Merge tag 'pstore-v4.12-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/kees...
[platform/kernel/linux-rpi.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "pmu.h"
31 #include "hyperv.h"
32
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57
58 #include <trace/events/kvm.h>
59
60 #include <asm/debugreg.h>
61 #include <asm/msr.h>
62 #include <asm/desc.h>
63 #include <asm/mce.h>
64 #include <linux/kernel_stat.h>
65 #include <asm/fpu/internal.h> /* Ugh! */
66 #include <asm/pvclock.h>
67 #include <asm/div64.h>
68 #include <asm/irq_remapping.h>
69
70 #define CREATE_TRACE_POINTS
71 #include "trace.h"
72
73 #define MAX_IO_MSRS 256
74 #define KVM_MAX_MCE_BANKS 32
75 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
76 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
77
78 #define emul_to_vcpu(ctxt) \
79         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
80
81 /* EFER defaults:
82  * - enable syscall per default because its emulated by KVM
83  * - enable LME and LMA per default on 64 bit KVM
84  */
85 #ifdef CONFIG_X86_64
86 static
87 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
88 #else
89 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
90 #endif
91
92 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
93 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
94
95 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
96                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
97
98 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
99 static void process_nmi(struct kvm_vcpu *vcpu);
100 static void enter_smm(struct kvm_vcpu *vcpu);
101 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
102
103 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
104 EXPORT_SYMBOL_GPL(kvm_x86_ops);
105
106 static bool __read_mostly ignore_msrs = 0;
107 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
108
109 unsigned int min_timer_period_us = 500;
110 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
111
112 static bool __read_mostly kvmclock_periodic_sync = true;
113 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
114
115 bool __read_mostly kvm_has_tsc_control;
116 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
117 u32  __read_mostly kvm_max_guest_tsc_khz;
118 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
119 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
120 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
121 u64  __read_mostly kvm_max_tsc_scaling_ratio;
122 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
123 u64 __read_mostly kvm_default_tsc_scaling_ratio;
124 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
125
126 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
127 static u32 __read_mostly tsc_tolerance_ppm = 250;
128 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
129
130 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
131 unsigned int __read_mostly lapic_timer_advance_ns = 0;
132 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
133
134 static bool __read_mostly vector_hashing = true;
135 module_param(vector_hashing, bool, S_IRUGO);
136
137 static bool __read_mostly backwards_tsc_observed = false;
138
139 #define KVM_NR_SHARED_MSRS 16
140
141 struct kvm_shared_msrs_global {
142         int nr;
143         u32 msrs[KVM_NR_SHARED_MSRS];
144 };
145
146 struct kvm_shared_msrs {
147         struct user_return_notifier urn;
148         bool registered;
149         struct kvm_shared_msr_values {
150                 u64 host;
151                 u64 curr;
152         } values[KVM_NR_SHARED_MSRS];
153 };
154
155 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
156 static struct kvm_shared_msrs __percpu *shared_msrs;
157
158 struct kvm_stats_debugfs_item debugfs_entries[] = {
159         { "pf_fixed", VCPU_STAT(pf_fixed) },
160         { "pf_guest", VCPU_STAT(pf_guest) },
161         { "tlb_flush", VCPU_STAT(tlb_flush) },
162         { "invlpg", VCPU_STAT(invlpg) },
163         { "exits", VCPU_STAT(exits) },
164         { "io_exits", VCPU_STAT(io_exits) },
165         { "mmio_exits", VCPU_STAT(mmio_exits) },
166         { "signal_exits", VCPU_STAT(signal_exits) },
167         { "irq_window", VCPU_STAT(irq_window_exits) },
168         { "nmi_window", VCPU_STAT(nmi_window_exits) },
169         { "halt_exits", VCPU_STAT(halt_exits) },
170         { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
171         { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
172         { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
173         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
174         { "hypercalls", VCPU_STAT(hypercalls) },
175         { "request_irq", VCPU_STAT(request_irq_exits) },
176         { "irq_exits", VCPU_STAT(irq_exits) },
177         { "host_state_reload", VCPU_STAT(host_state_reload) },
178         { "efer_reload", VCPU_STAT(efer_reload) },
179         { "fpu_reload", VCPU_STAT(fpu_reload) },
180         { "insn_emulation", VCPU_STAT(insn_emulation) },
181         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
182         { "irq_injections", VCPU_STAT(irq_injections) },
183         { "nmi_injections", VCPU_STAT(nmi_injections) },
184         { "req_event", VCPU_STAT(req_event) },
185         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
186         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
187         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
188         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
189         { "mmu_flooded", VM_STAT(mmu_flooded) },
190         { "mmu_recycled", VM_STAT(mmu_recycled) },
191         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
192         { "mmu_unsync", VM_STAT(mmu_unsync) },
193         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
194         { "largepages", VM_STAT(lpages) },
195         { "max_mmu_page_hash_collisions",
196                 VM_STAT(max_mmu_page_hash_collisions) },
197         { NULL }
198 };
199
200 u64 __read_mostly host_xcr0;
201
202 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
203
204 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
205 {
206         int i;
207         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
208                 vcpu->arch.apf.gfns[i] = ~0;
209 }
210
211 static void kvm_on_user_return(struct user_return_notifier *urn)
212 {
213         unsigned slot;
214         struct kvm_shared_msrs *locals
215                 = container_of(urn, struct kvm_shared_msrs, urn);
216         struct kvm_shared_msr_values *values;
217         unsigned long flags;
218
219         /*
220          * Disabling irqs at this point since the following code could be
221          * interrupted and executed through kvm_arch_hardware_disable()
222          */
223         local_irq_save(flags);
224         if (locals->registered) {
225                 locals->registered = false;
226                 user_return_notifier_unregister(urn);
227         }
228         local_irq_restore(flags);
229         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
230                 values = &locals->values[slot];
231                 if (values->host != values->curr) {
232                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
233                         values->curr = values->host;
234                 }
235         }
236 }
237
238 static void shared_msr_update(unsigned slot, u32 msr)
239 {
240         u64 value;
241         unsigned int cpu = smp_processor_id();
242         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
243
244         /* only read, and nobody should modify it at this time,
245          * so don't need lock */
246         if (slot >= shared_msrs_global.nr) {
247                 printk(KERN_ERR "kvm: invalid MSR slot!");
248                 return;
249         }
250         rdmsrl_safe(msr, &value);
251         smsr->values[slot].host = value;
252         smsr->values[slot].curr = value;
253 }
254
255 void kvm_define_shared_msr(unsigned slot, u32 msr)
256 {
257         BUG_ON(slot >= KVM_NR_SHARED_MSRS);
258         shared_msrs_global.msrs[slot] = msr;
259         if (slot >= shared_msrs_global.nr)
260                 shared_msrs_global.nr = slot + 1;
261 }
262 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
263
264 static void kvm_shared_msr_cpu_online(void)
265 {
266         unsigned i;
267
268         for (i = 0; i < shared_msrs_global.nr; ++i)
269                 shared_msr_update(i, shared_msrs_global.msrs[i]);
270 }
271
272 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
273 {
274         unsigned int cpu = smp_processor_id();
275         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
276         int err;
277
278         if (((value ^ smsr->values[slot].curr) & mask) == 0)
279                 return 0;
280         smsr->values[slot].curr = value;
281         err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
282         if (err)
283                 return 1;
284
285         if (!smsr->registered) {
286                 smsr->urn.on_user_return = kvm_on_user_return;
287                 user_return_notifier_register(&smsr->urn);
288                 smsr->registered = true;
289         }
290         return 0;
291 }
292 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
293
294 static void drop_user_return_notifiers(void)
295 {
296         unsigned int cpu = smp_processor_id();
297         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
298
299         if (smsr->registered)
300                 kvm_on_user_return(&smsr->urn);
301 }
302
303 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
304 {
305         return vcpu->arch.apic_base;
306 }
307 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
308
309 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
310 {
311         u64 old_state = vcpu->arch.apic_base &
312                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
313         u64 new_state = msr_info->data &
314                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
315         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
316                 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
317
318         if (!msr_info->host_initiated &&
319             ((msr_info->data & reserved_bits) != 0 ||
320              new_state == X2APIC_ENABLE ||
321              (new_state == MSR_IA32_APICBASE_ENABLE &&
322               old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
323              (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
324               old_state == 0)))
325                 return 1;
326
327         kvm_lapic_set_base(vcpu, msr_info->data);
328         return 0;
329 }
330 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
331
332 asmlinkage __visible void kvm_spurious_fault(void)
333 {
334         /* Fault while not rebooting.  We want the trace. */
335         BUG();
336 }
337 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
338
339 #define EXCPT_BENIGN            0
340 #define EXCPT_CONTRIBUTORY      1
341 #define EXCPT_PF                2
342
343 static int exception_class(int vector)
344 {
345         switch (vector) {
346         case PF_VECTOR:
347                 return EXCPT_PF;
348         case DE_VECTOR:
349         case TS_VECTOR:
350         case NP_VECTOR:
351         case SS_VECTOR:
352         case GP_VECTOR:
353                 return EXCPT_CONTRIBUTORY;
354         default:
355                 break;
356         }
357         return EXCPT_BENIGN;
358 }
359
360 #define EXCPT_FAULT             0
361 #define EXCPT_TRAP              1
362 #define EXCPT_ABORT             2
363 #define EXCPT_INTERRUPT         3
364
365 static int exception_type(int vector)
366 {
367         unsigned int mask;
368
369         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
370                 return EXCPT_INTERRUPT;
371
372         mask = 1 << vector;
373
374         /* #DB is trap, as instruction watchpoints are handled elsewhere */
375         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
376                 return EXCPT_TRAP;
377
378         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
379                 return EXCPT_ABORT;
380
381         /* Reserved exceptions will result in fault */
382         return EXCPT_FAULT;
383 }
384
385 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
386                 unsigned nr, bool has_error, u32 error_code,
387                 bool reinject)
388 {
389         u32 prev_nr;
390         int class1, class2;
391
392         kvm_make_request(KVM_REQ_EVENT, vcpu);
393
394         if (!vcpu->arch.exception.pending) {
395         queue:
396                 if (has_error && !is_protmode(vcpu))
397                         has_error = false;
398                 vcpu->arch.exception.pending = true;
399                 vcpu->arch.exception.has_error_code = has_error;
400                 vcpu->arch.exception.nr = nr;
401                 vcpu->arch.exception.error_code = error_code;
402                 vcpu->arch.exception.reinject = reinject;
403                 return;
404         }
405
406         /* to check exception */
407         prev_nr = vcpu->arch.exception.nr;
408         if (prev_nr == DF_VECTOR) {
409                 /* triple fault -> shutdown */
410                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
411                 return;
412         }
413         class1 = exception_class(prev_nr);
414         class2 = exception_class(nr);
415         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
416                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
417                 /* generate double fault per SDM Table 5-5 */
418                 vcpu->arch.exception.pending = true;
419                 vcpu->arch.exception.has_error_code = true;
420                 vcpu->arch.exception.nr = DF_VECTOR;
421                 vcpu->arch.exception.error_code = 0;
422         } else
423                 /* replace previous exception with a new one in a hope
424                    that instruction re-execution will regenerate lost
425                    exception */
426                 goto queue;
427 }
428
429 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
430 {
431         kvm_multiple_exception(vcpu, nr, false, 0, false);
432 }
433 EXPORT_SYMBOL_GPL(kvm_queue_exception);
434
435 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
436 {
437         kvm_multiple_exception(vcpu, nr, false, 0, true);
438 }
439 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
440
441 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
442 {
443         if (err)
444                 kvm_inject_gp(vcpu, 0);
445         else
446                 return kvm_skip_emulated_instruction(vcpu);
447
448         return 1;
449 }
450 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
451
452 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
453 {
454         ++vcpu->stat.pf_guest;
455         vcpu->arch.cr2 = fault->address;
456         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
457 }
458 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
459
460 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
461 {
462         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
463                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
464         else
465                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
466
467         return fault->nested_page_fault;
468 }
469
470 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
471 {
472         atomic_inc(&vcpu->arch.nmi_queued);
473         kvm_make_request(KVM_REQ_NMI, vcpu);
474 }
475 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
476
477 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
478 {
479         kvm_multiple_exception(vcpu, nr, true, error_code, false);
480 }
481 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
482
483 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
484 {
485         kvm_multiple_exception(vcpu, nr, true, error_code, true);
486 }
487 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
488
489 /*
490  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
491  * a #GP and return false.
492  */
493 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
494 {
495         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
496                 return true;
497         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
498         return false;
499 }
500 EXPORT_SYMBOL_GPL(kvm_require_cpl);
501
502 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
503 {
504         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
505                 return true;
506
507         kvm_queue_exception(vcpu, UD_VECTOR);
508         return false;
509 }
510 EXPORT_SYMBOL_GPL(kvm_require_dr);
511
512 /*
513  * This function will be used to read from the physical memory of the currently
514  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
515  * can read from guest physical or from the guest's guest physical memory.
516  */
517 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
518                             gfn_t ngfn, void *data, int offset, int len,
519                             u32 access)
520 {
521         struct x86_exception exception;
522         gfn_t real_gfn;
523         gpa_t ngpa;
524
525         ngpa     = gfn_to_gpa(ngfn);
526         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
527         if (real_gfn == UNMAPPED_GVA)
528                 return -EFAULT;
529
530         real_gfn = gpa_to_gfn(real_gfn);
531
532         return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
533 }
534 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
535
536 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
537                                void *data, int offset, int len, u32 access)
538 {
539         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
540                                        data, offset, len, access);
541 }
542
543 /*
544  * Load the pae pdptrs.  Return true is they are all valid.
545  */
546 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
547 {
548         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
549         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
550         int i;
551         int ret;
552         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
553
554         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
555                                       offset * sizeof(u64), sizeof(pdpte),
556                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
557         if (ret < 0) {
558                 ret = 0;
559                 goto out;
560         }
561         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
562                 if ((pdpte[i] & PT_PRESENT_MASK) &&
563                     (pdpte[i] &
564                      vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
565                         ret = 0;
566                         goto out;
567                 }
568         }
569         ret = 1;
570
571         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
572         __set_bit(VCPU_EXREG_PDPTR,
573                   (unsigned long *)&vcpu->arch.regs_avail);
574         __set_bit(VCPU_EXREG_PDPTR,
575                   (unsigned long *)&vcpu->arch.regs_dirty);
576 out:
577
578         return ret;
579 }
580 EXPORT_SYMBOL_GPL(load_pdptrs);
581
582 bool pdptrs_changed(struct kvm_vcpu *vcpu)
583 {
584         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
585         bool changed = true;
586         int offset;
587         gfn_t gfn;
588         int r;
589
590         if (is_long_mode(vcpu) || !is_pae(vcpu))
591                 return false;
592
593         if (!test_bit(VCPU_EXREG_PDPTR,
594                       (unsigned long *)&vcpu->arch.regs_avail))
595                 return true;
596
597         gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
598         offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
599         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
600                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
601         if (r < 0)
602                 goto out;
603         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
604 out:
605
606         return changed;
607 }
608 EXPORT_SYMBOL_GPL(pdptrs_changed);
609
610 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
611 {
612         unsigned long old_cr0 = kvm_read_cr0(vcpu);
613         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
614
615         cr0 |= X86_CR0_ET;
616
617 #ifdef CONFIG_X86_64
618         if (cr0 & 0xffffffff00000000UL)
619                 return 1;
620 #endif
621
622         cr0 &= ~CR0_RESERVED_BITS;
623
624         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
625                 return 1;
626
627         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
628                 return 1;
629
630         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
631 #ifdef CONFIG_X86_64
632                 if ((vcpu->arch.efer & EFER_LME)) {
633                         int cs_db, cs_l;
634
635                         if (!is_pae(vcpu))
636                                 return 1;
637                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
638                         if (cs_l)
639                                 return 1;
640                 } else
641 #endif
642                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
643                                                  kvm_read_cr3(vcpu)))
644                         return 1;
645         }
646
647         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
648                 return 1;
649
650         kvm_x86_ops->set_cr0(vcpu, cr0);
651
652         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
653                 kvm_clear_async_pf_completion_queue(vcpu);
654                 kvm_async_pf_hash_reset(vcpu);
655         }
656
657         if ((cr0 ^ old_cr0) & update_bits)
658                 kvm_mmu_reset_context(vcpu);
659
660         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
661             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
662             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
663                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
664
665         return 0;
666 }
667 EXPORT_SYMBOL_GPL(kvm_set_cr0);
668
669 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
670 {
671         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
672 }
673 EXPORT_SYMBOL_GPL(kvm_lmsw);
674
675 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
676 {
677         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
678                         !vcpu->guest_xcr0_loaded) {
679                 /* kvm_set_xcr() also depends on this */
680                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
681                 vcpu->guest_xcr0_loaded = 1;
682         }
683 }
684
685 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
686 {
687         if (vcpu->guest_xcr0_loaded) {
688                 if (vcpu->arch.xcr0 != host_xcr0)
689                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
690                 vcpu->guest_xcr0_loaded = 0;
691         }
692 }
693
694 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
695 {
696         u64 xcr0 = xcr;
697         u64 old_xcr0 = vcpu->arch.xcr0;
698         u64 valid_bits;
699
700         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
701         if (index != XCR_XFEATURE_ENABLED_MASK)
702                 return 1;
703         if (!(xcr0 & XFEATURE_MASK_FP))
704                 return 1;
705         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
706                 return 1;
707
708         /*
709          * Do not allow the guest to set bits that we do not support
710          * saving.  However, xcr0 bit 0 is always set, even if the
711          * emulated CPU does not support XSAVE (see fx_init).
712          */
713         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
714         if (xcr0 & ~valid_bits)
715                 return 1;
716
717         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
718             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
719                 return 1;
720
721         if (xcr0 & XFEATURE_MASK_AVX512) {
722                 if (!(xcr0 & XFEATURE_MASK_YMM))
723                         return 1;
724                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
725                         return 1;
726         }
727         vcpu->arch.xcr0 = xcr0;
728
729         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
730                 kvm_update_cpuid(vcpu);
731         return 0;
732 }
733
734 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
735 {
736         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
737             __kvm_set_xcr(vcpu, index, xcr)) {
738                 kvm_inject_gp(vcpu, 0);
739                 return 1;
740         }
741         return 0;
742 }
743 EXPORT_SYMBOL_GPL(kvm_set_xcr);
744
745 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
746 {
747         unsigned long old_cr4 = kvm_read_cr4(vcpu);
748         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
749                                    X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
750
751         if (cr4 & CR4_RESERVED_BITS)
752                 return 1;
753
754         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
755                 return 1;
756
757         if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
758                 return 1;
759
760         if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
761                 return 1;
762
763         if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
764                 return 1;
765
766         if (!guest_cpuid_has_pku(vcpu) && (cr4 & X86_CR4_PKE))
767                 return 1;
768
769         if (is_long_mode(vcpu)) {
770                 if (!(cr4 & X86_CR4_PAE))
771                         return 1;
772         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
773                    && ((cr4 ^ old_cr4) & pdptr_bits)
774                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
775                                    kvm_read_cr3(vcpu)))
776                 return 1;
777
778         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
779                 if (!guest_cpuid_has_pcid(vcpu))
780                         return 1;
781
782                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
783                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
784                         return 1;
785         }
786
787         if (kvm_x86_ops->set_cr4(vcpu, cr4))
788                 return 1;
789
790         if (((cr4 ^ old_cr4) & pdptr_bits) ||
791             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
792                 kvm_mmu_reset_context(vcpu);
793
794         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
795                 kvm_update_cpuid(vcpu);
796
797         return 0;
798 }
799 EXPORT_SYMBOL_GPL(kvm_set_cr4);
800
801 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
802 {
803 #ifdef CONFIG_X86_64
804         cr3 &= ~CR3_PCID_INVD;
805 #endif
806
807         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
808                 kvm_mmu_sync_roots(vcpu);
809                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
810                 return 0;
811         }
812
813         if (is_long_mode(vcpu)) {
814                 if (cr3 & CR3_L_MODE_RESERVED_BITS)
815                         return 1;
816         } else if (is_pae(vcpu) && is_paging(vcpu) &&
817                    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
818                 return 1;
819
820         vcpu->arch.cr3 = cr3;
821         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
822         kvm_mmu_new_cr3(vcpu);
823         return 0;
824 }
825 EXPORT_SYMBOL_GPL(kvm_set_cr3);
826
827 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
828 {
829         if (cr8 & CR8_RESERVED_BITS)
830                 return 1;
831         if (lapic_in_kernel(vcpu))
832                 kvm_lapic_set_tpr(vcpu, cr8);
833         else
834                 vcpu->arch.cr8 = cr8;
835         return 0;
836 }
837 EXPORT_SYMBOL_GPL(kvm_set_cr8);
838
839 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
840 {
841         if (lapic_in_kernel(vcpu))
842                 return kvm_lapic_get_cr8(vcpu);
843         else
844                 return vcpu->arch.cr8;
845 }
846 EXPORT_SYMBOL_GPL(kvm_get_cr8);
847
848 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
849 {
850         int i;
851
852         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
853                 for (i = 0; i < KVM_NR_DB_REGS; i++)
854                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
855                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
856         }
857 }
858
859 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
860 {
861         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
862                 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
863 }
864
865 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
866 {
867         unsigned long dr7;
868
869         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
870                 dr7 = vcpu->arch.guest_debug_dr7;
871         else
872                 dr7 = vcpu->arch.dr7;
873         kvm_x86_ops->set_dr7(vcpu, dr7);
874         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
875         if (dr7 & DR7_BP_EN_MASK)
876                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
877 }
878
879 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
880 {
881         u64 fixed = DR6_FIXED_1;
882
883         if (!guest_cpuid_has_rtm(vcpu))
884                 fixed |= DR6_RTM;
885         return fixed;
886 }
887
888 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
889 {
890         switch (dr) {
891         case 0 ... 3:
892                 vcpu->arch.db[dr] = val;
893                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
894                         vcpu->arch.eff_db[dr] = val;
895                 break;
896         case 4:
897                 /* fall through */
898         case 6:
899                 if (val & 0xffffffff00000000ULL)
900                         return -1; /* #GP */
901                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
902                 kvm_update_dr6(vcpu);
903                 break;
904         case 5:
905                 /* fall through */
906         default: /* 7 */
907                 if (val & 0xffffffff00000000ULL)
908                         return -1; /* #GP */
909                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
910                 kvm_update_dr7(vcpu);
911                 break;
912         }
913
914         return 0;
915 }
916
917 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
918 {
919         if (__kvm_set_dr(vcpu, dr, val)) {
920                 kvm_inject_gp(vcpu, 0);
921                 return 1;
922         }
923         return 0;
924 }
925 EXPORT_SYMBOL_GPL(kvm_set_dr);
926
927 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
928 {
929         switch (dr) {
930         case 0 ... 3:
931                 *val = vcpu->arch.db[dr];
932                 break;
933         case 4:
934                 /* fall through */
935         case 6:
936                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
937                         *val = vcpu->arch.dr6;
938                 else
939                         *val = kvm_x86_ops->get_dr6(vcpu);
940                 break;
941         case 5:
942                 /* fall through */
943         default: /* 7 */
944                 *val = vcpu->arch.dr7;
945                 break;
946         }
947         return 0;
948 }
949 EXPORT_SYMBOL_GPL(kvm_get_dr);
950
951 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
952 {
953         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
954         u64 data;
955         int err;
956
957         err = kvm_pmu_rdpmc(vcpu, ecx, &data);
958         if (err)
959                 return err;
960         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
961         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
962         return err;
963 }
964 EXPORT_SYMBOL_GPL(kvm_rdpmc);
965
966 /*
967  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
968  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
969  *
970  * This list is modified at module load time to reflect the
971  * capabilities of the host cpu. This capabilities test skips MSRs that are
972  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
973  * may depend on host virtualization features rather than host cpu features.
974  */
975
976 static u32 msrs_to_save[] = {
977         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
978         MSR_STAR,
979 #ifdef CONFIG_X86_64
980         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
981 #endif
982         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
983         MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
984 };
985
986 static unsigned num_msrs_to_save;
987
988 static u32 emulated_msrs[] = {
989         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
990         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
991         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
992         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
993         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
994         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
995         HV_X64_MSR_RESET,
996         HV_X64_MSR_VP_INDEX,
997         HV_X64_MSR_VP_RUNTIME,
998         HV_X64_MSR_SCONTROL,
999         HV_X64_MSR_STIMER0_CONFIG,
1000         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1001         MSR_KVM_PV_EOI_EN,
1002
1003         MSR_IA32_TSC_ADJUST,
1004         MSR_IA32_TSCDEADLINE,
1005         MSR_IA32_MISC_ENABLE,
1006         MSR_IA32_MCG_STATUS,
1007         MSR_IA32_MCG_CTL,
1008         MSR_IA32_MCG_EXT_CTL,
1009         MSR_IA32_SMBASE,
1010         MSR_PLATFORM_INFO,
1011         MSR_MISC_FEATURES_ENABLES,
1012 };
1013
1014 static unsigned num_emulated_msrs;
1015
1016 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1017 {
1018         if (efer & efer_reserved_bits)
1019                 return false;
1020
1021         if (efer & EFER_FFXSR) {
1022                 struct kvm_cpuid_entry2 *feat;
1023
1024                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1025                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
1026                         return false;
1027         }
1028
1029         if (efer & EFER_SVME) {
1030                 struct kvm_cpuid_entry2 *feat;
1031
1032                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1033                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
1034                         return false;
1035         }
1036
1037         return true;
1038 }
1039 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1040
1041 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1042 {
1043         u64 old_efer = vcpu->arch.efer;
1044
1045         if (!kvm_valid_efer(vcpu, efer))
1046                 return 1;
1047
1048         if (is_paging(vcpu)
1049             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1050                 return 1;
1051
1052         efer &= ~EFER_LMA;
1053         efer |= vcpu->arch.efer & EFER_LMA;
1054
1055         kvm_x86_ops->set_efer(vcpu, efer);
1056
1057         /* Update reserved bits */
1058         if ((efer ^ old_efer) & EFER_NX)
1059                 kvm_mmu_reset_context(vcpu);
1060
1061         return 0;
1062 }
1063
1064 void kvm_enable_efer_bits(u64 mask)
1065 {
1066        efer_reserved_bits &= ~mask;
1067 }
1068 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1069
1070 /*
1071  * Writes msr value into into the appropriate "register".
1072  * Returns 0 on success, non-0 otherwise.
1073  * Assumes vcpu_load() was already called.
1074  */
1075 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1076 {
1077         switch (msr->index) {
1078         case MSR_FS_BASE:
1079         case MSR_GS_BASE:
1080         case MSR_KERNEL_GS_BASE:
1081         case MSR_CSTAR:
1082         case MSR_LSTAR:
1083                 if (is_noncanonical_address(msr->data))
1084                         return 1;
1085                 break;
1086         case MSR_IA32_SYSENTER_EIP:
1087         case MSR_IA32_SYSENTER_ESP:
1088                 /*
1089                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1090                  * non-canonical address is written on Intel but not on
1091                  * AMD (which ignores the top 32-bits, because it does
1092                  * not implement 64-bit SYSENTER).
1093                  *
1094                  * 64-bit code should hence be able to write a non-canonical
1095                  * value on AMD.  Making the address canonical ensures that
1096                  * vmentry does not fail on Intel after writing a non-canonical
1097                  * value, and that something deterministic happens if the guest
1098                  * invokes 64-bit SYSENTER.
1099                  */
1100                 msr->data = get_canonical(msr->data);
1101         }
1102         return kvm_x86_ops->set_msr(vcpu, msr);
1103 }
1104 EXPORT_SYMBOL_GPL(kvm_set_msr);
1105
1106 /*
1107  * Adapt set_msr() to msr_io()'s calling convention
1108  */
1109 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1110 {
1111         struct msr_data msr;
1112         int r;
1113
1114         msr.index = index;
1115         msr.host_initiated = true;
1116         r = kvm_get_msr(vcpu, &msr);
1117         if (r)
1118                 return r;
1119
1120         *data = msr.data;
1121         return 0;
1122 }
1123
1124 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1125 {
1126         struct msr_data msr;
1127
1128         msr.data = *data;
1129         msr.index = index;
1130         msr.host_initiated = true;
1131         return kvm_set_msr(vcpu, &msr);
1132 }
1133
1134 #ifdef CONFIG_X86_64
1135 struct pvclock_gtod_data {
1136         seqcount_t      seq;
1137
1138         struct { /* extract of a clocksource struct */
1139                 int vclock_mode;
1140                 u64     cycle_last;
1141                 u64     mask;
1142                 u32     mult;
1143                 u32     shift;
1144         } clock;
1145
1146         u64             boot_ns;
1147         u64             nsec_base;
1148         u64             wall_time_sec;
1149 };
1150
1151 static struct pvclock_gtod_data pvclock_gtod_data;
1152
1153 static void update_pvclock_gtod(struct timekeeper *tk)
1154 {
1155         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1156         u64 boot_ns;
1157
1158         boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1159
1160         write_seqcount_begin(&vdata->seq);
1161
1162         /* copy pvclock gtod data */
1163         vdata->clock.vclock_mode        = tk->tkr_mono.clock->archdata.vclock_mode;
1164         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1165         vdata->clock.mask               = tk->tkr_mono.mask;
1166         vdata->clock.mult               = tk->tkr_mono.mult;
1167         vdata->clock.shift              = tk->tkr_mono.shift;
1168
1169         vdata->boot_ns                  = boot_ns;
1170         vdata->nsec_base                = tk->tkr_mono.xtime_nsec;
1171
1172         vdata->wall_time_sec            = tk->xtime_sec;
1173
1174         write_seqcount_end(&vdata->seq);
1175 }
1176 #endif
1177
1178 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1179 {
1180         /*
1181          * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1182          * vcpu_enter_guest.  This function is only called from
1183          * the physical CPU that is running vcpu.
1184          */
1185         kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1186 }
1187
1188 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1189 {
1190         int version;
1191         int r;
1192         struct pvclock_wall_clock wc;
1193         struct timespec64 boot;
1194
1195         if (!wall_clock)
1196                 return;
1197
1198         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1199         if (r)
1200                 return;
1201
1202         if (version & 1)
1203                 ++version;  /* first time write, random junk */
1204
1205         ++version;
1206
1207         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1208                 return;
1209
1210         /*
1211          * The guest calculates current wall clock time by adding
1212          * system time (updated by kvm_guest_time_update below) to the
1213          * wall clock specified here.  guest system time equals host
1214          * system time for us, thus we must fill in host boot time here.
1215          */
1216         getboottime64(&boot);
1217
1218         if (kvm->arch.kvmclock_offset) {
1219                 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1220                 boot = timespec64_sub(boot, ts);
1221         }
1222         wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1223         wc.nsec = boot.tv_nsec;
1224         wc.version = version;
1225
1226         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1227
1228         version++;
1229         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1230 }
1231
1232 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1233 {
1234         do_shl32_div32(dividend, divisor);
1235         return dividend;
1236 }
1237
1238 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1239                                s8 *pshift, u32 *pmultiplier)
1240 {
1241         uint64_t scaled64;
1242         int32_t  shift = 0;
1243         uint64_t tps64;
1244         uint32_t tps32;
1245
1246         tps64 = base_hz;
1247         scaled64 = scaled_hz;
1248         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1249                 tps64 >>= 1;
1250                 shift--;
1251         }
1252
1253         tps32 = (uint32_t)tps64;
1254         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1255                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1256                         scaled64 >>= 1;
1257                 else
1258                         tps32 <<= 1;
1259                 shift++;
1260         }
1261
1262         *pshift = shift;
1263         *pmultiplier = div_frac(scaled64, tps32);
1264
1265         pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1266                  __func__, base_hz, scaled_hz, shift, *pmultiplier);
1267 }
1268
1269 #ifdef CONFIG_X86_64
1270 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1271 #endif
1272
1273 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1274 static unsigned long max_tsc_khz;
1275
1276 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1277 {
1278         u64 v = (u64)khz * (1000000 + ppm);
1279         do_div(v, 1000000);
1280         return v;
1281 }
1282
1283 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1284 {
1285         u64 ratio;
1286
1287         /* Guest TSC same frequency as host TSC? */
1288         if (!scale) {
1289                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1290                 return 0;
1291         }
1292
1293         /* TSC scaling supported? */
1294         if (!kvm_has_tsc_control) {
1295                 if (user_tsc_khz > tsc_khz) {
1296                         vcpu->arch.tsc_catchup = 1;
1297                         vcpu->arch.tsc_always_catchup = 1;
1298                         return 0;
1299                 } else {
1300                         WARN(1, "user requested TSC rate below hardware speed\n");
1301                         return -1;
1302                 }
1303         }
1304
1305         /* TSC scaling required  - calculate ratio */
1306         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1307                                 user_tsc_khz, tsc_khz);
1308
1309         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1310                 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1311                           user_tsc_khz);
1312                 return -1;
1313         }
1314
1315         vcpu->arch.tsc_scaling_ratio = ratio;
1316         return 0;
1317 }
1318
1319 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1320 {
1321         u32 thresh_lo, thresh_hi;
1322         int use_scaling = 0;
1323
1324         /* tsc_khz can be zero if TSC calibration fails */
1325         if (user_tsc_khz == 0) {
1326                 /* set tsc_scaling_ratio to a safe value */
1327                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1328                 return -1;
1329         }
1330
1331         /* Compute a scale to convert nanoseconds in TSC cycles */
1332         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1333                            &vcpu->arch.virtual_tsc_shift,
1334                            &vcpu->arch.virtual_tsc_mult);
1335         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1336
1337         /*
1338          * Compute the variation in TSC rate which is acceptable
1339          * within the range of tolerance and decide if the
1340          * rate being applied is within that bounds of the hardware
1341          * rate.  If so, no scaling or compensation need be done.
1342          */
1343         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1344         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1345         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1346                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1347                 use_scaling = 1;
1348         }
1349         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1350 }
1351
1352 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1353 {
1354         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1355                                       vcpu->arch.virtual_tsc_mult,
1356                                       vcpu->arch.virtual_tsc_shift);
1357         tsc += vcpu->arch.this_tsc_write;
1358         return tsc;
1359 }
1360
1361 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1362 {
1363 #ifdef CONFIG_X86_64
1364         bool vcpus_matched;
1365         struct kvm_arch *ka = &vcpu->kvm->arch;
1366         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1367
1368         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1369                          atomic_read(&vcpu->kvm->online_vcpus));
1370
1371         /*
1372          * Once the masterclock is enabled, always perform request in
1373          * order to update it.
1374          *
1375          * In order to enable masterclock, the host clocksource must be TSC
1376          * and the vcpus need to have matched TSCs.  When that happens,
1377          * perform request to enable masterclock.
1378          */
1379         if (ka->use_master_clock ||
1380             (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1381                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1382
1383         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1384                             atomic_read(&vcpu->kvm->online_vcpus),
1385                             ka->use_master_clock, gtod->clock.vclock_mode);
1386 #endif
1387 }
1388
1389 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1390 {
1391         u64 curr_offset = vcpu->arch.tsc_offset;
1392         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1393 }
1394
1395 /*
1396  * Multiply tsc by a fixed point number represented by ratio.
1397  *
1398  * The most significant 64-N bits (mult) of ratio represent the
1399  * integral part of the fixed point number; the remaining N bits
1400  * (frac) represent the fractional part, ie. ratio represents a fixed
1401  * point number (mult + frac * 2^(-N)).
1402  *
1403  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1404  */
1405 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1406 {
1407         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1408 }
1409
1410 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1411 {
1412         u64 _tsc = tsc;
1413         u64 ratio = vcpu->arch.tsc_scaling_ratio;
1414
1415         if (ratio != kvm_default_tsc_scaling_ratio)
1416                 _tsc = __scale_tsc(ratio, tsc);
1417
1418         return _tsc;
1419 }
1420 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1421
1422 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1423 {
1424         u64 tsc;
1425
1426         tsc = kvm_scale_tsc(vcpu, rdtsc());
1427
1428         return target_tsc - tsc;
1429 }
1430
1431 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1432 {
1433         return vcpu->arch.tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1434 }
1435 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1436
1437 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1438 {
1439         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1440         vcpu->arch.tsc_offset = offset;
1441 }
1442
1443 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1444 {
1445         struct kvm *kvm = vcpu->kvm;
1446         u64 offset, ns, elapsed;
1447         unsigned long flags;
1448         bool matched;
1449         bool already_matched;
1450         u64 data = msr->data;
1451         bool synchronizing = false;
1452
1453         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1454         offset = kvm_compute_tsc_offset(vcpu, data);
1455         ns = ktime_get_boot_ns();
1456         elapsed = ns - kvm->arch.last_tsc_nsec;
1457
1458         if (vcpu->arch.virtual_tsc_khz) {
1459                 if (data == 0 && msr->host_initiated) {
1460                         /*
1461                          * detection of vcpu initialization -- need to sync
1462                          * with other vCPUs. This particularly helps to keep
1463                          * kvm_clock stable after CPU hotplug
1464                          */
1465                         synchronizing = true;
1466                 } else {
1467                         u64 tsc_exp = kvm->arch.last_tsc_write +
1468                                                 nsec_to_cycles(vcpu, elapsed);
1469                         u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1470                         /*
1471                          * Special case: TSC write with a small delta (1 second)
1472                          * of virtual cycle time against real time is
1473                          * interpreted as an attempt to synchronize the CPU.
1474                          */
1475                         synchronizing = data < tsc_exp + tsc_hz &&
1476                                         data + tsc_hz > tsc_exp;
1477                 }
1478         }
1479
1480         /*
1481          * For a reliable TSC, we can match TSC offsets, and for an unstable
1482          * TSC, we add elapsed time in this computation.  We could let the
1483          * compensation code attempt to catch up if we fall behind, but
1484          * it's better to try to match offsets from the beginning.
1485          */
1486         if (synchronizing &&
1487             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1488                 if (!check_tsc_unstable()) {
1489                         offset = kvm->arch.cur_tsc_offset;
1490                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1491                 } else {
1492                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1493                         data += delta;
1494                         offset = kvm_compute_tsc_offset(vcpu, data);
1495                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1496                 }
1497                 matched = true;
1498                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1499         } else {
1500                 /*
1501                  * We split periods of matched TSC writes into generations.
1502                  * For each generation, we track the original measured
1503                  * nanosecond time, offset, and write, so if TSCs are in
1504                  * sync, we can match exact offset, and if not, we can match
1505                  * exact software computation in compute_guest_tsc()
1506                  *
1507                  * These values are tracked in kvm->arch.cur_xxx variables.
1508                  */
1509                 kvm->arch.cur_tsc_generation++;
1510                 kvm->arch.cur_tsc_nsec = ns;
1511                 kvm->arch.cur_tsc_write = data;
1512                 kvm->arch.cur_tsc_offset = offset;
1513                 matched = false;
1514                 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1515                          kvm->arch.cur_tsc_generation, data);
1516         }
1517
1518         /*
1519          * We also track th most recent recorded KHZ, write and time to
1520          * allow the matching interval to be extended at each write.
1521          */
1522         kvm->arch.last_tsc_nsec = ns;
1523         kvm->arch.last_tsc_write = data;
1524         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1525
1526         vcpu->arch.last_guest_tsc = data;
1527
1528         /* Keep track of which generation this VCPU has synchronized to */
1529         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1530         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1531         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1532
1533         if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1534                 update_ia32_tsc_adjust_msr(vcpu, offset);
1535         kvm_vcpu_write_tsc_offset(vcpu, offset);
1536         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1537
1538         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1539         if (!matched) {
1540                 kvm->arch.nr_vcpus_matched_tsc = 0;
1541         } else if (!already_matched) {
1542                 kvm->arch.nr_vcpus_matched_tsc++;
1543         }
1544
1545         kvm_track_tsc_matching(vcpu);
1546         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1547 }
1548
1549 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1550
1551 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1552                                            s64 adjustment)
1553 {
1554         kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment);
1555 }
1556
1557 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1558 {
1559         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1560                 WARN_ON(adjustment < 0);
1561         adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1562         adjust_tsc_offset_guest(vcpu, adjustment);
1563 }
1564
1565 #ifdef CONFIG_X86_64
1566
1567 static u64 read_tsc(void)
1568 {
1569         u64 ret = (u64)rdtsc_ordered();
1570         u64 last = pvclock_gtod_data.clock.cycle_last;
1571
1572         if (likely(ret >= last))
1573                 return ret;
1574
1575         /*
1576          * GCC likes to generate cmov here, but this branch is extremely
1577          * predictable (it's just a function of time and the likely is
1578          * very likely) and there's a data dependence, so force GCC
1579          * to generate a branch instead.  I don't barrier() because
1580          * we don't actually need a barrier, and if this function
1581          * ever gets inlined it will generate worse code.
1582          */
1583         asm volatile ("");
1584         return last;
1585 }
1586
1587 static inline u64 vgettsc(u64 *cycle_now)
1588 {
1589         long v;
1590         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1591
1592         *cycle_now = read_tsc();
1593
1594         v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1595         return v * gtod->clock.mult;
1596 }
1597
1598 static int do_monotonic_boot(s64 *t, u64 *cycle_now)
1599 {
1600         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1601         unsigned long seq;
1602         int mode;
1603         u64 ns;
1604
1605         do {
1606                 seq = read_seqcount_begin(&gtod->seq);
1607                 mode = gtod->clock.vclock_mode;
1608                 ns = gtod->nsec_base;
1609                 ns += vgettsc(cycle_now);
1610                 ns >>= gtod->clock.shift;
1611                 ns += gtod->boot_ns;
1612         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1613         *t = ns;
1614
1615         return mode;
1616 }
1617
1618 static int do_realtime(struct timespec *ts, u64 *cycle_now)
1619 {
1620         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1621         unsigned long seq;
1622         int mode;
1623         u64 ns;
1624
1625         do {
1626                 seq = read_seqcount_begin(&gtod->seq);
1627                 mode = gtod->clock.vclock_mode;
1628                 ts->tv_sec = gtod->wall_time_sec;
1629                 ns = gtod->nsec_base;
1630                 ns += vgettsc(cycle_now);
1631                 ns >>= gtod->clock.shift;
1632         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1633
1634         ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1635         ts->tv_nsec = ns;
1636
1637         return mode;
1638 }
1639
1640 /* returns true if host is using tsc clocksource */
1641 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *cycle_now)
1642 {
1643         /* checked again under seqlock below */
1644         if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1645                 return false;
1646
1647         return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1648 }
1649
1650 /* returns true if host is using tsc clocksource */
1651 static bool kvm_get_walltime_and_clockread(struct timespec *ts,
1652                                            u64 *cycle_now)
1653 {
1654         /* checked again under seqlock below */
1655         if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1656                 return false;
1657
1658         return do_realtime(ts, cycle_now) == VCLOCK_TSC;
1659 }
1660 #endif
1661
1662 /*
1663  *
1664  * Assuming a stable TSC across physical CPUS, and a stable TSC
1665  * across virtual CPUs, the following condition is possible.
1666  * Each numbered line represents an event visible to both
1667  * CPUs at the next numbered event.
1668  *
1669  * "timespecX" represents host monotonic time. "tscX" represents
1670  * RDTSC value.
1671  *
1672  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1673  *
1674  * 1.  read timespec0,tsc0
1675  * 2.                                   | timespec1 = timespec0 + N
1676  *                                      | tsc1 = tsc0 + M
1677  * 3. transition to guest               | transition to guest
1678  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1679  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1680  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1681  *
1682  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1683  *
1684  *      - ret0 < ret1
1685  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1686  *              ...
1687  *      - 0 < N - M => M < N
1688  *
1689  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1690  * always the case (the difference between two distinct xtime instances
1691  * might be smaller then the difference between corresponding TSC reads,
1692  * when updating guest vcpus pvclock areas).
1693  *
1694  * To avoid that problem, do not allow visibility of distinct
1695  * system_timestamp/tsc_timestamp values simultaneously: use a master
1696  * copy of host monotonic time values. Update that master copy
1697  * in lockstep.
1698  *
1699  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1700  *
1701  */
1702
1703 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1704 {
1705 #ifdef CONFIG_X86_64
1706         struct kvm_arch *ka = &kvm->arch;
1707         int vclock_mode;
1708         bool host_tsc_clocksource, vcpus_matched;
1709
1710         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1711                         atomic_read(&kvm->online_vcpus));
1712
1713         /*
1714          * If the host uses TSC clock, then passthrough TSC as stable
1715          * to the guest.
1716          */
1717         host_tsc_clocksource = kvm_get_time_and_clockread(
1718                                         &ka->master_kernel_ns,
1719                                         &ka->master_cycle_now);
1720
1721         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1722                                 && !backwards_tsc_observed
1723                                 && !ka->boot_vcpu_runs_old_kvmclock;
1724
1725         if (ka->use_master_clock)
1726                 atomic_set(&kvm_guest_has_master_clock, 1);
1727
1728         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1729         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1730                                         vcpus_matched);
1731 #endif
1732 }
1733
1734 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1735 {
1736         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1737 }
1738
1739 static void kvm_gen_update_masterclock(struct kvm *kvm)
1740 {
1741 #ifdef CONFIG_X86_64
1742         int i;
1743         struct kvm_vcpu *vcpu;
1744         struct kvm_arch *ka = &kvm->arch;
1745
1746         spin_lock(&ka->pvclock_gtod_sync_lock);
1747         kvm_make_mclock_inprogress_request(kvm);
1748         /* no guest entries from this point */
1749         pvclock_update_vm_gtod_copy(kvm);
1750
1751         kvm_for_each_vcpu(i, vcpu, kvm)
1752                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1753
1754         /* guest entries allowed */
1755         kvm_for_each_vcpu(i, vcpu, kvm)
1756                 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
1757
1758         spin_unlock(&ka->pvclock_gtod_sync_lock);
1759 #endif
1760 }
1761
1762 u64 get_kvmclock_ns(struct kvm *kvm)
1763 {
1764         struct kvm_arch *ka = &kvm->arch;
1765         struct pvclock_vcpu_time_info hv_clock;
1766
1767         spin_lock(&ka->pvclock_gtod_sync_lock);
1768         if (!ka->use_master_clock) {
1769                 spin_unlock(&ka->pvclock_gtod_sync_lock);
1770                 return ktime_get_boot_ns() + ka->kvmclock_offset;
1771         }
1772
1773         hv_clock.tsc_timestamp = ka->master_cycle_now;
1774         hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
1775         spin_unlock(&ka->pvclock_gtod_sync_lock);
1776
1777         kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
1778                            &hv_clock.tsc_shift,
1779                            &hv_clock.tsc_to_system_mul);
1780         return __pvclock_read_cycles(&hv_clock, rdtsc());
1781 }
1782
1783 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
1784 {
1785         struct kvm_vcpu_arch *vcpu = &v->arch;
1786         struct pvclock_vcpu_time_info guest_hv_clock;
1787
1788         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1789                 &guest_hv_clock, sizeof(guest_hv_clock))))
1790                 return;
1791
1792         /* This VCPU is paused, but it's legal for a guest to read another
1793          * VCPU's kvmclock, so we really have to follow the specification where
1794          * it says that version is odd if data is being modified, and even after
1795          * it is consistent.
1796          *
1797          * Version field updates must be kept separate.  This is because
1798          * kvm_write_guest_cached might use a "rep movs" instruction, and
1799          * writes within a string instruction are weakly ordered.  So there
1800          * are three writes overall.
1801          *
1802          * As a small optimization, only write the version field in the first
1803          * and third write.  The vcpu->pv_time cache is still valid, because the
1804          * version field is the first in the struct.
1805          */
1806         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1807
1808         vcpu->hv_clock.version = guest_hv_clock.version + 1;
1809         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1810                                 &vcpu->hv_clock,
1811                                 sizeof(vcpu->hv_clock.version));
1812
1813         smp_wmb();
1814
1815         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1816         vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1817
1818         if (vcpu->pvclock_set_guest_stopped_request) {
1819                 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
1820                 vcpu->pvclock_set_guest_stopped_request = false;
1821         }
1822
1823         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1824
1825         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1826                                 &vcpu->hv_clock,
1827                                 sizeof(vcpu->hv_clock));
1828
1829         smp_wmb();
1830
1831         vcpu->hv_clock.version++;
1832         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1833                                 &vcpu->hv_clock,
1834                                 sizeof(vcpu->hv_clock.version));
1835 }
1836
1837 static int kvm_guest_time_update(struct kvm_vcpu *v)
1838 {
1839         unsigned long flags, tgt_tsc_khz;
1840         struct kvm_vcpu_arch *vcpu = &v->arch;
1841         struct kvm_arch *ka = &v->kvm->arch;
1842         s64 kernel_ns;
1843         u64 tsc_timestamp, host_tsc;
1844         u8 pvclock_flags;
1845         bool use_master_clock;
1846
1847         kernel_ns = 0;
1848         host_tsc = 0;
1849
1850         /*
1851          * If the host uses TSC clock, then passthrough TSC as stable
1852          * to the guest.
1853          */
1854         spin_lock(&ka->pvclock_gtod_sync_lock);
1855         use_master_clock = ka->use_master_clock;
1856         if (use_master_clock) {
1857                 host_tsc = ka->master_cycle_now;
1858                 kernel_ns = ka->master_kernel_ns;
1859         }
1860         spin_unlock(&ka->pvclock_gtod_sync_lock);
1861
1862         /* Keep irq disabled to prevent changes to the clock */
1863         local_irq_save(flags);
1864         tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1865         if (unlikely(tgt_tsc_khz == 0)) {
1866                 local_irq_restore(flags);
1867                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1868                 return 1;
1869         }
1870         if (!use_master_clock) {
1871                 host_tsc = rdtsc();
1872                 kernel_ns = ktime_get_boot_ns();
1873         }
1874
1875         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
1876
1877         /*
1878          * We may have to catch up the TSC to match elapsed wall clock
1879          * time for two reasons, even if kvmclock is used.
1880          *   1) CPU could have been running below the maximum TSC rate
1881          *   2) Broken TSC compensation resets the base at each VCPU
1882          *      entry to avoid unknown leaps of TSC even when running
1883          *      again on the same CPU.  This may cause apparent elapsed
1884          *      time to disappear, and the guest to stand still or run
1885          *      very slowly.
1886          */
1887         if (vcpu->tsc_catchup) {
1888                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1889                 if (tsc > tsc_timestamp) {
1890                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1891                         tsc_timestamp = tsc;
1892                 }
1893         }
1894
1895         local_irq_restore(flags);
1896
1897         /* With all the info we got, fill in the values */
1898
1899         if (kvm_has_tsc_control)
1900                 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
1901
1902         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
1903                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
1904                                    &vcpu->hv_clock.tsc_shift,
1905                                    &vcpu->hv_clock.tsc_to_system_mul);
1906                 vcpu->hw_tsc_khz = tgt_tsc_khz;
1907         }
1908
1909         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1910         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1911         vcpu->last_guest_tsc = tsc_timestamp;
1912
1913         /* If the host uses TSC clocksource, then it is stable */
1914         pvclock_flags = 0;
1915         if (use_master_clock)
1916                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1917
1918         vcpu->hv_clock.flags = pvclock_flags;
1919
1920         if (vcpu->pv_time_enabled)
1921                 kvm_setup_pvclock_page(v);
1922         if (v == kvm_get_vcpu(v->kvm, 0))
1923                 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
1924         return 0;
1925 }
1926
1927 /*
1928  * kvmclock updates which are isolated to a given vcpu, such as
1929  * vcpu->cpu migration, should not allow system_timestamp from
1930  * the rest of the vcpus to remain static. Otherwise ntp frequency
1931  * correction applies to one vcpu's system_timestamp but not
1932  * the others.
1933  *
1934  * So in those cases, request a kvmclock update for all vcpus.
1935  * We need to rate-limit these requests though, as they can
1936  * considerably slow guests that have a large number of vcpus.
1937  * The time for a remote vcpu to update its kvmclock is bound
1938  * by the delay we use to rate-limit the updates.
1939  */
1940
1941 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1942
1943 static void kvmclock_update_fn(struct work_struct *work)
1944 {
1945         int i;
1946         struct delayed_work *dwork = to_delayed_work(work);
1947         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1948                                            kvmclock_update_work);
1949         struct kvm *kvm = container_of(ka, struct kvm, arch);
1950         struct kvm_vcpu *vcpu;
1951
1952         kvm_for_each_vcpu(i, vcpu, kvm) {
1953                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1954                 kvm_vcpu_kick(vcpu);
1955         }
1956 }
1957
1958 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1959 {
1960         struct kvm *kvm = v->kvm;
1961
1962         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1963         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1964                                         KVMCLOCK_UPDATE_DELAY);
1965 }
1966
1967 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1968
1969 static void kvmclock_sync_fn(struct work_struct *work)
1970 {
1971         struct delayed_work *dwork = to_delayed_work(work);
1972         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1973                                            kvmclock_sync_work);
1974         struct kvm *kvm = container_of(ka, struct kvm, arch);
1975
1976         if (!kvmclock_periodic_sync)
1977                 return;
1978
1979         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1980         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1981                                         KVMCLOCK_SYNC_PERIOD);
1982 }
1983
1984 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1985 {
1986         u64 mcg_cap = vcpu->arch.mcg_cap;
1987         unsigned bank_num = mcg_cap & 0xff;
1988
1989         switch (msr) {
1990         case MSR_IA32_MCG_STATUS:
1991                 vcpu->arch.mcg_status = data;
1992                 break;
1993         case MSR_IA32_MCG_CTL:
1994                 if (!(mcg_cap & MCG_CTL_P))
1995                         return 1;
1996                 if (data != 0 && data != ~(u64)0)
1997                         return -1;
1998                 vcpu->arch.mcg_ctl = data;
1999                 break;
2000         default:
2001                 if (msr >= MSR_IA32_MC0_CTL &&
2002                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2003                         u32 offset = msr - MSR_IA32_MC0_CTL;
2004                         /* only 0 or all 1s can be written to IA32_MCi_CTL
2005                          * some Linux kernels though clear bit 10 in bank 4 to
2006                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2007                          * this to avoid an uncatched #GP in the guest
2008                          */
2009                         if ((offset & 0x3) == 0 &&
2010                             data != 0 && (data | (1 << 10)) != ~(u64)0)
2011                                 return -1;
2012                         vcpu->arch.mce_banks[offset] = data;
2013                         break;
2014                 }
2015                 return 1;
2016         }
2017         return 0;
2018 }
2019
2020 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2021 {
2022         struct kvm *kvm = vcpu->kvm;
2023         int lm = is_long_mode(vcpu);
2024         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2025                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2026         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2027                 : kvm->arch.xen_hvm_config.blob_size_32;
2028         u32 page_num = data & ~PAGE_MASK;
2029         u64 page_addr = data & PAGE_MASK;
2030         u8 *page;
2031         int r;
2032
2033         r = -E2BIG;
2034         if (page_num >= blob_size)
2035                 goto out;
2036         r = -ENOMEM;
2037         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2038         if (IS_ERR(page)) {
2039                 r = PTR_ERR(page);
2040                 goto out;
2041         }
2042         if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2043                 goto out_free;
2044         r = 0;
2045 out_free:
2046         kfree(page);
2047 out:
2048         return r;
2049 }
2050
2051 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2052 {
2053         gpa_t gpa = data & ~0x3f;
2054
2055         /* Bits 2:5 are reserved, Should be zero */
2056         if (data & 0x3c)
2057                 return 1;
2058
2059         vcpu->arch.apf.msr_val = data;
2060
2061         if (!(data & KVM_ASYNC_PF_ENABLED)) {
2062                 kvm_clear_async_pf_completion_queue(vcpu);
2063                 kvm_async_pf_hash_reset(vcpu);
2064                 return 0;
2065         }
2066
2067         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2068                                         sizeof(u32)))
2069                 return 1;
2070
2071         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2072         kvm_async_pf_wakeup_all(vcpu);
2073         return 0;
2074 }
2075
2076 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2077 {
2078         vcpu->arch.pv_time_enabled = false;
2079 }
2080
2081 static void record_steal_time(struct kvm_vcpu *vcpu)
2082 {
2083         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2084                 return;
2085
2086         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2087                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2088                 return;
2089
2090         vcpu->arch.st.steal.preempted = 0;
2091
2092         if (vcpu->arch.st.steal.version & 1)
2093                 vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2094
2095         vcpu->arch.st.steal.version += 1;
2096
2097         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2098                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2099
2100         smp_wmb();
2101
2102         vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2103                 vcpu->arch.st.last_steal;
2104         vcpu->arch.st.last_steal = current->sched_info.run_delay;
2105
2106         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2107                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2108
2109         smp_wmb();
2110
2111         vcpu->arch.st.steal.version += 1;
2112
2113         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2114                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2115 }
2116
2117 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2118 {
2119         bool pr = false;
2120         u32 msr = msr_info->index;
2121         u64 data = msr_info->data;
2122
2123         switch (msr) {
2124         case MSR_AMD64_NB_CFG:
2125         case MSR_IA32_UCODE_REV:
2126         case MSR_IA32_UCODE_WRITE:
2127         case MSR_VM_HSAVE_PA:
2128         case MSR_AMD64_PATCH_LOADER:
2129         case MSR_AMD64_BU_CFG2:
2130         case MSR_AMD64_DC_CFG:
2131                 break;
2132
2133         case MSR_EFER:
2134                 return set_efer(vcpu, data);
2135         case MSR_K7_HWCR:
2136                 data &= ~(u64)0x40;     /* ignore flush filter disable */
2137                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2138                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
2139                 data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2140                 if (data != 0) {
2141                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2142                                     data);
2143                         return 1;
2144                 }
2145                 break;
2146         case MSR_FAM10H_MMIO_CONF_BASE:
2147                 if (data != 0) {
2148                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2149                                     "0x%llx\n", data);
2150                         return 1;
2151                 }
2152                 break;
2153         case MSR_IA32_DEBUGCTLMSR:
2154                 if (!data) {
2155                         /* We support the non-activated case already */
2156                         break;
2157                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2158                         /* Values other than LBR and BTF are vendor-specific,
2159                            thus reserved and should throw a #GP */
2160                         return 1;
2161                 }
2162                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2163                             __func__, data);
2164                 break;
2165         case 0x200 ... 0x2ff:
2166                 return kvm_mtrr_set_msr(vcpu, msr, data);
2167         case MSR_IA32_APICBASE:
2168                 return kvm_set_apic_base(vcpu, msr_info);
2169         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2170                 return kvm_x2apic_msr_write(vcpu, msr, data);
2171         case MSR_IA32_TSCDEADLINE:
2172                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2173                 break;
2174         case MSR_IA32_TSC_ADJUST:
2175                 if (guest_cpuid_has_tsc_adjust(vcpu)) {
2176                         if (!msr_info->host_initiated) {
2177                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2178                                 adjust_tsc_offset_guest(vcpu, adj);
2179                         }
2180                         vcpu->arch.ia32_tsc_adjust_msr = data;
2181                 }
2182                 break;
2183         case MSR_IA32_MISC_ENABLE:
2184                 vcpu->arch.ia32_misc_enable_msr = data;
2185                 break;
2186         case MSR_IA32_SMBASE:
2187                 if (!msr_info->host_initiated)
2188                         return 1;
2189                 vcpu->arch.smbase = data;
2190                 break;
2191         case MSR_KVM_WALL_CLOCK_NEW:
2192         case MSR_KVM_WALL_CLOCK:
2193                 vcpu->kvm->arch.wall_clock = data;
2194                 kvm_write_wall_clock(vcpu->kvm, data);
2195                 break;
2196         case MSR_KVM_SYSTEM_TIME_NEW:
2197         case MSR_KVM_SYSTEM_TIME: {
2198                 struct kvm_arch *ka = &vcpu->kvm->arch;
2199
2200                 kvmclock_reset(vcpu);
2201
2202                 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2203                         bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2204
2205                         if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2206                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2207
2208                         ka->boot_vcpu_runs_old_kvmclock = tmp;
2209                 }
2210
2211                 vcpu->arch.time = data;
2212                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2213
2214                 /* we verify if the enable bit is set... */
2215                 if (!(data & 1))
2216                         break;
2217
2218                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2219                      &vcpu->arch.pv_time, data & ~1ULL,
2220                      sizeof(struct pvclock_vcpu_time_info)))
2221                         vcpu->arch.pv_time_enabled = false;
2222                 else
2223                         vcpu->arch.pv_time_enabled = true;
2224
2225                 break;
2226         }
2227         case MSR_KVM_ASYNC_PF_EN:
2228                 if (kvm_pv_enable_async_pf(vcpu, data))
2229                         return 1;
2230                 break;
2231         case MSR_KVM_STEAL_TIME:
2232
2233                 if (unlikely(!sched_info_on()))
2234                         return 1;
2235
2236                 if (data & KVM_STEAL_RESERVED_MASK)
2237                         return 1;
2238
2239                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2240                                                 data & KVM_STEAL_VALID_BITS,
2241                                                 sizeof(struct kvm_steal_time)))
2242                         return 1;
2243
2244                 vcpu->arch.st.msr_val = data;
2245
2246                 if (!(data & KVM_MSR_ENABLED))
2247                         break;
2248
2249                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2250
2251                 break;
2252         case MSR_KVM_PV_EOI_EN:
2253                 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2254                         return 1;
2255                 break;
2256
2257         case MSR_IA32_MCG_CTL:
2258         case MSR_IA32_MCG_STATUS:
2259         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2260                 return set_msr_mce(vcpu, msr, data);
2261
2262         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2263         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2264                 pr = true; /* fall through */
2265         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2266         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2267                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2268                         return kvm_pmu_set_msr(vcpu, msr_info);
2269
2270                 if (pr || data != 0)
2271                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2272                                     "0x%x data 0x%llx\n", msr, data);
2273                 break;
2274         case MSR_K7_CLK_CTL:
2275                 /*
2276                  * Ignore all writes to this no longer documented MSR.
2277                  * Writes are only relevant for old K7 processors,
2278                  * all pre-dating SVM, but a recommended workaround from
2279                  * AMD for these chips. It is possible to specify the
2280                  * affected processor models on the command line, hence
2281                  * the need to ignore the workaround.
2282                  */
2283                 break;
2284         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2285         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2286         case HV_X64_MSR_CRASH_CTL:
2287         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2288                 return kvm_hv_set_msr_common(vcpu, msr, data,
2289                                              msr_info->host_initiated);
2290         case MSR_IA32_BBL_CR_CTL3:
2291                 /* Drop writes to this legacy MSR -- see rdmsr
2292                  * counterpart for further detail.
2293                  */
2294                 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", msr, data);
2295                 break;
2296         case MSR_AMD64_OSVW_ID_LENGTH:
2297                 if (!guest_cpuid_has_osvw(vcpu))
2298                         return 1;
2299                 vcpu->arch.osvw.length = data;
2300                 break;
2301         case MSR_AMD64_OSVW_STATUS:
2302                 if (!guest_cpuid_has_osvw(vcpu))
2303                         return 1;
2304                 vcpu->arch.osvw.status = data;
2305                 break;
2306         case MSR_PLATFORM_INFO:
2307                 if (!msr_info->host_initiated ||
2308                     data & ~MSR_PLATFORM_INFO_CPUID_FAULT ||
2309                     (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2310                      cpuid_fault_enabled(vcpu)))
2311                         return 1;
2312                 vcpu->arch.msr_platform_info = data;
2313                 break;
2314         case MSR_MISC_FEATURES_ENABLES:
2315                 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2316                     (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2317                      !supports_cpuid_fault(vcpu)))
2318                         return 1;
2319                 vcpu->arch.msr_misc_features_enables = data;
2320                 break;
2321         default:
2322                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2323                         return xen_hvm_config(vcpu, data);
2324                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2325                         return kvm_pmu_set_msr(vcpu, msr_info);
2326                 if (!ignore_msrs) {
2327                         vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2328                                     msr, data);
2329                         return 1;
2330                 } else {
2331                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2332                                     msr, data);
2333                         break;
2334                 }
2335         }
2336         return 0;
2337 }
2338 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2339
2340
2341 /*
2342  * Reads an msr value (of 'msr_index') into 'pdata'.
2343  * Returns 0 on success, non-0 otherwise.
2344  * Assumes vcpu_load() was already called.
2345  */
2346 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2347 {
2348         return kvm_x86_ops->get_msr(vcpu, msr);
2349 }
2350 EXPORT_SYMBOL_GPL(kvm_get_msr);
2351
2352 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2353 {
2354         u64 data;
2355         u64 mcg_cap = vcpu->arch.mcg_cap;
2356         unsigned bank_num = mcg_cap & 0xff;
2357
2358         switch (msr) {
2359         case MSR_IA32_P5_MC_ADDR:
2360         case MSR_IA32_P5_MC_TYPE:
2361                 data = 0;
2362                 break;
2363         case MSR_IA32_MCG_CAP:
2364                 data = vcpu->arch.mcg_cap;
2365                 break;
2366         case MSR_IA32_MCG_CTL:
2367                 if (!(mcg_cap & MCG_CTL_P))
2368                         return 1;
2369                 data = vcpu->arch.mcg_ctl;
2370                 break;
2371         case MSR_IA32_MCG_STATUS:
2372                 data = vcpu->arch.mcg_status;
2373                 break;
2374         default:
2375                 if (msr >= MSR_IA32_MC0_CTL &&
2376                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2377                         u32 offset = msr - MSR_IA32_MC0_CTL;
2378                         data = vcpu->arch.mce_banks[offset];
2379                         break;
2380                 }
2381                 return 1;
2382         }
2383         *pdata = data;
2384         return 0;
2385 }
2386
2387 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2388 {
2389         switch (msr_info->index) {
2390         case MSR_IA32_PLATFORM_ID:
2391         case MSR_IA32_EBL_CR_POWERON:
2392         case MSR_IA32_DEBUGCTLMSR:
2393         case MSR_IA32_LASTBRANCHFROMIP:
2394         case MSR_IA32_LASTBRANCHTOIP:
2395         case MSR_IA32_LASTINTFROMIP:
2396         case MSR_IA32_LASTINTTOIP:
2397         case MSR_K8_SYSCFG:
2398         case MSR_K8_TSEG_ADDR:
2399         case MSR_K8_TSEG_MASK:
2400         case MSR_K7_HWCR:
2401         case MSR_VM_HSAVE_PA:
2402         case MSR_K8_INT_PENDING_MSG:
2403         case MSR_AMD64_NB_CFG:
2404         case MSR_FAM10H_MMIO_CONF_BASE:
2405         case MSR_AMD64_BU_CFG2:
2406         case MSR_IA32_PERF_CTL:
2407         case MSR_AMD64_DC_CFG:
2408                 msr_info->data = 0;
2409                 break;
2410         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2411         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2412         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2413         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2414                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2415                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2416                 msr_info->data = 0;
2417                 break;
2418         case MSR_IA32_UCODE_REV:
2419                 msr_info->data = 0x100000000ULL;
2420                 break;
2421         case MSR_MTRRcap:
2422         case 0x200 ... 0x2ff:
2423                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2424         case 0xcd: /* fsb frequency */
2425                 msr_info->data = 3;
2426                 break;
2427                 /*
2428                  * MSR_EBC_FREQUENCY_ID
2429                  * Conservative value valid for even the basic CPU models.
2430                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2431                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2432                  * and 266MHz for model 3, or 4. Set Core Clock
2433                  * Frequency to System Bus Frequency Ratio to 1 (bits
2434                  * 31:24) even though these are only valid for CPU
2435                  * models > 2, however guests may end up dividing or
2436                  * multiplying by zero otherwise.
2437                  */
2438         case MSR_EBC_FREQUENCY_ID:
2439                 msr_info->data = 1 << 24;
2440                 break;
2441         case MSR_IA32_APICBASE:
2442                 msr_info->data = kvm_get_apic_base(vcpu);
2443                 break;
2444         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2445                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2446                 break;
2447         case MSR_IA32_TSCDEADLINE:
2448                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2449                 break;
2450         case MSR_IA32_TSC_ADJUST:
2451                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2452                 break;
2453         case MSR_IA32_MISC_ENABLE:
2454                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2455                 break;
2456         case MSR_IA32_SMBASE:
2457                 if (!msr_info->host_initiated)
2458                         return 1;
2459                 msr_info->data = vcpu->arch.smbase;
2460                 break;
2461         case MSR_IA32_PERF_STATUS:
2462                 /* TSC increment by tick */
2463                 msr_info->data = 1000ULL;
2464                 /* CPU multiplier */
2465                 msr_info->data |= (((uint64_t)4ULL) << 40);
2466                 break;
2467         case MSR_EFER:
2468                 msr_info->data = vcpu->arch.efer;
2469                 break;
2470         case MSR_KVM_WALL_CLOCK:
2471         case MSR_KVM_WALL_CLOCK_NEW:
2472                 msr_info->data = vcpu->kvm->arch.wall_clock;
2473                 break;
2474         case MSR_KVM_SYSTEM_TIME:
2475         case MSR_KVM_SYSTEM_TIME_NEW:
2476                 msr_info->data = vcpu->arch.time;
2477                 break;
2478         case MSR_KVM_ASYNC_PF_EN:
2479                 msr_info->data = vcpu->arch.apf.msr_val;
2480                 break;
2481         case MSR_KVM_STEAL_TIME:
2482                 msr_info->data = vcpu->arch.st.msr_val;
2483                 break;
2484         case MSR_KVM_PV_EOI_EN:
2485                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2486                 break;
2487         case MSR_IA32_P5_MC_ADDR:
2488         case MSR_IA32_P5_MC_TYPE:
2489         case MSR_IA32_MCG_CAP:
2490         case MSR_IA32_MCG_CTL:
2491         case MSR_IA32_MCG_STATUS:
2492         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2493                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2494         case MSR_K7_CLK_CTL:
2495                 /*
2496                  * Provide expected ramp-up count for K7. All other
2497                  * are set to zero, indicating minimum divisors for
2498                  * every field.
2499                  *
2500                  * This prevents guest kernels on AMD host with CPU
2501                  * type 6, model 8 and higher from exploding due to
2502                  * the rdmsr failing.
2503                  */
2504                 msr_info->data = 0x20000000;
2505                 break;
2506         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2507         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2508         case HV_X64_MSR_CRASH_CTL:
2509         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2510                 return kvm_hv_get_msr_common(vcpu,
2511                                              msr_info->index, &msr_info->data);
2512                 break;
2513         case MSR_IA32_BBL_CR_CTL3:
2514                 /* This legacy MSR exists but isn't fully documented in current
2515                  * silicon.  It is however accessed by winxp in very narrow
2516                  * scenarios where it sets bit #19, itself documented as
2517                  * a "reserved" bit.  Best effort attempt to source coherent
2518                  * read data here should the balance of the register be
2519                  * interpreted by the guest:
2520                  *
2521                  * L2 cache control register 3: 64GB range, 256KB size,
2522                  * enabled, latency 0x1, configured
2523                  */
2524                 msr_info->data = 0xbe702111;
2525                 break;
2526         case MSR_AMD64_OSVW_ID_LENGTH:
2527                 if (!guest_cpuid_has_osvw(vcpu))
2528                         return 1;
2529                 msr_info->data = vcpu->arch.osvw.length;
2530                 break;
2531         case MSR_AMD64_OSVW_STATUS:
2532                 if (!guest_cpuid_has_osvw(vcpu))
2533                         return 1;
2534                 msr_info->data = vcpu->arch.osvw.status;
2535                 break;
2536         case MSR_PLATFORM_INFO:
2537                 msr_info->data = vcpu->arch.msr_platform_info;
2538                 break;
2539         case MSR_MISC_FEATURES_ENABLES:
2540                 msr_info->data = vcpu->arch.msr_misc_features_enables;
2541                 break;
2542         default:
2543                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2544                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2545                 if (!ignore_msrs) {
2546                         vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2547                                                msr_info->index);
2548                         return 1;
2549                 } else {
2550                         vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2551                         msr_info->data = 0;
2552                 }
2553                 break;
2554         }
2555         return 0;
2556 }
2557 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2558
2559 /*
2560  * Read or write a bunch of msrs. All parameters are kernel addresses.
2561  *
2562  * @return number of msrs set successfully.
2563  */
2564 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2565                     struct kvm_msr_entry *entries,
2566                     int (*do_msr)(struct kvm_vcpu *vcpu,
2567                                   unsigned index, u64 *data))
2568 {
2569         int i, idx;
2570
2571         idx = srcu_read_lock(&vcpu->kvm->srcu);
2572         for (i = 0; i < msrs->nmsrs; ++i)
2573                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2574                         break;
2575         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2576
2577         return i;
2578 }
2579
2580 /*
2581  * Read or write a bunch of msrs. Parameters are user addresses.
2582  *
2583  * @return number of msrs set successfully.
2584  */
2585 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2586                   int (*do_msr)(struct kvm_vcpu *vcpu,
2587                                 unsigned index, u64 *data),
2588                   int writeback)
2589 {
2590         struct kvm_msrs msrs;
2591         struct kvm_msr_entry *entries;
2592         int r, n;
2593         unsigned size;
2594
2595         r = -EFAULT;
2596         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2597                 goto out;
2598
2599         r = -E2BIG;
2600         if (msrs.nmsrs >= MAX_IO_MSRS)
2601                 goto out;
2602
2603         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2604         entries = memdup_user(user_msrs->entries, size);
2605         if (IS_ERR(entries)) {
2606                 r = PTR_ERR(entries);
2607                 goto out;
2608         }
2609
2610         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2611         if (r < 0)
2612                 goto out_free;
2613
2614         r = -EFAULT;
2615         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2616                 goto out_free;
2617
2618         r = n;
2619
2620 out_free:
2621         kfree(entries);
2622 out:
2623         return r;
2624 }
2625
2626 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2627 {
2628         int r;
2629
2630         switch (ext) {
2631         case KVM_CAP_IRQCHIP:
2632         case KVM_CAP_HLT:
2633         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2634         case KVM_CAP_SET_TSS_ADDR:
2635         case KVM_CAP_EXT_CPUID:
2636         case KVM_CAP_EXT_EMUL_CPUID:
2637         case KVM_CAP_CLOCKSOURCE:
2638         case KVM_CAP_PIT:
2639         case KVM_CAP_NOP_IO_DELAY:
2640         case KVM_CAP_MP_STATE:
2641         case KVM_CAP_SYNC_MMU:
2642         case KVM_CAP_USER_NMI:
2643         case KVM_CAP_REINJECT_CONTROL:
2644         case KVM_CAP_IRQ_INJECT_STATUS:
2645         case KVM_CAP_IOEVENTFD:
2646         case KVM_CAP_IOEVENTFD_NO_LENGTH:
2647         case KVM_CAP_PIT2:
2648         case KVM_CAP_PIT_STATE2:
2649         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2650         case KVM_CAP_XEN_HVM:
2651         case KVM_CAP_VCPU_EVENTS:
2652         case KVM_CAP_HYPERV:
2653         case KVM_CAP_HYPERV_VAPIC:
2654         case KVM_CAP_HYPERV_SPIN:
2655         case KVM_CAP_HYPERV_SYNIC:
2656         case KVM_CAP_PCI_SEGMENT:
2657         case KVM_CAP_DEBUGREGS:
2658         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2659         case KVM_CAP_XSAVE:
2660         case KVM_CAP_ASYNC_PF:
2661         case KVM_CAP_GET_TSC_KHZ:
2662         case KVM_CAP_KVMCLOCK_CTRL:
2663         case KVM_CAP_READONLY_MEM:
2664         case KVM_CAP_HYPERV_TIME:
2665         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2666         case KVM_CAP_TSC_DEADLINE_TIMER:
2667         case KVM_CAP_ENABLE_CAP_VM:
2668         case KVM_CAP_DISABLE_QUIRKS:
2669         case KVM_CAP_SET_BOOT_CPU_ID:
2670         case KVM_CAP_SPLIT_IRQCHIP:
2671         case KVM_CAP_IMMEDIATE_EXIT:
2672                 r = 1;
2673                 break;
2674         case KVM_CAP_ADJUST_CLOCK:
2675                 r = KVM_CLOCK_TSC_STABLE;
2676                 break;
2677         case KVM_CAP_X86_GUEST_MWAIT:
2678                 r = kvm_mwait_in_guest();
2679                 break;
2680         case KVM_CAP_X86_SMM:
2681                 /* SMBASE is usually relocated above 1M on modern chipsets,
2682                  * and SMM handlers might indeed rely on 4G segment limits,
2683                  * so do not report SMM to be available if real mode is
2684                  * emulated via vm86 mode.  Still, do not go to great lengths
2685                  * to avoid userspace's usage of the feature, because it is a
2686                  * fringe case that is not enabled except via specific settings
2687                  * of the module parameters.
2688                  */
2689                 r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2690                 break;
2691         case KVM_CAP_VAPIC:
2692                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2693                 break;
2694         case KVM_CAP_NR_VCPUS:
2695                 r = KVM_SOFT_MAX_VCPUS;
2696                 break;
2697         case KVM_CAP_MAX_VCPUS:
2698                 r = KVM_MAX_VCPUS;
2699                 break;
2700         case KVM_CAP_NR_MEMSLOTS:
2701                 r = KVM_USER_MEM_SLOTS;
2702                 break;
2703         case KVM_CAP_PV_MMU:    /* obsolete */
2704                 r = 0;
2705                 break;
2706         case KVM_CAP_MCE:
2707                 r = KVM_MAX_MCE_BANKS;
2708                 break;
2709         case KVM_CAP_XCRS:
2710                 r = boot_cpu_has(X86_FEATURE_XSAVE);
2711                 break;
2712         case KVM_CAP_TSC_CONTROL:
2713                 r = kvm_has_tsc_control;
2714                 break;
2715         case KVM_CAP_X2APIC_API:
2716                 r = KVM_X2APIC_API_VALID_FLAGS;
2717                 break;
2718         default:
2719                 r = 0;
2720                 break;
2721         }
2722         return r;
2723
2724 }
2725
2726 long kvm_arch_dev_ioctl(struct file *filp,
2727                         unsigned int ioctl, unsigned long arg)
2728 {
2729         void __user *argp = (void __user *)arg;
2730         long r;
2731
2732         switch (ioctl) {
2733         case KVM_GET_MSR_INDEX_LIST: {
2734                 struct kvm_msr_list __user *user_msr_list = argp;
2735                 struct kvm_msr_list msr_list;
2736                 unsigned n;
2737
2738                 r = -EFAULT;
2739                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2740                         goto out;
2741                 n = msr_list.nmsrs;
2742                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2743                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2744                         goto out;
2745                 r = -E2BIG;
2746                 if (n < msr_list.nmsrs)
2747                         goto out;
2748                 r = -EFAULT;
2749                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2750                                  num_msrs_to_save * sizeof(u32)))
2751                         goto out;
2752                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2753                                  &emulated_msrs,
2754                                  num_emulated_msrs * sizeof(u32)))
2755                         goto out;
2756                 r = 0;
2757                 break;
2758         }
2759         case KVM_GET_SUPPORTED_CPUID:
2760         case KVM_GET_EMULATED_CPUID: {
2761                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2762                 struct kvm_cpuid2 cpuid;
2763
2764                 r = -EFAULT;
2765                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2766                         goto out;
2767
2768                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2769                                             ioctl);
2770                 if (r)
2771                         goto out;
2772
2773                 r = -EFAULT;
2774                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2775                         goto out;
2776                 r = 0;
2777                 break;
2778         }
2779         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2780                 r = -EFAULT;
2781                 if (copy_to_user(argp, &kvm_mce_cap_supported,
2782                                  sizeof(kvm_mce_cap_supported)))
2783                         goto out;
2784                 r = 0;
2785                 break;
2786         }
2787         default:
2788                 r = -EINVAL;
2789         }
2790 out:
2791         return r;
2792 }
2793
2794 static void wbinvd_ipi(void *garbage)
2795 {
2796         wbinvd();
2797 }
2798
2799 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2800 {
2801         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2802 }
2803
2804 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2805 {
2806         /* Address WBINVD may be executed by guest */
2807         if (need_emulate_wbinvd(vcpu)) {
2808                 if (kvm_x86_ops->has_wbinvd_exit())
2809                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2810                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2811                         smp_call_function_single(vcpu->cpu,
2812                                         wbinvd_ipi, NULL, 1);
2813         }
2814
2815         kvm_x86_ops->vcpu_load(vcpu, cpu);
2816
2817         /* Apply any externally detected TSC adjustments (due to suspend) */
2818         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2819                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2820                 vcpu->arch.tsc_offset_adjustment = 0;
2821                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2822         }
2823
2824         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2825                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2826                                 rdtsc() - vcpu->arch.last_host_tsc;
2827                 if (tsc_delta < 0)
2828                         mark_tsc_unstable("KVM discovered backwards TSC");
2829
2830                 if (check_tsc_unstable()) {
2831                         u64 offset = kvm_compute_tsc_offset(vcpu,
2832                                                 vcpu->arch.last_guest_tsc);
2833                         kvm_vcpu_write_tsc_offset(vcpu, offset);
2834                         vcpu->arch.tsc_catchup = 1;
2835                 }
2836                 if (kvm_lapic_hv_timer_in_use(vcpu) &&
2837                                 kvm_x86_ops->set_hv_timer(vcpu,
2838                                         kvm_get_lapic_target_expiration_tsc(vcpu)))
2839                         kvm_lapic_switch_to_sw_timer(vcpu);
2840                 /*
2841                  * On a host with synchronized TSC, there is no need to update
2842                  * kvmclock on vcpu->cpu migration
2843                  */
2844                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2845                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2846                 if (vcpu->cpu != cpu)
2847                         kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
2848                 vcpu->cpu = cpu;
2849         }
2850
2851         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2852 }
2853
2854 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
2855 {
2856         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2857                 return;
2858
2859         vcpu->arch.st.steal.preempted = 1;
2860
2861         kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
2862                         &vcpu->arch.st.steal.preempted,
2863                         offsetof(struct kvm_steal_time, preempted),
2864                         sizeof(vcpu->arch.st.steal.preempted));
2865 }
2866
2867 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2868 {
2869         int idx;
2870         /*
2871          * Disable page faults because we're in atomic context here.
2872          * kvm_write_guest_offset_cached() would call might_fault()
2873          * that relies on pagefault_disable() to tell if there's a
2874          * bug. NOTE: the write to guest memory may not go through if
2875          * during postcopy live migration or if there's heavy guest
2876          * paging.
2877          */
2878         pagefault_disable();
2879         /*
2880          * kvm_memslots() will be called by
2881          * kvm_write_guest_offset_cached() so take the srcu lock.
2882          */
2883         idx = srcu_read_lock(&vcpu->kvm->srcu);
2884         kvm_steal_time_set_preempted(vcpu);
2885         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2886         pagefault_enable();
2887         kvm_x86_ops->vcpu_put(vcpu);
2888         kvm_put_guest_fpu(vcpu);
2889         vcpu->arch.last_host_tsc = rdtsc();
2890 }
2891
2892 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2893                                     struct kvm_lapic_state *s)
2894 {
2895         if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
2896                 kvm_x86_ops->sync_pir_to_irr(vcpu);
2897
2898         return kvm_apic_get_state(vcpu, s);
2899 }
2900
2901 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2902                                     struct kvm_lapic_state *s)
2903 {
2904         int r;
2905
2906         r = kvm_apic_set_state(vcpu, s);
2907         if (r)
2908                 return r;
2909         update_cr8_intercept(vcpu);
2910
2911         return 0;
2912 }
2913
2914 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
2915 {
2916         return (!lapic_in_kernel(vcpu) ||
2917                 kvm_apic_accept_pic_intr(vcpu));
2918 }
2919
2920 /*
2921  * if userspace requested an interrupt window, check that the
2922  * interrupt window is open.
2923  *
2924  * No need to exit to userspace if we already have an interrupt queued.
2925  */
2926 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
2927 {
2928         return kvm_arch_interrupt_allowed(vcpu) &&
2929                 !kvm_cpu_has_interrupt(vcpu) &&
2930                 !kvm_event_needs_reinjection(vcpu) &&
2931                 kvm_cpu_accept_dm_intr(vcpu);
2932 }
2933
2934 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2935                                     struct kvm_interrupt *irq)
2936 {
2937         if (irq->irq >= KVM_NR_INTERRUPTS)
2938                 return -EINVAL;
2939
2940         if (!irqchip_in_kernel(vcpu->kvm)) {
2941                 kvm_queue_interrupt(vcpu, irq->irq, false);
2942                 kvm_make_request(KVM_REQ_EVENT, vcpu);
2943                 return 0;
2944         }
2945
2946         /*
2947          * With in-kernel LAPIC, we only use this to inject EXTINT, so
2948          * fail for in-kernel 8259.
2949          */
2950         if (pic_in_kernel(vcpu->kvm))
2951                 return -ENXIO;
2952
2953         if (vcpu->arch.pending_external_vector != -1)
2954                 return -EEXIST;
2955
2956         vcpu->arch.pending_external_vector = irq->irq;
2957         kvm_make_request(KVM_REQ_EVENT, vcpu);
2958         return 0;
2959 }
2960
2961 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2962 {
2963         kvm_inject_nmi(vcpu);
2964
2965         return 0;
2966 }
2967
2968 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
2969 {
2970         kvm_make_request(KVM_REQ_SMI, vcpu);
2971
2972         return 0;
2973 }
2974
2975 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2976                                            struct kvm_tpr_access_ctl *tac)
2977 {
2978         if (tac->flags)
2979                 return -EINVAL;
2980         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2981         return 0;
2982 }
2983
2984 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2985                                         u64 mcg_cap)
2986 {
2987         int r;
2988         unsigned bank_num = mcg_cap & 0xff, bank;
2989
2990         r = -EINVAL;
2991         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2992                 goto out;
2993         if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
2994                 goto out;
2995         r = 0;
2996         vcpu->arch.mcg_cap = mcg_cap;
2997         /* Init IA32_MCG_CTL to all 1s */
2998         if (mcg_cap & MCG_CTL_P)
2999                 vcpu->arch.mcg_ctl = ~(u64)0;
3000         /* Init IA32_MCi_CTL to all 1s */
3001         for (bank = 0; bank < bank_num; bank++)
3002                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3003
3004         if (kvm_x86_ops->setup_mce)
3005                 kvm_x86_ops->setup_mce(vcpu);
3006 out:
3007         return r;
3008 }
3009
3010 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3011                                       struct kvm_x86_mce *mce)
3012 {
3013         u64 mcg_cap = vcpu->arch.mcg_cap;
3014         unsigned bank_num = mcg_cap & 0xff;
3015         u64 *banks = vcpu->arch.mce_banks;
3016
3017         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3018                 return -EINVAL;
3019         /*
3020          * if IA32_MCG_CTL is not all 1s, the uncorrected error
3021          * reporting is disabled
3022          */
3023         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3024             vcpu->arch.mcg_ctl != ~(u64)0)
3025                 return 0;
3026         banks += 4 * mce->bank;
3027         /*
3028          * if IA32_MCi_CTL is not all 1s, the uncorrected error
3029          * reporting is disabled for the bank
3030          */
3031         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3032                 return 0;
3033         if (mce->status & MCI_STATUS_UC) {
3034                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3035                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3036                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3037                         return 0;
3038                 }
3039                 if (banks[1] & MCI_STATUS_VAL)
3040                         mce->status |= MCI_STATUS_OVER;
3041                 banks[2] = mce->addr;
3042                 banks[3] = mce->misc;
3043                 vcpu->arch.mcg_status = mce->mcg_status;
3044                 banks[1] = mce->status;
3045                 kvm_queue_exception(vcpu, MC_VECTOR);
3046         } else if (!(banks[1] & MCI_STATUS_VAL)
3047                    || !(banks[1] & MCI_STATUS_UC)) {
3048                 if (banks[1] & MCI_STATUS_VAL)
3049                         mce->status |= MCI_STATUS_OVER;
3050                 banks[2] = mce->addr;
3051                 banks[3] = mce->misc;
3052                 banks[1] = mce->status;
3053         } else
3054                 banks[1] |= MCI_STATUS_OVER;
3055         return 0;
3056 }
3057
3058 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3059                                                struct kvm_vcpu_events *events)
3060 {
3061         process_nmi(vcpu);
3062         events->exception.injected =
3063                 vcpu->arch.exception.pending &&
3064                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
3065         events->exception.nr = vcpu->arch.exception.nr;
3066         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3067         events->exception.pad = 0;
3068         events->exception.error_code = vcpu->arch.exception.error_code;
3069
3070         events->interrupt.injected =
3071                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3072         events->interrupt.nr = vcpu->arch.interrupt.nr;
3073         events->interrupt.soft = 0;
3074         events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3075
3076         events->nmi.injected = vcpu->arch.nmi_injected;
3077         events->nmi.pending = vcpu->arch.nmi_pending != 0;
3078         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3079         events->nmi.pad = 0;
3080
3081         events->sipi_vector = 0; /* never valid when reporting to user space */
3082
3083         events->smi.smm = is_smm(vcpu);
3084         events->smi.pending = vcpu->arch.smi_pending;
3085         events->smi.smm_inside_nmi =
3086                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3087         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3088
3089         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3090                          | KVM_VCPUEVENT_VALID_SHADOW
3091                          | KVM_VCPUEVENT_VALID_SMM);
3092         memset(&events->reserved, 0, sizeof(events->reserved));
3093 }
3094
3095 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags);
3096
3097 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3098                                               struct kvm_vcpu_events *events)
3099 {
3100         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3101                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3102                               | KVM_VCPUEVENT_VALID_SHADOW
3103                               | KVM_VCPUEVENT_VALID_SMM))
3104                 return -EINVAL;
3105
3106         if (events->exception.injected &&
3107             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR ||
3108              is_guest_mode(vcpu)))
3109                 return -EINVAL;
3110
3111         /* INITs are latched while in SMM */
3112         if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3113             (events->smi.smm || events->smi.pending) &&
3114             vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3115                 return -EINVAL;
3116
3117         process_nmi(vcpu);
3118         vcpu->arch.exception.pending = events->exception.injected;
3119         vcpu->arch.exception.nr = events->exception.nr;
3120         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3121         vcpu->arch.exception.error_code = events->exception.error_code;
3122
3123         vcpu->arch.interrupt.pending = events->interrupt.injected;
3124         vcpu->arch.interrupt.nr = events->interrupt.nr;
3125         vcpu->arch.interrupt.soft = events->interrupt.soft;
3126         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3127                 kvm_x86_ops->set_interrupt_shadow(vcpu,
3128                                                   events->interrupt.shadow);
3129
3130         vcpu->arch.nmi_injected = events->nmi.injected;
3131         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3132                 vcpu->arch.nmi_pending = events->nmi.pending;
3133         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3134
3135         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3136             lapic_in_kernel(vcpu))
3137                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3138
3139         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3140                 u32 hflags = vcpu->arch.hflags;
3141                 if (events->smi.smm)
3142                         hflags |= HF_SMM_MASK;
3143                 else
3144                         hflags &= ~HF_SMM_MASK;
3145                 kvm_set_hflags(vcpu, hflags);
3146
3147                 vcpu->arch.smi_pending = events->smi.pending;
3148                 if (events->smi.smm_inside_nmi)
3149                         vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3150                 else
3151                         vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3152                 if (lapic_in_kernel(vcpu)) {
3153                         if (events->smi.latched_init)
3154                                 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3155                         else
3156                                 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3157                 }
3158         }
3159
3160         kvm_make_request(KVM_REQ_EVENT, vcpu);
3161
3162         return 0;
3163 }
3164
3165 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3166                                              struct kvm_debugregs *dbgregs)
3167 {
3168         unsigned long val;
3169
3170         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3171         kvm_get_dr(vcpu, 6, &val);
3172         dbgregs->dr6 = val;
3173         dbgregs->dr7 = vcpu->arch.dr7;
3174         dbgregs->flags = 0;
3175         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3176 }
3177
3178 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3179                                             struct kvm_debugregs *dbgregs)
3180 {
3181         if (dbgregs->flags)
3182                 return -EINVAL;
3183
3184         if (dbgregs->dr6 & ~0xffffffffull)
3185                 return -EINVAL;
3186         if (dbgregs->dr7 & ~0xffffffffull)
3187                 return -EINVAL;
3188
3189         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3190         kvm_update_dr0123(vcpu);
3191         vcpu->arch.dr6 = dbgregs->dr6;
3192         kvm_update_dr6(vcpu);
3193         vcpu->arch.dr7 = dbgregs->dr7;
3194         kvm_update_dr7(vcpu);
3195
3196         return 0;
3197 }
3198
3199 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3200
3201 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3202 {
3203         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3204         u64 xstate_bv = xsave->header.xfeatures;
3205         u64 valid;
3206
3207         /*
3208          * Copy legacy XSAVE area, to avoid complications with CPUID
3209          * leaves 0 and 1 in the loop below.
3210          */
3211         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3212
3213         /* Set XSTATE_BV */
3214         xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3215         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3216
3217         /*
3218          * Copy each region from the possibly compacted offset to the
3219          * non-compacted offset.
3220          */
3221         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3222         while (valid) {
3223                 u64 feature = valid & -valid;
3224                 int index = fls64(feature) - 1;
3225                 void *src = get_xsave_addr(xsave, feature);
3226
3227                 if (src) {
3228                         u32 size, offset, ecx, edx;
3229                         cpuid_count(XSTATE_CPUID, index,
3230                                     &size, &offset, &ecx, &edx);
3231                         memcpy(dest + offset, src, size);
3232                 }
3233
3234                 valid -= feature;
3235         }
3236 }
3237
3238 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3239 {
3240         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3241         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3242         u64 valid;
3243
3244         /*
3245          * Copy legacy XSAVE area, to avoid complications with CPUID
3246          * leaves 0 and 1 in the loop below.
3247          */
3248         memcpy(xsave, src, XSAVE_HDR_OFFSET);
3249
3250         /* Set XSTATE_BV and possibly XCOMP_BV.  */
3251         xsave->header.xfeatures = xstate_bv;
3252         if (boot_cpu_has(X86_FEATURE_XSAVES))
3253                 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3254
3255         /*
3256          * Copy each region from the non-compacted offset to the
3257          * possibly compacted offset.
3258          */
3259         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3260         while (valid) {
3261                 u64 feature = valid & -valid;
3262                 int index = fls64(feature) - 1;
3263                 void *dest = get_xsave_addr(xsave, feature);
3264
3265                 if (dest) {
3266                         u32 size, offset, ecx, edx;
3267                         cpuid_count(XSTATE_CPUID, index,
3268                                     &size, &offset, &ecx, &edx);
3269                         memcpy(dest, src + offset, size);
3270                 }
3271
3272                 valid -= feature;
3273         }
3274 }
3275
3276 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3277                                          struct kvm_xsave *guest_xsave)
3278 {
3279         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3280                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3281                 fill_xsave((u8 *) guest_xsave->region, vcpu);
3282         } else {
3283                 memcpy(guest_xsave->region,
3284                         &vcpu->arch.guest_fpu.state.fxsave,
3285                         sizeof(struct fxregs_state));
3286                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3287                         XFEATURE_MASK_FPSSE;
3288         }
3289 }
3290
3291 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3292                                         struct kvm_xsave *guest_xsave)
3293 {
3294         u64 xstate_bv =
3295                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3296
3297         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3298                 /*
3299                  * Here we allow setting states that are not present in
3300                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3301                  * with old userspace.
3302                  */
3303                 if (xstate_bv & ~kvm_supported_xcr0())
3304                         return -EINVAL;
3305                 load_xsave(vcpu, (u8 *)guest_xsave->region);
3306         } else {
3307                 if (xstate_bv & ~XFEATURE_MASK_FPSSE)
3308                         return -EINVAL;
3309                 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3310                         guest_xsave->region, sizeof(struct fxregs_state));
3311         }
3312         return 0;
3313 }
3314
3315 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3316                                         struct kvm_xcrs *guest_xcrs)
3317 {
3318         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3319                 guest_xcrs->nr_xcrs = 0;
3320                 return;
3321         }
3322
3323         guest_xcrs->nr_xcrs = 1;
3324         guest_xcrs->flags = 0;
3325         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3326         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3327 }
3328
3329 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3330                                        struct kvm_xcrs *guest_xcrs)
3331 {
3332         int i, r = 0;
3333
3334         if (!boot_cpu_has(X86_FEATURE_XSAVE))
3335                 return -EINVAL;
3336
3337         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3338                 return -EINVAL;
3339
3340         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3341                 /* Only support XCR0 currently */
3342                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3343                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3344                                 guest_xcrs->xcrs[i].value);
3345                         break;
3346                 }
3347         if (r)
3348                 r = -EINVAL;
3349         return r;
3350 }
3351
3352 /*
3353  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3354  * stopped by the hypervisor.  This function will be called from the host only.
3355  * EINVAL is returned when the host attempts to set the flag for a guest that
3356  * does not support pv clocks.
3357  */
3358 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3359 {
3360         if (!vcpu->arch.pv_time_enabled)
3361                 return -EINVAL;
3362         vcpu->arch.pvclock_set_guest_stopped_request = true;
3363         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3364         return 0;
3365 }
3366
3367 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3368                                      struct kvm_enable_cap *cap)
3369 {
3370         if (cap->flags)
3371                 return -EINVAL;
3372
3373         switch (cap->cap) {
3374         case KVM_CAP_HYPERV_SYNIC:
3375                 if (!irqchip_in_kernel(vcpu->kvm))
3376                         return -EINVAL;
3377                 return kvm_hv_activate_synic(vcpu);
3378         default:
3379                 return -EINVAL;
3380         }
3381 }
3382
3383 long kvm_arch_vcpu_ioctl(struct file *filp,
3384                          unsigned int ioctl, unsigned long arg)
3385 {
3386         struct kvm_vcpu *vcpu = filp->private_data;
3387         void __user *argp = (void __user *)arg;
3388         int r;
3389         union {
3390                 struct kvm_lapic_state *lapic;
3391                 struct kvm_xsave *xsave;
3392                 struct kvm_xcrs *xcrs;
3393                 void *buffer;
3394         } u;
3395
3396         u.buffer = NULL;
3397         switch (ioctl) {
3398         case KVM_GET_LAPIC: {
3399                 r = -EINVAL;
3400                 if (!lapic_in_kernel(vcpu))
3401                         goto out;
3402                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3403
3404                 r = -ENOMEM;
3405                 if (!u.lapic)
3406                         goto out;
3407                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3408                 if (r)
3409                         goto out;
3410                 r = -EFAULT;
3411                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3412                         goto out;
3413                 r = 0;
3414                 break;
3415         }
3416         case KVM_SET_LAPIC: {
3417                 r = -EINVAL;
3418                 if (!lapic_in_kernel(vcpu))
3419                         goto out;
3420                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3421                 if (IS_ERR(u.lapic))
3422                         return PTR_ERR(u.lapic);
3423
3424                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3425                 break;
3426         }
3427         case KVM_INTERRUPT: {
3428                 struct kvm_interrupt irq;
3429
3430                 r = -EFAULT;
3431                 if (copy_from_user(&irq, argp, sizeof irq))
3432                         goto out;
3433                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3434                 break;
3435         }
3436         case KVM_NMI: {
3437                 r = kvm_vcpu_ioctl_nmi(vcpu);
3438                 break;
3439         }
3440         case KVM_SMI: {
3441                 r = kvm_vcpu_ioctl_smi(vcpu);
3442                 break;
3443         }
3444         case KVM_SET_CPUID: {
3445                 struct kvm_cpuid __user *cpuid_arg = argp;
3446                 struct kvm_cpuid cpuid;
3447
3448                 r = -EFAULT;
3449                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3450                         goto out;
3451                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3452                 break;
3453         }
3454         case KVM_SET_CPUID2: {
3455                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3456                 struct kvm_cpuid2 cpuid;
3457
3458                 r = -EFAULT;
3459                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3460                         goto out;
3461                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3462                                               cpuid_arg->entries);
3463                 break;
3464         }
3465         case KVM_GET_CPUID2: {
3466                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3467                 struct kvm_cpuid2 cpuid;
3468
3469                 r = -EFAULT;
3470                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3471                         goto out;
3472                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3473                                               cpuid_arg->entries);
3474                 if (r)
3475                         goto out;
3476                 r = -EFAULT;
3477                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3478                         goto out;
3479                 r = 0;
3480                 break;
3481         }
3482         case KVM_GET_MSRS:
3483                 r = msr_io(vcpu, argp, do_get_msr, 1);
3484                 break;
3485         case KVM_SET_MSRS:
3486                 r = msr_io(vcpu, argp, do_set_msr, 0);
3487                 break;
3488         case KVM_TPR_ACCESS_REPORTING: {
3489                 struct kvm_tpr_access_ctl tac;
3490
3491                 r = -EFAULT;
3492                 if (copy_from_user(&tac, argp, sizeof tac))
3493                         goto out;
3494                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3495                 if (r)
3496                         goto out;
3497                 r = -EFAULT;
3498                 if (copy_to_user(argp, &tac, sizeof tac))
3499                         goto out;
3500                 r = 0;
3501                 break;
3502         };
3503         case KVM_SET_VAPIC_ADDR: {
3504                 struct kvm_vapic_addr va;
3505                 int idx;
3506
3507                 r = -EINVAL;
3508                 if (!lapic_in_kernel(vcpu))
3509                         goto out;
3510                 r = -EFAULT;
3511                 if (copy_from_user(&va, argp, sizeof va))
3512                         goto out;
3513                 idx = srcu_read_lock(&vcpu->kvm->srcu);
3514                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3515                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3516                 break;
3517         }
3518         case KVM_X86_SETUP_MCE: {
3519                 u64 mcg_cap;
3520
3521                 r = -EFAULT;
3522                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3523                         goto out;
3524                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3525                 break;
3526         }
3527         case KVM_X86_SET_MCE: {
3528                 struct kvm_x86_mce mce;
3529
3530                 r = -EFAULT;
3531                 if (copy_from_user(&mce, argp, sizeof mce))
3532                         goto out;
3533                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3534                 break;
3535         }
3536         case KVM_GET_VCPU_EVENTS: {
3537                 struct kvm_vcpu_events events;
3538
3539                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3540
3541                 r = -EFAULT;
3542                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3543                         break;
3544                 r = 0;
3545                 break;
3546         }
3547         case KVM_SET_VCPU_EVENTS: {
3548                 struct kvm_vcpu_events events;
3549
3550                 r = -EFAULT;
3551                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3552                         break;
3553
3554                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3555                 break;
3556         }
3557         case KVM_GET_DEBUGREGS: {
3558                 struct kvm_debugregs dbgregs;
3559
3560                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3561
3562                 r = -EFAULT;
3563                 if (copy_to_user(argp, &dbgregs,
3564                                  sizeof(struct kvm_debugregs)))
3565                         break;
3566                 r = 0;
3567                 break;
3568         }
3569         case KVM_SET_DEBUGREGS: {
3570                 struct kvm_debugregs dbgregs;
3571
3572                 r = -EFAULT;
3573                 if (copy_from_user(&dbgregs, argp,
3574                                    sizeof(struct kvm_debugregs)))
3575                         break;
3576
3577                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3578                 break;
3579         }
3580         case KVM_GET_XSAVE: {
3581                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3582                 r = -ENOMEM;
3583                 if (!u.xsave)
3584                         break;
3585
3586                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3587
3588                 r = -EFAULT;
3589                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3590                         break;
3591                 r = 0;
3592                 break;
3593         }
3594         case KVM_SET_XSAVE: {
3595                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3596                 if (IS_ERR(u.xsave))
3597                         return PTR_ERR(u.xsave);
3598
3599                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3600                 break;
3601         }
3602         case KVM_GET_XCRS: {
3603                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3604                 r = -ENOMEM;
3605                 if (!u.xcrs)
3606                         break;
3607
3608                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3609
3610                 r = -EFAULT;
3611                 if (copy_to_user(argp, u.xcrs,
3612                                  sizeof(struct kvm_xcrs)))
3613                         break;
3614                 r = 0;
3615                 break;
3616         }
3617         case KVM_SET_XCRS: {
3618                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3619                 if (IS_ERR(u.xcrs))
3620                         return PTR_ERR(u.xcrs);
3621
3622                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3623                 break;
3624         }
3625         case KVM_SET_TSC_KHZ: {
3626                 u32 user_tsc_khz;
3627
3628                 r = -EINVAL;
3629                 user_tsc_khz = (u32)arg;
3630
3631                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3632                         goto out;
3633
3634                 if (user_tsc_khz == 0)
3635                         user_tsc_khz = tsc_khz;
3636
3637                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3638                         r = 0;
3639
3640                 goto out;
3641         }
3642         case KVM_GET_TSC_KHZ: {
3643                 r = vcpu->arch.virtual_tsc_khz;
3644                 goto out;
3645         }
3646         case KVM_KVMCLOCK_CTRL: {
3647                 r = kvm_set_guest_paused(vcpu);
3648                 goto out;
3649         }
3650         case KVM_ENABLE_CAP: {
3651                 struct kvm_enable_cap cap;
3652
3653                 r = -EFAULT;
3654                 if (copy_from_user(&cap, argp, sizeof(cap)))
3655                         goto out;
3656                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3657                 break;
3658         }
3659         default:
3660                 r = -EINVAL;
3661         }
3662 out:
3663         kfree(u.buffer);
3664         return r;
3665 }
3666
3667 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3668 {
3669         return VM_FAULT_SIGBUS;
3670 }
3671
3672 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3673 {
3674         int ret;
3675
3676         if (addr > (unsigned int)(-3 * PAGE_SIZE))
3677                 return -EINVAL;
3678         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3679         return ret;
3680 }
3681
3682 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3683                                               u64 ident_addr)
3684 {
3685         kvm->arch.ept_identity_map_addr = ident_addr;
3686         return 0;
3687 }
3688
3689 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3690                                           u32 kvm_nr_mmu_pages)
3691 {
3692         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3693                 return -EINVAL;
3694
3695         mutex_lock(&kvm->slots_lock);
3696
3697         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3698         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3699
3700         mutex_unlock(&kvm->slots_lock);
3701         return 0;
3702 }
3703
3704 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3705 {
3706         return kvm->arch.n_max_mmu_pages;
3707 }
3708
3709 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3710 {
3711         struct kvm_pic *pic = kvm->arch.vpic;
3712         int r;
3713
3714         r = 0;
3715         switch (chip->chip_id) {
3716         case KVM_IRQCHIP_PIC_MASTER:
3717                 memcpy(&chip->chip.pic, &pic->pics[0],
3718                         sizeof(struct kvm_pic_state));
3719                 break;
3720         case KVM_IRQCHIP_PIC_SLAVE:
3721                 memcpy(&chip->chip.pic, &pic->pics[1],
3722                         sizeof(struct kvm_pic_state));
3723                 break;
3724         case KVM_IRQCHIP_IOAPIC:
3725                 kvm_get_ioapic(kvm, &chip->chip.ioapic);
3726                 break;
3727         default:
3728                 r = -EINVAL;
3729                 break;
3730         }
3731         return r;
3732 }
3733
3734 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3735 {
3736         struct kvm_pic *pic = kvm->arch.vpic;
3737         int r;
3738
3739         r = 0;
3740         switch (chip->chip_id) {
3741         case KVM_IRQCHIP_PIC_MASTER:
3742                 spin_lock(&pic->lock);
3743                 memcpy(&pic->pics[0], &chip->chip.pic,
3744                         sizeof(struct kvm_pic_state));
3745                 spin_unlock(&pic->lock);
3746                 break;
3747         case KVM_IRQCHIP_PIC_SLAVE:
3748                 spin_lock(&pic->lock);
3749                 memcpy(&pic->pics[1], &chip->chip.pic,
3750                         sizeof(struct kvm_pic_state));
3751                 spin_unlock(&pic->lock);
3752                 break;
3753         case KVM_IRQCHIP_IOAPIC:
3754                 kvm_set_ioapic(kvm, &chip->chip.ioapic);
3755                 break;
3756         default:
3757                 r = -EINVAL;
3758                 break;
3759         }
3760         kvm_pic_update_irq(pic);
3761         return r;
3762 }
3763
3764 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3765 {
3766         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
3767
3768         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
3769
3770         mutex_lock(&kps->lock);
3771         memcpy(ps, &kps->channels, sizeof(*ps));
3772         mutex_unlock(&kps->lock);
3773         return 0;
3774 }
3775
3776 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3777 {
3778         int i;
3779         struct kvm_pit *pit = kvm->arch.vpit;
3780
3781         mutex_lock(&pit->pit_state.lock);
3782         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
3783         for (i = 0; i < 3; i++)
3784                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
3785         mutex_unlock(&pit->pit_state.lock);
3786         return 0;
3787 }
3788
3789 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3790 {
3791         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3792         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3793                 sizeof(ps->channels));
3794         ps->flags = kvm->arch.vpit->pit_state.flags;
3795         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3796         memset(&ps->reserved, 0, sizeof(ps->reserved));
3797         return 0;
3798 }
3799
3800 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3801 {
3802         int start = 0;
3803         int i;
3804         u32 prev_legacy, cur_legacy;
3805         struct kvm_pit *pit = kvm->arch.vpit;
3806
3807         mutex_lock(&pit->pit_state.lock);
3808         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3809         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3810         if (!prev_legacy && cur_legacy)
3811                 start = 1;
3812         memcpy(&pit->pit_state.channels, &ps->channels,
3813                sizeof(pit->pit_state.channels));
3814         pit->pit_state.flags = ps->flags;
3815         for (i = 0; i < 3; i++)
3816                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
3817                                    start && i == 0);
3818         mutex_unlock(&pit->pit_state.lock);
3819         return 0;
3820 }
3821
3822 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3823                                  struct kvm_reinject_control *control)
3824 {
3825         struct kvm_pit *pit = kvm->arch.vpit;
3826
3827         if (!pit)
3828                 return -ENXIO;
3829
3830         /* pit->pit_state.lock was overloaded to prevent userspace from getting
3831          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
3832          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
3833          */
3834         mutex_lock(&pit->pit_state.lock);
3835         kvm_pit_set_reinject(pit, control->pit_reinject);
3836         mutex_unlock(&pit->pit_state.lock);
3837
3838         return 0;
3839 }
3840
3841 /**
3842  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3843  * @kvm: kvm instance
3844  * @log: slot id and address to which we copy the log
3845  *
3846  * Steps 1-4 below provide general overview of dirty page logging. See
3847  * kvm_get_dirty_log_protect() function description for additional details.
3848  *
3849  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3850  * always flush the TLB (step 4) even if previous step failed  and the dirty
3851  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3852  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3853  * writes will be marked dirty for next log read.
3854  *
3855  *   1. Take a snapshot of the bit and clear it if needed.
3856  *   2. Write protect the corresponding page.
3857  *   3. Copy the snapshot to the userspace.
3858  *   4. Flush TLB's if needed.
3859  */
3860 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3861 {
3862         bool is_dirty = false;
3863         int r;
3864
3865         mutex_lock(&kvm->slots_lock);
3866
3867         /*
3868          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3869          */
3870         if (kvm_x86_ops->flush_log_dirty)
3871                 kvm_x86_ops->flush_log_dirty(kvm);
3872
3873         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3874
3875         /*
3876          * All the TLBs can be flushed out of mmu lock, see the comments in
3877          * kvm_mmu_slot_remove_write_access().
3878          */
3879         lockdep_assert_held(&kvm->slots_lock);
3880         if (is_dirty)
3881                 kvm_flush_remote_tlbs(kvm);
3882
3883         mutex_unlock(&kvm->slots_lock);
3884         return r;
3885 }
3886
3887 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3888                         bool line_status)
3889 {
3890         if (!irqchip_in_kernel(kvm))
3891                 return -ENXIO;
3892
3893         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3894                                         irq_event->irq, irq_event->level,
3895                                         line_status);
3896         return 0;
3897 }
3898
3899 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3900                                    struct kvm_enable_cap *cap)
3901 {
3902         int r;
3903
3904         if (cap->flags)
3905                 return -EINVAL;
3906
3907         switch (cap->cap) {
3908         case KVM_CAP_DISABLE_QUIRKS:
3909                 kvm->arch.disabled_quirks = cap->args[0];
3910                 r = 0;
3911                 break;
3912         case KVM_CAP_SPLIT_IRQCHIP: {
3913                 mutex_lock(&kvm->lock);
3914                 r = -EINVAL;
3915                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
3916                         goto split_irqchip_unlock;
3917                 r = -EEXIST;
3918                 if (irqchip_in_kernel(kvm))
3919                         goto split_irqchip_unlock;
3920                 if (kvm->created_vcpus)
3921                         goto split_irqchip_unlock;
3922                 r = kvm_setup_empty_irq_routing(kvm);
3923                 if (r)
3924                         goto split_irqchip_unlock;
3925                 /* Pairs with irqchip_in_kernel. */
3926                 smp_wmb();
3927                 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
3928                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
3929                 r = 0;
3930 split_irqchip_unlock:
3931                 mutex_unlock(&kvm->lock);
3932                 break;
3933         }
3934         case KVM_CAP_X2APIC_API:
3935                 r = -EINVAL;
3936                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
3937                         break;
3938
3939                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
3940                         kvm->arch.x2apic_format = true;
3941                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
3942                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
3943
3944                 r = 0;
3945                 break;
3946         default:
3947                 r = -EINVAL;
3948                 break;
3949         }
3950         return r;
3951 }
3952
3953 long kvm_arch_vm_ioctl(struct file *filp,
3954                        unsigned int ioctl, unsigned long arg)
3955 {
3956         struct kvm *kvm = filp->private_data;
3957         void __user *argp = (void __user *)arg;
3958         int r = -ENOTTY;
3959         /*
3960          * This union makes it completely explicit to gcc-3.x
3961          * that these two variables' stack usage should be
3962          * combined, not added together.
3963          */
3964         union {
3965                 struct kvm_pit_state ps;
3966                 struct kvm_pit_state2 ps2;
3967                 struct kvm_pit_config pit_config;
3968         } u;
3969
3970         switch (ioctl) {
3971         case KVM_SET_TSS_ADDR:
3972                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3973                 break;
3974         case KVM_SET_IDENTITY_MAP_ADDR: {
3975                 u64 ident_addr;
3976
3977                 r = -EFAULT;
3978                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3979                         goto out;
3980                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3981                 break;
3982         }
3983         case KVM_SET_NR_MMU_PAGES:
3984                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3985                 break;
3986         case KVM_GET_NR_MMU_PAGES:
3987                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3988                 break;
3989         case KVM_CREATE_IRQCHIP: {
3990                 mutex_lock(&kvm->lock);
3991
3992                 r = -EEXIST;
3993                 if (irqchip_in_kernel(kvm))
3994                         goto create_irqchip_unlock;
3995
3996                 r = -EINVAL;
3997                 if (kvm->created_vcpus)
3998                         goto create_irqchip_unlock;
3999
4000                 r = kvm_pic_init(kvm);
4001                 if (r)
4002                         goto create_irqchip_unlock;
4003
4004                 r = kvm_ioapic_init(kvm);
4005                 if (r) {
4006                         kvm_pic_destroy(kvm);
4007                         goto create_irqchip_unlock;
4008                 }
4009
4010                 r = kvm_setup_default_irq_routing(kvm);
4011                 if (r) {
4012                         kvm_ioapic_destroy(kvm);
4013                         kvm_pic_destroy(kvm);
4014                         goto create_irqchip_unlock;
4015                 }
4016                 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4017                 smp_wmb();
4018                 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4019         create_irqchip_unlock:
4020                 mutex_unlock(&kvm->lock);
4021                 break;
4022         }
4023         case KVM_CREATE_PIT:
4024                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4025                 goto create_pit;
4026         case KVM_CREATE_PIT2:
4027                 r = -EFAULT;
4028                 if (copy_from_user(&u.pit_config, argp,
4029                                    sizeof(struct kvm_pit_config)))
4030                         goto out;
4031         create_pit:
4032                 mutex_lock(&kvm->lock);
4033                 r = -EEXIST;
4034                 if (kvm->arch.vpit)
4035                         goto create_pit_unlock;
4036                 r = -ENOMEM;
4037                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4038                 if (kvm->arch.vpit)
4039                         r = 0;
4040         create_pit_unlock:
4041                 mutex_unlock(&kvm->lock);
4042                 break;
4043         case KVM_GET_IRQCHIP: {
4044                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4045                 struct kvm_irqchip *chip;
4046
4047                 chip = memdup_user(argp, sizeof(*chip));
4048                 if (IS_ERR(chip)) {
4049                         r = PTR_ERR(chip);
4050                         goto out;
4051                 }
4052
4053                 r = -ENXIO;
4054                 if (!irqchip_kernel(kvm))
4055                         goto get_irqchip_out;
4056                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4057                 if (r)
4058                         goto get_irqchip_out;
4059                 r = -EFAULT;
4060                 if (copy_to_user(argp, chip, sizeof *chip))
4061                         goto get_irqchip_out;
4062                 r = 0;
4063         get_irqchip_out:
4064                 kfree(chip);
4065                 break;
4066         }
4067         case KVM_SET_IRQCHIP: {
4068                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4069                 struct kvm_irqchip *chip;
4070
4071                 chip = memdup_user(argp, sizeof(*chip));
4072                 if (IS_ERR(chip)) {
4073                         r = PTR_ERR(chip);
4074                         goto out;
4075                 }
4076
4077                 r = -ENXIO;
4078                 if (!irqchip_kernel(kvm))
4079                         goto set_irqchip_out;
4080                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4081                 if (r)
4082                         goto set_irqchip_out;
4083                 r = 0;
4084         set_irqchip_out:
4085                 kfree(chip);
4086                 break;
4087         }
4088         case KVM_GET_PIT: {
4089                 r = -EFAULT;
4090                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4091                         goto out;
4092                 r = -ENXIO;
4093                 if (!kvm->arch.vpit)
4094                         goto out;
4095                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4096                 if (r)
4097                         goto out;
4098                 r = -EFAULT;
4099                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4100                         goto out;
4101                 r = 0;
4102                 break;
4103         }
4104         case KVM_SET_PIT: {
4105                 r = -EFAULT;
4106                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
4107                         goto out;
4108                 r = -ENXIO;
4109                 if (!kvm->arch.vpit)
4110                         goto out;
4111                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4112                 break;
4113         }
4114         case KVM_GET_PIT2: {
4115                 r = -ENXIO;
4116                 if (!kvm->arch.vpit)
4117                         goto out;
4118                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4119                 if (r)
4120                         goto out;
4121                 r = -EFAULT;
4122                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4123                         goto out;
4124                 r = 0;
4125                 break;
4126         }
4127         case KVM_SET_PIT2: {
4128                 r = -EFAULT;
4129                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4130                         goto out;
4131                 r = -ENXIO;
4132                 if (!kvm->arch.vpit)
4133                         goto out;
4134                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4135                 break;
4136         }
4137         case KVM_REINJECT_CONTROL: {
4138                 struct kvm_reinject_control control;
4139                 r =  -EFAULT;
4140                 if (copy_from_user(&control, argp, sizeof(control)))
4141                         goto out;
4142                 r = kvm_vm_ioctl_reinject(kvm, &control);
4143                 break;
4144         }
4145         case KVM_SET_BOOT_CPU_ID:
4146                 r = 0;
4147                 mutex_lock(&kvm->lock);
4148                 if (kvm->created_vcpus)
4149                         r = -EBUSY;
4150                 else
4151                         kvm->arch.bsp_vcpu_id = arg;
4152                 mutex_unlock(&kvm->lock);
4153                 break;
4154         case KVM_XEN_HVM_CONFIG: {
4155                 r = -EFAULT;
4156                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
4157                                    sizeof(struct kvm_xen_hvm_config)))
4158                         goto out;
4159                 r = -EINVAL;
4160                 if (kvm->arch.xen_hvm_config.flags)
4161                         goto out;
4162                 r = 0;
4163                 break;
4164         }
4165         case KVM_SET_CLOCK: {
4166                 struct kvm_clock_data user_ns;
4167                 u64 now_ns;
4168
4169                 r = -EFAULT;
4170                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4171                         goto out;
4172
4173                 r = -EINVAL;
4174                 if (user_ns.flags)
4175                         goto out;
4176
4177                 r = 0;
4178                 now_ns = get_kvmclock_ns(kvm);
4179                 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4180                 kvm_gen_update_masterclock(kvm);
4181                 break;
4182         }
4183         case KVM_GET_CLOCK: {
4184                 struct kvm_clock_data user_ns;
4185                 u64 now_ns;
4186
4187                 now_ns = get_kvmclock_ns(kvm);
4188                 user_ns.clock = now_ns;
4189                 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4190                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4191
4192                 r = -EFAULT;
4193                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4194                         goto out;
4195                 r = 0;
4196                 break;
4197         }
4198         case KVM_ENABLE_CAP: {
4199                 struct kvm_enable_cap cap;
4200
4201                 r = -EFAULT;
4202                 if (copy_from_user(&cap, argp, sizeof(cap)))
4203                         goto out;
4204                 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4205                 break;
4206         }
4207         default:
4208                 r = -ENOTTY;
4209         }
4210 out:
4211         return r;
4212 }
4213
4214 static void kvm_init_msr_list(void)
4215 {
4216         u32 dummy[2];
4217         unsigned i, j;
4218
4219         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4220                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4221                         continue;
4222
4223                 /*
4224                  * Even MSRs that are valid in the host may not be exposed
4225                  * to the guests in some cases.
4226                  */
4227                 switch (msrs_to_save[i]) {
4228                 case MSR_IA32_BNDCFGS:
4229                         if (!kvm_x86_ops->mpx_supported())
4230                                 continue;
4231                         break;
4232                 case MSR_TSC_AUX:
4233                         if (!kvm_x86_ops->rdtscp_supported())
4234                                 continue;
4235                         break;
4236                 default:
4237                         break;
4238                 }
4239
4240                 if (j < i)
4241                         msrs_to_save[j] = msrs_to_save[i];
4242                 j++;
4243         }
4244         num_msrs_to_save = j;
4245
4246         for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4247                 switch (emulated_msrs[i]) {
4248                 case MSR_IA32_SMBASE:
4249                         if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4250                                 continue;
4251                         break;
4252                 default:
4253                         break;
4254                 }
4255
4256                 if (j < i)
4257                         emulated_msrs[j] = emulated_msrs[i];
4258                 j++;
4259         }
4260         num_emulated_msrs = j;
4261 }
4262
4263 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4264                            const void *v)
4265 {
4266         int handled = 0;
4267         int n;
4268
4269         do {
4270                 n = min(len, 8);
4271                 if (!(lapic_in_kernel(vcpu) &&
4272                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4273                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4274                         break;
4275                 handled += n;
4276                 addr += n;
4277                 len -= n;
4278                 v += n;
4279         } while (len);
4280
4281         return handled;
4282 }
4283
4284 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4285 {
4286         int handled = 0;
4287         int n;
4288
4289         do {
4290                 n = min(len, 8);
4291                 if (!(lapic_in_kernel(vcpu) &&
4292                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4293                                          addr, n, v))
4294                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4295                         break;
4296                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4297                 handled += n;
4298                 addr += n;
4299                 len -= n;
4300                 v += n;
4301         } while (len);
4302
4303         return handled;
4304 }
4305
4306 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4307                         struct kvm_segment *var, int seg)
4308 {
4309         kvm_x86_ops->set_segment(vcpu, var, seg);
4310 }
4311
4312 void kvm_get_segment(struct kvm_vcpu *vcpu,
4313                      struct kvm_segment *var, int seg)
4314 {
4315         kvm_x86_ops->get_segment(vcpu, var, seg);
4316 }
4317
4318 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4319                            struct x86_exception *exception)
4320 {
4321         gpa_t t_gpa;
4322
4323         BUG_ON(!mmu_is_nested(vcpu));
4324
4325         /* NPT walks are always user-walks */
4326         access |= PFERR_USER_MASK;
4327         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4328
4329         return t_gpa;
4330 }
4331
4332 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4333                               struct x86_exception *exception)
4334 {
4335         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4336         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4337 }
4338
4339  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4340                                 struct x86_exception *exception)
4341 {
4342         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4343         access |= PFERR_FETCH_MASK;
4344         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4345 }
4346
4347 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4348                                struct x86_exception *exception)
4349 {
4350         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4351         access |= PFERR_WRITE_MASK;
4352         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4353 }
4354
4355 /* uses this to access any guest's mapped memory without checking CPL */
4356 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4357                                 struct x86_exception *exception)
4358 {
4359         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4360 }
4361
4362 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4363                                       struct kvm_vcpu *vcpu, u32 access,
4364                                       struct x86_exception *exception)
4365 {
4366         void *data = val;
4367         int r = X86EMUL_CONTINUE;
4368
4369         while (bytes) {
4370                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4371                                                             exception);
4372                 unsigned offset = addr & (PAGE_SIZE-1);
4373                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4374                 int ret;
4375
4376                 if (gpa == UNMAPPED_GVA)
4377                         return X86EMUL_PROPAGATE_FAULT;
4378                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4379                                                offset, toread);
4380                 if (ret < 0) {
4381                         r = X86EMUL_IO_NEEDED;
4382                         goto out;
4383                 }
4384
4385                 bytes -= toread;
4386                 data += toread;
4387                 addr += toread;
4388         }
4389 out:
4390         return r;
4391 }
4392
4393 /* used for instruction fetching */
4394 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4395                                 gva_t addr, void *val, unsigned int bytes,
4396                                 struct x86_exception *exception)
4397 {
4398         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4399         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4400         unsigned offset;
4401         int ret;
4402
4403         /* Inline kvm_read_guest_virt_helper for speed.  */
4404         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4405                                                     exception);
4406         if (unlikely(gpa == UNMAPPED_GVA))
4407                 return X86EMUL_PROPAGATE_FAULT;
4408
4409         offset = addr & (PAGE_SIZE-1);
4410         if (WARN_ON(offset + bytes > PAGE_SIZE))
4411                 bytes = (unsigned)PAGE_SIZE - offset;
4412         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4413                                        offset, bytes);
4414         if (unlikely(ret < 0))
4415                 return X86EMUL_IO_NEEDED;
4416
4417         return X86EMUL_CONTINUE;
4418 }
4419
4420 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4421                                gva_t addr, void *val, unsigned int bytes,
4422                                struct x86_exception *exception)
4423 {
4424         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4425         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4426
4427         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4428                                           exception);
4429 }
4430 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4431
4432 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4433                                       gva_t addr, void *val, unsigned int bytes,
4434                                       struct x86_exception *exception)
4435 {
4436         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4437         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4438 }
4439
4440 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4441                 unsigned long addr, void *val, unsigned int bytes)
4442 {
4443         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4444         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4445
4446         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4447 }
4448
4449 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4450                                        gva_t addr, void *val,
4451                                        unsigned int bytes,
4452                                        struct x86_exception *exception)
4453 {
4454         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4455         void *data = val;
4456         int r = X86EMUL_CONTINUE;
4457
4458         while (bytes) {
4459                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4460                                                              PFERR_WRITE_MASK,
4461                                                              exception);
4462                 unsigned offset = addr & (PAGE_SIZE-1);
4463                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4464                 int ret;
4465
4466                 if (gpa == UNMAPPED_GVA)
4467                         return X86EMUL_PROPAGATE_FAULT;
4468                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4469                 if (ret < 0) {
4470                         r = X86EMUL_IO_NEEDED;
4471                         goto out;
4472                 }
4473
4474                 bytes -= towrite;
4475                 data += towrite;
4476                 addr += towrite;
4477         }
4478 out:
4479         return r;
4480 }
4481 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4482
4483 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4484                             gpa_t gpa, bool write)
4485 {
4486         /* For APIC access vmexit */
4487         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4488                 return 1;
4489
4490         if (vcpu_match_mmio_gpa(vcpu, gpa)) {
4491                 trace_vcpu_match_mmio(gva, gpa, write, true);
4492                 return 1;
4493         }
4494
4495         return 0;
4496 }
4497
4498 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4499                                 gpa_t *gpa, struct x86_exception *exception,
4500                                 bool write)
4501 {
4502         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4503                 | (write ? PFERR_WRITE_MASK : 0);
4504
4505         /*
4506          * currently PKRU is only applied to ept enabled guest so
4507          * there is no pkey in EPT page table for L1 guest or EPT
4508          * shadow page table for L2 guest.
4509          */
4510         if (vcpu_match_mmio_gva(vcpu, gva)
4511             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4512                                  vcpu->arch.access, 0, access)) {
4513                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4514                                         (gva & (PAGE_SIZE - 1));
4515                 trace_vcpu_match_mmio(gva, *gpa, write, false);
4516                 return 1;
4517         }
4518
4519         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4520
4521         if (*gpa == UNMAPPED_GVA)
4522                 return -1;
4523
4524         return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
4525 }
4526
4527 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4528                         const void *val, int bytes)
4529 {
4530         int ret;
4531
4532         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4533         if (ret < 0)
4534                 return 0;
4535         kvm_page_track_write(vcpu, gpa, val, bytes);
4536         return 1;
4537 }
4538
4539 struct read_write_emulator_ops {
4540         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4541                                   int bytes);
4542         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4543                                   void *val, int bytes);
4544         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4545                                int bytes, void *val);
4546         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4547                                     void *val, int bytes);
4548         bool write;
4549 };
4550
4551 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4552 {
4553         if (vcpu->mmio_read_completed) {
4554                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4555                                vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4556                 vcpu->mmio_read_completed = 0;
4557                 return 1;
4558         }
4559
4560         return 0;
4561 }
4562
4563 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4564                         void *val, int bytes)
4565 {
4566         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4567 }
4568
4569 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4570                          void *val, int bytes)
4571 {
4572         return emulator_write_phys(vcpu, gpa, val, bytes);
4573 }
4574
4575 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4576 {
4577         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4578         return vcpu_mmio_write(vcpu, gpa, bytes, val);
4579 }
4580
4581 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4582                           void *val, int bytes)
4583 {
4584         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4585         return X86EMUL_IO_NEEDED;
4586 }
4587
4588 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4589                            void *val, int bytes)
4590 {
4591         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4592
4593         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4594         return X86EMUL_CONTINUE;
4595 }
4596
4597 static const struct read_write_emulator_ops read_emultor = {
4598         .read_write_prepare = read_prepare,
4599         .read_write_emulate = read_emulate,
4600         .read_write_mmio = vcpu_mmio_read,
4601         .read_write_exit_mmio = read_exit_mmio,
4602 };
4603
4604 static const struct read_write_emulator_ops write_emultor = {
4605         .read_write_emulate = write_emulate,
4606         .read_write_mmio = write_mmio,
4607         .read_write_exit_mmio = write_exit_mmio,
4608         .write = true,
4609 };
4610
4611 static int emulator_read_write_onepage(unsigned long addr, void *val,
4612                                        unsigned int bytes,
4613                                        struct x86_exception *exception,
4614                                        struct kvm_vcpu *vcpu,
4615                                        const struct read_write_emulator_ops *ops)
4616 {
4617         gpa_t gpa;
4618         int handled, ret;
4619         bool write = ops->write;
4620         struct kvm_mmio_fragment *frag;
4621         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4622
4623         /*
4624          * If the exit was due to a NPF we may already have a GPA.
4625          * If the GPA is present, use it to avoid the GVA to GPA table walk.
4626          * Note, this cannot be used on string operations since string
4627          * operation using rep will only have the initial GPA from the NPF
4628          * occurred.
4629          */
4630         if (vcpu->arch.gpa_available &&
4631             emulator_can_use_gpa(ctxt) &&
4632             vcpu_is_mmio_gpa(vcpu, addr, exception->address, write) &&
4633             (addr & ~PAGE_MASK) == (exception->address & ~PAGE_MASK)) {
4634                 gpa = exception->address;
4635                 goto mmio;
4636         }
4637
4638         ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4639
4640         if (ret < 0)
4641                 return X86EMUL_PROPAGATE_FAULT;
4642
4643         /* For APIC access vmexit */
4644         if (ret)
4645                 goto mmio;
4646
4647         if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4648                 return X86EMUL_CONTINUE;
4649
4650 mmio:
4651         /*
4652          * Is this MMIO handled locally?
4653          */
4654         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4655         if (handled == bytes)
4656                 return X86EMUL_CONTINUE;
4657
4658         gpa += handled;
4659         bytes -= handled;
4660         val += handled;
4661
4662         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4663         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4664         frag->gpa = gpa;
4665         frag->data = val;
4666         frag->len = bytes;
4667         return X86EMUL_CONTINUE;
4668 }
4669
4670 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4671                         unsigned long addr,
4672                         void *val, unsigned int bytes,
4673                         struct x86_exception *exception,
4674                         const struct read_write_emulator_ops *ops)
4675 {
4676         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4677         gpa_t gpa;
4678         int rc;
4679
4680         if (ops->read_write_prepare &&
4681                   ops->read_write_prepare(vcpu, val, bytes))
4682                 return X86EMUL_CONTINUE;
4683
4684         vcpu->mmio_nr_fragments = 0;
4685
4686         /* Crossing a page boundary? */
4687         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4688                 int now;
4689
4690                 now = -addr & ~PAGE_MASK;
4691                 rc = emulator_read_write_onepage(addr, val, now, exception,
4692                                                  vcpu, ops);
4693
4694                 if (rc != X86EMUL_CONTINUE)
4695                         return rc;
4696                 addr += now;
4697                 if (ctxt->mode != X86EMUL_MODE_PROT64)
4698                         addr = (u32)addr;
4699                 val += now;
4700                 bytes -= now;
4701         }
4702
4703         rc = emulator_read_write_onepage(addr, val, bytes, exception,
4704                                          vcpu, ops);
4705         if (rc != X86EMUL_CONTINUE)
4706                 return rc;
4707
4708         if (!vcpu->mmio_nr_fragments)
4709                 return rc;
4710
4711         gpa = vcpu->mmio_fragments[0].gpa;
4712
4713         vcpu->mmio_needed = 1;
4714         vcpu->mmio_cur_fragment = 0;
4715
4716         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4717         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4718         vcpu->run->exit_reason = KVM_EXIT_MMIO;
4719         vcpu->run->mmio.phys_addr = gpa;
4720
4721         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4722 }
4723
4724 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4725                                   unsigned long addr,
4726                                   void *val,
4727                                   unsigned int bytes,
4728                                   struct x86_exception *exception)
4729 {
4730         return emulator_read_write(ctxt, addr, val, bytes,
4731                                    exception, &read_emultor);
4732 }
4733
4734 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4735                             unsigned long addr,
4736                             const void *val,
4737                             unsigned int bytes,
4738                             struct x86_exception *exception)
4739 {
4740         return emulator_read_write(ctxt, addr, (void *)val, bytes,
4741                                    exception, &write_emultor);
4742 }
4743
4744 #define CMPXCHG_TYPE(t, ptr, old, new) \
4745         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4746
4747 #ifdef CONFIG_X86_64
4748 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4749 #else
4750 #  define CMPXCHG64(ptr, old, new) \
4751         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4752 #endif
4753
4754 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4755                                      unsigned long addr,
4756                                      const void *old,
4757                                      const void *new,
4758                                      unsigned int bytes,
4759                                      struct x86_exception *exception)
4760 {
4761         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4762         gpa_t gpa;
4763         struct page *page;
4764         char *kaddr;
4765         bool exchanged;
4766
4767         /* guests cmpxchg8b have to be emulated atomically */
4768         if (bytes > 8 || (bytes & (bytes - 1)))
4769                 goto emul_write;
4770
4771         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4772
4773         if (gpa == UNMAPPED_GVA ||
4774             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4775                 goto emul_write;
4776
4777         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4778                 goto emul_write;
4779
4780         page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4781         if (is_error_page(page))
4782                 goto emul_write;
4783
4784         kaddr = kmap_atomic(page);
4785         kaddr += offset_in_page(gpa);
4786         switch (bytes) {
4787         case 1:
4788                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4789                 break;
4790         case 2:
4791                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4792                 break;
4793         case 4:
4794                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4795                 break;
4796         case 8:
4797                 exchanged = CMPXCHG64(kaddr, old, new);
4798                 break;
4799         default:
4800                 BUG();
4801         }
4802         kunmap_atomic(kaddr);
4803         kvm_release_page_dirty(page);
4804
4805         if (!exchanged)
4806                 return X86EMUL_CMPXCHG_FAILED;
4807
4808         kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4809         kvm_page_track_write(vcpu, gpa, new, bytes);
4810
4811         return X86EMUL_CONTINUE;
4812
4813 emul_write:
4814         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4815
4816         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4817 }
4818
4819 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4820 {
4821         /* TODO: String I/O for in kernel device */
4822         int r;
4823
4824         if (vcpu->arch.pio.in)
4825                 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4826                                     vcpu->arch.pio.size, pd);
4827         else
4828                 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4829                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
4830                                      pd);
4831         return r;
4832 }
4833
4834 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4835                                unsigned short port, void *val,
4836                                unsigned int count, bool in)
4837 {
4838         vcpu->arch.pio.port = port;
4839         vcpu->arch.pio.in = in;
4840         vcpu->arch.pio.count  = count;
4841         vcpu->arch.pio.size = size;
4842
4843         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4844                 vcpu->arch.pio.count = 0;
4845                 return 1;
4846         }
4847
4848         vcpu->run->exit_reason = KVM_EXIT_IO;
4849         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4850         vcpu->run->io.size = size;
4851         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4852         vcpu->run->io.count = count;
4853         vcpu->run->io.port = port;
4854
4855         return 0;
4856 }
4857
4858 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4859                                     int size, unsigned short port, void *val,
4860                                     unsigned int count)
4861 {
4862         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4863         int ret;
4864
4865         if (vcpu->arch.pio.count)
4866                 goto data_avail;
4867
4868         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4869         if (ret) {
4870 data_avail:
4871                 memcpy(val, vcpu->arch.pio_data, size * count);
4872                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4873                 vcpu->arch.pio.count = 0;
4874                 return 1;
4875         }
4876
4877         return 0;
4878 }
4879
4880 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4881                                      int size, unsigned short port,
4882                                      const void *val, unsigned int count)
4883 {
4884         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4885
4886         memcpy(vcpu->arch.pio_data, val, size * count);
4887         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4888         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4889 }
4890
4891 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4892 {
4893         return kvm_x86_ops->get_segment_base(vcpu, seg);
4894 }
4895
4896 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4897 {
4898         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4899 }
4900
4901 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4902 {
4903         if (!need_emulate_wbinvd(vcpu))
4904                 return X86EMUL_CONTINUE;
4905
4906         if (kvm_x86_ops->has_wbinvd_exit()) {
4907                 int cpu = get_cpu();
4908
4909                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4910                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4911                                 wbinvd_ipi, NULL, 1);
4912                 put_cpu();
4913                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4914         } else
4915                 wbinvd();
4916         return X86EMUL_CONTINUE;
4917 }
4918
4919 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4920 {
4921         kvm_emulate_wbinvd_noskip(vcpu);
4922         return kvm_skip_emulated_instruction(vcpu);
4923 }
4924 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4925
4926
4927
4928 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4929 {
4930         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4931 }
4932
4933 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4934                            unsigned long *dest)
4935 {
4936         return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4937 }
4938
4939 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4940                            unsigned long value)
4941 {
4942
4943         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4944 }
4945
4946 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4947 {
4948         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4949 }
4950
4951 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4952 {
4953         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4954         unsigned long value;
4955
4956         switch (cr) {
4957         case 0:
4958                 value = kvm_read_cr0(vcpu);
4959                 break;
4960         case 2:
4961                 value = vcpu->arch.cr2;
4962                 break;
4963         case 3:
4964                 value = kvm_read_cr3(vcpu);
4965                 break;
4966         case 4:
4967                 value = kvm_read_cr4(vcpu);
4968                 break;
4969         case 8:
4970                 value = kvm_get_cr8(vcpu);
4971                 break;
4972         default:
4973                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4974                 return 0;
4975         }
4976
4977         return value;
4978 }
4979
4980 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4981 {
4982         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4983         int res = 0;
4984
4985         switch (cr) {
4986         case 0:
4987                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4988                 break;
4989         case 2:
4990                 vcpu->arch.cr2 = val;
4991                 break;
4992         case 3:
4993                 res = kvm_set_cr3(vcpu, val);
4994                 break;
4995         case 4:
4996                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4997                 break;
4998         case 8:
4999                 res = kvm_set_cr8(vcpu, val);
5000                 break;
5001         default:
5002                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5003                 res = -1;
5004         }
5005
5006         return res;
5007 }
5008
5009 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5010 {
5011         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5012 }
5013
5014 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5015 {
5016         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5017 }
5018
5019 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5020 {
5021         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5022 }
5023
5024 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5025 {
5026         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5027 }
5028
5029 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5030 {
5031         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5032 }
5033
5034 static unsigned long emulator_get_cached_segment_base(
5035         struct x86_emulate_ctxt *ctxt, int seg)
5036 {
5037         return get_segment_base(emul_to_vcpu(ctxt), seg);
5038 }
5039
5040 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5041                                  struct desc_struct *desc, u32 *base3,
5042                                  int seg)
5043 {
5044         struct kvm_segment var;
5045
5046         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5047         *selector = var.selector;
5048
5049         if (var.unusable) {
5050                 memset(desc, 0, sizeof(*desc));
5051                 return false;
5052         }
5053
5054         if (var.g)
5055                 var.limit >>= 12;
5056         set_desc_limit(desc, var.limit);
5057         set_desc_base(desc, (unsigned long)var.base);
5058 #ifdef CONFIG_X86_64
5059         if (base3)
5060                 *base3 = var.base >> 32;
5061 #endif
5062         desc->type = var.type;
5063         desc->s = var.s;
5064         desc->dpl = var.dpl;
5065         desc->p = var.present;
5066         desc->avl = var.avl;
5067         desc->l = var.l;
5068         desc->d = var.db;
5069         desc->g = var.g;
5070
5071         return true;
5072 }
5073
5074 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5075                                  struct desc_struct *desc, u32 base3,
5076                                  int seg)
5077 {
5078         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5079         struct kvm_segment var;
5080
5081         var.selector = selector;
5082         var.base = get_desc_base(desc);
5083 #ifdef CONFIG_X86_64
5084         var.base |= ((u64)base3) << 32;
5085 #endif
5086         var.limit = get_desc_limit(desc);
5087         if (desc->g)
5088                 var.limit = (var.limit << 12) | 0xfff;
5089         var.type = desc->type;
5090         var.dpl = desc->dpl;
5091         var.db = desc->d;
5092         var.s = desc->s;
5093         var.l = desc->l;
5094         var.g = desc->g;
5095         var.avl = desc->avl;
5096         var.present = desc->p;
5097         var.unusable = !var.present;
5098         var.padding = 0;
5099
5100         kvm_set_segment(vcpu, &var, seg);
5101         return;
5102 }
5103
5104 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5105                             u32 msr_index, u64 *pdata)
5106 {
5107         struct msr_data msr;
5108         int r;
5109
5110         msr.index = msr_index;
5111         msr.host_initiated = false;
5112         r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5113         if (r)
5114                 return r;
5115
5116         *pdata = msr.data;
5117         return 0;
5118 }
5119
5120 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5121                             u32 msr_index, u64 data)
5122 {
5123         struct msr_data msr;
5124
5125         msr.data = data;
5126         msr.index = msr_index;
5127         msr.host_initiated = false;
5128         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5129 }
5130
5131 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5132 {
5133         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5134
5135         return vcpu->arch.smbase;
5136 }
5137
5138 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5139 {
5140         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5141
5142         vcpu->arch.smbase = smbase;
5143 }
5144
5145 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5146                               u32 pmc)
5147 {
5148         return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5149 }
5150
5151 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5152                              u32 pmc, u64 *pdata)
5153 {
5154         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5155 }
5156
5157 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5158 {
5159         emul_to_vcpu(ctxt)->arch.halt_request = 1;
5160 }
5161
5162 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
5163 {
5164         preempt_disable();
5165         kvm_load_guest_fpu(emul_to_vcpu(ctxt));
5166 }
5167
5168 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
5169 {
5170         preempt_enable();
5171 }
5172
5173 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5174                               struct x86_instruction_info *info,
5175                               enum x86_intercept_stage stage)
5176 {
5177         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5178 }
5179
5180 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5181                                u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
5182 {
5183         kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
5184 }
5185
5186 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5187 {
5188         return kvm_register_read(emul_to_vcpu(ctxt), reg);
5189 }
5190
5191 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5192 {
5193         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5194 }
5195
5196 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5197 {
5198         kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5199 }
5200
5201 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
5202 {
5203         return emul_to_vcpu(ctxt)->arch.hflags;
5204 }
5205
5206 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
5207 {
5208         kvm_set_hflags(emul_to_vcpu(ctxt), emul_flags);
5209 }
5210
5211 static const struct x86_emulate_ops emulate_ops = {
5212         .read_gpr            = emulator_read_gpr,
5213         .write_gpr           = emulator_write_gpr,
5214         .read_std            = kvm_read_guest_virt_system,
5215         .write_std           = kvm_write_guest_virt_system,
5216         .read_phys           = kvm_read_guest_phys_system,
5217         .fetch               = kvm_fetch_guest_virt,
5218         .read_emulated       = emulator_read_emulated,
5219         .write_emulated      = emulator_write_emulated,
5220         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
5221         .invlpg              = emulator_invlpg,
5222         .pio_in_emulated     = emulator_pio_in_emulated,
5223         .pio_out_emulated    = emulator_pio_out_emulated,
5224         .get_segment         = emulator_get_segment,
5225         .set_segment         = emulator_set_segment,
5226         .get_cached_segment_base = emulator_get_cached_segment_base,
5227         .get_gdt             = emulator_get_gdt,
5228         .get_idt             = emulator_get_idt,
5229         .set_gdt             = emulator_set_gdt,
5230         .set_idt             = emulator_set_idt,
5231         .get_cr              = emulator_get_cr,
5232         .set_cr              = emulator_set_cr,
5233         .cpl                 = emulator_get_cpl,
5234         .get_dr              = emulator_get_dr,
5235         .set_dr              = emulator_set_dr,
5236         .get_smbase          = emulator_get_smbase,
5237         .set_smbase          = emulator_set_smbase,
5238         .set_msr             = emulator_set_msr,
5239         .get_msr             = emulator_get_msr,
5240         .check_pmc           = emulator_check_pmc,
5241         .read_pmc            = emulator_read_pmc,
5242         .halt                = emulator_halt,
5243         .wbinvd              = emulator_wbinvd,
5244         .fix_hypercall       = emulator_fix_hypercall,
5245         .get_fpu             = emulator_get_fpu,
5246         .put_fpu             = emulator_put_fpu,
5247         .intercept           = emulator_intercept,
5248         .get_cpuid           = emulator_get_cpuid,
5249         .set_nmi_mask        = emulator_set_nmi_mask,
5250         .get_hflags          = emulator_get_hflags,
5251         .set_hflags          = emulator_set_hflags,
5252 };
5253
5254 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5255 {
5256         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5257         /*
5258          * an sti; sti; sequence only disable interrupts for the first
5259          * instruction. So, if the last instruction, be it emulated or
5260          * not, left the system with the INT_STI flag enabled, it
5261          * means that the last instruction is an sti. We should not
5262          * leave the flag on in this case. The same goes for mov ss
5263          */
5264         if (int_shadow & mask)
5265                 mask = 0;
5266         if (unlikely(int_shadow || mask)) {
5267                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5268                 if (!mask)
5269                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5270         }
5271 }
5272
5273 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5274 {
5275         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5276         if (ctxt->exception.vector == PF_VECTOR)
5277                 return kvm_propagate_fault(vcpu, &ctxt->exception);
5278
5279         if (ctxt->exception.error_code_valid)
5280                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5281                                       ctxt->exception.error_code);
5282         else
5283                 kvm_queue_exception(vcpu, ctxt->exception.vector);
5284         return false;
5285 }
5286
5287 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5288 {
5289         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5290         int cs_db, cs_l;
5291
5292         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5293
5294         ctxt->eflags = kvm_get_rflags(vcpu);
5295         ctxt->eip = kvm_rip_read(vcpu);
5296         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
5297                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
5298                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
5299                      cs_db                              ? X86EMUL_MODE_PROT32 :
5300                                                           X86EMUL_MODE_PROT16;
5301         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5302         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5303         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5304
5305         init_decode_cache(ctxt);
5306         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5307 }
5308
5309 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5310 {
5311         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5312         int ret;
5313
5314         init_emulate_ctxt(vcpu);
5315
5316         ctxt->op_bytes = 2;
5317         ctxt->ad_bytes = 2;
5318         ctxt->_eip = ctxt->eip + inc_eip;
5319         ret = emulate_int_real(ctxt, irq);
5320
5321         if (ret != X86EMUL_CONTINUE)
5322                 return EMULATE_FAIL;
5323
5324         ctxt->eip = ctxt->_eip;
5325         kvm_rip_write(vcpu, ctxt->eip);
5326         kvm_set_rflags(vcpu, ctxt->eflags);
5327
5328         if (irq == NMI_VECTOR)
5329                 vcpu->arch.nmi_pending = 0;
5330         else
5331                 vcpu->arch.interrupt.pending = false;
5332
5333         return EMULATE_DONE;
5334 }
5335 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5336
5337 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5338 {
5339         int r = EMULATE_DONE;
5340
5341         ++vcpu->stat.insn_emulation_fail;
5342         trace_kvm_emulate_insn_failed(vcpu);
5343         if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5344                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5345                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5346                 vcpu->run->internal.ndata = 0;
5347                 r = EMULATE_FAIL;
5348         }
5349         kvm_queue_exception(vcpu, UD_VECTOR);
5350
5351         return r;
5352 }
5353
5354 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5355                                   bool write_fault_to_shadow_pgtable,
5356                                   int emulation_type)
5357 {
5358         gpa_t gpa = cr2;
5359         kvm_pfn_t pfn;
5360
5361         if (emulation_type & EMULTYPE_NO_REEXECUTE)
5362                 return false;
5363
5364         if (!vcpu->arch.mmu.direct_map) {
5365                 /*
5366                  * Write permission should be allowed since only
5367                  * write access need to be emulated.
5368                  */
5369                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5370
5371                 /*
5372                  * If the mapping is invalid in guest, let cpu retry
5373                  * it to generate fault.
5374                  */
5375                 if (gpa == UNMAPPED_GVA)
5376                         return true;
5377         }
5378
5379         /*
5380          * Do not retry the unhandleable instruction if it faults on the
5381          * readonly host memory, otherwise it will goto a infinite loop:
5382          * retry instruction -> write #PF -> emulation fail -> retry
5383          * instruction -> ...
5384          */
5385         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5386
5387         /*
5388          * If the instruction failed on the error pfn, it can not be fixed,
5389          * report the error to userspace.
5390          */
5391         if (is_error_noslot_pfn(pfn))
5392                 return false;
5393
5394         kvm_release_pfn_clean(pfn);
5395
5396         /* The instructions are well-emulated on direct mmu. */
5397         if (vcpu->arch.mmu.direct_map) {
5398                 unsigned int indirect_shadow_pages;
5399
5400                 spin_lock(&vcpu->kvm->mmu_lock);
5401                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5402                 spin_unlock(&vcpu->kvm->mmu_lock);
5403
5404                 if (indirect_shadow_pages)
5405                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5406
5407                 return true;
5408         }
5409
5410         /*
5411          * if emulation was due to access to shadowed page table
5412          * and it failed try to unshadow page and re-enter the
5413          * guest to let CPU execute the instruction.
5414          */
5415         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5416
5417         /*
5418          * If the access faults on its page table, it can not
5419          * be fixed by unprotecting shadow page and it should
5420          * be reported to userspace.
5421          */
5422         return !write_fault_to_shadow_pgtable;
5423 }
5424
5425 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5426                               unsigned long cr2,  int emulation_type)
5427 {
5428         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5429         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5430
5431         last_retry_eip = vcpu->arch.last_retry_eip;
5432         last_retry_addr = vcpu->arch.last_retry_addr;
5433
5434         /*
5435          * If the emulation is caused by #PF and it is non-page_table
5436          * writing instruction, it means the VM-EXIT is caused by shadow
5437          * page protected, we can zap the shadow page and retry this
5438          * instruction directly.
5439          *
5440          * Note: if the guest uses a non-page-table modifying instruction
5441          * on the PDE that points to the instruction, then we will unmap
5442          * the instruction and go to an infinite loop. So, we cache the
5443          * last retried eip and the last fault address, if we meet the eip
5444          * and the address again, we can break out of the potential infinite
5445          * loop.
5446          */
5447         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5448
5449         if (!(emulation_type & EMULTYPE_RETRY))
5450                 return false;
5451
5452         if (x86_page_table_writing_insn(ctxt))
5453                 return false;
5454
5455         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5456                 return false;
5457
5458         vcpu->arch.last_retry_eip = ctxt->eip;
5459         vcpu->arch.last_retry_addr = cr2;
5460
5461         if (!vcpu->arch.mmu.direct_map)
5462                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5463
5464         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5465
5466         return true;
5467 }
5468
5469 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5470 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5471
5472 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5473 {
5474         if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5475                 /* This is a good place to trace that we are exiting SMM.  */
5476                 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5477
5478                 /* Process a latched INIT or SMI, if any.  */
5479                 kvm_make_request(KVM_REQ_EVENT, vcpu);
5480         }
5481
5482         kvm_mmu_reset_context(vcpu);
5483 }
5484
5485 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5486 {
5487         unsigned changed = vcpu->arch.hflags ^ emul_flags;
5488
5489         vcpu->arch.hflags = emul_flags;
5490
5491         if (changed & HF_SMM_MASK)
5492                 kvm_smm_changed(vcpu);
5493 }
5494
5495 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5496                                 unsigned long *db)
5497 {
5498         u32 dr6 = 0;
5499         int i;
5500         u32 enable, rwlen;
5501
5502         enable = dr7;
5503         rwlen = dr7 >> 16;
5504         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5505                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5506                         dr6 |= (1 << i);
5507         return dr6;
5508 }
5509
5510 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5511 {
5512         struct kvm_run *kvm_run = vcpu->run;
5513
5514         /*
5515          * rflags is the old, "raw" value of the flags.  The new value has
5516          * not been saved yet.
5517          *
5518          * This is correct even for TF set by the guest, because "the
5519          * processor will not generate this exception after the instruction
5520          * that sets the TF flag".
5521          */
5522         if (unlikely(rflags & X86_EFLAGS_TF)) {
5523                 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5524                         kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5525                                                   DR6_RTM;
5526                         kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5527                         kvm_run->debug.arch.exception = DB_VECTOR;
5528                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5529                         *r = EMULATE_USER_EXIT;
5530                 } else {
5531                         /*
5532                          * "Certain debug exceptions may clear bit 0-3.  The
5533                          * remaining contents of the DR6 register are never
5534                          * cleared by the processor".
5535                          */
5536                         vcpu->arch.dr6 &= ~15;
5537                         vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5538                         kvm_queue_exception(vcpu, DB_VECTOR);
5539                 }
5540         }
5541 }
5542
5543 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
5544 {
5545         unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5546         int r = EMULATE_DONE;
5547
5548         kvm_x86_ops->skip_emulated_instruction(vcpu);
5549         kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5550         return r == EMULATE_DONE;
5551 }
5552 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
5553
5554 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5555 {
5556         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5557             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5558                 struct kvm_run *kvm_run = vcpu->run;
5559                 unsigned long eip = kvm_get_linear_rip(vcpu);
5560                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5561                                            vcpu->arch.guest_debug_dr7,
5562                                            vcpu->arch.eff_db);
5563
5564                 if (dr6 != 0) {
5565                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5566                         kvm_run->debug.arch.pc = eip;
5567                         kvm_run->debug.arch.exception = DB_VECTOR;
5568                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5569                         *r = EMULATE_USER_EXIT;
5570                         return true;
5571                 }
5572         }
5573
5574         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5575             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5576                 unsigned long eip = kvm_get_linear_rip(vcpu);
5577                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5578                                            vcpu->arch.dr7,
5579                                            vcpu->arch.db);
5580
5581                 if (dr6 != 0) {
5582                         vcpu->arch.dr6 &= ~15;
5583                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
5584                         kvm_queue_exception(vcpu, DB_VECTOR);
5585                         *r = EMULATE_DONE;
5586                         return true;
5587                 }
5588         }
5589
5590         return false;
5591 }
5592
5593 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5594                             unsigned long cr2,
5595                             int emulation_type,
5596                             void *insn,
5597                             int insn_len)
5598 {
5599         int r;
5600         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5601         bool writeback = true;
5602         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5603
5604         /*
5605          * Clear write_fault_to_shadow_pgtable here to ensure it is
5606          * never reused.
5607          */
5608         vcpu->arch.write_fault_to_shadow_pgtable = false;
5609         kvm_clear_exception_queue(vcpu);
5610
5611         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5612                 init_emulate_ctxt(vcpu);
5613
5614                 /*
5615                  * We will reenter on the same instruction since
5616                  * we do not set complete_userspace_io.  This does not
5617                  * handle watchpoints yet, those would be handled in
5618                  * the emulate_ops.
5619                  */
5620                 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5621                         return r;
5622
5623                 ctxt->interruptibility = 0;
5624                 ctxt->have_exception = false;
5625                 ctxt->exception.vector = -1;
5626                 ctxt->perm_ok = false;
5627
5628                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5629
5630                 r = x86_decode_insn(ctxt, insn, insn_len);
5631
5632                 trace_kvm_emulate_insn_start(vcpu);
5633                 ++vcpu->stat.insn_emulation;
5634                 if (r != EMULATION_OK)  {
5635                         if (emulation_type & EMULTYPE_TRAP_UD)
5636                                 return EMULATE_FAIL;
5637                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5638                                                 emulation_type))
5639                                 return EMULATE_DONE;
5640                         if (emulation_type & EMULTYPE_SKIP)
5641                                 return EMULATE_FAIL;
5642                         return handle_emulation_failure(vcpu);
5643                 }
5644         }
5645
5646         if (emulation_type & EMULTYPE_SKIP) {
5647                 kvm_rip_write(vcpu, ctxt->_eip);
5648                 if (ctxt->eflags & X86_EFLAGS_RF)
5649                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5650                 return EMULATE_DONE;
5651         }
5652
5653         if (retry_instruction(ctxt, cr2, emulation_type))
5654                 return EMULATE_DONE;
5655
5656         /* this is needed for vmware backdoor interface to work since it
5657            changes registers values  during IO operation */
5658         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5659                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5660                 emulator_invalidate_register_cache(ctxt);
5661         }
5662
5663 restart:
5664         /* Save the faulting GPA (cr2) in the address field */
5665         ctxt->exception.address = cr2;
5666
5667         r = x86_emulate_insn(ctxt);
5668
5669         if (r == EMULATION_INTERCEPTED)
5670                 return EMULATE_DONE;
5671
5672         if (r == EMULATION_FAILED) {
5673                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5674                                         emulation_type))
5675                         return EMULATE_DONE;
5676
5677                 return handle_emulation_failure(vcpu);
5678         }
5679
5680         if (ctxt->have_exception) {
5681                 r = EMULATE_DONE;
5682                 if (inject_emulated_exception(vcpu))
5683                         return r;
5684         } else if (vcpu->arch.pio.count) {
5685                 if (!vcpu->arch.pio.in) {
5686                         /* FIXME: return into emulator if single-stepping.  */
5687                         vcpu->arch.pio.count = 0;
5688                 } else {
5689                         writeback = false;
5690                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
5691                 }
5692                 r = EMULATE_USER_EXIT;
5693         } else if (vcpu->mmio_needed) {
5694                 if (!vcpu->mmio_is_write)
5695                         writeback = false;
5696                 r = EMULATE_USER_EXIT;
5697                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5698         } else if (r == EMULATION_RESTART)
5699                 goto restart;
5700         else
5701                 r = EMULATE_DONE;
5702
5703         if (writeback) {
5704                 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5705                 toggle_interruptibility(vcpu, ctxt->interruptibility);
5706                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5707                 kvm_rip_write(vcpu, ctxt->eip);
5708                 if (r == EMULATE_DONE)
5709                         kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5710                 if (!ctxt->have_exception ||
5711                     exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5712                         __kvm_set_rflags(vcpu, ctxt->eflags);
5713
5714                 /*
5715                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5716                  * do nothing, and it will be requested again as soon as
5717                  * the shadow expires.  But we still need to check here,
5718                  * because POPF has no interrupt shadow.
5719                  */
5720                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5721                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5722         } else
5723                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5724
5725         return r;
5726 }
5727 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5728
5729 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5730 {
5731         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5732         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5733                                             size, port, &val, 1);
5734         /* do not return to emulator after return from userspace */
5735         vcpu->arch.pio.count = 0;
5736         return ret;
5737 }
5738 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5739
5740 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
5741 {
5742         unsigned long val;
5743
5744         /* We should only ever be called with arch.pio.count equal to 1 */
5745         BUG_ON(vcpu->arch.pio.count != 1);
5746
5747         /* For size less than 4 we merge, else we zero extend */
5748         val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX)
5749                                         : 0;
5750
5751         /*
5752          * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
5753          * the copy and tracing
5754          */
5755         emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
5756                                  vcpu->arch.pio.port, &val, 1);
5757         kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5758
5759         return 1;
5760 }
5761
5762 int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, unsigned short port)
5763 {
5764         unsigned long val;
5765         int ret;
5766
5767         /* For size less than 4 we merge, else we zero extend */
5768         val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0;
5769
5770         ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
5771                                        &val, 1);
5772         if (ret) {
5773                 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5774                 return ret;
5775         }
5776
5777         vcpu->arch.complete_userspace_io = complete_fast_pio_in;
5778
5779         return 0;
5780 }
5781 EXPORT_SYMBOL_GPL(kvm_fast_pio_in);
5782
5783 static int kvmclock_cpu_down_prep(unsigned int cpu)
5784 {
5785         __this_cpu_write(cpu_tsc_khz, 0);
5786         return 0;
5787 }
5788
5789 static void tsc_khz_changed(void *data)
5790 {
5791         struct cpufreq_freqs *freq = data;
5792         unsigned long khz = 0;
5793
5794         if (data)
5795                 khz = freq->new;
5796         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5797                 khz = cpufreq_quick_get(raw_smp_processor_id());
5798         if (!khz)
5799                 khz = tsc_khz;
5800         __this_cpu_write(cpu_tsc_khz, khz);
5801 }
5802
5803 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5804                                      void *data)
5805 {
5806         struct cpufreq_freqs *freq = data;
5807         struct kvm *kvm;
5808         struct kvm_vcpu *vcpu;
5809         int i, send_ipi = 0;
5810
5811         /*
5812          * We allow guests to temporarily run on slowing clocks,
5813          * provided we notify them after, or to run on accelerating
5814          * clocks, provided we notify them before.  Thus time never
5815          * goes backwards.
5816          *
5817          * However, we have a problem.  We can't atomically update
5818          * the frequency of a given CPU from this function; it is
5819          * merely a notifier, which can be called from any CPU.
5820          * Changing the TSC frequency at arbitrary points in time
5821          * requires a recomputation of local variables related to
5822          * the TSC for each VCPU.  We must flag these local variables
5823          * to be updated and be sure the update takes place with the
5824          * new frequency before any guests proceed.
5825          *
5826          * Unfortunately, the combination of hotplug CPU and frequency
5827          * change creates an intractable locking scenario; the order
5828          * of when these callouts happen is undefined with respect to
5829          * CPU hotplug, and they can race with each other.  As such,
5830          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5831          * undefined; you can actually have a CPU frequency change take
5832          * place in between the computation of X and the setting of the
5833          * variable.  To protect against this problem, all updates of
5834          * the per_cpu tsc_khz variable are done in an interrupt
5835          * protected IPI, and all callers wishing to update the value
5836          * must wait for a synchronous IPI to complete (which is trivial
5837          * if the caller is on the CPU already).  This establishes the
5838          * necessary total order on variable updates.
5839          *
5840          * Note that because a guest time update may take place
5841          * anytime after the setting of the VCPU's request bit, the
5842          * correct TSC value must be set before the request.  However,
5843          * to ensure the update actually makes it to any guest which
5844          * starts running in hardware virtualization between the set
5845          * and the acquisition of the spinlock, we must also ping the
5846          * CPU after setting the request bit.
5847          *
5848          */
5849
5850         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5851                 return 0;
5852         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5853                 return 0;
5854
5855         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5856
5857         spin_lock(&kvm_lock);
5858         list_for_each_entry(kvm, &vm_list, vm_list) {
5859                 kvm_for_each_vcpu(i, vcpu, kvm) {
5860                         if (vcpu->cpu != freq->cpu)
5861                                 continue;
5862                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5863                         if (vcpu->cpu != smp_processor_id())
5864                                 send_ipi = 1;
5865                 }
5866         }
5867         spin_unlock(&kvm_lock);
5868
5869         if (freq->old < freq->new && send_ipi) {
5870                 /*
5871                  * We upscale the frequency.  Must make the guest
5872                  * doesn't see old kvmclock values while running with
5873                  * the new frequency, otherwise we risk the guest sees
5874                  * time go backwards.
5875                  *
5876                  * In case we update the frequency for another cpu
5877                  * (which might be in guest context) send an interrupt
5878                  * to kick the cpu out of guest context.  Next time
5879                  * guest context is entered kvmclock will be updated,
5880                  * so the guest will not see stale values.
5881                  */
5882                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5883         }
5884         return 0;
5885 }
5886
5887 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5888         .notifier_call  = kvmclock_cpufreq_notifier
5889 };
5890
5891 static int kvmclock_cpu_online(unsigned int cpu)
5892 {
5893         tsc_khz_changed(NULL);
5894         return 0;
5895 }
5896
5897 static void kvm_timer_init(void)
5898 {
5899         max_tsc_khz = tsc_khz;
5900
5901         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5902 #ifdef CONFIG_CPU_FREQ
5903                 struct cpufreq_policy policy;
5904                 int cpu;
5905
5906                 memset(&policy, 0, sizeof(policy));
5907                 cpu = get_cpu();
5908                 cpufreq_get_policy(&policy, cpu);
5909                 if (policy.cpuinfo.max_freq)
5910                         max_tsc_khz = policy.cpuinfo.max_freq;
5911                 put_cpu();
5912 #endif
5913                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5914                                           CPUFREQ_TRANSITION_NOTIFIER);
5915         }
5916         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5917
5918         cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
5919                           kvmclock_cpu_online, kvmclock_cpu_down_prep);
5920 }
5921
5922 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5923
5924 int kvm_is_in_guest(void)
5925 {
5926         return __this_cpu_read(current_vcpu) != NULL;
5927 }
5928
5929 static int kvm_is_user_mode(void)
5930 {
5931         int user_mode = 3;
5932
5933         if (__this_cpu_read(current_vcpu))
5934                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5935
5936         return user_mode != 0;
5937 }
5938
5939 static unsigned long kvm_get_guest_ip(void)
5940 {
5941         unsigned long ip = 0;
5942
5943         if (__this_cpu_read(current_vcpu))
5944                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5945
5946         return ip;
5947 }
5948
5949 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5950         .is_in_guest            = kvm_is_in_guest,
5951         .is_user_mode           = kvm_is_user_mode,
5952         .get_guest_ip           = kvm_get_guest_ip,
5953 };
5954
5955 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5956 {
5957         __this_cpu_write(current_vcpu, vcpu);
5958 }
5959 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5960
5961 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5962 {
5963         __this_cpu_write(current_vcpu, NULL);
5964 }
5965 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5966
5967 static void kvm_set_mmio_spte_mask(void)
5968 {
5969         u64 mask;
5970         int maxphyaddr = boot_cpu_data.x86_phys_bits;
5971
5972         /*
5973          * Set the reserved bits and the present bit of an paging-structure
5974          * entry to generate page fault with PFER.RSV = 1.
5975          */
5976          /* Mask the reserved physical address bits. */
5977         mask = rsvd_bits(maxphyaddr, 51);
5978
5979         /* Set the present bit. */
5980         mask |= 1ull;
5981
5982 #ifdef CONFIG_X86_64
5983         /*
5984          * If reserved bit is not supported, clear the present bit to disable
5985          * mmio page fault.
5986          */
5987         if (maxphyaddr == 52)
5988                 mask &= ~1ull;
5989 #endif
5990
5991         kvm_mmu_set_mmio_spte_mask(mask);
5992 }
5993
5994 #ifdef CONFIG_X86_64
5995 static void pvclock_gtod_update_fn(struct work_struct *work)
5996 {
5997         struct kvm *kvm;
5998
5999         struct kvm_vcpu *vcpu;
6000         int i;
6001
6002         spin_lock(&kvm_lock);
6003         list_for_each_entry(kvm, &vm_list, vm_list)
6004                 kvm_for_each_vcpu(i, vcpu, kvm)
6005                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6006         atomic_set(&kvm_guest_has_master_clock, 0);
6007         spin_unlock(&kvm_lock);
6008 }
6009
6010 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6011
6012 /*
6013  * Notification about pvclock gtod data update.
6014  */
6015 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6016                                void *priv)
6017 {
6018         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6019         struct timekeeper *tk = priv;
6020
6021         update_pvclock_gtod(tk);
6022
6023         /* disable master clock if host does not trust, or does not
6024          * use, TSC clocksource
6025          */
6026         if (gtod->clock.vclock_mode != VCLOCK_TSC &&
6027             atomic_read(&kvm_guest_has_master_clock) != 0)
6028                 queue_work(system_long_wq, &pvclock_gtod_work);
6029
6030         return 0;
6031 }
6032
6033 static struct notifier_block pvclock_gtod_notifier = {
6034         .notifier_call = pvclock_gtod_notify,
6035 };
6036 #endif
6037
6038 int kvm_arch_init(void *opaque)
6039 {
6040         int r;
6041         struct kvm_x86_ops *ops = opaque;
6042
6043         if (kvm_x86_ops) {
6044                 printk(KERN_ERR "kvm: already loaded the other module\n");
6045                 r = -EEXIST;
6046                 goto out;
6047         }
6048
6049         if (!ops->cpu_has_kvm_support()) {
6050                 printk(KERN_ERR "kvm: no hardware support\n");
6051                 r = -EOPNOTSUPP;
6052                 goto out;
6053         }
6054         if (ops->disabled_by_bios()) {
6055                 printk(KERN_ERR "kvm: disabled by bios\n");
6056                 r = -EOPNOTSUPP;
6057                 goto out;
6058         }
6059
6060         r = -ENOMEM;
6061         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
6062         if (!shared_msrs) {
6063                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
6064                 goto out;
6065         }
6066
6067         r = kvm_mmu_module_init();
6068         if (r)
6069                 goto out_free_percpu;
6070
6071         kvm_set_mmio_spte_mask();
6072
6073         kvm_x86_ops = ops;
6074
6075         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
6076                         PT_DIRTY_MASK, PT64_NX_MASK, 0,
6077                         PT_PRESENT_MASK, 0);
6078         kvm_timer_init();
6079
6080         perf_register_guest_info_callbacks(&kvm_guest_cbs);
6081
6082         if (boot_cpu_has(X86_FEATURE_XSAVE))
6083                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
6084
6085         kvm_lapic_init();
6086 #ifdef CONFIG_X86_64
6087         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6088 #endif
6089
6090         return 0;
6091
6092 out_free_percpu:
6093         free_percpu(shared_msrs);
6094 out:
6095         return r;
6096 }
6097
6098 void kvm_arch_exit(void)
6099 {
6100         kvm_lapic_exit();
6101         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6102
6103         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6104                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
6105                                             CPUFREQ_TRANSITION_NOTIFIER);
6106         cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
6107 #ifdef CONFIG_X86_64
6108         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
6109 #endif
6110         kvm_x86_ops = NULL;
6111         kvm_mmu_module_exit();
6112         free_percpu(shared_msrs);
6113 }
6114
6115 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
6116 {
6117         ++vcpu->stat.halt_exits;
6118         if (lapic_in_kernel(vcpu)) {
6119                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
6120                 return 1;
6121         } else {
6122                 vcpu->run->exit_reason = KVM_EXIT_HLT;
6123                 return 0;
6124         }
6125 }
6126 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
6127
6128 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
6129 {
6130         int ret = kvm_skip_emulated_instruction(vcpu);
6131         /*
6132          * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
6133          * KVM_EXIT_DEBUG here.
6134          */
6135         return kvm_vcpu_halt(vcpu) && ret;
6136 }
6137 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
6138
6139 #ifdef CONFIG_X86_64
6140 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
6141                                 unsigned long clock_type)
6142 {
6143         struct kvm_clock_pairing clock_pairing;
6144         struct timespec ts;
6145         u64 cycle;
6146         int ret;
6147
6148         if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
6149                 return -KVM_EOPNOTSUPP;
6150
6151         if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
6152                 return -KVM_EOPNOTSUPP;
6153
6154         clock_pairing.sec = ts.tv_sec;
6155         clock_pairing.nsec = ts.tv_nsec;
6156         clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
6157         clock_pairing.flags = 0;
6158
6159         ret = 0;
6160         if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
6161                             sizeof(struct kvm_clock_pairing)))
6162                 ret = -KVM_EFAULT;
6163
6164         return ret;
6165 }
6166 #endif
6167
6168 /*
6169  * kvm_pv_kick_cpu_op:  Kick a vcpu.
6170  *
6171  * @apicid - apicid of vcpu to be kicked.
6172  */
6173 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
6174 {
6175         struct kvm_lapic_irq lapic_irq;
6176
6177         lapic_irq.shorthand = 0;
6178         lapic_irq.dest_mode = 0;
6179         lapic_irq.dest_id = apicid;
6180         lapic_irq.msi_redir_hint = false;
6181
6182         lapic_irq.delivery_mode = APIC_DM_REMRD;
6183         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
6184 }
6185
6186 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
6187 {
6188         vcpu->arch.apicv_active = false;
6189         kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
6190 }
6191
6192 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
6193 {
6194         unsigned long nr, a0, a1, a2, a3, ret;
6195         int op_64_bit, r;
6196
6197         r = kvm_skip_emulated_instruction(vcpu);
6198
6199         if (kvm_hv_hypercall_enabled(vcpu->kvm))
6200                 return kvm_hv_hypercall(vcpu);
6201
6202         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
6203         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
6204         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
6205         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
6206         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
6207
6208         trace_kvm_hypercall(nr, a0, a1, a2, a3);
6209
6210         op_64_bit = is_64_bit_mode(vcpu);
6211         if (!op_64_bit) {
6212                 nr &= 0xFFFFFFFF;
6213                 a0 &= 0xFFFFFFFF;
6214                 a1 &= 0xFFFFFFFF;
6215                 a2 &= 0xFFFFFFFF;
6216                 a3 &= 0xFFFFFFFF;
6217         }
6218
6219         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
6220                 ret = -KVM_EPERM;
6221                 goto out;
6222         }
6223
6224         switch (nr) {
6225         case KVM_HC_VAPIC_POLL_IRQ:
6226                 ret = 0;
6227                 break;
6228         case KVM_HC_KICK_CPU:
6229                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6230                 ret = 0;
6231                 break;
6232 #ifdef CONFIG_X86_64
6233         case KVM_HC_CLOCK_PAIRING:
6234                 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
6235                 break;
6236 #endif
6237         default:
6238                 ret = -KVM_ENOSYS;
6239                 break;
6240         }
6241 out:
6242         if (!op_64_bit)
6243                 ret = (u32)ret;
6244         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6245         ++vcpu->stat.hypercalls;
6246         return r;
6247 }
6248 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6249
6250 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6251 {
6252         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6253         char instruction[3];
6254         unsigned long rip = kvm_rip_read(vcpu);
6255
6256         kvm_x86_ops->patch_hypercall(vcpu, instruction);
6257
6258         return emulator_write_emulated(ctxt, rip, instruction, 3,
6259                 &ctxt->exception);
6260 }
6261
6262 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6263 {
6264         return vcpu->run->request_interrupt_window &&
6265                 likely(!pic_in_kernel(vcpu->kvm));
6266 }
6267
6268 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6269 {
6270         struct kvm_run *kvm_run = vcpu->run;
6271
6272         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6273         kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6274         kvm_run->cr8 = kvm_get_cr8(vcpu);
6275         kvm_run->apic_base = kvm_get_apic_base(vcpu);
6276         kvm_run->ready_for_interrupt_injection =
6277                 pic_in_kernel(vcpu->kvm) ||
6278                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
6279 }
6280
6281 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6282 {
6283         int max_irr, tpr;
6284
6285         if (!kvm_x86_ops->update_cr8_intercept)
6286                 return;
6287
6288         if (!lapic_in_kernel(vcpu))
6289                 return;
6290
6291         if (vcpu->arch.apicv_active)
6292                 return;
6293
6294         if (!vcpu->arch.apic->vapic_addr)
6295                 max_irr = kvm_lapic_find_highest_irr(vcpu);
6296         else
6297                 max_irr = -1;
6298
6299         if (max_irr != -1)
6300                 max_irr >>= 4;
6301
6302         tpr = kvm_lapic_get_cr8(vcpu);
6303
6304         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6305 }
6306
6307 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6308 {
6309         int r;
6310
6311         /* try to reinject previous events if any */
6312         if (vcpu->arch.exception.pending) {
6313                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6314                                         vcpu->arch.exception.has_error_code,
6315                                         vcpu->arch.exception.error_code);
6316
6317                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6318                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6319                                              X86_EFLAGS_RF);
6320
6321                 if (vcpu->arch.exception.nr == DB_VECTOR &&
6322                     (vcpu->arch.dr7 & DR7_GD)) {
6323                         vcpu->arch.dr7 &= ~DR7_GD;
6324                         kvm_update_dr7(vcpu);
6325                 }
6326
6327                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
6328                                           vcpu->arch.exception.has_error_code,
6329                                           vcpu->arch.exception.error_code,
6330                                           vcpu->arch.exception.reinject);
6331                 return 0;
6332         }
6333
6334         if (vcpu->arch.nmi_injected) {
6335                 kvm_x86_ops->set_nmi(vcpu);
6336                 return 0;
6337         }
6338
6339         if (vcpu->arch.interrupt.pending) {
6340                 kvm_x86_ops->set_irq(vcpu);
6341                 return 0;
6342         }
6343
6344         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6345                 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6346                 if (r != 0)
6347                         return r;
6348         }
6349
6350         /* try to inject new event if pending */
6351         if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
6352                 vcpu->arch.smi_pending = false;
6353                 enter_smm(vcpu);
6354         } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6355                 --vcpu->arch.nmi_pending;
6356                 vcpu->arch.nmi_injected = true;
6357                 kvm_x86_ops->set_nmi(vcpu);
6358         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6359                 /*
6360                  * Because interrupts can be injected asynchronously, we are
6361                  * calling check_nested_events again here to avoid a race condition.
6362                  * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6363                  * proposal and current concerns.  Perhaps we should be setting
6364                  * KVM_REQ_EVENT only on certain events and not unconditionally?
6365                  */
6366                 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6367                         r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6368                         if (r != 0)
6369                                 return r;
6370                 }
6371                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6372                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6373                                             false);
6374                         kvm_x86_ops->set_irq(vcpu);
6375                 }
6376         }
6377
6378         return 0;
6379 }
6380
6381 static void process_nmi(struct kvm_vcpu *vcpu)
6382 {
6383         unsigned limit = 2;
6384
6385         /*
6386          * x86 is limited to one NMI running, and one NMI pending after it.
6387          * If an NMI is already in progress, limit further NMIs to just one.
6388          * Otherwise, allow two (and we'll inject the first one immediately).
6389          */
6390         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6391                 limit = 1;
6392
6393         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6394         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6395         kvm_make_request(KVM_REQ_EVENT, vcpu);
6396 }
6397
6398 #define put_smstate(type, buf, offset, val)                       \
6399         *(type *)((buf) + (offset) - 0x7e00) = val
6400
6401 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
6402 {
6403         u32 flags = 0;
6404         flags |= seg->g       << 23;
6405         flags |= seg->db      << 22;
6406         flags |= seg->l       << 21;
6407         flags |= seg->avl     << 20;
6408         flags |= seg->present << 15;
6409         flags |= seg->dpl     << 13;
6410         flags |= seg->s       << 12;
6411         flags |= seg->type    << 8;
6412         return flags;
6413 }
6414
6415 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6416 {
6417         struct kvm_segment seg;
6418         int offset;
6419
6420         kvm_get_segment(vcpu, &seg, n);
6421         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6422
6423         if (n < 3)
6424                 offset = 0x7f84 + n * 12;
6425         else
6426                 offset = 0x7f2c + (n - 3) * 12;
6427
6428         put_smstate(u32, buf, offset + 8, seg.base);
6429         put_smstate(u32, buf, offset + 4, seg.limit);
6430         put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
6431 }
6432
6433 #ifdef CONFIG_X86_64
6434 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6435 {
6436         struct kvm_segment seg;
6437         int offset;
6438         u16 flags;
6439
6440         kvm_get_segment(vcpu, &seg, n);
6441         offset = 0x7e00 + n * 16;
6442
6443         flags = enter_smm_get_segment_flags(&seg) >> 8;
6444         put_smstate(u16, buf, offset, seg.selector);
6445         put_smstate(u16, buf, offset + 2, flags);
6446         put_smstate(u32, buf, offset + 4, seg.limit);
6447         put_smstate(u64, buf, offset + 8, seg.base);
6448 }
6449 #endif
6450
6451 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6452 {
6453         struct desc_ptr dt;
6454         struct kvm_segment seg;
6455         unsigned long val;
6456         int i;
6457
6458         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6459         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6460         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6461         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6462
6463         for (i = 0; i < 8; i++)
6464                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6465
6466         kvm_get_dr(vcpu, 6, &val);
6467         put_smstate(u32, buf, 0x7fcc, (u32)val);
6468         kvm_get_dr(vcpu, 7, &val);
6469         put_smstate(u32, buf, 0x7fc8, (u32)val);
6470
6471         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6472         put_smstate(u32, buf, 0x7fc4, seg.selector);
6473         put_smstate(u32, buf, 0x7f64, seg.base);
6474         put_smstate(u32, buf, 0x7f60, seg.limit);
6475         put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
6476
6477         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6478         put_smstate(u32, buf, 0x7fc0, seg.selector);
6479         put_smstate(u32, buf, 0x7f80, seg.base);
6480         put_smstate(u32, buf, 0x7f7c, seg.limit);
6481         put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
6482
6483         kvm_x86_ops->get_gdt(vcpu, &dt);
6484         put_smstate(u32, buf, 0x7f74, dt.address);
6485         put_smstate(u32, buf, 0x7f70, dt.size);
6486
6487         kvm_x86_ops->get_idt(vcpu, &dt);
6488         put_smstate(u32, buf, 0x7f58, dt.address);
6489         put_smstate(u32, buf, 0x7f54, dt.size);
6490
6491         for (i = 0; i < 6; i++)
6492                 enter_smm_save_seg_32(vcpu, buf, i);
6493
6494         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6495
6496         /* revision id */
6497         put_smstate(u32, buf, 0x7efc, 0x00020000);
6498         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6499 }
6500
6501 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6502 {
6503 #ifdef CONFIG_X86_64
6504         struct desc_ptr dt;
6505         struct kvm_segment seg;
6506         unsigned long val;
6507         int i;
6508
6509         for (i = 0; i < 16; i++)
6510                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6511
6512         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6513         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6514
6515         kvm_get_dr(vcpu, 6, &val);
6516         put_smstate(u64, buf, 0x7f68, val);
6517         kvm_get_dr(vcpu, 7, &val);
6518         put_smstate(u64, buf, 0x7f60, val);
6519
6520         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6521         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6522         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6523
6524         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6525
6526         /* revision id */
6527         put_smstate(u32, buf, 0x7efc, 0x00020064);
6528
6529         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6530
6531         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6532         put_smstate(u16, buf, 0x7e90, seg.selector);
6533         put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
6534         put_smstate(u32, buf, 0x7e94, seg.limit);
6535         put_smstate(u64, buf, 0x7e98, seg.base);
6536
6537         kvm_x86_ops->get_idt(vcpu, &dt);
6538         put_smstate(u32, buf, 0x7e84, dt.size);
6539         put_smstate(u64, buf, 0x7e88, dt.address);
6540
6541         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6542         put_smstate(u16, buf, 0x7e70, seg.selector);
6543         put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
6544         put_smstate(u32, buf, 0x7e74, seg.limit);
6545         put_smstate(u64, buf, 0x7e78, seg.base);
6546
6547         kvm_x86_ops->get_gdt(vcpu, &dt);
6548         put_smstate(u32, buf, 0x7e64, dt.size);
6549         put_smstate(u64, buf, 0x7e68, dt.address);
6550
6551         for (i = 0; i < 6; i++)
6552                 enter_smm_save_seg_64(vcpu, buf, i);
6553 #else
6554         WARN_ON_ONCE(1);
6555 #endif
6556 }
6557
6558 static void enter_smm(struct kvm_vcpu *vcpu)
6559 {
6560         struct kvm_segment cs, ds;
6561         struct desc_ptr dt;
6562         char buf[512];
6563         u32 cr0;
6564
6565         trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6566         vcpu->arch.hflags |= HF_SMM_MASK;
6567         memset(buf, 0, 512);
6568         if (guest_cpuid_has_longmode(vcpu))
6569                 enter_smm_save_state_64(vcpu, buf);
6570         else
6571                 enter_smm_save_state_32(vcpu, buf);
6572
6573         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6574
6575         if (kvm_x86_ops->get_nmi_mask(vcpu))
6576                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6577         else
6578                 kvm_x86_ops->set_nmi_mask(vcpu, true);
6579
6580         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6581         kvm_rip_write(vcpu, 0x8000);
6582
6583         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6584         kvm_x86_ops->set_cr0(vcpu, cr0);
6585         vcpu->arch.cr0 = cr0;
6586
6587         kvm_x86_ops->set_cr4(vcpu, 0);
6588
6589         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
6590         dt.address = dt.size = 0;
6591         kvm_x86_ops->set_idt(vcpu, &dt);
6592
6593         __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6594
6595         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6596         cs.base = vcpu->arch.smbase;
6597
6598         ds.selector = 0;
6599         ds.base = 0;
6600
6601         cs.limit    = ds.limit = 0xffffffff;
6602         cs.type     = ds.type = 0x3;
6603         cs.dpl      = ds.dpl = 0;
6604         cs.db       = ds.db = 0;
6605         cs.s        = ds.s = 1;
6606         cs.l        = ds.l = 0;
6607         cs.g        = ds.g = 1;
6608         cs.avl      = ds.avl = 0;
6609         cs.present  = ds.present = 1;
6610         cs.unusable = ds.unusable = 0;
6611         cs.padding  = ds.padding = 0;
6612
6613         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6614         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6615         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6616         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6617         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6618         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6619
6620         if (guest_cpuid_has_longmode(vcpu))
6621                 kvm_x86_ops->set_efer(vcpu, 0);
6622
6623         kvm_update_cpuid(vcpu);
6624         kvm_mmu_reset_context(vcpu);
6625 }
6626
6627 static void process_smi(struct kvm_vcpu *vcpu)
6628 {
6629         vcpu->arch.smi_pending = true;
6630         kvm_make_request(KVM_REQ_EVENT, vcpu);
6631 }
6632
6633 void kvm_make_scan_ioapic_request(struct kvm *kvm)
6634 {
6635         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
6636 }
6637
6638 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6639 {
6640         u64 eoi_exit_bitmap[4];
6641
6642         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6643                 return;
6644
6645         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
6646
6647         if (irqchip_split(vcpu->kvm))
6648                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
6649         else {
6650                 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
6651                         kvm_x86_ops->sync_pir_to_irr(vcpu);
6652                 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
6653         }
6654         bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
6655                   vcpu_to_synic(vcpu)->vec_bitmap, 256);
6656         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6657 }
6658
6659 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6660 {
6661         ++vcpu->stat.tlb_flush;
6662         kvm_x86_ops->tlb_flush(vcpu);
6663 }
6664
6665 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6666 {
6667         struct page *page = NULL;
6668
6669         if (!lapic_in_kernel(vcpu))
6670                 return;
6671
6672         if (!kvm_x86_ops->set_apic_access_page_addr)
6673                 return;
6674
6675         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6676         if (is_error_page(page))
6677                 return;
6678         kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6679
6680         /*
6681          * Do not pin apic access page in memory, the MMU notifier
6682          * will call us again if it is migrated or swapped out.
6683          */
6684         put_page(page);
6685 }
6686 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6687
6688 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6689                                            unsigned long address)
6690 {
6691         /*
6692          * The physical address of apic access page is stored in the VMCS.
6693          * Update it when it becomes invalid.
6694          */
6695         if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6696                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6697 }
6698
6699 /*
6700  * Returns 1 to let vcpu_run() continue the guest execution loop without
6701  * exiting to the userspace.  Otherwise, the value will be returned to the
6702  * userspace.
6703  */
6704 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6705 {
6706         int r;
6707         bool req_int_win =
6708                 dm_request_for_irq_injection(vcpu) &&
6709                 kvm_cpu_accept_dm_intr(vcpu);
6710
6711         bool req_immediate_exit = false;
6712
6713         if (vcpu->requests) {
6714                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6715                         kvm_mmu_unload(vcpu);
6716                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6717                         __kvm_migrate_timers(vcpu);
6718                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6719                         kvm_gen_update_masterclock(vcpu->kvm);
6720                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6721                         kvm_gen_kvmclock_update(vcpu);
6722                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6723                         r = kvm_guest_time_update(vcpu);
6724                         if (unlikely(r))
6725                                 goto out;
6726                 }
6727                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6728                         kvm_mmu_sync_roots(vcpu);
6729                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6730                         kvm_vcpu_flush_tlb(vcpu);
6731                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6732                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6733                         r = 0;
6734                         goto out;
6735                 }
6736                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6737                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6738                         r = 0;
6739                         goto out;
6740                 }
6741                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6742                         /* Page is swapped out. Do synthetic halt */
6743                         vcpu->arch.apf.halted = true;
6744                         r = 1;
6745                         goto out;
6746                 }
6747                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6748                         record_steal_time(vcpu);
6749                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
6750                         process_smi(vcpu);
6751                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
6752                         process_nmi(vcpu);
6753                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
6754                         kvm_pmu_handle_event(vcpu);
6755                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
6756                         kvm_pmu_deliver_pmi(vcpu);
6757                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
6758                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
6759                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
6760                                      vcpu->arch.ioapic_handled_vectors)) {
6761                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
6762                                 vcpu->run->eoi.vector =
6763                                                 vcpu->arch.pending_ioapic_eoi;
6764                                 r = 0;
6765                                 goto out;
6766                         }
6767                 }
6768                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6769                         vcpu_scan_ioapic(vcpu);
6770                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6771                         kvm_vcpu_reload_apic_access_page(vcpu);
6772                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
6773                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6774                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
6775                         r = 0;
6776                         goto out;
6777                 }
6778                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
6779                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6780                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
6781                         r = 0;
6782                         goto out;
6783                 }
6784                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
6785                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
6786                         vcpu->run->hyperv = vcpu->arch.hyperv.exit;
6787                         r = 0;
6788                         goto out;
6789                 }
6790
6791                 /*
6792                  * KVM_REQ_HV_STIMER has to be processed after
6793                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
6794                  * depend on the guest clock being up-to-date
6795                  */
6796                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
6797                         kvm_hv_process_stimers(vcpu);
6798         }
6799
6800         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6801                 ++vcpu->stat.req_event;
6802                 kvm_apic_accept_events(vcpu);
6803                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6804                         r = 1;
6805                         goto out;
6806                 }
6807
6808                 if (inject_pending_event(vcpu, req_int_win) != 0)
6809                         req_immediate_exit = true;
6810                 else {
6811                         /* Enable NMI/IRQ window open exits if needed.
6812                          *
6813                          * SMIs have two cases: 1) they can be nested, and
6814                          * then there is nothing to do here because RSM will
6815                          * cause a vmexit anyway; 2) or the SMI can be pending
6816                          * because inject_pending_event has completed the
6817                          * injection of an IRQ or NMI from the previous vmexit,
6818                          * and then we request an immediate exit to inject the SMI.
6819                          */
6820                         if (vcpu->arch.smi_pending && !is_smm(vcpu))
6821                                 req_immediate_exit = true;
6822                         if (vcpu->arch.nmi_pending)
6823                                 kvm_x86_ops->enable_nmi_window(vcpu);
6824                         if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6825                                 kvm_x86_ops->enable_irq_window(vcpu);
6826                 }
6827
6828                 if (kvm_lapic_enabled(vcpu)) {
6829                         update_cr8_intercept(vcpu);
6830                         kvm_lapic_sync_to_vapic(vcpu);
6831                 }
6832         }
6833
6834         r = kvm_mmu_reload(vcpu);
6835         if (unlikely(r)) {
6836                 goto cancel_injection;
6837         }
6838
6839         preempt_disable();
6840
6841         kvm_x86_ops->prepare_guest_switch(vcpu);
6842         kvm_load_guest_fpu(vcpu);
6843
6844         /*
6845          * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
6846          * IPI are then delayed after guest entry, which ensures that they
6847          * result in virtual interrupt delivery.
6848          */
6849         local_irq_disable();
6850         vcpu->mode = IN_GUEST_MODE;
6851
6852         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6853
6854         /*
6855          * 1) We should set ->mode before checking ->requests.  Please see
6856          * the comment in kvm_vcpu_exiting_guest_mode().
6857          *
6858          * 2) For APICv, we should set ->mode before checking PIR.ON.  This
6859          * pairs with the memory barrier implicit in pi_test_and_set_on
6860          * (see vmx_deliver_posted_interrupt).
6861          *
6862          * 3) This also orders the write to mode from any reads to the page
6863          * tables done while the VCPU is running.  Please see the comment
6864          * in kvm_flush_remote_tlbs.
6865          */
6866         smp_mb__after_srcu_read_unlock();
6867
6868         /*
6869          * This handles the case where a posted interrupt was
6870          * notified with kvm_vcpu_kick.
6871          */
6872         if (kvm_lapic_enabled(vcpu)) {
6873                 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
6874                         kvm_x86_ops->sync_pir_to_irr(vcpu);
6875         }
6876
6877         if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6878             || need_resched() || signal_pending(current)) {
6879                 vcpu->mode = OUTSIDE_GUEST_MODE;
6880                 smp_wmb();
6881                 local_irq_enable();
6882                 preempt_enable();
6883                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6884                 r = 1;
6885                 goto cancel_injection;
6886         }
6887
6888         kvm_load_guest_xcr0(vcpu);
6889
6890         if (req_immediate_exit) {
6891                 kvm_make_request(KVM_REQ_EVENT, vcpu);
6892                 smp_send_reschedule(vcpu->cpu);
6893         }
6894
6895         trace_kvm_entry(vcpu->vcpu_id);
6896         wait_lapic_expire(vcpu);
6897         guest_enter_irqoff();
6898
6899         if (unlikely(vcpu->arch.switch_db_regs)) {
6900                 set_debugreg(0, 7);
6901                 set_debugreg(vcpu->arch.eff_db[0], 0);
6902                 set_debugreg(vcpu->arch.eff_db[1], 1);
6903                 set_debugreg(vcpu->arch.eff_db[2], 2);
6904                 set_debugreg(vcpu->arch.eff_db[3], 3);
6905                 set_debugreg(vcpu->arch.dr6, 6);
6906                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6907         }
6908
6909         kvm_x86_ops->run(vcpu);
6910
6911         /*
6912          * Do this here before restoring debug registers on the host.  And
6913          * since we do this before handling the vmexit, a DR access vmexit
6914          * can (a) read the correct value of the debug registers, (b) set
6915          * KVM_DEBUGREG_WONT_EXIT again.
6916          */
6917         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6918                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6919                 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6920                 kvm_update_dr0123(vcpu);
6921                 kvm_update_dr6(vcpu);
6922                 kvm_update_dr7(vcpu);
6923                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6924         }
6925
6926         /*
6927          * If the guest has used debug registers, at least dr7
6928          * will be disabled while returning to the host.
6929          * If we don't have active breakpoints in the host, we don't
6930          * care about the messed up debug address registers. But if
6931          * we have some of them active, restore the old state.
6932          */
6933         if (hw_breakpoint_active())
6934                 hw_breakpoint_restore();
6935
6936         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
6937
6938         vcpu->mode = OUTSIDE_GUEST_MODE;
6939         smp_wmb();
6940
6941         kvm_put_guest_xcr0(vcpu);
6942
6943         kvm_x86_ops->handle_external_intr(vcpu);
6944
6945         ++vcpu->stat.exits;
6946
6947         guest_exit_irqoff();
6948
6949         local_irq_enable();
6950         preempt_enable();
6951
6952         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6953
6954         /*
6955          * Profile KVM exit RIPs:
6956          */
6957         if (unlikely(prof_on == KVM_PROFILING)) {
6958                 unsigned long rip = kvm_rip_read(vcpu);
6959                 profile_hit(KVM_PROFILING, (void *)rip);
6960         }
6961
6962         if (unlikely(vcpu->arch.tsc_always_catchup))
6963                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6964
6965         if (vcpu->arch.apic_attention)
6966                 kvm_lapic_sync_from_vapic(vcpu);
6967
6968         r = kvm_x86_ops->handle_exit(vcpu);
6969         return r;
6970
6971 cancel_injection:
6972         kvm_x86_ops->cancel_injection(vcpu);
6973         if (unlikely(vcpu->arch.apic_attention))
6974                 kvm_lapic_sync_from_vapic(vcpu);
6975 out:
6976         return r;
6977 }
6978
6979 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
6980 {
6981         if (!kvm_arch_vcpu_runnable(vcpu) &&
6982             (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
6983                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6984                 kvm_vcpu_block(vcpu);
6985                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6986
6987                 if (kvm_x86_ops->post_block)
6988                         kvm_x86_ops->post_block(vcpu);
6989
6990                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
6991                         return 1;
6992         }
6993
6994         kvm_apic_accept_events(vcpu);
6995         switch(vcpu->arch.mp_state) {
6996         case KVM_MP_STATE_HALTED:
6997                 vcpu->arch.pv.pv_unhalted = false;
6998                 vcpu->arch.mp_state =
6999                         KVM_MP_STATE_RUNNABLE;
7000         case KVM_MP_STATE_RUNNABLE:
7001                 vcpu->arch.apf.halted = false;
7002                 break;
7003         case KVM_MP_STATE_INIT_RECEIVED:
7004                 break;
7005         default:
7006                 return -EINTR;
7007                 break;
7008         }
7009         return 1;
7010 }
7011
7012 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
7013 {
7014         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7015                 kvm_x86_ops->check_nested_events(vcpu, false);
7016
7017         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7018                 !vcpu->arch.apf.halted);
7019 }
7020
7021 static int vcpu_run(struct kvm_vcpu *vcpu)
7022 {
7023         int r;
7024         struct kvm *kvm = vcpu->kvm;
7025
7026         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7027
7028         for (;;) {
7029                 if (kvm_vcpu_running(vcpu)) {
7030                         r = vcpu_enter_guest(vcpu);
7031                 } else {
7032                         r = vcpu_block(kvm, vcpu);
7033                 }
7034
7035                 if (r <= 0)
7036                         break;
7037
7038                 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
7039                 if (kvm_cpu_has_pending_timer(vcpu))
7040                         kvm_inject_pending_timer_irqs(vcpu);
7041
7042                 if (dm_request_for_irq_injection(vcpu) &&
7043                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
7044                         r = 0;
7045                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
7046                         ++vcpu->stat.request_irq_exits;
7047                         break;
7048                 }
7049
7050                 kvm_check_async_pf_completion(vcpu);
7051
7052                 if (signal_pending(current)) {
7053                         r = -EINTR;
7054                         vcpu->run->exit_reason = KVM_EXIT_INTR;
7055                         ++vcpu->stat.signal_exits;
7056                         break;
7057                 }
7058                 if (need_resched()) {
7059                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7060                         cond_resched();
7061                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7062                 }
7063         }
7064
7065         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7066
7067         return r;
7068 }
7069
7070 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
7071 {
7072         int r;
7073         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7074         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
7075         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7076         if (r != EMULATE_DONE)
7077                 return 0;
7078         return 1;
7079 }
7080
7081 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
7082 {
7083         BUG_ON(!vcpu->arch.pio.count);
7084
7085         return complete_emulated_io(vcpu);
7086 }
7087
7088 /*
7089  * Implements the following, as a state machine:
7090  *
7091  * read:
7092  *   for each fragment
7093  *     for each mmio piece in the fragment
7094  *       write gpa, len
7095  *       exit
7096  *       copy data
7097  *   execute insn
7098  *
7099  * write:
7100  *   for each fragment
7101  *     for each mmio piece in the fragment
7102  *       write gpa, len
7103  *       copy data
7104  *       exit
7105  */
7106 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
7107 {
7108         struct kvm_run *run = vcpu->run;
7109         struct kvm_mmio_fragment *frag;
7110         unsigned len;
7111
7112         BUG_ON(!vcpu->mmio_needed);
7113
7114         /* Complete previous fragment */
7115         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
7116         len = min(8u, frag->len);
7117         if (!vcpu->mmio_is_write)
7118                 memcpy(frag->data, run->mmio.data, len);
7119
7120         if (frag->len <= 8) {
7121                 /* Switch to the next fragment. */
7122                 frag++;
7123                 vcpu->mmio_cur_fragment++;
7124         } else {
7125                 /* Go forward to the next mmio piece. */
7126                 frag->data += len;
7127                 frag->gpa += len;
7128                 frag->len -= len;
7129         }
7130
7131         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
7132                 vcpu->mmio_needed = 0;
7133
7134                 /* FIXME: return into emulator if single-stepping.  */
7135                 if (vcpu->mmio_is_write)
7136                         return 1;
7137                 vcpu->mmio_read_completed = 1;
7138                 return complete_emulated_io(vcpu);
7139         }
7140
7141         run->exit_reason = KVM_EXIT_MMIO;
7142         run->mmio.phys_addr = frag->gpa;
7143         if (vcpu->mmio_is_write)
7144                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
7145         run->mmio.len = min(8u, frag->len);
7146         run->mmio.is_write = vcpu->mmio_is_write;
7147         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7148         return 0;
7149 }
7150
7151
7152 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
7153 {
7154         struct fpu *fpu = &current->thread.fpu;
7155         int r;
7156         sigset_t sigsaved;
7157
7158         fpu__activate_curr(fpu);
7159
7160         if (vcpu->sigset_active)
7161                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
7162
7163         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
7164                 kvm_vcpu_block(vcpu);
7165                 kvm_apic_accept_events(vcpu);
7166                 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
7167                 r = -EAGAIN;
7168                 goto out;
7169         }
7170
7171         /* re-sync apic's tpr */
7172         if (!lapic_in_kernel(vcpu)) {
7173                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
7174                         r = -EINVAL;
7175                         goto out;
7176                 }
7177         }
7178
7179         if (unlikely(vcpu->arch.complete_userspace_io)) {
7180                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
7181                 vcpu->arch.complete_userspace_io = NULL;
7182                 r = cui(vcpu);
7183                 if (r <= 0)
7184                         goto out;
7185         } else
7186                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
7187
7188         if (kvm_run->immediate_exit)
7189                 r = -EINTR;
7190         else
7191                 r = vcpu_run(vcpu);
7192
7193 out:
7194         post_kvm_run_save(vcpu);
7195         if (vcpu->sigset_active)
7196                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
7197
7198         return r;
7199 }
7200
7201 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7202 {
7203         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
7204                 /*
7205                  * We are here if userspace calls get_regs() in the middle of
7206                  * instruction emulation. Registers state needs to be copied
7207                  * back from emulation context to vcpu. Userspace shouldn't do
7208                  * that usually, but some bad designed PV devices (vmware
7209                  * backdoor interface) need this to work
7210                  */
7211                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
7212                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7213         }
7214         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
7215         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
7216         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
7217         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
7218         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
7219         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
7220         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7221         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
7222 #ifdef CONFIG_X86_64
7223         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
7224         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
7225         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
7226         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
7227         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
7228         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
7229         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
7230         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
7231 #endif
7232
7233         regs->rip = kvm_rip_read(vcpu);
7234         regs->rflags = kvm_get_rflags(vcpu);
7235
7236         return 0;
7237 }
7238
7239 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7240 {
7241         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
7242         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7243
7244         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
7245         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
7246         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
7247         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
7248         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
7249         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
7250         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
7251         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
7252 #ifdef CONFIG_X86_64
7253         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
7254         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
7255         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
7256         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
7257         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
7258         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
7259         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
7260         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
7261 #endif
7262
7263         kvm_rip_write(vcpu, regs->rip);
7264         kvm_set_rflags(vcpu, regs->rflags);
7265
7266         vcpu->arch.exception.pending = false;
7267
7268         kvm_make_request(KVM_REQ_EVENT, vcpu);
7269
7270         return 0;
7271 }
7272
7273 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7274 {
7275         struct kvm_segment cs;
7276
7277         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7278         *db = cs.db;
7279         *l = cs.l;
7280 }
7281 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7282
7283 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7284                                   struct kvm_sregs *sregs)
7285 {
7286         struct desc_ptr dt;
7287
7288         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7289         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7290         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7291         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7292         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7293         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7294
7295         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7296         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7297
7298         kvm_x86_ops->get_idt(vcpu, &dt);
7299         sregs->idt.limit = dt.size;
7300         sregs->idt.base = dt.address;
7301         kvm_x86_ops->get_gdt(vcpu, &dt);
7302         sregs->gdt.limit = dt.size;
7303         sregs->gdt.base = dt.address;
7304
7305         sregs->cr0 = kvm_read_cr0(vcpu);
7306         sregs->cr2 = vcpu->arch.cr2;
7307         sregs->cr3 = kvm_read_cr3(vcpu);
7308         sregs->cr4 = kvm_read_cr4(vcpu);
7309         sregs->cr8 = kvm_get_cr8(vcpu);
7310         sregs->efer = vcpu->arch.efer;
7311         sregs->apic_base = kvm_get_apic_base(vcpu);
7312
7313         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7314
7315         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
7316                 set_bit(vcpu->arch.interrupt.nr,
7317                         (unsigned long *)sregs->interrupt_bitmap);
7318
7319         return 0;
7320 }
7321
7322 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7323                                     struct kvm_mp_state *mp_state)
7324 {
7325         kvm_apic_accept_events(vcpu);
7326         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7327                                         vcpu->arch.pv.pv_unhalted)
7328                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7329         else
7330                 mp_state->mp_state = vcpu->arch.mp_state;
7331
7332         return 0;
7333 }
7334
7335 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7336                                     struct kvm_mp_state *mp_state)
7337 {
7338         if (!lapic_in_kernel(vcpu) &&
7339             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7340                 return -EINVAL;
7341
7342         /* INITs are latched while in SMM */
7343         if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
7344             (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
7345              mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
7346                 return -EINVAL;
7347
7348         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7349                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7350                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7351         } else
7352                 vcpu->arch.mp_state = mp_state->mp_state;
7353         kvm_make_request(KVM_REQ_EVENT, vcpu);
7354         return 0;
7355 }
7356
7357 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7358                     int reason, bool has_error_code, u32 error_code)
7359 {
7360         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7361         int ret;
7362
7363         init_emulate_ctxt(vcpu);
7364
7365         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7366                                    has_error_code, error_code);
7367
7368         if (ret)
7369                 return EMULATE_FAIL;
7370
7371         kvm_rip_write(vcpu, ctxt->eip);
7372         kvm_set_rflags(vcpu, ctxt->eflags);
7373         kvm_make_request(KVM_REQ_EVENT, vcpu);
7374         return EMULATE_DONE;
7375 }
7376 EXPORT_SYMBOL_GPL(kvm_task_switch);
7377
7378 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7379                                   struct kvm_sregs *sregs)
7380 {
7381         struct msr_data apic_base_msr;
7382         int mmu_reset_needed = 0;
7383         int pending_vec, max_bits, idx;
7384         struct desc_ptr dt;
7385
7386         if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
7387                 return -EINVAL;
7388
7389         dt.size = sregs->idt.limit;
7390         dt.address = sregs->idt.base;
7391         kvm_x86_ops->set_idt(vcpu, &dt);
7392         dt.size = sregs->gdt.limit;
7393         dt.address = sregs->gdt.base;
7394         kvm_x86_ops->set_gdt(vcpu, &dt);
7395
7396         vcpu->arch.cr2 = sregs->cr2;
7397         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7398         vcpu->arch.cr3 = sregs->cr3;
7399         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7400
7401         kvm_set_cr8(vcpu, sregs->cr8);
7402
7403         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7404         kvm_x86_ops->set_efer(vcpu, sregs->efer);
7405         apic_base_msr.data = sregs->apic_base;
7406         apic_base_msr.host_initiated = true;
7407         kvm_set_apic_base(vcpu, &apic_base_msr);
7408
7409         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7410         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7411         vcpu->arch.cr0 = sregs->cr0;
7412
7413         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7414         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7415         if (sregs->cr4 & (X86_CR4_OSXSAVE | X86_CR4_PKE))
7416                 kvm_update_cpuid(vcpu);
7417
7418         idx = srcu_read_lock(&vcpu->kvm->srcu);
7419         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7420                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7421                 mmu_reset_needed = 1;
7422         }
7423         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7424
7425         if (mmu_reset_needed)
7426                 kvm_mmu_reset_context(vcpu);
7427
7428         max_bits = KVM_NR_INTERRUPTS;
7429         pending_vec = find_first_bit(
7430                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
7431         if (pending_vec < max_bits) {
7432                 kvm_queue_interrupt(vcpu, pending_vec, false);
7433                 pr_debug("Set back pending irq %d\n", pending_vec);
7434         }
7435
7436         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7437         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7438         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7439         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7440         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7441         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7442
7443         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7444         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7445
7446         update_cr8_intercept(vcpu);
7447
7448         /* Older userspace won't unhalt the vcpu on reset. */
7449         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7450             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7451             !is_protmode(vcpu))
7452                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7453
7454         kvm_make_request(KVM_REQ_EVENT, vcpu);
7455
7456         return 0;
7457 }
7458
7459 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7460                                         struct kvm_guest_debug *dbg)
7461 {
7462         unsigned long rflags;
7463         int i, r;
7464
7465         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7466                 r = -EBUSY;
7467                 if (vcpu->arch.exception.pending)
7468                         goto out;
7469                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7470                         kvm_queue_exception(vcpu, DB_VECTOR);
7471                 else
7472                         kvm_queue_exception(vcpu, BP_VECTOR);
7473         }
7474
7475         /*
7476          * Read rflags as long as potentially injected trace flags are still
7477          * filtered out.
7478          */
7479         rflags = kvm_get_rflags(vcpu);
7480
7481         vcpu->guest_debug = dbg->control;
7482         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7483                 vcpu->guest_debug = 0;
7484
7485         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7486                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
7487                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7488                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7489         } else {
7490                 for (i = 0; i < KVM_NR_DB_REGS; i++)
7491                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7492         }
7493         kvm_update_dr7(vcpu);
7494
7495         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7496                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7497                         get_segment_base(vcpu, VCPU_SREG_CS);
7498
7499         /*
7500          * Trigger an rflags update that will inject or remove the trace
7501          * flags.
7502          */
7503         kvm_set_rflags(vcpu, rflags);
7504
7505         kvm_x86_ops->update_bp_intercept(vcpu);
7506
7507         r = 0;
7508
7509 out:
7510
7511         return r;
7512 }
7513
7514 /*
7515  * Translate a guest virtual address to a guest physical address.
7516  */
7517 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7518                                     struct kvm_translation *tr)
7519 {
7520         unsigned long vaddr = tr->linear_address;
7521         gpa_t gpa;
7522         int idx;
7523
7524         idx = srcu_read_lock(&vcpu->kvm->srcu);
7525         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7526         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7527         tr->physical_address = gpa;
7528         tr->valid = gpa != UNMAPPED_GVA;
7529         tr->writeable = 1;
7530         tr->usermode = 0;
7531
7532         return 0;
7533 }
7534
7535 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7536 {
7537         struct fxregs_state *fxsave =
7538                         &vcpu->arch.guest_fpu.state.fxsave;
7539
7540         memcpy(fpu->fpr, fxsave->st_space, 128);
7541         fpu->fcw = fxsave->cwd;
7542         fpu->fsw = fxsave->swd;
7543         fpu->ftwx = fxsave->twd;
7544         fpu->last_opcode = fxsave->fop;
7545         fpu->last_ip = fxsave->rip;
7546         fpu->last_dp = fxsave->rdp;
7547         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7548
7549         return 0;
7550 }
7551
7552 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7553 {
7554         struct fxregs_state *fxsave =
7555                         &vcpu->arch.guest_fpu.state.fxsave;
7556
7557         memcpy(fxsave->st_space, fpu->fpr, 128);
7558         fxsave->cwd = fpu->fcw;
7559         fxsave->swd = fpu->fsw;
7560         fxsave->twd = fpu->ftwx;
7561         fxsave->fop = fpu->last_opcode;
7562         fxsave->rip = fpu->last_ip;
7563         fxsave->rdp = fpu->last_dp;
7564         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7565
7566         return 0;
7567 }
7568
7569 static void fx_init(struct kvm_vcpu *vcpu)
7570 {
7571         fpstate_init(&vcpu->arch.guest_fpu.state);
7572         if (boot_cpu_has(X86_FEATURE_XSAVES))
7573                 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7574                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
7575
7576         /*
7577          * Ensure guest xcr0 is valid for loading
7578          */
7579         vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7580
7581         vcpu->arch.cr0 |= X86_CR0_ET;
7582 }
7583
7584 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7585 {
7586         if (vcpu->guest_fpu_loaded)
7587                 return;
7588
7589         /*
7590          * Restore all possible states in the guest,
7591          * and assume host would use all available bits.
7592          * Guest xcr0 would be loaded later.
7593          */
7594         vcpu->guest_fpu_loaded = 1;
7595         __kernel_fpu_begin();
7596         __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state);
7597         trace_kvm_fpu(1);
7598 }
7599
7600 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7601 {
7602         if (!vcpu->guest_fpu_loaded)
7603                 return;
7604
7605         vcpu->guest_fpu_loaded = 0;
7606         copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7607         __kernel_fpu_end();
7608         ++vcpu->stat.fpu_reload;
7609         trace_kvm_fpu(0);
7610 }
7611
7612 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7613 {
7614         void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
7615
7616         kvmclock_reset(vcpu);
7617
7618         kvm_x86_ops->vcpu_free(vcpu);
7619         free_cpumask_var(wbinvd_dirty_mask);
7620 }
7621
7622 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7623                                                 unsigned int id)
7624 {
7625         struct kvm_vcpu *vcpu;
7626
7627         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7628                 printk_once(KERN_WARNING
7629                 "kvm: SMP vm created on host with unstable TSC; "
7630                 "guest TSC will not be reliable\n");
7631
7632         vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7633
7634         return vcpu;
7635 }
7636
7637 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7638 {
7639         int r;
7640
7641         kvm_vcpu_mtrr_init(vcpu);
7642         r = vcpu_load(vcpu);
7643         if (r)
7644                 return r;
7645         kvm_vcpu_reset(vcpu, false);
7646         kvm_mmu_setup(vcpu);
7647         vcpu_put(vcpu);
7648         return r;
7649 }
7650
7651 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7652 {
7653         struct msr_data msr;
7654         struct kvm *kvm = vcpu->kvm;
7655
7656         if (vcpu_load(vcpu))
7657                 return;
7658         msr.data = 0x0;
7659         msr.index = MSR_IA32_TSC;
7660         msr.host_initiated = true;
7661         kvm_write_tsc(vcpu, &msr);
7662         vcpu_put(vcpu);
7663
7664         if (!kvmclock_periodic_sync)
7665                 return;
7666
7667         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7668                                         KVMCLOCK_SYNC_PERIOD);
7669 }
7670
7671 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7672 {
7673         int r;
7674         vcpu->arch.apf.msr_val = 0;
7675
7676         r = vcpu_load(vcpu);
7677         BUG_ON(r);
7678         kvm_mmu_unload(vcpu);
7679         vcpu_put(vcpu);
7680
7681         kvm_x86_ops->vcpu_free(vcpu);
7682 }
7683
7684 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7685 {
7686         vcpu->arch.hflags = 0;
7687
7688         vcpu->arch.smi_pending = 0;
7689         atomic_set(&vcpu->arch.nmi_queued, 0);
7690         vcpu->arch.nmi_pending = 0;
7691         vcpu->arch.nmi_injected = false;
7692         kvm_clear_interrupt_queue(vcpu);
7693         kvm_clear_exception_queue(vcpu);
7694
7695         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7696         kvm_update_dr0123(vcpu);
7697         vcpu->arch.dr6 = DR6_INIT;
7698         kvm_update_dr6(vcpu);
7699         vcpu->arch.dr7 = DR7_FIXED_1;
7700         kvm_update_dr7(vcpu);
7701
7702         vcpu->arch.cr2 = 0;
7703
7704         kvm_make_request(KVM_REQ_EVENT, vcpu);
7705         vcpu->arch.apf.msr_val = 0;
7706         vcpu->arch.st.msr_val = 0;
7707
7708         kvmclock_reset(vcpu);
7709
7710         kvm_clear_async_pf_completion_queue(vcpu);
7711         kvm_async_pf_hash_reset(vcpu);
7712         vcpu->arch.apf.halted = false;
7713
7714         if (!init_event) {
7715                 kvm_pmu_reset(vcpu);
7716                 vcpu->arch.smbase = 0x30000;
7717
7718                 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
7719                 vcpu->arch.msr_misc_features_enables = 0;
7720         }
7721
7722         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7723         vcpu->arch.regs_avail = ~0;
7724         vcpu->arch.regs_dirty = ~0;
7725
7726         kvm_x86_ops->vcpu_reset(vcpu, init_event);
7727 }
7728
7729 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7730 {
7731         struct kvm_segment cs;
7732
7733         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7734         cs.selector = vector << 8;
7735         cs.base = vector << 12;
7736         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7737         kvm_rip_write(vcpu, 0);
7738 }
7739
7740 int kvm_arch_hardware_enable(void)
7741 {
7742         struct kvm *kvm;
7743         struct kvm_vcpu *vcpu;
7744         int i;
7745         int ret;
7746         u64 local_tsc;
7747         u64 max_tsc = 0;
7748         bool stable, backwards_tsc = false;
7749
7750         kvm_shared_msr_cpu_online();
7751         ret = kvm_x86_ops->hardware_enable();
7752         if (ret != 0)
7753                 return ret;
7754
7755         local_tsc = rdtsc();
7756         stable = !check_tsc_unstable();
7757         list_for_each_entry(kvm, &vm_list, vm_list) {
7758                 kvm_for_each_vcpu(i, vcpu, kvm) {
7759                         if (!stable && vcpu->cpu == smp_processor_id())
7760                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7761                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7762                                 backwards_tsc = true;
7763                                 if (vcpu->arch.last_host_tsc > max_tsc)
7764                                         max_tsc = vcpu->arch.last_host_tsc;
7765                         }
7766                 }
7767         }
7768
7769         /*
7770          * Sometimes, even reliable TSCs go backwards.  This happens on
7771          * platforms that reset TSC during suspend or hibernate actions, but
7772          * maintain synchronization.  We must compensate.  Fortunately, we can
7773          * detect that condition here, which happens early in CPU bringup,
7774          * before any KVM threads can be running.  Unfortunately, we can't
7775          * bring the TSCs fully up to date with real time, as we aren't yet far
7776          * enough into CPU bringup that we know how much real time has actually
7777          * elapsed; our helper function, ktime_get_boot_ns() will be using boot
7778          * variables that haven't been updated yet.
7779          *
7780          * So we simply find the maximum observed TSC above, then record the
7781          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
7782          * the adjustment will be applied.  Note that we accumulate
7783          * adjustments, in case multiple suspend cycles happen before some VCPU
7784          * gets a chance to run again.  In the event that no KVM threads get a
7785          * chance to run, we will miss the entire elapsed period, as we'll have
7786          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7787          * loose cycle time.  This isn't too big a deal, since the loss will be
7788          * uniform across all VCPUs (not to mention the scenario is extremely
7789          * unlikely). It is possible that a second hibernate recovery happens
7790          * much faster than a first, causing the observed TSC here to be
7791          * smaller; this would require additional padding adjustment, which is
7792          * why we set last_host_tsc to the local tsc observed here.
7793          *
7794          * N.B. - this code below runs only on platforms with reliable TSC,
7795          * as that is the only way backwards_tsc is set above.  Also note
7796          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7797          * have the same delta_cyc adjustment applied if backwards_tsc
7798          * is detected.  Note further, this adjustment is only done once,
7799          * as we reset last_host_tsc on all VCPUs to stop this from being
7800          * called multiple times (one for each physical CPU bringup).
7801          *
7802          * Platforms with unreliable TSCs don't have to deal with this, they
7803          * will be compensated by the logic in vcpu_load, which sets the TSC to
7804          * catchup mode.  This will catchup all VCPUs to real time, but cannot
7805          * guarantee that they stay in perfect synchronization.
7806          */
7807         if (backwards_tsc) {
7808                 u64 delta_cyc = max_tsc - local_tsc;
7809                 backwards_tsc_observed = true;
7810                 list_for_each_entry(kvm, &vm_list, vm_list) {
7811                         kvm_for_each_vcpu(i, vcpu, kvm) {
7812                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
7813                                 vcpu->arch.last_host_tsc = local_tsc;
7814                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7815                         }
7816
7817                         /*
7818                          * We have to disable TSC offset matching.. if you were
7819                          * booting a VM while issuing an S4 host suspend....
7820                          * you may have some problem.  Solving this issue is
7821                          * left as an exercise to the reader.
7822                          */
7823                         kvm->arch.last_tsc_nsec = 0;
7824                         kvm->arch.last_tsc_write = 0;
7825                 }
7826
7827         }
7828         return 0;
7829 }
7830
7831 void kvm_arch_hardware_disable(void)
7832 {
7833         kvm_x86_ops->hardware_disable();
7834         drop_user_return_notifiers();
7835 }
7836
7837 int kvm_arch_hardware_setup(void)
7838 {
7839         int r;
7840
7841         r = kvm_x86_ops->hardware_setup();
7842         if (r != 0)
7843                 return r;
7844
7845         if (kvm_has_tsc_control) {
7846                 /*
7847                  * Make sure the user can only configure tsc_khz values that
7848                  * fit into a signed integer.
7849                  * A min value is not calculated needed because it will always
7850                  * be 1 on all machines.
7851                  */
7852                 u64 max = min(0x7fffffffULL,
7853                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
7854                 kvm_max_guest_tsc_khz = max;
7855
7856                 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
7857         }
7858
7859         kvm_init_msr_list();
7860         return 0;
7861 }
7862
7863 void kvm_arch_hardware_unsetup(void)
7864 {
7865         kvm_x86_ops->hardware_unsetup();
7866 }
7867
7868 void kvm_arch_check_processor_compat(void *rtn)
7869 {
7870         kvm_x86_ops->check_processor_compatibility(rtn);
7871 }
7872
7873 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
7874 {
7875         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
7876 }
7877 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
7878
7879 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
7880 {
7881         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
7882 }
7883
7884 struct static_key kvm_no_apic_vcpu __read_mostly;
7885 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
7886
7887 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7888 {
7889         struct page *page;
7890         struct kvm *kvm;
7891         int r;
7892
7893         BUG_ON(vcpu->kvm == NULL);
7894         kvm = vcpu->kvm;
7895
7896         vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv();
7897         vcpu->arch.pv.pv_unhalted = false;
7898         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7899         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7900                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7901         else
7902                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7903
7904         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7905         if (!page) {
7906                 r = -ENOMEM;
7907                 goto fail;
7908         }
7909         vcpu->arch.pio_data = page_address(page);
7910
7911         kvm_set_tsc_khz(vcpu, max_tsc_khz);
7912
7913         r = kvm_mmu_create(vcpu);
7914         if (r < 0)
7915                 goto fail_free_pio_data;
7916
7917         if (irqchip_in_kernel(kvm)) {
7918                 r = kvm_create_lapic(vcpu);
7919                 if (r < 0)
7920                         goto fail_mmu_destroy;
7921         } else
7922                 static_key_slow_inc(&kvm_no_apic_vcpu);
7923
7924         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7925                                        GFP_KERNEL);
7926         if (!vcpu->arch.mce_banks) {
7927                 r = -ENOMEM;
7928                 goto fail_free_lapic;
7929         }
7930         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7931
7932         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7933                 r = -ENOMEM;
7934                 goto fail_free_mce_banks;
7935         }
7936
7937         fx_init(vcpu);
7938
7939         vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7940         vcpu->arch.pv_time_enabled = false;
7941
7942         vcpu->arch.guest_supported_xcr0 = 0;
7943         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7944
7945         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7946
7947         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
7948
7949         kvm_async_pf_hash_reset(vcpu);
7950         kvm_pmu_init(vcpu);
7951
7952         vcpu->arch.pending_external_vector = -1;
7953
7954         kvm_hv_vcpu_init(vcpu);
7955
7956         return 0;
7957
7958 fail_free_mce_banks:
7959         kfree(vcpu->arch.mce_banks);
7960 fail_free_lapic:
7961         kvm_free_lapic(vcpu);
7962 fail_mmu_destroy:
7963         kvm_mmu_destroy(vcpu);
7964 fail_free_pio_data:
7965         free_page((unsigned long)vcpu->arch.pio_data);
7966 fail:
7967         return r;
7968 }
7969
7970 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7971 {
7972         int idx;
7973
7974         kvm_hv_vcpu_uninit(vcpu);
7975         kvm_pmu_destroy(vcpu);
7976         kfree(vcpu->arch.mce_banks);
7977         kvm_free_lapic(vcpu);
7978         idx = srcu_read_lock(&vcpu->kvm->srcu);
7979         kvm_mmu_destroy(vcpu);
7980         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7981         free_page((unsigned long)vcpu->arch.pio_data);
7982         if (!lapic_in_kernel(vcpu))
7983                 static_key_slow_dec(&kvm_no_apic_vcpu);
7984 }
7985
7986 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7987 {
7988         kvm_x86_ops->sched_in(vcpu, cpu);
7989 }
7990
7991 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7992 {
7993         if (type)
7994                 return -EINVAL;
7995
7996         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
7997         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7998         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7999         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
8000         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
8001
8002         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
8003         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
8004         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
8005         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
8006                 &kvm->arch.irq_sources_bitmap);
8007
8008         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
8009         mutex_init(&kvm->arch.apic_map_lock);
8010         mutex_init(&kvm->arch.hyperv.hv_lock);
8011         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
8012
8013         kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
8014         pvclock_update_vm_gtod_copy(kvm);
8015
8016         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
8017         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
8018
8019         kvm_page_track_init(kvm);
8020         kvm_mmu_init_vm(kvm);
8021
8022         if (kvm_x86_ops->vm_init)
8023                 return kvm_x86_ops->vm_init(kvm);
8024
8025         return 0;
8026 }
8027
8028 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
8029 {
8030         int r;
8031         r = vcpu_load(vcpu);
8032         BUG_ON(r);
8033         kvm_mmu_unload(vcpu);
8034         vcpu_put(vcpu);
8035 }
8036
8037 static void kvm_free_vcpus(struct kvm *kvm)
8038 {
8039         unsigned int i;
8040         struct kvm_vcpu *vcpu;
8041
8042         /*
8043          * Unpin any mmu pages first.
8044          */
8045         kvm_for_each_vcpu(i, vcpu, kvm) {
8046                 kvm_clear_async_pf_completion_queue(vcpu);
8047                 kvm_unload_vcpu_mmu(vcpu);
8048         }
8049         kvm_for_each_vcpu(i, vcpu, kvm)
8050                 kvm_arch_vcpu_free(vcpu);
8051
8052         mutex_lock(&kvm->lock);
8053         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
8054                 kvm->vcpus[i] = NULL;
8055
8056         atomic_set(&kvm->online_vcpus, 0);
8057         mutex_unlock(&kvm->lock);
8058 }
8059
8060 void kvm_arch_sync_events(struct kvm *kvm)
8061 {
8062         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
8063         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
8064         kvm_free_pit(kvm);
8065 }
8066
8067 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8068 {
8069         int i, r;
8070         unsigned long hva;
8071         struct kvm_memslots *slots = kvm_memslots(kvm);
8072         struct kvm_memory_slot *slot, old;
8073
8074         /* Called with kvm->slots_lock held.  */
8075         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
8076                 return -EINVAL;
8077
8078         slot = id_to_memslot(slots, id);
8079         if (size) {
8080                 if (slot->npages)
8081                         return -EEXIST;
8082
8083                 /*
8084                  * MAP_SHARED to prevent internal slot pages from being moved
8085                  * by fork()/COW.
8086                  */
8087                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
8088                               MAP_SHARED | MAP_ANONYMOUS, 0);
8089                 if (IS_ERR((void *)hva))
8090                         return PTR_ERR((void *)hva);
8091         } else {
8092                 if (!slot->npages)
8093                         return 0;
8094
8095                 hva = 0;
8096         }
8097
8098         old = *slot;
8099         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
8100                 struct kvm_userspace_memory_region m;
8101
8102                 m.slot = id | (i << 16);
8103                 m.flags = 0;
8104                 m.guest_phys_addr = gpa;
8105                 m.userspace_addr = hva;
8106                 m.memory_size = size;
8107                 r = __kvm_set_memory_region(kvm, &m);
8108                 if (r < 0)
8109                         return r;
8110         }
8111
8112         if (!size) {
8113                 r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
8114                 WARN_ON(r < 0);
8115         }
8116
8117         return 0;
8118 }
8119 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
8120
8121 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8122 {
8123         int r;
8124
8125         mutex_lock(&kvm->slots_lock);
8126         r = __x86_set_memory_region(kvm, id, gpa, size);
8127         mutex_unlock(&kvm->slots_lock);
8128
8129         return r;
8130 }
8131 EXPORT_SYMBOL_GPL(x86_set_memory_region);
8132
8133 void kvm_arch_destroy_vm(struct kvm *kvm)
8134 {
8135         if (current->mm == kvm->mm) {
8136                 /*
8137                  * Free memory regions allocated on behalf of userspace,
8138                  * unless the the memory map has changed due to process exit
8139                  * or fd copying.
8140                  */
8141                 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
8142                 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
8143                 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
8144         }
8145         if (kvm_x86_ops->vm_destroy)
8146                 kvm_x86_ops->vm_destroy(kvm);
8147         kvm_pic_destroy(kvm);
8148         kvm_ioapic_destroy(kvm);
8149         kvm_free_vcpus(kvm);
8150         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
8151         kvm_mmu_uninit_vm(kvm);
8152         kvm_page_track_cleanup(kvm);
8153 }
8154
8155 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
8156                            struct kvm_memory_slot *dont)
8157 {
8158         int i;
8159
8160         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8161                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
8162                         kvfree(free->arch.rmap[i]);
8163                         free->arch.rmap[i] = NULL;
8164                 }
8165                 if (i == 0)
8166                         continue;
8167
8168                 if (!dont || free->arch.lpage_info[i - 1] !=
8169                              dont->arch.lpage_info[i - 1]) {
8170                         kvfree(free->arch.lpage_info[i - 1]);
8171                         free->arch.lpage_info[i - 1] = NULL;
8172                 }
8173         }
8174
8175         kvm_page_track_free_memslot(free, dont);
8176 }
8177
8178 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
8179                             unsigned long npages)
8180 {
8181         int i;
8182
8183         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8184                 struct kvm_lpage_info *linfo;
8185                 unsigned long ugfn;
8186                 int lpages;
8187                 int level = i + 1;
8188
8189                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
8190                                       slot->base_gfn, level) + 1;
8191
8192                 slot->arch.rmap[i] =
8193                         kvzalloc(lpages * sizeof(*slot->arch.rmap[i]), GFP_KERNEL);
8194                 if (!slot->arch.rmap[i])
8195                         goto out_free;
8196                 if (i == 0)
8197                         continue;
8198
8199                 linfo = kvzalloc(lpages * sizeof(*linfo), GFP_KERNEL);
8200                 if (!linfo)
8201                         goto out_free;
8202
8203                 slot->arch.lpage_info[i - 1] = linfo;
8204
8205                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
8206                         linfo[0].disallow_lpage = 1;
8207                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
8208                         linfo[lpages - 1].disallow_lpage = 1;
8209                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
8210                 /*
8211                  * If the gfn and userspace address are not aligned wrt each
8212                  * other, or if explicitly asked to, disable large page
8213                  * support for this slot
8214                  */
8215                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
8216                     !kvm_largepages_enabled()) {
8217                         unsigned long j;
8218
8219                         for (j = 0; j < lpages; ++j)
8220                                 linfo[j].disallow_lpage = 1;
8221                 }
8222         }
8223
8224         if (kvm_page_track_create_memslot(slot, npages))
8225                 goto out_free;
8226
8227         return 0;
8228
8229 out_free:
8230         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8231                 kvfree(slot->arch.rmap[i]);
8232                 slot->arch.rmap[i] = NULL;
8233                 if (i == 0)
8234                         continue;
8235
8236                 kvfree(slot->arch.lpage_info[i - 1]);
8237                 slot->arch.lpage_info[i - 1] = NULL;
8238         }
8239         return -ENOMEM;
8240 }
8241
8242 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
8243 {
8244         /*
8245          * memslots->generation has been incremented.
8246          * mmio generation may have reached its maximum value.
8247          */
8248         kvm_mmu_invalidate_mmio_sptes(kvm, slots);
8249 }
8250
8251 int kvm_arch_prepare_memory_region(struct kvm *kvm,
8252                                 struct kvm_memory_slot *memslot,
8253                                 const struct kvm_userspace_memory_region *mem,
8254                                 enum kvm_mr_change change)
8255 {
8256         return 0;
8257 }
8258
8259 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
8260                                      struct kvm_memory_slot *new)
8261 {
8262         /* Still write protect RO slot */
8263         if (new->flags & KVM_MEM_READONLY) {
8264                 kvm_mmu_slot_remove_write_access(kvm, new);
8265                 return;
8266         }
8267
8268         /*
8269          * Call kvm_x86_ops dirty logging hooks when they are valid.
8270          *
8271          * kvm_x86_ops->slot_disable_log_dirty is called when:
8272          *
8273          *  - KVM_MR_CREATE with dirty logging is disabled
8274          *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8275          *
8276          * The reason is, in case of PML, we need to set D-bit for any slots
8277          * with dirty logging disabled in order to eliminate unnecessary GPA
8278          * logging in PML buffer (and potential PML buffer full VMEXT). This
8279          * guarantees leaving PML enabled during guest's lifetime won't have
8280          * any additonal overhead from PML when guest is running with dirty
8281          * logging disabled for memory slots.
8282          *
8283          * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8284          * to dirty logging mode.
8285          *
8286          * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8287          *
8288          * In case of write protect:
8289          *
8290          * Write protect all pages for dirty logging.
8291          *
8292          * All the sptes including the large sptes which point to this
8293          * slot are set to readonly. We can not create any new large
8294          * spte on this slot until the end of the logging.
8295          *
8296          * See the comments in fast_page_fault().
8297          */
8298         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
8299                 if (kvm_x86_ops->slot_enable_log_dirty)
8300                         kvm_x86_ops->slot_enable_log_dirty(kvm, new);
8301                 else
8302                         kvm_mmu_slot_remove_write_access(kvm, new);
8303         } else {
8304                 if (kvm_x86_ops->slot_disable_log_dirty)
8305                         kvm_x86_ops->slot_disable_log_dirty(kvm, new);
8306         }
8307 }
8308
8309 void kvm_arch_commit_memory_region(struct kvm *kvm,
8310                                 const struct kvm_userspace_memory_region *mem,
8311                                 const struct kvm_memory_slot *old,
8312                                 const struct kvm_memory_slot *new,
8313                                 enum kvm_mr_change change)
8314 {
8315         int nr_mmu_pages = 0;
8316
8317         if (!kvm->arch.n_requested_mmu_pages)
8318                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
8319
8320         if (nr_mmu_pages)
8321                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
8322
8323         /*
8324          * Dirty logging tracks sptes in 4k granularity, meaning that large
8325          * sptes have to be split.  If live migration is successful, the guest
8326          * in the source machine will be destroyed and large sptes will be
8327          * created in the destination. However, if the guest continues to run
8328          * in the source machine (for example if live migration fails), small
8329          * sptes will remain around and cause bad performance.
8330          *
8331          * Scan sptes if dirty logging has been stopped, dropping those
8332          * which can be collapsed into a single large-page spte.  Later
8333          * page faults will create the large-page sptes.
8334          */
8335         if ((change != KVM_MR_DELETE) &&
8336                 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
8337                 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
8338                 kvm_mmu_zap_collapsible_sptes(kvm, new);
8339
8340         /*
8341          * Set up write protection and/or dirty logging for the new slot.
8342          *
8343          * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8344          * been zapped so no dirty logging staff is needed for old slot. For
8345          * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8346          * new and it's also covered when dealing with the new slot.
8347          *
8348          * FIXME: const-ify all uses of struct kvm_memory_slot.
8349          */
8350         if (change != KVM_MR_DELETE)
8351                 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8352 }
8353
8354 void kvm_arch_flush_shadow_all(struct kvm *kvm)
8355 {
8356         kvm_mmu_invalidate_zap_all_pages(kvm);
8357 }
8358
8359 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8360                                    struct kvm_memory_slot *slot)
8361 {
8362         kvm_page_track_flush_slot(kvm, slot);
8363 }
8364
8365 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
8366 {
8367         if (!list_empty_careful(&vcpu->async_pf.done))
8368                 return true;
8369
8370         if (kvm_apic_has_events(vcpu))
8371                 return true;
8372
8373         if (vcpu->arch.pv.pv_unhalted)
8374                 return true;
8375
8376         if (atomic_read(&vcpu->arch.nmi_queued))
8377                 return true;
8378
8379         if (kvm_test_request(KVM_REQ_SMI, vcpu))
8380                 return true;
8381
8382         if (kvm_arch_interrupt_allowed(vcpu) &&
8383             kvm_cpu_has_interrupt(vcpu))
8384                 return true;
8385
8386         if (kvm_hv_has_stimer_pending(vcpu))
8387                 return true;
8388
8389         return false;
8390 }
8391
8392 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8393 {
8394         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8395 }
8396
8397 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8398 {
8399         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8400 }
8401
8402 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8403 {
8404         return kvm_x86_ops->interrupt_allowed(vcpu);
8405 }
8406
8407 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8408 {
8409         if (is_64_bit_mode(vcpu))
8410                 return kvm_rip_read(vcpu);
8411         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8412                      kvm_rip_read(vcpu));
8413 }
8414 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8415
8416 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8417 {
8418         return kvm_get_linear_rip(vcpu) == linear_rip;
8419 }
8420 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8421
8422 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8423 {
8424         unsigned long rflags;
8425
8426         rflags = kvm_x86_ops->get_rflags(vcpu);
8427         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8428                 rflags &= ~X86_EFLAGS_TF;
8429         return rflags;
8430 }
8431 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8432
8433 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8434 {
8435         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8436             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8437                 rflags |= X86_EFLAGS_TF;
8438         kvm_x86_ops->set_rflags(vcpu, rflags);
8439 }
8440
8441 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8442 {
8443         __kvm_set_rflags(vcpu, rflags);
8444         kvm_make_request(KVM_REQ_EVENT, vcpu);
8445 }
8446 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8447
8448 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8449 {
8450         int r;
8451
8452         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8453               work->wakeup_all)
8454                 return;
8455
8456         r = kvm_mmu_reload(vcpu);
8457         if (unlikely(r))
8458                 return;
8459
8460         if (!vcpu->arch.mmu.direct_map &&
8461               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8462                 return;
8463
8464         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8465 }
8466
8467 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8468 {
8469         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8470 }
8471
8472 static inline u32 kvm_async_pf_next_probe(u32 key)
8473 {
8474         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8475 }
8476
8477 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8478 {
8479         u32 key = kvm_async_pf_hash_fn(gfn);
8480
8481         while (vcpu->arch.apf.gfns[key] != ~0)
8482                 key = kvm_async_pf_next_probe(key);
8483
8484         vcpu->arch.apf.gfns[key] = gfn;
8485 }
8486
8487 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8488 {
8489         int i;
8490         u32 key = kvm_async_pf_hash_fn(gfn);
8491
8492         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8493                      (vcpu->arch.apf.gfns[key] != gfn &&
8494                       vcpu->arch.apf.gfns[key] != ~0); i++)
8495                 key = kvm_async_pf_next_probe(key);
8496
8497         return key;
8498 }
8499
8500 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8501 {
8502         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8503 }
8504
8505 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8506 {
8507         u32 i, j, k;
8508
8509         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8510         while (true) {
8511                 vcpu->arch.apf.gfns[i] = ~0;
8512                 do {
8513                         j = kvm_async_pf_next_probe(j);
8514                         if (vcpu->arch.apf.gfns[j] == ~0)
8515                                 return;
8516                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8517                         /*
8518                          * k lies cyclically in ]i,j]
8519                          * |    i.k.j |
8520                          * |....j i.k.| or  |.k..j i...|
8521                          */
8522                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8523                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8524                 i = j;
8525         }
8526 }
8527
8528 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8529 {
8530
8531         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8532                                       sizeof(val));
8533 }
8534
8535 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8536                                      struct kvm_async_pf *work)
8537 {
8538         struct x86_exception fault;
8539
8540         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8541         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8542
8543         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8544             (vcpu->arch.apf.send_user_only &&
8545              kvm_x86_ops->get_cpl(vcpu) == 0))
8546                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8547         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8548                 fault.vector = PF_VECTOR;
8549                 fault.error_code_valid = true;
8550                 fault.error_code = 0;
8551                 fault.nested_page_fault = false;
8552                 fault.address = work->arch.token;
8553                 kvm_inject_page_fault(vcpu, &fault);
8554         }
8555 }
8556
8557 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8558                                  struct kvm_async_pf *work)
8559 {
8560         struct x86_exception fault;
8561
8562         if (work->wakeup_all)
8563                 work->arch.token = ~0; /* broadcast wakeup */
8564         else
8565                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8566         trace_kvm_async_pf_ready(work->arch.token, work->gva);
8567
8568         if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
8569             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8570                 fault.vector = PF_VECTOR;
8571                 fault.error_code_valid = true;
8572                 fault.error_code = 0;
8573                 fault.nested_page_fault = false;
8574                 fault.address = work->arch.token;
8575                 kvm_inject_page_fault(vcpu, &fault);
8576         }
8577         vcpu->arch.apf.halted = false;
8578         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8579 }
8580
8581 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8582 {
8583         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8584                 return true;
8585         else
8586                 return !kvm_event_needs_reinjection(vcpu) &&
8587                         kvm_x86_ops->interrupt_allowed(vcpu);
8588 }
8589
8590 void kvm_arch_start_assignment(struct kvm *kvm)
8591 {
8592         atomic_inc(&kvm->arch.assigned_device_count);
8593 }
8594 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
8595
8596 void kvm_arch_end_assignment(struct kvm *kvm)
8597 {
8598         atomic_dec(&kvm->arch.assigned_device_count);
8599 }
8600 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
8601
8602 bool kvm_arch_has_assigned_device(struct kvm *kvm)
8603 {
8604         return atomic_read(&kvm->arch.assigned_device_count);
8605 }
8606 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8607
8608 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8609 {
8610         atomic_inc(&kvm->arch.noncoherent_dma_count);
8611 }
8612 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8613
8614 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8615 {
8616         atomic_dec(&kvm->arch.noncoherent_dma_count);
8617 }
8618 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8619
8620 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8621 {
8622         return atomic_read(&kvm->arch.noncoherent_dma_count);
8623 }
8624 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8625
8626 bool kvm_arch_has_irq_bypass(void)
8627 {
8628         return kvm_x86_ops->update_pi_irte != NULL;
8629 }
8630
8631 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
8632                                       struct irq_bypass_producer *prod)
8633 {
8634         struct kvm_kernel_irqfd *irqfd =
8635                 container_of(cons, struct kvm_kernel_irqfd, consumer);
8636
8637         irqfd->producer = prod;
8638
8639         return kvm_x86_ops->update_pi_irte(irqfd->kvm,
8640                                            prod->irq, irqfd->gsi, 1);
8641 }
8642
8643 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
8644                                       struct irq_bypass_producer *prod)
8645 {
8646         int ret;
8647         struct kvm_kernel_irqfd *irqfd =
8648                 container_of(cons, struct kvm_kernel_irqfd, consumer);
8649
8650         WARN_ON(irqfd->producer != prod);
8651         irqfd->producer = NULL;
8652
8653         /*
8654          * When producer of consumer is unregistered, we change back to
8655          * remapped mode, so we can re-use the current implementation
8656          * when the irq is masked/disabled or the consumer side (KVM
8657          * int this case doesn't want to receive the interrupts.
8658         */
8659         ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
8660         if (ret)
8661                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
8662                        " fails: %d\n", irqfd->consumer.token, ret);
8663 }
8664
8665 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
8666                                    uint32_t guest_irq, bool set)
8667 {
8668         if (!kvm_x86_ops->update_pi_irte)
8669                 return -EINVAL;
8670
8671         return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
8672 }
8673
8674 bool kvm_vector_hashing_enabled(void)
8675 {
8676         return vector_hashing;
8677 }
8678 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
8679
8680 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8681 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
8682 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8683 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8684 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8685 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8686 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8687 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8688 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8689 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8690 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8691 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8692 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8693 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8694 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8695 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
8696 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
8697 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
8698 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);