Merge tag 'for-linus' of git://git.armlinux.org.uk/~rmk/linux-arm
[platform/kernel/linux-rpi.git] / arch / x86 / mm / init_64.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/arch/x86_64/mm/init.c
4  *
5  *  Copyright (C) 1995  Linus Torvalds
6  *  Copyright (C) 2000  Pavel Machek <pavel@ucw.cz>
7  *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
8  */
9
10 #include <linux/signal.h>
11 #include <linux/sched.h>
12 #include <linux/kernel.h>
13 #include <linux/errno.h>
14 #include <linux/string.h>
15 #include <linux/types.h>
16 #include <linux/ptrace.h>
17 #include <linux/mman.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/smp.h>
21 #include <linux/init.h>
22 #include <linux/initrd.h>
23 #include <linux/pagemap.h>
24 #include <linux/memblock.h>
25 #include <linux/proc_fs.h>
26 #include <linux/pci.h>
27 #include <linux/pfn.h>
28 #include <linux/poison.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/memory.h>
31 #include <linux/memory_hotplug.h>
32 #include <linux/memremap.h>
33 #include <linux/nmi.h>
34 #include <linux/gfp.h>
35 #include <linux/kcore.h>
36 #include <linux/bootmem_info.h>
37
38 #include <asm/processor.h>
39 #include <asm/bios_ebda.h>
40 #include <linux/uaccess.h>
41 #include <asm/pgalloc.h>
42 #include <asm/dma.h>
43 #include <asm/fixmap.h>
44 #include <asm/e820/api.h>
45 #include <asm/apic.h>
46 #include <asm/tlb.h>
47 #include <asm/mmu_context.h>
48 #include <asm/proto.h>
49 #include <asm/smp.h>
50 #include <asm/sections.h>
51 #include <asm/kdebug.h>
52 #include <asm/numa.h>
53 #include <asm/set_memory.h>
54 #include <asm/init.h>
55 #include <asm/uv/uv.h>
56 #include <asm/setup.h>
57 #include <asm/ftrace.h>
58
59 #include "mm_internal.h"
60
61 #include "ident_map.c"
62
63 #define DEFINE_POPULATE(fname, type1, type2, init)              \
64 static inline void fname##_init(struct mm_struct *mm,           \
65                 type1##_t *arg1, type2##_t *arg2, bool init)    \
66 {                                                               \
67         if (init)                                               \
68                 fname##_safe(mm, arg1, arg2);                   \
69         else                                                    \
70                 fname(mm, arg1, arg2);                          \
71 }
72
73 DEFINE_POPULATE(p4d_populate, p4d, pud, init)
74 DEFINE_POPULATE(pgd_populate, pgd, p4d, init)
75 DEFINE_POPULATE(pud_populate, pud, pmd, init)
76 DEFINE_POPULATE(pmd_populate_kernel, pmd, pte, init)
77
78 #define DEFINE_ENTRY(type1, type2, init)                        \
79 static inline void set_##type1##_init(type1##_t *arg1,          \
80                         type2##_t arg2, bool init)              \
81 {                                                               \
82         if (init)                                               \
83                 set_##type1##_safe(arg1, arg2);                 \
84         else                                                    \
85                 set_##type1(arg1, arg2);                        \
86 }
87
88 DEFINE_ENTRY(p4d, p4d, init)
89 DEFINE_ENTRY(pud, pud, init)
90 DEFINE_ENTRY(pmd, pmd, init)
91 DEFINE_ENTRY(pte, pte, init)
92
93
94 /*
95  * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
96  * physical space so we can cache the place of the first one and move
97  * around without checking the pgd every time.
98  */
99
100 /* Bits supported by the hardware: */
101 pteval_t __supported_pte_mask __read_mostly = ~0;
102 /* Bits allowed in normal kernel mappings: */
103 pteval_t __default_kernel_pte_mask __read_mostly = ~0;
104 EXPORT_SYMBOL_GPL(__supported_pte_mask);
105 /* Used in PAGE_KERNEL_* macros which are reasonably used out-of-tree: */
106 EXPORT_SYMBOL(__default_kernel_pte_mask);
107
108 int force_personality32;
109
110 /*
111  * noexec32=on|off
112  * Control non executable heap for 32bit processes.
113  * To control the stack too use noexec=off
114  *
115  * on   PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
116  * off  PROT_READ implies PROT_EXEC
117  */
118 static int __init nonx32_setup(char *str)
119 {
120         if (!strcmp(str, "on"))
121                 force_personality32 &= ~READ_IMPLIES_EXEC;
122         else if (!strcmp(str, "off"))
123                 force_personality32 |= READ_IMPLIES_EXEC;
124         return 1;
125 }
126 __setup("noexec32=", nonx32_setup);
127
128 static void sync_global_pgds_l5(unsigned long start, unsigned long end)
129 {
130         unsigned long addr;
131
132         for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
133                 const pgd_t *pgd_ref = pgd_offset_k(addr);
134                 struct page *page;
135
136                 /* Check for overflow */
137                 if (addr < start)
138                         break;
139
140                 if (pgd_none(*pgd_ref))
141                         continue;
142
143                 spin_lock(&pgd_lock);
144                 list_for_each_entry(page, &pgd_list, lru) {
145                         pgd_t *pgd;
146                         spinlock_t *pgt_lock;
147
148                         pgd = (pgd_t *)page_address(page) + pgd_index(addr);
149                         /* the pgt_lock only for Xen */
150                         pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
151                         spin_lock(pgt_lock);
152
153                         if (!pgd_none(*pgd_ref) && !pgd_none(*pgd))
154                                 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
155
156                         if (pgd_none(*pgd))
157                                 set_pgd(pgd, *pgd_ref);
158
159                         spin_unlock(pgt_lock);
160                 }
161                 spin_unlock(&pgd_lock);
162         }
163 }
164
165 static void sync_global_pgds_l4(unsigned long start, unsigned long end)
166 {
167         unsigned long addr;
168
169         for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
170                 pgd_t *pgd_ref = pgd_offset_k(addr);
171                 const p4d_t *p4d_ref;
172                 struct page *page;
173
174                 /*
175                  * With folded p4d, pgd_none() is always false, we need to
176                  * handle synchronization on p4d level.
177                  */
178                 MAYBE_BUILD_BUG_ON(pgd_none(*pgd_ref));
179                 p4d_ref = p4d_offset(pgd_ref, addr);
180
181                 if (p4d_none(*p4d_ref))
182                         continue;
183
184                 spin_lock(&pgd_lock);
185                 list_for_each_entry(page, &pgd_list, lru) {
186                         pgd_t *pgd;
187                         p4d_t *p4d;
188                         spinlock_t *pgt_lock;
189
190                         pgd = (pgd_t *)page_address(page) + pgd_index(addr);
191                         p4d = p4d_offset(pgd, addr);
192                         /* the pgt_lock only for Xen */
193                         pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
194                         spin_lock(pgt_lock);
195
196                         if (!p4d_none(*p4d_ref) && !p4d_none(*p4d))
197                                 BUG_ON(p4d_pgtable(*p4d)
198                                        != p4d_pgtable(*p4d_ref));
199
200                         if (p4d_none(*p4d))
201                                 set_p4d(p4d, *p4d_ref);
202
203                         spin_unlock(pgt_lock);
204                 }
205                 spin_unlock(&pgd_lock);
206         }
207 }
208
209 /*
210  * When memory was added make sure all the processes MM have
211  * suitable PGD entries in the local PGD level page.
212  */
213 static void sync_global_pgds(unsigned long start, unsigned long end)
214 {
215         if (pgtable_l5_enabled())
216                 sync_global_pgds_l5(start, end);
217         else
218                 sync_global_pgds_l4(start, end);
219 }
220
221 /*
222  * NOTE: This function is marked __ref because it calls __init function
223  * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
224  */
225 static __ref void *spp_getpage(void)
226 {
227         void *ptr;
228
229         if (after_bootmem)
230                 ptr = (void *) get_zeroed_page(GFP_ATOMIC);
231         else
232                 ptr = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
233
234         if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
235                 panic("set_pte_phys: cannot allocate page data %s\n",
236                         after_bootmem ? "after bootmem" : "");
237         }
238
239         pr_debug("spp_getpage %p\n", ptr);
240
241         return ptr;
242 }
243
244 static p4d_t *fill_p4d(pgd_t *pgd, unsigned long vaddr)
245 {
246         if (pgd_none(*pgd)) {
247                 p4d_t *p4d = (p4d_t *)spp_getpage();
248                 pgd_populate(&init_mm, pgd, p4d);
249                 if (p4d != p4d_offset(pgd, 0))
250                         printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
251                                p4d, p4d_offset(pgd, 0));
252         }
253         return p4d_offset(pgd, vaddr);
254 }
255
256 static pud_t *fill_pud(p4d_t *p4d, unsigned long vaddr)
257 {
258         if (p4d_none(*p4d)) {
259                 pud_t *pud = (pud_t *)spp_getpage();
260                 p4d_populate(&init_mm, p4d, pud);
261                 if (pud != pud_offset(p4d, 0))
262                         printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
263                                pud, pud_offset(p4d, 0));
264         }
265         return pud_offset(p4d, vaddr);
266 }
267
268 static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
269 {
270         if (pud_none(*pud)) {
271                 pmd_t *pmd = (pmd_t *) spp_getpage();
272                 pud_populate(&init_mm, pud, pmd);
273                 if (pmd != pmd_offset(pud, 0))
274                         printk(KERN_ERR "PAGETABLE BUG #02! %p <-> %p\n",
275                                pmd, pmd_offset(pud, 0));
276         }
277         return pmd_offset(pud, vaddr);
278 }
279
280 static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
281 {
282         if (pmd_none(*pmd)) {
283                 pte_t *pte = (pte_t *) spp_getpage();
284                 pmd_populate_kernel(&init_mm, pmd, pte);
285                 if (pte != pte_offset_kernel(pmd, 0))
286                         printk(KERN_ERR "PAGETABLE BUG #03!\n");
287         }
288         return pte_offset_kernel(pmd, vaddr);
289 }
290
291 static void __set_pte_vaddr(pud_t *pud, unsigned long vaddr, pte_t new_pte)
292 {
293         pmd_t *pmd = fill_pmd(pud, vaddr);
294         pte_t *pte = fill_pte(pmd, vaddr);
295
296         set_pte(pte, new_pte);
297
298         /*
299          * It's enough to flush this one mapping.
300          * (PGE mappings get flushed as well)
301          */
302         flush_tlb_one_kernel(vaddr);
303 }
304
305 void set_pte_vaddr_p4d(p4d_t *p4d_page, unsigned long vaddr, pte_t new_pte)
306 {
307         p4d_t *p4d = p4d_page + p4d_index(vaddr);
308         pud_t *pud = fill_pud(p4d, vaddr);
309
310         __set_pte_vaddr(pud, vaddr, new_pte);
311 }
312
313 void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
314 {
315         pud_t *pud = pud_page + pud_index(vaddr);
316
317         __set_pte_vaddr(pud, vaddr, new_pte);
318 }
319
320 void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
321 {
322         pgd_t *pgd;
323         p4d_t *p4d_page;
324
325         pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
326
327         pgd = pgd_offset_k(vaddr);
328         if (pgd_none(*pgd)) {
329                 printk(KERN_ERR
330                         "PGD FIXMAP MISSING, it should be setup in head.S!\n");
331                 return;
332         }
333
334         p4d_page = p4d_offset(pgd, 0);
335         set_pte_vaddr_p4d(p4d_page, vaddr, pteval);
336 }
337
338 pmd_t * __init populate_extra_pmd(unsigned long vaddr)
339 {
340         pgd_t *pgd;
341         p4d_t *p4d;
342         pud_t *pud;
343
344         pgd = pgd_offset_k(vaddr);
345         p4d = fill_p4d(pgd, vaddr);
346         pud = fill_pud(p4d, vaddr);
347         return fill_pmd(pud, vaddr);
348 }
349
350 pte_t * __init populate_extra_pte(unsigned long vaddr)
351 {
352         pmd_t *pmd;
353
354         pmd = populate_extra_pmd(vaddr);
355         return fill_pte(pmd, vaddr);
356 }
357
358 /*
359  * Create large page table mappings for a range of physical addresses.
360  */
361 static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
362                                         enum page_cache_mode cache)
363 {
364         pgd_t *pgd;
365         p4d_t *p4d;
366         pud_t *pud;
367         pmd_t *pmd;
368         pgprot_t prot;
369
370         pgprot_val(prot) = pgprot_val(PAGE_KERNEL_LARGE) |
371                 protval_4k_2_large(cachemode2protval(cache));
372         BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
373         for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
374                 pgd = pgd_offset_k((unsigned long)__va(phys));
375                 if (pgd_none(*pgd)) {
376                         p4d = (p4d_t *) spp_getpage();
377                         set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE |
378                                                 _PAGE_USER));
379                 }
380                 p4d = p4d_offset(pgd, (unsigned long)__va(phys));
381                 if (p4d_none(*p4d)) {
382                         pud = (pud_t *) spp_getpage();
383                         set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE |
384                                                 _PAGE_USER));
385                 }
386                 pud = pud_offset(p4d, (unsigned long)__va(phys));
387                 if (pud_none(*pud)) {
388                         pmd = (pmd_t *) spp_getpage();
389                         set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
390                                                 _PAGE_USER));
391                 }
392                 pmd = pmd_offset(pud, phys);
393                 BUG_ON(!pmd_none(*pmd));
394                 set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
395         }
396 }
397
398 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
399 {
400         __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_WB);
401 }
402
403 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
404 {
405         __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_UC);
406 }
407
408 /*
409  * The head.S code sets up the kernel high mapping:
410  *
411  *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
412  *
413  * phys_base holds the negative offset to the kernel, which is added
414  * to the compile time generated pmds. This results in invalid pmds up
415  * to the point where we hit the physaddr 0 mapping.
416  *
417  * We limit the mappings to the region from _text to _brk_end.  _brk_end
418  * is rounded up to the 2MB boundary. This catches the invalid pmds as
419  * well, as they are located before _text:
420  */
421 void __init cleanup_highmap(void)
422 {
423         unsigned long vaddr = __START_KERNEL_map;
424         unsigned long vaddr_end = __START_KERNEL_map + KERNEL_IMAGE_SIZE;
425         unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
426         pmd_t *pmd = level2_kernel_pgt;
427
428         /*
429          * Native path, max_pfn_mapped is not set yet.
430          * Xen has valid max_pfn_mapped set in
431          *      arch/x86/xen/mmu.c:xen_setup_kernel_pagetable().
432          */
433         if (max_pfn_mapped)
434                 vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT);
435
436         for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) {
437                 if (pmd_none(*pmd))
438                         continue;
439                 if (vaddr < (unsigned long) _text || vaddr > end)
440                         set_pmd(pmd, __pmd(0));
441         }
442 }
443
444 /*
445  * Create PTE level page table mapping for physical addresses.
446  * It returns the last physical address mapped.
447  */
448 static unsigned long __meminit
449 phys_pte_init(pte_t *pte_page, unsigned long paddr, unsigned long paddr_end,
450               pgprot_t prot, bool init)
451 {
452         unsigned long pages = 0, paddr_next;
453         unsigned long paddr_last = paddr_end;
454         pte_t *pte;
455         int i;
456
457         pte = pte_page + pte_index(paddr);
458         i = pte_index(paddr);
459
460         for (; i < PTRS_PER_PTE; i++, paddr = paddr_next, pte++) {
461                 paddr_next = (paddr & PAGE_MASK) + PAGE_SIZE;
462                 if (paddr >= paddr_end) {
463                         if (!after_bootmem &&
464                             !e820__mapped_any(paddr & PAGE_MASK, paddr_next,
465                                              E820_TYPE_RAM) &&
466                             !e820__mapped_any(paddr & PAGE_MASK, paddr_next,
467                                              E820_TYPE_RESERVED_KERN))
468                                 set_pte_init(pte, __pte(0), init);
469                         continue;
470                 }
471
472                 /*
473                  * We will re-use the existing mapping.
474                  * Xen for example has some special requirements, like mapping
475                  * pagetable pages as RO. So assume someone who pre-setup
476                  * these mappings are more intelligent.
477                  */
478                 if (!pte_none(*pte)) {
479                         if (!after_bootmem)
480                                 pages++;
481                         continue;
482                 }
483
484                 if (0)
485                         pr_info("   pte=%p addr=%lx pte=%016lx\n", pte, paddr,
486                                 pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL).pte);
487                 pages++;
488                 set_pte_init(pte, pfn_pte(paddr >> PAGE_SHIFT, prot), init);
489                 paddr_last = (paddr & PAGE_MASK) + PAGE_SIZE;
490         }
491
492         update_page_count(PG_LEVEL_4K, pages);
493
494         return paddr_last;
495 }
496
497 /*
498  * Create PMD level page table mapping for physical addresses. The virtual
499  * and physical address have to be aligned at this level.
500  * It returns the last physical address mapped.
501  */
502 static unsigned long __meminit
503 phys_pmd_init(pmd_t *pmd_page, unsigned long paddr, unsigned long paddr_end,
504               unsigned long page_size_mask, pgprot_t prot, bool init)
505 {
506         unsigned long pages = 0, paddr_next;
507         unsigned long paddr_last = paddr_end;
508
509         int i = pmd_index(paddr);
510
511         for (; i < PTRS_PER_PMD; i++, paddr = paddr_next) {
512                 pmd_t *pmd = pmd_page + pmd_index(paddr);
513                 pte_t *pte;
514                 pgprot_t new_prot = prot;
515
516                 paddr_next = (paddr & PMD_MASK) + PMD_SIZE;
517                 if (paddr >= paddr_end) {
518                         if (!after_bootmem &&
519                             !e820__mapped_any(paddr & PMD_MASK, paddr_next,
520                                              E820_TYPE_RAM) &&
521                             !e820__mapped_any(paddr & PMD_MASK, paddr_next,
522                                              E820_TYPE_RESERVED_KERN))
523                                 set_pmd_init(pmd, __pmd(0), init);
524                         continue;
525                 }
526
527                 if (!pmd_none(*pmd)) {
528                         if (!pmd_large(*pmd)) {
529                                 spin_lock(&init_mm.page_table_lock);
530                                 pte = (pte_t *)pmd_page_vaddr(*pmd);
531                                 paddr_last = phys_pte_init(pte, paddr,
532                                                            paddr_end, prot,
533                                                            init);
534                                 spin_unlock(&init_mm.page_table_lock);
535                                 continue;
536                         }
537                         /*
538                          * If we are ok with PG_LEVEL_2M mapping, then we will
539                          * use the existing mapping,
540                          *
541                          * Otherwise, we will split the large page mapping but
542                          * use the same existing protection bits except for
543                          * large page, so that we don't violate Intel's TLB
544                          * Application note (317080) which says, while changing
545                          * the page sizes, new and old translations should
546                          * not differ with respect to page frame and
547                          * attributes.
548                          */
549                         if (page_size_mask & (1 << PG_LEVEL_2M)) {
550                                 if (!after_bootmem)
551                                         pages++;
552                                 paddr_last = paddr_next;
553                                 continue;
554                         }
555                         new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
556                 }
557
558                 if (page_size_mask & (1<<PG_LEVEL_2M)) {
559                         pages++;
560                         spin_lock(&init_mm.page_table_lock);
561                         set_pte_init((pte_t *)pmd,
562                                      pfn_pte((paddr & PMD_MASK) >> PAGE_SHIFT,
563                                              __pgprot(pgprot_val(prot) | _PAGE_PSE)),
564                                      init);
565                         spin_unlock(&init_mm.page_table_lock);
566                         paddr_last = paddr_next;
567                         continue;
568                 }
569
570                 pte = alloc_low_page();
571                 paddr_last = phys_pte_init(pte, paddr, paddr_end, new_prot, init);
572
573                 spin_lock(&init_mm.page_table_lock);
574                 pmd_populate_kernel_init(&init_mm, pmd, pte, init);
575                 spin_unlock(&init_mm.page_table_lock);
576         }
577         update_page_count(PG_LEVEL_2M, pages);
578         return paddr_last;
579 }
580
581 /*
582  * Create PUD level page table mapping for physical addresses. The virtual
583  * and physical address do not have to be aligned at this level. KASLR can
584  * randomize virtual addresses up to this level.
585  * It returns the last physical address mapped.
586  */
587 static unsigned long __meminit
588 phys_pud_init(pud_t *pud_page, unsigned long paddr, unsigned long paddr_end,
589               unsigned long page_size_mask, pgprot_t _prot, bool init)
590 {
591         unsigned long pages = 0, paddr_next;
592         unsigned long paddr_last = paddr_end;
593         unsigned long vaddr = (unsigned long)__va(paddr);
594         int i = pud_index(vaddr);
595
596         for (; i < PTRS_PER_PUD; i++, paddr = paddr_next) {
597                 pud_t *pud;
598                 pmd_t *pmd;
599                 pgprot_t prot = _prot;
600
601                 vaddr = (unsigned long)__va(paddr);
602                 pud = pud_page + pud_index(vaddr);
603                 paddr_next = (paddr & PUD_MASK) + PUD_SIZE;
604
605                 if (paddr >= paddr_end) {
606                         if (!after_bootmem &&
607                             !e820__mapped_any(paddr & PUD_MASK, paddr_next,
608                                              E820_TYPE_RAM) &&
609                             !e820__mapped_any(paddr & PUD_MASK, paddr_next,
610                                              E820_TYPE_RESERVED_KERN))
611                                 set_pud_init(pud, __pud(0), init);
612                         continue;
613                 }
614
615                 if (!pud_none(*pud)) {
616                         if (!pud_large(*pud)) {
617                                 pmd = pmd_offset(pud, 0);
618                                 paddr_last = phys_pmd_init(pmd, paddr,
619                                                            paddr_end,
620                                                            page_size_mask,
621                                                            prot, init);
622                                 continue;
623                         }
624                         /*
625                          * If we are ok with PG_LEVEL_1G mapping, then we will
626                          * use the existing mapping.
627                          *
628                          * Otherwise, we will split the gbpage mapping but use
629                          * the same existing protection  bits except for large
630                          * page, so that we don't violate Intel's TLB
631                          * Application note (317080) which says, while changing
632                          * the page sizes, new and old translations should
633                          * not differ with respect to page frame and
634                          * attributes.
635                          */
636                         if (page_size_mask & (1 << PG_LEVEL_1G)) {
637                                 if (!after_bootmem)
638                                         pages++;
639                                 paddr_last = paddr_next;
640                                 continue;
641                         }
642                         prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
643                 }
644
645                 if (page_size_mask & (1<<PG_LEVEL_1G)) {
646                         pages++;
647                         spin_lock(&init_mm.page_table_lock);
648
649                         prot = __pgprot(pgprot_val(prot) | __PAGE_KERNEL_LARGE);
650
651                         set_pte_init((pte_t *)pud,
652                                      pfn_pte((paddr & PUD_MASK) >> PAGE_SHIFT,
653                                              prot),
654                                      init);
655                         spin_unlock(&init_mm.page_table_lock);
656                         paddr_last = paddr_next;
657                         continue;
658                 }
659
660                 pmd = alloc_low_page();
661                 paddr_last = phys_pmd_init(pmd, paddr, paddr_end,
662                                            page_size_mask, prot, init);
663
664                 spin_lock(&init_mm.page_table_lock);
665                 pud_populate_init(&init_mm, pud, pmd, init);
666                 spin_unlock(&init_mm.page_table_lock);
667         }
668
669         update_page_count(PG_LEVEL_1G, pages);
670
671         return paddr_last;
672 }
673
674 static unsigned long __meminit
675 phys_p4d_init(p4d_t *p4d_page, unsigned long paddr, unsigned long paddr_end,
676               unsigned long page_size_mask, pgprot_t prot, bool init)
677 {
678         unsigned long vaddr, vaddr_end, vaddr_next, paddr_next, paddr_last;
679
680         paddr_last = paddr_end;
681         vaddr = (unsigned long)__va(paddr);
682         vaddr_end = (unsigned long)__va(paddr_end);
683
684         if (!pgtable_l5_enabled())
685                 return phys_pud_init((pud_t *) p4d_page, paddr, paddr_end,
686                                      page_size_mask, prot, init);
687
688         for (; vaddr < vaddr_end; vaddr = vaddr_next) {
689                 p4d_t *p4d = p4d_page + p4d_index(vaddr);
690                 pud_t *pud;
691
692                 vaddr_next = (vaddr & P4D_MASK) + P4D_SIZE;
693                 paddr = __pa(vaddr);
694
695                 if (paddr >= paddr_end) {
696                         paddr_next = __pa(vaddr_next);
697                         if (!after_bootmem &&
698                             !e820__mapped_any(paddr & P4D_MASK, paddr_next,
699                                              E820_TYPE_RAM) &&
700                             !e820__mapped_any(paddr & P4D_MASK, paddr_next,
701                                              E820_TYPE_RESERVED_KERN))
702                                 set_p4d_init(p4d, __p4d(0), init);
703                         continue;
704                 }
705
706                 if (!p4d_none(*p4d)) {
707                         pud = pud_offset(p4d, 0);
708                         paddr_last = phys_pud_init(pud, paddr, __pa(vaddr_end),
709                                         page_size_mask, prot, init);
710                         continue;
711                 }
712
713                 pud = alloc_low_page();
714                 paddr_last = phys_pud_init(pud, paddr, __pa(vaddr_end),
715                                            page_size_mask, prot, init);
716
717                 spin_lock(&init_mm.page_table_lock);
718                 p4d_populate_init(&init_mm, p4d, pud, init);
719                 spin_unlock(&init_mm.page_table_lock);
720         }
721
722         return paddr_last;
723 }
724
725 static unsigned long __meminit
726 __kernel_physical_mapping_init(unsigned long paddr_start,
727                                unsigned long paddr_end,
728                                unsigned long page_size_mask,
729                                pgprot_t prot, bool init)
730 {
731         bool pgd_changed = false;
732         unsigned long vaddr, vaddr_start, vaddr_end, vaddr_next, paddr_last;
733
734         paddr_last = paddr_end;
735         vaddr = (unsigned long)__va(paddr_start);
736         vaddr_end = (unsigned long)__va(paddr_end);
737         vaddr_start = vaddr;
738
739         for (; vaddr < vaddr_end; vaddr = vaddr_next) {
740                 pgd_t *pgd = pgd_offset_k(vaddr);
741                 p4d_t *p4d;
742
743                 vaddr_next = (vaddr & PGDIR_MASK) + PGDIR_SIZE;
744
745                 if (pgd_val(*pgd)) {
746                         p4d = (p4d_t *)pgd_page_vaddr(*pgd);
747                         paddr_last = phys_p4d_init(p4d, __pa(vaddr),
748                                                    __pa(vaddr_end),
749                                                    page_size_mask,
750                                                    prot, init);
751                         continue;
752                 }
753
754                 p4d = alloc_low_page();
755                 paddr_last = phys_p4d_init(p4d, __pa(vaddr), __pa(vaddr_end),
756                                            page_size_mask, prot, init);
757
758                 spin_lock(&init_mm.page_table_lock);
759                 if (pgtable_l5_enabled())
760                         pgd_populate_init(&init_mm, pgd, p4d, init);
761                 else
762                         p4d_populate_init(&init_mm, p4d_offset(pgd, vaddr),
763                                           (pud_t *) p4d, init);
764
765                 spin_unlock(&init_mm.page_table_lock);
766                 pgd_changed = true;
767         }
768
769         if (pgd_changed)
770                 sync_global_pgds(vaddr_start, vaddr_end - 1);
771
772         return paddr_last;
773 }
774
775
776 /*
777  * Create page table mapping for the physical memory for specific physical
778  * addresses. Note that it can only be used to populate non-present entries.
779  * The virtual and physical addresses have to be aligned on PMD level
780  * down. It returns the last physical address mapped.
781  */
782 unsigned long __meminit
783 kernel_physical_mapping_init(unsigned long paddr_start,
784                              unsigned long paddr_end,
785                              unsigned long page_size_mask, pgprot_t prot)
786 {
787         return __kernel_physical_mapping_init(paddr_start, paddr_end,
788                                               page_size_mask, prot, true);
789 }
790
791 /*
792  * This function is similar to kernel_physical_mapping_init() above with the
793  * exception that it uses set_{pud,pmd}() instead of the set_{pud,pte}_safe()
794  * when updating the mapping. The caller is responsible to flush the TLBs after
795  * the function returns.
796  */
797 unsigned long __meminit
798 kernel_physical_mapping_change(unsigned long paddr_start,
799                                unsigned long paddr_end,
800                                unsigned long page_size_mask)
801 {
802         return __kernel_physical_mapping_init(paddr_start, paddr_end,
803                                               page_size_mask, PAGE_KERNEL,
804                                               false);
805 }
806
807 #ifndef CONFIG_NUMA
808 void __init initmem_init(void)
809 {
810         memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0);
811 }
812 #endif
813
814 void __init paging_init(void)
815 {
816         sparse_init();
817
818         /*
819          * clear the default setting with node 0
820          * note: don't use nodes_clear here, that is really clearing when
821          *       numa support is not compiled in, and later node_set_state
822          *       will not set it back.
823          */
824         node_clear_state(0, N_MEMORY);
825         node_clear_state(0, N_NORMAL_MEMORY);
826
827         zone_sizes_init();
828 }
829
830 #ifdef CONFIG_SPARSEMEM_VMEMMAP
831 #define PAGE_UNUSED 0xFD
832
833 /*
834  * The unused vmemmap range, which was not yet memset(PAGE_UNUSED), ranges
835  * from unused_pmd_start to next PMD_SIZE boundary.
836  */
837 static unsigned long unused_pmd_start __meminitdata;
838
839 static void __meminit vmemmap_flush_unused_pmd(void)
840 {
841         if (!unused_pmd_start)
842                 return;
843         /*
844          * Clears (unused_pmd_start, PMD_END]
845          */
846         memset((void *)unused_pmd_start, PAGE_UNUSED,
847                ALIGN(unused_pmd_start, PMD_SIZE) - unused_pmd_start);
848         unused_pmd_start = 0;
849 }
850
851 #ifdef CONFIG_MEMORY_HOTPLUG
852 /* Returns true if the PMD is completely unused and thus it can be freed */
853 static bool __meminit vmemmap_pmd_is_unused(unsigned long addr, unsigned long end)
854 {
855         unsigned long start = ALIGN_DOWN(addr, PMD_SIZE);
856
857         /*
858          * Flush the unused range cache to ensure that memchr_inv() will work
859          * for the whole range.
860          */
861         vmemmap_flush_unused_pmd();
862         memset((void *)addr, PAGE_UNUSED, end - addr);
863
864         return !memchr_inv((void *)start, PAGE_UNUSED, PMD_SIZE);
865 }
866 #endif
867
868 static void __meminit __vmemmap_use_sub_pmd(unsigned long start)
869 {
870         /*
871          * As we expect to add in the same granularity as we remove, it's
872          * sufficient to mark only some piece used to block the memmap page from
873          * getting removed when removing some other adjacent memmap (just in
874          * case the first memmap never gets initialized e.g., because the memory
875          * block never gets onlined).
876          */
877         memset((void *)start, 0, sizeof(struct page));
878 }
879
880 static void __meminit vmemmap_use_sub_pmd(unsigned long start, unsigned long end)
881 {
882         /*
883          * We only optimize if the new used range directly follows the
884          * previously unused range (esp., when populating consecutive sections).
885          */
886         if (unused_pmd_start == start) {
887                 if (likely(IS_ALIGNED(end, PMD_SIZE)))
888                         unused_pmd_start = 0;
889                 else
890                         unused_pmd_start = end;
891                 return;
892         }
893
894         /*
895          * If the range does not contiguously follows previous one, make sure
896          * to mark the unused range of the previous one so it can be removed.
897          */
898         vmemmap_flush_unused_pmd();
899         __vmemmap_use_sub_pmd(start);
900 }
901
902
903 static void __meminit vmemmap_use_new_sub_pmd(unsigned long start, unsigned long end)
904 {
905         vmemmap_flush_unused_pmd();
906
907         /*
908          * Could be our memmap page is filled with PAGE_UNUSED already from a
909          * previous remove. Make sure to reset it.
910          */
911         __vmemmap_use_sub_pmd(start);
912
913         /*
914          * Mark with PAGE_UNUSED the unused parts of the new memmap range
915          */
916         if (!IS_ALIGNED(start, PMD_SIZE))
917                 memset((void *)start, PAGE_UNUSED,
918                         start - ALIGN_DOWN(start, PMD_SIZE));
919
920         /*
921          * We want to avoid memset(PAGE_UNUSED) when populating the vmemmap of
922          * consecutive sections. Remember for the last added PMD where the
923          * unused range begins.
924          */
925         if (!IS_ALIGNED(end, PMD_SIZE))
926                 unused_pmd_start = end;
927 }
928 #endif
929
930 /*
931  * Memory hotplug specific functions
932  */
933 #ifdef CONFIG_MEMORY_HOTPLUG
934 /*
935  * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
936  * updating.
937  */
938 static void update_end_of_memory_vars(u64 start, u64 size)
939 {
940         unsigned long end_pfn = PFN_UP(start + size);
941
942         if (end_pfn > max_pfn) {
943                 max_pfn = end_pfn;
944                 max_low_pfn = end_pfn;
945                 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
946         }
947 }
948
949 int add_pages(int nid, unsigned long start_pfn, unsigned long nr_pages,
950               struct mhp_params *params)
951 {
952         int ret;
953
954         ret = __add_pages(nid, start_pfn, nr_pages, params);
955         WARN_ON_ONCE(ret);
956
957         /* update max_pfn, max_low_pfn and high_memory */
958         update_end_of_memory_vars(start_pfn << PAGE_SHIFT,
959                                   nr_pages << PAGE_SHIFT);
960
961         return ret;
962 }
963
964 int arch_add_memory(int nid, u64 start, u64 size,
965                     struct mhp_params *params)
966 {
967         unsigned long start_pfn = start >> PAGE_SHIFT;
968         unsigned long nr_pages = size >> PAGE_SHIFT;
969
970         init_memory_mapping(start, start + size, params->pgprot);
971
972         return add_pages(nid, start_pfn, nr_pages, params);
973 }
974
975 static void __meminit free_pagetable(struct page *page, int order)
976 {
977         unsigned long magic;
978         unsigned int nr_pages = 1 << order;
979
980         /* bootmem page has reserved flag */
981         if (PageReserved(page)) {
982                 __ClearPageReserved(page);
983
984                 magic = (unsigned long)page->freelist;
985                 if (magic == SECTION_INFO || magic == MIX_SECTION_INFO) {
986                         while (nr_pages--)
987                                 put_page_bootmem(page++);
988                 } else
989                         while (nr_pages--)
990                                 free_reserved_page(page++);
991         } else
992                 free_pages((unsigned long)page_address(page), order);
993 }
994
995 static void __meminit free_hugepage_table(struct page *page,
996                 struct vmem_altmap *altmap)
997 {
998         if (altmap)
999                 vmem_altmap_free(altmap, PMD_SIZE / PAGE_SIZE);
1000         else
1001                 free_pagetable(page, get_order(PMD_SIZE));
1002 }
1003
1004 static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd)
1005 {
1006         pte_t *pte;
1007         int i;
1008
1009         for (i = 0; i < PTRS_PER_PTE; i++) {
1010                 pte = pte_start + i;
1011                 if (!pte_none(*pte))
1012                         return;
1013         }
1014
1015         /* free a pte talbe */
1016         free_pagetable(pmd_page(*pmd), 0);
1017         spin_lock(&init_mm.page_table_lock);
1018         pmd_clear(pmd);
1019         spin_unlock(&init_mm.page_table_lock);
1020 }
1021
1022 static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud)
1023 {
1024         pmd_t *pmd;
1025         int i;
1026
1027         for (i = 0; i < PTRS_PER_PMD; i++) {
1028                 pmd = pmd_start + i;
1029                 if (!pmd_none(*pmd))
1030                         return;
1031         }
1032
1033         /* free a pmd talbe */
1034         free_pagetable(pud_page(*pud), 0);
1035         spin_lock(&init_mm.page_table_lock);
1036         pud_clear(pud);
1037         spin_unlock(&init_mm.page_table_lock);
1038 }
1039
1040 static void __meminit free_pud_table(pud_t *pud_start, p4d_t *p4d)
1041 {
1042         pud_t *pud;
1043         int i;
1044
1045         for (i = 0; i < PTRS_PER_PUD; i++) {
1046                 pud = pud_start + i;
1047                 if (!pud_none(*pud))
1048                         return;
1049         }
1050
1051         /* free a pud talbe */
1052         free_pagetable(p4d_page(*p4d), 0);
1053         spin_lock(&init_mm.page_table_lock);
1054         p4d_clear(p4d);
1055         spin_unlock(&init_mm.page_table_lock);
1056 }
1057
1058 static void __meminit
1059 remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end,
1060                  bool direct)
1061 {
1062         unsigned long next, pages = 0;
1063         pte_t *pte;
1064         phys_addr_t phys_addr;
1065
1066         pte = pte_start + pte_index(addr);
1067         for (; addr < end; addr = next, pte++) {
1068                 next = (addr + PAGE_SIZE) & PAGE_MASK;
1069                 if (next > end)
1070                         next = end;
1071
1072                 if (!pte_present(*pte))
1073                         continue;
1074
1075                 /*
1076                  * We mapped [0,1G) memory as identity mapping when
1077                  * initializing, in arch/x86/kernel/head_64.S. These
1078                  * pagetables cannot be removed.
1079                  */
1080                 phys_addr = pte_val(*pte) + (addr & PAGE_MASK);
1081                 if (phys_addr < (phys_addr_t)0x40000000)
1082                         return;
1083
1084                 if (!direct)
1085                         free_pagetable(pte_page(*pte), 0);
1086
1087                 spin_lock(&init_mm.page_table_lock);
1088                 pte_clear(&init_mm, addr, pte);
1089                 spin_unlock(&init_mm.page_table_lock);
1090
1091                 /* For non-direct mapping, pages means nothing. */
1092                 pages++;
1093         }
1094
1095         /* Call free_pte_table() in remove_pmd_table(). */
1096         flush_tlb_all();
1097         if (direct)
1098                 update_page_count(PG_LEVEL_4K, -pages);
1099 }
1100
1101 static void __meminit
1102 remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end,
1103                  bool direct, struct vmem_altmap *altmap)
1104 {
1105         unsigned long next, pages = 0;
1106         pte_t *pte_base;
1107         pmd_t *pmd;
1108
1109         pmd = pmd_start + pmd_index(addr);
1110         for (; addr < end; addr = next, pmd++) {
1111                 next = pmd_addr_end(addr, end);
1112
1113                 if (!pmd_present(*pmd))
1114                         continue;
1115
1116                 if (pmd_large(*pmd)) {
1117                         if (IS_ALIGNED(addr, PMD_SIZE) &&
1118                             IS_ALIGNED(next, PMD_SIZE)) {
1119                                 if (!direct)
1120                                         free_hugepage_table(pmd_page(*pmd),
1121                                                             altmap);
1122
1123                                 spin_lock(&init_mm.page_table_lock);
1124                                 pmd_clear(pmd);
1125                                 spin_unlock(&init_mm.page_table_lock);
1126                                 pages++;
1127                         }
1128 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1129                         else if (vmemmap_pmd_is_unused(addr, next)) {
1130                                         free_hugepage_table(pmd_page(*pmd),
1131                                                             altmap);
1132                                         spin_lock(&init_mm.page_table_lock);
1133                                         pmd_clear(pmd);
1134                                         spin_unlock(&init_mm.page_table_lock);
1135                         }
1136 #endif
1137                         continue;
1138                 }
1139
1140                 pte_base = (pte_t *)pmd_page_vaddr(*pmd);
1141                 remove_pte_table(pte_base, addr, next, direct);
1142                 free_pte_table(pte_base, pmd);
1143         }
1144
1145         /* Call free_pmd_table() in remove_pud_table(). */
1146         if (direct)
1147                 update_page_count(PG_LEVEL_2M, -pages);
1148 }
1149
1150 static void __meminit
1151 remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end,
1152                  struct vmem_altmap *altmap, bool direct)
1153 {
1154         unsigned long next, pages = 0;
1155         pmd_t *pmd_base;
1156         pud_t *pud;
1157
1158         pud = pud_start + pud_index(addr);
1159         for (; addr < end; addr = next, pud++) {
1160                 next = pud_addr_end(addr, end);
1161
1162                 if (!pud_present(*pud))
1163                         continue;
1164
1165                 if (pud_large(*pud) &&
1166                     IS_ALIGNED(addr, PUD_SIZE) &&
1167                     IS_ALIGNED(next, PUD_SIZE)) {
1168                         spin_lock(&init_mm.page_table_lock);
1169                         pud_clear(pud);
1170                         spin_unlock(&init_mm.page_table_lock);
1171                         pages++;
1172                         continue;
1173                 }
1174
1175                 pmd_base = pmd_offset(pud, 0);
1176                 remove_pmd_table(pmd_base, addr, next, direct, altmap);
1177                 free_pmd_table(pmd_base, pud);
1178         }
1179
1180         if (direct)
1181                 update_page_count(PG_LEVEL_1G, -pages);
1182 }
1183
1184 static void __meminit
1185 remove_p4d_table(p4d_t *p4d_start, unsigned long addr, unsigned long end,
1186                  struct vmem_altmap *altmap, bool direct)
1187 {
1188         unsigned long next, pages = 0;
1189         pud_t *pud_base;
1190         p4d_t *p4d;
1191
1192         p4d = p4d_start + p4d_index(addr);
1193         for (; addr < end; addr = next, p4d++) {
1194                 next = p4d_addr_end(addr, end);
1195
1196                 if (!p4d_present(*p4d))
1197                         continue;
1198
1199                 BUILD_BUG_ON(p4d_large(*p4d));
1200
1201                 pud_base = pud_offset(p4d, 0);
1202                 remove_pud_table(pud_base, addr, next, altmap, direct);
1203                 /*
1204                  * For 4-level page tables we do not want to free PUDs, but in the
1205                  * 5-level case we should free them. This code will have to change
1206                  * to adapt for boot-time switching between 4 and 5 level page tables.
1207                  */
1208                 if (pgtable_l5_enabled())
1209                         free_pud_table(pud_base, p4d);
1210         }
1211
1212         if (direct)
1213                 update_page_count(PG_LEVEL_512G, -pages);
1214 }
1215
1216 /* start and end are both virtual address. */
1217 static void __meminit
1218 remove_pagetable(unsigned long start, unsigned long end, bool direct,
1219                 struct vmem_altmap *altmap)
1220 {
1221         unsigned long next;
1222         unsigned long addr;
1223         pgd_t *pgd;
1224         p4d_t *p4d;
1225
1226         for (addr = start; addr < end; addr = next) {
1227                 next = pgd_addr_end(addr, end);
1228
1229                 pgd = pgd_offset_k(addr);
1230                 if (!pgd_present(*pgd))
1231                         continue;
1232
1233                 p4d = p4d_offset(pgd, 0);
1234                 remove_p4d_table(p4d, addr, next, altmap, direct);
1235         }
1236
1237         flush_tlb_all();
1238 }
1239
1240 void __ref vmemmap_free(unsigned long start, unsigned long end,
1241                 struct vmem_altmap *altmap)
1242 {
1243         VM_BUG_ON(!IS_ALIGNED(start, PAGE_SIZE));
1244         VM_BUG_ON(!IS_ALIGNED(end, PAGE_SIZE));
1245
1246         remove_pagetable(start, end, false, altmap);
1247 }
1248
1249 static void __meminit
1250 kernel_physical_mapping_remove(unsigned long start, unsigned long end)
1251 {
1252         start = (unsigned long)__va(start);
1253         end = (unsigned long)__va(end);
1254
1255         remove_pagetable(start, end, true, NULL);
1256 }
1257
1258 void __ref arch_remove_memory(u64 start, u64 size, struct vmem_altmap *altmap)
1259 {
1260         unsigned long start_pfn = start >> PAGE_SHIFT;
1261         unsigned long nr_pages = size >> PAGE_SHIFT;
1262
1263         __remove_pages(start_pfn, nr_pages, altmap);
1264         kernel_physical_mapping_remove(start, start + size);
1265 }
1266 #endif /* CONFIG_MEMORY_HOTPLUG */
1267
1268 static struct kcore_list kcore_vsyscall;
1269
1270 static void __init register_page_bootmem_info(void)
1271 {
1272 #if defined(CONFIG_NUMA) || defined(CONFIG_HUGETLB_PAGE_FREE_VMEMMAP)
1273         int i;
1274
1275         for_each_online_node(i)
1276                 register_page_bootmem_info_node(NODE_DATA(i));
1277 #endif
1278 }
1279
1280 /*
1281  * Pre-allocates page-table pages for the vmalloc area in the kernel page-table.
1282  * Only the level which needs to be synchronized between all page-tables is
1283  * allocated because the synchronization can be expensive.
1284  */
1285 static void __init preallocate_vmalloc_pages(void)
1286 {
1287         unsigned long addr;
1288         const char *lvl;
1289
1290         for (addr = VMALLOC_START; addr <= VMALLOC_END; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
1291                 pgd_t *pgd = pgd_offset_k(addr);
1292                 p4d_t *p4d;
1293                 pud_t *pud;
1294
1295                 lvl = "p4d";
1296                 p4d = p4d_alloc(&init_mm, pgd, addr);
1297                 if (!p4d)
1298                         goto failed;
1299
1300                 if (pgtable_l5_enabled())
1301                         continue;
1302
1303                 /*
1304                  * The goal here is to allocate all possibly required
1305                  * hardware page tables pointed to by the top hardware
1306                  * level.
1307                  *
1308                  * On 4-level systems, the P4D layer is folded away and
1309                  * the above code does no preallocation.  Below, go down
1310                  * to the pud _software_ level to ensure the second
1311                  * hardware level is allocated on 4-level systems too.
1312                  */
1313                 lvl = "pud";
1314                 pud = pud_alloc(&init_mm, p4d, addr);
1315                 if (!pud)
1316                         goto failed;
1317         }
1318
1319         return;
1320
1321 failed:
1322
1323         /*
1324          * The pages have to be there now or they will be missing in
1325          * process page-tables later.
1326          */
1327         panic("Failed to pre-allocate %s pages for vmalloc area\n", lvl);
1328 }
1329
1330 void __init mem_init(void)
1331 {
1332         pci_iommu_alloc();
1333
1334         /* clear_bss() already clear the empty_zero_page */
1335
1336         /* this will put all memory onto the freelists */
1337         memblock_free_all();
1338         after_bootmem = 1;
1339         x86_init.hyper.init_after_bootmem();
1340
1341         /*
1342          * Must be done after boot memory is put on freelist, because here we
1343          * might set fields in deferred struct pages that have not yet been
1344          * initialized, and memblock_free_all() initializes all the reserved
1345          * deferred pages for us.
1346          */
1347         register_page_bootmem_info();
1348
1349         /* Register memory areas for /proc/kcore */
1350         if (get_gate_vma(&init_mm))
1351                 kclist_add(&kcore_vsyscall, (void *)VSYSCALL_ADDR, PAGE_SIZE, KCORE_USER);
1352
1353         preallocate_vmalloc_pages();
1354 }
1355
1356 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1357 int __init deferred_page_init_max_threads(const struct cpumask *node_cpumask)
1358 {
1359         /*
1360          * More CPUs always led to greater speedups on tested systems, up to
1361          * all the nodes' CPUs.  Use all since the system is otherwise idle
1362          * now.
1363          */
1364         return max_t(int, cpumask_weight(node_cpumask), 1);
1365 }
1366 #endif
1367
1368 int kernel_set_to_readonly;
1369
1370 void mark_rodata_ro(void)
1371 {
1372         unsigned long start = PFN_ALIGN(_text);
1373         unsigned long rodata_start = PFN_ALIGN(__start_rodata);
1374         unsigned long end = (unsigned long)__end_rodata_hpage_align;
1375         unsigned long text_end = PFN_ALIGN(_etext);
1376         unsigned long rodata_end = PFN_ALIGN(__end_rodata);
1377         unsigned long all_end;
1378
1379         printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
1380                (end - start) >> 10);
1381         set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1382
1383         kernel_set_to_readonly = 1;
1384
1385         /*
1386          * The rodata/data/bss/brk section (but not the kernel text!)
1387          * should also be not-executable.
1388          *
1389          * We align all_end to PMD_SIZE because the existing mapping
1390          * is a full PMD. If we would align _brk_end to PAGE_SIZE we
1391          * split the PMD and the reminder between _brk_end and the end
1392          * of the PMD will remain mapped executable.
1393          *
1394          * Any PMD which was setup after the one which covers _brk_end
1395          * has been zapped already via cleanup_highmem().
1396          */
1397         all_end = roundup((unsigned long)_brk_end, PMD_SIZE);
1398         set_memory_nx(text_end, (all_end - text_end) >> PAGE_SHIFT);
1399
1400         set_ftrace_ops_ro();
1401
1402 #ifdef CONFIG_CPA_DEBUG
1403         printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
1404         set_memory_rw(start, (end-start) >> PAGE_SHIFT);
1405
1406         printk(KERN_INFO "Testing CPA: again\n");
1407         set_memory_ro(start, (end-start) >> PAGE_SHIFT);
1408 #endif
1409
1410         free_kernel_image_pages("unused kernel image (text/rodata gap)",
1411                                 (void *)text_end, (void *)rodata_start);
1412         free_kernel_image_pages("unused kernel image (rodata/data gap)",
1413                                 (void *)rodata_end, (void *)_sdata);
1414
1415         debug_checkwx();
1416 }
1417
1418 int kern_addr_valid(unsigned long addr)
1419 {
1420         unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
1421         pgd_t *pgd;
1422         p4d_t *p4d;
1423         pud_t *pud;
1424         pmd_t *pmd;
1425         pte_t *pte;
1426
1427         if (above != 0 && above != -1UL)
1428                 return 0;
1429
1430         pgd = pgd_offset_k(addr);
1431         if (pgd_none(*pgd))
1432                 return 0;
1433
1434         p4d = p4d_offset(pgd, addr);
1435         if (!p4d_present(*p4d))
1436                 return 0;
1437
1438         pud = pud_offset(p4d, addr);
1439         if (!pud_present(*pud))
1440                 return 0;
1441
1442         if (pud_large(*pud))
1443                 return pfn_valid(pud_pfn(*pud));
1444
1445         pmd = pmd_offset(pud, addr);
1446         if (!pmd_present(*pmd))
1447                 return 0;
1448
1449         if (pmd_large(*pmd))
1450                 return pfn_valid(pmd_pfn(*pmd));
1451
1452         pte = pte_offset_kernel(pmd, addr);
1453         if (pte_none(*pte))
1454                 return 0;
1455
1456         return pfn_valid(pte_pfn(*pte));
1457 }
1458
1459 /*
1460  * Block size is the minimum amount of memory which can be hotplugged or
1461  * hotremoved. It must be power of two and must be equal or larger than
1462  * MIN_MEMORY_BLOCK_SIZE.
1463  */
1464 #define MAX_BLOCK_SIZE (2UL << 30)
1465
1466 /* Amount of ram needed to start using large blocks */
1467 #define MEM_SIZE_FOR_LARGE_BLOCK (64UL << 30)
1468
1469 /* Adjustable memory block size */
1470 static unsigned long set_memory_block_size;
1471 int __init set_memory_block_size_order(unsigned int order)
1472 {
1473         unsigned long size = 1UL << order;
1474
1475         if (size > MEM_SIZE_FOR_LARGE_BLOCK || size < MIN_MEMORY_BLOCK_SIZE)
1476                 return -EINVAL;
1477
1478         set_memory_block_size = size;
1479         return 0;
1480 }
1481
1482 static unsigned long probe_memory_block_size(void)
1483 {
1484         unsigned long boot_mem_end = max_pfn << PAGE_SHIFT;
1485         unsigned long bz;
1486
1487         /* If memory block size has been set, then use it */
1488         bz = set_memory_block_size;
1489         if (bz)
1490                 goto done;
1491
1492         /* Use regular block if RAM is smaller than MEM_SIZE_FOR_LARGE_BLOCK */
1493         if (boot_mem_end < MEM_SIZE_FOR_LARGE_BLOCK) {
1494                 bz = MIN_MEMORY_BLOCK_SIZE;
1495                 goto done;
1496         }
1497
1498         /*
1499          * Use max block size to minimize overhead on bare metal, where
1500          * alignment for memory hotplug isn't a concern.
1501          */
1502         if (!boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
1503                 bz = MAX_BLOCK_SIZE;
1504                 goto done;
1505         }
1506
1507         /* Find the largest allowed block size that aligns to memory end */
1508         for (bz = MAX_BLOCK_SIZE; bz > MIN_MEMORY_BLOCK_SIZE; bz >>= 1) {
1509                 if (IS_ALIGNED(boot_mem_end, bz))
1510                         break;
1511         }
1512 done:
1513         pr_info("x86/mm: Memory block size: %ldMB\n", bz >> 20);
1514
1515         return bz;
1516 }
1517
1518 static unsigned long memory_block_size_probed;
1519 unsigned long memory_block_size_bytes(void)
1520 {
1521         if (!memory_block_size_probed)
1522                 memory_block_size_probed = probe_memory_block_size();
1523
1524         return memory_block_size_probed;
1525 }
1526
1527 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1528 /*
1529  * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
1530  */
1531 static long __meminitdata addr_start, addr_end;
1532 static void __meminitdata *p_start, *p_end;
1533 static int __meminitdata node_start;
1534
1535 static int __meminit vmemmap_populate_hugepages(unsigned long start,
1536                 unsigned long end, int node, struct vmem_altmap *altmap)
1537 {
1538         unsigned long addr;
1539         unsigned long next;
1540         pgd_t *pgd;
1541         p4d_t *p4d;
1542         pud_t *pud;
1543         pmd_t *pmd;
1544
1545         for (addr = start; addr < end; addr = next) {
1546                 next = pmd_addr_end(addr, end);
1547
1548                 pgd = vmemmap_pgd_populate(addr, node);
1549                 if (!pgd)
1550                         return -ENOMEM;
1551
1552                 p4d = vmemmap_p4d_populate(pgd, addr, node);
1553                 if (!p4d)
1554                         return -ENOMEM;
1555
1556                 pud = vmemmap_pud_populate(p4d, addr, node);
1557                 if (!pud)
1558                         return -ENOMEM;
1559
1560                 pmd = pmd_offset(pud, addr);
1561                 if (pmd_none(*pmd)) {
1562                         void *p;
1563
1564                         p = vmemmap_alloc_block_buf(PMD_SIZE, node, altmap);
1565                         if (p) {
1566                                 pte_t entry;
1567
1568                                 entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
1569                                                 PAGE_KERNEL_LARGE);
1570                                 set_pmd(pmd, __pmd(pte_val(entry)));
1571
1572                                 /* check to see if we have contiguous blocks */
1573                                 if (p_end != p || node_start != node) {
1574                                         if (p_start)
1575                                                 pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1576                                                        addr_start, addr_end-1, p_start, p_end-1, node_start);
1577                                         addr_start = addr;
1578                                         node_start = node;
1579                                         p_start = p;
1580                                 }
1581
1582                                 addr_end = addr + PMD_SIZE;
1583                                 p_end = p + PMD_SIZE;
1584
1585                                 if (!IS_ALIGNED(addr, PMD_SIZE) ||
1586                                     !IS_ALIGNED(next, PMD_SIZE))
1587                                         vmemmap_use_new_sub_pmd(addr, next);
1588
1589                                 continue;
1590                         } else if (altmap)
1591                                 return -ENOMEM; /* no fallback */
1592                 } else if (pmd_large(*pmd)) {
1593                         vmemmap_verify((pte_t *)pmd, node, addr, next);
1594                         vmemmap_use_sub_pmd(addr, next);
1595                         continue;
1596                 }
1597                 if (vmemmap_populate_basepages(addr, next, node, NULL))
1598                         return -ENOMEM;
1599         }
1600         return 0;
1601 }
1602
1603 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
1604                 struct vmem_altmap *altmap)
1605 {
1606         int err;
1607
1608         VM_BUG_ON(!IS_ALIGNED(start, PAGE_SIZE));
1609         VM_BUG_ON(!IS_ALIGNED(end, PAGE_SIZE));
1610
1611         if (end - start < PAGES_PER_SECTION * sizeof(struct page))
1612                 err = vmemmap_populate_basepages(start, end, node, NULL);
1613         else if (boot_cpu_has(X86_FEATURE_PSE))
1614                 err = vmemmap_populate_hugepages(start, end, node, altmap);
1615         else if (altmap) {
1616                 pr_err_once("%s: no cpu support for altmap allocations\n",
1617                                 __func__);
1618                 err = -ENOMEM;
1619         } else
1620                 err = vmemmap_populate_basepages(start, end, node, NULL);
1621         if (!err)
1622                 sync_global_pgds(start, end - 1);
1623         return err;
1624 }
1625
1626 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
1627 void register_page_bootmem_memmap(unsigned long section_nr,
1628                                   struct page *start_page, unsigned long nr_pages)
1629 {
1630         unsigned long addr = (unsigned long)start_page;
1631         unsigned long end = (unsigned long)(start_page + nr_pages);
1632         unsigned long next;
1633         pgd_t *pgd;
1634         p4d_t *p4d;
1635         pud_t *pud;
1636         pmd_t *pmd;
1637         unsigned int nr_pmd_pages;
1638         struct page *page;
1639
1640         for (; addr < end; addr = next) {
1641                 pte_t *pte = NULL;
1642
1643                 pgd = pgd_offset_k(addr);
1644                 if (pgd_none(*pgd)) {
1645                         next = (addr + PAGE_SIZE) & PAGE_MASK;
1646                         continue;
1647                 }
1648                 get_page_bootmem(section_nr, pgd_page(*pgd), MIX_SECTION_INFO);
1649
1650                 p4d = p4d_offset(pgd, addr);
1651                 if (p4d_none(*p4d)) {
1652                         next = (addr + PAGE_SIZE) & PAGE_MASK;
1653                         continue;
1654                 }
1655                 get_page_bootmem(section_nr, p4d_page(*p4d), MIX_SECTION_INFO);
1656
1657                 pud = pud_offset(p4d, addr);
1658                 if (pud_none(*pud)) {
1659                         next = (addr + PAGE_SIZE) & PAGE_MASK;
1660                         continue;
1661                 }
1662                 get_page_bootmem(section_nr, pud_page(*pud), MIX_SECTION_INFO);
1663
1664                 if (!boot_cpu_has(X86_FEATURE_PSE)) {
1665                         next = (addr + PAGE_SIZE) & PAGE_MASK;
1666                         pmd = pmd_offset(pud, addr);
1667                         if (pmd_none(*pmd))
1668                                 continue;
1669                         get_page_bootmem(section_nr, pmd_page(*pmd),
1670                                          MIX_SECTION_INFO);
1671
1672                         pte = pte_offset_kernel(pmd, addr);
1673                         if (pte_none(*pte))
1674                                 continue;
1675                         get_page_bootmem(section_nr, pte_page(*pte),
1676                                          SECTION_INFO);
1677                 } else {
1678                         next = pmd_addr_end(addr, end);
1679
1680                         pmd = pmd_offset(pud, addr);
1681                         if (pmd_none(*pmd))
1682                                 continue;
1683
1684                         nr_pmd_pages = 1 << get_order(PMD_SIZE);
1685                         page = pmd_page(*pmd);
1686                         while (nr_pmd_pages--)
1687                                 get_page_bootmem(section_nr, page++,
1688                                                  SECTION_INFO);
1689                 }
1690         }
1691 }
1692 #endif
1693
1694 void __meminit vmemmap_populate_print_last(void)
1695 {
1696         if (p_start) {
1697                 pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1698                         addr_start, addr_end-1, p_start, p_end-1, node_start);
1699                 p_start = NULL;
1700                 p_end = NULL;
1701                 node_start = 0;
1702         }
1703 }
1704 #endif