x86/mem-hotplug: support initialize page tables in bottom-up
[platform/adaptation/renesas_rcar/renesas_kernel.git] / arch / x86 / mm / init.c
1 #include <linux/gfp.h>
2 #include <linux/initrd.h>
3 #include <linux/ioport.h>
4 #include <linux/swap.h>
5 #include <linux/memblock.h>
6 #include <linux/bootmem.h>      /* for max_low_pfn */
7
8 #include <asm/cacheflush.h>
9 #include <asm/e820.h>
10 #include <asm/init.h>
11 #include <asm/page.h>
12 #include <asm/page_types.h>
13 #include <asm/sections.h>
14 #include <asm/setup.h>
15 #include <asm/tlbflush.h>
16 #include <asm/tlb.h>
17 #include <asm/proto.h>
18 #include <asm/dma.h>            /* for MAX_DMA_PFN */
19 #include <asm/microcode.h>
20
21 #include "mm_internal.h"
22
23 static unsigned long __initdata pgt_buf_start;
24 static unsigned long __initdata pgt_buf_end;
25 static unsigned long __initdata pgt_buf_top;
26
27 static unsigned long min_pfn_mapped;
28
29 static bool __initdata can_use_brk_pgt = true;
30
31 /*
32  * Pages returned are already directly mapped.
33  *
34  * Changing that is likely to break Xen, see commit:
35  *
36  *    279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
37  *
38  * for detailed information.
39  */
40 __ref void *alloc_low_pages(unsigned int num)
41 {
42         unsigned long pfn;
43         int i;
44
45         if (after_bootmem) {
46                 unsigned int order;
47
48                 order = get_order((unsigned long)num << PAGE_SHIFT);
49                 return (void *)__get_free_pages(GFP_ATOMIC | __GFP_NOTRACK |
50                                                 __GFP_ZERO, order);
51         }
52
53         if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
54                 unsigned long ret;
55                 if (min_pfn_mapped >= max_pfn_mapped)
56                         panic("alloc_low_page: ran out of memory");
57                 ret = memblock_find_in_range(min_pfn_mapped << PAGE_SHIFT,
58                                         max_pfn_mapped << PAGE_SHIFT,
59                                         PAGE_SIZE * num , PAGE_SIZE);
60                 if (!ret)
61                         panic("alloc_low_page: can not alloc memory");
62                 memblock_reserve(ret, PAGE_SIZE * num);
63                 pfn = ret >> PAGE_SHIFT;
64         } else {
65                 pfn = pgt_buf_end;
66                 pgt_buf_end += num;
67                 printk(KERN_DEBUG "BRK [%#010lx, %#010lx] PGTABLE\n",
68                         pfn << PAGE_SHIFT, (pgt_buf_end << PAGE_SHIFT) - 1);
69         }
70
71         for (i = 0; i < num; i++) {
72                 void *adr;
73
74                 adr = __va((pfn + i) << PAGE_SHIFT);
75                 clear_page(adr);
76         }
77
78         return __va(pfn << PAGE_SHIFT);
79 }
80
81 /* need 3 4k for initial PMD_SIZE,  3 4k for 0-ISA_END_ADDRESS */
82 #define INIT_PGT_BUF_SIZE       (6 * PAGE_SIZE)
83 RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
84 void  __init early_alloc_pgt_buf(void)
85 {
86         unsigned long tables = INIT_PGT_BUF_SIZE;
87         phys_addr_t base;
88
89         base = __pa(extend_brk(tables, PAGE_SIZE));
90
91         pgt_buf_start = base >> PAGE_SHIFT;
92         pgt_buf_end = pgt_buf_start;
93         pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
94 }
95
96 int after_bootmem;
97
98 int direct_gbpages
99 #ifdef CONFIG_DIRECT_GBPAGES
100                                 = 1
101 #endif
102 ;
103
104 static void __init init_gbpages(void)
105 {
106 #ifdef CONFIG_X86_64
107         if (direct_gbpages && cpu_has_gbpages)
108                 printk(KERN_INFO "Using GB pages for direct mapping\n");
109         else
110                 direct_gbpages = 0;
111 #endif
112 }
113
114 struct map_range {
115         unsigned long start;
116         unsigned long end;
117         unsigned page_size_mask;
118 };
119
120 static int page_size_mask;
121
122 static void __init probe_page_size_mask(void)
123 {
124         init_gbpages();
125
126 #if !defined(CONFIG_DEBUG_PAGEALLOC) && !defined(CONFIG_KMEMCHECK)
127         /*
128          * For CONFIG_DEBUG_PAGEALLOC, identity mapping will use small pages.
129          * This will simplify cpa(), which otherwise needs to support splitting
130          * large pages into small in interrupt context, etc.
131          */
132         if (direct_gbpages)
133                 page_size_mask |= 1 << PG_LEVEL_1G;
134         if (cpu_has_pse)
135                 page_size_mask |= 1 << PG_LEVEL_2M;
136 #endif
137
138         /* Enable PSE if available */
139         if (cpu_has_pse)
140                 set_in_cr4(X86_CR4_PSE);
141
142         /* Enable PGE if available */
143         if (cpu_has_pge) {
144                 set_in_cr4(X86_CR4_PGE);
145                 __supported_pte_mask |= _PAGE_GLOBAL;
146         }
147 }
148
149 #ifdef CONFIG_X86_32
150 #define NR_RANGE_MR 3
151 #else /* CONFIG_X86_64 */
152 #define NR_RANGE_MR 5
153 #endif
154
155 static int __meminit save_mr(struct map_range *mr, int nr_range,
156                              unsigned long start_pfn, unsigned long end_pfn,
157                              unsigned long page_size_mask)
158 {
159         if (start_pfn < end_pfn) {
160                 if (nr_range >= NR_RANGE_MR)
161                         panic("run out of range for init_memory_mapping\n");
162                 mr[nr_range].start = start_pfn<<PAGE_SHIFT;
163                 mr[nr_range].end   = end_pfn<<PAGE_SHIFT;
164                 mr[nr_range].page_size_mask = page_size_mask;
165                 nr_range++;
166         }
167
168         return nr_range;
169 }
170
171 /*
172  * adjust the page_size_mask for small range to go with
173  *      big page size instead small one if nearby are ram too.
174  */
175 static void __init_refok adjust_range_page_size_mask(struct map_range *mr,
176                                                          int nr_range)
177 {
178         int i;
179
180         for (i = 0; i < nr_range; i++) {
181                 if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
182                     !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
183                         unsigned long start = round_down(mr[i].start, PMD_SIZE);
184                         unsigned long end = round_up(mr[i].end, PMD_SIZE);
185
186 #ifdef CONFIG_X86_32
187                         if ((end >> PAGE_SHIFT) > max_low_pfn)
188                                 continue;
189 #endif
190
191                         if (memblock_is_region_memory(start, end - start))
192                                 mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
193                 }
194                 if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
195                     !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
196                         unsigned long start = round_down(mr[i].start, PUD_SIZE);
197                         unsigned long end = round_up(mr[i].end, PUD_SIZE);
198
199                         if (memblock_is_region_memory(start, end - start))
200                                 mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
201                 }
202         }
203 }
204
205 static int __meminit split_mem_range(struct map_range *mr, int nr_range,
206                                      unsigned long start,
207                                      unsigned long end)
208 {
209         unsigned long start_pfn, end_pfn, limit_pfn;
210         unsigned long pfn;
211         int i;
212
213         limit_pfn = PFN_DOWN(end);
214
215         /* head if not big page alignment ? */
216         pfn = start_pfn = PFN_DOWN(start);
217 #ifdef CONFIG_X86_32
218         /*
219          * Don't use a large page for the first 2/4MB of memory
220          * because there are often fixed size MTRRs in there
221          * and overlapping MTRRs into large pages can cause
222          * slowdowns.
223          */
224         if (pfn == 0)
225                 end_pfn = PFN_DOWN(PMD_SIZE);
226         else
227                 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
228 #else /* CONFIG_X86_64 */
229         end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
230 #endif
231         if (end_pfn > limit_pfn)
232                 end_pfn = limit_pfn;
233         if (start_pfn < end_pfn) {
234                 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
235                 pfn = end_pfn;
236         }
237
238         /* big page (2M) range */
239         start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
240 #ifdef CONFIG_X86_32
241         end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
242 #else /* CONFIG_X86_64 */
243         end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
244         if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
245                 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
246 #endif
247
248         if (start_pfn < end_pfn) {
249                 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
250                                 page_size_mask & (1<<PG_LEVEL_2M));
251                 pfn = end_pfn;
252         }
253
254 #ifdef CONFIG_X86_64
255         /* big page (1G) range */
256         start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
257         end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
258         if (start_pfn < end_pfn) {
259                 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
260                                 page_size_mask &
261                                  ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
262                 pfn = end_pfn;
263         }
264
265         /* tail is not big page (1G) alignment */
266         start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
267         end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
268         if (start_pfn < end_pfn) {
269                 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
270                                 page_size_mask & (1<<PG_LEVEL_2M));
271                 pfn = end_pfn;
272         }
273 #endif
274
275         /* tail is not big page (2M) alignment */
276         start_pfn = pfn;
277         end_pfn = limit_pfn;
278         nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
279
280         if (!after_bootmem)
281                 adjust_range_page_size_mask(mr, nr_range);
282
283         /* try to merge same page size and continuous */
284         for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
285                 unsigned long old_start;
286                 if (mr[i].end != mr[i+1].start ||
287                     mr[i].page_size_mask != mr[i+1].page_size_mask)
288                         continue;
289                 /* move it */
290                 old_start = mr[i].start;
291                 memmove(&mr[i], &mr[i+1],
292                         (nr_range - 1 - i) * sizeof(struct map_range));
293                 mr[i--].start = old_start;
294                 nr_range--;
295         }
296
297         for (i = 0; i < nr_range; i++)
298                 printk(KERN_DEBUG " [mem %#010lx-%#010lx] page %s\n",
299                                 mr[i].start, mr[i].end - 1,
300                         (mr[i].page_size_mask & (1<<PG_LEVEL_1G))?"1G":(
301                          (mr[i].page_size_mask & (1<<PG_LEVEL_2M))?"2M":"4k"));
302
303         return nr_range;
304 }
305
306 struct range pfn_mapped[E820_X_MAX];
307 int nr_pfn_mapped;
308
309 static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
310 {
311         nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_X_MAX,
312                                              nr_pfn_mapped, start_pfn, end_pfn);
313         nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_X_MAX);
314
315         max_pfn_mapped = max(max_pfn_mapped, end_pfn);
316
317         if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
318                 max_low_pfn_mapped = max(max_low_pfn_mapped,
319                                          min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
320 }
321
322 bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
323 {
324         int i;
325
326         for (i = 0; i < nr_pfn_mapped; i++)
327                 if ((start_pfn >= pfn_mapped[i].start) &&
328                     (end_pfn <= pfn_mapped[i].end))
329                         return true;
330
331         return false;
332 }
333
334 /*
335  * Setup the direct mapping of the physical memory at PAGE_OFFSET.
336  * This runs before bootmem is initialized and gets pages directly from
337  * the physical memory. To access them they are temporarily mapped.
338  */
339 unsigned long __init_refok init_memory_mapping(unsigned long start,
340                                                unsigned long end)
341 {
342         struct map_range mr[NR_RANGE_MR];
343         unsigned long ret = 0;
344         int nr_range, i;
345
346         pr_info("init_memory_mapping: [mem %#010lx-%#010lx]\n",
347                start, end - 1);
348
349         memset(mr, 0, sizeof(mr));
350         nr_range = split_mem_range(mr, 0, start, end);
351
352         for (i = 0; i < nr_range; i++)
353                 ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
354                                                    mr[i].page_size_mask);
355
356         add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
357
358         return ret >> PAGE_SHIFT;
359 }
360
361 /*
362  * We need to iterate through the E820 memory map and create direct mappings
363  * for only E820_RAM and E820_KERN_RESERVED regions. We cannot simply
364  * create direct mappings for all pfns from [0 to max_low_pfn) and
365  * [4GB to max_pfn) because of possible memory holes in high addresses
366  * that cannot be marked as UC by fixed/variable range MTRRs.
367  * Depending on the alignment of E820 ranges, this may possibly result
368  * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
369  *
370  * init_mem_mapping() calls init_range_memory_mapping() with big range.
371  * That range would have hole in the middle or ends, and only ram parts
372  * will be mapped in init_range_memory_mapping().
373  */
374 static unsigned long __init init_range_memory_mapping(
375                                            unsigned long r_start,
376                                            unsigned long r_end)
377 {
378         unsigned long start_pfn, end_pfn;
379         unsigned long mapped_ram_size = 0;
380         int i;
381
382         for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
383                 u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
384                 u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
385                 if (start >= end)
386                         continue;
387
388                 /*
389                  * if it is overlapping with brk pgt, we need to
390                  * alloc pgt buf from memblock instead.
391                  */
392                 can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
393                                     min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
394                 init_memory_mapping(start, end);
395                 mapped_ram_size += end - start;
396                 can_use_brk_pgt = true;
397         }
398
399         return mapped_ram_size;
400 }
401
402 static unsigned long __init get_new_step_size(unsigned long step_size)
403 {
404         /*
405          * Explain why we shift by 5 and why we don't have to worry about
406          * 'step_size << 5' overflowing:
407          *
408          * initial mapped size is PMD_SIZE (2M).
409          * We can not set step_size to be PUD_SIZE (1G) yet.
410          * In worse case, when we cross the 1G boundary, and
411          * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
412          * to map 1G range with PTE. Use 5 as shift for now.
413          *
414          * Don't need to worry about overflow, on 32bit, when step_size
415          * is 0, round_down() returns 0 for start, and that turns it
416          * into 0x100000000ULL.
417          */
418         return step_size << 5;
419 }
420
421 /**
422  * memory_map_top_down - Map [map_start, map_end) top down
423  * @map_start: start address of the target memory range
424  * @map_end: end address of the target memory range
425  *
426  * This function will setup direct mapping for memory range
427  * [map_start, map_end) in top-down. That said, the page tables
428  * will be allocated at the end of the memory, and we map the
429  * memory in top-down.
430  */
431 static void __init memory_map_top_down(unsigned long map_start,
432                                        unsigned long map_end)
433 {
434         unsigned long real_end, start, last_start;
435         unsigned long step_size;
436         unsigned long addr;
437         unsigned long mapped_ram_size = 0;
438         unsigned long new_mapped_ram_size;
439
440         /* xen has big range in reserved near end of ram, skip it at first.*/
441         addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
442         real_end = addr + PMD_SIZE;
443
444         /* step_size need to be small so pgt_buf from BRK could cover it */
445         step_size = PMD_SIZE;
446         max_pfn_mapped = 0; /* will get exact value next */
447         min_pfn_mapped = real_end >> PAGE_SHIFT;
448         last_start = start = real_end;
449
450         /*
451          * We start from the top (end of memory) and go to the bottom.
452          * The memblock_find_in_range() gets us a block of RAM from the
453          * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
454          * for page table.
455          */
456         while (last_start > map_start) {
457                 if (last_start > step_size) {
458                         start = round_down(last_start - 1, step_size);
459                         if (start < map_start)
460                                 start = map_start;
461                 } else
462                         start = map_start;
463                 new_mapped_ram_size = init_range_memory_mapping(start,
464                                                         last_start);
465                 last_start = start;
466                 min_pfn_mapped = last_start >> PAGE_SHIFT;
467                 /* only increase step_size after big range get mapped */
468                 if (new_mapped_ram_size > mapped_ram_size)
469                         step_size = get_new_step_size(step_size);
470                 mapped_ram_size += new_mapped_ram_size;
471         }
472
473         if (real_end < map_end)
474                 init_range_memory_mapping(real_end, map_end);
475 }
476
477 /**
478  * memory_map_bottom_up - Map [map_start, map_end) bottom up
479  * @map_start: start address of the target memory range
480  * @map_end: end address of the target memory range
481  *
482  * This function will setup direct mapping for memory range
483  * [map_start, map_end) in bottom-up. Since we have limited the
484  * bottom-up allocation above the kernel, the page tables will
485  * be allocated just above the kernel and we map the memory
486  * in [map_start, map_end) in bottom-up.
487  */
488 static void __init memory_map_bottom_up(unsigned long map_start,
489                                         unsigned long map_end)
490 {
491         unsigned long next, new_mapped_ram_size, start;
492         unsigned long mapped_ram_size = 0;
493         /* step_size need to be small so pgt_buf from BRK could cover it */
494         unsigned long step_size = PMD_SIZE;
495
496         start = map_start;
497         min_pfn_mapped = start >> PAGE_SHIFT;
498
499         /*
500          * We start from the bottom (@map_start) and go to the top (@map_end).
501          * The memblock_find_in_range() gets us a block of RAM from the
502          * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
503          * for page table.
504          */
505         while (start < map_end) {
506                 if (map_end - start > step_size) {
507                         next = round_up(start + 1, step_size);
508                         if (next > map_end)
509                                 next = map_end;
510                 } else
511                         next = map_end;
512
513                 new_mapped_ram_size = init_range_memory_mapping(start, next);
514                 start = next;
515
516                 if (new_mapped_ram_size > mapped_ram_size)
517                         step_size = get_new_step_size(step_size);
518                 mapped_ram_size += new_mapped_ram_size;
519         }
520 }
521
522 void __init init_mem_mapping(void)
523 {
524         unsigned long end;
525
526         probe_page_size_mask();
527
528 #ifdef CONFIG_X86_64
529         end = max_pfn << PAGE_SHIFT;
530 #else
531         end = max_low_pfn << PAGE_SHIFT;
532 #endif
533
534         /* the ISA range is always mapped regardless of memory holes */
535         init_memory_mapping(0, ISA_END_ADDRESS);
536
537         /*
538          * If the allocation is in bottom-up direction, we setup direct mapping
539          * in bottom-up, otherwise we setup direct mapping in top-down.
540          */
541         if (memblock_bottom_up()) {
542                 unsigned long kernel_end = __pa_symbol(_end);
543
544                 /*
545                  * we need two separate calls here. This is because we want to
546                  * allocate page tables above the kernel. So we first map
547                  * [kernel_end, end) to make memory above the kernel be mapped
548                  * as soon as possible. And then use page tables allocated above
549                  * the kernel to map [ISA_END_ADDRESS, kernel_end).
550                  */
551                 memory_map_bottom_up(kernel_end, end);
552                 memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
553         } else {
554                 memory_map_top_down(ISA_END_ADDRESS, end);
555         }
556
557 #ifdef CONFIG_X86_64
558         if (max_pfn > max_low_pfn) {
559                 /* can we preseve max_low_pfn ?*/
560                 max_low_pfn = max_pfn;
561         }
562 #else
563         early_ioremap_page_table_range_init();
564 #endif
565
566         load_cr3(swapper_pg_dir);
567         __flush_tlb_all();
568
569         early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
570 }
571
572 /*
573  * devmem_is_allowed() checks to see if /dev/mem access to a certain address
574  * is valid. The argument is a physical page number.
575  *
576  *
577  * On x86, access has to be given to the first megabyte of ram because that area
578  * contains bios code and data regions used by X and dosemu and similar apps.
579  * Access has to be given to non-kernel-ram areas as well, these contain the PCI
580  * mmio resources as well as potential bios/acpi data regions.
581  */
582 int devmem_is_allowed(unsigned long pagenr)
583 {
584         if (pagenr < 256)
585                 return 1;
586         if (iomem_is_exclusive(pagenr << PAGE_SHIFT))
587                 return 0;
588         if (!page_is_ram(pagenr))
589                 return 1;
590         return 0;
591 }
592
593 void free_init_pages(char *what, unsigned long begin, unsigned long end)
594 {
595         unsigned long begin_aligned, end_aligned;
596
597         /* Make sure boundaries are page aligned */
598         begin_aligned = PAGE_ALIGN(begin);
599         end_aligned   = end & PAGE_MASK;
600
601         if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
602                 begin = begin_aligned;
603                 end   = end_aligned;
604         }
605
606         if (begin >= end)
607                 return;
608
609         /*
610          * If debugging page accesses then do not free this memory but
611          * mark them not present - any buggy init-section access will
612          * create a kernel page fault:
613          */
614 #ifdef CONFIG_DEBUG_PAGEALLOC
615         printk(KERN_INFO "debug: unmapping init [mem %#010lx-%#010lx]\n",
616                 begin, end - 1);
617         set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
618 #else
619         /*
620          * We just marked the kernel text read only above, now that
621          * we are going to free part of that, we need to make that
622          * writeable and non-executable first.
623          */
624         set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
625         set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
626
627         free_reserved_area((void *)begin, (void *)end, POISON_FREE_INITMEM, what);
628 #endif
629 }
630
631 void free_initmem(void)
632 {
633         free_init_pages("unused kernel",
634                         (unsigned long)(&__init_begin),
635                         (unsigned long)(&__init_end));
636 }
637
638 #ifdef CONFIG_BLK_DEV_INITRD
639 void __init free_initrd_mem(unsigned long start, unsigned long end)
640 {
641 #ifdef CONFIG_MICROCODE_EARLY
642         /*
643          * Remember, initrd memory may contain microcode or other useful things.
644          * Before we lose initrd mem, we need to find a place to hold them
645          * now that normal virtual memory is enabled.
646          */
647         save_microcode_in_initrd();
648 #endif
649
650         /*
651          * end could be not aligned, and We can not align that,
652          * decompresser could be confused by aligned initrd_end
653          * We already reserve the end partial page before in
654          *   - i386_start_kernel()
655          *   - x86_64_start_kernel()
656          *   - relocate_initrd()
657          * So here We can do PAGE_ALIGN() safely to get partial page to be freed
658          */
659         free_init_pages("initrd", start, PAGE_ALIGN(end));
660 }
661 #endif
662
663 void __init zone_sizes_init(void)
664 {
665         unsigned long max_zone_pfns[MAX_NR_ZONES];
666
667         memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
668
669 #ifdef CONFIG_ZONE_DMA
670         max_zone_pfns[ZONE_DMA]         = MAX_DMA_PFN;
671 #endif
672 #ifdef CONFIG_ZONE_DMA32
673         max_zone_pfns[ZONE_DMA32]       = MAX_DMA32_PFN;
674 #endif
675         max_zone_pfns[ZONE_NORMAL]      = max_low_pfn;
676 #ifdef CONFIG_HIGHMEM
677         max_zone_pfns[ZONE_HIGHMEM]     = max_pfn;
678 #endif
679
680         free_area_init_nodes(max_zone_pfns);
681 }
682