         if (pgd_none(*pgd))
1332                 return 0;
1333
1334         p4d = p4d_offset(pgd, addr);
1335         if (p4d_none(*p4d))
1336                 return 0;
1337
1338         pud = pud_offset(p4d, addr);
1339         if (pud_none(*pud))
1340                 return 0;
1341
1342         if (pud_large(*pud))
1343                 return pfn_valid(pud_pfn(*pud));
1344
1345         pmd = pmd_offset(pud, addr);
1346         if (pmd_none(*pmd))
1347                 return 0;
1348
1349         if (pmd_large(*pmd))
1350                 return pfn_valid(pmd_pfn(*pmd));
1351
1352         pte = pte_offset_kernel(pmd, addr);
1353         if (pte_none(*pte))
1354                 return 0;
1355
1356         return pfn_valid(pte_pfn(*pte));
1357 }
1358
1359 /*
1360  * Block size is the minimum amount of memory which can be hotplugged or
1361  * hotremoved. It must be power of two and must be equal or larger than
1362  * MIN_MEMORY_BLOCK_SIZE.
1363  */
1364 #define MAX_BLOCK_SIZE (2UL << 30)
1365
1366 /* Amount of ram needed to start using large blocks */
1367 #define MEM_SIZE_FOR_LARGE_BLOCK (64UL << 30)
1368
1369 /* Adjustable memory block size */
1370 static unsigned long set_memory_block_size;
1371 int __init set_memory_block_size_order(unsigned int order)
1372 {
1373         unsigned long size = 1UL << order;
1374
1375         if (size > MEM_SIZE_FOR_LARGE_BLOCK || size < MIN_MEMORY_BLOCK_SIZE)
1376                 return -EINVAL;
1377
1378         set_memory_block_size = size;
1379         return 0;
1380 }
1381
1382 static unsigned long probe_memory_block_size(void)
1383 {
1384         unsigned long boot_mem_end = max_pfn << PAGE_SHIFT;
1385         unsigned long bz;
1386
1387         /* If memory block size has been set, then use it */
1388         bz = set_memory_block_size;
1389         if (bz)
1390                 goto done;
1391
1392         /* Use regular block if RAM is smaller than MEM_SIZE_FOR_LARGE_BLOCK */
1393         if (boot_mem_end < MEM_SIZE_FOR_LARGE_BLOCK) {
1394                 bz = MIN_MEMORY_BLOCK_SIZE;
1395                 goto done;
1396         }
1397
1398         /* Find the largest allowed block size that aligns to memory end */
1399         for (bz = MAX_BLOCK_SIZE; bz > MIN_MEMORY_BLOCK_SIZE; bz >>= 1) {
1400                 if (IS_ALIGNED(boot_mem_end, bz))
1401                         break;
1402         }
1403 done:
1404         pr_info("x86/mm: Memory block size: %ldMB\n", bz >> 20);
1405
1406         return bz;
1407 }
1408
1409 static unsigned long memory_block_size_probed;
1410 unsigned long memory_block_size_bytes(void)
1411 {
1412         if (!memory_block_size_probed)
1413                 memory_block_size_probed = probe_memory_block_size();
1414
1415         return memory_block_size_probed;
1416 }
1417
1418 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1419 /*
1420  * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
1421  */
1422 static long __meminitdata addr_start, addr_end;
1423 static void __meminitdata *p_start, *p_end;
1424 static int __meminitdata node_start;
1425
1426 static int __meminit vmemmap_populate_hugepages(unsigned long start,
1427                 unsigned long end, int node, struct vmem_altmap *altmap)
1428 {
1429         unsigned long addr;
1430         unsigned long next;
1431         pgd_t *pgd;
1432         p4d_t *p4d;
1433         pud_t *pud;
1434         pmd_t *pmd;
1435
1436         for (addr = start; addr < end; addr = next) {
1437                 next = pmd_addr_end(addr, end);
1438
1439                 pgd = vmemmap_pgd_populate(addr, node);
1440                 if (!pgd)
1441                         return -ENOMEM;
1442
1443                 p4d = vmemmap_p4d_populate(pgd, addr, node);
1444                 if (!p4d)
1445                         return -ENOMEM;
1446
1447                 pud = vmemmap_pud_populate(p4d, addr, node);
1448                 if (!pud)
1449                         return -ENOMEM;
1450
1451                 pmd = pmd_offset(pud, addr);
1452                 if (pmd_none(*pmd)) {
1453                         void *p;
1454
1455                         if (altmap)
1456                                 p = altmap_alloc_block_buf(PMD_SIZE, altmap);
1457                         else
1458                                 p = vmemmap_alloc_block_buf(PMD_SIZE, node);
1459                         if (p) {
1460                                 pte_t entry;
1461
1462                                 entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
1463                                                 PAGE_KERNEL_LARGE);
1464                                 set_pmd(pmd, __pmd(pte_val(entry)));
1465
1466                                 /* check to see if we have contiguous blocks */
1467                                 if (p_end != p || node_start != node) {
1468                                         if (p_start)
1469                                                 pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1470                                                        addr_start, addr_end-1, p_start, p_end-1, node_start);
1471                                         addr_start = addr;
1472                                         node_start = node;
1473                                         p_start = p;
1474                                 }
1475
1476                                 addr_end = addr + PMD_SIZE;
1477                                 p_end = p + PMD_SIZE;
1478                                 continue;
1479                         } else if (altmap)
1480                                 return -ENOMEM; /* no fallback */
1481                 } else if (pmd_large(*pmd)) {
1482                         vmemmap_verify((pte_t *)pmd, node, addr, next);
1483                         continue;
1484                 }
1485                 if (vmemmap_populate_basepages(addr, next, node))
1486                         return -ENOMEM;
1487         }
1488         return 0;
1489 }
1490
1491 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
1492                 struct vmem_altmap *altmap)
1493 {
1494         int err;
1495
1496         if (end - start < PAGES_PER_SECTION * sizeof(struct page))
1497                 err = vmemmap_populate_basepages(start, end, node);
1498         else if (boot_cpu_has(X86_FEATURE_PSE))
1499                 err = vmemmap_populate_hugepages(start, end, node, altmap);
1500         else if (altmap) {
1501                 pr_err_once("%s: no cpu support for altmap allocations\n",
1502                                 __func__);
1503                 err = -ENOMEM;
1504         } else
1505                 err = vmemmap_populate_basepages(start, end, node);
1506         if (!err)
1507                 sync_global_pgds(start, end - 1);
1508         return err;
1509 }
1510
1511 #if defined(CONFIG_MEMORY_HOTPLUG_SPARSE) && defined(CONFIG_HAVE_BOOTMEM_INFO_NODE)
1512 void register_page_bootmem_memmap(unsigned long section_nr,
1513                                   struct page *start_page, unsigned long nr_pages)
1514 {
1515         unsigned long addr = (unsigned long)start_page;
1516         unsigned long end = (unsigned long)(start_page + nr_pages);
1517         unsigned long next;
1518         pgd_t *pgd;
1519         p4d_t *p4d;
1520         pud_t *pud;
1521         pmd_t *pmd;
1522         unsigned int nr_pmd_pages;
1523         struct page *page;
1524
1525         for (; addr < end; addr = next) {
1526                 pte_t *pte = NULL;
1527
1528                 pgd = pgd_offset_k(addr);
1529                 if (pgd_none(*pgd)) {
1530                         next = (addr + PAGE_SIZE) & PAGE_MASK;
1531                         continue;
1532                 }
1533                 get_page_bootmem(section_nr, pgd_page(*pgd), MIX_SECTION_INFO);
1534
1535                 p4d = p4d_offset(pgd, addr);
1536                 if (p4d_none(*p4d)) {
1537                         next = (addr + PAGE_SIZE) & PAGE_MASK;
1538                         continue;
1539                 }
1540                 get_page_bootmem(section_nr, p4d_page(*p4d), MIX_SECTION_INFO);
1541
1542                 pud = pud_offset(p4d, addr);
1543                 if (pud_none(*pud)) {
1544                         next = (addr + PAGE_SIZE) & PAGE_MASK;
1545                         continue;
1546                 }
1547                 get_page_bootmem(section_nr, pud_page(*pud), MIX_SECTION_INFO);
1548
1549                 if (!boot_cpu_has(X86_FEATURE_PSE)) {
1550                         next = (addr + PAGE_SIZE) & PAGE_MASK;
1551                         pmd = pmd_offset(pud, addr);
1552                         if (pmd_none(*pmd))
1553                                 continue;
1554                         get_page_bootmem(section_nr, pmd_page(*pmd),
1555                                          MIX_SECTION_INFO);
1556
1557                         pte = pte_offset_kernel(pmd, addr);
1558                         if (pte_none(*pte))
1559                                 continue;
1560                         get_page_bootmem(section_nr, pte_page(*pte),
1561                                          SECTION_INFO);
1562                 } else {
1563                         next = pmd_addr_end(addr, end);
1564
1565                         pmd = pmd_offset(pud, addr);
1566                         if (pmd_none(*pmd))
1567                                 continue;
1568
1569                         nr_pmd_pages = 1 << get_order(PMD_SIZE);
1570                         page = pmd_page(*pmd);
1571                         while (nr_pmd_pages--)
1572                                 get_page_bootmem(section_nr, page++,
1573                                                  SECTION_INFO);
1574                 }
1575         }
1576 }
1577 #endif
1578
1579 void __meminit vmemmap_populate_print_last(void)
1580 {
1581         if (p_start) {
1582                 pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1583                         addr_start, addr_end-1, p_start, p_end-1, node_start);
1584                 p_start = NULL;
1585                 p_end = NULL;
1586                 node_start = 0;
1587         }
1588 }
1589 #endif