1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 1995 Linus Torvalds
4 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
5 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
7 #include <linux/sched.h> /* test_thread_flag(), ... */
8 #include <linux/sched/task_stack.h> /* task_stack_*(), ... */
9 #include <linux/kdebug.h> /* oops_begin/end, ... */
10 #include <linux/extable.h> /* search_exception_tables */
11 #include <linux/memblock.h> /* max_low_pfn */
12 #include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */
13 #include <linux/mmiotrace.h> /* kmmio_handler, ... */
14 #include <linux/perf_event.h> /* perf_sw_event */
15 #include <linux/hugetlb.h> /* hstate_index_to_shift */
16 #include <linux/prefetch.h> /* prefetchw */
17 #include <linux/context_tracking.h> /* exception_enter(), ... */
18 #include <linux/uaccess.h> /* faulthandler_disabled() */
19 #include <linux/efi.h> /* efi_recover_from_page_fault()*/
20 #include <linux/mm_types.h>
22 #include <asm/cpufeature.h> /* boot_cpu_has, ... */
23 #include <asm/traps.h> /* dotraplinkage, ... */
24 #include <asm/pgalloc.h> /* pgd_*(), ... */
25 #include <asm/fixmap.h> /* VSYSCALL_ADDR */
26 #include <asm/vsyscall.h> /* emulate_vsyscall */
27 #include <asm/vm86.h> /* struct vm86 */
28 #include <asm/mmu_context.h> /* vma_pkey() */
29 #include <asm/efi.h> /* efi_recover_from_page_fault()*/
30 #include <asm/desc.h> /* store_idt(), ... */
31 #include <asm/cpu_entry_area.h> /* exception stack */
32 #include <asm/pgtable_areas.h> /* VMALLOC_START, ... */
34 #define CREATE_TRACE_POINTS
35 #include <asm/trace/exceptions.h>
38 * Returns 0 if mmiotrace is disabled, or if the fault is not
39 * handled by mmiotrace:
41 static nokprobe_inline int
42 kmmio_fault(struct pt_regs *regs, unsigned long addr)
44 if (unlikely(is_kmmio_active()))
45 if (kmmio_handler(regs, addr) == 1)
55 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
56 * Check that here and ignore it.
60 * Sometimes the CPU reports invalid exceptions on prefetch.
61 * Check that here and ignore it.
63 * Opcode checker based on code by Richard Brunner.
66 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
67 unsigned char opcode, int *prefetch)
69 unsigned char instr_hi = opcode & 0xf0;
70 unsigned char instr_lo = opcode & 0x0f;
76 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
77 * In X86_64 long mode, the CPU will signal invalid
78 * opcode if some of these prefixes are present so
79 * X86_64 will never get here anyway
81 return ((instr_lo & 7) == 0x6);
85 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
86 * Need to figure out under what instruction mode the
87 * instruction was issued. Could check the LDT for lm,
88 * but for now it's good enough to assume that long
89 * mode only uses well known segments or kernel.
91 return (!user_mode(regs) || user_64bit_mode(regs));
94 /* 0x64 thru 0x67 are valid prefixes in all modes. */
95 return (instr_lo & 0xC) == 0x4;
97 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
98 return !instr_lo || (instr_lo>>1) == 1;
100 /* Prefetch instruction is 0x0F0D or 0x0F18 */
101 if (probe_kernel_address(instr, opcode))
104 *prefetch = (instr_lo == 0xF) &&
105 (opcode == 0x0D || opcode == 0x18);
113 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
115 unsigned char *max_instr;
116 unsigned char *instr;
120 * If it was a exec (instruction fetch) fault on NX page, then
121 * do not ignore the fault:
123 if (error_code & X86_PF_INSTR)
126 instr = (void *)convert_ip_to_linear(current, regs);
127 max_instr = instr + 15;
129 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX)
132 while (instr < max_instr) {
133 unsigned char opcode;
135 if (probe_kernel_address(instr, opcode))
140 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
146 DEFINE_SPINLOCK(pgd_lock);
150 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
152 unsigned index = pgd_index(address);
159 pgd_k = init_mm.pgd + index;
161 if (!pgd_present(*pgd_k))
165 * set_pgd(pgd, *pgd_k); here would be useless on PAE
166 * and redundant with the set_pmd() on non-PAE. As would
169 p4d = p4d_offset(pgd, address);
170 p4d_k = p4d_offset(pgd_k, address);
171 if (!p4d_present(*p4d_k))
174 pud = pud_offset(p4d, address);
175 pud_k = pud_offset(p4d_k, address);
176 if (!pud_present(*pud_k))
179 pmd = pmd_offset(pud, address);
180 pmd_k = pmd_offset(pud_k, address);
182 if (pmd_present(*pmd) != pmd_present(*pmd_k))
183 set_pmd(pmd, *pmd_k);
185 if (!pmd_present(*pmd_k))
188 BUG_ON(pmd_pfn(*pmd) != pmd_pfn(*pmd_k));
193 void arch_sync_kernel_mappings(unsigned long start, unsigned long end)
197 for (addr = start & PMD_MASK;
198 addr >= TASK_SIZE_MAX && addr < VMALLOC_END;
202 spin_lock(&pgd_lock);
203 list_for_each_entry(page, &pgd_list, lru) {
204 spinlock_t *pgt_lock;
206 /* the pgt_lock only for Xen */
207 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
210 vmalloc_sync_one(page_address(page), addr);
211 spin_unlock(pgt_lock);
213 spin_unlock(&pgd_lock);
218 * Did it hit the DOS screen memory VA from vm86 mode?
221 check_v8086_mode(struct pt_regs *regs, unsigned long address,
222 struct task_struct *tsk)
227 if (!v8086_mode(regs) || !tsk->thread.vm86)
230 bit = (address - 0xA0000) >> PAGE_SHIFT;
232 tsk->thread.vm86->screen_bitmap |= 1 << bit;
236 static bool low_pfn(unsigned long pfn)
238 return pfn < max_low_pfn;
241 static void dump_pagetable(unsigned long address)
243 pgd_t *base = __va(read_cr3_pa());
244 pgd_t *pgd = &base[pgd_index(address)];
250 #ifdef CONFIG_X86_PAE
251 pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
252 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
254 #define pr_pde pr_cont
256 #define pr_pde pr_info
258 p4d = p4d_offset(pgd, address);
259 pud = pud_offset(p4d, address);
260 pmd = pmd_offset(pud, address);
261 pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
265 * We must not directly access the pte in the highpte
266 * case if the page table is located in highmem.
267 * And let's rather not kmap-atomic the pte, just in case
268 * it's allocated already:
270 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
273 pte = pte_offset_kernel(pmd, address);
274 pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
279 #else /* CONFIG_X86_64: */
281 #ifdef CONFIG_CPU_SUP_AMD
282 static const char errata93_warning[] =
284 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
285 "******* Working around it, but it may cause SEGVs or burn power.\n"
286 "******* Please consider a BIOS update.\n"
287 "******* Disabling USB legacy in the BIOS may also help.\n";
291 * No vm86 mode in 64-bit mode:
294 check_v8086_mode(struct pt_regs *regs, unsigned long address,
295 struct task_struct *tsk)
299 static int bad_address(void *p)
303 return probe_kernel_address((unsigned long *)p, dummy);
306 static void dump_pagetable(unsigned long address)
308 pgd_t *base = __va(read_cr3_pa());
309 pgd_t *pgd = base + pgd_index(address);
315 if (bad_address(pgd))
318 pr_info("PGD %lx ", pgd_val(*pgd));
320 if (!pgd_present(*pgd))
323 p4d = p4d_offset(pgd, address);
324 if (bad_address(p4d))
327 pr_cont("P4D %lx ", p4d_val(*p4d));
328 if (!p4d_present(*p4d) || p4d_large(*p4d))
331 pud = pud_offset(p4d, address);
332 if (bad_address(pud))
335 pr_cont("PUD %lx ", pud_val(*pud));
336 if (!pud_present(*pud) || pud_large(*pud))
339 pmd = pmd_offset(pud, address);
340 if (bad_address(pmd))
343 pr_cont("PMD %lx ", pmd_val(*pmd));
344 if (!pmd_present(*pmd) || pmd_large(*pmd))
347 pte = pte_offset_kernel(pmd, address);
348 if (bad_address(pte))
351 pr_cont("PTE %lx", pte_val(*pte));
359 #endif /* CONFIG_X86_64 */
362 * Workaround for K8 erratum #93 & buggy BIOS.
364 * BIOS SMM functions are required to use a specific workaround
365 * to avoid corruption of the 64bit RIP register on C stepping K8.
367 * A lot of BIOS that didn't get tested properly miss this.
369 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
370 * Try to work around it here.
372 * Note we only handle faults in kernel here.
373 * Does nothing on 32-bit.
375 static int is_errata93(struct pt_regs *regs, unsigned long address)
377 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
378 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
379 || boot_cpu_data.x86 != 0xf)
382 if (address != regs->ip)
385 if ((address >> 32) != 0)
388 address |= 0xffffffffUL << 32;
389 if ((address >= (u64)_stext && address <= (u64)_etext) ||
390 (address >= MODULES_VADDR && address <= MODULES_END)) {
391 printk_once(errata93_warning);
400 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
401 * to illegal addresses >4GB.
403 * We catch this in the page fault handler because these addresses
404 * are not reachable. Just detect this case and return. Any code
405 * segment in LDT is compatibility mode.
407 static int is_errata100(struct pt_regs *regs, unsigned long address)
410 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
416 static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
418 #ifdef CONFIG_X86_F00F_BUG
422 * Pentium F0 0F C7 C8 bug workaround:
424 if (boot_cpu_has_bug(X86_BUG_F00F)) {
425 nr = (address - idt_descr.address) >> 3;
428 do_invalid_op(regs, 0);
436 static void show_ldttss(const struct desc_ptr *gdt, const char *name, u16 index)
438 u32 offset = (index >> 3) * sizeof(struct desc_struct);
440 struct ldttss_desc desc;
443 pr_alert("%s: NULL\n", name);
447 if (offset + sizeof(struct ldttss_desc) >= gdt->size) {
448 pr_alert("%s: 0x%hx -- out of bounds\n", name, index);
452 if (probe_kernel_read(&desc, (void *)(gdt->address + offset),
453 sizeof(struct ldttss_desc))) {
454 pr_alert("%s: 0x%hx -- GDT entry is not readable\n",
459 addr = desc.base0 | (desc.base1 << 16) | ((unsigned long)desc.base2 << 24);
461 addr |= ((u64)desc.base3 << 32);
463 pr_alert("%s: 0x%hx -- base=0x%lx limit=0x%x\n",
464 name, index, addr, (desc.limit0 | (desc.limit1 << 16)));
468 show_fault_oops(struct pt_regs *regs, unsigned long error_code, unsigned long address)
470 if (!oops_may_print())
473 if (error_code & X86_PF_INSTR) {
478 pgd = __va(read_cr3_pa());
479 pgd += pgd_index(address);
481 pte = lookup_address_in_pgd(pgd, address, &level);
483 if (pte && pte_present(*pte) && !pte_exec(*pte))
484 pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n",
485 from_kuid(&init_user_ns, current_uid()));
486 if (pte && pte_present(*pte) && pte_exec(*pte) &&
487 (pgd_flags(*pgd) & _PAGE_USER) &&
488 (__read_cr4() & X86_CR4_SMEP))
489 pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n",
490 from_kuid(&init_user_ns, current_uid()));
493 if (address < PAGE_SIZE && !user_mode(regs))
494 pr_alert("BUG: kernel NULL pointer dereference, address: %px\n",
497 pr_alert("BUG: unable to handle page fault for address: %px\n",
500 pr_alert("#PF: %s %s in %s mode\n",
501 (error_code & X86_PF_USER) ? "user" : "supervisor",
502 (error_code & X86_PF_INSTR) ? "instruction fetch" :
503 (error_code & X86_PF_WRITE) ? "write access" :
505 user_mode(regs) ? "user" : "kernel");
506 pr_alert("#PF: error_code(0x%04lx) - %s\n", error_code,
507 !(error_code & X86_PF_PROT) ? "not-present page" :
508 (error_code & X86_PF_RSVD) ? "reserved bit violation" :
509 (error_code & X86_PF_PK) ? "protection keys violation" :
510 "permissions violation");
512 if (!(error_code & X86_PF_USER) && user_mode(regs)) {
513 struct desc_ptr idt, gdt;
517 * This can happen for quite a few reasons. The more obvious
518 * ones are faults accessing the GDT, or LDT. Perhaps
519 * surprisingly, if the CPU tries to deliver a benign or
520 * contributory exception from user code and gets a page fault
521 * during delivery, the page fault can be delivered as though
522 * it originated directly from user code. This could happen
523 * due to wrong permissions on the IDT, GDT, LDT, TSS, or
524 * kernel or IST stack.
528 /* Usable even on Xen PV -- it's just slow. */
529 native_store_gdt(&gdt);
531 pr_alert("IDT: 0x%lx (limit=0x%hx) GDT: 0x%lx (limit=0x%hx)\n",
532 idt.address, idt.size, gdt.address, gdt.size);
535 show_ldttss(&gdt, "LDTR", ldtr);
538 show_ldttss(&gdt, "TR", tr);
541 dump_pagetable(address);
545 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
546 unsigned long address)
548 struct task_struct *tsk;
552 flags = oops_begin();
556 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
558 dump_pagetable(address);
560 if (__die("Bad pagetable", regs, error_code))
563 oops_end(flags, regs, sig);
566 static void set_signal_archinfo(unsigned long address,
567 unsigned long error_code)
569 struct task_struct *tsk = current;
572 * To avoid leaking information about the kernel page
573 * table layout, pretend that user-mode accesses to
574 * kernel addresses are always protection faults.
576 * NB: This means that failed vsyscalls with vsyscall=none
577 * will have the PROT bit. This doesn't leak any
578 * information and does not appear to cause any problems.
580 if (address >= TASK_SIZE_MAX)
581 error_code |= X86_PF_PROT;
583 tsk->thread.trap_nr = X86_TRAP_PF;
584 tsk->thread.error_code = error_code | X86_PF_USER;
585 tsk->thread.cr2 = address;
589 no_context(struct pt_regs *regs, unsigned long error_code,
590 unsigned long address, int signal, int si_code)
592 struct task_struct *tsk = current;
596 if (user_mode(regs)) {
598 * This is an implicit supervisor-mode access from user
599 * mode. Bypass all the kernel-mode recovery code and just
605 /* Are we prepared to handle this kernel fault? */
606 if (fixup_exception(regs, X86_TRAP_PF, error_code, address)) {
608 * Any interrupt that takes a fault gets the fixup. This makes
609 * the below recursive fault logic only apply to a faults from
616 * Per the above we're !in_interrupt(), aka. task context.
618 * In this case we need to make sure we're not recursively
619 * faulting through the emulate_vsyscall() logic.
621 if (current->thread.sig_on_uaccess_err && signal) {
622 set_signal_archinfo(address, error_code);
624 /* XXX: hwpoison faults will set the wrong code. */
625 force_sig_fault(signal, si_code, (void __user *)address);
629 * Barring that, we can do the fixup and be happy.
634 #ifdef CONFIG_VMAP_STACK
636 * Stack overflow? During boot, we can fault near the initial
637 * stack in the direct map, but that's not an overflow -- check
638 * that we're in vmalloc space to avoid this.
640 if (is_vmalloc_addr((void *)address) &&
641 (((unsigned long)tsk->stack - 1 - address < PAGE_SIZE) ||
642 address - ((unsigned long)tsk->stack + THREAD_SIZE) < PAGE_SIZE)) {
643 unsigned long stack = __this_cpu_ist_top_va(DF) - sizeof(void *);
645 * We're likely to be running with very little stack space
646 * left. It's plausible that we'd hit this condition but
647 * double-fault even before we get this far, in which case
648 * we're fine: the double-fault handler will deal with it.
650 * We don't want to make it all the way into the oops code
651 * and then double-fault, though, because we're likely to
652 * break the console driver and lose most of the stack dump.
654 asm volatile ("movq %[stack], %%rsp\n\t"
655 "call handle_stack_overflow\n\t"
657 : ASM_CALL_CONSTRAINT
658 : "D" ("kernel stack overflow (page fault)"),
659 "S" (regs), "d" (address),
660 [stack] "rm" (stack));
668 * Valid to do another page fault here, because if this fault
669 * had been triggered by is_prefetch fixup_exception would have
674 * Hall of shame of CPU/BIOS bugs.
676 if (is_prefetch(regs, error_code, address))
679 if (is_errata93(regs, address))
683 * Buggy firmware could access regions which might page fault, try to
684 * recover from such faults.
686 if (IS_ENABLED(CONFIG_EFI))
687 efi_recover_from_page_fault(address);
691 * Oops. The kernel tried to access some bad page. We'll have to
692 * terminate things with extreme prejudice:
694 flags = oops_begin();
696 show_fault_oops(regs, error_code, address);
698 if (task_stack_end_corrupted(tsk))
699 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
702 if (__die("Oops", regs, error_code))
705 /* Executive summary in case the body of the oops scrolled away */
706 printk(KERN_DEFAULT "CR2: %016lx\n", address);
708 oops_end(flags, regs, sig);
712 * Print out info about fatal segfaults, if the show_unhandled_signals
716 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
717 unsigned long address, struct task_struct *tsk)
719 const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG;
721 if (!unhandled_signal(tsk, SIGSEGV))
724 if (!printk_ratelimit())
727 printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx",
728 loglvl, tsk->comm, task_pid_nr(tsk), address,
729 (void *)regs->ip, (void *)regs->sp, error_code);
731 print_vma_addr(KERN_CONT " in ", regs->ip);
733 printk(KERN_CONT "\n");
735 show_opcodes(regs, loglvl);
739 * The (legacy) vsyscall page is the long page in the kernel portion
740 * of the address space that has user-accessible permissions.
742 static bool is_vsyscall_vaddr(unsigned long vaddr)
744 return unlikely((vaddr & PAGE_MASK) == VSYSCALL_ADDR);
748 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
749 unsigned long address, u32 pkey, int si_code)
751 struct task_struct *tsk = current;
753 /* User mode accesses just cause a SIGSEGV */
754 if (user_mode(regs) && (error_code & X86_PF_USER)) {
756 * It's possible to have interrupts off here:
761 * Valid to do another page fault here because this one came
764 if (is_prefetch(regs, error_code, address))
767 if (is_errata100(regs, address))
771 * To avoid leaking information about the kernel page table
772 * layout, pretend that user-mode accesses to kernel addresses
773 * are always protection faults.
775 if (address >= TASK_SIZE_MAX)
776 error_code |= X86_PF_PROT;
778 if (likely(show_unhandled_signals))
779 show_signal_msg(regs, error_code, address, tsk);
781 set_signal_archinfo(address, error_code);
783 if (si_code == SEGV_PKUERR)
784 force_sig_pkuerr((void __user *)address, pkey);
786 force_sig_fault(SIGSEGV, si_code, (void __user *)address);
791 if (is_f00f_bug(regs, address))
794 no_context(regs, error_code, address, SIGSEGV, si_code);
798 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
799 unsigned long address)
801 __bad_area_nosemaphore(regs, error_code, address, 0, SEGV_MAPERR);
805 __bad_area(struct pt_regs *regs, unsigned long error_code,
806 unsigned long address, u32 pkey, int si_code)
808 struct mm_struct *mm = current->mm;
810 * Something tried to access memory that isn't in our memory map..
811 * Fix it, but check if it's kernel or user first..
813 up_read(&mm->mmap_sem);
815 __bad_area_nosemaphore(regs, error_code, address, pkey, si_code);
819 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
821 __bad_area(regs, error_code, address, 0, SEGV_MAPERR);
824 static inline bool bad_area_access_from_pkeys(unsigned long error_code,
825 struct vm_area_struct *vma)
827 /* This code is always called on the current mm */
828 bool foreign = false;
830 if (!boot_cpu_has(X86_FEATURE_OSPKE))
832 if (error_code & X86_PF_PK)
834 /* this checks permission keys on the VMA: */
835 if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
836 (error_code & X86_PF_INSTR), foreign))
842 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
843 unsigned long address, struct vm_area_struct *vma)
846 * This OSPKE check is not strictly necessary at runtime.
847 * But, doing it this way allows compiler optimizations
848 * if pkeys are compiled out.
850 if (bad_area_access_from_pkeys(error_code, vma)) {
852 * A protection key fault means that the PKRU value did not allow
853 * access to some PTE. Userspace can figure out what PKRU was
854 * from the XSAVE state. This function captures the pkey from
855 * the vma and passes it to userspace so userspace can discover
856 * which protection key was set on the PTE.
858 * If we get here, we know that the hardware signaled a X86_PF_PK
859 * fault and that there was a VMA once we got in the fault
860 * handler. It does *not* guarantee that the VMA we find here
861 * was the one that we faulted on.
863 * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4);
864 * 2. T1 : set PKRU to deny access to pkey=4, touches page
866 * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
867 * 5. T1 : enters fault handler, takes mmap_sem, etc...
868 * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really
869 * faulted on a pte with its pkey=4.
871 u32 pkey = vma_pkey(vma);
873 __bad_area(regs, error_code, address, pkey, SEGV_PKUERR);
875 __bad_area(regs, error_code, address, 0, SEGV_ACCERR);
880 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
883 /* Kernel mode? Handle exceptions or die: */
884 if (!(error_code & X86_PF_USER)) {
885 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
889 /* User-space => ok to do another page fault: */
890 if (is_prefetch(regs, error_code, address))
893 set_signal_archinfo(address, error_code);
895 #ifdef CONFIG_MEMORY_FAILURE
896 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
897 struct task_struct *tsk = current;
901 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
902 tsk->comm, tsk->pid, address);
903 if (fault & VM_FAULT_HWPOISON_LARGE)
904 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
905 if (fault & VM_FAULT_HWPOISON)
907 force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
911 force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
915 mm_fault_error(struct pt_regs *regs, unsigned long error_code,
916 unsigned long address, vm_fault_t fault)
918 if (fatal_signal_pending(current) && !(error_code & X86_PF_USER)) {
919 no_context(regs, error_code, address, 0, 0);
923 if (fault & VM_FAULT_OOM) {
924 /* Kernel mode? Handle exceptions or die: */
925 if (!(error_code & X86_PF_USER)) {
926 no_context(regs, error_code, address,
927 SIGSEGV, SEGV_MAPERR);
932 * We ran out of memory, call the OOM killer, and return the
933 * userspace (which will retry the fault, or kill us if we got
936 pagefault_out_of_memory();
938 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
939 VM_FAULT_HWPOISON_LARGE))
940 do_sigbus(regs, error_code, address, fault);
941 else if (fault & VM_FAULT_SIGSEGV)
942 bad_area_nosemaphore(regs, error_code, address);
948 static int spurious_kernel_fault_check(unsigned long error_code, pte_t *pte)
950 if ((error_code & X86_PF_WRITE) && !pte_write(*pte))
953 if ((error_code & X86_PF_INSTR) && !pte_exec(*pte))
960 * Handle a spurious fault caused by a stale TLB entry.
962 * This allows us to lazily refresh the TLB when increasing the
963 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
964 * eagerly is very expensive since that implies doing a full
965 * cross-processor TLB flush, even if no stale TLB entries exist
966 * on other processors.
968 * Spurious faults may only occur if the TLB contains an entry with
969 * fewer permission than the page table entry. Non-present (P = 0)
970 * and reserved bit (R = 1) faults are never spurious.
972 * There are no security implications to leaving a stale TLB when
973 * increasing the permissions on a page.
975 * Returns non-zero if a spurious fault was handled, zero otherwise.
977 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
978 * (Optional Invalidation).
981 spurious_kernel_fault(unsigned long error_code, unsigned long address)
991 * Only writes to RO or instruction fetches from NX may cause
994 * These could be from user or supervisor accesses but the TLB
995 * is only lazily flushed after a kernel mapping protection
996 * change, so user accesses are not expected to cause spurious
999 if (error_code != (X86_PF_WRITE | X86_PF_PROT) &&
1000 error_code != (X86_PF_INSTR | X86_PF_PROT))
1003 pgd = init_mm.pgd + pgd_index(address);
1004 if (!pgd_present(*pgd))
1007 p4d = p4d_offset(pgd, address);
1008 if (!p4d_present(*p4d))
1011 if (p4d_large(*p4d))
1012 return spurious_kernel_fault_check(error_code, (pte_t *) p4d);
1014 pud = pud_offset(p4d, address);
1015 if (!pud_present(*pud))
1018 if (pud_large(*pud))
1019 return spurious_kernel_fault_check(error_code, (pte_t *) pud);
1021 pmd = pmd_offset(pud, address);
1022 if (!pmd_present(*pmd))
1025 if (pmd_large(*pmd))
1026 return spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1028 pte = pte_offset_kernel(pmd, address);
1029 if (!pte_present(*pte))
1032 ret = spurious_kernel_fault_check(error_code, pte);
1037 * Make sure we have permissions in PMD.
1038 * If not, then there's a bug in the page tables:
1040 ret = spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1041 WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1045 NOKPROBE_SYMBOL(spurious_kernel_fault);
1047 int show_unhandled_signals = 1;
1050 access_error(unsigned long error_code, struct vm_area_struct *vma)
1052 /* This is only called for the current mm, so: */
1053 bool foreign = false;
1056 * Read or write was blocked by protection keys. This is
1057 * always an unconditional error and can never result in
1058 * a follow-up action to resolve the fault, like a COW.
1060 if (error_code & X86_PF_PK)
1064 * Make sure to check the VMA so that we do not perform
1065 * faults just to hit a X86_PF_PK as soon as we fill in a
1068 if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
1069 (error_code & X86_PF_INSTR), foreign))
1072 if (error_code & X86_PF_WRITE) {
1073 /* write, present and write, not present: */
1074 if (unlikely(!(vma->vm_flags & VM_WRITE)))
1079 /* read, present: */
1080 if (unlikely(error_code & X86_PF_PROT))
1083 /* read, not present: */
1084 if (unlikely(!vma_is_accessible(vma)))
1090 static int fault_in_kernel_space(unsigned long address)
1093 * On 64-bit systems, the vsyscall page is at an address above
1094 * TASK_SIZE_MAX, but is not considered part of the kernel
1097 if (IS_ENABLED(CONFIG_X86_64) && is_vsyscall_vaddr(address))
1100 return address >= TASK_SIZE_MAX;
1104 * Called for all faults where 'address' is part of the kernel address
1105 * space. Might get called for faults that originate from *code* that
1106 * ran in userspace or the kernel.
1109 do_kern_addr_fault(struct pt_regs *regs, unsigned long hw_error_code,
1110 unsigned long address)
1113 * Protection keys exceptions only happen on user pages. We
1114 * have no user pages in the kernel portion of the address
1115 * space, so do not expect them here.
1117 WARN_ON_ONCE(hw_error_code & X86_PF_PK);
1119 /* Was the fault spurious, caused by lazy TLB invalidation? */
1120 if (spurious_kernel_fault(hw_error_code, address))
1123 /* kprobes don't want to hook the spurious faults: */
1124 if (kprobe_page_fault(regs, X86_TRAP_PF))
1128 * Note, despite being a "bad area", there are quite a few
1129 * acceptable reasons to get here, such as erratum fixups
1130 * and handling kernel code that can fault, like get_user().
1132 * Don't take the mm semaphore here. If we fixup a prefetch
1133 * fault we could otherwise deadlock:
1135 bad_area_nosemaphore(regs, hw_error_code, address);
1137 NOKPROBE_SYMBOL(do_kern_addr_fault);
1139 /* Handle faults in the user portion of the address space */
1141 void do_user_addr_fault(struct pt_regs *regs,
1142 unsigned long hw_error_code,
1143 unsigned long address)
1145 struct vm_area_struct *vma;
1146 struct task_struct *tsk;
1147 struct mm_struct *mm;
1148 vm_fault_t fault, major = 0;
1149 unsigned int flags = FAULT_FLAG_DEFAULT;
1154 /* kprobes don't want to hook the spurious faults: */
1155 if (unlikely(kprobe_page_fault(regs, X86_TRAP_PF)))
1159 * Reserved bits are never expected to be set on
1160 * entries in the user portion of the page tables.
1162 if (unlikely(hw_error_code & X86_PF_RSVD))
1163 pgtable_bad(regs, hw_error_code, address);
1166 * If SMAP is on, check for invalid kernel (supervisor) access to user
1167 * pages in the user address space. The odd case here is WRUSS,
1168 * which, according to the preliminary documentation, does not respect
1169 * SMAP and will have the USER bit set so, in all cases, SMAP
1170 * enforcement appears to be consistent with the USER bit.
1172 if (unlikely(cpu_feature_enabled(X86_FEATURE_SMAP) &&
1173 !(hw_error_code & X86_PF_USER) &&
1174 !(regs->flags & X86_EFLAGS_AC)))
1176 bad_area_nosemaphore(regs, hw_error_code, address);
1181 * If we're in an interrupt, have no user context or are running
1182 * in a region with pagefaults disabled then we must not take the fault
1184 if (unlikely(faulthandler_disabled() || !mm)) {
1185 bad_area_nosemaphore(regs, hw_error_code, address);
1190 * It's safe to allow irq's after cr2 has been saved and the
1191 * vmalloc fault has been handled.
1193 * User-mode registers count as a user access even for any
1194 * potential system fault or CPU buglet:
1196 if (user_mode(regs)) {
1198 flags |= FAULT_FLAG_USER;
1200 if (regs->flags & X86_EFLAGS_IF)
1204 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1206 if (hw_error_code & X86_PF_WRITE)
1207 flags |= FAULT_FLAG_WRITE;
1208 if (hw_error_code & X86_PF_INSTR)
1209 flags |= FAULT_FLAG_INSTRUCTION;
1211 #ifdef CONFIG_X86_64
1213 * Faults in the vsyscall page might need emulation. The
1214 * vsyscall page is at a high address (>PAGE_OFFSET), but is
1215 * considered to be part of the user address space.
1217 * The vsyscall page does not have a "real" VMA, so do this
1218 * emulation before we go searching for VMAs.
1220 * PKRU never rejects instruction fetches, so we don't need
1221 * to consider the PF_PK bit.
1223 if (is_vsyscall_vaddr(address)) {
1224 if (emulate_vsyscall(hw_error_code, regs, address))
1230 * Kernel-mode access to the user address space should only occur
1231 * on well-defined single instructions listed in the exception
1232 * tables. But, an erroneous kernel fault occurring outside one of
1233 * those areas which also holds mmap_sem might deadlock attempting
1234 * to validate the fault against the address space.
1236 * Only do the expensive exception table search when we might be at
1237 * risk of a deadlock. This happens if we
1238 * 1. Failed to acquire mmap_sem, and
1239 * 2. The access did not originate in userspace.
1241 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1242 if (!user_mode(regs) && !search_exception_tables(regs->ip)) {
1244 * Fault from code in kernel from
1245 * which we do not expect faults.
1247 bad_area_nosemaphore(regs, hw_error_code, address);
1251 down_read(&mm->mmap_sem);
1254 * The above down_read_trylock() might have succeeded in
1255 * which case we'll have missed the might_sleep() from
1261 vma = find_vma(mm, address);
1262 if (unlikely(!vma)) {
1263 bad_area(regs, hw_error_code, address);
1266 if (likely(vma->vm_start <= address))
1268 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1269 bad_area(regs, hw_error_code, address);
1272 if (unlikely(expand_stack(vma, address))) {
1273 bad_area(regs, hw_error_code, address);
1278 * Ok, we have a good vm_area for this memory access, so
1279 * we can handle it..
1282 if (unlikely(access_error(hw_error_code, vma))) {
1283 bad_area_access_error(regs, hw_error_code, address, vma);
1288 * If for any reason at all we couldn't handle the fault,
1289 * make sure we exit gracefully rather than endlessly redo
1290 * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1291 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
1293 * Note that handle_userfault() may also release and reacquire mmap_sem
1294 * (and not return with VM_FAULT_RETRY), when returning to userland to
1295 * repeat the page fault later with a VM_FAULT_NOPAGE retval
1296 * (potentially after handling any pending signal during the return to
1297 * userland). The return to userland is identified whenever
1298 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
1300 fault = handle_mm_fault(vma, address, flags);
1301 major |= fault & VM_FAULT_MAJOR;
1303 /* Quick path to respond to signals */
1304 if (fault_signal_pending(fault, regs)) {
1305 if (!user_mode(regs))
1306 no_context(regs, hw_error_code, address, SIGBUS,
1312 * If we need to retry the mmap_sem has already been released,
1313 * and if there is a fatal signal pending there is no guarantee
1314 * that we made any progress. Handle this case first.
1316 if (unlikely((fault & VM_FAULT_RETRY) &&
1317 (flags & FAULT_FLAG_ALLOW_RETRY))) {
1318 flags |= FAULT_FLAG_TRIED;
1322 up_read(&mm->mmap_sem);
1323 if (unlikely(fault & VM_FAULT_ERROR)) {
1324 mm_fault_error(regs, hw_error_code, address, fault);
1329 * Major/minor page fault accounting. If any of the events
1330 * returned VM_FAULT_MAJOR, we account it as a major fault.
1334 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
1337 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
1340 check_v8086_mode(regs, address, tsk);
1342 NOKPROBE_SYMBOL(do_user_addr_fault);
1344 static __always_inline void
1345 trace_page_fault_entries(struct pt_regs *regs, unsigned long error_code,
1346 unsigned long address)
1348 if (!trace_pagefault_enabled())
1351 if (user_mode(regs))
1352 trace_page_fault_user(address, regs, error_code);
1354 trace_page_fault_kernel(address, regs, error_code);
1358 do_page_fault(struct pt_regs *regs, unsigned long hw_error_code,
1359 unsigned long address)
1361 prefetchw(¤t->mm->mmap_sem);
1362 trace_page_fault_entries(regs, hw_error_code, address);
1364 if (unlikely(kmmio_fault(regs, address)))
1367 /* Was the fault on kernel-controlled part of the address space? */
1368 if (unlikely(fault_in_kernel_space(address)))
1369 do_kern_addr_fault(regs, hw_error_code, address);
1371 do_user_addr_fault(regs, hw_error_code, address);
1373 NOKPROBE_SYMBOL(do_page_fault);