Merge tag 'apparmor-pr-2017-11-30' of git://git.kernel.org/pub/scm/linux/kernel/git...
[platform/kernel/linux-rpi.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "pmu.h"
31 #include "hyperv.h"
32
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/mem_encrypt.h>
58
59 #include <trace/events/kvm.h>
60
61 #include <asm/debugreg.h>
62 #include <asm/msr.h>
63 #include <asm/desc.h>
64 #include <asm/mce.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70
71 #define CREATE_TRACE_POINTS
72 #include "trace.h"
73
74 #define MAX_IO_MSRS 256
75 #define KVM_MAX_MCE_BANKS 32
76 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
77 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
78
79 #define emul_to_vcpu(ctxt) \
80         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
81
82 /* EFER defaults:
83  * - enable syscall per default because its emulated by KVM
84  * - enable LME and LMA per default on 64 bit KVM
85  */
86 #ifdef CONFIG_X86_64
87 static
88 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
89 #else
90 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
91 #endif
92
93 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
94 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
95
96 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
97                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
98
99 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
100 static void process_nmi(struct kvm_vcpu *vcpu);
101 static void enter_smm(struct kvm_vcpu *vcpu);
102 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
103
104 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
105 EXPORT_SYMBOL_GPL(kvm_x86_ops);
106
107 static bool __read_mostly ignore_msrs = 0;
108 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
109
110 static bool __read_mostly report_ignored_msrs = true;
111 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
112
113 unsigned int min_timer_period_us = 500;
114 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
115
116 static bool __read_mostly kvmclock_periodic_sync = true;
117 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
118
119 bool __read_mostly kvm_has_tsc_control;
120 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
121 u32  __read_mostly kvm_max_guest_tsc_khz;
122 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
123 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
124 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
125 u64  __read_mostly kvm_max_tsc_scaling_ratio;
126 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
127 u64 __read_mostly kvm_default_tsc_scaling_ratio;
128 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
129
130 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
131 static u32 __read_mostly tsc_tolerance_ppm = 250;
132 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
133
134 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
135 unsigned int __read_mostly lapic_timer_advance_ns = 0;
136 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
137
138 static bool __read_mostly vector_hashing = true;
139 module_param(vector_hashing, bool, S_IRUGO);
140
141 #define KVM_NR_SHARED_MSRS 16
142
143 struct kvm_shared_msrs_global {
144         int nr;
145         u32 msrs[KVM_NR_SHARED_MSRS];
146 };
147
148 struct kvm_shared_msrs {
149         struct user_return_notifier urn;
150         bool registered;
151         struct kvm_shared_msr_values {
152                 u64 host;
153                 u64 curr;
154         } values[KVM_NR_SHARED_MSRS];
155 };
156
157 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
158 static struct kvm_shared_msrs __percpu *shared_msrs;
159
160 struct kvm_stats_debugfs_item debugfs_entries[] = {
161         { "pf_fixed", VCPU_STAT(pf_fixed) },
162         { "pf_guest", VCPU_STAT(pf_guest) },
163         { "tlb_flush", VCPU_STAT(tlb_flush) },
164         { "invlpg", VCPU_STAT(invlpg) },
165         { "exits", VCPU_STAT(exits) },
166         { "io_exits", VCPU_STAT(io_exits) },
167         { "mmio_exits", VCPU_STAT(mmio_exits) },
168         { "signal_exits", VCPU_STAT(signal_exits) },
169         { "irq_window", VCPU_STAT(irq_window_exits) },
170         { "nmi_window", VCPU_STAT(nmi_window_exits) },
171         { "halt_exits", VCPU_STAT(halt_exits) },
172         { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
173         { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
174         { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
175         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
176         { "hypercalls", VCPU_STAT(hypercalls) },
177         { "request_irq", VCPU_STAT(request_irq_exits) },
178         { "irq_exits", VCPU_STAT(irq_exits) },
179         { "host_state_reload", VCPU_STAT(host_state_reload) },
180         { "efer_reload", VCPU_STAT(efer_reload) },
181         { "fpu_reload", VCPU_STAT(fpu_reload) },
182         { "insn_emulation", VCPU_STAT(insn_emulation) },
183         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
184         { "irq_injections", VCPU_STAT(irq_injections) },
185         { "nmi_injections", VCPU_STAT(nmi_injections) },
186         { "req_event", VCPU_STAT(req_event) },
187         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
188         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
189         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
190         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
191         { "mmu_flooded", VM_STAT(mmu_flooded) },
192         { "mmu_recycled", VM_STAT(mmu_recycled) },
193         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
194         { "mmu_unsync", VM_STAT(mmu_unsync) },
195         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
196         { "largepages", VM_STAT(lpages) },
197         { "max_mmu_page_hash_collisions",
198                 VM_STAT(max_mmu_page_hash_collisions) },
199         { NULL }
200 };
201
202 u64 __read_mostly host_xcr0;
203
204 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
205
206 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
207 {
208         int i;
209         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
210                 vcpu->arch.apf.gfns[i] = ~0;
211 }
212
213 static void kvm_on_user_return(struct user_return_notifier *urn)
214 {
215         unsigned slot;
216         struct kvm_shared_msrs *locals
217                 = container_of(urn, struct kvm_shared_msrs, urn);
218         struct kvm_shared_msr_values *values;
219         unsigned long flags;
220
221         /*
222          * Disabling irqs at this point since the following code could be
223          * interrupted and executed through kvm_arch_hardware_disable()
224          */
225         local_irq_save(flags);
226         if (locals->registered) {
227                 locals->registered = false;
228                 user_return_notifier_unregister(urn);
229         }
230         local_irq_restore(flags);
231         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
232                 values = &locals->values[slot];
233                 if (values->host != values->curr) {
234                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
235                         values->curr = values->host;
236                 }
237         }
238 }
239
240 static void shared_msr_update(unsigned slot, u32 msr)
241 {
242         u64 value;
243         unsigned int cpu = smp_processor_id();
244         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
245
246         /* only read, and nobody should modify it at this time,
247          * so don't need lock */
248         if (slot >= shared_msrs_global.nr) {
249                 printk(KERN_ERR "kvm: invalid MSR slot!");
250                 return;
251         }
252         rdmsrl_safe(msr, &value);
253         smsr->values[slot].host = value;
254         smsr->values[slot].curr = value;
255 }
256
257 void kvm_define_shared_msr(unsigned slot, u32 msr)
258 {
259         BUG_ON(slot >= KVM_NR_SHARED_MSRS);
260         shared_msrs_global.msrs[slot] = msr;
261         if (slot >= shared_msrs_global.nr)
262                 shared_msrs_global.nr = slot + 1;
263 }
264 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
265
266 static void kvm_shared_msr_cpu_online(void)
267 {
268         unsigned i;
269
270         for (i = 0; i < shared_msrs_global.nr; ++i)
271                 shared_msr_update(i, shared_msrs_global.msrs[i]);
272 }
273
274 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
275 {
276         unsigned int cpu = smp_processor_id();
277         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
278         int err;
279
280         if (((value ^ smsr->values[slot].curr) & mask) == 0)
281                 return 0;
282         smsr->values[slot].curr = value;
283         err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
284         if (err)
285                 return 1;
286
287         if (!smsr->registered) {
288                 smsr->urn.on_user_return = kvm_on_user_return;
289                 user_return_notifier_register(&smsr->urn);
290                 smsr->registered = true;
291         }
292         return 0;
293 }
294 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
295
296 static void drop_user_return_notifiers(void)
297 {
298         unsigned int cpu = smp_processor_id();
299         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
300
301         if (smsr->registered)
302                 kvm_on_user_return(&smsr->urn);
303 }
304
305 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
306 {
307         return vcpu->arch.apic_base;
308 }
309 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
310
311 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
312 {
313         u64 old_state = vcpu->arch.apic_base &
314                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
315         u64 new_state = msr_info->data &
316                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
317         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
318                 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
319
320         if ((msr_info->data & reserved_bits) || new_state == X2APIC_ENABLE)
321                 return 1;
322         if (!msr_info->host_initiated &&
323             ((new_state == MSR_IA32_APICBASE_ENABLE &&
324               old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
325              (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
326               old_state == 0)))
327                 return 1;
328
329         kvm_lapic_set_base(vcpu, msr_info->data);
330         return 0;
331 }
332 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
333
334 asmlinkage __visible void kvm_spurious_fault(void)
335 {
336         /* Fault while not rebooting.  We want the trace. */
337         BUG();
338 }
339 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
340
341 #define EXCPT_BENIGN            0
342 #define EXCPT_CONTRIBUTORY      1
343 #define EXCPT_PF                2
344
345 static int exception_class(int vector)
346 {
347         switch (vector) {
348         case PF_VECTOR:
349                 return EXCPT_PF;
350         case DE_VECTOR:
351         case TS_VECTOR:
352         case NP_VECTOR:
353         case SS_VECTOR:
354         case GP_VECTOR:
355                 return EXCPT_CONTRIBUTORY;
356         default:
357                 break;
358         }
359         return EXCPT_BENIGN;
360 }
361
362 #define EXCPT_FAULT             0
363 #define EXCPT_TRAP              1
364 #define EXCPT_ABORT             2
365 #define EXCPT_INTERRUPT         3
366
367 static int exception_type(int vector)
368 {
369         unsigned int mask;
370
371         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
372                 return EXCPT_INTERRUPT;
373
374         mask = 1 << vector;
375
376         /* #DB is trap, as instruction watchpoints are handled elsewhere */
377         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
378                 return EXCPT_TRAP;
379
380         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
381                 return EXCPT_ABORT;
382
383         /* Reserved exceptions will result in fault */
384         return EXCPT_FAULT;
385 }
386
387 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
388                 unsigned nr, bool has_error, u32 error_code,
389                 bool reinject)
390 {
391         u32 prev_nr;
392         int class1, class2;
393
394         kvm_make_request(KVM_REQ_EVENT, vcpu);
395
396         if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
397         queue:
398                 if (has_error && !is_protmode(vcpu))
399                         has_error = false;
400                 if (reinject) {
401                         /*
402                          * On vmentry, vcpu->arch.exception.pending is only
403                          * true if an event injection was blocked by
404                          * nested_run_pending.  In that case, however,
405                          * vcpu_enter_guest requests an immediate exit,
406                          * and the guest shouldn't proceed far enough to
407                          * need reinjection.
408                          */
409                         WARN_ON_ONCE(vcpu->arch.exception.pending);
410                         vcpu->arch.exception.injected = true;
411                 } else {
412                         vcpu->arch.exception.pending = true;
413                         vcpu->arch.exception.injected = false;
414                 }
415                 vcpu->arch.exception.has_error_code = has_error;
416                 vcpu->arch.exception.nr = nr;
417                 vcpu->arch.exception.error_code = error_code;
418                 return;
419         }
420
421         /* to check exception */
422         prev_nr = vcpu->arch.exception.nr;
423         if (prev_nr == DF_VECTOR) {
424                 /* triple fault -> shutdown */
425                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
426                 return;
427         }
428         class1 = exception_class(prev_nr);
429         class2 = exception_class(nr);
430         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
431                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
432                 /*
433                  * Generate double fault per SDM Table 5-5.  Set
434                  * exception.pending = true so that the double fault
435                  * can trigger a nested vmexit.
436                  */
437                 vcpu->arch.exception.pending = true;
438                 vcpu->arch.exception.injected = false;
439                 vcpu->arch.exception.has_error_code = true;
440                 vcpu->arch.exception.nr = DF_VECTOR;
441                 vcpu->arch.exception.error_code = 0;
442         } else
443                 /* replace previous exception with a new one in a hope
444                    that instruction re-execution will regenerate lost
445                    exception */
446                 goto queue;
447 }
448
449 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
450 {
451         kvm_multiple_exception(vcpu, nr, false, 0, false);
452 }
453 EXPORT_SYMBOL_GPL(kvm_queue_exception);
454
455 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
456 {
457         kvm_multiple_exception(vcpu, nr, false, 0, true);
458 }
459 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
460
461 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
462 {
463         if (err)
464                 kvm_inject_gp(vcpu, 0);
465         else
466                 return kvm_skip_emulated_instruction(vcpu);
467
468         return 1;
469 }
470 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
471
472 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
473 {
474         ++vcpu->stat.pf_guest;
475         vcpu->arch.exception.nested_apf =
476                 is_guest_mode(vcpu) && fault->async_page_fault;
477         if (vcpu->arch.exception.nested_apf)
478                 vcpu->arch.apf.nested_apf_token = fault->address;
479         else
480                 vcpu->arch.cr2 = fault->address;
481         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
482 }
483 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
484
485 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
486 {
487         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
488                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
489         else
490                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
491
492         return fault->nested_page_fault;
493 }
494
495 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
496 {
497         atomic_inc(&vcpu->arch.nmi_queued);
498         kvm_make_request(KVM_REQ_NMI, vcpu);
499 }
500 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
501
502 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
503 {
504         kvm_multiple_exception(vcpu, nr, true, error_code, false);
505 }
506 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
507
508 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
509 {
510         kvm_multiple_exception(vcpu, nr, true, error_code, true);
511 }
512 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
513
514 /*
515  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
516  * a #GP and return false.
517  */
518 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
519 {
520         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
521                 return true;
522         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
523         return false;
524 }
525 EXPORT_SYMBOL_GPL(kvm_require_cpl);
526
527 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
528 {
529         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
530                 return true;
531
532         kvm_queue_exception(vcpu, UD_VECTOR);
533         return false;
534 }
535 EXPORT_SYMBOL_GPL(kvm_require_dr);
536
537 /*
538  * This function will be used to read from the physical memory of the currently
539  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
540  * can read from guest physical or from the guest's guest physical memory.
541  */
542 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
543                             gfn_t ngfn, void *data, int offset, int len,
544                             u32 access)
545 {
546         struct x86_exception exception;
547         gfn_t real_gfn;
548         gpa_t ngpa;
549
550         ngpa     = gfn_to_gpa(ngfn);
551         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
552         if (real_gfn == UNMAPPED_GVA)
553                 return -EFAULT;
554
555         real_gfn = gpa_to_gfn(real_gfn);
556
557         return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
558 }
559 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
560
561 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
562                                void *data, int offset, int len, u32 access)
563 {
564         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
565                                        data, offset, len, access);
566 }
567
568 /*
569  * Load the pae pdptrs.  Return true is they are all valid.
570  */
571 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
572 {
573         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
574         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
575         int i;
576         int ret;
577         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
578
579         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
580                                       offset * sizeof(u64), sizeof(pdpte),
581                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
582         if (ret < 0) {
583                 ret = 0;
584                 goto out;
585         }
586         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
587                 if ((pdpte[i] & PT_PRESENT_MASK) &&
588                     (pdpte[i] &
589                      vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
590                         ret = 0;
591                         goto out;
592                 }
593         }
594         ret = 1;
595
596         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
597         __set_bit(VCPU_EXREG_PDPTR,
598                   (unsigned long *)&vcpu->arch.regs_avail);
599         __set_bit(VCPU_EXREG_PDPTR,
600                   (unsigned long *)&vcpu->arch.regs_dirty);
601 out:
602
603         return ret;
604 }
605 EXPORT_SYMBOL_GPL(load_pdptrs);
606
607 bool pdptrs_changed(struct kvm_vcpu *vcpu)
608 {
609         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
610         bool changed = true;
611         int offset;
612         gfn_t gfn;
613         int r;
614
615         if (is_long_mode(vcpu) || !is_pae(vcpu))
616                 return false;
617
618         if (!test_bit(VCPU_EXREG_PDPTR,
619                       (unsigned long *)&vcpu->arch.regs_avail))
620                 return true;
621
622         gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
623         offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
624         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
625                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
626         if (r < 0)
627                 goto out;
628         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
629 out:
630
631         return changed;
632 }
633 EXPORT_SYMBOL_GPL(pdptrs_changed);
634
635 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
636 {
637         unsigned long old_cr0 = kvm_read_cr0(vcpu);
638         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
639
640         cr0 |= X86_CR0_ET;
641
642 #ifdef CONFIG_X86_64
643         if (cr0 & 0xffffffff00000000UL)
644                 return 1;
645 #endif
646
647         cr0 &= ~CR0_RESERVED_BITS;
648
649         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
650                 return 1;
651
652         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
653                 return 1;
654
655         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
656 #ifdef CONFIG_X86_64
657                 if ((vcpu->arch.efer & EFER_LME)) {
658                         int cs_db, cs_l;
659
660                         if (!is_pae(vcpu))
661                                 return 1;
662                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
663                         if (cs_l)
664                                 return 1;
665                 } else
666 #endif
667                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
668                                                  kvm_read_cr3(vcpu)))
669                         return 1;
670         }
671
672         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
673                 return 1;
674
675         kvm_x86_ops->set_cr0(vcpu, cr0);
676
677         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
678                 kvm_clear_async_pf_completion_queue(vcpu);
679                 kvm_async_pf_hash_reset(vcpu);
680         }
681
682         if ((cr0 ^ old_cr0) & update_bits)
683                 kvm_mmu_reset_context(vcpu);
684
685         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
686             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
687             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
688                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
689
690         return 0;
691 }
692 EXPORT_SYMBOL_GPL(kvm_set_cr0);
693
694 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
695 {
696         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
697 }
698 EXPORT_SYMBOL_GPL(kvm_lmsw);
699
700 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
701 {
702         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
703                         !vcpu->guest_xcr0_loaded) {
704                 /* kvm_set_xcr() also depends on this */
705                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
706                 vcpu->guest_xcr0_loaded = 1;
707         }
708 }
709
710 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
711 {
712         if (vcpu->guest_xcr0_loaded) {
713                 if (vcpu->arch.xcr0 != host_xcr0)
714                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
715                 vcpu->guest_xcr0_loaded = 0;
716         }
717 }
718
719 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
720 {
721         u64 xcr0 = xcr;
722         u64 old_xcr0 = vcpu->arch.xcr0;
723         u64 valid_bits;
724
725         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
726         if (index != XCR_XFEATURE_ENABLED_MASK)
727                 return 1;
728         if (!(xcr0 & XFEATURE_MASK_FP))
729                 return 1;
730         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
731                 return 1;
732
733         /*
734          * Do not allow the guest to set bits that we do not support
735          * saving.  However, xcr0 bit 0 is always set, even if the
736          * emulated CPU does not support XSAVE (see fx_init).
737          */
738         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
739         if (xcr0 & ~valid_bits)
740                 return 1;
741
742         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
743             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
744                 return 1;
745
746         if (xcr0 & XFEATURE_MASK_AVX512) {
747                 if (!(xcr0 & XFEATURE_MASK_YMM))
748                         return 1;
749                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
750                         return 1;
751         }
752         vcpu->arch.xcr0 = xcr0;
753
754         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
755                 kvm_update_cpuid(vcpu);
756         return 0;
757 }
758
759 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
760 {
761         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
762             __kvm_set_xcr(vcpu, index, xcr)) {
763                 kvm_inject_gp(vcpu, 0);
764                 return 1;
765         }
766         return 0;
767 }
768 EXPORT_SYMBOL_GPL(kvm_set_xcr);
769
770 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
771 {
772         unsigned long old_cr4 = kvm_read_cr4(vcpu);
773         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
774                                    X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
775
776         if (cr4 & CR4_RESERVED_BITS)
777                 return 1;
778
779         if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE))
780                 return 1;
781
782         if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP))
783                 return 1;
784
785         if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP))
786                 return 1;
787
788         if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE))
789                 return 1;
790
791         if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE))
792                 return 1;
793
794         if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57))
795                 return 1;
796
797         if (is_long_mode(vcpu)) {
798                 if (!(cr4 & X86_CR4_PAE))
799                         return 1;
800         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
801                    && ((cr4 ^ old_cr4) & pdptr_bits)
802                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
803                                    kvm_read_cr3(vcpu)))
804                 return 1;
805
806         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
807                 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
808                         return 1;
809
810                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
811                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
812                         return 1;
813         }
814
815         if (kvm_x86_ops->set_cr4(vcpu, cr4))
816                 return 1;
817
818         if (((cr4 ^ old_cr4) & pdptr_bits) ||
819             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
820                 kvm_mmu_reset_context(vcpu);
821
822         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
823                 kvm_update_cpuid(vcpu);
824
825         return 0;
826 }
827 EXPORT_SYMBOL_GPL(kvm_set_cr4);
828
829 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
830 {
831 #ifdef CONFIG_X86_64
832         cr3 &= ~CR3_PCID_INVD;
833 #endif
834
835         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
836                 kvm_mmu_sync_roots(vcpu);
837                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
838                 return 0;
839         }
840
841         if (is_long_mode(vcpu) &&
842             (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 62)))
843                 return 1;
844         else if (is_pae(vcpu) && is_paging(vcpu) &&
845                    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
846                 return 1;
847
848         vcpu->arch.cr3 = cr3;
849         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
850         kvm_mmu_new_cr3(vcpu);
851         return 0;
852 }
853 EXPORT_SYMBOL_GPL(kvm_set_cr3);
854
855 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
856 {
857         if (cr8 & CR8_RESERVED_BITS)
858                 return 1;
859         if (lapic_in_kernel(vcpu))
860                 kvm_lapic_set_tpr(vcpu, cr8);
861         else
862                 vcpu->arch.cr8 = cr8;
863         return 0;
864 }
865 EXPORT_SYMBOL_GPL(kvm_set_cr8);
866
867 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
868 {
869         if (lapic_in_kernel(vcpu))
870                 return kvm_lapic_get_cr8(vcpu);
871         else
872                 return vcpu->arch.cr8;
873 }
874 EXPORT_SYMBOL_GPL(kvm_get_cr8);
875
876 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
877 {
878         int i;
879
880         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
881                 for (i = 0; i < KVM_NR_DB_REGS; i++)
882                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
883                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
884         }
885 }
886
887 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
888 {
889         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
890                 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
891 }
892
893 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
894 {
895         unsigned long dr7;
896
897         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
898                 dr7 = vcpu->arch.guest_debug_dr7;
899         else
900                 dr7 = vcpu->arch.dr7;
901         kvm_x86_ops->set_dr7(vcpu, dr7);
902         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
903         if (dr7 & DR7_BP_EN_MASK)
904                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
905 }
906
907 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
908 {
909         u64 fixed = DR6_FIXED_1;
910
911         if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
912                 fixed |= DR6_RTM;
913         return fixed;
914 }
915
916 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
917 {
918         switch (dr) {
919         case 0 ... 3:
920                 vcpu->arch.db[dr] = val;
921                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
922                         vcpu->arch.eff_db[dr] = val;
923                 break;
924         case 4:
925                 /* fall through */
926         case 6:
927                 if (val & 0xffffffff00000000ULL)
928                         return -1; /* #GP */
929                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
930                 kvm_update_dr6(vcpu);
931                 break;
932         case 5:
933                 /* fall through */
934         default: /* 7 */
935                 if (val & 0xffffffff00000000ULL)
936                         return -1; /* #GP */
937                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
938                 kvm_update_dr7(vcpu);
939                 break;
940         }
941
942         return 0;
943 }
944
945 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
946 {
947         if (__kvm_set_dr(vcpu, dr, val)) {
948                 kvm_inject_gp(vcpu, 0);
949                 return 1;
950         }
951         return 0;
952 }
953 EXPORT_SYMBOL_GPL(kvm_set_dr);
954
955 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
956 {
957         switch (dr) {
958         case 0 ... 3:
959                 *val = vcpu->arch.db[dr];
960                 break;
961         case 4:
962                 /* fall through */
963         case 6:
964                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
965                         *val = vcpu->arch.dr6;
966                 else
967                         *val = kvm_x86_ops->get_dr6(vcpu);
968                 break;
969         case 5:
970                 /* fall through */
971         default: /* 7 */
972                 *val = vcpu->arch.dr7;
973                 break;
974         }
975         return 0;
976 }
977 EXPORT_SYMBOL_GPL(kvm_get_dr);
978
979 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
980 {
981         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
982         u64 data;
983         int err;
984
985         err = kvm_pmu_rdpmc(vcpu, ecx, &data);
986         if (err)
987                 return err;
988         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
989         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
990         return err;
991 }
992 EXPORT_SYMBOL_GPL(kvm_rdpmc);
993
994 /*
995  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
996  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
997  *
998  * This list is modified at module load time to reflect the
999  * capabilities of the host cpu. This capabilities test skips MSRs that are
1000  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
1001  * may depend on host virtualization features rather than host cpu features.
1002  */
1003
1004 static u32 msrs_to_save[] = {
1005         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1006         MSR_STAR,
1007 #ifdef CONFIG_X86_64
1008         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1009 #endif
1010         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1011         MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1012 };
1013
1014 static unsigned num_msrs_to_save;
1015
1016 static u32 emulated_msrs[] = {
1017         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1018         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1019         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1020         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1021         HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1022         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1023         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1024         HV_X64_MSR_RESET,
1025         HV_X64_MSR_VP_INDEX,
1026         HV_X64_MSR_VP_RUNTIME,
1027         HV_X64_MSR_SCONTROL,
1028         HV_X64_MSR_STIMER0_CONFIG,
1029         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1030         MSR_KVM_PV_EOI_EN,
1031
1032         MSR_IA32_TSC_ADJUST,
1033         MSR_IA32_TSCDEADLINE,
1034         MSR_IA32_MISC_ENABLE,
1035         MSR_IA32_MCG_STATUS,
1036         MSR_IA32_MCG_CTL,
1037         MSR_IA32_MCG_EXT_CTL,
1038         MSR_IA32_SMBASE,
1039         MSR_PLATFORM_INFO,
1040         MSR_MISC_FEATURES_ENABLES,
1041 };
1042
1043 static unsigned num_emulated_msrs;
1044
1045 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1046 {
1047         if (efer & efer_reserved_bits)
1048                 return false;
1049
1050         if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1051                         return false;
1052
1053         if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1054                         return false;
1055
1056         return true;
1057 }
1058 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1059
1060 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1061 {
1062         u64 old_efer = vcpu->arch.efer;
1063
1064         if (!kvm_valid_efer(vcpu, efer))
1065                 return 1;
1066
1067         if (is_paging(vcpu)
1068             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1069                 return 1;
1070
1071         efer &= ~EFER_LMA;
1072         efer |= vcpu->arch.efer & EFER_LMA;
1073
1074         kvm_x86_ops->set_efer(vcpu, efer);
1075
1076         /* Update reserved bits */
1077         if ((efer ^ old_efer) & EFER_NX)
1078                 kvm_mmu_reset_context(vcpu);
1079
1080         return 0;
1081 }
1082
1083 void kvm_enable_efer_bits(u64 mask)
1084 {
1085        efer_reserved_bits &= ~mask;
1086 }
1087 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1088
1089 /*
1090  * Writes msr value into into the appropriate "register".
1091  * Returns 0 on success, non-0 otherwise.
1092  * Assumes vcpu_load() was already called.
1093  */
1094 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1095 {
1096         switch (msr->index) {
1097         case MSR_FS_BASE:
1098         case MSR_GS_BASE:
1099         case MSR_KERNEL_GS_BASE:
1100         case MSR_CSTAR:
1101         case MSR_LSTAR:
1102                 if (is_noncanonical_address(msr->data, vcpu))
1103                         return 1;
1104                 break;
1105         case MSR_IA32_SYSENTER_EIP:
1106         case MSR_IA32_SYSENTER_ESP:
1107                 /*
1108                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1109                  * non-canonical address is written on Intel but not on
1110                  * AMD (which ignores the top 32-bits, because it does
1111                  * not implement 64-bit SYSENTER).
1112                  *
1113                  * 64-bit code should hence be able to write a non-canonical
1114                  * value on AMD.  Making the address canonical ensures that
1115                  * vmentry does not fail on Intel after writing a non-canonical
1116                  * value, and that something deterministic happens if the guest
1117                  * invokes 64-bit SYSENTER.
1118                  */
1119                 msr->data = get_canonical(msr->data, vcpu_virt_addr_bits(vcpu));
1120         }
1121         return kvm_x86_ops->set_msr(vcpu, msr);
1122 }
1123 EXPORT_SYMBOL_GPL(kvm_set_msr);
1124
1125 /*
1126  * Adapt set_msr() to msr_io()'s calling convention
1127  */
1128 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1129 {
1130         struct msr_data msr;
1131         int r;
1132
1133         msr.index = index;
1134         msr.host_initiated = true;
1135         r = kvm_get_msr(vcpu, &msr);
1136         if (r)
1137                 return r;
1138
1139         *data = msr.data;
1140         return 0;
1141 }
1142
1143 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1144 {
1145         struct msr_data msr;
1146
1147         msr.data = *data;
1148         msr.index = index;
1149         msr.host_initiated = true;
1150         return kvm_set_msr(vcpu, &msr);
1151 }
1152
1153 #ifdef CONFIG_X86_64
1154 struct pvclock_gtod_data {
1155         seqcount_t      seq;
1156
1157         struct { /* extract of a clocksource struct */
1158                 int vclock_mode;
1159                 u64     cycle_last;
1160                 u64     mask;
1161                 u32     mult;
1162                 u32     shift;
1163         } clock;
1164
1165         u64             boot_ns;
1166         u64             nsec_base;
1167         u64             wall_time_sec;
1168 };
1169
1170 static struct pvclock_gtod_data pvclock_gtod_data;
1171
1172 static void update_pvclock_gtod(struct timekeeper *tk)
1173 {
1174         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1175         u64 boot_ns;
1176
1177         boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1178
1179         write_seqcount_begin(&vdata->seq);
1180
1181         /* copy pvclock gtod data */
1182         vdata->clock.vclock_mode        = tk->tkr_mono.clock->archdata.vclock_mode;
1183         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1184         vdata->clock.mask               = tk->tkr_mono.mask;
1185         vdata->clock.mult               = tk->tkr_mono.mult;
1186         vdata->clock.shift              = tk->tkr_mono.shift;
1187
1188         vdata->boot_ns                  = boot_ns;
1189         vdata->nsec_base                = tk->tkr_mono.xtime_nsec;
1190
1191         vdata->wall_time_sec            = tk->xtime_sec;
1192
1193         write_seqcount_end(&vdata->seq);
1194 }
1195 #endif
1196
1197 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1198 {
1199         /*
1200          * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1201          * vcpu_enter_guest.  This function is only called from
1202          * the physical CPU that is running vcpu.
1203          */
1204         kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1205 }
1206
1207 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1208 {
1209         int version;
1210         int r;
1211         struct pvclock_wall_clock wc;
1212         struct timespec64 boot;
1213
1214         if (!wall_clock)
1215                 return;
1216
1217         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1218         if (r)
1219                 return;
1220
1221         if (version & 1)
1222                 ++version;  /* first time write, random junk */
1223
1224         ++version;
1225
1226         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1227                 return;
1228
1229         /*
1230          * The guest calculates current wall clock time by adding
1231          * system time (updated by kvm_guest_time_update below) to the
1232          * wall clock specified here.  guest system time equals host
1233          * system time for us, thus we must fill in host boot time here.
1234          */
1235         getboottime64(&boot);
1236
1237         if (kvm->arch.kvmclock_offset) {
1238                 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1239                 boot = timespec64_sub(boot, ts);
1240         }
1241         wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1242         wc.nsec = boot.tv_nsec;
1243         wc.version = version;
1244
1245         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1246
1247         version++;
1248         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1249 }
1250
1251 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1252 {
1253         do_shl32_div32(dividend, divisor);
1254         return dividend;
1255 }
1256
1257 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1258                                s8 *pshift, u32 *pmultiplier)
1259 {
1260         uint64_t scaled64;
1261         int32_t  shift = 0;
1262         uint64_t tps64;
1263         uint32_t tps32;
1264
1265         tps64 = base_hz;
1266         scaled64 = scaled_hz;
1267         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1268                 tps64 >>= 1;
1269                 shift--;
1270         }
1271
1272         tps32 = (uint32_t)tps64;
1273         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1274                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1275                         scaled64 >>= 1;
1276                 else
1277                         tps32 <<= 1;
1278                 shift++;
1279         }
1280
1281         *pshift = shift;
1282         *pmultiplier = div_frac(scaled64, tps32);
1283
1284         pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1285                  __func__, base_hz, scaled_hz, shift, *pmultiplier);
1286 }
1287
1288 #ifdef CONFIG_X86_64
1289 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1290 #endif
1291
1292 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1293 static unsigned long max_tsc_khz;
1294
1295 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1296 {
1297         u64 v = (u64)khz * (1000000 + ppm);
1298         do_div(v, 1000000);
1299         return v;
1300 }
1301
1302 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1303 {
1304         u64 ratio;
1305
1306         /* Guest TSC same frequency as host TSC? */
1307         if (!scale) {
1308                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1309                 return 0;
1310         }
1311
1312         /* TSC scaling supported? */
1313         if (!kvm_has_tsc_control) {
1314                 if (user_tsc_khz > tsc_khz) {
1315                         vcpu->arch.tsc_catchup = 1;
1316                         vcpu->arch.tsc_always_catchup = 1;
1317                         return 0;
1318                 } else {
1319                         WARN(1, "user requested TSC rate below hardware speed\n");
1320                         return -1;
1321                 }
1322         }
1323
1324         /* TSC scaling required  - calculate ratio */
1325         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1326                                 user_tsc_khz, tsc_khz);
1327
1328         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1329                 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1330                           user_tsc_khz);
1331                 return -1;
1332         }
1333
1334         vcpu->arch.tsc_scaling_ratio = ratio;
1335         return 0;
1336 }
1337
1338 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1339 {
1340         u32 thresh_lo, thresh_hi;
1341         int use_scaling = 0;
1342
1343         /* tsc_khz can be zero if TSC calibration fails */
1344         if (user_tsc_khz == 0) {
1345                 /* set tsc_scaling_ratio to a safe value */
1346                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1347                 return -1;
1348         }
1349
1350         /* Compute a scale to convert nanoseconds in TSC cycles */
1351         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1352                            &vcpu->arch.virtual_tsc_shift,
1353                            &vcpu->arch.virtual_tsc_mult);
1354         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1355
1356         /*
1357          * Compute the variation in TSC rate which is acceptable
1358          * within the range of tolerance and decide if the
1359          * rate being applied is within that bounds of the hardware
1360          * rate.  If so, no scaling or compensation need be done.
1361          */
1362         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1363         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1364         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1365                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1366                 use_scaling = 1;
1367         }
1368         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1369 }
1370
1371 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1372 {
1373         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1374                                       vcpu->arch.virtual_tsc_mult,
1375                                       vcpu->arch.virtual_tsc_shift);
1376         tsc += vcpu->arch.this_tsc_write;
1377         return tsc;
1378 }
1379
1380 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1381 {
1382 #ifdef CONFIG_X86_64
1383         bool vcpus_matched;
1384         struct kvm_arch *ka = &vcpu->kvm->arch;
1385         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1386
1387         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1388                          atomic_read(&vcpu->kvm->online_vcpus));
1389
1390         /*
1391          * Once the masterclock is enabled, always perform request in
1392          * order to update it.
1393          *
1394          * In order to enable masterclock, the host clocksource must be TSC
1395          * and the vcpus need to have matched TSCs.  When that happens,
1396          * perform request to enable masterclock.
1397          */
1398         if (ka->use_master_clock ||
1399             (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1400                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1401
1402         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1403                             atomic_read(&vcpu->kvm->online_vcpus),
1404                             ka->use_master_clock, gtod->clock.vclock_mode);
1405 #endif
1406 }
1407
1408 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1409 {
1410         u64 curr_offset = vcpu->arch.tsc_offset;
1411         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1412 }
1413
1414 /*
1415  * Multiply tsc by a fixed point number represented by ratio.
1416  *
1417  * The most significant 64-N bits (mult) of ratio represent the
1418  * integral part of the fixed point number; the remaining N bits
1419  * (frac) represent the fractional part, ie. ratio represents a fixed
1420  * point number (mult + frac * 2^(-N)).
1421  *
1422  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1423  */
1424 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1425 {
1426         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1427 }
1428
1429 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1430 {
1431         u64 _tsc = tsc;
1432         u64 ratio = vcpu->arch.tsc_scaling_ratio;
1433
1434         if (ratio != kvm_default_tsc_scaling_ratio)
1435                 _tsc = __scale_tsc(ratio, tsc);
1436
1437         return _tsc;
1438 }
1439 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1440
1441 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1442 {
1443         u64 tsc;
1444
1445         tsc = kvm_scale_tsc(vcpu, rdtsc());
1446
1447         return target_tsc - tsc;
1448 }
1449
1450 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1451 {
1452         return vcpu->arch.tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1453 }
1454 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1455
1456 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1457 {
1458         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1459         vcpu->arch.tsc_offset = offset;
1460 }
1461
1462 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1463 {
1464         struct kvm *kvm = vcpu->kvm;
1465         u64 offset, ns, elapsed;
1466         unsigned long flags;
1467         bool matched;
1468         bool already_matched;
1469         u64 data = msr->data;
1470         bool synchronizing = false;
1471
1472         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1473         offset = kvm_compute_tsc_offset(vcpu, data);
1474         ns = ktime_get_boot_ns();
1475         elapsed = ns - kvm->arch.last_tsc_nsec;
1476
1477         if (vcpu->arch.virtual_tsc_khz) {
1478                 if (data == 0 && msr->host_initiated) {
1479                         /*
1480                          * detection of vcpu initialization -- need to sync
1481                          * with other vCPUs. This particularly helps to keep
1482                          * kvm_clock stable after CPU hotplug
1483                          */
1484                         synchronizing = true;
1485                 } else {
1486                         u64 tsc_exp = kvm->arch.last_tsc_write +
1487                                                 nsec_to_cycles(vcpu, elapsed);
1488                         u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1489                         /*
1490                          * Special case: TSC write with a small delta (1 second)
1491                          * of virtual cycle time against real time is
1492                          * interpreted as an attempt to synchronize the CPU.
1493                          */
1494                         synchronizing = data < tsc_exp + tsc_hz &&
1495                                         data + tsc_hz > tsc_exp;
1496                 }
1497         }
1498
1499         /*
1500          * For a reliable TSC, we can match TSC offsets, and for an unstable
1501          * TSC, we add elapsed time in this computation.  We could let the
1502          * compensation code attempt to catch up if we fall behind, but
1503          * it's better to try to match offsets from the beginning.
1504          */
1505         if (synchronizing &&
1506             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1507                 if (!check_tsc_unstable()) {
1508                         offset = kvm->arch.cur_tsc_offset;
1509                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1510                 } else {
1511                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1512                         data += delta;
1513                         offset = kvm_compute_tsc_offset(vcpu, data);
1514                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1515                 }
1516                 matched = true;
1517                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1518         } else {
1519                 /*
1520                  * We split periods of matched TSC writes into generations.
1521                  * For each generation, we track the original measured
1522                  * nanosecond time, offset, and write, so if TSCs are in
1523                  * sync, we can match exact offset, and if not, we can match
1524                  * exact software computation in compute_guest_tsc()
1525                  *
1526                  * These values are tracked in kvm->arch.cur_xxx variables.
1527                  */
1528                 kvm->arch.cur_tsc_generation++;
1529                 kvm->arch.cur_tsc_nsec = ns;
1530                 kvm->arch.cur_tsc_write = data;
1531                 kvm->arch.cur_tsc_offset = offset;
1532                 matched = false;
1533                 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1534                          kvm->arch.cur_tsc_generation, data);
1535         }
1536
1537         /*
1538          * We also track th most recent recorded KHZ, write and time to
1539          * allow the matching interval to be extended at each write.
1540          */
1541         kvm->arch.last_tsc_nsec = ns;
1542         kvm->arch.last_tsc_write = data;
1543         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1544
1545         vcpu->arch.last_guest_tsc = data;
1546
1547         /* Keep track of which generation this VCPU has synchronized to */
1548         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1549         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1550         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1551
1552         if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
1553                 update_ia32_tsc_adjust_msr(vcpu, offset);
1554
1555         kvm_vcpu_write_tsc_offset(vcpu, offset);
1556         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1557
1558         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1559         if (!matched) {
1560                 kvm->arch.nr_vcpus_matched_tsc = 0;
1561         } else if (!already_matched) {
1562                 kvm->arch.nr_vcpus_matched_tsc++;
1563         }
1564
1565         kvm_track_tsc_matching(vcpu);
1566         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1567 }
1568
1569 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1570
1571 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1572                                            s64 adjustment)
1573 {
1574         kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment);
1575 }
1576
1577 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1578 {
1579         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1580                 WARN_ON(adjustment < 0);
1581         adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1582         adjust_tsc_offset_guest(vcpu, adjustment);
1583 }
1584
1585 #ifdef CONFIG_X86_64
1586
1587 static u64 read_tsc(void)
1588 {
1589         u64 ret = (u64)rdtsc_ordered();
1590         u64 last = pvclock_gtod_data.clock.cycle_last;
1591
1592         if (likely(ret >= last))
1593                 return ret;
1594
1595         /*
1596          * GCC likes to generate cmov here, but this branch is extremely
1597          * predictable (it's just a function of time and the likely is
1598          * very likely) and there's a data dependence, so force GCC
1599          * to generate a branch instead.  I don't barrier() because
1600          * we don't actually need a barrier, and if this function
1601          * ever gets inlined it will generate worse code.
1602          */
1603         asm volatile ("");
1604         return last;
1605 }
1606
1607 static inline u64 vgettsc(u64 *cycle_now)
1608 {
1609         long v;
1610         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1611
1612         *cycle_now = read_tsc();
1613
1614         v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1615         return v * gtod->clock.mult;
1616 }
1617
1618 static int do_monotonic_boot(s64 *t, u64 *cycle_now)
1619 {
1620         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1621         unsigned long seq;
1622         int mode;
1623         u64 ns;
1624
1625         do {
1626                 seq = read_seqcount_begin(&gtod->seq);
1627                 mode = gtod->clock.vclock_mode;
1628                 ns = gtod->nsec_base;
1629                 ns += vgettsc(cycle_now);
1630                 ns >>= gtod->clock.shift;
1631                 ns += gtod->boot_ns;
1632         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1633         *t = ns;
1634
1635         return mode;
1636 }
1637
1638 static int do_realtime(struct timespec *ts, u64 *cycle_now)
1639 {
1640         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1641         unsigned long seq;
1642         int mode;
1643         u64 ns;
1644
1645         do {
1646                 seq = read_seqcount_begin(&gtod->seq);
1647                 mode = gtod->clock.vclock_mode;
1648                 ts->tv_sec = gtod->wall_time_sec;
1649                 ns = gtod->nsec_base;
1650                 ns += vgettsc(cycle_now);
1651                 ns >>= gtod->clock.shift;
1652         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1653
1654         ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1655         ts->tv_nsec = ns;
1656
1657         return mode;
1658 }
1659
1660 /* returns true if host is using tsc clocksource */
1661 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *cycle_now)
1662 {
1663         /* checked again under seqlock below */
1664         if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1665                 return false;
1666
1667         return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1668 }
1669
1670 /* returns true if host is using tsc clocksource */
1671 static bool kvm_get_walltime_and_clockread(struct timespec *ts,
1672                                            u64 *cycle_now)
1673 {
1674         /* checked again under seqlock below */
1675         if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1676                 return false;
1677
1678         return do_realtime(ts, cycle_now) == VCLOCK_TSC;
1679 }
1680 #endif
1681
1682 /*
1683  *
1684  * Assuming a stable TSC across physical CPUS, and a stable TSC
1685  * across virtual CPUs, the following condition is possible.
1686  * Each numbered line represents an event visible to both
1687  * CPUs at the next numbered event.
1688  *
1689  * "timespecX" represents host monotonic time. "tscX" represents
1690  * RDTSC value.
1691  *
1692  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1693  *
1694  * 1.  read timespec0,tsc0
1695  * 2.                                   | timespec1 = timespec0 + N
1696  *                                      | tsc1 = tsc0 + M
1697  * 3. transition to guest               | transition to guest
1698  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1699  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1700  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1701  *
1702  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1703  *
1704  *      - ret0 < ret1
1705  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1706  *              ...
1707  *      - 0 < N - M => M < N
1708  *
1709  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1710  * always the case (the difference between two distinct xtime instances
1711  * might be smaller then the difference between corresponding TSC reads,
1712  * when updating guest vcpus pvclock areas).
1713  *
1714  * To avoid that problem, do not allow visibility of distinct
1715  * system_timestamp/tsc_timestamp values simultaneously: use a master
1716  * copy of host monotonic time values. Update that master copy
1717  * in lockstep.
1718  *
1719  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1720  *
1721  */
1722
1723 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1724 {
1725 #ifdef CONFIG_X86_64
1726         struct kvm_arch *ka = &kvm->arch;
1727         int vclock_mode;
1728         bool host_tsc_clocksource, vcpus_matched;
1729
1730         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1731                         atomic_read(&kvm->online_vcpus));
1732
1733         /*
1734          * If the host uses TSC clock, then passthrough TSC as stable
1735          * to the guest.
1736          */
1737         host_tsc_clocksource = kvm_get_time_and_clockread(
1738                                         &ka->master_kernel_ns,
1739                                         &ka->master_cycle_now);
1740
1741         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1742                                 && !ka->backwards_tsc_observed
1743                                 && !ka->boot_vcpu_runs_old_kvmclock;
1744
1745         if (ka->use_master_clock)
1746                 atomic_set(&kvm_guest_has_master_clock, 1);
1747
1748         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1749         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1750                                         vcpus_matched);
1751 #endif
1752 }
1753
1754 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1755 {
1756         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1757 }
1758
1759 static void kvm_gen_update_masterclock(struct kvm *kvm)
1760 {
1761 #ifdef CONFIG_X86_64
1762         int i;
1763         struct kvm_vcpu *vcpu;
1764         struct kvm_arch *ka = &kvm->arch;
1765
1766         spin_lock(&ka->pvclock_gtod_sync_lock);
1767         kvm_make_mclock_inprogress_request(kvm);
1768         /* no guest entries from this point */
1769         pvclock_update_vm_gtod_copy(kvm);
1770
1771         kvm_for_each_vcpu(i, vcpu, kvm)
1772                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1773
1774         /* guest entries allowed */
1775         kvm_for_each_vcpu(i, vcpu, kvm)
1776                 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
1777
1778         spin_unlock(&ka->pvclock_gtod_sync_lock);
1779 #endif
1780 }
1781
1782 u64 get_kvmclock_ns(struct kvm *kvm)
1783 {
1784         struct kvm_arch *ka = &kvm->arch;
1785         struct pvclock_vcpu_time_info hv_clock;
1786         u64 ret;
1787
1788         spin_lock(&ka->pvclock_gtod_sync_lock);
1789         if (!ka->use_master_clock) {
1790                 spin_unlock(&ka->pvclock_gtod_sync_lock);
1791                 return ktime_get_boot_ns() + ka->kvmclock_offset;
1792         }
1793
1794         hv_clock.tsc_timestamp = ka->master_cycle_now;
1795         hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
1796         spin_unlock(&ka->pvclock_gtod_sync_lock);
1797
1798         /* both __this_cpu_read() and rdtsc() should be on the same cpu */
1799         get_cpu();
1800
1801         if (__this_cpu_read(cpu_tsc_khz)) {
1802                 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
1803                                    &hv_clock.tsc_shift,
1804                                    &hv_clock.tsc_to_system_mul);
1805                 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
1806         } else
1807                 ret = ktime_get_boot_ns() + ka->kvmclock_offset;
1808
1809         put_cpu();
1810
1811         return ret;
1812 }
1813
1814 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
1815 {
1816         struct kvm_vcpu_arch *vcpu = &v->arch;
1817         struct pvclock_vcpu_time_info guest_hv_clock;
1818
1819         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1820                 &guest_hv_clock, sizeof(guest_hv_clock))))
1821                 return;
1822
1823         /* This VCPU is paused, but it's legal for a guest to read another
1824          * VCPU's kvmclock, so we really have to follow the specification where
1825          * it says that version is odd if data is being modified, and even after
1826          * it is consistent.
1827          *
1828          * Version field updates must be kept separate.  This is because
1829          * kvm_write_guest_cached might use a "rep movs" instruction, and
1830          * writes within a string instruction are weakly ordered.  So there
1831          * are three writes overall.
1832          *
1833          * As a small optimization, only write the version field in the first
1834          * and third write.  The vcpu->pv_time cache is still valid, because the
1835          * version field is the first in the struct.
1836          */
1837         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1838
1839         if (guest_hv_clock.version & 1)
1840                 ++guest_hv_clock.version;  /* first time write, random junk */
1841
1842         vcpu->hv_clock.version = guest_hv_clock.version + 1;
1843         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1844                                 &vcpu->hv_clock,
1845                                 sizeof(vcpu->hv_clock.version));
1846
1847         smp_wmb();
1848
1849         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1850         vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1851
1852         if (vcpu->pvclock_set_guest_stopped_request) {
1853                 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
1854                 vcpu->pvclock_set_guest_stopped_request = false;
1855         }
1856
1857         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1858
1859         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1860                                 &vcpu->hv_clock,
1861                                 sizeof(vcpu->hv_clock));
1862
1863         smp_wmb();
1864
1865         vcpu->hv_clock.version++;
1866         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1867                                 &vcpu->hv_clock,
1868                                 sizeof(vcpu->hv_clock.version));
1869 }
1870
1871 static int kvm_guest_time_update(struct kvm_vcpu *v)
1872 {
1873         unsigned long flags, tgt_tsc_khz;
1874         struct kvm_vcpu_arch *vcpu = &v->arch;
1875         struct kvm_arch *ka = &v->kvm->arch;
1876         s64 kernel_ns;
1877         u64 tsc_timestamp, host_tsc;
1878         u8 pvclock_flags;
1879         bool use_master_clock;
1880
1881         kernel_ns = 0;
1882         host_tsc = 0;
1883
1884         /*
1885          * If the host uses TSC clock, then passthrough TSC as stable
1886          * to the guest.
1887          */
1888         spin_lock(&ka->pvclock_gtod_sync_lock);
1889         use_master_clock = ka->use_master_clock;
1890         if (use_master_clock) {
1891                 host_tsc = ka->master_cycle_now;
1892                 kernel_ns = ka->master_kernel_ns;
1893         }
1894         spin_unlock(&ka->pvclock_gtod_sync_lock);
1895
1896         /* Keep irq disabled to prevent changes to the clock */
1897         local_irq_save(flags);
1898         tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1899         if (unlikely(tgt_tsc_khz == 0)) {
1900                 local_irq_restore(flags);
1901                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1902                 return 1;
1903         }
1904         if (!use_master_clock) {
1905                 host_tsc = rdtsc();
1906                 kernel_ns = ktime_get_boot_ns();
1907         }
1908
1909         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
1910
1911         /*
1912          * We may have to catch up the TSC to match elapsed wall clock
1913          * time for two reasons, even if kvmclock is used.
1914          *   1) CPU could have been running below the maximum TSC rate
1915          *   2) Broken TSC compensation resets the base at each VCPU
1916          *      entry to avoid unknown leaps of TSC even when running
1917          *      again on the same CPU.  This may cause apparent elapsed
1918          *      time to disappear, and the guest to stand still or run
1919          *      very slowly.
1920          */
1921         if (vcpu->tsc_catchup) {
1922                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1923                 if (tsc > tsc_timestamp) {
1924                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1925                         tsc_timestamp = tsc;
1926                 }
1927         }
1928
1929         local_irq_restore(flags);
1930
1931         /* With all the info we got, fill in the values */
1932
1933         if (kvm_has_tsc_control)
1934                 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
1935
1936         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
1937                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
1938                                    &vcpu->hv_clock.tsc_shift,
1939                                    &vcpu->hv_clock.tsc_to_system_mul);
1940                 vcpu->hw_tsc_khz = tgt_tsc_khz;
1941         }
1942
1943         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1944         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1945         vcpu->last_guest_tsc = tsc_timestamp;
1946
1947         /* If the host uses TSC clocksource, then it is stable */
1948         pvclock_flags = 0;
1949         if (use_master_clock)
1950                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1951
1952         vcpu->hv_clock.flags = pvclock_flags;
1953
1954         if (vcpu->pv_time_enabled)
1955                 kvm_setup_pvclock_page(v);
1956         if (v == kvm_get_vcpu(v->kvm, 0))
1957                 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
1958         return 0;
1959 }
1960
1961 /*
1962  * kvmclock updates which are isolated to a given vcpu, such as
1963  * vcpu->cpu migration, should not allow system_timestamp from
1964  * the rest of the vcpus to remain static. Otherwise ntp frequency
1965  * correction applies to one vcpu's system_timestamp but not
1966  * the others.
1967  *
1968  * So in those cases, request a kvmclock update for all vcpus.
1969  * We need to rate-limit these requests though, as they can
1970  * considerably slow guests that have a large number of vcpus.
1971  * The time for a remote vcpu to update its kvmclock is bound
1972  * by the delay we use to rate-limit the updates.
1973  */
1974
1975 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1976
1977 static void kvmclock_update_fn(struct work_struct *work)
1978 {
1979         int i;
1980         struct delayed_work *dwork = to_delayed_work(work);
1981         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1982                                            kvmclock_update_work);
1983         struct kvm *kvm = container_of(ka, struct kvm, arch);
1984         struct kvm_vcpu *vcpu;
1985
1986         kvm_for_each_vcpu(i, vcpu, kvm) {
1987                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1988                 kvm_vcpu_kick(vcpu);
1989         }
1990 }
1991
1992 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1993 {
1994         struct kvm *kvm = v->kvm;
1995
1996         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1997         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1998                                         KVMCLOCK_UPDATE_DELAY);
1999 }
2000
2001 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2002
2003 static void kvmclock_sync_fn(struct work_struct *work)
2004 {
2005         struct delayed_work *dwork = to_delayed_work(work);
2006         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2007                                            kvmclock_sync_work);
2008         struct kvm *kvm = container_of(ka, struct kvm, arch);
2009
2010         if (!kvmclock_periodic_sync)
2011                 return;
2012
2013         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2014         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2015                                         KVMCLOCK_SYNC_PERIOD);
2016 }
2017
2018 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2019 {
2020         u64 mcg_cap = vcpu->arch.mcg_cap;
2021         unsigned bank_num = mcg_cap & 0xff;
2022         u32 msr = msr_info->index;
2023         u64 data = msr_info->data;
2024
2025         switch (msr) {
2026         case MSR_IA32_MCG_STATUS:
2027                 vcpu->arch.mcg_status = data;
2028                 break;
2029         case MSR_IA32_MCG_CTL:
2030                 if (!(mcg_cap & MCG_CTL_P))
2031                         return 1;
2032                 if (data != 0 && data != ~(u64)0)
2033                         return -1;
2034                 vcpu->arch.mcg_ctl = data;
2035                 break;
2036         default:
2037                 if (msr >= MSR_IA32_MC0_CTL &&
2038                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2039                         u32 offset = msr - MSR_IA32_MC0_CTL;
2040                         /* only 0 or all 1s can be written to IA32_MCi_CTL
2041                          * some Linux kernels though clear bit 10 in bank 4 to
2042                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2043                          * this to avoid an uncatched #GP in the guest
2044                          */
2045                         if ((offset & 0x3) == 0 &&
2046                             data != 0 && (data | (1 << 10)) != ~(u64)0)
2047                                 return -1;
2048                         if (!msr_info->host_initiated &&
2049                                 (offset & 0x3) == 1 && data != 0)
2050                                 return -1;
2051                         vcpu->arch.mce_banks[offset] = data;
2052                         break;
2053                 }
2054                 return 1;
2055         }
2056         return 0;
2057 }
2058
2059 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2060 {
2061         struct kvm *kvm = vcpu->kvm;
2062         int lm = is_long_mode(vcpu);
2063         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2064                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2065         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2066                 : kvm->arch.xen_hvm_config.blob_size_32;
2067         u32 page_num = data & ~PAGE_MASK;
2068         u64 page_addr = data & PAGE_MASK;
2069         u8 *page;
2070         int r;
2071
2072         r = -E2BIG;
2073         if (page_num >= blob_size)
2074                 goto out;
2075         r = -ENOMEM;
2076         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2077         if (IS_ERR(page)) {
2078                 r = PTR_ERR(page);
2079                 goto out;
2080         }
2081         if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2082                 goto out_free;
2083         r = 0;
2084 out_free:
2085         kfree(page);
2086 out:
2087         return r;
2088 }
2089
2090 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2091 {
2092         gpa_t gpa = data & ~0x3f;
2093
2094         /* Bits 3:5 are reserved, Should be zero */
2095         if (data & 0x38)
2096                 return 1;
2097
2098         vcpu->arch.apf.msr_val = data;
2099
2100         if (!(data & KVM_ASYNC_PF_ENABLED)) {
2101                 kvm_clear_async_pf_completion_queue(vcpu);
2102                 kvm_async_pf_hash_reset(vcpu);
2103                 return 0;
2104         }
2105
2106         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2107                                         sizeof(u32)))
2108                 return 1;
2109
2110         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2111         vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2112         kvm_async_pf_wakeup_all(vcpu);
2113         return 0;
2114 }
2115
2116 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2117 {
2118         vcpu->arch.pv_time_enabled = false;
2119 }
2120
2121 static void record_steal_time(struct kvm_vcpu *vcpu)
2122 {
2123         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2124                 return;
2125
2126         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2127                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2128                 return;
2129
2130         vcpu->arch.st.steal.preempted = 0;
2131
2132         if (vcpu->arch.st.steal.version & 1)
2133                 vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2134
2135         vcpu->arch.st.steal.version += 1;
2136
2137         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2138                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2139
2140         smp_wmb();
2141
2142         vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2143                 vcpu->arch.st.last_steal;
2144         vcpu->arch.st.last_steal = current->sched_info.run_delay;
2145
2146         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2147                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2148
2149         smp_wmb();
2150
2151         vcpu->arch.st.steal.version += 1;
2152
2153         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2154                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2155 }
2156
2157 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2158 {
2159         bool pr = false;
2160         u32 msr = msr_info->index;
2161         u64 data = msr_info->data;
2162
2163         switch (msr) {
2164         case MSR_AMD64_NB_CFG:
2165         case MSR_IA32_UCODE_REV:
2166         case MSR_IA32_UCODE_WRITE:
2167         case MSR_VM_HSAVE_PA:
2168         case MSR_AMD64_PATCH_LOADER:
2169         case MSR_AMD64_BU_CFG2:
2170         case MSR_AMD64_DC_CFG:
2171                 break;
2172
2173         case MSR_EFER:
2174                 return set_efer(vcpu, data);
2175         case MSR_K7_HWCR:
2176                 data &= ~(u64)0x40;     /* ignore flush filter disable */
2177                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2178                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
2179                 data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2180                 if (data != 0) {
2181                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2182                                     data);
2183                         return 1;
2184                 }
2185                 break;
2186         case MSR_FAM10H_MMIO_CONF_BASE:
2187                 if (data != 0) {
2188                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2189                                     "0x%llx\n", data);
2190                         return 1;
2191                 }
2192                 break;
2193         case MSR_IA32_DEBUGCTLMSR:
2194                 if (!data) {
2195                         /* We support the non-activated case already */
2196                         break;
2197                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2198                         /* Values other than LBR and BTF are vendor-specific,
2199                            thus reserved and should throw a #GP */
2200                         return 1;
2201                 }
2202                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2203                             __func__, data);
2204                 break;
2205         case 0x200 ... 0x2ff:
2206                 return kvm_mtrr_set_msr(vcpu, msr, data);
2207         case MSR_IA32_APICBASE:
2208                 return kvm_set_apic_base(vcpu, msr_info);
2209         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2210                 return kvm_x2apic_msr_write(vcpu, msr, data);
2211         case MSR_IA32_TSCDEADLINE:
2212                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2213                 break;
2214         case MSR_IA32_TSC_ADJUST:
2215                 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2216                         if (!msr_info->host_initiated) {
2217                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2218                                 adjust_tsc_offset_guest(vcpu, adj);
2219                         }
2220                         vcpu->arch.ia32_tsc_adjust_msr = data;
2221                 }
2222                 break;
2223         case MSR_IA32_MISC_ENABLE:
2224                 vcpu->arch.ia32_misc_enable_msr = data;
2225                 break;
2226         case MSR_IA32_SMBASE:
2227                 if (!msr_info->host_initiated)
2228                         return 1;
2229                 vcpu->arch.smbase = data;
2230                 break;
2231         case MSR_KVM_WALL_CLOCK_NEW:
2232         case MSR_KVM_WALL_CLOCK:
2233                 vcpu->kvm->arch.wall_clock = data;
2234                 kvm_write_wall_clock(vcpu->kvm, data);
2235                 break;
2236         case MSR_KVM_SYSTEM_TIME_NEW:
2237         case MSR_KVM_SYSTEM_TIME: {
2238                 struct kvm_arch *ka = &vcpu->kvm->arch;
2239
2240                 kvmclock_reset(vcpu);
2241
2242                 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2243                         bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2244
2245                         if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2246                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2247
2248                         ka->boot_vcpu_runs_old_kvmclock = tmp;
2249                 }
2250
2251                 vcpu->arch.time = data;
2252                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2253
2254                 /* we verify if the enable bit is set... */
2255                 if (!(data & 1))
2256                         break;
2257
2258                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2259                      &vcpu->arch.pv_time, data & ~1ULL,
2260                      sizeof(struct pvclock_vcpu_time_info)))
2261                         vcpu->arch.pv_time_enabled = false;
2262                 else
2263                         vcpu->arch.pv_time_enabled = true;
2264
2265                 break;
2266         }
2267         case MSR_KVM_ASYNC_PF_EN:
2268                 if (kvm_pv_enable_async_pf(vcpu, data))
2269                         return 1;
2270                 break;
2271         case MSR_KVM_STEAL_TIME:
2272
2273                 if (unlikely(!sched_info_on()))
2274                         return 1;
2275
2276                 if (data & KVM_STEAL_RESERVED_MASK)
2277                         return 1;
2278
2279                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2280                                                 data & KVM_STEAL_VALID_BITS,
2281                                                 sizeof(struct kvm_steal_time)))
2282                         return 1;
2283
2284                 vcpu->arch.st.msr_val = data;
2285
2286                 if (!(data & KVM_MSR_ENABLED))
2287                         break;
2288
2289                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2290
2291                 break;
2292         case MSR_KVM_PV_EOI_EN:
2293                 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2294                         return 1;
2295                 break;
2296
2297         case MSR_IA32_MCG_CTL:
2298         case MSR_IA32_MCG_STATUS:
2299         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2300                 return set_msr_mce(vcpu, msr_info);
2301
2302         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2303         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2304                 pr = true; /* fall through */
2305         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2306         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2307                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2308                         return kvm_pmu_set_msr(vcpu, msr_info);
2309
2310                 if (pr || data != 0)
2311                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2312                                     "0x%x data 0x%llx\n", msr, data);
2313                 break;
2314         case MSR_K7_CLK_CTL:
2315                 /*
2316                  * Ignore all writes to this no longer documented MSR.
2317                  * Writes are only relevant for old K7 processors,
2318                  * all pre-dating SVM, but a recommended workaround from
2319                  * AMD for these chips. It is possible to specify the
2320                  * affected processor models on the command line, hence
2321                  * the need to ignore the workaround.
2322                  */
2323                 break;
2324         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2325         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2326         case HV_X64_MSR_CRASH_CTL:
2327         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2328                 return kvm_hv_set_msr_common(vcpu, msr, data,
2329                                              msr_info->host_initiated);
2330         case MSR_IA32_BBL_CR_CTL3:
2331                 /* Drop writes to this legacy MSR -- see rdmsr
2332                  * counterpart for further detail.
2333                  */
2334                 if (report_ignored_msrs)
2335                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2336                                 msr, data);
2337                 break;
2338         case MSR_AMD64_OSVW_ID_LENGTH:
2339                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2340                         return 1;
2341                 vcpu->arch.osvw.length = data;
2342                 break;
2343         case MSR_AMD64_OSVW_STATUS:
2344                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2345                         return 1;
2346                 vcpu->arch.osvw.status = data;
2347                 break;
2348         case MSR_PLATFORM_INFO:
2349                 if (!msr_info->host_initiated ||
2350                     data & ~MSR_PLATFORM_INFO_CPUID_FAULT ||
2351                     (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2352                      cpuid_fault_enabled(vcpu)))
2353                         return 1;
2354                 vcpu->arch.msr_platform_info = data;
2355                 break;
2356         case MSR_MISC_FEATURES_ENABLES:
2357                 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2358                     (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2359                      !supports_cpuid_fault(vcpu)))
2360                         return 1;
2361                 vcpu->arch.msr_misc_features_enables = data;
2362                 break;
2363         default:
2364                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2365                         return xen_hvm_config(vcpu, data);
2366                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2367                         return kvm_pmu_set_msr(vcpu, msr_info);
2368                 if (!ignore_msrs) {
2369                         vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2370                                     msr, data);
2371                         return 1;
2372                 } else {
2373                         if (report_ignored_msrs)
2374                                 vcpu_unimpl(vcpu,
2375                                         "ignored wrmsr: 0x%x data 0x%llx\n",
2376                                         msr, data);
2377                         break;
2378                 }
2379         }
2380         return 0;
2381 }
2382 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2383
2384
2385 /*
2386  * Reads an msr value (of 'msr_index') into 'pdata'.
2387  * Returns 0 on success, non-0 otherwise.
2388  * Assumes vcpu_load() was already called.
2389  */
2390 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2391 {
2392         return kvm_x86_ops->get_msr(vcpu, msr);
2393 }
2394 EXPORT_SYMBOL_GPL(kvm_get_msr);
2395
2396 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2397 {
2398         u64 data;
2399         u64 mcg_cap = vcpu->arch.mcg_cap;
2400         unsigned bank_num = mcg_cap & 0xff;
2401
2402         switch (msr) {
2403         case MSR_IA32_P5_MC_ADDR:
2404         case MSR_IA32_P5_MC_TYPE:
2405                 data = 0;
2406                 break;
2407         case MSR_IA32_MCG_CAP:
2408                 data = vcpu->arch.mcg_cap;
2409                 break;
2410         case MSR_IA32_MCG_CTL:
2411                 if (!(mcg_cap & MCG_CTL_P))
2412                         return 1;
2413                 data = vcpu->arch.mcg_ctl;
2414                 break;
2415         case MSR_IA32_MCG_STATUS:
2416                 data = vcpu->arch.mcg_status;
2417                 break;
2418         default:
2419                 if (msr >= MSR_IA32_MC0_CTL &&
2420                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2421                         u32 offset = msr - MSR_IA32_MC0_CTL;
2422                         data = vcpu->arch.mce_banks[offset];
2423                         break;
2424                 }
2425                 return 1;
2426         }
2427         *pdata = data;
2428         return 0;
2429 }
2430
2431 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2432 {
2433         switch (msr_info->index) {
2434         case MSR_IA32_PLATFORM_ID:
2435         case MSR_IA32_EBL_CR_POWERON:
2436         case MSR_IA32_DEBUGCTLMSR:
2437         case MSR_IA32_LASTBRANCHFROMIP:
2438         case MSR_IA32_LASTBRANCHTOIP:
2439         case MSR_IA32_LASTINTFROMIP:
2440         case MSR_IA32_LASTINTTOIP:
2441         case MSR_K8_SYSCFG:
2442         case MSR_K8_TSEG_ADDR:
2443         case MSR_K8_TSEG_MASK:
2444         case MSR_K7_HWCR:
2445         case MSR_VM_HSAVE_PA:
2446         case MSR_K8_INT_PENDING_MSG:
2447         case MSR_AMD64_NB_CFG:
2448         case MSR_FAM10H_MMIO_CONF_BASE:
2449         case MSR_AMD64_BU_CFG2:
2450         case MSR_IA32_PERF_CTL:
2451         case MSR_AMD64_DC_CFG:
2452                 msr_info->data = 0;
2453                 break;
2454         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2455         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2456         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2457         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2458                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2459                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2460                 msr_info->data = 0;
2461                 break;
2462         case MSR_IA32_UCODE_REV:
2463                 msr_info->data = 0x100000000ULL;
2464                 break;
2465         case MSR_MTRRcap:
2466         case 0x200 ... 0x2ff:
2467                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2468         case 0xcd: /* fsb frequency */
2469                 msr_info->data = 3;
2470                 break;
2471                 /*
2472                  * MSR_EBC_FREQUENCY_ID
2473                  * Conservative value valid for even the basic CPU models.
2474                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2475                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2476                  * and 266MHz for model 3, or 4. Set Core Clock
2477                  * Frequency to System Bus Frequency Ratio to 1 (bits
2478                  * 31:24) even though these are only valid for CPU
2479                  * models > 2, however guests may end up dividing or
2480                  * multiplying by zero otherwise.
2481                  */
2482         case MSR_EBC_FREQUENCY_ID:
2483                 msr_info->data = 1 << 24;
2484                 break;
2485         case MSR_IA32_APICBASE:
2486                 msr_info->data = kvm_get_apic_base(vcpu);
2487                 break;
2488         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2489                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2490                 break;
2491         case MSR_IA32_TSCDEADLINE:
2492                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2493                 break;
2494         case MSR_IA32_TSC_ADJUST:
2495                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2496                 break;
2497         case MSR_IA32_MISC_ENABLE:
2498                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2499                 break;
2500         case MSR_IA32_SMBASE:
2501                 if (!msr_info->host_initiated)
2502                         return 1;
2503                 msr_info->data = vcpu->arch.smbase;
2504                 break;
2505         case MSR_IA32_PERF_STATUS:
2506                 /* TSC increment by tick */
2507                 msr_info->data = 1000ULL;
2508                 /* CPU multiplier */
2509                 msr_info->data |= (((uint64_t)4ULL) << 40);
2510                 break;
2511         case MSR_EFER:
2512                 msr_info->data = vcpu->arch.efer;
2513                 break;
2514         case MSR_KVM_WALL_CLOCK:
2515         case MSR_KVM_WALL_CLOCK_NEW:
2516                 msr_info->data = vcpu->kvm->arch.wall_clock;
2517                 break;
2518         case MSR_KVM_SYSTEM_TIME:
2519         case MSR_KVM_SYSTEM_TIME_NEW:
2520                 msr_info->data = vcpu->arch.time;
2521                 break;
2522         case MSR_KVM_ASYNC_PF_EN:
2523                 msr_info->data = vcpu->arch.apf.msr_val;
2524                 break;
2525         case MSR_KVM_STEAL_TIME:
2526                 msr_info->data = vcpu->arch.st.msr_val;
2527                 break;
2528         case MSR_KVM_PV_EOI_EN:
2529                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2530                 break;
2531         case MSR_IA32_P5_MC_ADDR:
2532         case MSR_IA32_P5_MC_TYPE:
2533         case MSR_IA32_MCG_CAP:
2534         case MSR_IA32_MCG_CTL:
2535         case MSR_IA32_MCG_STATUS:
2536         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2537                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2538         case MSR_K7_CLK_CTL:
2539                 /*
2540                  * Provide expected ramp-up count for K7. All other
2541                  * are set to zero, indicating minimum divisors for
2542                  * every field.
2543                  *
2544                  * This prevents guest kernels on AMD host with CPU
2545                  * type 6, model 8 and higher from exploding due to
2546                  * the rdmsr failing.
2547                  */
2548                 msr_info->data = 0x20000000;
2549                 break;
2550         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2551         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2552         case HV_X64_MSR_CRASH_CTL:
2553         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2554                 return kvm_hv_get_msr_common(vcpu,
2555                                              msr_info->index, &msr_info->data);
2556                 break;
2557         case MSR_IA32_BBL_CR_CTL3:
2558                 /* This legacy MSR exists but isn't fully documented in current
2559                  * silicon.  It is however accessed by winxp in very narrow
2560                  * scenarios where it sets bit #19, itself documented as
2561                  * a "reserved" bit.  Best effort attempt to source coherent
2562                  * read data here should the balance of the register be
2563                  * interpreted by the guest:
2564                  *
2565                  * L2 cache control register 3: 64GB range, 256KB size,
2566                  * enabled, latency 0x1, configured
2567                  */
2568                 msr_info->data = 0xbe702111;
2569                 break;
2570         case MSR_AMD64_OSVW_ID_LENGTH:
2571                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2572                         return 1;
2573                 msr_info->data = vcpu->arch.osvw.length;
2574                 break;
2575         case MSR_AMD64_OSVW_STATUS:
2576                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2577                         return 1;
2578                 msr_info->data = vcpu->arch.osvw.status;
2579                 break;
2580         case MSR_PLATFORM_INFO:
2581                 msr_info->data = vcpu->arch.msr_platform_info;
2582                 break;
2583         case MSR_MISC_FEATURES_ENABLES:
2584                 msr_info->data = vcpu->arch.msr_misc_features_enables;
2585                 break;
2586         default:
2587                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2588                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2589                 if (!ignore_msrs) {
2590                         vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2591                                                msr_info->index);
2592                         return 1;
2593                 } else {
2594                         if (report_ignored_msrs)
2595                                 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n",
2596                                         msr_info->index);
2597                         msr_info->data = 0;
2598                 }
2599                 break;
2600         }
2601         return 0;
2602 }
2603 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2604
2605 /*
2606  * Read or write a bunch of msrs. All parameters are kernel addresses.
2607  *
2608  * @return number of msrs set successfully.
2609  */
2610 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2611                     struct kvm_msr_entry *entries,
2612                     int (*do_msr)(struct kvm_vcpu *vcpu,
2613                                   unsigned index, u64 *data))
2614 {
2615         int i, idx;
2616
2617         idx = srcu_read_lock(&vcpu->kvm->srcu);
2618         for (i = 0; i < msrs->nmsrs; ++i)
2619                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2620                         break;
2621         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2622
2623         return i;
2624 }
2625
2626 /*
2627  * Read or write a bunch of msrs. Parameters are user addresses.
2628  *
2629  * @return number of msrs set successfully.
2630  */
2631 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2632                   int (*do_msr)(struct kvm_vcpu *vcpu,
2633                                 unsigned index, u64 *data),
2634                   int writeback)
2635 {
2636         struct kvm_msrs msrs;
2637         struct kvm_msr_entry *entries;
2638         int r, n;
2639         unsigned size;
2640
2641         r = -EFAULT;
2642         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2643                 goto out;
2644
2645         r = -E2BIG;
2646         if (msrs.nmsrs >= MAX_IO_MSRS)
2647                 goto out;
2648
2649         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2650         entries = memdup_user(user_msrs->entries, size);
2651         if (IS_ERR(entries)) {
2652                 r = PTR_ERR(entries);
2653                 goto out;
2654         }
2655
2656         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2657         if (r < 0)
2658                 goto out_free;
2659
2660         r = -EFAULT;
2661         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2662                 goto out_free;
2663
2664         r = n;
2665
2666 out_free:
2667         kfree(entries);
2668 out:
2669         return r;
2670 }
2671
2672 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2673 {
2674         int r;
2675
2676         switch (ext) {
2677         case KVM_CAP_IRQCHIP:
2678         case KVM_CAP_HLT:
2679         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2680         case KVM_CAP_SET_TSS_ADDR:
2681         case KVM_CAP_EXT_CPUID:
2682         case KVM_CAP_EXT_EMUL_CPUID:
2683         case KVM_CAP_CLOCKSOURCE:
2684         case KVM_CAP_PIT:
2685         case KVM_CAP_NOP_IO_DELAY:
2686         case KVM_CAP_MP_STATE:
2687         case KVM_CAP_SYNC_MMU:
2688         case KVM_CAP_USER_NMI:
2689         case KVM_CAP_REINJECT_CONTROL:
2690         case KVM_CAP_IRQ_INJECT_STATUS:
2691         case KVM_CAP_IOEVENTFD:
2692         case KVM_CAP_IOEVENTFD_NO_LENGTH:
2693         case KVM_CAP_PIT2:
2694         case KVM_CAP_PIT_STATE2:
2695         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2696         case KVM_CAP_XEN_HVM:
2697         case KVM_CAP_VCPU_EVENTS:
2698         case KVM_CAP_HYPERV:
2699         case KVM_CAP_HYPERV_VAPIC:
2700         case KVM_CAP_HYPERV_SPIN:
2701         case KVM_CAP_HYPERV_SYNIC:
2702         case KVM_CAP_HYPERV_SYNIC2:
2703         case KVM_CAP_HYPERV_VP_INDEX:
2704         case KVM_CAP_PCI_SEGMENT:
2705         case KVM_CAP_DEBUGREGS:
2706         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2707         case KVM_CAP_XSAVE:
2708         case KVM_CAP_ASYNC_PF:
2709         case KVM_CAP_GET_TSC_KHZ:
2710         case KVM_CAP_KVMCLOCK_CTRL:
2711         case KVM_CAP_READONLY_MEM:
2712         case KVM_CAP_HYPERV_TIME:
2713         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2714         case KVM_CAP_TSC_DEADLINE_TIMER:
2715         case KVM_CAP_ENABLE_CAP_VM:
2716         case KVM_CAP_DISABLE_QUIRKS:
2717         case KVM_CAP_SET_BOOT_CPU_ID:
2718         case KVM_CAP_SPLIT_IRQCHIP:
2719         case KVM_CAP_IMMEDIATE_EXIT:
2720                 r = 1;
2721                 break;
2722         case KVM_CAP_ADJUST_CLOCK:
2723                 r = KVM_CLOCK_TSC_STABLE;
2724                 break;
2725         case KVM_CAP_X86_GUEST_MWAIT:
2726                 r = kvm_mwait_in_guest();
2727                 break;
2728         case KVM_CAP_X86_SMM:
2729                 /* SMBASE is usually relocated above 1M on modern chipsets,
2730                  * and SMM handlers might indeed rely on 4G segment limits,
2731                  * so do not report SMM to be available if real mode is
2732                  * emulated via vm86 mode.  Still, do not go to great lengths
2733                  * to avoid userspace's usage of the feature, because it is a
2734                  * fringe case that is not enabled except via specific settings
2735                  * of the module parameters.
2736                  */
2737                 r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2738                 break;
2739         case KVM_CAP_VAPIC:
2740                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2741                 break;
2742         case KVM_CAP_NR_VCPUS:
2743                 r = KVM_SOFT_MAX_VCPUS;
2744                 break;
2745         case KVM_CAP_MAX_VCPUS:
2746                 r = KVM_MAX_VCPUS;
2747                 break;
2748         case KVM_CAP_NR_MEMSLOTS:
2749                 r = KVM_USER_MEM_SLOTS;
2750                 break;
2751         case KVM_CAP_PV_MMU:    /* obsolete */
2752                 r = 0;
2753                 break;
2754         case KVM_CAP_MCE:
2755                 r = KVM_MAX_MCE_BANKS;
2756                 break;
2757         case KVM_CAP_XCRS:
2758                 r = boot_cpu_has(X86_FEATURE_XSAVE);
2759                 break;
2760         case KVM_CAP_TSC_CONTROL:
2761                 r = kvm_has_tsc_control;
2762                 break;
2763         case KVM_CAP_X2APIC_API:
2764                 r = KVM_X2APIC_API_VALID_FLAGS;
2765                 break;
2766         default:
2767                 r = 0;
2768                 break;
2769         }
2770         return r;
2771
2772 }
2773
2774 long kvm_arch_dev_ioctl(struct file *filp,
2775                         unsigned int ioctl, unsigned long arg)
2776 {
2777         void __user *argp = (void __user *)arg;
2778         long r;
2779
2780         switch (ioctl) {
2781         case KVM_GET_MSR_INDEX_LIST: {
2782                 struct kvm_msr_list __user *user_msr_list = argp;
2783                 struct kvm_msr_list msr_list;
2784                 unsigned n;
2785
2786                 r = -EFAULT;
2787                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2788                         goto out;
2789                 n = msr_list.nmsrs;
2790                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2791                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2792                         goto out;
2793                 r = -E2BIG;
2794                 if (n < msr_list.nmsrs)
2795                         goto out;
2796                 r = -EFAULT;
2797                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2798                                  num_msrs_to_save * sizeof(u32)))
2799                         goto out;
2800                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2801                                  &emulated_msrs,
2802                                  num_emulated_msrs * sizeof(u32)))
2803                         goto out;
2804                 r = 0;
2805                 break;
2806         }
2807         case KVM_GET_SUPPORTED_CPUID:
2808         case KVM_GET_EMULATED_CPUID: {
2809                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2810                 struct kvm_cpuid2 cpuid;
2811
2812                 r = -EFAULT;
2813                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2814                         goto out;
2815
2816                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2817                                             ioctl);
2818                 if (r)
2819                         goto out;
2820
2821                 r = -EFAULT;
2822                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2823                         goto out;
2824                 r = 0;
2825                 break;
2826         }
2827         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2828                 r = -EFAULT;
2829                 if (copy_to_user(argp, &kvm_mce_cap_supported,
2830                                  sizeof(kvm_mce_cap_supported)))
2831                         goto out;
2832                 r = 0;
2833                 break;
2834         }
2835         default:
2836                 r = -EINVAL;
2837         }
2838 out:
2839         return r;
2840 }
2841
2842 static void wbinvd_ipi(void *garbage)
2843 {
2844         wbinvd();
2845 }
2846
2847 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2848 {
2849         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2850 }
2851
2852 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2853 {
2854         /* Address WBINVD may be executed by guest */
2855         if (need_emulate_wbinvd(vcpu)) {
2856                 if (kvm_x86_ops->has_wbinvd_exit())
2857                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2858                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2859                         smp_call_function_single(vcpu->cpu,
2860                                         wbinvd_ipi, NULL, 1);
2861         }
2862
2863         kvm_x86_ops->vcpu_load(vcpu, cpu);
2864
2865         /* Apply any externally detected TSC adjustments (due to suspend) */
2866         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2867                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2868                 vcpu->arch.tsc_offset_adjustment = 0;
2869                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2870         }
2871
2872         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2873                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2874                                 rdtsc() - vcpu->arch.last_host_tsc;
2875                 if (tsc_delta < 0)
2876                         mark_tsc_unstable("KVM discovered backwards TSC");
2877
2878                 if (check_tsc_unstable()) {
2879                         u64 offset = kvm_compute_tsc_offset(vcpu,
2880                                                 vcpu->arch.last_guest_tsc);
2881                         kvm_vcpu_write_tsc_offset(vcpu, offset);
2882                         vcpu->arch.tsc_catchup = 1;
2883                 }
2884
2885                 if (kvm_lapic_hv_timer_in_use(vcpu))
2886                         kvm_lapic_restart_hv_timer(vcpu);
2887
2888                 /*
2889                  * On a host with synchronized TSC, there is no need to update
2890                  * kvmclock on vcpu->cpu migration
2891                  */
2892                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2893                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2894                 if (vcpu->cpu != cpu)
2895                         kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
2896                 vcpu->cpu = cpu;
2897         }
2898
2899         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2900 }
2901
2902 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
2903 {
2904         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2905                 return;
2906
2907         vcpu->arch.st.steal.preempted = 1;
2908
2909         kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
2910                         &vcpu->arch.st.steal.preempted,
2911                         offsetof(struct kvm_steal_time, preempted),
2912                         sizeof(vcpu->arch.st.steal.preempted));
2913 }
2914
2915 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2916 {
2917         int idx;
2918
2919         if (vcpu->preempted)
2920                 vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu);
2921
2922         /*
2923          * Disable page faults because we're in atomic context here.
2924          * kvm_write_guest_offset_cached() would call might_fault()
2925          * that relies on pagefault_disable() to tell if there's a
2926          * bug. NOTE: the write to guest memory may not go through if
2927          * during postcopy live migration or if there's heavy guest
2928          * paging.
2929          */
2930         pagefault_disable();
2931         /*
2932          * kvm_memslots() will be called by
2933          * kvm_write_guest_offset_cached() so take the srcu lock.
2934          */
2935         idx = srcu_read_lock(&vcpu->kvm->srcu);
2936         kvm_steal_time_set_preempted(vcpu);
2937         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2938         pagefault_enable();
2939         kvm_x86_ops->vcpu_put(vcpu);
2940         kvm_put_guest_fpu(vcpu);
2941         vcpu->arch.last_host_tsc = rdtsc();
2942 }
2943
2944 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2945                                     struct kvm_lapic_state *s)
2946 {
2947         if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
2948                 kvm_x86_ops->sync_pir_to_irr(vcpu);
2949
2950         return kvm_apic_get_state(vcpu, s);
2951 }
2952
2953 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2954                                     struct kvm_lapic_state *s)
2955 {
2956         int r;
2957
2958         r = kvm_apic_set_state(vcpu, s);
2959         if (r)
2960                 return r;
2961         update_cr8_intercept(vcpu);
2962
2963         return 0;
2964 }
2965
2966 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
2967 {
2968         return (!lapic_in_kernel(vcpu) ||
2969                 kvm_apic_accept_pic_intr(vcpu));
2970 }
2971
2972 /*
2973  * if userspace requested an interrupt window, check that the
2974  * interrupt window is open.
2975  *
2976  * No need to exit to userspace if we already have an interrupt queued.
2977  */
2978 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
2979 {
2980         return kvm_arch_interrupt_allowed(vcpu) &&
2981                 !kvm_cpu_has_interrupt(vcpu) &&
2982                 !kvm_event_needs_reinjection(vcpu) &&
2983                 kvm_cpu_accept_dm_intr(vcpu);
2984 }
2985
2986 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2987                                     struct kvm_interrupt *irq)
2988 {
2989         if (irq->irq >= KVM_NR_INTERRUPTS)
2990                 return -EINVAL;
2991
2992         if (!irqchip_in_kernel(vcpu->kvm)) {
2993                 kvm_queue_interrupt(vcpu, irq->irq, false);
2994                 kvm_make_request(KVM_REQ_EVENT, vcpu);
2995                 return 0;
2996         }
2997
2998         /*
2999          * With in-kernel LAPIC, we only use this to inject EXTINT, so
3000          * fail for in-kernel 8259.
3001          */
3002         if (pic_in_kernel(vcpu->kvm))
3003                 return -ENXIO;
3004
3005         if (vcpu->arch.pending_external_vector != -1)
3006                 return -EEXIST;
3007
3008         vcpu->arch.pending_external_vector = irq->irq;
3009         kvm_make_request(KVM_REQ_EVENT, vcpu);
3010         return 0;
3011 }
3012
3013 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3014 {
3015         kvm_inject_nmi(vcpu);
3016
3017         return 0;
3018 }
3019
3020 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3021 {
3022         kvm_make_request(KVM_REQ_SMI, vcpu);
3023
3024         return 0;
3025 }
3026
3027 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3028                                            struct kvm_tpr_access_ctl *tac)
3029 {
3030         if (tac->flags)
3031                 return -EINVAL;
3032         vcpu->arch.tpr_access_reporting = !!tac->enabled;
3033         return 0;
3034 }
3035
3036 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3037                                         u64 mcg_cap)
3038 {
3039         int r;
3040         unsigned bank_num = mcg_cap & 0xff, bank;
3041
3042         r = -EINVAL;
3043         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3044                 goto out;
3045         if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3046                 goto out;
3047         r = 0;
3048         vcpu->arch.mcg_cap = mcg_cap;
3049         /* Init IA32_MCG_CTL to all 1s */
3050         if (mcg_cap & MCG_CTL_P)
3051                 vcpu->arch.mcg_ctl = ~(u64)0;
3052         /* Init IA32_MCi_CTL to all 1s */
3053         for (bank = 0; bank < bank_num; bank++)
3054                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3055
3056         if (kvm_x86_ops->setup_mce)
3057                 kvm_x86_ops->setup_mce(vcpu);
3058 out:
3059         return r;
3060 }
3061
3062 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3063                                       struct kvm_x86_mce *mce)
3064 {
3065         u64 mcg_cap = vcpu->arch.mcg_cap;
3066         unsigned bank_num = mcg_cap & 0xff;
3067         u64 *banks = vcpu->arch.mce_banks;
3068
3069         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3070                 return -EINVAL;
3071         /*
3072          * if IA32_MCG_CTL is not all 1s, the uncorrected error
3073          * reporting is disabled
3074          */
3075         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3076             vcpu->arch.mcg_ctl != ~(u64)0)
3077                 return 0;
3078         banks += 4 * mce->bank;
3079         /*
3080          * if IA32_MCi_CTL is not all 1s, the uncorrected error
3081          * reporting is disabled for the bank
3082          */
3083         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3084                 return 0;
3085         if (mce->status & MCI_STATUS_UC) {
3086                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3087                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3088                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3089                         return 0;
3090                 }
3091                 if (banks[1] & MCI_STATUS_VAL)
3092                         mce->status |= MCI_STATUS_OVER;
3093                 banks[2] = mce->addr;
3094                 banks[3] = mce->misc;
3095                 vcpu->arch.mcg_status = mce->mcg_status;
3096                 banks[1] = mce->status;
3097                 kvm_queue_exception(vcpu, MC_VECTOR);
3098         } else if (!(banks[1] & MCI_STATUS_VAL)
3099                    || !(banks[1] & MCI_STATUS_UC)) {
3100                 if (banks[1] & MCI_STATUS_VAL)
3101                         mce->status |= MCI_STATUS_OVER;
3102                 banks[2] = mce->addr;
3103                 banks[3] = mce->misc;
3104                 banks[1] = mce->status;
3105         } else
3106                 banks[1] |= MCI_STATUS_OVER;
3107         return 0;
3108 }
3109
3110 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3111                                                struct kvm_vcpu_events *events)
3112 {
3113         process_nmi(vcpu);
3114         /*
3115          * FIXME: pass injected and pending separately.  This is only
3116          * needed for nested virtualization, whose state cannot be
3117          * migrated yet.  For now we can combine them.
3118          */
3119         events->exception.injected =
3120                 (vcpu->arch.exception.pending ||
3121                  vcpu->arch.exception.injected) &&
3122                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
3123         events->exception.nr = vcpu->arch.exception.nr;
3124         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3125         events->exception.pad = 0;
3126         events->exception.error_code = vcpu->arch.exception.error_code;
3127
3128         events->interrupt.injected =
3129                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3130         events->interrupt.nr = vcpu->arch.interrupt.nr;
3131         events->interrupt.soft = 0;
3132         events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3133
3134         events->nmi.injected = vcpu->arch.nmi_injected;
3135         events->nmi.pending = vcpu->arch.nmi_pending != 0;
3136         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3137         events->nmi.pad = 0;
3138
3139         events->sipi_vector = 0; /* never valid when reporting to user space */
3140
3141         events->smi.smm = is_smm(vcpu);
3142         events->smi.pending = vcpu->arch.smi_pending;
3143         events->smi.smm_inside_nmi =
3144                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3145         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3146
3147         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3148                          | KVM_VCPUEVENT_VALID_SHADOW
3149                          | KVM_VCPUEVENT_VALID_SMM);
3150         memset(&events->reserved, 0, sizeof(events->reserved));
3151 }
3152
3153 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags);
3154
3155 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3156                                               struct kvm_vcpu_events *events)
3157 {
3158         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3159                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3160                               | KVM_VCPUEVENT_VALID_SHADOW
3161                               | KVM_VCPUEVENT_VALID_SMM))
3162                 return -EINVAL;
3163
3164         if (events->exception.injected &&
3165             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR ||
3166              is_guest_mode(vcpu)))
3167                 return -EINVAL;
3168
3169         /* INITs are latched while in SMM */
3170         if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3171             (events->smi.smm || events->smi.pending) &&
3172             vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3173                 return -EINVAL;
3174
3175         process_nmi(vcpu);
3176         vcpu->arch.exception.injected = false;
3177         vcpu->arch.exception.pending = events->exception.injected;
3178         vcpu->arch.exception.nr = events->exception.nr;
3179         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3180         vcpu->arch.exception.error_code = events->exception.error_code;
3181
3182         vcpu->arch.interrupt.pending = events->interrupt.injected;
3183         vcpu->arch.interrupt.nr = events->interrupt.nr;
3184         vcpu->arch.interrupt.soft = events->interrupt.soft;
3185         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3186                 kvm_x86_ops->set_interrupt_shadow(vcpu,
3187                                                   events->interrupt.shadow);
3188
3189         vcpu->arch.nmi_injected = events->nmi.injected;
3190         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3191                 vcpu->arch.nmi_pending = events->nmi.pending;
3192         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3193
3194         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3195             lapic_in_kernel(vcpu))
3196                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3197
3198         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3199                 u32 hflags = vcpu->arch.hflags;
3200                 if (events->smi.smm)
3201                         hflags |= HF_SMM_MASK;
3202                 else
3203                         hflags &= ~HF_SMM_MASK;
3204                 kvm_set_hflags(vcpu, hflags);
3205
3206                 vcpu->arch.smi_pending = events->smi.pending;
3207
3208                 if (events->smi.smm) {
3209                         if (events->smi.smm_inside_nmi)
3210                                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3211                         else
3212                                 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3213                         if (lapic_in_kernel(vcpu)) {
3214                                 if (events->smi.latched_init)
3215                                         set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3216                                 else
3217                                         clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3218                         }
3219                 }
3220         }
3221
3222         kvm_make_request(KVM_REQ_EVENT, vcpu);
3223
3224         return 0;
3225 }
3226
3227 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3228                                              struct kvm_debugregs *dbgregs)
3229 {
3230         unsigned long val;
3231
3232         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3233         kvm_get_dr(vcpu, 6, &val);
3234         dbgregs->dr6 = val;
3235         dbgregs->dr7 = vcpu->arch.dr7;
3236         dbgregs->flags = 0;
3237         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3238 }
3239
3240 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3241                                             struct kvm_debugregs *dbgregs)
3242 {
3243         if (dbgregs->flags)
3244                 return -EINVAL;
3245
3246         if (dbgregs->dr6 & ~0xffffffffull)
3247                 return -EINVAL;
3248         if (dbgregs->dr7 & ~0xffffffffull)
3249                 return -EINVAL;
3250
3251         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3252         kvm_update_dr0123(vcpu);
3253         vcpu->arch.dr6 = dbgregs->dr6;
3254         kvm_update_dr6(vcpu);
3255         vcpu->arch.dr7 = dbgregs->dr7;
3256         kvm_update_dr7(vcpu);
3257
3258         return 0;
3259 }
3260
3261 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3262
3263 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3264 {
3265         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3266         u64 xstate_bv = xsave->header.xfeatures;
3267         u64 valid;
3268
3269         /*
3270          * Copy legacy XSAVE area, to avoid complications with CPUID
3271          * leaves 0 and 1 in the loop below.
3272          */
3273         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3274
3275         /* Set XSTATE_BV */
3276         xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3277         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3278
3279         /*
3280          * Copy each region from the possibly compacted offset to the
3281          * non-compacted offset.
3282          */
3283         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3284         while (valid) {
3285                 u64 feature = valid & -valid;
3286                 int index = fls64(feature) - 1;
3287                 void *src = get_xsave_addr(xsave, feature);
3288
3289                 if (src) {
3290                         u32 size, offset, ecx, edx;
3291                         cpuid_count(XSTATE_CPUID, index,
3292                                     &size, &offset, &ecx, &edx);
3293                         if (feature == XFEATURE_MASK_PKRU)
3294                                 memcpy(dest + offset, &vcpu->arch.pkru,
3295                                        sizeof(vcpu->arch.pkru));
3296                         else
3297                                 memcpy(dest + offset, src, size);
3298
3299                 }
3300
3301                 valid -= feature;
3302         }
3303 }
3304
3305 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3306 {
3307         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3308         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3309         u64 valid;
3310
3311         /*
3312          * Copy legacy XSAVE area, to avoid complications with CPUID
3313          * leaves 0 and 1 in the loop below.
3314          */
3315         memcpy(xsave, src, XSAVE_HDR_OFFSET);
3316
3317         /* Set XSTATE_BV and possibly XCOMP_BV.  */
3318         xsave->header.xfeatures = xstate_bv;
3319         if (boot_cpu_has(X86_FEATURE_XSAVES))
3320                 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3321
3322         /*
3323          * Copy each region from the non-compacted offset to the
3324          * possibly compacted offset.
3325          */
3326         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3327         while (valid) {
3328                 u64 feature = valid & -valid;
3329                 int index = fls64(feature) - 1;
3330                 void *dest = get_xsave_addr(xsave, feature);
3331
3332                 if (dest) {
3333                         u32 size, offset, ecx, edx;
3334                         cpuid_count(XSTATE_CPUID, index,
3335                                     &size, &offset, &ecx, &edx);
3336                         if (feature == XFEATURE_MASK_PKRU)
3337                                 memcpy(&vcpu->arch.pkru, src + offset,
3338                                        sizeof(vcpu->arch.pkru));
3339                         else
3340                                 memcpy(dest, src + offset, size);
3341                 }
3342
3343                 valid -= feature;
3344         }
3345 }
3346
3347 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3348                                          struct kvm_xsave *guest_xsave)
3349 {
3350         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3351                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3352                 fill_xsave((u8 *) guest_xsave->region, vcpu);
3353         } else {
3354                 memcpy(guest_xsave->region,
3355                         &vcpu->arch.guest_fpu.state.fxsave,
3356                         sizeof(struct fxregs_state));
3357                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3358                         XFEATURE_MASK_FPSSE;
3359         }
3360 }
3361
3362 #define XSAVE_MXCSR_OFFSET 24
3363
3364 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3365                                         struct kvm_xsave *guest_xsave)
3366 {
3367         u64 xstate_bv =
3368                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3369         u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3370
3371         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3372                 /*
3373                  * Here we allow setting states that are not present in
3374                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3375                  * with old userspace.
3376                  */
3377                 if (xstate_bv & ~kvm_supported_xcr0() ||
3378                         mxcsr & ~mxcsr_feature_mask)
3379                         return -EINVAL;
3380                 load_xsave(vcpu, (u8 *)guest_xsave->region);
3381         } else {
3382                 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
3383                         mxcsr & ~mxcsr_feature_mask)
3384                         return -EINVAL;
3385                 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3386                         guest_xsave->region, sizeof(struct fxregs_state));
3387         }
3388         return 0;
3389 }
3390
3391 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3392                                         struct kvm_xcrs *guest_xcrs)
3393 {
3394         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3395                 guest_xcrs->nr_xcrs = 0;
3396                 return;
3397         }
3398
3399         guest_xcrs->nr_xcrs = 1;
3400         guest_xcrs->flags = 0;
3401         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3402         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3403 }
3404
3405 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3406                                        struct kvm_xcrs *guest_xcrs)
3407 {
3408         int i, r = 0;
3409
3410         if (!boot_cpu_has(X86_FEATURE_XSAVE))
3411                 return -EINVAL;
3412
3413         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3414                 return -EINVAL;
3415
3416         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3417                 /* Only support XCR0 currently */
3418                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3419                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3420                                 guest_xcrs->xcrs[i].value);
3421                         break;
3422                 }
3423         if (r)
3424                 r = -EINVAL;
3425         return r;
3426 }
3427
3428 /*
3429  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3430  * stopped by the hypervisor.  This function will be called from the host only.
3431  * EINVAL is returned when the host attempts to set the flag for a guest that
3432  * does not support pv clocks.
3433  */
3434 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3435 {
3436         if (!vcpu->arch.pv_time_enabled)
3437                 return -EINVAL;
3438         vcpu->arch.pvclock_set_guest_stopped_request = true;
3439         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3440         return 0;
3441 }
3442
3443 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3444                                      struct kvm_enable_cap *cap)
3445 {
3446         if (cap->flags)
3447                 return -EINVAL;
3448
3449         switch (cap->cap) {
3450         case KVM_CAP_HYPERV_SYNIC2:
3451                 if (cap->args[0])
3452                         return -EINVAL;
3453         case KVM_CAP_HYPERV_SYNIC:
3454                 if (!irqchip_in_kernel(vcpu->kvm))
3455                         return -EINVAL;
3456                 return kvm_hv_activate_synic(vcpu, cap->cap ==
3457                                              KVM_CAP_HYPERV_SYNIC2);
3458         default:
3459                 return -EINVAL;
3460         }
3461 }
3462
3463 long kvm_arch_vcpu_ioctl(struct file *filp,
3464                          unsigned int ioctl, unsigned long arg)
3465 {
3466         struct kvm_vcpu *vcpu = filp->private_data;
3467         void __user *argp = (void __user *)arg;
3468         int r;
3469         union {
3470                 struct kvm_lapic_state *lapic;
3471                 struct kvm_xsave *xsave;
3472                 struct kvm_xcrs *xcrs;
3473                 void *buffer;
3474         } u;
3475
3476         u.buffer = NULL;
3477         switch (ioctl) {
3478         case KVM_GET_LAPIC: {
3479                 r = -EINVAL;
3480                 if (!lapic_in_kernel(vcpu))
3481                         goto out;
3482                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3483
3484                 r = -ENOMEM;
3485                 if (!u.lapic)
3486                         goto out;
3487                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3488                 if (r)
3489                         goto out;
3490                 r = -EFAULT;
3491                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3492                         goto out;
3493                 r = 0;
3494                 break;
3495         }
3496         case KVM_SET_LAPIC: {
3497                 r = -EINVAL;
3498                 if (!lapic_in_kernel(vcpu))
3499                         goto out;
3500                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3501                 if (IS_ERR(u.lapic))
3502                         return PTR_ERR(u.lapic);
3503
3504                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3505                 break;
3506         }
3507         case KVM_INTERRUPT: {
3508                 struct kvm_interrupt irq;
3509
3510                 r = -EFAULT;
3511                 if (copy_from_user(&irq, argp, sizeof irq))
3512                         goto out;
3513                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3514                 break;
3515         }
3516         case KVM_NMI: {
3517                 r = kvm_vcpu_ioctl_nmi(vcpu);
3518                 break;
3519         }
3520         case KVM_SMI: {
3521                 r = kvm_vcpu_ioctl_smi(vcpu);
3522                 break;
3523         }
3524         case KVM_SET_CPUID: {
3525                 struct kvm_cpuid __user *cpuid_arg = argp;
3526                 struct kvm_cpuid cpuid;
3527
3528                 r = -EFAULT;
3529                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3530                         goto out;
3531                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3532                 break;
3533         }
3534         case KVM_SET_CPUID2: {
3535                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3536                 struct kvm_cpuid2 cpuid;
3537
3538                 r = -EFAULT;
3539                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3540                         goto out;
3541                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3542                                               cpuid_arg->entries);
3543                 break;
3544         }
3545         case KVM_GET_CPUID2: {
3546                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3547                 struct kvm_cpuid2 cpuid;
3548
3549                 r = -EFAULT;
3550                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3551                         goto out;
3552                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3553                                               cpuid_arg->entries);
3554                 if (r)
3555                         goto out;
3556                 r = -EFAULT;
3557                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3558                         goto out;
3559                 r = 0;
3560                 break;
3561         }
3562         case KVM_GET_MSRS:
3563                 r = msr_io(vcpu, argp, do_get_msr, 1);
3564                 break;
3565         case KVM_SET_MSRS:
3566                 r = msr_io(vcpu, argp, do_set_msr, 0);
3567                 break;
3568         case KVM_TPR_ACCESS_REPORTING: {
3569                 struct kvm_tpr_access_ctl tac;
3570
3571                 r = -EFAULT;
3572                 if (copy_from_user(&tac, argp, sizeof tac))
3573                         goto out;
3574                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3575                 if (r)
3576                         goto out;
3577                 r = -EFAULT;
3578                 if (copy_to_user(argp, &tac, sizeof tac))
3579                         goto out;
3580                 r = 0;
3581                 break;
3582         };
3583         case KVM_SET_VAPIC_ADDR: {
3584                 struct kvm_vapic_addr va;
3585                 int idx;
3586
3587                 r = -EINVAL;
3588                 if (!lapic_in_kernel(vcpu))
3589                         goto out;
3590                 r = -EFAULT;
3591                 if (copy_from_user(&va, argp, sizeof va))
3592                         goto out;
3593                 idx = srcu_read_lock(&vcpu->kvm->srcu);
3594                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3595                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3596                 break;
3597         }
3598         case KVM_X86_SETUP_MCE: {
3599                 u64 mcg_cap;
3600
3601                 r = -EFAULT;
3602                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3603                         goto out;
3604                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3605                 break;
3606         }
3607         case KVM_X86_SET_MCE: {
3608                 struct kvm_x86_mce mce;
3609
3610                 r = -EFAULT;
3611                 if (copy_from_user(&mce, argp, sizeof mce))
3612                         goto out;
3613                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3614                 break;
3615         }
3616         case KVM_GET_VCPU_EVENTS: {
3617                 struct kvm_vcpu_events events;
3618
3619                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3620
3621                 r = -EFAULT;
3622                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3623                         break;
3624                 r = 0;
3625                 break;
3626         }
3627         case KVM_SET_VCPU_EVENTS: {
3628                 struct kvm_vcpu_events events;
3629
3630                 r = -EFAULT;
3631                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3632                         break;
3633
3634                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3635                 break;
3636         }
3637         case KVM_GET_DEBUGREGS: {
3638                 struct kvm_debugregs dbgregs;
3639
3640                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3641
3642                 r = -EFAULT;
3643                 if (copy_to_user(argp, &dbgregs,
3644                                  sizeof(struct kvm_debugregs)))
3645                         break;
3646                 r = 0;
3647                 break;
3648         }
3649         case KVM_SET_DEBUGREGS: {
3650                 struct kvm_debugregs dbgregs;
3651
3652                 r = -EFAULT;
3653                 if (copy_from_user(&dbgregs, argp,
3654                                    sizeof(struct kvm_debugregs)))
3655                         break;
3656
3657                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3658                 break;
3659         }
3660         case KVM_GET_XSAVE: {
3661                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3662                 r = -ENOMEM;
3663                 if (!u.xsave)
3664                         break;
3665
3666                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3667
3668                 r = -EFAULT;
3669                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3670                         break;
3671                 r = 0;
3672                 break;
3673         }
3674         case KVM_SET_XSAVE: {
3675                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3676                 if (IS_ERR(u.xsave))
3677                         return PTR_ERR(u.xsave);
3678
3679                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3680                 break;
3681         }
3682         case KVM_GET_XCRS: {
3683                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3684                 r = -ENOMEM;
3685                 if (!u.xcrs)
3686                         break;
3687
3688                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3689
3690                 r = -EFAULT;
3691                 if (copy_to_user(argp, u.xcrs,
3692                                  sizeof(struct kvm_xcrs)))
3693                         break;
3694                 r = 0;
3695                 break;
3696         }
3697         case KVM_SET_XCRS: {
3698                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3699                 if (IS_ERR(u.xcrs))
3700                         return PTR_ERR(u.xcrs);
3701
3702                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3703                 break;
3704         }
3705         case KVM_SET_TSC_KHZ: {
3706                 u32 user_tsc_khz;
3707
3708                 r = -EINVAL;
3709                 user_tsc_khz = (u32)arg;
3710
3711                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3712                         goto out;
3713
3714                 if (user_tsc_khz == 0)
3715                         user_tsc_khz = tsc_khz;
3716
3717                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3718                         r = 0;
3719
3720                 goto out;
3721         }
3722         case KVM_GET_TSC_KHZ: {
3723                 r = vcpu->arch.virtual_tsc_khz;
3724                 goto out;
3725         }
3726         case KVM_KVMCLOCK_CTRL: {
3727                 r = kvm_set_guest_paused(vcpu);
3728                 goto out;
3729         }
3730         case KVM_ENABLE_CAP: {
3731                 struct kvm_enable_cap cap;
3732
3733                 r = -EFAULT;
3734                 if (copy_from_user(&cap, argp, sizeof(cap)))
3735                         goto out;
3736                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3737                 break;
3738         }
3739         default:
3740                 r = -EINVAL;
3741         }
3742 out:
3743         kfree(u.buffer);
3744         return r;
3745 }
3746
3747 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3748 {
3749         return VM_FAULT_SIGBUS;
3750 }
3751
3752 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3753 {
3754         int ret;
3755
3756         if (addr > (unsigned int)(-3 * PAGE_SIZE))
3757                 return -EINVAL;
3758         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3759         return ret;
3760 }
3761
3762 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3763                                               u64 ident_addr)
3764 {
3765         kvm->arch.ept_identity_map_addr = ident_addr;
3766         return 0;
3767 }
3768
3769 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3770                                           u32 kvm_nr_mmu_pages)
3771 {
3772         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3773                 return -EINVAL;
3774
3775         mutex_lock(&kvm->slots_lock);
3776
3777         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3778         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3779
3780         mutex_unlock(&kvm->slots_lock);
3781         return 0;
3782 }
3783
3784 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3785 {
3786         return kvm->arch.n_max_mmu_pages;
3787 }
3788
3789 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3790 {
3791         struct kvm_pic *pic = kvm->arch.vpic;
3792         int r;
3793
3794         r = 0;
3795         switch (chip->chip_id) {
3796         case KVM_IRQCHIP_PIC_MASTER:
3797                 memcpy(&chip->chip.pic, &pic->pics[0],
3798                         sizeof(struct kvm_pic_state));
3799                 break;
3800         case KVM_IRQCHIP_PIC_SLAVE:
3801                 memcpy(&chip->chip.pic, &pic->pics[1],
3802                         sizeof(struct kvm_pic_state));
3803                 break;
3804         case KVM_IRQCHIP_IOAPIC:
3805                 kvm_get_ioapic(kvm, &chip->chip.ioapic);
3806                 break;
3807         default:
3808                 r = -EINVAL;
3809                 break;
3810         }
3811         return r;
3812 }
3813
3814 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3815 {
3816         struct kvm_pic *pic = kvm->arch.vpic;
3817         int r;
3818
3819         r = 0;
3820         switch (chip->chip_id) {
3821         case KVM_IRQCHIP_PIC_MASTER:
3822                 spin_lock(&pic->lock);
3823                 memcpy(&pic->pics[0], &chip->chip.pic,
3824                         sizeof(struct kvm_pic_state));
3825                 spin_unlock(&pic->lock);
3826                 break;
3827         case KVM_IRQCHIP_PIC_SLAVE:
3828                 spin_lock(&pic->lock);
3829                 memcpy(&pic->pics[1], &chip->chip.pic,
3830                         sizeof(struct kvm_pic_state));
3831                 spin_unlock(&pic->lock);
3832                 break;
3833         case KVM_IRQCHIP_IOAPIC:
3834                 kvm_set_ioapic(kvm, &chip->chip.ioapic);
3835                 break;
3836         default:
3837                 r = -EINVAL;
3838                 break;
3839         }
3840         kvm_pic_update_irq(pic);
3841         return r;
3842 }
3843
3844 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3845 {
3846         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
3847
3848         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
3849
3850         mutex_lock(&kps->lock);
3851         memcpy(ps, &kps->channels, sizeof(*ps));
3852         mutex_unlock(&kps->lock);
3853         return 0;
3854 }
3855
3856 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3857 {
3858         int i;
3859         struct kvm_pit *pit = kvm->arch.vpit;
3860
3861         mutex_lock(&pit->pit_state.lock);
3862         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
3863         for (i = 0; i < 3; i++)
3864                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
3865         mutex_unlock(&pit->pit_state.lock);
3866         return 0;
3867 }
3868
3869 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3870 {
3871         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3872         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3873                 sizeof(ps->channels));
3874         ps->flags = kvm->arch.vpit->pit_state.flags;
3875         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3876         memset(&ps->reserved, 0, sizeof(ps->reserved));
3877         return 0;
3878 }
3879
3880 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3881 {
3882         int start = 0;
3883         int i;
3884         u32 prev_legacy, cur_legacy;
3885         struct kvm_pit *pit = kvm->arch.vpit;
3886
3887         mutex_lock(&pit->pit_state.lock);
3888         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3889         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3890         if (!prev_legacy && cur_legacy)
3891                 start = 1;
3892         memcpy(&pit->pit_state.channels, &ps->channels,
3893                sizeof(pit->pit_state.channels));
3894         pit->pit_state.flags = ps->flags;
3895         for (i = 0; i < 3; i++)
3896                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
3897                                    start && i == 0);
3898         mutex_unlock(&pit->pit_state.lock);
3899         return 0;
3900 }
3901
3902 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3903                                  struct kvm_reinject_control *control)
3904 {
3905         struct kvm_pit *pit = kvm->arch.vpit;
3906
3907         if (!pit)
3908                 return -ENXIO;
3909
3910         /* pit->pit_state.lock was overloaded to prevent userspace from getting
3911          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
3912          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
3913          */
3914         mutex_lock(&pit->pit_state.lock);
3915         kvm_pit_set_reinject(pit, control->pit_reinject);
3916         mutex_unlock(&pit->pit_state.lock);
3917
3918         return 0;
3919 }
3920
3921 /**
3922  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3923  * @kvm: kvm instance
3924  * @log: slot id and address to which we copy the log
3925  *
3926  * Steps 1-4 below provide general overview of dirty page logging. See
3927  * kvm_get_dirty_log_protect() function description for additional details.
3928  *
3929  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3930  * always flush the TLB (step 4) even if previous step failed  and the dirty
3931  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3932  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3933  * writes will be marked dirty for next log read.
3934  *
3935  *   1. Take a snapshot of the bit and clear it if needed.
3936  *   2. Write protect the corresponding page.
3937  *   3. Copy the snapshot to the userspace.
3938  *   4. Flush TLB's if needed.
3939  */
3940 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3941 {
3942         bool is_dirty = false;
3943         int r;
3944
3945         mutex_lock(&kvm->slots_lock);
3946
3947         /*
3948          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3949          */
3950         if (kvm_x86_ops->flush_log_dirty)
3951                 kvm_x86_ops->flush_log_dirty(kvm);
3952
3953         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3954
3955         /*
3956          * All the TLBs can be flushed out of mmu lock, see the comments in
3957          * kvm_mmu_slot_remove_write_access().
3958          */
3959         lockdep_assert_held(&kvm->slots_lock);
3960         if (is_dirty)
3961                 kvm_flush_remote_tlbs(kvm);
3962
3963         mutex_unlock(&kvm->slots_lock);
3964         return r;
3965 }
3966
3967 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3968                         bool line_status)
3969 {
3970         if (!irqchip_in_kernel(kvm))
3971                 return -ENXIO;
3972
3973         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3974                                         irq_event->irq, irq_event->level,
3975                                         line_status);
3976         return 0;
3977 }
3978
3979 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3980                                    struct kvm_enable_cap *cap)
3981 {
3982         int r;
3983
3984         if (cap->flags)
3985                 return -EINVAL;
3986
3987         switch (cap->cap) {
3988         case KVM_CAP_DISABLE_QUIRKS:
3989                 kvm->arch.disabled_quirks = cap->args[0];
3990                 r = 0;
3991                 break;
3992         case KVM_CAP_SPLIT_IRQCHIP: {
3993                 mutex_lock(&kvm->lock);
3994                 r = -EINVAL;
3995                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
3996                         goto split_irqchip_unlock;
3997                 r = -EEXIST;
3998                 if (irqchip_in_kernel(kvm))
3999                         goto split_irqchip_unlock;
4000                 if (kvm->created_vcpus)
4001                         goto split_irqchip_unlock;
4002                 r = kvm_setup_empty_irq_routing(kvm);
4003                 if (r)
4004                         goto split_irqchip_unlock;
4005                 /* Pairs with irqchip_in_kernel. */
4006                 smp_wmb();
4007                 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4008                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4009                 r = 0;
4010 split_irqchip_unlock:
4011                 mutex_unlock(&kvm->lock);
4012                 break;
4013         }
4014         case KVM_CAP_X2APIC_API:
4015                 r = -EINVAL;
4016                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4017                         break;
4018
4019                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4020                         kvm->arch.x2apic_format = true;
4021                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4022                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
4023
4024                 r = 0;
4025                 break;
4026         default:
4027                 r = -EINVAL;
4028                 break;
4029         }
4030         return r;
4031 }
4032
4033 long kvm_arch_vm_ioctl(struct file *filp,
4034                        unsigned int ioctl, unsigned long arg)
4035 {
4036         struct kvm *kvm = filp->private_data;
4037         void __user *argp = (void __user *)arg;
4038         int r = -ENOTTY;
4039         /*
4040          * This union makes it completely explicit to gcc-3.x
4041          * that these two variables' stack usage should be
4042          * combined, not added together.
4043          */
4044         union {
4045                 struct kvm_pit_state ps;
4046                 struct kvm_pit_state2 ps2;
4047                 struct kvm_pit_config pit_config;
4048         } u;
4049
4050         switch (ioctl) {
4051         case KVM_SET_TSS_ADDR:
4052                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4053                 break;
4054         case KVM_SET_IDENTITY_MAP_ADDR: {
4055                 u64 ident_addr;
4056
4057                 mutex_lock(&kvm->lock);
4058                 r = -EINVAL;
4059                 if (kvm->created_vcpus)
4060                         goto set_identity_unlock;
4061                 r = -EFAULT;
4062                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
4063                         goto set_identity_unlock;
4064                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4065 set_identity_unlock:
4066                 mutex_unlock(&kvm->lock);
4067                 break;
4068         }
4069         case KVM_SET_NR_MMU_PAGES:
4070                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4071                 break;
4072         case KVM_GET_NR_MMU_PAGES:
4073                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4074                 break;
4075         case KVM_CREATE_IRQCHIP: {
4076                 mutex_lock(&kvm->lock);
4077
4078                 r = -EEXIST;
4079                 if (irqchip_in_kernel(kvm))
4080                         goto create_irqchip_unlock;
4081
4082                 r = -EINVAL;
4083                 if (kvm->created_vcpus)
4084                         goto create_irqchip_unlock;
4085
4086                 r = kvm_pic_init(kvm);
4087                 if (r)
4088                         goto create_irqchip_unlock;
4089
4090                 r = kvm_ioapic_init(kvm);
4091                 if (r) {
4092                         kvm_pic_destroy(kvm);
4093                         goto create_irqchip_unlock;
4094                 }
4095
4096                 r = kvm_setup_default_irq_routing(kvm);
4097                 if (r) {
4098                         kvm_ioapic_destroy(kvm);
4099                         kvm_pic_destroy(kvm);
4100                         goto create_irqchip_unlock;
4101                 }
4102                 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4103                 smp_wmb();
4104                 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4105         create_irqchip_unlock:
4106                 mutex_unlock(&kvm->lock);
4107                 break;
4108         }
4109         case KVM_CREATE_PIT:
4110                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4111                 goto create_pit;
4112         case KVM_CREATE_PIT2:
4113                 r = -EFAULT;
4114                 if (copy_from_user(&u.pit_config, argp,
4115                                    sizeof(struct kvm_pit_config)))
4116                         goto out;
4117         create_pit:
4118                 mutex_lock(&kvm->lock);
4119                 r = -EEXIST;
4120                 if (kvm->arch.vpit)
4121                         goto create_pit_unlock;
4122                 r = -ENOMEM;
4123                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4124                 if (kvm->arch.vpit)
4125                         r = 0;
4126         create_pit_unlock:
4127                 mutex_unlock(&kvm->lock);
4128                 break;
4129         case KVM_GET_IRQCHIP: {
4130                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4131                 struct kvm_irqchip *chip;
4132
4133                 chip = memdup_user(argp, sizeof(*chip));
4134                 if (IS_ERR(chip)) {
4135                         r = PTR_ERR(chip);
4136                         goto out;
4137                 }
4138
4139                 r = -ENXIO;
4140                 if (!irqchip_kernel(kvm))
4141                         goto get_irqchip_out;
4142                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4143                 if (r)
4144                         goto get_irqchip_out;
4145                 r = -EFAULT;
4146                 if (copy_to_user(argp, chip, sizeof *chip))
4147                         goto get_irqchip_out;
4148                 r = 0;
4149         get_irqchip_out:
4150                 kfree(chip);
4151                 break;
4152         }
4153         case KVM_SET_IRQCHIP: {
4154                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4155                 struct kvm_irqchip *chip;
4156
4157                 chip = memdup_user(argp, sizeof(*chip));
4158                 if (IS_ERR(chip)) {
4159                         r = PTR_ERR(chip);
4160                         goto out;
4161                 }
4162
4163                 r = -ENXIO;
4164                 if (!irqchip_kernel(kvm))
4165                         goto set_irqchip_out;
4166                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4167                 if (r)
4168                         goto set_irqchip_out;
4169                 r = 0;
4170         set_irqchip_out:
4171                 kfree(chip);
4172                 break;
4173         }
4174         case KVM_GET_PIT: {
4175                 r = -EFAULT;
4176                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4177                         goto out;
4178                 r = -ENXIO;
4179                 if (!kvm->arch.vpit)
4180                         goto out;
4181                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4182                 if (r)
4183                         goto out;
4184                 r = -EFAULT;
4185                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4186                         goto out;
4187                 r = 0;
4188                 break;
4189         }
4190         case KVM_SET_PIT: {
4191                 r = -EFAULT;
4192                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
4193                         goto out;
4194                 r = -ENXIO;
4195                 if (!kvm->arch.vpit)
4196                         goto out;
4197                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4198                 break;
4199         }
4200         case KVM_GET_PIT2: {
4201                 r = -ENXIO;
4202                 if (!kvm->arch.vpit)
4203                         goto out;
4204                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4205                 if (r)
4206                         goto out;
4207                 r = -EFAULT;
4208                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4209                         goto out;
4210                 r = 0;
4211                 break;
4212         }
4213         case KVM_SET_PIT2: {
4214                 r = -EFAULT;
4215                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4216                         goto out;
4217                 r = -ENXIO;
4218                 if (!kvm->arch.vpit)
4219                         goto out;
4220                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4221                 break;
4222         }
4223         case KVM_REINJECT_CONTROL: {
4224                 struct kvm_reinject_control control;
4225                 r =  -EFAULT;
4226                 if (copy_from_user(&control, argp, sizeof(control)))
4227                         goto out;
4228                 r = kvm_vm_ioctl_reinject(kvm, &control);
4229                 break;
4230         }
4231         case KVM_SET_BOOT_CPU_ID:
4232                 r = 0;
4233                 mutex_lock(&kvm->lock);
4234                 if (kvm->created_vcpus)
4235                         r = -EBUSY;
4236                 else
4237                         kvm->arch.bsp_vcpu_id = arg;
4238                 mutex_unlock(&kvm->lock);
4239                 break;
4240         case KVM_XEN_HVM_CONFIG: {
4241                 r = -EFAULT;
4242                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
4243                                    sizeof(struct kvm_xen_hvm_config)))
4244                         goto out;
4245                 r = -EINVAL;
4246                 if (kvm->arch.xen_hvm_config.flags)
4247                         goto out;
4248                 r = 0;
4249                 break;
4250         }
4251         case KVM_SET_CLOCK: {
4252                 struct kvm_clock_data user_ns;
4253                 u64 now_ns;
4254
4255                 r = -EFAULT;
4256                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4257                         goto out;
4258
4259                 r = -EINVAL;
4260                 if (user_ns.flags)
4261                         goto out;
4262
4263                 r = 0;
4264                 /*
4265                  * TODO: userspace has to take care of races with VCPU_RUN, so
4266                  * kvm_gen_update_masterclock() can be cut down to locked
4267                  * pvclock_update_vm_gtod_copy().
4268                  */
4269                 kvm_gen_update_masterclock(kvm);
4270                 now_ns = get_kvmclock_ns(kvm);
4271                 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4272                 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
4273                 break;
4274         }
4275         case KVM_GET_CLOCK: {
4276                 struct kvm_clock_data user_ns;
4277                 u64 now_ns;
4278
4279                 now_ns = get_kvmclock_ns(kvm);
4280                 user_ns.clock = now_ns;
4281                 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4282                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4283
4284                 r = -EFAULT;
4285                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4286                         goto out;
4287                 r = 0;
4288                 break;
4289         }
4290         case KVM_ENABLE_CAP: {
4291                 struct kvm_enable_cap cap;
4292
4293                 r = -EFAULT;
4294                 if (copy_from_user(&cap, argp, sizeof(cap)))
4295                         goto out;
4296                 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4297                 break;
4298         }
4299         default:
4300                 r = -ENOTTY;
4301         }
4302 out:
4303         return r;
4304 }
4305
4306 static void kvm_init_msr_list(void)
4307 {
4308         u32 dummy[2];
4309         unsigned i, j;
4310
4311         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4312                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4313                         continue;
4314
4315                 /*
4316                  * Even MSRs that are valid in the host may not be exposed
4317                  * to the guests in some cases.
4318                  */
4319                 switch (msrs_to_save[i]) {
4320                 case MSR_IA32_BNDCFGS:
4321                         if (!kvm_x86_ops->mpx_supported())
4322                                 continue;
4323                         break;
4324                 case MSR_TSC_AUX:
4325                         if (!kvm_x86_ops->rdtscp_supported())
4326                                 continue;
4327                         break;
4328                 default:
4329                         break;
4330                 }
4331
4332                 if (j < i)
4333                         msrs_to_save[j] = msrs_to_save[i];
4334                 j++;
4335         }
4336         num_msrs_to_save = j;
4337
4338         for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4339                 switch (emulated_msrs[i]) {
4340                 case MSR_IA32_SMBASE:
4341                         if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4342                                 continue;
4343                         break;
4344                 default:
4345                         break;
4346                 }
4347
4348                 if (j < i)
4349                         emulated_msrs[j] = emulated_msrs[i];
4350                 j++;
4351         }
4352         num_emulated_msrs = j;
4353 }
4354
4355 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4356                            const void *v)
4357 {
4358         int handled = 0;
4359         int n;
4360
4361         do {
4362                 n = min(len, 8);
4363                 if (!(lapic_in_kernel(vcpu) &&
4364                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4365                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4366                         break;
4367                 handled += n;
4368                 addr += n;
4369                 len -= n;
4370                 v += n;
4371         } while (len);
4372
4373         return handled;
4374 }
4375
4376 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4377 {
4378         int handled = 0;
4379         int n;
4380
4381         do {
4382                 n = min(len, 8);
4383                 if (!(lapic_in_kernel(vcpu) &&
4384                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4385                                          addr, n, v))
4386                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4387                         break;
4388                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4389                 handled += n;
4390                 addr += n;
4391                 len -= n;
4392                 v += n;
4393         } while (len);
4394
4395         return handled;
4396 }
4397
4398 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4399                         struct kvm_segment *var, int seg)
4400 {
4401         kvm_x86_ops->set_segment(vcpu, var, seg);
4402 }
4403
4404 void kvm_get_segment(struct kvm_vcpu *vcpu,
4405                      struct kvm_segment *var, int seg)
4406 {
4407         kvm_x86_ops->get_segment(vcpu, var, seg);
4408 }
4409
4410 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4411                            struct x86_exception *exception)
4412 {
4413         gpa_t t_gpa;
4414
4415         BUG_ON(!mmu_is_nested(vcpu));
4416
4417         /* NPT walks are always user-walks */
4418         access |= PFERR_USER_MASK;
4419         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4420
4421         return t_gpa;
4422 }
4423
4424 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4425                               struct x86_exception *exception)
4426 {
4427         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4428         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4429 }
4430
4431  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4432                                 struct x86_exception *exception)
4433 {
4434         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4435         access |= PFERR_FETCH_MASK;
4436         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4437 }
4438
4439 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4440                                struct x86_exception *exception)
4441 {
4442         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4443         access |= PFERR_WRITE_MASK;
4444         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4445 }
4446
4447 /* uses this to access any guest's mapped memory without checking CPL */
4448 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4449                                 struct x86_exception *exception)
4450 {
4451         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4452 }
4453
4454 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4455                                       struct kvm_vcpu *vcpu, u32 access,
4456                                       struct x86_exception *exception)
4457 {
4458         void *data = val;
4459         int r = X86EMUL_CONTINUE;
4460
4461         while (bytes) {
4462                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4463                                                             exception);
4464                 unsigned offset = addr & (PAGE_SIZE-1);
4465                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4466                 int ret;
4467
4468                 if (gpa == UNMAPPED_GVA)
4469                         return X86EMUL_PROPAGATE_FAULT;
4470                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4471                                                offset, toread);
4472                 if (ret < 0) {
4473                         r = X86EMUL_IO_NEEDED;
4474                         goto out;
4475                 }
4476
4477                 bytes -= toread;
4478                 data += toread;
4479                 addr += toread;
4480         }
4481 out:
4482         return r;
4483 }
4484
4485 /* used for instruction fetching */
4486 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4487                                 gva_t addr, void *val, unsigned int bytes,
4488                                 struct x86_exception *exception)
4489 {
4490         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4491         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4492         unsigned offset;
4493         int ret;
4494
4495         /* Inline kvm_read_guest_virt_helper for speed.  */
4496         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4497                                                     exception);
4498         if (unlikely(gpa == UNMAPPED_GVA))
4499                 return X86EMUL_PROPAGATE_FAULT;
4500
4501         offset = addr & (PAGE_SIZE-1);
4502         if (WARN_ON(offset + bytes > PAGE_SIZE))
4503                 bytes = (unsigned)PAGE_SIZE - offset;
4504         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4505                                        offset, bytes);
4506         if (unlikely(ret < 0))
4507                 return X86EMUL_IO_NEEDED;
4508
4509         return X86EMUL_CONTINUE;
4510 }
4511
4512 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4513                                gva_t addr, void *val, unsigned int bytes,
4514                                struct x86_exception *exception)
4515 {
4516         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4517         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4518
4519         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4520                                           exception);
4521 }
4522 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4523
4524 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4525                                       gva_t addr, void *val, unsigned int bytes,
4526                                       struct x86_exception *exception)
4527 {
4528         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4529         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4530 }
4531
4532 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4533                 unsigned long addr, void *val, unsigned int bytes)
4534 {
4535         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4536         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4537
4538         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4539 }
4540
4541 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4542                                        gva_t addr, void *val,
4543                                        unsigned int bytes,
4544                                        struct x86_exception *exception)
4545 {
4546         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4547         void *data = val;
4548         int r = X86EMUL_CONTINUE;
4549
4550         while (bytes) {
4551                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4552                                                              PFERR_WRITE_MASK,
4553                                                              exception);
4554                 unsigned offset = addr & (PAGE_SIZE-1);
4555                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4556                 int ret;
4557
4558                 if (gpa == UNMAPPED_GVA)
4559                         return X86EMUL_PROPAGATE_FAULT;
4560                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4561                 if (ret < 0) {
4562                         r = X86EMUL_IO_NEEDED;
4563                         goto out;
4564                 }
4565
4566                 bytes -= towrite;
4567                 data += towrite;
4568                 addr += towrite;
4569         }
4570 out:
4571         return r;
4572 }
4573 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4574
4575 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4576                             gpa_t gpa, bool write)
4577 {
4578         /* For APIC access vmexit */
4579         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4580                 return 1;
4581
4582         if (vcpu_match_mmio_gpa(vcpu, gpa)) {
4583                 trace_vcpu_match_mmio(gva, gpa, write, true);
4584                 return 1;
4585         }
4586
4587         return 0;
4588 }
4589
4590 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4591                                 gpa_t *gpa, struct x86_exception *exception,
4592                                 bool write)
4593 {
4594         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4595                 | (write ? PFERR_WRITE_MASK : 0);
4596
4597         /*
4598          * currently PKRU is only applied to ept enabled guest so
4599          * there is no pkey in EPT page table for L1 guest or EPT
4600          * shadow page table for L2 guest.
4601          */
4602         if (vcpu_match_mmio_gva(vcpu, gva)
4603             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4604                                  vcpu->arch.access, 0, access)) {
4605                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4606                                         (gva & (PAGE_SIZE - 1));
4607                 trace_vcpu_match_mmio(gva, *gpa, write, false);
4608                 return 1;
4609         }
4610
4611         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4612
4613         if (*gpa == UNMAPPED_GVA)
4614                 return -1;
4615
4616         return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
4617 }
4618
4619 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4620                         const void *val, int bytes)
4621 {
4622         int ret;
4623
4624         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4625         if (ret < 0)
4626                 return 0;
4627         kvm_page_track_write(vcpu, gpa, val, bytes);
4628         return 1;
4629 }
4630
4631 struct read_write_emulator_ops {
4632         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4633                                   int bytes);
4634         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4635                                   void *val, int bytes);
4636         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4637                                int bytes, void *val);
4638         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4639                                     void *val, int bytes);
4640         bool write;
4641 };
4642
4643 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4644 {
4645         if (vcpu->mmio_read_completed) {
4646                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4647                                vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4648                 vcpu->mmio_read_completed = 0;
4649                 return 1;
4650         }
4651
4652         return 0;
4653 }
4654
4655 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4656                         void *val, int bytes)
4657 {
4658         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4659 }
4660
4661 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4662                          void *val, int bytes)
4663 {
4664         return emulator_write_phys(vcpu, gpa, val, bytes);
4665 }
4666
4667 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4668 {
4669         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4670         return vcpu_mmio_write(vcpu, gpa, bytes, val);
4671 }
4672
4673 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4674                           void *val, int bytes)
4675 {
4676         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4677         return X86EMUL_IO_NEEDED;
4678 }
4679
4680 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4681                            void *val, int bytes)
4682 {
4683         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4684
4685         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4686         return X86EMUL_CONTINUE;
4687 }
4688
4689 static const struct read_write_emulator_ops read_emultor = {
4690         .read_write_prepare = read_prepare,
4691         .read_write_emulate = read_emulate,
4692         .read_write_mmio = vcpu_mmio_read,
4693         .read_write_exit_mmio = read_exit_mmio,
4694 };
4695
4696 static const struct read_write_emulator_ops write_emultor = {
4697         .read_write_emulate = write_emulate,
4698         .read_write_mmio = write_mmio,
4699         .read_write_exit_mmio = write_exit_mmio,
4700         .write = true,
4701 };
4702
4703 static int emulator_read_write_onepage(unsigned long addr, void *val,
4704                                        unsigned int bytes,
4705                                        struct x86_exception *exception,
4706                                        struct kvm_vcpu *vcpu,
4707                                        const struct read_write_emulator_ops *ops)
4708 {
4709         gpa_t gpa;
4710         int handled, ret;
4711         bool write = ops->write;
4712         struct kvm_mmio_fragment *frag;
4713         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4714
4715         /*
4716          * If the exit was due to a NPF we may already have a GPA.
4717          * If the GPA is present, use it to avoid the GVA to GPA table walk.
4718          * Note, this cannot be used on string operations since string
4719          * operation using rep will only have the initial GPA from the NPF
4720          * occurred.
4721          */
4722         if (vcpu->arch.gpa_available &&
4723             emulator_can_use_gpa(ctxt) &&
4724             (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) {
4725                 gpa = vcpu->arch.gpa_val;
4726                 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
4727         } else {
4728                 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4729                 if (ret < 0)
4730                         return X86EMUL_PROPAGATE_FAULT;
4731         }
4732
4733         if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
4734                 return X86EMUL_CONTINUE;
4735
4736         /*
4737          * Is this MMIO handled locally?
4738          */
4739         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4740         if (handled == bytes)
4741                 return X86EMUL_CONTINUE;
4742
4743         gpa += handled;
4744         bytes -= handled;
4745         val += handled;
4746
4747         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4748         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4749         frag->gpa = gpa;
4750         frag->data = val;
4751         frag->len = bytes;
4752         return X86EMUL_CONTINUE;
4753 }
4754
4755 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4756                         unsigned long addr,
4757                         void *val, unsigned int bytes,
4758                         struct x86_exception *exception,
4759                         const struct read_write_emulator_ops *ops)
4760 {
4761         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4762         gpa_t gpa;
4763         int rc;
4764
4765         if (ops->read_write_prepare &&
4766                   ops->read_write_prepare(vcpu, val, bytes))
4767                 return X86EMUL_CONTINUE;
4768
4769         vcpu->mmio_nr_fragments = 0;
4770
4771         /* Crossing a page boundary? */
4772         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4773                 int now;
4774
4775                 now = -addr & ~PAGE_MASK;
4776                 rc = emulator_read_write_onepage(addr, val, now, exception,
4777                                                  vcpu, ops);
4778
4779                 if (rc != X86EMUL_CONTINUE)
4780                         return rc;
4781                 addr += now;
4782                 if (ctxt->mode != X86EMUL_MODE_PROT64)
4783                         addr = (u32)addr;
4784                 val += now;
4785                 bytes -= now;
4786         }
4787
4788         rc = emulator_read_write_onepage(addr, val, bytes, exception,
4789                                          vcpu, ops);
4790         if (rc != X86EMUL_CONTINUE)
4791                 return rc;
4792
4793         if (!vcpu->mmio_nr_fragments)
4794                 return rc;
4795
4796         gpa = vcpu->mmio_fragments[0].gpa;
4797
4798         vcpu->mmio_needed = 1;
4799         vcpu->mmio_cur_fragment = 0;
4800
4801         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4802         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4803         vcpu->run->exit_reason = KVM_EXIT_MMIO;
4804         vcpu->run->mmio.phys_addr = gpa;
4805
4806         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4807 }
4808
4809 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4810                                   unsigned long addr,
4811                                   void *val,
4812                                   unsigned int bytes,
4813                                   struct x86_exception *exception)
4814 {
4815         return emulator_read_write(ctxt, addr, val, bytes,
4816                                    exception, &read_emultor);
4817 }
4818
4819 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4820                             unsigned long addr,
4821                             const void *val,
4822                             unsigned int bytes,
4823                             struct x86_exception *exception)
4824 {
4825         return emulator_read_write(ctxt, addr, (void *)val, bytes,
4826                                    exception, &write_emultor);
4827 }
4828
4829 #define CMPXCHG_TYPE(t, ptr, old, new) \
4830         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4831
4832 #ifdef CONFIG_X86_64
4833 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4834 #else
4835 #  define CMPXCHG64(ptr, old, new) \
4836         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4837 #endif
4838
4839 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4840                                      unsigned long addr,
4841                                      const void *old,
4842                                      const void *new,
4843                                      unsigned int bytes,
4844                                      struct x86_exception *exception)
4845 {
4846         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4847         gpa_t gpa;
4848         struct page *page;
4849         char *kaddr;
4850         bool exchanged;
4851
4852         /* guests cmpxchg8b have to be emulated atomically */
4853         if (bytes > 8 || (bytes & (bytes - 1)))
4854                 goto emul_write;
4855
4856         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4857
4858         if (gpa == UNMAPPED_GVA ||
4859             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4860                 goto emul_write;
4861
4862         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4863                 goto emul_write;
4864
4865         page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4866         if (is_error_page(page))
4867                 goto emul_write;
4868
4869         kaddr = kmap_atomic(page);
4870         kaddr += offset_in_page(gpa);
4871         switch (bytes) {
4872         case 1:
4873                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4874                 break;
4875         case 2:
4876                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4877                 break;
4878         case 4:
4879                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4880                 break;
4881         case 8:
4882                 exchanged = CMPXCHG64(kaddr, old, new);
4883                 break;
4884         default:
4885                 BUG();
4886         }
4887         kunmap_atomic(kaddr);
4888         kvm_release_page_dirty(page);
4889
4890         if (!exchanged)
4891                 return X86EMUL_CMPXCHG_FAILED;
4892
4893         kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4894         kvm_page_track_write(vcpu, gpa, new, bytes);
4895
4896         return X86EMUL_CONTINUE;
4897
4898 emul_write:
4899         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4900
4901         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4902 }
4903
4904 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4905 {
4906         int r = 0, i;
4907
4908         for (i = 0; i < vcpu->arch.pio.count; i++) {
4909                 if (vcpu->arch.pio.in)
4910                         r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4911                                             vcpu->arch.pio.size, pd);
4912                 else
4913                         r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4914                                              vcpu->arch.pio.port, vcpu->arch.pio.size,
4915                                              pd);
4916                 if (r)
4917                         break;
4918                 pd += vcpu->arch.pio.size;
4919         }
4920         return r;
4921 }
4922
4923 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4924                                unsigned short port, void *val,
4925                                unsigned int count, bool in)
4926 {
4927         vcpu->arch.pio.port = port;
4928         vcpu->arch.pio.in = in;
4929         vcpu->arch.pio.count  = count;
4930         vcpu->arch.pio.size = size;
4931
4932         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4933                 vcpu->arch.pio.count = 0;
4934                 return 1;
4935         }
4936
4937         vcpu->run->exit_reason = KVM_EXIT_IO;
4938         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4939         vcpu->run->io.size = size;
4940         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4941         vcpu->run->io.count = count;
4942         vcpu->run->io.port = port;
4943
4944         return 0;
4945 }
4946
4947 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4948                                     int size, unsigned short port, void *val,
4949                                     unsigned int count)
4950 {
4951         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4952         int ret;
4953
4954         if (vcpu->arch.pio.count)
4955                 goto data_avail;
4956
4957         memset(vcpu->arch.pio_data, 0, size * count);
4958
4959         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4960         if (ret) {
4961 data_avail:
4962                 memcpy(val, vcpu->arch.pio_data, size * count);
4963                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4964                 vcpu->arch.pio.count = 0;
4965                 return 1;
4966         }
4967
4968         return 0;
4969 }
4970
4971 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4972                                      int size, unsigned short port,
4973                                      const void *val, unsigned int count)
4974 {
4975         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4976
4977         memcpy(vcpu->arch.pio_data, val, size * count);
4978         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4979         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4980 }
4981
4982 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4983 {
4984         return kvm_x86_ops->get_segment_base(vcpu, seg);
4985 }
4986
4987 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4988 {
4989         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4990 }
4991
4992 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4993 {
4994         if (!need_emulate_wbinvd(vcpu))
4995                 return X86EMUL_CONTINUE;
4996
4997         if (kvm_x86_ops->has_wbinvd_exit()) {
4998                 int cpu = get_cpu();
4999
5000                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
5001                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
5002                                 wbinvd_ipi, NULL, 1);
5003                 put_cpu();
5004                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
5005         } else
5006                 wbinvd();
5007         return X86EMUL_CONTINUE;
5008 }
5009
5010 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
5011 {
5012         kvm_emulate_wbinvd_noskip(vcpu);
5013         return kvm_skip_emulated_instruction(vcpu);
5014 }
5015 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
5016
5017
5018
5019 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
5020 {
5021         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
5022 }
5023
5024 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
5025                            unsigned long *dest)
5026 {
5027         return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
5028 }
5029
5030 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
5031                            unsigned long value)
5032 {
5033
5034         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
5035 }
5036
5037 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
5038 {
5039         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
5040 }
5041
5042 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
5043 {
5044         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5045         unsigned long value;
5046
5047         switch (cr) {
5048         case 0:
5049                 value = kvm_read_cr0(vcpu);
5050                 break;
5051         case 2:
5052                 value = vcpu->arch.cr2;
5053                 break;
5054         case 3:
5055                 value = kvm_read_cr3(vcpu);
5056                 break;
5057         case 4:
5058                 value = kvm_read_cr4(vcpu);
5059                 break;
5060         case 8:
5061                 value = kvm_get_cr8(vcpu);
5062                 break;
5063         default:
5064                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5065                 return 0;
5066         }
5067
5068         return value;
5069 }
5070
5071 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5072 {
5073         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5074         int res = 0;
5075
5076         switch (cr) {
5077         case 0:
5078                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5079                 break;
5080         case 2:
5081                 vcpu->arch.cr2 = val;
5082                 break;
5083         case 3:
5084                 res = kvm_set_cr3(vcpu, val);
5085                 break;
5086         case 4:
5087                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5088                 break;
5089         case 8:
5090                 res = kvm_set_cr8(vcpu, val);
5091                 break;
5092         default:
5093                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5094                 res = -1;
5095         }
5096
5097         return res;
5098 }
5099
5100 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5101 {
5102         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5103 }
5104
5105 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5106 {
5107         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5108 }
5109
5110 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5111 {
5112         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5113 }
5114
5115 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5116 {
5117         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5118 }
5119
5120 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5121 {
5122         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5123 }
5124
5125 static unsigned long emulator_get_cached_segment_base(
5126         struct x86_emulate_ctxt *ctxt, int seg)
5127 {
5128         return get_segment_base(emul_to_vcpu(ctxt), seg);
5129 }
5130
5131 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5132                                  struct desc_struct *desc, u32 *base3,
5133                                  int seg)
5134 {
5135         struct kvm_segment var;
5136
5137         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5138         *selector = var.selector;
5139
5140         if (var.unusable) {
5141                 memset(desc, 0, sizeof(*desc));
5142                 if (base3)
5143                         *base3 = 0;
5144                 return false;
5145         }
5146
5147         if (var.g)
5148                 var.limit >>= 12;
5149         set_desc_limit(desc, var.limit);
5150         set_desc_base(desc, (unsigned long)var.base);
5151 #ifdef CONFIG_X86_64
5152         if (base3)
5153                 *base3 = var.base >> 32;
5154 #endif
5155         desc->type = var.type;
5156         desc->s = var.s;
5157         desc->dpl = var.dpl;
5158         desc->p = var.present;
5159         desc->avl = var.avl;
5160         desc->l = var.l;
5161         desc->d = var.db;
5162         desc->g = var.g;
5163
5164         return true;
5165 }
5166
5167 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5168                                  struct desc_struct *desc, u32 base3,
5169                                  int seg)
5170 {
5171         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5172         struct kvm_segment var;
5173
5174         var.selector = selector;
5175         var.base = get_desc_base(desc);
5176 #ifdef CONFIG_X86_64
5177         var.base |= ((u64)base3) << 32;
5178 #endif
5179         var.limit = get_desc_limit(desc);
5180         if (desc->g)
5181                 var.limit = (var.limit << 12) | 0xfff;
5182         var.type = desc->type;
5183         var.dpl = desc->dpl;
5184         var.db = desc->d;
5185         var.s = desc->s;
5186         var.l = desc->l;
5187         var.g = desc->g;
5188         var.avl = desc->avl;
5189         var.present = desc->p;
5190         var.unusable = !var.present;
5191         var.padding = 0;
5192
5193         kvm_set_segment(vcpu, &var, seg);
5194         return;
5195 }
5196
5197 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5198                             u32 msr_index, u64 *pdata)
5199 {
5200         struct msr_data msr;
5201         int r;
5202
5203         msr.index = msr_index;
5204         msr.host_initiated = false;
5205         r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5206         if (r)
5207                 return r;
5208
5209         *pdata = msr.data;
5210         return 0;
5211 }
5212
5213 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5214                             u32 msr_index, u64 data)
5215 {
5216         struct msr_data msr;
5217
5218         msr.data = data;
5219         msr.index = msr_index;
5220         msr.host_initiated = false;
5221         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5222 }
5223
5224 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5225 {
5226         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5227
5228         return vcpu->arch.smbase;
5229 }
5230
5231 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5232 {
5233         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5234
5235         vcpu->arch.smbase = smbase;
5236 }
5237
5238 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5239                               u32 pmc)
5240 {
5241         return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5242 }
5243
5244 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5245                              u32 pmc, u64 *pdata)
5246 {
5247         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5248 }
5249
5250 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5251 {
5252         emul_to_vcpu(ctxt)->arch.halt_request = 1;
5253 }
5254
5255 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
5256 {
5257         preempt_disable();
5258         kvm_load_guest_fpu(emul_to_vcpu(ctxt));
5259 }
5260
5261 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
5262 {
5263         preempt_enable();
5264 }
5265
5266 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5267                               struct x86_instruction_info *info,
5268                               enum x86_intercept_stage stage)
5269 {
5270         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5271 }
5272
5273 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5274                         u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit)
5275 {
5276         return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit);
5277 }
5278
5279 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5280 {
5281         return kvm_register_read(emul_to_vcpu(ctxt), reg);
5282 }
5283
5284 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5285 {
5286         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5287 }
5288
5289 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5290 {
5291         kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5292 }
5293
5294 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
5295 {
5296         return emul_to_vcpu(ctxt)->arch.hflags;
5297 }
5298
5299 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
5300 {
5301         kvm_set_hflags(emul_to_vcpu(ctxt), emul_flags);
5302 }
5303
5304 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt, u64 smbase)
5305 {
5306         return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smbase);
5307 }
5308
5309 static const struct x86_emulate_ops emulate_ops = {
5310         .read_gpr            = emulator_read_gpr,
5311         .write_gpr           = emulator_write_gpr,
5312         .read_std            = kvm_read_guest_virt_system,
5313         .write_std           = kvm_write_guest_virt_system,
5314         .read_phys           = kvm_read_guest_phys_system,
5315         .fetch               = kvm_fetch_guest_virt,
5316         .read_emulated       = emulator_read_emulated,
5317         .write_emulated      = emulator_write_emulated,
5318         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
5319         .invlpg              = emulator_invlpg,
5320         .pio_in_emulated     = emulator_pio_in_emulated,
5321         .pio_out_emulated    = emulator_pio_out_emulated,
5322         .get_segment         = emulator_get_segment,
5323         .set_segment         = emulator_set_segment,
5324         .get_cached_segment_base = emulator_get_cached_segment_base,
5325         .get_gdt             = emulator_get_gdt,
5326         .get_idt             = emulator_get_idt,
5327         .set_gdt             = emulator_set_gdt,
5328         .set_idt             = emulator_set_idt,
5329         .get_cr              = emulator_get_cr,
5330         .set_cr              = emulator_set_cr,
5331         .cpl                 = emulator_get_cpl,
5332         .get_dr              = emulator_get_dr,
5333         .set_dr              = emulator_set_dr,
5334         .get_smbase          = emulator_get_smbase,
5335         .set_smbase          = emulator_set_smbase,
5336         .set_msr             = emulator_set_msr,
5337         .get_msr             = emulator_get_msr,
5338         .check_pmc           = emulator_check_pmc,
5339         .read_pmc            = emulator_read_pmc,
5340         .halt                = emulator_halt,
5341         .wbinvd              = emulator_wbinvd,
5342         .fix_hypercall       = emulator_fix_hypercall,
5343         .get_fpu             = emulator_get_fpu,
5344         .put_fpu             = emulator_put_fpu,
5345         .intercept           = emulator_intercept,
5346         .get_cpuid           = emulator_get_cpuid,
5347         .set_nmi_mask        = emulator_set_nmi_mask,
5348         .get_hflags          = emulator_get_hflags,
5349         .set_hflags          = emulator_set_hflags,
5350         .pre_leave_smm       = emulator_pre_leave_smm,
5351 };
5352
5353 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5354 {
5355         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5356         /*
5357          * an sti; sti; sequence only disable interrupts for the first
5358          * instruction. So, if the last instruction, be it emulated or
5359          * not, left the system with the INT_STI flag enabled, it
5360          * means that the last instruction is an sti. We should not
5361          * leave the flag on in this case. The same goes for mov ss
5362          */
5363         if (int_shadow & mask)
5364                 mask = 0;
5365         if (unlikely(int_shadow || mask)) {
5366                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5367                 if (!mask)
5368                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5369         }
5370 }
5371
5372 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5373 {
5374         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5375         if (ctxt->exception.vector == PF_VECTOR)
5376                 return kvm_propagate_fault(vcpu, &ctxt->exception);
5377
5378         if (ctxt->exception.error_code_valid)
5379                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5380                                       ctxt->exception.error_code);
5381         else
5382                 kvm_queue_exception(vcpu, ctxt->exception.vector);
5383         return false;
5384 }
5385
5386 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5387 {
5388         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5389         int cs_db, cs_l;
5390
5391         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5392
5393         ctxt->eflags = kvm_get_rflags(vcpu);
5394         ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
5395
5396         ctxt->eip = kvm_rip_read(vcpu);
5397         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
5398                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
5399                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
5400                      cs_db                              ? X86EMUL_MODE_PROT32 :
5401                                                           X86EMUL_MODE_PROT16;
5402         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5403         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5404         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5405
5406         init_decode_cache(ctxt);
5407         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5408 }
5409
5410 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5411 {
5412         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5413         int ret;
5414
5415         init_emulate_ctxt(vcpu);
5416
5417         ctxt->op_bytes = 2;
5418         ctxt->ad_bytes = 2;
5419         ctxt->_eip = ctxt->eip + inc_eip;
5420         ret = emulate_int_real(ctxt, irq);
5421
5422         if (ret != X86EMUL_CONTINUE)
5423                 return EMULATE_FAIL;
5424
5425         ctxt->eip = ctxt->_eip;
5426         kvm_rip_write(vcpu, ctxt->eip);
5427         kvm_set_rflags(vcpu, ctxt->eflags);
5428
5429         if (irq == NMI_VECTOR)
5430                 vcpu->arch.nmi_pending = 0;
5431         else
5432                 vcpu->arch.interrupt.pending = false;
5433
5434         return EMULATE_DONE;
5435 }
5436 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5437
5438 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5439 {
5440         int r = EMULATE_DONE;
5441
5442         ++vcpu->stat.insn_emulation_fail;
5443         trace_kvm_emulate_insn_failed(vcpu);
5444         if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5445                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5446                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5447                 vcpu->run->internal.ndata = 0;
5448                 r = EMULATE_USER_EXIT;
5449         }
5450         kvm_queue_exception(vcpu, UD_VECTOR);
5451
5452         return r;
5453 }
5454
5455 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5456                                   bool write_fault_to_shadow_pgtable,
5457                                   int emulation_type)
5458 {
5459         gpa_t gpa = cr2;
5460         kvm_pfn_t pfn;
5461
5462         if (emulation_type & EMULTYPE_NO_REEXECUTE)
5463                 return false;
5464
5465         if (!vcpu->arch.mmu.direct_map) {
5466                 /*
5467                  * Write permission should be allowed since only
5468                  * write access need to be emulated.
5469                  */
5470                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5471
5472                 /*
5473                  * If the mapping is invalid in guest, let cpu retry
5474                  * it to generate fault.
5475                  */
5476                 if (gpa == UNMAPPED_GVA)
5477                         return true;
5478         }
5479
5480         /*
5481          * Do not retry the unhandleable instruction if it faults on the
5482          * readonly host memory, otherwise it will goto a infinite loop:
5483          * retry instruction -> write #PF -> emulation fail -> retry
5484          * instruction -> ...
5485          */
5486         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5487
5488         /*
5489          * If the instruction failed on the error pfn, it can not be fixed,
5490          * report the error to userspace.
5491          */
5492         if (is_error_noslot_pfn(pfn))
5493                 return false;
5494
5495         kvm_release_pfn_clean(pfn);
5496
5497         /* The instructions are well-emulated on direct mmu. */
5498         if (vcpu->arch.mmu.direct_map) {
5499                 unsigned int indirect_shadow_pages;
5500
5501                 spin_lock(&vcpu->kvm->mmu_lock);
5502                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5503                 spin_unlock(&vcpu->kvm->mmu_lock);
5504
5505                 if (indirect_shadow_pages)
5506                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5507
5508                 return true;
5509         }
5510
5511         /*
5512          * if emulation was due to access to shadowed page table
5513          * and it failed try to unshadow page and re-enter the
5514          * guest to let CPU execute the instruction.
5515          */
5516         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5517
5518         /*
5519          * If the access faults on its page table, it can not
5520          * be fixed by unprotecting shadow page and it should
5521          * be reported to userspace.
5522          */
5523         return !write_fault_to_shadow_pgtable;
5524 }
5525
5526 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5527                               unsigned long cr2,  int emulation_type)
5528 {
5529         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5530         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5531
5532         last_retry_eip = vcpu->arch.last_retry_eip;
5533         last_retry_addr = vcpu->arch.last_retry_addr;
5534
5535         /*
5536          * If the emulation is caused by #PF and it is non-page_table
5537          * writing instruction, it means the VM-EXIT is caused by shadow
5538          * page protected, we can zap the shadow page and retry this
5539          * instruction directly.
5540          *
5541          * Note: if the guest uses a non-page-table modifying instruction
5542          * on the PDE that points to the instruction, then we will unmap
5543          * the instruction and go to an infinite loop. So, we cache the
5544          * last retried eip and the last fault address, if we meet the eip
5545          * and the address again, we can break out of the potential infinite
5546          * loop.
5547          */
5548         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5549
5550         if (!(emulation_type & EMULTYPE_RETRY))
5551                 return false;
5552
5553         if (x86_page_table_writing_insn(ctxt))
5554                 return false;
5555
5556         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5557                 return false;
5558
5559         vcpu->arch.last_retry_eip = ctxt->eip;
5560         vcpu->arch.last_retry_addr = cr2;
5561
5562         if (!vcpu->arch.mmu.direct_map)
5563                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5564
5565         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5566
5567         return true;
5568 }
5569
5570 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5571 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5572
5573 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5574 {
5575         if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5576                 /* This is a good place to trace that we are exiting SMM.  */
5577                 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5578
5579                 /* Process a latched INIT or SMI, if any.  */
5580                 kvm_make_request(KVM_REQ_EVENT, vcpu);
5581         }
5582
5583         kvm_mmu_reset_context(vcpu);
5584 }
5585
5586 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5587 {
5588         unsigned changed = vcpu->arch.hflags ^ emul_flags;
5589
5590         vcpu->arch.hflags = emul_flags;
5591
5592         if (changed & HF_SMM_MASK)
5593                 kvm_smm_changed(vcpu);
5594 }
5595
5596 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5597                                 unsigned long *db)
5598 {
5599         u32 dr6 = 0;
5600         int i;
5601         u32 enable, rwlen;
5602
5603         enable = dr7;
5604         rwlen = dr7 >> 16;
5605         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5606                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5607                         dr6 |= (1 << i);
5608         return dr6;
5609 }
5610
5611 static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r)
5612 {
5613         struct kvm_run *kvm_run = vcpu->run;
5614
5615         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5616                 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
5617                 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5618                 kvm_run->debug.arch.exception = DB_VECTOR;
5619                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5620                 *r = EMULATE_USER_EXIT;
5621         } else {
5622                 /*
5623                  * "Certain debug exceptions may clear bit 0-3.  The
5624                  * remaining contents of the DR6 register are never
5625                  * cleared by the processor".
5626                  */
5627                 vcpu->arch.dr6 &= ~15;
5628                 vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5629                 kvm_queue_exception(vcpu, DB_VECTOR);
5630         }
5631 }
5632
5633 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
5634 {
5635         unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5636         int r = EMULATE_DONE;
5637
5638         kvm_x86_ops->skip_emulated_instruction(vcpu);
5639
5640         /*
5641          * rflags is the old, "raw" value of the flags.  The new value has
5642          * not been saved yet.
5643          *
5644          * This is correct even for TF set by the guest, because "the
5645          * processor will not generate this exception after the instruction
5646          * that sets the TF flag".
5647          */
5648         if (unlikely(rflags & X86_EFLAGS_TF))
5649                 kvm_vcpu_do_singlestep(vcpu, &r);
5650         return r == EMULATE_DONE;
5651 }
5652 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
5653
5654 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5655 {
5656         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5657             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5658                 struct kvm_run *kvm_run = vcpu->run;
5659                 unsigned long eip = kvm_get_linear_rip(vcpu);
5660                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5661                                            vcpu->arch.guest_debug_dr7,
5662                                            vcpu->arch.eff_db);
5663
5664                 if (dr6 != 0) {
5665                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5666                         kvm_run->debug.arch.pc = eip;
5667                         kvm_run->debug.arch.exception = DB_VECTOR;
5668                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5669                         *r = EMULATE_USER_EXIT;
5670                         return true;
5671                 }
5672         }
5673
5674         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5675             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5676                 unsigned long eip = kvm_get_linear_rip(vcpu);
5677                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5678                                            vcpu->arch.dr7,
5679                                            vcpu->arch.db);
5680
5681                 if (dr6 != 0) {
5682                         vcpu->arch.dr6 &= ~15;
5683                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
5684                         kvm_queue_exception(vcpu, DB_VECTOR);
5685                         *r = EMULATE_DONE;
5686                         return true;
5687                 }
5688         }
5689
5690         return false;
5691 }
5692
5693 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5694                             unsigned long cr2,
5695                             int emulation_type,
5696                             void *insn,
5697                             int insn_len)
5698 {
5699         int r;
5700         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5701         bool writeback = true;
5702         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5703
5704         /*
5705          * Clear write_fault_to_shadow_pgtable here to ensure it is
5706          * never reused.
5707          */
5708         vcpu->arch.write_fault_to_shadow_pgtable = false;
5709         kvm_clear_exception_queue(vcpu);
5710
5711         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5712                 init_emulate_ctxt(vcpu);
5713
5714                 /*
5715                  * We will reenter on the same instruction since
5716                  * we do not set complete_userspace_io.  This does not
5717                  * handle watchpoints yet, those would be handled in
5718                  * the emulate_ops.
5719                  */
5720                 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5721                         return r;
5722
5723                 ctxt->interruptibility = 0;
5724                 ctxt->have_exception = false;
5725                 ctxt->exception.vector = -1;
5726                 ctxt->perm_ok = false;
5727
5728                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5729
5730                 r = x86_decode_insn(ctxt, insn, insn_len);
5731
5732                 trace_kvm_emulate_insn_start(vcpu);
5733                 ++vcpu->stat.insn_emulation;
5734                 if (r != EMULATION_OK)  {
5735                         if (emulation_type & EMULTYPE_TRAP_UD)
5736                                 return EMULATE_FAIL;
5737                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5738                                                 emulation_type))
5739                                 return EMULATE_DONE;
5740                         if (ctxt->have_exception && inject_emulated_exception(vcpu))
5741                                 return EMULATE_DONE;
5742                         if (emulation_type & EMULTYPE_SKIP)
5743                                 return EMULATE_FAIL;
5744                         return handle_emulation_failure(vcpu);
5745                 }
5746         }
5747
5748         if (emulation_type & EMULTYPE_SKIP) {
5749                 kvm_rip_write(vcpu, ctxt->_eip);
5750                 if (ctxt->eflags & X86_EFLAGS_RF)
5751                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5752                 return EMULATE_DONE;
5753         }
5754
5755         if (retry_instruction(ctxt, cr2, emulation_type))
5756                 return EMULATE_DONE;
5757
5758         /* this is needed for vmware backdoor interface to work since it
5759            changes registers values  during IO operation */
5760         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5761                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5762                 emulator_invalidate_register_cache(ctxt);
5763         }
5764
5765 restart:
5766         /* Save the faulting GPA (cr2) in the address field */
5767         ctxt->exception.address = cr2;
5768
5769         r = x86_emulate_insn(ctxt);
5770
5771         if (r == EMULATION_INTERCEPTED)
5772                 return EMULATE_DONE;
5773
5774         if (r == EMULATION_FAILED) {
5775                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5776                                         emulation_type))
5777                         return EMULATE_DONE;
5778
5779                 return handle_emulation_failure(vcpu);
5780         }
5781
5782         if (ctxt->have_exception) {
5783                 r = EMULATE_DONE;
5784                 if (inject_emulated_exception(vcpu))
5785                         return r;
5786         } else if (vcpu->arch.pio.count) {
5787                 if (!vcpu->arch.pio.in) {
5788                         /* FIXME: return into emulator if single-stepping.  */
5789                         vcpu->arch.pio.count = 0;
5790                 } else {
5791                         writeback = false;
5792                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
5793                 }
5794                 r = EMULATE_USER_EXIT;
5795         } else if (vcpu->mmio_needed) {
5796                 if (!vcpu->mmio_is_write)
5797                         writeback = false;
5798                 r = EMULATE_USER_EXIT;
5799                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5800         } else if (r == EMULATION_RESTART)
5801                 goto restart;
5802         else
5803                 r = EMULATE_DONE;
5804
5805         if (writeback) {
5806                 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5807                 toggle_interruptibility(vcpu, ctxt->interruptibility);
5808                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5809                 kvm_rip_write(vcpu, ctxt->eip);
5810                 if (r == EMULATE_DONE &&
5811                     (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
5812                         kvm_vcpu_do_singlestep(vcpu, &r);
5813                 if (!ctxt->have_exception ||
5814                     exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5815                         __kvm_set_rflags(vcpu, ctxt->eflags);
5816
5817                 /*
5818                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5819                  * do nothing, and it will be requested again as soon as
5820                  * the shadow expires.  But we still need to check here,
5821                  * because POPF has no interrupt shadow.
5822                  */
5823                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5824                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5825         } else
5826                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5827
5828         return r;
5829 }
5830 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5831
5832 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5833 {
5834         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5835         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5836                                             size, port, &val, 1);
5837         /* do not return to emulator after return from userspace */
5838         vcpu->arch.pio.count = 0;
5839         return ret;
5840 }
5841 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5842
5843 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
5844 {
5845         unsigned long val;
5846
5847         /* We should only ever be called with arch.pio.count equal to 1 */
5848         BUG_ON(vcpu->arch.pio.count != 1);
5849
5850         /* For size less than 4 we merge, else we zero extend */
5851         val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX)
5852                                         : 0;
5853
5854         /*
5855          * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
5856          * the copy and tracing
5857          */
5858         emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
5859                                  vcpu->arch.pio.port, &val, 1);
5860         kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5861
5862         return 1;
5863 }
5864
5865 int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, unsigned short port)
5866 {
5867         unsigned long val;
5868         int ret;
5869
5870         /* For size less than 4 we merge, else we zero extend */
5871         val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0;
5872
5873         ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
5874                                        &val, 1);
5875         if (ret) {
5876                 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5877                 return ret;
5878         }
5879
5880         vcpu->arch.complete_userspace_io = complete_fast_pio_in;
5881
5882         return 0;
5883 }
5884 EXPORT_SYMBOL_GPL(kvm_fast_pio_in);
5885
5886 static int kvmclock_cpu_down_prep(unsigned int cpu)
5887 {
5888         __this_cpu_write(cpu_tsc_khz, 0);
5889         return 0;
5890 }
5891
5892 static void tsc_khz_changed(void *data)
5893 {
5894         struct cpufreq_freqs *freq = data;
5895         unsigned long khz = 0;
5896
5897         if (data)
5898                 khz = freq->new;
5899         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5900                 khz = cpufreq_quick_get(raw_smp_processor_id());
5901         if (!khz)
5902                 khz = tsc_khz;
5903         __this_cpu_write(cpu_tsc_khz, khz);
5904 }
5905
5906 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5907                                      void *data)
5908 {
5909         struct cpufreq_freqs *freq = data;
5910         struct kvm *kvm;
5911         struct kvm_vcpu *vcpu;
5912         int i, send_ipi = 0;
5913
5914         /*
5915          * We allow guests to temporarily run on slowing clocks,
5916          * provided we notify them after, or to run on accelerating
5917          * clocks, provided we notify them before.  Thus time never
5918          * goes backwards.
5919          *
5920          * However, we have a problem.  We can't atomically update
5921          * the frequency of a given CPU from this function; it is
5922          * merely a notifier, which can be called from any CPU.
5923          * Changing the TSC frequency at arbitrary points in time
5924          * requires a recomputation of local variables related to
5925          * the TSC for each VCPU.  We must flag these local variables
5926          * to be updated and be sure the update takes place with the
5927          * new frequency before any guests proceed.
5928          *
5929          * Unfortunately, the combination of hotplug CPU and frequency
5930          * change creates an intractable locking scenario; the order
5931          * of when these callouts happen is undefined with respect to
5932          * CPU hotplug, and they can race with each other.  As such,
5933          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5934          * undefined; you can actually have a CPU frequency change take
5935          * place in between the computation of X and the setting of the
5936          * variable.  To protect against this problem, all updates of
5937          * the per_cpu tsc_khz variable are done in an interrupt
5938          * protected IPI, and all callers wishing to update the value
5939          * must wait for a synchronous IPI to complete (which is trivial
5940          * if the caller is on the CPU already).  This establishes the
5941          * necessary total order on variable updates.
5942          *
5943          * Note that because a guest time update may take place
5944          * anytime after the setting of the VCPU's request bit, the
5945          * correct TSC value must be set before the request.  However,
5946          * to ensure the update actually makes it to any guest which
5947          * starts running in hardware virtualization between the set
5948          * and the acquisition of the spinlock, we must also ping the
5949          * CPU after setting the request bit.
5950          *
5951          */
5952
5953         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5954                 return 0;
5955         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5956                 return 0;
5957
5958         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5959
5960         spin_lock(&kvm_lock);
5961         list_for_each_entry(kvm, &vm_list, vm_list) {
5962                 kvm_for_each_vcpu(i, vcpu, kvm) {
5963                         if (vcpu->cpu != freq->cpu)
5964                                 continue;
5965                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5966                         if (vcpu->cpu != smp_processor_id())
5967                                 send_ipi = 1;
5968                 }
5969         }
5970         spin_unlock(&kvm_lock);
5971
5972         if (freq->old < freq->new && send_ipi) {
5973                 /*
5974                  * We upscale the frequency.  Must make the guest
5975                  * doesn't see old kvmclock values while running with
5976                  * the new frequency, otherwise we risk the guest sees
5977                  * time go backwards.
5978                  *
5979                  * In case we update the frequency for another cpu
5980                  * (which might be in guest context) send an interrupt
5981                  * to kick the cpu out of guest context.  Next time
5982                  * guest context is entered kvmclock will be updated,
5983                  * so the guest will not see stale values.
5984                  */
5985                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5986         }
5987         return 0;
5988 }
5989
5990 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5991         .notifier_call  = kvmclock_cpufreq_notifier
5992 };
5993
5994 static int kvmclock_cpu_online(unsigned int cpu)
5995 {
5996         tsc_khz_changed(NULL);
5997         return 0;
5998 }
5999
6000 static void kvm_timer_init(void)
6001 {
6002         max_tsc_khz = tsc_khz;
6003
6004         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
6005 #ifdef CONFIG_CPU_FREQ
6006                 struct cpufreq_policy policy;
6007                 int cpu;
6008
6009                 memset(&policy, 0, sizeof(policy));
6010                 cpu = get_cpu();
6011                 cpufreq_get_policy(&policy, cpu);
6012                 if (policy.cpuinfo.max_freq)
6013                         max_tsc_khz = policy.cpuinfo.max_freq;
6014                 put_cpu();
6015 #endif
6016                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
6017                                           CPUFREQ_TRANSITION_NOTIFIER);
6018         }
6019         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
6020
6021         cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
6022                           kvmclock_cpu_online, kvmclock_cpu_down_prep);
6023 }
6024
6025 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
6026
6027 int kvm_is_in_guest(void)
6028 {
6029         return __this_cpu_read(current_vcpu) != NULL;
6030 }
6031
6032 static int kvm_is_user_mode(void)
6033 {
6034         int user_mode = 3;
6035
6036         if (__this_cpu_read(current_vcpu))
6037                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
6038
6039         return user_mode != 0;
6040 }
6041
6042 static unsigned long kvm_get_guest_ip(void)
6043 {
6044         unsigned long ip = 0;
6045
6046         if (__this_cpu_read(current_vcpu))
6047                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
6048
6049         return ip;
6050 }
6051
6052 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6053         .is_in_guest            = kvm_is_in_guest,
6054         .is_user_mode           = kvm_is_user_mode,
6055         .get_guest_ip           = kvm_get_guest_ip,
6056 };
6057
6058 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
6059 {
6060         __this_cpu_write(current_vcpu, vcpu);
6061 }
6062 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
6063
6064 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
6065 {
6066         __this_cpu_write(current_vcpu, NULL);
6067 }
6068 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
6069
6070 static void kvm_set_mmio_spte_mask(void)
6071 {
6072         u64 mask;
6073         int maxphyaddr = boot_cpu_data.x86_phys_bits;
6074
6075         /*
6076          * Set the reserved bits and the present bit of an paging-structure
6077          * entry to generate page fault with PFER.RSV = 1.
6078          */
6079          /* Mask the reserved physical address bits. */
6080         mask = rsvd_bits(maxphyaddr, 51);
6081
6082         /* Set the present bit. */
6083         mask |= 1ull;
6084
6085 #ifdef CONFIG_X86_64
6086         /*
6087          * If reserved bit is not supported, clear the present bit to disable
6088          * mmio page fault.
6089          */
6090         if (maxphyaddr == 52)
6091                 mask &= ~1ull;
6092 #endif
6093
6094         kvm_mmu_set_mmio_spte_mask(mask, mask);
6095 }
6096
6097 #ifdef CONFIG_X86_64
6098 static void pvclock_gtod_update_fn(struct work_struct *work)
6099 {
6100         struct kvm *kvm;
6101
6102         struct kvm_vcpu *vcpu;
6103         int i;
6104
6105         spin_lock(&kvm_lock);
6106         list_for_each_entry(kvm, &vm_list, vm_list)
6107                 kvm_for_each_vcpu(i, vcpu, kvm)
6108                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6109         atomic_set(&kvm_guest_has_master_clock, 0);
6110         spin_unlock(&kvm_lock);
6111 }
6112
6113 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6114
6115 /*
6116  * Notification about pvclock gtod data update.
6117  */
6118 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6119                                void *priv)
6120 {
6121         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6122         struct timekeeper *tk = priv;
6123
6124         update_pvclock_gtod(tk);
6125
6126         /* disable master clock if host does not trust, or does not
6127          * use, TSC clocksource
6128          */
6129         if (gtod->clock.vclock_mode != VCLOCK_TSC &&
6130             atomic_read(&kvm_guest_has_master_clock) != 0)
6131                 queue_work(system_long_wq, &pvclock_gtod_work);
6132
6133         return 0;
6134 }
6135
6136 static struct notifier_block pvclock_gtod_notifier = {
6137         .notifier_call = pvclock_gtod_notify,
6138 };
6139 #endif
6140
6141 int kvm_arch_init(void *opaque)
6142 {
6143         int r;
6144         struct kvm_x86_ops *ops = opaque;
6145
6146         if (kvm_x86_ops) {
6147                 printk(KERN_ERR "kvm: already loaded the other module\n");
6148                 r = -EEXIST;
6149                 goto out;
6150         }
6151
6152         if (!ops->cpu_has_kvm_support()) {
6153                 printk(KERN_ERR "kvm: no hardware support\n");
6154                 r = -EOPNOTSUPP;
6155                 goto out;
6156         }
6157         if (ops->disabled_by_bios()) {
6158                 printk(KERN_ERR "kvm: disabled by bios\n");
6159                 r = -EOPNOTSUPP;
6160                 goto out;
6161         }
6162
6163         r = -ENOMEM;
6164         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
6165         if (!shared_msrs) {
6166                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
6167                 goto out;
6168         }
6169
6170         r = kvm_mmu_module_init();
6171         if (r)
6172                 goto out_free_percpu;
6173
6174         kvm_set_mmio_spte_mask();
6175
6176         kvm_x86_ops = ops;
6177
6178         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
6179                         PT_DIRTY_MASK, PT64_NX_MASK, 0,
6180                         PT_PRESENT_MASK, 0, sme_me_mask);
6181         kvm_timer_init();
6182
6183         perf_register_guest_info_callbacks(&kvm_guest_cbs);
6184
6185         if (boot_cpu_has(X86_FEATURE_XSAVE))
6186                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
6187
6188         kvm_lapic_init();
6189 #ifdef CONFIG_X86_64
6190         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6191 #endif
6192
6193         return 0;
6194
6195 out_free_percpu:
6196         free_percpu(shared_msrs);
6197 out:
6198         return r;
6199 }
6200
6201 void kvm_arch_exit(void)
6202 {
6203         kvm_lapic_exit();
6204         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6205
6206         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6207                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
6208                                             CPUFREQ_TRANSITION_NOTIFIER);
6209         cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
6210 #ifdef CONFIG_X86_64
6211         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
6212 #endif
6213         kvm_x86_ops = NULL;
6214         kvm_mmu_module_exit();
6215         free_percpu(shared_msrs);
6216 }
6217
6218 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
6219 {
6220         ++vcpu->stat.halt_exits;
6221         if (lapic_in_kernel(vcpu)) {
6222                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
6223                 return 1;
6224         } else {
6225                 vcpu->run->exit_reason = KVM_EXIT_HLT;
6226                 return 0;
6227         }
6228 }
6229 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
6230
6231 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
6232 {
6233         int ret = kvm_skip_emulated_instruction(vcpu);
6234         /*
6235          * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
6236          * KVM_EXIT_DEBUG here.
6237          */
6238         return kvm_vcpu_halt(vcpu) && ret;
6239 }
6240 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
6241
6242 #ifdef CONFIG_X86_64
6243 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
6244                                 unsigned long clock_type)
6245 {
6246         struct kvm_clock_pairing clock_pairing;
6247         struct timespec ts;
6248         u64 cycle;
6249         int ret;
6250
6251         if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
6252                 return -KVM_EOPNOTSUPP;
6253
6254         if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
6255                 return -KVM_EOPNOTSUPP;
6256
6257         clock_pairing.sec = ts.tv_sec;
6258         clock_pairing.nsec = ts.tv_nsec;
6259         clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
6260         clock_pairing.flags = 0;
6261
6262         ret = 0;
6263         if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
6264                             sizeof(struct kvm_clock_pairing)))
6265                 ret = -KVM_EFAULT;
6266
6267         return ret;
6268 }
6269 #endif
6270
6271 /*
6272  * kvm_pv_kick_cpu_op:  Kick a vcpu.
6273  *
6274  * @apicid - apicid of vcpu to be kicked.
6275  */
6276 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
6277 {
6278         struct kvm_lapic_irq lapic_irq;
6279
6280         lapic_irq.shorthand = 0;
6281         lapic_irq.dest_mode = 0;
6282         lapic_irq.level = 0;
6283         lapic_irq.dest_id = apicid;
6284         lapic_irq.msi_redir_hint = false;
6285
6286         lapic_irq.delivery_mode = APIC_DM_REMRD;
6287         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
6288 }
6289
6290 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
6291 {
6292         vcpu->arch.apicv_active = false;
6293         kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
6294 }
6295
6296 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
6297 {
6298         unsigned long nr, a0, a1, a2, a3, ret;
6299         int op_64_bit, r;
6300
6301         r = kvm_skip_emulated_instruction(vcpu);
6302
6303         if (kvm_hv_hypercall_enabled(vcpu->kvm))
6304                 return kvm_hv_hypercall(vcpu);
6305
6306         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
6307         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
6308         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
6309         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
6310         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
6311
6312         trace_kvm_hypercall(nr, a0, a1, a2, a3);
6313
6314         op_64_bit = is_64_bit_mode(vcpu);
6315         if (!op_64_bit) {
6316                 nr &= 0xFFFFFFFF;
6317                 a0 &= 0xFFFFFFFF;
6318                 a1 &= 0xFFFFFFFF;
6319                 a2 &= 0xFFFFFFFF;
6320                 a3 &= 0xFFFFFFFF;
6321         }
6322
6323         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
6324                 ret = -KVM_EPERM;
6325                 goto out;
6326         }
6327
6328         switch (nr) {
6329         case KVM_HC_VAPIC_POLL_IRQ:
6330                 ret = 0;
6331                 break;
6332         case KVM_HC_KICK_CPU:
6333                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6334                 ret = 0;
6335                 break;
6336 #ifdef CONFIG_X86_64
6337         case KVM_HC_CLOCK_PAIRING:
6338                 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
6339                 break;
6340 #endif
6341         default:
6342                 ret = -KVM_ENOSYS;
6343                 break;
6344         }
6345 out:
6346         if (!op_64_bit)
6347                 ret = (u32)ret;
6348         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6349         ++vcpu->stat.hypercalls;
6350         return r;
6351 }
6352 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6353
6354 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6355 {
6356         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6357         char instruction[3];
6358         unsigned long rip = kvm_rip_read(vcpu);
6359
6360         kvm_x86_ops->patch_hypercall(vcpu, instruction);
6361
6362         return emulator_write_emulated(ctxt, rip, instruction, 3,
6363                 &ctxt->exception);
6364 }
6365
6366 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6367 {
6368         return vcpu->run->request_interrupt_window &&
6369                 likely(!pic_in_kernel(vcpu->kvm));
6370 }
6371
6372 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6373 {
6374         struct kvm_run *kvm_run = vcpu->run;
6375
6376         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6377         kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6378         kvm_run->cr8 = kvm_get_cr8(vcpu);
6379         kvm_run->apic_base = kvm_get_apic_base(vcpu);
6380         kvm_run->ready_for_interrupt_injection =
6381                 pic_in_kernel(vcpu->kvm) ||
6382                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
6383 }
6384
6385 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6386 {
6387         int max_irr, tpr;
6388
6389         if (!kvm_x86_ops->update_cr8_intercept)
6390                 return;
6391
6392         if (!lapic_in_kernel(vcpu))
6393                 return;
6394
6395         if (vcpu->arch.apicv_active)
6396                 return;
6397
6398         if (!vcpu->arch.apic->vapic_addr)
6399                 max_irr = kvm_lapic_find_highest_irr(vcpu);
6400         else
6401                 max_irr = -1;
6402
6403         if (max_irr != -1)
6404                 max_irr >>= 4;
6405
6406         tpr = kvm_lapic_get_cr8(vcpu);
6407
6408         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6409 }
6410
6411 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6412 {
6413         int r;
6414
6415         /* try to reinject previous events if any */
6416         if (vcpu->arch.exception.injected) {
6417                 kvm_x86_ops->queue_exception(vcpu);
6418                 return 0;
6419         }
6420
6421         /*
6422          * Exceptions must be injected immediately, or the exception
6423          * frame will have the address of the NMI or interrupt handler.
6424          */
6425         if (!vcpu->arch.exception.pending) {
6426                 if (vcpu->arch.nmi_injected) {
6427                         kvm_x86_ops->set_nmi(vcpu);
6428                         return 0;
6429                 }
6430
6431                 if (vcpu->arch.interrupt.pending) {
6432                         kvm_x86_ops->set_irq(vcpu);
6433                         return 0;
6434                 }
6435         }
6436
6437         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6438                 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6439                 if (r != 0)
6440                         return r;
6441         }
6442
6443         /* try to inject new event if pending */
6444         if (vcpu->arch.exception.pending) {
6445                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6446                                         vcpu->arch.exception.has_error_code,
6447                                         vcpu->arch.exception.error_code);
6448
6449                 vcpu->arch.exception.pending = false;
6450                 vcpu->arch.exception.injected = true;
6451
6452                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6453                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6454                                              X86_EFLAGS_RF);
6455
6456                 if (vcpu->arch.exception.nr == DB_VECTOR &&
6457                     (vcpu->arch.dr7 & DR7_GD)) {
6458                         vcpu->arch.dr7 &= ~DR7_GD;
6459                         kvm_update_dr7(vcpu);
6460                 }
6461
6462                 kvm_x86_ops->queue_exception(vcpu);
6463         } else if (vcpu->arch.smi_pending && !is_smm(vcpu) && kvm_x86_ops->smi_allowed(vcpu)) {
6464                 vcpu->arch.smi_pending = false;
6465                 enter_smm(vcpu);
6466         } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6467                 --vcpu->arch.nmi_pending;
6468                 vcpu->arch.nmi_injected = true;
6469                 kvm_x86_ops->set_nmi(vcpu);
6470         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6471                 /*
6472                  * Because interrupts can be injected asynchronously, we are
6473                  * calling check_nested_events again here to avoid a race condition.
6474                  * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6475                  * proposal and current concerns.  Perhaps we should be setting
6476                  * KVM_REQ_EVENT only on certain events and not unconditionally?
6477                  */
6478                 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6479                         r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6480                         if (r != 0)
6481                                 return r;
6482                 }
6483                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6484                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6485                                             false);
6486                         kvm_x86_ops->set_irq(vcpu);
6487                 }
6488         }
6489
6490         return 0;
6491 }
6492
6493 static void process_nmi(struct kvm_vcpu *vcpu)
6494 {
6495         unsigned limit = 2;
6496
6497         /*
6498          * x86 is limited to one NMI running, and one NMI pending after it.
6499          * If an NMI is already in progress, limit further NMIs to just one.
6500          * Otherwise, allow two (and we'll inject the first one immediately).
6501          */
6502         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6503                 limit = 1;
6504
6505         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6506         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6507         kvm_make_request(KVM_REQ_EVENT, vcpu);
6508 }
6509
6510 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
6511 {
6512         u32 flags = 0;
6513         flags |= seg->g       << 23;
6514         flags |= seg->db      << 22;
6515         flags |= seg->l       << 21;
6516         flags |= seg->avl     << 20;
6517         flags |= seg->present << 15;
6518         flags |= seg->dpl     << 13;
6519         flags |= seg->s       << 12;
6520         flags |= seg->type    << 8;
6521         return flags;
6522 }
6523
6524 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6525 {
6526         struct kvm_segment seg;
6527         int offset;
6528
6529         kvm_get_segment(vcpu, &seg, n);
6530         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6531
6532         if (n < 3)
6533                 offset = 0x7f84 + n * 12;
6534         else
6535                 offset = 0x7f2c + (n - 3) * 12;
6536
6537         put_smstate(u32, buf, offset + 8, seg.base);
6538         put_smstate(u32, buf, offset + 4, seg.limit);
6539         put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
6540 }
6541
6542 #ifdef CONFIG_X86_64
6543 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6544 {
6545         struct kvm_segment seg;
6546         int offset;
6547         u16 flags;
6548
6549         kvm_get_segment(vcpu, &seg, n);
6550         offset = 0x7e00 + n * 16;
6551
6552         flags = enter_smm_get_segment_flags(&seg) >> 8;
6553         put_smstate(u16, buf, offset, seg.selector);
6554         put_smstate(u16, buf, offset + 2, flags);
6555         put_smstate(u32, buf, offset + 4, seg.limit);
6556         put_smstate(u64, buf, offset + 8, seg.base);
6557 }
6558 #endif
6559
6560 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6561 {
6562         struct desc_ptr dt;
6563         struct kvm_segment seg;
6564         unsigned long val;
6565         int i;
6566
6567         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6568         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6569         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6570         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6571
6572         for (i = 0; i < 8; i++)
6573                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6574
6575         kvm_get_dr(vcpu, 6, &val);
6576         put_smstate(u32, buf, 0x7fcc, (u32)val);
6577         kvm_get_dr(vcpu, 7, &val);
6578         put_smstate(u32, buf, 0x7fc8, (u32)val);
6579
6580         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6581         put_smstate(u32, buf, 0x7fc4, seg.selector);
6582         put_smstate(u32, buf, 0x7f64, seg.base);
6583         put_smstate(u32, buf, 0x7f60, seg.limit);
6584         put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
6585
6586         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6587         put_smstate(u32, buf, 0x7fc0, seg.selector);
6588         put_smstate(u32, buf, 0x7f80, seg.base);
6589         put_smstate(u32, buf, 0x7f7c, seg.limit);
6590         put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
6591
6592         kvm_x86_ops->get_gdt(vcpu, &dt);
6593         put_smstate(u32, buf, 0x7f74, dt.address);
6594         put_smstate(u32, buf, 0x7f70, dt.size);
6595
6596         kvm_x86_ops->get_idt(vcpu, &dt);
6597         put_smstate(u32, buf, 0x7f58, dt.address);
6598         put_smstate(u32, buf, 0x7f54, dt.size);
6599
6600         for (i = 0; i < 6; i++)
6601                 enter_smm_save_seg_32(vcpu, buf, i);
6602
6603         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6604
6605         /* revision id */
6606         put_smstate(u32, buf, 0x7efc, 0x00020000);
6607         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6608 }
6609
6610 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6611 {
6612 #ifdef CONFIG_X86_64
6613         struct desc_ptr dt;
6614         struct kvm_segment seg;
6615         unsigned long val;
6616         int i;
6617
6618         for (i = 0; i < 16; i++)
6619                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6620
6621         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6622         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6623
6624         kvm_get_dr(vcpu, 6, &val);
6625         put_smstate(u64, buf, 0x7f68, val);
6626         kvm_get_dr(vcpu, 7, &val);
6627         put_smstate(u64, buf, 0x7f60, val);
6628
6629         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6630         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6631         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6632
6633         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6634
6635         /* revision id */
6636         put_smstate(u32, buf, 0x7efc, 0x00020064);
6637
6638         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6639
6640         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6641         put_smstate(u16, buf, 0x7e90, seg.selector);
6642         put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
6643         put_smstate(u32, buf, 0x7e94, seg.limit);
6644         put_smstate(u64, buf, 0x7e98, seg.base);
6645
6646         kvm_x86_ops->get_idt(vcpu, &dt);
6647         put_smstate(u32, buf, 0x7e84, dt.size);
6648         put_smstate(u64, buf, 0x7e88, dt.address);
6649
6650         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6651         put_smstate(u16, buf, 0x7e70, seg.selector);
6652         put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
6653         put_smstate(u32, buf, 0x7e74, seg.limit);
6654         put_smstate(u64, buf, 0x7e78, seg.base);
6655
6656         kvm_x86_ops->get_gdt(vcpu, &dt);
6657         put_smstate(u32, buf, 0x7e64, dt.size);
6658         put_smstate(u64, buf, 0x7e68, dt.address);
6659
6660         for (i = 0; i < 6; i++)
6661                 enter_smm_save_seg_64(vcpu, buf, i);
6662 #else
6663         WARN_ON_ONCE(1);
6664 #endif
6665 }
6666
6667 static void enter_smm(struct kvm_vcpu *vcpu)
6668 {
6669         struct kvm_segment cs, ds;
6670         struct desc_ptr dt;
6671         char buf[512];
6672         u32 cr0;
6673
6674         trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6675         memset(buf, 0, 512);
6676         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
6677                 enter_smm_save_state_64(vcpu, buf);
6678         else
6679                 enter_smm_save_state_32(vcpu, buf);
6680
6681         /*
6682          * Give pre_enter_smm() a chance to make ISA-specific changes to the
6683          * vCPU state (e.g. leave guest mode) after we've saved the state into
6684          * the SMM state-save area.
6685          */
6686         kvm_x86_ops->pre_enter_smm(vcpu, buf);
6687
6688         vcpu->arch.hflags |= HF_SMM_MASK;
6689         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6690
6691         if (kvm_x86_ops->get_nmi_mask(vcpu))
6692                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6693         else
6694                 kvm_x86_ops->set_nmi_mask(vcpu, true);
6695
6696         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6697         kvm_rip_write(vcpu, 0x8000);
6698
6699         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6700         kvm_x86_ops->set_cr0(vcpu, cr0);
6701         vcpu->arch.cr0 = cr0;
6702
6703         kvm_x86_ops->set_cr4(vcpu, 0);
6704
6705         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
6706         dt.address = dt.size = 0;
6707         kvm_x86_ops->set_idt(vcpu, &dt);
6708
6709         __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6710
6711         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6712         cs.base = vcpu->arch.smbase;
6713
6714         ds.selector = 0;
6715         ds.base = 0;
6716
6717         cs.limit    = ds.limit = 0xffffffff;
6718         cs.type     = ds.type = 0x3;
6719         cs.dpl      = ds.dpl = 0;
6720         cs.db       = ds.db = 0;
6721         cs.s        = ds.s = 1;
6722         cs.l        = ds.l = 0;
6723         cs.g        = ds.g = 1;
6724         cs.avl      = ds.avl = 0;
6725         cs.present  = ds.present = 1;
6726         cs.unusable = ds.unusable = 0;
6727         cs.padding  = ds.padding = 0;
6728
6729         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6730         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6731         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6732         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6733         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6734         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6735
6736         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
6737                 kvm_x86_ops->set_efer(vcpu, 0);
6738
6739         kvm_update_cpuid(vcpu);
6740         kvm_mmu_reset_context(vcpu);
6741 }
6742
6743 static void process_smi(struct kvm_vcpu *vcpu)
6744 {
6745         vcpu->arch.smi_pending = true;
6746         kvm_make_request(KVM_REQ_EVENT, vcpu);
6747 }
6748
6749 void kvm_make_scan_ioapic_request(struct kvm *kvm)
6750 {
6751         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
6752 }
6753
6754 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6755 {
6756         u64 eoi_exit_bitmap[4];
6757
6758         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6759                 return;
6760
6761         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
6762
6763         if (irqchip_split(vcpu->kvm))
6764                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
6765         else {
6766                 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
6767                         kvm_x86_ops->sync_pir_to_irr(vcpu);
6768                 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
6769         }
6770         bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
6771                   vcpu_to_synic(vcpu)->vec_bitmap, 256);
6772         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6773 }
6774
6775 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6776 {
6777         ++vcpu->stat.tlb_flush;
6778         kvm_x86_ops->tlb_flush(vcpu);
6779 }
6780
6781 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6782 {
6783         struct page *page = NULL;
6784
6785         if (!lapic_in_kernel(vcpu))
6786                 return;
6787
6788         if (!kvm_x86_ops->set_apic_access_page_addr)
6789                 return;
6790
6791         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6792         if (is_error_page(page))
6793                 return;
6794         kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6795
6796         /*
6797          * Do not pin apic access page in memory, the MMU notifier
6798          * will call us again if it is migrated or swapped out.
6799          */
6800         put_page(page);
6801 }
6802 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6803
6804 /*
6805  * Returns 1 to let vcpu_run() continue the guest execution loop without
6806  * exiting to the userspace.  Otherwise, the value will be returned to the
6807  * userspace.
6808  */
6809 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6810 {
6811         int r;
6812         bool req_int_win =
6813                 dm_request_for_irq_injection(vcpu) &&
6814                 kvm_cpu_accept_dm_intr(vcpu);
6815
6816         bool req_immediate_exit = false;
6817
6818         if (kvm_request_pending(vcpu)) {
6819                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6820                         kvm_mmu_unload(vcpu);
6821                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6822                         __kvm_migrate_timers(vcpu);
6823                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6824                         kvm_gen_update_masterclock(vcpu->kvm);
6825                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6826                         kvm_gen_kvmclock_update(vcpu);
6827                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6828                         r = kvm_guest_time_update(vcpu);
6829                         if (unlikely(r))
6830                                 goto out;
6831                 }
6832                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6833                         kvm_mmu_sync_roots(vcpu);
6834                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6835                         kvm_vcpu_flush_tlb(vcpu);
6836                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6837                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6838                         r = 0;
6839                         goto out;
6840                 }
6841                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6842                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6843                         vcpu->mmio_needed = 0;
6844                         r = 0;
6845                         goto out;
6846                 }
6847                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6848                         /* Page is swapped out. Do synthetic halt */
6849                         vcpu->arch.apf.halted = true;
6850                         r = 1;
6851                         goto out;
6852                 }
6853                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6854                         record_steal_time(vcpu);
6855                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
6856                         process_smi(vcpu);
6857                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
6858                         process_nmi(vcpu);
6859                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
6860                         kvm_pmu_handle_event(vcpu);
6861                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
6862                         kvm_pmu_deliver_pmi(vcpu);
6863                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
6864                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
6865                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
6866                                      vcpu->arch.ioapic_handled_vectors)) {
6867                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
6868                                 vcpu->run->eoi.vector =
6869                                                 vcpu->arch.pending_ioapic_eoi;
6870                                 r = 0;
6871                                 goto out;
6872                         }
6873                 }
6874                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6875                         vcpu_scan_ioapic(vcpu);
6876                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6877                         kvm_vcpu_reload_apic_access_page(vcpu);
6878                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
6879                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6880                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
6881                         r = 0;
6882                         goto out;
6883                 }
6884                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
6885                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6886                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
6887                         r = 0;
6888                         goto out;
6889                 }
6890                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
6891                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
6892                         vcpu->run->hyperv = vcpu->arch.hyperv.exit;
6893                         r = 0;
6894                         goto out;
6895                 }
6896
6897                 /*
6898                  * KVM_REQ_HV_STIMER has to be processed after
6899                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
6900                  * depend on the guest clock being up-to-date
6901                  */
6902                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
6903                         kvm_hv_process_stimers(vcpu);
6904         }
6905
6906         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6907                 ++vcpu->stat.req_event;
6908                 kvm_apic_accept_events(vcpu);
6909                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6910                         r = 1;
6911                         goto out;
6912                 }
6913
6914                 if (inject_pending_event(vcpu, req_int_win) != 0)
6915                         req_immediate_exit = true;
6916                 else {
6917                         /* Enable SMI/NMI/IRQ window open exits if needed.
6918                          *
6919                          * SMIs have three cases:
6920                          * 1) They can be nested, and then there is nothing to
6921                          *    do here because RSM will cause a vmexit anyway.
6922                          * 2) There is an ISA-specific reason why SMI cannot be
6923                          *    injected, and the moment when this changes can be
6924                          *    intercepted.
6925                          * 3) Or the SMI can be pending because
6926                          *    inject_pending_event has completed the injection
6927                          *    of an IRQ or NMI from the previous vmexit, and
6928                          *    then we request an immediate exit to inject the
6929                          *    SMI.
6930                          */
6931                         if (vcpu->arch.smi_pending && !is_smm(vcpu))
6932                                 if (!kvm_x86_ops->enable_smi_window(vcpu))
6933                                         req_immediate_exit = true;
6934                         if (vcpu->arch.nmi_pending)
6935                                 kvm_x86_ops->enable_nmi_window(vcpu);
6936                         if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6937                                 kvm_x86_ops->enable_irq_window(vcpu);
6938                         WARN_ON(vcpu->arch.exception.pending);
6939                 }
6940
6941                 if (kvm_lapic_enabled(vcpu)) {
6942                         update_cr8_intercept(vcpu);
6943                         kvm_lapic_sync_to_vapic(vcpu);
6944                 }
6945         }
6946
6947         r = kvm_mmu_reload(vcpu);
6948         if (unlikely(r)) {
6949                 goto cancel_injection;
6950         }
6951
6952         preempt_disable();
6953
6954         kvm_x86_ops->prepare_guest_switch(vcpu);
6955         kvm_load_guest_fpu(vcpu);
6956
6957         /*
6958          * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
6959          * IPI are then delayed after guest entry, which ensures that they
6960          * result in virtual interrupt delivery.
6961          */
6962         local_irq_disable();
6963         vcpu->mode = IN_GUEST_MODE;
6964
6965         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6966
6967         /*
6968          * 1) We should set ->mode before checking ->requests.  Please see
6969          * the comment in kvm_vcpu_exiting_guest_mode().
6970          *
6971          * 2) For APICv, we should set ->mode before checking PIR.ON.  This
6972          * pairs with the memory barrier implicit in pi_test_and_set_on
6973          * (see vmx_deliver_posted_interrupt).
6974          *
6975          * 3) This also orders the write to mode from any reads to the page
6976          * tables done while the VCPU is running.  Please see the comment
6977          * in kvm_flush_remote_tlbs.
6978          */
6979         smp_mb__after_srcu_read_unlock();
6980
6981         /*
6982          * This handles the case where a posted interrupt was
6983          * notified with kvm_vcpu_kick.
6984          */
6985         if (kvm_lapic_enabled(vcpu)) {
6986                 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
6987                         kvm_x86_ops->sync_pir_to_irr(vcpu);
6988         }
6989
6990         if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
6991             || need_resched() || signal_pending(current)) {
6992                 vcpu->mode = OUTSIDE_GUEST_MODE;
6993                 smp_wmb();
6994                 local_irq_enable();
6995                 preempt_enable();
6996                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6997                 r = 1;
6998                 goto cancel_injection;
6999         }
7000
7001         kvm_load_guest_xcr0(vcpu);
7002
7003         if (req_immediate_exit) {
7004                 kvm_make_request(KVM_REQ_EVENT, vcpu);
7005                 smp_send_reschedule(vcpu->cpu);
7006         }
7007
7008         trace_kvm_entry(vcpu->vcpu_id);
7009         wait_lapic_expire(vcpu);
7010         guest_enter_irqoff();
7011
7012         if (unlikely(vcpu->arch.switch_db_regs)) {
7013                 set_debugreg(0, 7);
7014                 set_debugreg(vcpu->arch.eff_db[0], 0);
7015                 set_debugreg(vcpu->arch.eff_db[1], 1);
7016                 set_debugreg(vcpu->arch.eff_db[2], 2);
7017                 set_debugreg(vcpu->arch.eff_db[3], 3);
7018                 set_debugreg(vcpu->arch.dr6, 6);
7019                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7020         }
7021
7022         kvm_x86_ops->run(vcpu);
7023
7024         /*
7025          * Do this here before restoring debug registers on the host.  And
7026          * since we do this before handling the vmexit, a DR access vmexit
7027          * can (a) read the correct value of the debug registers, (b) set
7028          * KVM_DEBUGREG_WONT_EXIT again.
7029          */
7030         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
7031                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
7032                 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
7033                 kvm_update_dr0123(vcpu);
7034                 kvm_update_dr6(vcpu);
7035                 kvm_update_dr7(vcpu);
7036                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7037         }
7038
7039         /*
7040          * If the guest has used debug registers, at least dr7
7041          * will be disabled while returning to the host.
7042          * If we don't have active breakpoints in the host, we don't
7043          * care about the messed up debug address registers. But if
7044          * we have some of them active, restore the old state.
7045          */
7046         if (hw_breakpoint_active())
7047                 hw_breakpoint_restore();
7048
7049         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
7050
7051         vcpu->mode = OUTSIDE_GUEST_MODE;
7052         smp_wmb();
7053
7054         kvm_put_guest_xcr0(vcpu);
7055
7056         kvm_x86_ops->handle_external_intr(vcpu);
7057
7058         ++vcpu->stat.exits;
7059
7060         guest_exit_irqoff();
7061
7062         local_irq_enable();
7063         preempt_enable();
7064
7065         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7066
7067         /*
7068          * Profile KVM exit RIPs:
7069          */
7070         if (unlikely(prof_on == KVM_PROFILING)) {
7071                 unsigned long rip = kvm_rip_read(vcpu);
7072                 profile_hit(KVM_PROFILING, (void *)rip);
7073         }
7074
7075         if (unlikely(vcpu->arch.tsc_always_catchup))
7076                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7077
7078         if (vcpu->arch.apic_attention)
7079                 kvm_lapic_sync_from_vapic(vcpu);
7080
7081         vcpu->arch.gpa_available = false;
7082         r = kvm_x86_ops->handle_exit(vcpu);
7083         return r;
7084
7085 cancel_injection:
7086         kvm_x86_ops->cancel_injection(vcpu);
7087         if (unlikely(vcpu->arch.apic_attention))
7088                 kvm_lapic_sync_from_vapic(vcpu);
7089 out:
7090         return r;
7091 }
7092
7093 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
7094 {
7095         if (!kvm_arch_vcpu_runnable(vcpu) &&
7096             (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
7097                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7098                 kvm_vcpu_block(vcpu);
7099                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7100
7101                 if (kvm_x86_ops->post_block)
7102                         kvm_x86_ops->post_block(vcpu);
7103
7104                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
7105                         return 1;
7106         }
7107
7108         kvm_apic_accept_events(vcpu);
7109         switch(vcpu->arch.mp_state) {
7110         case KVM_MP_STATE_HALTED:
7111                 vcpu->arch.pv.pv_unhalted = false;
7112                 vcpu->arch.mp_state =
7113                         KVM_MP_STATE_RUNNABLE;
7114         case KVM_MP_STATE_RUNNABLE:
7115                 vcpu->arch.apf.halted = false;
7116                 break;
7117         case KVM_MP_STATE_INIT_RECEIVED:
7118                 break;
7119         default:
7120                 return -EINTR;
7121                 break;
7122         }
7123         return 1;
7124 }
7125
7126 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
7127 {
7128         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7129                 kvm_x86_ops->check_nested_events(vcpu, false);
7130
7131         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7132                 !vcpu->arch.apf.halted);
7133 }
7134
7135 static int vcpu_run(struct kvm_vcpu *vcpu)
7136 {
7137         int r;
7138         struct kvm *kvm = vcpu->kvm;
7139
7140         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7141
7142         for (;;) {
7143                 if (kvm_vcpu_running(vcpu)) {
7144                         r = vcpu_enter_guest(vcpu);
7145                 } else {
7146                         r = vcpu_block(kvm, vcpu);
7147                 }
7148
7149                 if (r <= 0)
7150                         break;
7151
7152                 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
7153                 if (kvm_cpu_has_pending_timer(vcpu))
7154                         kvm_inject_pending_timer_irqs(vcpu);
7155
7156                 if (dm_request_for_irq_injection(vcpu) &&
7157                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
7158                         r = 0;
7159                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
7160                         ++vcpu->stat.request_irq_exits;
7161                         break;
7162                 }
7163
7164                 kvm_check_async_pf_completion(vcpu);
7165
7166                 if (signal_pending(current)) {
7167                         r = -EINTR;
7168                         vcpu->run->exit_reason = KVM_EXIT_INTR;
7169                         ++vcpu->stat.signal_exits;
7170                         break;
7171                 }
7172                 if (need_resched()) {
7173                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7174                         cond_resched();
7175                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7176                 }
7177         }
7178
7179         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7180
7181         return r;
7182 }
7183
7184 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
7185 {
7186         int r;
7187         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7188         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
7189         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7190         if (r != EMULATE_DONE)
7191                 return 0;
7192         return 1;
7193 }
7194
7195 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
7196 {
7197         BUG_ON(!vcpu->arch.pio.count);
7198
7199         return complete_emulated_io(vcpu);
7200 }
7201
7202 /*
7203  * Implements the following, as a state machine:
7204  *
7205  * read:
7206  *   for each fragment
7207  *     for each mmio piece in the fragment
7208  *       write gpa, len
7209  *       exit
7210  *       copy data
7211  *   execute insn
7212  *
7213  * write:
7214  *   for each fragment
7215  *     for each mmio piece in the fragment
7216  *       write gpa, len
7217  *       copy data
7218  *       exit
7219  */
7220 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
7221 {
7222         struct kvm_run *run = vcpu->run;
7223         struct kvm_mmio_fragment *frag;
7224         unsigned len;
7225
7226         BUG_ON(!vcpu->mmio_needed);
7227
7228         /* Complete previous fragment */
7229         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
7230         len = min(8u, frag->len);
7231         if (!vcpu->mmio_is_write)
7232                 memcpy(frag->data, run->mmio.data, len);
7233
7234         if (frag->len <= 8) {
7235                 /* Switch to the next fragment. */
7236                 frag++;
7237                 vcpu->mmio_cur_fragment++;
7238         } else {
7239                 /* Go forward to the next mmio piece. */
7240                 frag->data += len;
7241                 frag->gpa += len;
7242                 frag->len -= len;
7243         }
7244
7245         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
7246                 vcpu->mmio_needed = 0;
7247
7248                 /* FIXME: return into emulator if single-stepping.  */
7249                 if (vcpu->mmio_is_write)
7250                         return 1;
7251                 vcpu->mmio_read_completed = 1;
7252                 return complete_emulated_io(vcpu);
7253         }
7254
7255         run->exit_reason = KVM_EXIT_MMIO;
7256         run->mmio.phys_addr = frag->gpa;
7257         if (vcpu->mmio_is_write)
7258                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
7259         run->mmio.len = min(8u, frag->len);
7260         run->mmio.is_write = vcpu->mmio_is_write;
7261         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7262         return 0;
7263 }
7264
7265
7266 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
7267 {
7268         struct fpu *fpu = &current->thread.fpu;
7269         int r;
7270
7271         fpu__initialize(fpu);
7272
7273         kvm_sigset_activate(vcpu);
7274
7275         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
7276                 if (kvm_run->immediate_exit) {
7277                         r = -EINTR;
7278                         goto out;
7279                 }
7280                 kvm_vcpu_block(vcpu);
7281                 kvm_apic_accept_events(vcpu);
7282                 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
7283                 r = -EAGAIN;
7284                 if (signal_pending(current)) {
7285                         r = -EINTR;
7286                         vcpu->run->exit_reason = KVM_EXIT_INTR;
7287                         ++vcpu->stat.signal_exits;
7288                 }
7289                 goto out;
7290         }
7291
7292         /* re-sync apic's tpr */
7293         if (!lapic_in_kernel(vcpu)) {
7294                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
7295                         r = -EINVAL;
7296                         goto out;
7297                 }
7298         }
7299
7300         if (unlikely(vcpu->arch.complete_userspace_io)) {
7301                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
7302                 vcpu->arch.complete_userspace_io = NULL;
7303                 r = cui(vcpu);
7304                 if (r <= 0)
7305                         goto out;
7306         } else
7307                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
7308
7309         if (kvm_run->immediate_exit)
7310                 r = -EINTR;
7311         else
7312                 r = vcpu_run(vcpu);
7313
7314 out:
7315         post_kvm_run_save(vcpu);
7316         kvm_sigset_deactivate(vcpu);
7317
7318         return r;
7319 }
7320
7321 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7322 {
7323         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
7324                 /*
7325                  * We are here if userspace calls get_regs() in the middle of
7326                  * instruction emulation. Registers state needs to be copied
7327                  * back from emulation context to vcpu. Userspace shouldn't do
7328                  * that usually, but some bad designed PV devices (vmware
7329                  * backdoor interface) need this to work
7330                  */
7331                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
7332                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7333         }
7334         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
7335         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
7336         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
7337         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
7338         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
7339         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
7340         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7341         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
7342 #ifdef CONFIG_X86_64
7343         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
7344         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
7345         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
7346         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
7347         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
7348         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
7349         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
7350         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
7351 #endif
7352
7353         regs->rip = kvm_rip_read(vcpu);
7354         regs->rflags = kvm_get_rflags(vcpu);
7355
7356         return 0;
7357 }
7358
7359 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7360 {
7361         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
7362         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7363
7364         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
7365         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
7366         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
7367         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
7368         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
7369         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
7370         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
7371         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
7372 #ifdef CONFIG_X86_64
7373         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
7374         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
7375         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
7376         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
7377         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
7378         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
7379         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
7380         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
7381 #endif
7382
7383         kvm_rip_write(vcpu, regs->rip);
7384         kvm_set_rflags(vcpu, regs->rflags);
7385
7386         vcpu->arch.exception.pending = false;
7387
7388         kvm_make_request(KVM_REQ_EVENT, vcpu);
7389
7390         return 0;
7391 }
7392
7393 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7394 {
7395         struct kvm_segment cs;
7396
7397         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7398         *db = cs.db;
7399         *l = cs.l;
7400 }
7401 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7402
7403 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7404                                   struct kvm_sregs *sregs)
7405 {
7406         struct desc_ptr dt;
7407
7408         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7409         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7410         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7411         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7412         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7413         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7414
7415         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7416         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7417
7418         kvm_x86_ops->get_idt(vcpu, &dt);
7419         sregs->idt.limit = dt.size;
7420         sregs->idt.base = dt.address;
7421         kvm_x86_ops->get_gdt(vcpu, &dt);
7422         sregs->gdt.limit = dt.size;
7423         sregs->gdt.base = dt.address;
7424
7425         sregs->cr0 = kvm_read_cr0(vcpu);
7426         sregs->cr2 = vcpu->arch.cr2;
7427         sregs->cr3 = kvm_read_cr3(vcpu);
7428         sregs->cr4 = kvm_read_cr4(vcpu);
7429         sregs->cr8 = kvm_get_cr8(vcpu);
7430         sregs->efer = vcpu->arch.efer;
7431         sregs->apic_base = kvm_get_apic_base(vcpu);
7432
7433         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7434
7435         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
7436                 set_bit(vcpu->arch.interrupt.nr,
7437                         (unsigned long *)sregs->interrupt_bitmap);
7438
7439         return 0;
7440 }
7441
7442 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7443                                     struct kvm_mp_state *mp_state)
7444 {
7445         kvm_apic_accept_events(vcpu);
7446         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7447                                         vcpu->arch.pv.pv_unhalted)
7448                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7449         else
7450                 mp_state->mp_state = vcpu->arch.mp_state;
7451
7452         return 0;
7453 }
7454
7455 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7456                                     struct kvm_mp_state *mp_state)
7457 {
7458         if (!lapic_in_kernel(vcpu) &&
7459             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7460                 return -EINVAL;
7461
7462         /* INITs are latched while in SMM */
7463         if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
7464             (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
7465              mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
7466                 return -EINVAL;
7467
7468         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7469                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7470                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7471         } else
7472                 vcpu->arch.mp_state = mp_state->mp_state;
7473         kvm_make_request(KVM_REQ_EVENT, vcpu);
7474         return 0;
7475 }
7476
7477 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7478                     int reason, bool has_error_code, u32 error_code)
7479 {
7480         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7481         int ret;
7482
7483         init_emulate_ctxt(vcpu);
7484
7485         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7486                                    has_error_code, error_code);
7487
7488         if (ret)
7489                 return EMULATE_FAIL;
7490
7491         kvm_rip_write(vcpu, ctxt->eip);
7492         kvm_set_rflags(vcpu, ctxt->eflags);
7493         kvm_make_request(KVM_REQ_EVENT, vcpu);
7494         return EMULATE_DONE;
7495 }
7496 EXPORT_SYMBOL_GPL(kvm_task_switch);
7497
7498 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7499                                   struct kvm_sregs *sregs)
7500 {
7501         struct msr_data apic_base_msr;
7502         int mmu_reset_needed = 0;
7503         int pending_vec, max_bits, idx;
7504         struct desc_ptr dt;
7505
7506         if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
7507                         (sregs->cr4 & X86_CR4_OSXSAVE))
7508                 return -EINVAL;
7509
7510         apic_base_msr.data = sregs->apic_base;
7511         apic_base_msr.host_initiated = true;
7512         if (kvm_set_apic_base(vcpu, &apic_base_msr))
7513                 return -EINVAL;
7514
7515         dt.size = sregs->idt.limit;
7516         dt.address = sregs->idt.base;
7517         kvm_x86_ops->set_idt(vcpu, &dt);
7518         dt.size = sregs->gdt.limit;
7519         dt.address = sregs->gdt.base;
7520         kvm_x86_ops->set_gdt(vcpu, &dt);
7521
7522         vcpu->arch.cr2 = sregs->cr2;
7523         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7524         vcpu->arch.cr3 = sregs->cr3;
7525         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7526
7527         kvm_set_cr8(vcpu, sregs->cr8);
7528
7529         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7530         kvm_x86_ops->set_efer(vcpu, sregs->efer);
7531
7532         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7533         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7534         vcpu->arch.cr0 = sregs->cr0;
7535
7536         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7537         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7538         if (sregs->cr4 & (X86_CR4_OSXSAVE | X86_CR4_PKE))
7539                 kvm_update_cpuid(vcpu);
7540
7541         idx = srcu_read_lock(&vcpu->kvm->srcu);
7542         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7543                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7544                 mmu_reset_needed = 1;
7545         }
7546         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7547
7548         if (mmu_reset_needed)
7549                 kvm_mmu_reset_context(vcpu);
7550
7551         max_bits = KVM_NR_INTERRUPTS;
7552         pending_vec = find_first_bit(
7553                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
7554         if (pending_vec < max_bits) {
7555                 kvm_queue_interrupt(vcpu, pending_vec, false);
7556                 pr_debug("Set back pending irq %d\n", pending_vec);
7557         }
7558
7559         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7560         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7561         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7562         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7563         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7564         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7565
7566         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7567         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7568
7569         update_cr8_intercept(vcpu);
7570
7571         /* Older userspace won't unhalt the vcpu on reset. */
7572         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7573             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7574             !is_protmode(vcpu))
7575                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7576
7577         kvm_make_request(KVM_REQ_EVENT, vcpu);
7578
7579         return 0;
7580 }
7581
7582 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7583                                         struct kvm_guest_debug *dbg)
7584 {
7585         unsigned long rflags;
7586         int i, r;
7587
7588         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7589                 r = -EBUSY;
7590                 if (vcpu->arch.exception.pending)
7591                         goto out;
7592                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7593                         kvm_queue_exception(vcpu, DB_VECTOR);
7594                 else
7595                         kvm_queue_exception(vcpu, BP_VECTOR);
7596         }
7597
7598         /*
7599          * Read rflags as long as potentially injected trace flags are still
7600          * filtered out.
7601          */
7602         rflags = kvm_get_rflags(vcpu);
7603
7604         vcpu->guest_debug = dbg->control;
7605         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7606                 vcpu->guest_debug = 0;
7607
7608         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7609                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
7610                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7611                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7612         } else {
7613                 for (i = 0; i < KVM_NR_DB_REGS; i++)
7614                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7615         }
7616         kvm_update_dr7(vcpu);
7617
7618         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7619                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7620                         get_segment_base(vcpu, VCPU_SREG_CS);
7621
7622         /*
7623          * Trigger an rflags update that will inject or remove the trace
7624          * flags.
7625          */
7626         kvm_set_rflags(vcpu, rflags);
7627
7628         kvm_x86_ops->update_bp_intercept(vcpu);
7629
7630         r = 0;
7631
7632 out:
7633
7634         return r;
7635 }
7636
7637 /*
7638  * Translate a guest virtual address to a guest physical address.
7639  */
7640 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7641                                     struct kvm_translation *tr)
7642 {
7643         unsigned long vaddr = tr->linear_address;
7644         gpa_t gpa;
7645         int idx;
7646
7647         idx = srcu_read_lock(&vcpu->kvm->srcu);
7648         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7649         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7650         tr->physical_address = gpa;
7651         tr->valid = gpa != UNMAPPED_GVA;
7652         tr->writeable = 1;
7653         tr->usermode = 0;
7654
7655         return 0;
7656 }
7657
7658 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7659 {
7660         struct fxregs_state *fxsave =
7661                         &vcpu->arch.guest_fpu.state.fxsave;
7662
7663         memcpy(fpu->fpr, fxsave->st_space, 128);
7664         fpu->fcw = fxsave->cwd;
7665         fpu->fsw = fxsave->swd;
7666         fpu->ftwx = fxsave->twd;
7667         fpu->last_opcode = fxsave->fop;
7668         fpu->last_ip = fxsave->rip;
7669         fpu->last_dp = fxsave->rdp;
7670         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7671
7672         return 0;
7673 }
7674
7675 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7676 {
7677         struct fxregs_state *fxsave =
7678                         &vcpu->arch.guest_fpu.state.fxsave;
7679
7680         memcpy(fxsave->st_space, fpu->fpr, 128);
7681         fxsave->cwd = fpu->fcw;
7682         fxsave->swd = fpu->fsw;
7683         fxsave->twd = fpu->ftwx;
7684         fxsave->fop = fpu->last_opcode;
7685         fxsave->rip = fpu->last_ip;
7686         fxsave->rdp = fpu->last_dp;
7687         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7688
7689         return 0;
7690 }
7691
7692 static void fx_init(struct kvm_vcpu *vcpu)
7693 {
7694         fpstate_init(&vcpu->arch.guest_fpu.state);
7695         if (boot_cpu_has(X86_FEATURE_XSAVES))
7696                 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7697                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
7698
7699         /*
7700          * Ensure guest xcr0 is valid for loading
7701          */
7702         vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7703
7704         vcpu->arch.cr0 |= X86_CR0_ET;
7705 }
7706
7707 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7708 {
7709         if (vcpu->guest_fpu_loaded)
7710                 return;
7711
7712         /*
7713          * Restore all possible states in the guest,
7714          * and assume host would use all available bits.
7715          * Guest xcr0 would be loaded later.
7716          */
7717         vcpu->guest_fpu_loaded = 1;
7718         __kernel_fpu_begin();
7719         /* PKRU is separately restored in kvm_x86_ops->run.  */
7720         __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state,
7721                                 ~XFEATURE_MASK_PKRU);
7722         trace_kvm_fpu(1);
7723 }
7724
7725 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7726 {
7727         if (!vcpu->guest_fpu_loaded)
7728                 return;
7729
7730         vcpu->guest_fpu_loaded = 0;
7731         copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7732         __kernel_fpu_end();
7733         ++vcpu->stat.fpu_reload;
7734         trace_kvm_fpu(0);
7735 }
7736
7737 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7738 {
7739         void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
7740
7741         kvmclock_reset(vcpu);
7742
7743         kvm_x86_ops->vcpu_free(vcpu);
7744         free_cpumask_var(wbinvd_dirty_mask);
7745 }
7746
7747 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7748                                                 unsigned int id)
7749 {
7750         struct kvm_vcpu *vcpu;
7751
7752         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7753                 printk_once(KERN_WARNING
7754                 "kvm: SMP vm created on host with unstable TSC; "
7755                 "guest TSC will not be reliable\n");
7756
7757         vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7758
7759         return vcpu;
7760 }
7761
7762 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7763 {
7764         int r;
7765
7766         kvm_vcpu_mtrr_init(vcpu);
7767         r = vcpu_load(vcpu);
7768         if (r)
7769                 return r;
7770         kvm_vcpu_reset(vcpu, false);
7771         kvm_mmu_setup(vcpu);
7772         vcpu_put(vcpu);
7773         return r;
7774 }
7775
7776 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7777 {
7778         struct msr_data msr;
7779         struct kvm *kvm = vcpu->kvm;
7780
7781         kvm_hv_vcpu_postcreate(vcpu);
7782
7783         if (vcpu_load(vcpu))
7784                 return;
7785         msr.data = 0x0;
7786         msr.index = MSR_IA32_TSC;
7787         msr.host_initiated = true;
7788         kvm_write_tsc(vcpu, &msr);
7789         vcpu_put(vcpu);
7790
7791         if (!kvmclock_periodic_sync)
7792                 return;
7793
7794         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7795                                         KVMCLOCK_SYNC_PERIOD);
7796 }
7797
7798 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7799 {
7800         int r;
7801         vcpu->arch.apf.msr_val = 0;
7802
7803         r = vcpu_load(vcpu);
7804         BUG_ON(r);
7805         kvm_mmu_unload(vcpu);
7806         vcpu_put(vcpu);
7807
7808         kvm_x86_ops->vcpu_free(vcpu);
7809 }
7810
7811 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7812 {
7813         vcpu->arch.hflags = 0;
7814
7815         vcpu->arch.smi_pending = 0;
7816         atomic_set(&vcpu->arch.nmi_queued, 0);
7817         vcpu->arch.nmi_pending = 0;
7818         vcpu->arch.nmi_injected = false;
7819         kvm_clear_interrupt_queue(vcpu);
7820         kvm_clear_exception_queue(vcpu);
7821         vcpu->arch.exception.pending = false;
7822
7823         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7824         kvm_update_dr0123(vcpu);
7825         vcpu->arch.dr6 = DR6_INIT;
7826         kvm_update_dr6(vcpu);
7827         vcpu->arch.dr7 = DR7_FIXED_1;
7828         kvm_update_dr7(vcpu);
7829
7830         vcpu->arch.cr2 = 0;
7831
7832         kvm_make_request(KVM_REQ_EVENT, vcpu);
7833         vcpu->arch.apf.msr_val = 0;
7834         vcpu->arch.st.msr_val = 0;
7835
7836         kvmclock_reset(vcpu);
7837
7838         kvm_clear_async_pf_completion_queue(vcpu);
7839         kvm_async_pf_hash_reset(vcpu);
7840         vcpu->arch.apf.halted = false;
7841
7842         if (kvm_mpx_supported()) {
7843                 void *mpx_state_buffer;
7844
7845                 /*
7846                  * To avoid have the INIT path from kvm_apic_has_events() that be
7847                  * called with loaded FPU and does not let userspace fix the state.
7848                  */
7849                 kvm_put_guest_fpu(vcpu);
7850                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
7851                                         XFEATURE_MASK_BNDREGS);
7852                 if (mpx_state_buffer)
7853                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
7854                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
7855                                         XFEATURE_MASK_BNDCSR);
7856                 if (mpx_state_buffer)
7857                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
7858         }
7859
7860         if (!init_event) {
7861                 kvm_pmu_reset(vcpu);
7862                 vcpu->arch.smbase = 0x30000;
7863
7864                 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
7865                 vcpu->arch.msr_misc_features_enables = 0;
7866
7867                 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7868         }
7869
7870         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7871         vcpu->arch.regs_avail = ~0;
7872         vcpu->arch.regs_dirty = ~0;
7873
7874         vcpu->arch.ia32_xss = 0;
7875
7876         kvm_x86_ops->vcpu_reset(vcpu, init_event);
7877 }
7878
7879 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7880 {
7881         struct kvm_segment cs;
7882
7883         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7884         cs.selector = vector << 8;
7885         cs.base = vector << 12;
7886         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7887         kvm_rip_write(vcpu, 0);
7888 }
7889
7890 int kvm_arch_hardware_enable(void)
7891 {
7892         struct kvm *kvm;
7893         struct kvm_vcpu *vcpu;
7894         int i;
7895         int ret;
7896         u64 local_tsc;
7897         u64 max_tsc = 0;
7898         bool stable, backwards_tsc = false;
7899
7900         kvm_shared_msr_cpu_online();
7901         ret = kvm_x86_ops->hardware_enable();
7902         if (ret != 0)
7903                 return ret;
7904
7905         local_tsc = rdtsc();
7906         stable = !check_tsc_unstable();
7907         list_for_each_entry(kvm, &vm_list, vm_list) {
7908                 kvm_for_each_vcpu(i, vcpu, kvm) {
7909                         if (!stable && vcpu->cpu == smp_processor_id())
7910                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7911                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7912                                 backwards_tsc = true;
7913                                 if (vcpu->arch.last_host_tsc > max_tsc)
7914                                         max_tsc = vcpu->arch.last_host_tsc;
7915                         }
7916                 }
7917         }
7918
7919         /*
7920          * Sometimes, even reliable TSCs go backwards.  This happens on
7921          * platforms that reset TSC during suspend or hibernate actions, but
7922          * maintain synchronization.  We must compensate.  Fortunately, we can
7923          * detect that condition here, which happens early in CPU bringup,
7924          * before any KVM threads can be running.  Unfortunately, we can't
7925          * bring the TSCs fully up to date with real time, as we aren't yet far
7926          * enough into CPU bringup that we know how much real time has actually
7927          * elapsed; our helper function, ktime_get_boot_ns() will be using boot
7928          * variables that haven't been updated yet.
7929          *
7930          * So we simply find the maximum observed TSC above, then record the
7931          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
7932          * the adjustment will be applied.  Note that we accumulate
7933          * adjustments, in case multiple suspend cycles happen before some VCPU
7934          * gets a chance to run again.  In the event that no KVM threads get a
7935          * chance to run, we will miss the entire elapsed period, as we'll have
7936          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7937          * loose cycle time.  This isn't too big a deal, since the loss will be
7938          * uniform across all VCPUs (not to mention the scenario is extremely
7939          * unlikely). It is possible that a second hibernate recovery happens
7940          * much faster than a first, causing the observed TSC here to be
7941          * smaller; this would require additional padding adjustment, which is
7942          * why we set last_host_tsc to the local tsc observed here.
7943          *
7944          * N.B. - this code below runs only on platforms with reliable TSC,
7945          * as that is the only way backwards_tsc is set above.  Also note
7946          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7947          * have the same delta_cyc adjustment applied if backwards_tsc
7948          * is detected.  Note further, this adjustment is only done once,
7949          * as we reset last_host_tsc on all VCPUs to stop this from being
7950          * called multiple times (one for each physical CPU bringup).
7951          *
7952          * Platforms with unreliable TSCs don't have to deal with this, they
7953          * will be compensated by the logic in vcpu_load, which sets the TSC to
7954          * catchup mode.  This will catchup all VCPUs to real time, but cannot
7955          * guarantee that they stay in perfect synchronization.
7956          */
7957         if (backwards_tsc) {
7958                 u64 delta_cyc = max_tsc - local_tsc;
7959                 list_for_each_entry(kvm, &vm_list, vm_list) {
7960                         kvm->arch.backwards_tsc_observed = true;
7961                         kvm_for_each_vcpu(i, vcpu, kvm) {
7962                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
7963                                 vcpu->arch.last_host_tsc = local_tsc;
7964                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7965                         }
7966
7967                         /*
7968                          * We have to disable TSC offset matching.. if you were
7969                          * booting a VM while issuing an S4 host suspend....
7970                          * you may have some problem.  Solving this issue is
7971                          * left as an exercise to the reader.
7972                          */
7973                         kvm->arch.last_tsc_nsec = 0;
7974                         kvm->arch.last_tsc_write = 0;
7975                 }
7976
7977         }
7978         return 0;
7979 }
7980
7981 void kvm_arch_hardware_disable(void)
7982 {
7983         kvm_x86_ops->hardware_disable();
7984         drop_user_return_notifiers();
7985 }
7986
7987 int kvm_arch_hardware_setup(void)
7988 {
7989         int r;
7990
7991         r = kvm_x86_ops->hardware_setup();
7992         if (r != 0)
7993                 return r;
7994
7995         if (kvm_has_tsc_control) {
7996                 /*
7997                  * Make sure the user can only configure tsc_khz values that
7998                  * fit into a signed integer.
7999                  * A min value is not calculated needed because it will always
8000                  * be 1 on all machines.
8001                  */
8002                 u64 max = min(0x7fffffffULL,
8003                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
8004                 kvm_max_guest_tsc_khz = max;
8005
8006                 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
8007         }
8008
8009         kvm_init_msr_list();
8010         return 0;
8011 }
8012
8013 void kvm_arch_hardware_unsetup(void)
8014 {
8015         kvm_x86_ops->hardware_unsetup();
8016 }
8017
8018 void kvm_arch_check_processor_compat(void *rtn)
8019 {
8020         kvm_x86_ops->check_processor_compatibility(rtn);
8021 }
8022
8023 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
8024 {
8025         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
8026 }
8027 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
8028
8029 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
8030 {
8031         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
8032 }
8033
8034 struct static_key kvm_no_apic_vcpu __read_mostly;
8035 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
8036
8037 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
8038 {
8039         struct page *page;
8040         int r;
8041
8042         vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu);
8043         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
8044         if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
8045                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8046         else
8047                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
8048
8049         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
8050         if (!page) {
8051                 r = -ENOMEM;
8052                 goto fail;
8053         }
8054         vcpu->arch.pio_data = page_address(page);
8055
8056         kvm_set_tsc_khz(vcpu, max_tsc_khz);
8057
8058         r = kvm_mmu_create(vcpu);
8059         if (r < 0)
8060                 goto fail_free_pio_data;
8061
8062         if (irqchip_in_kernel(vcpu->kvm)) {
8063                 r = kvm_create_lapic(vcpu);
8064                 if (r < 0)
8065                         goto fail_mmu_destroy;
8066         } else
8067                 static_key_slow_inc(&kvm_no_apic_vcpu);
8068
8069         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
8070                                        GFP_KERNEL);
8071         if (!vcpu->arch.mce_banks) {
8072                 r = -ENOMEM;
8073                 goto fail_free_lapic;
8074         }
8075         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
8076
8077         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
8078                 r = -ENOMEM;
8079                 goto fail_free_mce_banks;
8080         }
8081
8082         fx_init(vcpu);
8083
8084         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
8085
8086         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
8087
8088         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
8089
8090         kvm_async_pf_hash_reset(vcpu);
8091         kvm_pmu_init(vcpu);
8092
8093         vcpu->arch.pending_external_vector = -1;
8094         vcpu->arch.preempted_in_kernel = false;
8095
8096         kvm_hv_vcpu_init(vcpu);
8097
8098         return 0;
8099
8100 fail_free_mce_banks:
8101         kfree(vcpu->arch.mce_banks);
8102 fail_free_lapic:
8103         kvm_free_lapic(vcpu);
8104 fail_mmu_destroy:
8105         kvm_mmu_destroy(vcpu);
8106 fail_free_pio_data:
8107         free_page((unsigned long)vcpu->arch.pio_data);
8108 fail:
8109         return r;
8110 }
8111
8112 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
8113 {
8114         int idx;
8115
8116         kvm_hv_vcpu_uninit(vcpu);
8117         kvm_pmu_destroy(vcpu);
8118         kfree(vcpu->arch.mce_banks);
8119         kvm_free_lapic(vcpu);
8120         idx = srcu_read_lock(&vcpu->kvm->srcu);
8121         kvm_mmu_destroy(vcpu);
8122         srcu_read_unlock(&vcpu->kvm->srcu, idx);
8123         free_page((unsigned long)vcpu->arch.pio_data);
8124         if (!lapic_in_kernel(vcpu))
8125                 static_key_slow_dec(&kvm_no_apic_vcpu);
8126 }
8127
8128 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
8129 {
8130         kvm_x86_ops->sched_in(vcpu, cpu);
8131 }
8132
8133 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
8134 {
8135         if (type)
8136                 return -EINVAL;
8137
8138         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
8139         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
8140         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
8141         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
8142         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
8143
8144         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
8145         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
8146         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
8147         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
8148                 &kvm->arch.irq_sources_bitmap);
8149
8150         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
8151         mutex_init(&kvm->arch.apic_map_lock);
8152         mutex_init(&kvm->arch.hyperv.hv_lock);
8153         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
8154
8155         kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
8156         pvclock_update_vm_gtod_copy(kvm);
8157
8158         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
8159         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
8160
8161         kvm_page_track_init(kvm);
8162         kvm_mmu_init_vm(kvm);
8163
8164         if (kvm_x86_ops->vm_init)
8165                 return kvm_x86_ops->vm_init(kvm);
8166
8167         return 0;
8168 }
8169
8170 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
8171 {
8172         int r;
8173         r = vcpu_load(vcpu);
8174         BUG_ON(r);
8175         kvm_mmu_unload(vcpu);
8176         vcpu_put(vcpu);
8177 }
8178
8179 static void kvm_free_vcpus(struct kvm *kvm)
8180 {
8181         unsigned int i;
8182         struct kvm_vcpu *vcpu;
8183
8184         /*
8185          * Unpin any mmu pages first.
8186          */
8187         kvm_for_each_vcpu(i, vcpu, kvm) {
8188                 kvm_clear_async_pf_completion_queue(vcpu);
8189                 kvm_unload_vcpu_mmu(vcpu);
8190         }
8191         kvm_for_each_vcpu(i, vcpu, kvm)
8192                 kvm_arch_vcpu_free(vcpu);
8193
8194         mutex_lock(&kvm->lock);
8195         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
8196                 kvm->vcpus[i] = NULL;
8197
8198         atomic_set(&kvm->online_vcpus, 0);
8199         mutex_unlock(&kvm->lock);
8200 }
8201
8202 void kvm_arch_sync_events(struct kvm *kvm)
8203 {
8204         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
8205         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
8206         kvm_free_pit(kvm);
8207 }
8208
8209 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8210 {
8211         int i, r;
8212         unsigned long hva;
8213         struct kvm_memslots *slots = kvm_memslots(kvm);
8214         struct kvm_memory_slot *slot, old;
8215
8216         /* Called with kvm->slots_lock held.  */
8217         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
8218                 return -EINVAL;
8219
8220         slot = id_to_memslot(slots, id);
8221         if (size) {
8222                 if (slot->npages)
8223                         return -EEXIST;
8224
8225                 /*
8226                  * MAP_SHARED to prevent internal slot pages from being moved
8227                  * by fork()/COW.
8228                  */
8229                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
8230                               MAP_SHARED | MAP_ANONYMOUS, 0);
8231                 if (IS_ERR((void *)hva))
8232                         return PTR_ERR((void *)hva);
8233         } else {
8234                 if (!slot->npages)
8235                         return 0;
8236
8237                 hva = 0;
8238         }
8239
8240         old = *slot;
8241         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
8242                 struct kvm_userspace_memory_region m;
8243
8244                 m.slot = id | (i << 16);
8245                 m.flags = 0;
8246                 m.guest_phys_addr = gpa;
8247                 m.userspace_addr = hva;
8248                 m.memory_size = size;
8249                 r = __kvm_set_memory_region(kvm, &m);
8250                 if (r < 0)
8251                         return r;
8252         }
8253
8254         if (!size) {
8255                 r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
8256                 WARN_ON(r < 0);
8257         }
8258
8259         return 0;
8260 }
8261 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
8262
8263 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8264 {
8265         int r;
8266
8267         mutex_lock(&kvm->slots_lock);
8268         r = __x86_set_memory_region(kvm, id, gpa, size);
8269         mutex_unlock(&kvm->slots_lock);
8270
8271         return r;
8272 }
8273 EXPORT_SYMBOL_GPL(x86_set_memory_region);
8274
8275 void kvm_arch_destroy_vm(struct kvm *kvm)
8276 {
8277         if (current->mm == kvm->mm) {
8278                 /*
8279                  * Free memory regions allocated on behalf of userspace,
8280                  * unless the the memory map has changed due to process exit
8281                  * or fd copying.
8282                  */
8283                 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
8284                 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
8285                 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
8286         }
8287         if (kvm_x86_ops->vm_destroy)
8288                 kvm_x86_ops->vm_destroy(kvm);
8289         kvm_pic_destroy(kvm);
8290         kvm_ioapic_destroy(kvm);
8291         kvm_free_vcpus(kvm);
8292         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
8293         kvm_mmu_uninit_vm(kvm);
8294         kvm_page_track_cleanup(kvm);
8295 }
8296
8297 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
8298                            struct kvm_memory_slot *dont)
8299 {
8300         int i;
8301
8302         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8303                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
8304                         kvfree(free->arch.rmap[i]);
8305                         free->arch.rmap[i] = NULL;
8306                 }
8307                 if (i == 0)
8308                         continue;
8309
8310                 if (!dont || free->arch.lpage_info[i - 1] !=
8311                              dont->arch.lpage_info[i - 1]) {
8312                         kvfree(free->arch.lpage_info[i - 1]);
8313                         free->arch.lpage_info[i - 1] = NULL;
8314                 }
8315         }
8316
8317         kvm_page_track_free_memslot(free, dont);
8318 }
8319
8320 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
8321                             unsigned long npages)
8322 {
8323         int i;
8324
8325         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8326                 struct kvm_lpage_info *linfo;
8327                 unsigned long ugfn;
8328                 int lpages;
8329                 int level = i + 1;
8330
8331                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
8332                                       slot->base_gfn, level) + 1;
8333
8334                 slot->arch.rmap[i] =
8335                         kvzalloc(lpages * sizeof(*slot->arch.rmap[i]), GFP_KERNEL);
8336                 if (!slot->arch.rmap[i])
8337                         goto out_free;
8338                 if (i == 0)
8339                         continue;
8340
8341                 linfo = kvzalloc(lpages * sizeof(*linfo), GFP_KERNEL);
8342                 if (!linfo)
8343                         goto out_free;
8344
8345                 slot->arch.lpage_info[i - 1] = linfo;
8346
8347                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
8348                         linfo[0].disallow_lpage = 1;
8349                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
8350                         linfo[lpages - 1].disallow_lpage = 1;
8351                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
8352                 /*
8353                  * If the gfn and userspace address are not aligned wrt each
8354                  * other, or if explicitly asked to, disable large page
8355                  * support for this slot
8356                  */
8357                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
8358                     !kvm_largepages_enabled()) {
8359                         unsigned long j;
8360
8361                         for (j = 0; j < lpages; ++j)
8362                                 linfo[j].disallow_lpage = 1;
8363                 }
8364         }
8365
8366         if (kvm_page_track_create_memslot(slot, npages))
8367                 goto out_free;
8368
8369         return 0;
8370
8371 out_free:
8372         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8373                 kvfree(slot->arch.rmap[i]);
8374                 slot->arch.rmap[i] = NULL;
8375                 if (i == 0)
8376                         continue;
8377
8378                 kvfree(slot->arch.lpage_info[i - 1]);
8379                 slot->arch.lpage_info[i - 1] = NULL;
8380         }
8381         return -ENOMEM;
8382 }
8383
8384 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
8385 {
8386         /*
8387          * memslots->generation has been incremented.
8388          * mmio generation may have reached its maximum value.
8389          */
8390         kvm_mmu_invalidate_mmio_sptes(kvm, slots);
8391 }
8392
8393 int kvm_arch_prepare_memory_region(struct kvm *kvm,
8394                                 struct kvm_memory_slot *memslot,
8395                                 const struct kvm_userspace_memory_region *mem,
8396                                 enum kvm_mr_change change)
8397 {
8398         return 0;
8399 }
8400
8401 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
8402                                      struct kvm_memory_slot *new)
8403 {
8404         /* Still write protect RO slot */
8405         if (new->flags & KVM_MEM_READONLY) {
8406                 kvm_mmu_slot_remove_write_access(kvm, new);
8407                 return;
8408         }
8409
8410         /*
8411          * Call kvm_x86_ops dirty logging hooks when they are valid.
8412          *
8413          * kvm_x86_ops->slot_disable_log_dirty is called when:
8414          *
8415          *  - KVM_MR_CREATE with dirty logging is disabled
8416          *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8417          *
8418          * The reason is, in case of PML, we need to set D-bit for any slots
8419          * with dirty logging disabled in order to eliminate unnecessary GPA
8420          * logging in PML buffer (and potential PML buffer full VMEXT). This
8421          * guarantees leaving PML enabled during guest's lifetime won't have
8422          * any additonal overhead from PML when guest is running with dirty
8423          * logging disabled for memory slots.
8424          *
8425          * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8426          * to dirty logging mode.
8427          *
8428          * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8429          *
8430          * In case of write protect:
8431          *
8432          * Write protect all pages for dirty logging.
8433          *
8434          * All the sptes including the large sptes which point to this
8435          * slot are set to readonly. We can not create any new large
8436          * spte on this slot until the end of the logging.
8437          *
8438          * See the comments in fast_page_fault().
8439          */
8440         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
8441                 if (kvm_x86_ops->slot_enable_log_dirty)
8442                         kvm_x86_ops->slot_enable_log_dirty(kvm, new);
8443                 else
8444                         kvm_mmu_slot_remove_write_access(kvm, new);
8445         } else {
8446                 if (kvm_x86_ops->slot_disable_log_dirty)
8447                         kvm_x86_ops->slot_disable_log_dirty(kvm, new);
8448         }
8449 }
8450
8451 void kvm_arch_commit_memory_region(struct kvm *kvm,
8452                                 const struct kvm_userspace_memory_region *mem,
8453                                 const struct kvm_memory_slot *old,
8454                                 const struct kvm_memory_slot *new,
8455                                 enum kvm_mr_change change)
8456 {
8457         int nr_mmu_pages = 0;
8458
8459         if (!kvm->arch.n_requested_mmu_pages)
8460                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
8461
8462         if (nr_mmu_pages)
8463                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
8464
8465         /*
8466          * Dirty logging tracks sptes in 4k granularity, meaning that large
8467          * sptes have to be split.  If live migration is successful, the guest
8468          * in the source machine will be destroyed and large sptes will be
8469          * created in the destination. However, if the guest continues to run
8470          * in the source machine (for example if live migration fails), small
8471          * sptes will remain around and cause bad performance.
8472          *
8473          * Scan sptes if dirty logging has been stopped, dropping those
8474          * which can be collapsed into a single large-page spte.  Later
8475          * page faults will create the large-page sptes.
8476          */
8477         if ((change != KVM_MR_DELETE) &&
8478                 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
8479                 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
8480                 kvm_mmu_zap_collapsible_sptes(kvm, new);
8481
8482         /*
8483          * Set up write protection and/or dirty logging for the new slot.
8484          *
8485          * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8486          * been zapped so no dirty logging staff is needed for old slot. For
8487          * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8488          * new and it's also covered when dealing with the new slot.
8489          *
8490          * FIXME: const-ify all uses of struct kvm_memory_slot.
8491          */
8492         if (change != KVM_MR_DELETE)
8493                 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8494 }
8495
8496 void kvm_arch_flush_shadow_all(struct kvm *kvm)
8497 {
8498         kvm_mmu_invalidate_zap_all_pages(kvm);
8499 }
8500
8501 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8502                                    struct kvm_memory_slot *slot)
8503 {
8504         kvm_page_track_flush_slot(kvm, slot);
8505 }
8506
8507 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
8508 {
8509         if (!list_empty_careful(&vcpu->async_pf.done))
8510                 return true;
8511
8512         if (kvm_apic_has_events(vcpu))
8513                 return true;
8514
8515         if (vcpu->arch.pv.pv_unhalted)
8516                 return true;
8517
8518         if (vcpu->arch.exception.pending)
8519                 return true;
8520
8521         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
8522             (vcpu->arch.nmi_pending &&
8523              kvm_x86_ops->nmi_allowed(vcpu)))
8524                 return true;
8525
8526         if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
8527             (vcpu->arch.smi_pending && !is_smm(vcpu)))
8528                 return true;
8529
8530         if (kvm_arch_interrupt_allowed(vcpu) &&
8531             kvm_cpu_has_interrupt(vcpu))
8532                 return true;
8533
8534         if (kvm_hv_has_stimer_pending(vcpu))
8535                 return true;
8536
8537         return false;
8538 }
8539
8540 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8541 {
8542         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8543 }
8544
8545 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
8546 {
8547         return vcpu->arch.preempted_in_kernel;
8548 }
8549
8550 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8551 {
8552         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8553 }
8554
8555 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8556 {
8557         return kvm_x86_ops->interrupt_allowed(vcpu);
8558 }
8559
8560 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8561 {
8562         if (is_64_bit_mode(vcpu))
8563                 return kvm_rip_read(vcpu);
8564         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8565                      kvm_rip_read(vcpu));
8566 }
8567 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8568
8569 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8570 {
8571         return kvm_get_linear_rip(vcpu) == linear_rip;
8572 }
8573 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8574
8575 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8576 {
8577         unsigned long rflags;
8578
8579         rflags = kvm_x86_ops->get_rflags(vcpu);
8580         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8581                 rflags &= ~X86_EFLAGS_TF;
8582         return rflags;
8583 }
8584 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8585
8586 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8587 {
8588         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8589             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8590                 rflags |= X86_EFLAGS_TF;
8591         kvm_x86_ops->set_rflags(vcpu, rflags);
8592 }
8593
8594 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8595 {
8596         __kvm_set_rflags(vcpu, rflags);
8597         kvm_make_request(KVM_REQ_EVENT, vcpu);
8598 }
8599 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8600
8601 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8602 {
8603         int r;
8604
8605         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8606               work->wakeup_all)
8607                 return;
8608
8609         r = kvm_mmu_reload(vcpu);
8610         if (unlikely(r))
8611                 return;
8612
8613         if (!vcpu->arch.mmu.direct_map &&
8614               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8615                 return;
8616
8617         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8618 }
8619
8620 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8621 {
8622         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8623 }
8624
8625 static inline u32 kvm_async_pf_next_probe(u32 key)
8626 {
8627         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8628 }
8629
8630 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8631 {
8632         u32 key = kvm_async_pf_hash_fn(gfn);
8633
8634         while (vcpu->arch.apf.gfns[key] != ~0)
8635                 key = kvm_async_pf_next_probe(key);
8636
8637         vcpu->arch.apf.gfns[key] = gfn;
8638 }
8639
8640 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8641 {
8642         int i;
8643         u32 key = kvm_async_pf_hash_fn(gfn);
8644
8645         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8646                      (vcpu->arch.apf.gfns[key] != gfn &&
8647                       vcpu->arch.apf.gfns[key] != ~0); i++)
8648                 key = kvm_async_pf_next_probe(key);
8649
8650         return key;
8651 }
8652
8653 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8654 {
8655         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8656 }
8657
8658 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8659 {
8660         u32 i, j, k;
8661
8662         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8663         while (true) {
8664                 vcpu->arch.apf.gfns[i] = ~0;
8665                 do {
8666                         j = kvm_async_pf_next_probe(j);
8667                         if (vcpu->arch.apf.gfns[j] == ~0)
8668                                 return;
8669                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8670                         /*
8671                          * k lies cyclically in ]i,j]
8672                          * |    i.k.j |
8673                          * |....j i.k.| or  |.k..j i...|
8674                          */
8675                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8676                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8677                 i = j;
8678         }
8679 }
8680
8681 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8682 {
8683
8684         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8685                                       sizeof(val));
8686 }
8687
8688 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
8689 {
8690
8691         return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
8692                                       sizeof(u32));
8693 }
8694
8695 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8696                                      struct kvm_async_pf *work)
8697 {
8698         struct x86_exception fault;
8699
8700         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8701         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8702
8703         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8704             (vcpu->arch.apf.send_user_only &&
8705              kvm_x86_ops->get_cpl(vcpu) == 0))
8706                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8707         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8708                 fault.vector = PF_VECTOR;
8709                 fault.error_code_valid = true;
8710                 fault.error_code = 0;
8711                 fault.nested_page_fault = false;
8712                 fault.address = work->arch.token;
8713                 fault.async_page_fault = true;
8714                 kvm_inject_page_fault(vcpu, &fault);
8715         }
8716 }
8717
8718 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8719                                  struct kvm_async_pf *work)
8720 {
8721         struct x86_exception fault;
8722         u32 val;
8723
8724         if (work->wakeup_all)
8725                 work->arch.token = ~0; /* broadcast wakeup */
8726         else
8727                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8728         trace_kvm_async_pf_ready(work->arch.token, work->gva);
8729
8730         if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
8731             !apf_get_user(vcpu, &val)) {
8732                 if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
8733                     vcpu->arch.exception.pending &&
8734                     vcpu->arch.exception.nr == PF_VECTOR &&
8735                     !apf_put_user(vcpu, 0)) {
8736                         vcpu->arch.exception.injected = false;
8737                         vcpu->arch.exception.pending = false;
8738                         vcpu->arch.exception.nr = 0;
8739                         vcpu->arch.exception.has_error_code = false;
8740                         vcpu->arch.exception.error_code = 0;
8741                 } else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8742                         fault.vector = PF_VECTOR;
8743                         fault.error_code_valid = true;
8744                         fault.error_code = 0;
8745                         fault.nested_page_fault = false;
8746                         fault.address = work->arch.token;
8747                         fault.async_page_fault = true;
8748                         kvm_inject_page_fault(vcpu, &fault);
8749                 }
8750         }
8751         vcpu->arch.apf.halted = false;
8752         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8753 }
8754
8755 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8756 {
8757         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8758                 return true;
8759         else
8760                 return kvm_can_do_async_pf(vcpu);
8761 }
8762
8763 void kvm_arch_start_assignment(struct kvm *kvm)
8764 {
8765         atomic_inc(&kvm->arch.assigned_device_count);
8766 }
8767 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
8768
8769 void kvm_arch_end_assignment(struct kvm *kvm)
8770 {
8771         atomic_dec(&kvm->arch.assigned_device_count);
8772 }
8773 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
8774
8775 bool kvm_arch_has_assigned_device(struct kvm *kvm)
8776 {
8777         return atomic_read(&kvm->arch.assigned_device_count);
8778 }
8779 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8780
8781 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8782 {
8783         atomic_inc(&kvm->arch.noncoherent_dma_count);
8784 }
8785 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8786
8787 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8788 {
8789         atomic_dec(&kvm->arch.noncoherent_dma_count);
8790 }
8791 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8792
8793 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8794 {
8795         return atomic_read(&kvm->arch.noncoherent_dma_count);
8796 }
8797 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8798
8799 bool kvm_arch_has_irq_bypass(void)
8800 {
8801         return kvm_x86_ops->update_pi_irte != NULL;
8802 }
8803
8804 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
8805                                       struct irq_bypass_producer *prod)
8806 {
8807         struct kvm_kernel_irqfd *irqfd =
8808                 container_of(cons, struct kvm_kernel_irqfd, consumer);
8809
8810         irqfd->producer = prod;
8811
8812         return kvm_x86_ops->update_pi_irte(irqfd->kvm,
8813                                            prod->irq, irqfd->gsi, 1);
8814 }
8815
8816 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
8817                                       struct irq_bypass_producer *prod)
8818 {
8819         int ret;
8820         struct kvm_kernel_irqfd *irqfd =
8821                 container_of(cons, struct kvm_kernel_irqfd, consumer);
8822
8823         WARN_ON(irqfd->producer != prod);
8824         irqfd->producer = NULL;
8825
8826         /*
8827          * When producer of consumer is unregistered, we change back to
8828          * remapped mode, so we can re-use the current implementation
8829          * when the irq is masked/disabled or the consumer side (KVM
8830          * int this case doesn't want to receive the interrupts.
8831         */
8832         ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
8833         if (ret)
8834                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
8835                        " fails: %d\n", irqfd->consumer.token, ret);
8836 }
8837
8838 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
8839                                    uint32_t guest_irq, bool set)
8840 {
8841         if (!kvm_x86_ops->update_pi_irte)
8842                 return -EINVAL;
8843
8844         return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
8845 }
8846
8847 bool kvm_vector_hashing_enabled(void)
8848 {
8849         return vector_hashing;
8850 }
8851 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
8852
8853 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8854 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
8855 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8856 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8857 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8858 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8859 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8860 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8861 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8862 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8863 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8864 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8865 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8866 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8867 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8868 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
8869 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
8870 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
8871 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);