2 #include <linux/initrd.h>
3 #include <linux/ioport.h>
4 #include <linux/swap.h>
5 #include <linux/memblock.h>
6 #include <linux/swapfile.h>
7 #include <linux/swapops.h>
8 #include <linux/kmemleak.h>
9 #include <linux/sched/task.h>
11 #include <asm/set_memory.h>
12 #include <asm/cpu_device_id.h>
13 #include <asm/e820/api.h>
16 #include <asm/page_types.h>
17 #include <asm/sections.h>
18 #include <asm/setup.h>
19 #include <asm/tlbflush.h>
21 #include <asm/proto.h>
22 #include <asm/dma.h> /* for MAX_DMA_PFN */
23 #include <asm/microcode.h>
24 #include <asm/kaslr.h>
25 #include <asm/hypervisor.h>
26 #include <asm/cpufeature.h>
28 #include <asm/text-patching.h>
29 #include <asm/memtype.h>
30 #include <asm/paravirt.h>
33 * We need to define the tracepoints somewhere, and tlb.c
34 * is only compiled when SMP=y.
36 #include <trace/events/tlb.h>
38 #include "mm_internal.h"
41 * Tables translating between page_cache_type_t and pte encoding.
43 * The default values are defined statically as minimal supported mode;
44 * WC and WT fall back to UC-. pat_init() updates these values to support
45 * more cache modes, WC and WT, when it is safe to do so. See pat_init()
46 * for the details. Note, __early_ioremap() used during early boot-time
47 * takes pgprot_t (pte encoding) and does not use these tables.
49 * Index into __cachemode2pte_tbl[] is the cachemode.
51 * Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
52 * (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
54 static uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
55 [_PAGE_CACHE_MODE_WB ] = 0 | 0 ,
56 [_PAGE_CACHE_MODE_WC ] = 0 | _PAGE_PCD,
57 [_PAGE_CACHE_MODE_UC_MINUS] = 0 | _PAGE_PCD,
58 [_PAGE_CACHE_MODE_UC ] = _PAGE_PWT | _PAGE_PCD,
59 [_PAGE_CACHE_MODE_WT ] = 0 | _PAGE_PCD,
60 [_PAGE_CACHE_MODE_WP ] = 0 | _PAGE_PCD,
63 unsigned long cachemode2protval(enum page_cache_mode pcm)
67 return __cachemode2pte_tbl[pcm];
69 EXPORT_SYMBOL(cachemode2protval);
71 static uint8_t __pte2cachemode_tbl[8] = {
72 [__pte2cm_idx( 0 | 0 | 0 )] = _PAGE_CACHE_MODE_WB,
73 [__pte2cm_idx(_PAGE_PWT | 0 | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
74 [__pte2cm_idx( 0 | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
75 [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC,
76 [__pte2cm_idx( 0 | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
77 [__pte2cm_idx(_PAGE_PWT | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
78 [__pte2cm_idx(0 | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
79 [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
83 * Check that the write-protect PAT entry is set for write-protect.
84 * To do this without making assumptions how PAT has been set up (Xen has
85 * another layout than the kernel), translate the _PAGE_CACHE_MODE_WP cache
86 * mode via the __cachemode2pte_tbl[] into protection bits (those protection
87 * bits will select a cache mode of WP or better), and then translate the
88 * protection bits back into the cache mode using __pte2cm_idx() and the
89 * __pte2cachemode_tbl[] array. This will return the really used cache mode.
91 bool x86_has_pat_wp(void)
93 uint16_t prot = __cachemode2pte_tbl[_PAGE_CACHE_MODE_WP];
95 return __pte2cachemode_tbl[__pte2cm_idx(prot)] == _PAGE_CACHE_MODE_WP;
98 enum page_cache_mode pgprot2cachemode(pgprot_t pgprot)
100 unsigned long masked;
102 masked = pgprot_val(pgprot) & _PAGE_CACHE_MASK;
103 if (likely(masked == 0))
105 return __pte2cachemode_tbl[__pte2cm_idx(masked)];
108 static unsigned long __initdata pgt_buf_start;
109 static unsigned long __initdata pgt_buf_end;
110 static unsigned long __initdata pgt_buf_top;
112 static unsigned long min_pfn_mapped;
114 static bool __initdata can_use_brk_pgt = true;
117 * Pages returned are already directly mapped.
119 * Changing that is likely to break Xen, see commit:
121 * 279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
123 * for detailed information.
125 __ref void *alloc_low_pages(unsigned int num)
133 order = get_order((unsigned long)num << PAGE_SHIFT);
134 return (void *)__get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
137 if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
138 unsigned long ret = 0;
140 if (min_pfn_mapped < max_pfn_mapped) {
141 ret = memblock_phys_alloc_range(
142 PAGE_SIZE * num, PAGE_SIZE,
143 min_pfn_mapped << PAGE_SHIFT,
144 max_pfn_mapped << PAGE_SHIFT);
146 if (!ret && can_use_brk_pgt)
147 ret = __pa(extend_brk(PAGE_SIZE * num, PAGE_SIZE));
150 panic("alloc_low_pages: can not alloc memory");
152 pfn = ret >> PAGE_SHIFT;
158 for (i = 0; i < num; i++) {
161 adr = __va((pfn + i) << PAGE_SHIFT);
165 return __va(pfn << PAGE_SHIFT);
169 * By default need to be able to allocate page tables below PGD firstly for
170 * the 0-ISA_END_ADDRESS range and secondly for the initial PMD_SIZE mapping.
171 * With KASLR memory randomization, depending on the machine e820 memory and the
172 * PUD alignment, twice that many pages may be needed when KASLR memory
173 * randomization is enabled.
176 #ifndef CONFIG_X86_5LEVEL
177 #define INIT_PGD_PAGE_TABLES 3
179 #define INIT_PGD_PAGE_TABLES 4
182 #ifndef CONFIG_RANDOMIZE_MEMORY
183 #define INIT_PGD_PAGE_COUNT (2 * INIT_PGD_PAGE_TABLES)
185 #define INIT_PGD_PAGE_COUNT (4 * INIT_PGD_PAGE_TABLES)
188 #define INIT_PGT_BUF_SIZE (INIT_PGD_PAGE_COUNT * PAGE_SIZE)
189 RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
190 void __init early_alloc_pgt_buf(void)
192 unsigned long tables = INIT_PGT_BUF_SIZE;
195 base = __pa(extend_brk(tables, PAGE_SIZE));
197 pgt_buf_start = base >> PAGE_SHIFT;
198 pgt_buf_end = pgt_buf_start;
199 pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
204 early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
209 unsigned page_size_mask;
212 static int page_size_mask;
215 * Save some of cr4 feature set we're using (e.g. Pentium 4MB
216 * enable and PPro Global page enable), so that any CPU's that boot
217 * up after us can get the correct flags. Invoked on the boot CPU.
219 static inline void cr4_set_bits_and_update_boot(unsigned long mask)
221 mmu_cr4_features |= mask;
222 if (trampoline_cr4_features)
223 *trampoline_cr4_features = mmu_cr4_features;
227 static void __init probe_page_size_mask(void)
230 * For pagealloc debugging, identity mapping will use small pages.
231 * This will simplify cpa(), which otherwise needs to support splitting
232 * large pages into small in interrupt context, etc.
234 if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled())
235 page_size_mask |= 1 << PG_LEVEL_2M;
239 /* Enable PSE if available */
240 if (boot_cpu_has(X86_FEATURE_PSE))
241 cr4_set_bits_and_update_boot(X86_CR4_PSE);
243 /* Enable PGE if available */
244 __supported_pte_mask &= ~_PAGE_GLOBAL;
245 if (boot_cpu_has(X86_FEATURE_PGE)) {
246 cr4_set_bits_and_update_boot(X86_CR4_PGE);
247 __supported_pte_mask |= _PAGE_GLOBAL;
250 /* By the default is everything supported: */
251 __default_kernel_pte_mask = __supported_pte_mask;
252 /* Except when with PTI where the kernel is mostly non-Global: */
253 if (cpu_feature_enabled(X86_FEATURE_PTI))
254 __default_kernel_pte_mask &= ~_PAGE_GLOBAL;
256 /* Enable 1 GB linear kernel mappings if available: */
257 if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) {
258 printk(KERN_INFO "Using GB pages for direct mapping\n");
259 page_size_mask |= 1 << PG_LEVEL_1G;
265 #define INTEL_MATCH(_model) { .vendor = X86_VENDOR_INTEL, \
270 * INVLPG may not properly flush Global entries
271 * on these CPUs when PCIDs are enabled.
273 static const struct x86_cpu_id invlpg_miss_ids[] = {
274 INTEL_MATCH(INTEL_FAM6_ALDERLAKE ),
275 INTEL_MATCH(INTEL_FAM6_ALDERLAKE_L ),
276 INTEL_MATCH(INTEL_FAM6_ALDERLAKE_N ),
277 INTEL_MATCH(INTEL_FAM6_RAPTORLAKE ),
278 INTEL_MATCH(INTEL_FAM6_RAPTORLAKE_P),
279 INTEL_MATCH(INTEL_FAM6_RAPTORLAKE_S),
283 static void setup_pcid(void)
285 if (!IS_ENABLED(CONFIG_X86_64))
288 if (!boot_cpu_has(X86_FEATURE_PCID))
291 if (x86_match_cpu(invlpg_miss_ids)) {
292 pr_info("Incomplete global flushes, disabling PCID");
293 setup_clear_cpu_cap(X86_FEATURE_PCID);
297 if (boot_cpu_has(X86_FEATURE_PGE)) {
299 * This can't be cr4_set_bits_and_update_boot() -- the
300 * trampoline code can't handle CR4.PCIDE and it wouldn't
301 * do any good anyway. Despite the name,
302 * cr4_set_bits_and_update_boot() doesn't actually cause
303 * the bits in question to remain set all the way through
304 * the secondary boot asm.
306 * Instead, we brute-force it and set CR4.PCIDE manually in
309 cr4_set_bits(X86_CR4_PCIDE);
312 * INVPCID's single-context modes (2/3) only work if we set
313 * X86_CR4_PCIDE, *and* we INVPCID support. It's unusable
314 * on systems that have X86_CR4_PCIDE clear, or that have
315 * no INVPCID support at all.
317 if (boot_cpu_has(X86_FEATURE_INVPCID))
318 setup_force_cpu_cap(X86_FEATURE_INVPCID_SINGLE);
321 * flush_tlb_all(), as currently implemented, won't work if
322 * PCID is on but PGE is not. Since that combination
323 * doesn't exist on real hardware, there's no reason to try
324 * to fully support it, but it's polite to avoid corrupting
325 * data if we're on an improperly configured VM.
327 setup_clear_cpu_cap(X86_FEATURE_PCID);
332 #define NR_RANGE_MR 3
333 #else /* CONFIG_X86_64 */
334 #define NR_RANGE_MR 5
337 static int __meminit save_mr(struct map_range *mr, int nr_range,
338 unsigned long start_pfn, unsigned long end_pfn,
339 unsigned long page_size_mask)
341 if (start_pfn < end_pfn) {
342 if (nr_range >= NR_RANGE_MR)
343 panic("run out of range for init_memory_mapping\n");
344 mr[nr_range].start = start_pfn<<PAGE_SHIFT;
345 mr[nr_range].end = end_pfn<<PAGE_SHIFT;
346 mr[nr_range].page_size_mask = page_size_mask;
354 * adjust the page_size_mask for small range to go with
355 * big page size instead small one if nearby are ram too.
357 static void __ref adjust_range_page_size_mask(struct map_range *mr,
362 for (i = 0; i < nr_range; i++) {
363 if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
364 !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
365 unsigned long start = round_down(mr[i].start, PMD_SIZE);
366 unsigned long end = round_up(mr[i].end, PMD_SIZE);
369 if ((end >> PAGE_SHIFT) > max_low_pfn)
373 if (memblock_is_region_memory(start, end - start))
374 mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
376 if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
377 !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
378 unsigned long start = round_down(mr[i].start, PUD_SIZE);
379 unsigned long end = round_up(mr[i].end, PUD_SIZE);
381 if (memblock_is_region_memory(start, end - start))
382 mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
387 static const char *page_size_string(struct map_range *mr)
389 static const char str_1g[] = "1G";
390 static const char str_2m[] = "2M";
391 static const char str_4m[] = "4M";
392 static const char str_4k[] = "4k";
394 if (mr->page_size_mask & (1<<PG_LEVEL_1G))
397 * 32-bit without PAE has a 4M large page size.
398 * PG_LEVEL_2M is misnamed, but we can at least
399 * print out the right size in the string.
401 if (IS_ENABLED(CONFIG_X86_32) &&
402 !IS_ENABLED(CONFIG_X86_PAE) &&
403 mr->page_size_mask & (1<<PG_LEVEL_2M))
406 if (mr->page_size_mask & (1<<PG_LEVEL_2M))
412 static int __meminit split_mem_range(struct map_range *mr, int nr_range,
416 unsigned long start_pfn, end_pfn, limit_pfn;
420 limit_pfn = PFN_DOWN(end);
422 /* head if not big page alignment ? */
423 pfn = start_pfn = PFN_DOWN(start);
426 * Don't use a large page for the first 2/4MB of memory
427 * because there are often fixed size MTRRs in there
428 * and overlapping MTRRs into large pages can cause
432 end_pfn = PFN_DOWN(PMD_SIZE);
434 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
435 #else /* CONFIG_X86_64 */
436 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
438 if (end_pfn > limit_pfn)
440 if (start_pfn < end_pfn) {
441 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
445 /* big page (2M) range */
446 start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
448 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
449 #else /* CONFIG_X86_64 */
450 end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
451 if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
452 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
455 if (start_pfn < end_pfn) {
456 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
457 page_size_mask & (1<<PG_LEVEL_2M));
462 /* big page (1G) range */
463 start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
464 end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
465 if (start_pfn < end_pfn) {
466 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
468 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
472 /* tail is not big page (1G) alignment */
473 start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
474 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
475 if (start_pfn < end_pfn) {
476 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
477 page_size_mask & (1<<PG_LEVEL_2M));
482 /* tail is not big page (2M) alignment */
485 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
488 adjust_range_page_size_mask(mr, nr_range);
490 /* try to merge same page size and continuous */
491 for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
492 unsigned long old_start;
493 if (mr[i].end != mr[i+1].start ||
494 mr[i].page_size_mask != mr[i+1].page_size_mask)
497 old_start = mr[i].start;
498 memmove(&mr[i], &mr[i+1],
499 (nr_range - 1 - i) * sizeof(struct map_range));
500 mr[i--].start = old_start;
504 for (i = 0; i < nr_range; i++)
505 pr_debug(" [mem %#010lx-%#010lx] page %s\n",
506 mr[i].start, mr[i].end - 1,
507 page_size_string(&mr[i]));
512 struct range pfn_mapped[E820_MAX_ENTRIES];
515 static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
517 nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES,
518 nr_pfn_mapped, start_pfn, end_pfn);
519 nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES);
521 max_pfn_mapped = max(max_pfn_mapped, end_pfn);
523 if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
524 max_low_pfn_mapped = max(max_low_pfn_mapped,
525 min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
528 bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
532 for (i = 0; i < nr_pfn_mapped; i++)
533 if ((start_pfn >= pfn_mapped[i].start) &&
534 (end_pfn <= pfn_mapped[i].end))
541 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
542 * This runs before bootmem is initialized and gets pages directly from
543 * the physical memory. To access them they are temporarily mapped.
545 unsigned long __ref init_memory_mapping(unsigned long start,
546 unsigned long end, pgprot_t prot)
548 struct map_range mr[NR_RANGE_MR];
549 unsigned long ret = 0;
552 pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
555 memset(mr, 0, sizeof(mr));
556 nr_range = split_mem_range(mr, 0, start, end);
558 for (i = 0; i < nr_range; i++)
559 ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
560 mr[i].page_size_mask,
563 add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
565 return ret >> PAGE_SHIFT;
569 * We need to iterate through the E820 memory map and create direct mappings
570 * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply
571 * create direct mappings for all pfns from [0 to max_low_pfn) and
572 * [4GB to max_pfn) because of possible memory holes in high addresses
573 * that cannot be marked as UC by fixed/variable range MTRRs.
574 * Depending on the alignment of E820 ranges, this may possibly result
575 * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
577 * init_mem_mapping() calls init_range_memory_mapping() with big range.
578 * That range would have hole in the middle or ends, and only ram parts
579 * will be mapped in init_range_memory_mapping().
581 static unsigned long __init init_range_memory_mapping(
582 unsigned long r_start,
585 unsigned long start_pfn, end_pfn;
586 unsigned long mapped_ram_size = 0;
589 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
590 u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
591 u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
596 * if it is overlapping with brk pgt, we need to
597 * alloc pgt buf from memblock instead.
599 can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
600 min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
601 init_memory_mapping(start, end, PAGE_KERNEL);
602 mapped_ram_size += end - start;
603 can_use_brk_pgt = true;
606 return mapped_ram_size;
609 static unsigned long __init get_new_step_size(unsigned long step_size)
612 * Initial mapped size is PMD_SIZE (2M).
613 * We can not set step_size to be PUD_SIZE (1G) yet.
614 * In worse case, when we cross the 1G boundary, and
615 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
616 * to map 1G range with PTE. Hence we use one less than the
617 * difference of page table level shifts.
619 * Don't need to worry about overflow in the top-down case, on 32bit,
620 * when step_size is 0, round_down() returns 0 for start, and that
621 * turns it into 0x100000000ULL.
622 * In the bottom-up case, round_up(x, 0) returns 0 though too, which
623 * needs to be taken into consideration by the code below.
625 return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
629 * memory_map_top_down - Map [map_start, map_end) top down
630 * @map_start: start address of the target memory range
631 * @map_end: end address of the target memory range
633 * This function will setup direct mapping for memory range
634 * [map_start, map_end) in top-down. That said, the page tables
635 * will be allocated at the end of the memory, and we map the
636 * memory in top-down.
638 static void __init memory_map_top_down(unsigned long map_start,
639 unsigned long map_end)
641 unsigned long real_end, last_start;
642 unsigned long step_size;
644 unsigned long mapped_ram_size = 0;
647 * Systems that have many reserved areas near top of the memory,
648 * e.g. QEMU with less than 1G RAM and EFI enabled, or Xen, will
649 * require lots of 4K mappings which may exhaust pgt_buf.
650 * Start with top-most PMD_SIZE range aligned at PMD_SIZE to ensure
651 * there is enough mapped memory that can be allocated from
654 addr = memblock_phys_alloc_range(PMD_SIZE, PMD_SIZE, map_start,
656 memblock_phys_free(addr, PMD_SIZE);
657 real_end = addr + PMD_SIZE;
659 /* step_size need to be small so pgt_buf from BRK could cover it */
660 step_size = PMD_SIZE;
661 max_pfn_mapped = 0; /* will get exact value next */
662 min_pfn_mapped = real_end >> PAGE_SHIFT;
663 last_start = real_end;
666 * We start from the top (end of memory) and go to the bottom.
667 * The memblock_find_in_range() gets us a block of RAM from the
668 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
671 while (last_start > map_start) {
674 if (last_start > step_size) {
675 start = round_down(last_start - 1, step_size);
676 if (start < map_start)
680 mapped_ram_size += init_range_memory_mapping(start,
683 min_pfn_mapped = last_start >> PAGE_SHIFT;
684 if (mapped_ram_size >= step_size)
685 step_size = get_new_step_size(step_size);
688 if (real_end < map_end)
689 init_range_memory_mapping(real_end, map_end);
693 * memory_map_bottom_up - Map [map_start, map_end) bottom up
694 * @map_start: start address of the target memory range
695 * @map_end: end address of the target memory range
697 * This function will setup direct mapping for memory range
698 * [map_start, map_end) in bottom-up. Since we have limited the
699 * bottom-up allocation above the kernel, the page tables will
700 * be allocated just above the kernel and we map the memory
701 * in [map_start, map_end) in bottom-up.
703 static void __init memory_map_bottom_up(unsigned long map_start,
704 unsigned long map_end)
706 unsigned long next, start;
707 unsigned long mapped_ram_size = 0;
708 /* step_size need to be small so pgt_buf from BRK could cover it */
709 unsigned long step_size = PMD_SIZE;
712 min_pfn_mapped = start >> PAGE_SHIFT;
715 * We start from the bottom (@map_start) and go to the top (@map_end).
716 * The memblock_find_in_range() gets us a block of RAM from the
717 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
720 while (start < map_end) {
721 if (step_size && map_end - start > step_size) {
722 next = round_up(start + 1, step_size);
729 mapped_ram_size += init_range_memory_mapping(start, next);
732 if (mapped_ram_size >= step_size)
733 step_size = get_new_step_size(step_size);
738 * The real mode trampoline, which is required for bootstrapping CPUs
739 * occupies only a small area under the low 1MB. See reserve_real_mode()
742 * If KASLR is disabled the first PGD entry of the direct mapping is copied
743 * to map the real mode trampoline.
745 * If KASLR is enabled, copy only the PUD which covers the low 1MB
746 * area. This limits the randomization granularity to 1GB for both 4-level
747 * and 5-level paging.
749 static void __init init_trampoline(void)
753 * The code below will alias kernel page-tables in the user-range of the
754 * address space, including the Global bit. So global TLB entries will
755 * be created when using the trampoline page-table.
757 if (!kaslr_memory_enabled())
758 trampoline_pgd_entry = init_top_pgt[pgd_index(__PAGE_OFFSET)];
760 init_trampoline_kaslr();
764 void __init init_mem_mapping(void)
768 pti_check_boottime_disable();
769 probe_page_size_mask();
773 end = max_pfn << PAGE_SHIFT;
775 end = max_low_pfn << PAGE_SHIFT;
778 /* the ISA range is always mapped regardless of memory holes */
779 init_memory_mapping(0, ISA_END_ADDRESS, PAGE_KERNEL);
781 /* Init the trampoline, possibly with KASLR memory offset */
785 * If the allocation is in bottom-up direction, we setup direct mapping
786 * in bottom-up, otherwise we setup direct mapping in top-down.
788 if (memblock_bottom_up()) {
789 unsigned long kernel_end = __pa_symbol(_end);
792 * we need two separate calls here. This is because we want to
793 * allocate page tables above the kernel. So we first map
794 * [kernel_end, end) to make memory above the kernel be mapped
795 * as soon as possible. And then use page tables allocated above
796 * the kernel to map [ISA_END_ADDRESS, kernel_end).
798 memory_map_bottom_up(kernel_end, end);
799 memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
801 memory_map_top_down(ISA_END_ADDRESS, end);
805 if (max_pfn > max_low_pfn) {
806 /* can we preserve max_low_pfn ?*/
807 max_low_pfn = max_pfn;
810 early_ioremap_page_table_range_init();
813 load_cr3(swapper_pg_dir);
816 x86_init.hyper.init_mem_mapping();
818 early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
822 * Initialize an mm_struct to be used during poking and a pointer to be used
825 void __init poking_init(void)
830 poking_mm = mm_alloc();
833 /* Xen PV guests need the PGD to be pinned. */
834 paravirt_arch_dup_mmap(NULL, poking_mm);
837 * Randomize the poking address, but make sure that the following page
838 * will be mapped at the same PMD. We need 2 pages, so find space for 3,
839 * and adjust the address if the PMD ends after the first one.
841 poking_addr = TASK_UNMAPPED_BASE;
842 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE))
843 poking_addr += (kaslr_get_random_long("Poking") & PAGE_MASK) %
844 (TASK_SIZE - TASK_UNMAPPED_BASE - 3 * PAGE_SIZE);
846 if (((poking_addr + PAGE_SIZE) & ~PMD_MASK) == 0)
847 poking_addr += PAGE_SIZE;
850 * We need to trigger the allocation of the page-tables that will be
851 * needed for poking now. Later, poking may be performed in an atomic
852 * section, which might cause allocation to fail.
854 ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
856 pte_unmap_unlock(ptep, ptl);
860 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
861 * is valid. The argument is a physical page number.
863 * On x86, access has to be given to the first megabyte of RAM because that
864 * area traditionally contains BIOS code and data regions used by X, dosemu,
865 * and similar apps. Since they map the entire memory range, the whole range
866 * must be allowed (for mapping), but any areas that would otherwise be
867 * disallowed are flagged as being "zero filled" instead of rejected.
868 * Access has to be given to non-kernel-ram areas as well, these contain the
869 * PCI mmio resources as well as potential bios/acpi data regions.
871 int devmem_is_allowed(unsigned long pagenr)
873 if (region_intersects(PFN_PHYS(pagenr), PAGE_SIZE,
874 IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE)
875 != REGION_DISJOINT) {
877 * For disallowed memory regions in the low 1MB range,
878 * request that the page be shown as all zeros.
887 * This must follow RAM test, since System RAM is considered a
888 * restricted resource under CONFIG_STRICT_DEVMEM.
890 if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) {
891 /* Low 1MB bypasses iomem restrictions. */
901 void free_init_pages(const char *what, unsigned long begin, unsigned long end)
903 unsigned long begin_aligned, end_aligned;
905 /* Make sure boundaries are page aligned */
906 begin_aligned = PAGE_ALIGN(begin);
907 end_aligned = end & PAGE_MASK;
909 if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
910 begin = begin_aligned;
918 * If debugging page accesses then do not free this memory but
919 * mark them not present - any buggy init-section access will
920 * create a kernel page fault:
922 if (debug_pagealloc_enabled()) {
923 pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
926 * Inform kmemleak about the hole in the memory since the
927 * corresponding pages will be unmapped.
929 kmemleak_free_part((void *)begin, end - begin);
930 set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
933 * We just marked the kernel text read only above, now that
934 * we are going to free part of that, we need to make that
935 * writeable and non-executable first.
937 set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
938 set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
940 free_reserved_area((void *)begin, (void *)end,
941 POISON_FREE_INITMEM, what);
946 * begin/end can be in the direct map or the "high kernel mapping"
947 * used for the kernel image only. free_init_pages() will do the
948 * right thing for either kind of address.
950 void free_kernel_image_pages(const char *what, void *begin, void *end)
952 unsigned long begin_ul = (unsigned long)begin;
953 unsigned long end_ul = (unsigned long)end;
954 unsigned long len_pages = (end_ul - begin_ul) >> PAGE_SHIFT;
956 free_init_pages(what, begin_ul, end_ul);
959 * PTI maps some of the kernel into userspace. For performance,
960 * this includes some kernel areas that do not contain secrets.
961 * Those areas might be adjacent to the parts of the kernel image
962 * being freed, which may contain secrets. Remove the "high kernel
963 * image mapping" for these freed areas, ensuring they are not even
964 * potentially vulnerable to Meltdown regardless of the specific
965 * optimizations PTI is currently using.
967 * The "noalias" prevents unmapping the direct map alias which is
968 * needed to access the freed pages.
970 * This is only valid for 64bit kernels. 32bit has only one mapping
971 * which can't be treated in this way for obvious reasons.
973 if (IS_ENABLED(CONFIG_X86_64) && cpu_feature_enabled(X86_FEATURE_PTI))
974 set_memory_np_noalias(begin_ul, len_pages);
977 void __ref free_initmem(void)
979 e820__reallocate_tables();
981 mem_encrypt_free_decrypted_mem();
983 free_kernel_image_pages("unused kernel image (initmem)",
984 &__init_begin, &__init_end);
987 #ifdef CONFIG_BLK_DEV_INITRD
988 void __init free_initrd_mem(unsigned long start, unsigned long end)
991 * end could be not aligned, and We can not align that,
992 * decompressor could be confused by aligned initrd_end
993 * We already reserve the end partial page before in
994 * - i386_start_kernel()
995 * - x86_64_start_kernel()
996 * - relocate_initrd()
997 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
999 free_init_pages("initrd", start, PAGE_ALIGN(end));
1004 * Calculate the precise size of the DMA zone (first 16 MB of RAM),
1005 * and pass it to the MM layer - to help it set zone watermarks more
1008 * Done on 64-bit systems only for the time being, although 32-bit systems
1009 * might benefit from this as well.
1011 void __init memblock_find_dma_reserve(void)
1013 #ifdef CONFIG_X86_64
1014 u64 nr_pages = 0, nr_free_pages = 0;
1015 unsigned long start_pfn, end_pfn;
1016 phys_addr_t start_addr, end_addr;
1021 * Iterate over all memory ranges (free and reserved ones alike),
1022 * to calculate the total number of pages in the first 16 MB of RAM:
1025 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
1026 start_pfn = min(start_pfn, MAX_DMA_PFN);
1027 end_pfn = min(end_pfn, MAX_DMA_PFN);
1029 nr_pages += end_pfn - start_pfn;
1033 * Iterate over free memory ranges to calculate the number of free
1034 * pages in the DMA zone, while not counting potential partial
1035 * pages at the beginning or the end of the range:
1038 for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) {
1039 start_pfn = min_t(unsigned long, PFN_UP(start_addr), MAX_DMA_PFN);
1040 end_pfn = min_t(unsigned long, PFN_DOWN(end_addr), MAX_DMA_PFN);
1042 if (start_pfn < end_pfn)
1043 nr_free_pages += end_pfn - start_pfn;
1046 set_dma_reserve(nr_pages - nr_free_pages);
1050 void __init zone_sizes_init(void)
1052 unsigned long max_zone_pfns[MAX_NR_ZONES];
1054 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1056 #ifdef CONFIG_ZONE_DMA
1057 max_zone_pfns[ZONE_DMA] = min(MAX_DMA_PFN, max_low_pfn);
1059 #ifdef CONFIG_ZONE_DMA32
1060 max_zone_pfns[ZONE_DMA32] = min(MAX_DMA32_PFN, max_low_pfn);
1062 max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
1063 #ifdef CONFIG_HIGHMEM
1064 max_zone_pfns[ZONE_HIGHMEM] = max_pfn;
1067 free_area_init(max_zone_pfns);
1070 __visible DEFINE_PER_CPU_ALIGNED(struct tlb_state, cpu_tlbstate) = {
1071 .loaded_mm = &init_mm,
1073 .cr4 = ~0UL, /* fail hard if we screw up cr4 shadow initialization */
1076 void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
1078 /* entry 0 MUST be WB (hardwired to speed up translations) */
1079 BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
1081 __cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
1082 __pte2cachemode_tbl[entry] = cache;
1086 unsigned long arch_max_swapfile_size(void)
1088 unsigned long pages;
1090 pages = generic_max_swapfile_size();
1092 if (boot_cpu_has_bug(X86_BUG_L1TF) && l1tf_mitigation != L1TF_MITIGATION_OFF) {
1093 /* Limit the swap file size to MAX_PA/2 for L1TF workaround */
1094 unsigned long long l1tf_limit = l1tf_pfn_limit();
1096 * We encode swap offsets also with 3 bits below those for pfn
1097 * which makes the usable limit higher.
1099 #if CONFIG_PGTABLE_LEVELS > 2
1100 l1tf_limit <<= PAGE_SHIFT - SWP_OFFSET_FIRST_BIT;
1102 pages = min_t(unsigned long long, l1tf_limit, pages);