KVM: x86: handle guest access to BBL_CR_CTL3 MSR
[platform/adaptation/renesas_rcar/renesas_kernel.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29
30 #include <linux/clocksource.h>
31 #include <linux/interrupt.h>
32 #include <linux/kvm.h>
33 #include <linux/fs.h>
34 #include <linux/vmalloc.h>
35 #include <linux/module.h>
36 #include <linux/mman.h>
37 #include <linux/highmem.h>
38 #include <linux/iommu.h>
39 #include <linux/intel-iommu.h>
40 #include <linux/cpufreq.h>
41 #include <linux/user-return-notifier.h>
42 #include <linux/srcu.h>
43 #include <linux/slab.h>
44 #include <linux/perf_event.h>
45 #include <linux/uaccess.h>
46 #include <linux/hash.h>
47 #include <trace/events/kvm.h>
48
49 #define CREATE_TRACE_POINTS
50 #include "trace.h"
51
52 #include <asm/debugreg.h>
53 #include <asm/msr.h>
54 #include <asm/desc.h>
55 #include <asm/mtrr.h>
56 #include <asm/mce.h>
57 #include <asm/i387.h>
58 #include <asm/xcr.h>
59 #include <asm/pvclock.h>
60 #include <asm/div64.h>
61
62 #define MAX_IO_MSRS 256
63 #define CR0_RESERVED_BITS                                               \
64         (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
65                           | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
66                           | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
67 #define CR4_RESERVED_BITS                                               \
68         (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
69                           | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE     \
70                           | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR  \
71                           | X86_CR4_OSXSAVE \
72                           | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
73
74 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
75
76 #define KVM_MAX_MCE_BANKS 32
77 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
78
79 /* EFER defaults:
80  * - enable syscall per default because its emulated by KVM
81  * - enable LME and LMA per default on 64 bit KVM
82  */
83 #ifdef CONFIG_X86_64
84 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
85 #else
86 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
87 #endif
88
89 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
90 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
91
92 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
93 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
94                                     struct kvm_cpuid_entry2 __user *entries);
95
96 struct kvm_x86_ops *kvm_x86_ops;
97 EXPORT_SYMBOL_GPL(kvm_x86_ops);
98
99 int ignore_msrs = 0;
100 module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
101
102 #define KVM_NR_SHARED_MSRS 16
103
104 struct kvm_shared_msrs_global {
105         int nr;
106         u32 msrs[KVM_NR_SHARED_MSRS];
107 };
108
109 struct kvm_shared_msrs {
110         struct user_return_notifier urn;
111         bool registered;
112         struct kvm_shared_msr_values {
113                 u64 host;
114                 u64 curr;
115         } values[KVM_NR_SHARED_MSRS];
116 };
117
118 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
119 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
120
121 struct kvm_stats_debugfs_item debugfs_entries[] = {
122         { "pf_fixed", VCPU_STAT(pf_fixed) },
123         { "pf_guest", VCPU_STAT(pf_guest) },
124         { "tlb_flush", VCPU_STAT(tlb_flush) },
125         { "invlpg", VCPU_STAT(invlpg) },
126         { "exits", VCPU_STAT(exits) },
127         { "io_exits", VCPU_STAT(io_exits) },
128         { "mmio_exits", VCPU_STAT(mmio_exits) },
129         { "signal_exits", VCPU_STAT(signal_exits) },
130         { "irq_window", VCPU_STAT(irq_window_exits) },
131         { "nmi_window", VCPU_STAT(nmi_window_exits) },
132         { "halt_exits", VCPU_STAT(halt_exits) },
133         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
134         { "hypercalls", VCPU_STAT(hypercalls) },
135         { "request_irq", VCPU_STAT(request_irq_exits) },
136         { "irq_exits", VCPU_STAT(irq_exits) },
137         { "host_state_reload", VCPU_STAT(host_state_reload) },
138         { "efer_reload", VCPU_STAT(efer_reload) },
139         { "fpu_reload", VCPU_STAT(fpu_reload) },
140         { "insn_emulation", VCPU_STAT(insn_emulation) },
141         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
142         { "irq_injections", VCPU_STAT(irq_injections) },
143         { "nmi_injections", VCPU_STAT(nmi_injections) },
144         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
145         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
146         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
147         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
148         { "mmu_flooded", VM_STAT(mmu_flooded) },
149         { "mmu_recycled", VM_STAT(mmu_recycled) },
150         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
151         { "mmu_unsync", VM_STAT(mmu_unsync) },
152         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
153         { "largepages", VM_STAT(lpages) },
154         { NULL }
155 };
156
157 u64 __read_mostly host_xcr0;
158
159 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
160 {
161         int i;
162         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
163                 vcpu->arch.apf.gfns[i] = ~0;
164 }
165
166 static void kvm_on_user_return(struct user_return_notifier *urn)
167 {
168         unsigned slot;
169         struct kvm_shared_msrs *locals
170                 = container_of(urn, struct kvm_shared_msrs, urn);
171         struct kvm_shared_msr_values *values;
172
173         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
174                 values = &locals->values[slot];
175                 if (values->host != values->curr) {
176                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
177                         values->curr = values->host;
178                 }
179         }
180         locals->registered = false;
181         user_return_notifier_unregister(urn);
182 }
183
184 static void shared_msr_update(unsigned slot, u32 msr)
185 {
186         struct kvm_shared_msrs *smsr;
187         u64 value;
188
189         smsr = &__get_cpu_var(shared_msrs);
190         /* only read, and nobody should modify it at this time,
191          * so don't need lock */
192         if (slot >= shared_msrs_global.nr) {
193                 printk(KERN_ERR "kvm: invalid MSR slot!");
194                 return;
195         }
196         rdmsrl_safe(msr, &value);
197         smsr->values[slot].host = value;
198         smsr->values[slot].curr = value;
199 }
200
201 void kvm_define_shared_msr(unsigned slot, u32 msr)
202 {
203         if (slot >= shared_msrs_global.nr)
204                 shared_msrs_global.nr = slot + 1;
205         shared_msrs_global.msrs[slot] = msr;
206         /* we need ensured the shared_msr_global have been updated */
207         smp_wmb();
208 }
209 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
210
211 static void kvm_shared_msr_cpu_online(void)
212 {
213         unsigned i;
214
215         for (i = 0; i < shared_msrs_global.nr; ++i)
216                 shared_msr_update(i, shared_msrs_global.msrs[i]);
217 }
218
219 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
220 {
221         struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
222
223         if (((value ^ smsr->values[slot].curr) & mask) == 0)
224                 return;
225         smsr->values[slot].curr = value;
226         wrmsrl(shared_msrs_global.msrs[slot], value);
227         if (!smsr->registered) {
228                 smsr->urn.on_user_return = kvm_on_user_return;
229                 user_return_notifier_register(&smsr->urn);
230                 smsr->registered = true;
231         }
232 }
233 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
234
235 static void drop_user_return_notifiers(void *ignore)
236 {
237         struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
238
239         if (smsr->registered)
240                 kvm_on_user_return(&smsr->urn);
241 }
242
243 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
244 {
245         if (irqchip_in_kernel(vcpu->kvm))
246                 return vcpu->arch.apic_base;
247         else
248                 return vcpu->arch.apic_base;
249 }
250 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
251
252 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
253 {
254         /* TODO: reserve bits check */
255         if (irqchip_in_kernel(vcpu->kvm))
256                 kvm_lapic_set_base(vcpu, data);
257         else
258                 vcpu->arch.apic_base = data;
259 }
260 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
261
262 #define EXCPT_BENIGN            0
263 #define EXCPT_CONTRIBUTORY      1
264 #define EXCPT_PF                2
265
266 static int exception_class(int vector)
267 {
268         switch (vector) {
269         case PF_VECTOR:
270                 return EXCPT_PF;
271         case DE_VECTOR:
272         case TS_VECTOR:
273         case NP_VECTOR:
274         case SS_VECTOR:
275         case GP_VECTOR:
276                 return EXCPT_CONTRIBUTORY;
277         default:
278                 break;
279         }
280         return EXCPT_BENIGN;
281 }
282
283 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
284                 unsigned nr, bool has_error, u32 error_code,
285                 bool reinject)
286 {
287         u32 prev_nr;
288         int class1, class2;
289
290         kvm_make_request(KVM_REQ_EVENT, vcpu);
291
292         if (!vcpu->arch.exception.pending) {
293         queue:
294                 vcpu->arch.exception.pending = true;
295                 vcpu->arch.exception.has_error_code = has_error;
296                 vcpu->arch.exception.nr = nr;
297                 vcpu->arch.exception.error_code = error_code;
298                 vcpu->arch.exception.reinject = reinject;
299                 return;
300         }
301
302         /* to check exception */
303         prev_nr = vcpu->arch.exception.nr;
304         if (prev_nr == DF_VECTOR) {
305                 /* triple fault -> shutdown */
306                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
307                 return;
308         }
309         class1 = exception_class(prev_nr);
310         class2 = exception_class(nr);
311         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
312                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
313                 /* generate double fault per SDM Table 5-5 */
314                 vcpu->arch.exception.pending = true;
315                 vcpu->arch.exception.has_error_code = true;
316                 vcpu->arch.exception.nr = DF_VECTOR;
317                 vcpu->arch.exception.error_code = 0;
318         } else
319                 /* replace previous exception with a new one in a hope
320                    that instruction re-execution will regenerate lost
321                    exception */
322                 goto queue;
323 }
324
325 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
326 {
327         kvm_multiple_exception(vcpu, nr, false, 0, false);
328 }
329 EXPORT_SYMBOL_GPL(kvm_queue_exception);
330
331 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
332 {
333         kvm_multiple_exception(vcpu, nr, false, 0, true);
334 }
335 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
336
337 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
338 {
339         if (err)
340                 kvm_inject_gp(vcpu, 0);
341         else
342                 kvm_x86_ops->skip_emulated_instruction(vcpu);
343 }
344 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
345
346 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
347 {
348         ++vcpu->stat.pf_guest;
349         vcpu->arch.cr2 = fault->address;
350         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
351 }
352
353 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
354 {
355         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
356                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
357         else
358                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
359 }
360
361 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
362 {
363         kvm_make_request(KVM_REQ_EVENT, vcpu);
364         vcpu->arch.nmi_pending = 1;
365 }
366 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
367
368 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
369 {
370         kvm_multiple_exception(vcpu, nr, true, error_code, false);
371 }
372 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
373
374 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
375 {
376         kvm_multiple_exception(vcpu, nr, true, error_code, true);
377 }
378 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
379
380 /*
381  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
382  * a #GP and return false.
383  */
384 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
385 {
386         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
387                 return true;
388         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
389         return false;
390 }
391 EXPORT_SYMBOL_GPL(kvm_require_cpl);
392
393 /*
394  * This function will be used to read from the physical memory of the currently
395  * running guest. The difference to kvm_read_guest_page is that this function
396  * can read from guest physical or from the guest's guest physical memory.
397  */
398 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
399                             gfn_t ngfn, void *data, int offset, int len,
400                             u32 access)
401 {
402         gfn_t real_gfn;
403         gpa_t ngpa;
404
405         ngpa     = gfn_to_gpa(ngfn);
406         real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
407         if (real_gfn == UNMAPPED_GVA)
408                 return -EFAULT;
409
410         real_gfn = gpa_to_gfn(real_gfn);
411
412         return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
413 }
414 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
415
416 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
417                                void *data, int offset, int len, u32 access)
418 {
419         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
420                                        data, offset, len, access);
421 }
422
423 /*
424  * Load the pae pdptrs.  Return true is they are all valid.
425  */
426 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
427 {
428         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
429         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
430         int i;
431         int ret;
432         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
433
434         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
435                                       offset * sizeof(u64), sizeof(pdpte),
436                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
437         if (ret < 0) {
438                 ret = 0;
439                 goto out;
440         }
441         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
442                 if (is_present_gpte(pdpte[i]) &&
443                     (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
444                         ret = 0;
445                         goto out;
446                 }
447         }
448         ret = 1;
449
450         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
451         __set_bit(VCPU_EXREG_PDPTR,
452                   (unsigned long *)&vcpu->arch.regs_avail);
453         __set_bit(VCPU_EXREG_PDPTR,
454                   (unsigned long *)&vcpu->arch.regs_dirty);
455 out:
456
457         return ret;
458 }
459 EXPORT_SYMBOL_GPL(load_pdptrs);
460
461 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
462 {
463         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
464         bool changed = true;
465         int offset;
466         gfn_t gfn;
467         int r;
468
469         if (is_long_mode(vcpu) || !is_pae(vcpu))
470                 return false;
471
472         if (!test_bit(VCPU_EXREG_PDPTR,
473                       (unsigned long *)&vcpu->arch.regs_avail))
474                 return true;
475
476         gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
477         offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
478         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
479                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
480         if (r < 0)
481                 goto out;
482         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
483 out:
484
485         return changed;
486 }
487
488 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
489 {
490         unsigned long old_cr0 = kvm_read_cr0(vcpu);
491         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
492                                     X86_CR0_CD | X86_CR0_NW;
493
494         cr0 |= X86_CR0_ET;
495
496 #ifdef CONFIG_X86_64
497         if (cr0 & 0xffffffff00000000UL)
498                 return 1;
499 #endif
500
501         cr0 &= ~CR0_RESERVED_BITS;
502
503         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
504                 return 1;
505
506         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
507                 return 1;
508
509         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
510 #ifdef CONFIG_X86_64
511                 if ((vcpu->arch.efer & EFER_LME)) {
512                         int cs_db, cs_l;
513
514                         if (!is_pae(vcpu))
515                                 return 1;
516                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
517                         if (cs_l)
518                                 return 1;
519                 } else
520 #endif
521                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
522                                                  kvm_read_cr3(vcpu)))
523                         return 1;
524         }
525
526         kvm_x86_ops->set_cr0(vcpu, cr0);
527
528         if ((cr0 ^ old_cr0) & X86_CR0_PG)
529                 kvm_clear_async_pf_completion_queue(vcpu);
530
531         if ((cr0 ^ old_cr0) & update_bits)
532                 kvm_mmu_reset_context(vcpu);
533         return 0;
534 }
535 EXPORT_SYMBOL_GPL(kvm_set_cr0);
536
537 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
538 {
539         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
540 }
541 EXPORT_SYMBOL_GPL(kvm_lmsw);
542
543 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
544 {
545         u64 xcr0;
546
547         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
548         if (index != XCR_XFEATURE_ENABLED_MASK)
549                 return 1;
550         xcr0 = xcr;
551         if (kvm_x86_ops->get_cpl(vcpu) != 0)
552                 return 1;
553         if (!(xcr0 & XSTATE_FP))
554                 return 1;
555         if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
556                 return 1;
557         if (xcr0 & ~host_xcr0)
558                 return 1;
559         vcpu->arch.xcr0 = xcr0;
560         vcpu->guest_xcr0_loaded = 0;
561         return 0;
562 }
563
564 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
565 {
566         if (__kvm_set_xcr(vcpu, index, xcr)) {
567                 kvm_inject_gp(vcpu, 0);
568                 return 1;
569         }
570         return 0;
571 }
572 EXPORT_SYMBOL_GPL(kvm_set_xcr);
573
574 static bool guest_cpuid_has_xsave(struct kvm_vcpu *vcpu)
575 {
576         struct kvm_cpuid_entry2 *best;
577
578         best = kvm_find_cpuid_entry(vcpu, 1, 0);
579         return best && (best->ecx & bit(X86_FEATURE_XSAVE));
580 }
581
582 static void update_cpuid(struct kvm_vcpu *vcpu)
583 {
584         struct kvm_cpuid_entry2 *best;
585
586         best = kvm_find_cpuid_entry(vcpu, 1, 0);
587         if (!best)
588                 return;
589
590         /* Update OSXSAVE bit */
591         if (cpu_has_xsave && best->function == 0x1) {
592                 best->ecx &= ~(bit(X86_FEATURE_OSXSAVE));
593                 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
594                         best->ecx |= bit(X86_FEATURE_OSXSAVE);
595         }
596 }
597
598 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
599 {
600         unsigned long old_cr4 = kvm_read_cr4(vcpu);
601         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
602
603         if (cr4 & CR4_RESERVED_BITS)
604                 return 1;
605
606         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
607                 return 1;
608
609         if (is_long_mode(vcpu)) {
610                 if (!(cr4 & X86_CR4_PAE))
611                         return 1;
612         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
613                    && ((cr4 ^ old_cr4) & pdptr_bits)
614                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
615                                    kvm_read_cr3(vcpu)))
616                 return 1;
617
618         if (cr4 & X86_CR4_VMXE)
619                 return 1;
620
621         kvm_x86_ops->set_cr4(vcpu, cr4);
622
623         if ((cr4 ^ old_cr4) & pdptr_bits)
624                 kvm_mmu_reset_context(vcpu);
625
626         if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
627                 update_cpuid(vcpu);
628
629         return 0;
630 }
631 EXPORT_SYMBOL_GPL(kvm_set_cr4);
632
633 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
634 {
635         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
636                 kvm_mmu_sync_roots(vcpu);
637                 kvm_mmu_flush_tlb(vcpu);
638                 return 0;
639         }
640
641         if (is_long_mode(vcpu)) {
642                 if (cr3 & CR3_L_MODE_RESERVED_BITS)
643                         return 1;
644         } else {
645                 if (is_pae(vcpu)) {
646                         if (cr3 & CR3_PAE_RESERVED_BITS)
647                                 return 1;
648                         if (is_paging(vcpu) &&
649                             !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
650                                 return 1;
651                 }
652                 /*
653                  * We don't check reserved bits in nonpae mode, because
654                  * this isn't enforced, and VMware depends on this.
655                  */
656         }
657
658         /*
659          * Does the new cr3 value map to physical memory? (Note, we
660          * catch an invalid cr3 even in real-mode, because it would
661          * cause trouble later on when we turn on paging anyway.)
662          *
663          * A real CPU would silently accept an invalid cr3 and would
664          * attempt to use it - with largely undefined (and often hard
665          * to debug) behavior on the guest side.
666          */
667         if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
668                 return 1;
669         vcpu->arch.cr3 = cr3;
670         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
671         vcpu->arch.mmu.new_cr3(vcpu);
672         return 0;
673 }
674 EXPORT_SYMBOL_GPL(kvm_set_cr3);
675
676 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
677 {
678         if (cr8 & CR8_RESERVED_BITS)
679                 return 1;
680         if (irqchip_in_kernel(vcpu->kvm))
681                 kvm_lapic_set_tpr(vcpu, cr8);
682         else
683                 vcpu->arch.cr8 = cr8;
684         return 0;
685 }
686 EXPORT_SYMBOL_GPL(kvm_set_cr8);
687
688 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
689 {
690         if (irqchip_in_kernel(vcpu->kvm))
691                 return kvm_lapic_get_cr8(vcpu);
692         else
693                 return vcpu->arch.cr8;
694 }
695 EXPORT_SYMBOL_GPL(kvm_get_cr8);
696
697 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
698 {
699         switch (dr) {
700         case 0 ... 3:
701                 vcpu->arch.db[dr] = val;
702                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
703                         vcpu->arch.eff_db[dr] = val;
704                 break;
705         case 4:
706                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
707                         return 1; /* #UD */
708                 /* fall through */
709         case 6:
710                 if (val & 0xffffffff00000000ULL)
711                         return -1; /* #GP */
712                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
713                 break;
714         case 5:
715                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
716                         return 1; /* #UD */
717                 /* fall through */
718         default: /* 7 */
719                 if (val & 0xffffffff00000000ULL)
720                         return -1; /* #GP */
721                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
722                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
723                         kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
724                         vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
725                 }
726                 break;
727         }
728
729         return 0;
730 }
731
732 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
733 {
734         int res;
735
736         res = __kvm_set_dr(vcpu, dr, val);
737         if (res > 0)
738                 kvm_queue_exception(vcpu, UD_VECTOR);
739         else if (res < 0)
740                 kvm_inject_gp(vcpu, 0);
741
742         return res;
743 }
744 EXPORT_SYMBOL_GPL(kvm_set_dr);
745
746 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
747 {
748         switch (dr) {
749         case 0 ... 3:
750                 *val = vcpu->arch.db[dr];
751                 break;
752         case 4:
753                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
754                         return 1;
755                 /* fall through */
756         case 6:
757                 *val = vcpu->arch.dr6;
758                 break;
759         case 5:
760                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
761                         return 1;
762                 /* fall through */
763         default: /* 7 */
764                 *val = vcpu->arch.dr7;
765                 break;
766         }
767
768         return 0;
769 }
770
771 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
772 {
773         if (_kvm_get_dr(vcpu, dr, val)) {
774                 kvm_queue_exception(vcpu, UD_VECTOR);
775                 return 1;
776         }
777         return 0;
778 }
779 EXPORT_SYMBOL_GPL(kvm_get_dr);
780
781 /*
782  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
783  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
784  *
785  * This list is modified at module load time to reflect the
786  * capabilities of the host cpu. This capabilities test skips MSRs that are
787  * kvm-specific. Those are put in the beginning of the list.
788  */
789
790 #define KVM_SAVE_MSRS_BEGIN     8
791 static u32 msrs_to_save[] = {
792         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
793         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
794         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
795         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN,
796         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
797         MSR_STAR,
798 #ifdef CONFIG_X86_64
799         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
800 #endif
801         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
802 };
803
804 static unsigned num_msrs_to_save;
805
806 static u32 emulated_msrs[] = {
807         MSR_IA32_MISC_ENABLE,
808         MSR_IA32_MCG_STATUS,
809         MSR_IA32_MCG_CTL,
810 };
811
812 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
813 {
814         u64 old_efer = vcpu->arch.efer;
815
816         if (efer & efer_reserved_bits)
817                 return 1;
818
819         if (is_paging(vcpu)
820             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
821                 return 1;
822
823         if (efer & EFER_FFXSR) {
824                 struct kvm_cpuid_entry2 *feat;
825
826                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
827                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
828                         return 1;
829         }
830
831         if (efer & EFER_SVME) {
832                 struct kvm_cpuid_entry2 *feat;
833
834                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
835                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
836                         return 1;
837         }
838
839         efer &= ~EFER_LMA;
840         efer |= vcpu->arch.efer & EFER_LMA;
841
842         kvm_x86_ops->set_efer(vcpu, efer);
843
844         vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
845
846         /* Update reserved bits */
847         if ((efer ^ old_efer) & EFER_NX)
848                 kvm_mmu_reset_context(vcpu);
849
850         return 0;
851 }
852
853 void kvm_enable_efer_bits(u64 mask)
854 {
855        efer_reserved_bits &= ~mask;
856 }
857 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
858
859
860 /*
861  * Writes msr value into into the appropriate "register".
862  * Returns 0 on success, non-0 otherwise.
863  * Assumes vcpu_load() was already called.
864  */
865 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
866 {
867         return kvm_x86_ops->set_msr(vcpu, msr_index, data);
868 }
869
870 /*
871  * Adapt set_msr() to msr_io()'s calling convention
872  */
873 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
874 {
875         return kvm_set_msr(vcpu, index, *data);
876 }
877
878 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
879 {
880         int version;
881         int r;
882         struct pvclock_wall_clock wc;
883         struct timespec boot;
884
885         if (!wall_clock)
886                 return;
887
888         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
889         if (r)
890                 return;
891
892         if (version & 1)
893                 ++version;  /* first time write, random junk */
894
895         ++version;
896
897         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
898
899         /*
900          * The guest calculates current wall clock time by adding
901          * system time (updated by kvm_guest_time_update below) to the
902          * wall clock specified here.  guest system time equals host
903          * system time for us, thus we must fill in host boot time here.
904          */
905         getboottime(&boot);
906
907         wc.sec = boot.tv_sec;
908         wc.nsec = boot.tv_nsec;
909         wc.version = version;
910
911         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
912
913         version++;
914         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
915 }
916
917 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
918 {
919         uint32_t quotient, remainder;
920
921         /* Don't try to replace with do_div(), this one calculates
922          * "(dividend << 32) / divisor" */
923         __asm__ ( "divl %4"
924                   : "=a" (quotient), "=d" (remainder)
925                   : "0" (0), "1" (dividend), "r" (divisor) );
926         return quotient;
927 }
928
929 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
930                                s8 *pshift, u32 *pmultiplier)
931 {
932         uint64_t scaled64;
933         int32_t  shift = 0;
934         uint64_t tps64;
935         uint32_t tps32;
936
937         tps64 = base_khz * 1000LL;
938         scaled64 = scaled_khz * 1000LL;
939         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
940                 tps64 >>= 1;
941                 shift--;
942         }
943
944         tps32 = (uint32_t)tps64;
945         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
946                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
947                         scaled64 >>= 1;
948                 else
949                         tps32 <<= 1;
950                 shift++;
951         }
952
953         *pshift = shift;
954         *pmultiplier = div_frac(scaled64, tps32);
955
956         pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
957                  __func__, base_khz, scaled_khz, shift, *pmultiplier);
958 }
959
960 static inline u64 get_kernel_ns(void)
961 {
962         struct timespec ts;
963
964         WARN_ON(preemptible());
965         ktime_get_ts(&ts);
966         monotonic_to_bootbased(&ts);
967         return timespec_to_ns(&ts);
968 }
969
970 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
971 unsigned long max_tsc_khz;
972
973 static inline int kvm_tsc_changes_freq(void)
974 {
975         int cpu = get_cpu();
976         int ret = !boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
977                   cpufreq_quick_get(cpu) != 0;
978         put_cpu();
979         return ret;
980 }
981
982 static inline u64 nsec_to_cycles(u64 nsec)
983 {
984         u64 ret;
985
986         WARN_ON(preemptible());
987         if (kvm_tsc_changes_freq())
988                 printk_once(KERN_WARNING
989                  "kvm: unreliable cycle conversion on adjustable rate TSC\n");
990         ret = nsec * __this_cpu_read(cpu_tsc_khz);
991         do_div(ret, USEC_PER_SEC);
992         return ret;
993 }
994
995 static void kvm_arch_set_tsc_khz(struct kvm *kvm, u32 this_tsc_khz)
996 {
997         /* Compute a scale to convert nanoseconds in TSC cycles */
998         kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
999                            &kvm->arch.virtual_tsc_shift,
1000                            &kvm->arch.virtual_tsc_mult);
1001         kvm->arch.virtual_tsc_khz = this_tsc_khz;
1002 }
1003
1004 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1005 {
1006         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.last_tsc_nsec,
1007                                       vcpu->kvm->arch.virtual_tsc_mult,
1008                                       vcpu->kvm->arch.virtual_tsc_shift);
1009         tsc += vcpu->arch.last_tsc_write;
1010         return tsc;
1011 }
1012
1013 void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data)
1014 {
1015         struct kvm *kvm = vcpu->kvm;
1016         u64 offset, ns, elapsed;
1017         unsigned long flags;
1018         s64 sdiff;
1019
1020         spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1021         offset = data - native_read_tsc();
1022         ns = get_kernel_ns();
1023         elapsed = ns - kvm->arch.last_tsc_nsec;
1024         sdiff = data - kvm->arch.last_tsc_write;
1025         if (sdiff < 0)
1026                 sdiff = -sdiff;
1027
1028         /*
1029          * Special case: close write to TSC within 5 seconds of
1030          * another CPU is interpreted as an attempt to synchronize
1031          * The 5 seconds is to accomodate host load / swapping as
1032          * well as any reset of TSC during the boot process.
1033          *
1034          * In that case, for a reliable TSC, we can match TSC offsets,
1035          * or make a best guest using elapsed value.
1036          */
1037         if (sdiff < nsec_to_cycles(5ULL * NSEC_PER_SEC) &&
1038             elapsed < 5ULL * NSEC_PER_SEC) {
1039                 if (!check_tsc_unstable()) {
1040                         offset = kvm->arch.last_tsc_offset;
1041                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1042                 } else {
1043                         u64 delta = nsec_to_cycles(elapsed);
1044                         offset += delta;
1045                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1046                 }
1047                 ns = kvm->arch.last_tsc_nsec;
1048         }
1049         kvm->arch.last_tsc_nsec = ns;
1050         kvm->arch.last_tsc_write = data;
1051         kvm->arch.last_tsc_offset = offset;
1052         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1053         spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1054
1055         /* Reset of TSC must disable overshoot protection below */
1056         vcpu->arch.hv_clock.tsc_timestamp = 0;
1057         vcpu->arch.last_tsc_write = data;
1058         vcpu->arch.last_tsc_nsec = ns;
1059 }
1060 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1061
1062 static int kvm_guest_time_update(struct kvm_vcpu *v)
1063 {
1064         unsigned long flags;
1065         struct kvm_vcpu_arch *vcpu = &v->arch;
1066         void *shared_kaddr;
1067         unsigned long this_tsc_khz;
1068         s64 kernel_ns, max_kernel_ns;
1069         u64 tsc_timestamp;
1070
1071         /* Keep irq disabled to prevent changes to the clock */
1072         local_irq_save(flags);
1073         kvm_get_msr(v, MSR_IA32_TSC, &tsc_timestamp);
1074         kernel_ns = get_kernel_ns();
1075         this_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1076
1077         if (unlikely(this_tsc_khz == 0)) {
1078                 local_irq_restore(flags);
1079                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1080                 return 1;
1081         }
1082
1083         /*
1084          * We may have to catch up the TSC to match elapsed wall clock
1085          * time for two reasons, even if kvmclock is used.
1086          *   1) CPU could have been running below the maximum TSC rate
1087          *   2) Broken TSC compensation resets the base at each VCPU
1088          *      entry to avoid unknown leaps of TSC even when running
1089          *      again on the same CPU.  This may cause apparent elapsed
1090          *      time to disappear, and the guest to stand still or run
1091          *      very slowly.
1092          */
1093         if (vcpu->tsc_catchup) {
1094                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1095                 if (tsc > tsc_timestamp) {
1096                         kvm_x86_ops->adjust_tsc_offset(v, tsc - tsc_timestamp);
1097                         tsc_timestamp = tsc;
1098                 }
1099         }
1100
1101         local_irq_restore(flags);
1102
1103         if (!vcpu->time_page)
1104                 return 0;
1105
1106         /*
1107          * Time as measured by the TSC may go backwards when resetting the base
1108          * tsc_timestamp.  The reason for this is that the TSC resolution is
1109          * higher than the resolution of the other clock scales.  Thus, many
1110          * possible measurments of the TSC correspond to one measurement of any
1111          * other clock, and so a spread of values is possible.  This is not a
1112          * problem for the computation of the nanosecond clock; with TSC rates
1113          * around 1GHZ, there can only be a few cycles which correspond to one
1114          * nanosecond value, and any path through this code will inevitably
1115          * take longer than that.  However, with the kernel_ns value itself,
1116          * the precision may be much lower, down to HZ granularity.  If the
1117          * first sampling of TSC against kernel_ns ends in the low part of the
1118          * range, and the second in the high end of the range, we can get:
1119          *
1120          * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1121          *
1122          * As the sampling errors potentially range in the thousands of cycles,
1123          * it is possible such a time value has already been observed by the
1124          * guest.  To protect against this, we must compute the system time as
1125          * observed by the guest and ensure the new system time is greater.
1126          */
1127         max_kernel_ns = 0;
1128         if (vcpu->hv_clock.tsc_timestamp && vcpu->last_guest_tsc) {
1129                 max_kernel_ns = vcpu->last_guest_tsc -
1130                                 vcpu->hv_clock.tsc_timestamp;
1131                 max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1132                                     vcpu->hv_clock.tsc_to_system_mul,
1133                                     vcpu->hv_clock.tsc_shift);
1134                 max_kernel_ns += vcpu->last_kernel_ns;
1135         }
1136
1137         if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1138                 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1139                                    &vcpu->hv_clock.tsc_shift,
1140                                    &vcpu->hv_clock.tsc_to_system_mul);
1141                 vcpu->hw_tsc_khz = this_tsc_khz;
1142         }
1143
1144         if (max_kernel_ns > kernel_ns)
1145                 kernel_ns = max_kernel_ns;
1146
1147         /* With all the info we got, fill in the values */
1148         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1149         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1150         vcpu->last_kernel_ns = kernel_ns;
1151         vcpu->last_guest_tsc = tsc_timestamp;
1152         vcpu->hv_clock.flags = 0;
1153
1154         /*
1155          * The interface expects us to write an even number signaling that the
1156          * update is finished. Since the guest won't see the intermediate
1157          * state, we just increase by 2 at the end.
1158          */
1159         vcpu->hv_clock.version += 2;
1160
1161         shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
1162
1163         memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
1164                sizeof(vcpu->hv_clock));
1165
1166         kunmap_atomic(shared_kaddr, KM_USER0);
1167
1168         mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
1169         return 0;
1170 }
1171
1172 static bool msr_mtrr_valid(unsigned msr)
1173 {
1174         switch (msr) {
1175         case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1176         case MSR_MTRRfix64K_00000:
1177         case MSR_MTRRfix16K_80000:
1178         case MSR_MTRRfix16K_A0000:
1179         case MSR_MTRRfix4K_C0000:
1180         case MSR_MTRRfix4K_C8000:
1181         case MSR_MTRRfix4K_D0000:
1182         case MSR_MTRRfix4K_D8000:
1183         case MSR_MTRRfix4K_E0000:
1184         case MSR_MTRRfix4K_E8000:
1185         case MSR_MTRRfix4K_F0000:
1186         case MSR_MTRRfix4K_F8000:
1187         case MSR_MTRRdefType:
1188         case MSR_IA32_CR_PAT:
1189                 return true;
1190         case 0x2f8:
1191                 return true;
1192         }
1193         return false;
1194 }
1195
1196 static bool valid_pat_type(unsigned t)
1197 {
1198         return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1199 }
1200
1201 static bool valid_mtrr_type(unsigned t)
1202 {
1203         return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1204 }
1205
1206 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1207 {
1208         int i;
1209
1210         if (!msr_mtrr_valid(msr))
1211                 return false;
1212
1213         if (msr == MSR_IA32_CR_PAT) {
1214                 for (i = 0; i < 8; i++)
1215                         if (!valid_pat_type((data >> (i * 8)) & 0xff))
1216                                 return false;
1217                 return true;
1218         } else if (msr == MSR_MTRRdefType) {
1219                 if (data & ~0xcff)
1220                         return false;
1221                 return valid_mtrr_type(data & 0xff);
1222         } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1223                 for (i = 0; i < 8 ; i++)
1224                         if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1225                                 return false;
1226                 return true;
1227         }
1228
1229         /* variable MTRRs */
1230         return valid_mtrr_type(data & 0xff);
1231 }
1232
1233 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1234 {
1235         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1236
1237         if (!mtrr_valid(vcpu, msr, data))
1238                 return 1;
1239
1240         if (msr == MSR_MTRRdefType) {
1241                 vcpu->arch.mtrr_state.def_type = data;
1242                 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1243         } else if (msr == MSR_MTRRfix64K_00000)
1244                 p[0] = data;
1245         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1246                 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1247         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1248                 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1249         else if (msr == MSR_IA32_CR_PAT)
1250                 vcpu->arch.pat = data;
1251         else {  /* Variable MTRRs */
1252                 int idx, is_mtrr_mask;
1253                 u64 *pt;
1254
1255                 idx = (msr - 0x200) / 2;
1256                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1257                 if (!is_mtrr_mask)
1258                         pt =
1259                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1260                 else
1261                         pt =
1262                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1263                 *pt = data;
1264         }
1265
1266         kvm_mmu_reset_context(vcpu);
1267         return 0;
1268 }
1269
1270 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1271 {
1272         u64 mcg_cap = vcpu->arch.mcg_cap;
1273         unsigned bank_num = mcg_cap & 0xff;
1274
1275         switch (msr) {
1276         case MSR_IA32_MCG_STATUS:
1277                 vcpu->arch.mcg_status = data;
1278                 break;
1279         case MSR_IA32_MCG_CTL:
1280                 if (!(mcg_cap & MCG_CTL_P))
1281                         return 1;
1282                 if (data != 0 && data != ~(u64)0)
1283                         return -1;
1284                 vcpu->arch.mcg_ctl = data;
1285                 break;
1286         default:
1287                 if (msr >= MSR_IA32_MC0_CTL &&
1288                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1289                         u32 offset = msr - MSR_IA32_MC0_CTL;
1290                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1291                          * some Linux kernels though clear bit 10 in bank 4 to
1292                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1293                          * this to avoid an uncatched #GP in the guest
1294                          */
1295                         if ((offset & 0x3) == 0 &&
1296                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1297                                 return -1;
1298                         vcpu->arch.mce_banks[offset] = data;
1299                         break;
1300                 }
1301                 return 1;
1302         }
1303         return 0;
1304 }
1305
1306 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1307 {
1308         struct kvm *kvm = vcpu->kvm;
1309         int lm = is_long_mode(vcpu);
1310         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1311                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1312         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1313                 : kvm->arch.xen_hvm_config.blob_size_32;
1314         u32 page_num = data & ~PAGE_MASK;
1315         u64 page_addr = data & PAGE_MASK;
1316         u8 *page;
1317         int r;
1318
1319         r = -E2BIG;
1320         if (page_num >= blob_size)
1321                 goto out;
1322         r = -ENOMEM;
1323         page = kzalloc(PAGE_SIZE, GFP_KERNEL);
1324         if (!page)
1325                 goto out;
1326         r = -EFAULT;
1327         if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
1328                 goto out_free;
1329         if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1330                 goto out_free;
1331         r = 0;
1332 out_free:
1333         kfree(page);
1334 out:
1335         return r;
1336 }
1337
1338 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1339 {
1340         return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1341 }
1342
1343 static bool kvm_hv_msr_partition_wide(u32 msr)
1344 {
1345         bool r = false;
1346         switch (msr) {
1347         case HV_X64_MSR_GUEST_OS_ID:
1348         case HV_X64_MSR_HYPERCALL:
1349                 r = true;
1350                 break;
1351         }
1352
1353         return r;
1354 }
1355
1356 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1357 {
1358         struct kvm *kvm = vcpu->kvm;
1359
1360         switch (msr) {
1361         case HV_X64_MSR_GUEST_OS_ID:
1362                 kvm->arch.hv_guest_os_id = data;
1363                 /* setting guest os id to zero disables hypercall page */
1364                 if (!kvm->arch.hv_guest_os_id)
1365                         kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1366                 break;
1367         case HV_X64_MSR_HYPERCALL: {
1368                 u64 gfn;
1369                 unsigned long addr;
1370                 u8 instructions[4];
1371
1372                 /* if guest os id is not set hypercall should remain disabled */
1373                 if (!kvm->arch.hv_guest_os_id)
1374                         break;
1375                 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1376                         kvm->arch.hv_hypercall = data;
1377                         break;
1378                 }
1379                 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1380                 addr = gfn_to_hva(kvm, gfn);
1381                 if (kvm_is_error_hva(addr))
1382                         return 1;
1383                 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1384                 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1385                 if (copy_to_user((void __user *)addr, instructions, 4))
1386                         return 1;
1387                 kvm->arch.hv_hypercall = data;
1388                 break;
1389         }
1390         default:
1391                 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1392                           "data 0x%llx\n", msr, data);
1393                 return 1;
1394         }
1395         return 0;
1396 }
1397
1398 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1399 {
1400         switch (msr) {
1401         case HV_X64_MSR_APIC_ASSIST_PAGE: {
1402                 unsigned long addr;
1403
1404                 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1405                         vcpu->arch.hv_vapic = data;
1406                         break;
1407                 }
1408                 addr = gfn_to_hva(vcpu->kvm, data >>
1409                                   HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1410                 if (kvm_is_error_hva(addr))
1411                         return 1;
1412                 if (clear_user((void __user *)addr, PAGE_SIZE))
1413                         return 1;
1414                 vcpu->arch.hv_vapic = data;
1415                 break;
1416         }
1417         case HV_X64_MSR_EOI:
1418                 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1419         case HV_X64_MSR_ICR:
1420                 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1421         case HV_X64_MSR_TPR:
1422                 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1423         default:
1424                 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1425                           "data 0x%llx\n", msr, data);
1426                 return 1;
1427         }
1428
1429         return 0;
1430 }
1431
1432 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1433 {
1434         gpa_t gpa = data & ~0x3f;
1435
1436         /* Bits 2:5 are resrved, Should be zero */
1437         if (data & 0x3c)
1438                 return 1;
1439
1440         vcpu->arch.apf.msr_val = data;
1441
1442         if (!(data & KVM_ASYNC_PF_ENABLED)) {
1443                 kvm_clear_async_pf_completion_queue(vcpu);
1444                 kvm_async_pf_hash_reset(vcpu);
1445                 return 0;
1446         }
1447
1448         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa))
1449                 return 1;
1450
1451         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1452         kvm_async_pf_wakeup_all(vcpu);
1453         return 0;
1454 }
1455
1456 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1457 {
1458         switch (msr) {
1459         case MSR_EFER:
1460                 return set_efer(vcpu, data);
1461         case MSR_K7_HWCR:
1462                 data &= ~(u64)0x40;     /* ignore flush filter disable */
1463                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
1464                 if (data != 0) {
1465                         pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1466                                 data);
1467                         return 1;
1468                 }
1469                 break;
1470         case MSR_FAM10H_MMIO_CONF_BASE:
1471                 if (data != 0) {
1472                         pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1473                                 "0x%llx\n", data);
1474                         return 1;
1475                 }
1476                 break;
1477         case MSR_AMD64_NB_CFG:
1478                 break;
1479         case MSR_IA32_DEBUGCTLMSR:
1480                 if (!data) {
1481                         /* We support the non-activated case already */
1482                         break;
1483                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1484                         /* Values other than LBR and BTF are vendor-specific,
1485                            thus reserved and should throw a #GP */
1486                         return 1;
1487                 }
1488                 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1489                         __func__, data);
1490                 break;
1491         case MSR_IA32_UCODE_REV:
1492         case MSR_IA32_UCODE_WRITE:
1493         case MSR_VM_HSAVE_PA:
1494         case MSR_AMD64_PATCH_LOADER:
1495                 break;
1496         case 0x200 ... 0x2ff:
1497                 return set_msr_mtrr(vcpu, msr, data);
1498         case MSR_IA32_APICBASE:
1499                 kvm_set_apic_base(vcpu, data);
1500                 break;
1501         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1502                 return kvm_x2apic_msr_write(vcpu, msr, data);
1503         case MSR_IA32_MISC_ENABLE:
1504                 vcpu->arch.ia32_misc_enable_msr = data;
1505                 break;
1506         case MSR_KVM_WALL_CLOCK_NEW:
1507         case MSR_KVM_WALL_CLOCK:
1508                 vcpu->kvm->arch.wall_clock = data;
1509                 kvm_write_wall_clock(vcpu->kvm, data);
1510                 break;
1511         case MSR_KVM_SYSTEM_TIME_NEW:
1512         case MSR_KVM_SYSTEM_TIME: {
1513                 if (vcpu->arch.time_page) {
1514                         kvm_release_page_dirty(vcpu->arch.time_page);
1515                         vcpu->arch.time_page = NULL;
1516                 }
1517
1518                 vcpu->arch.time = data;
1519                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1520
1521                 /* we verify if the enable bit is set... */
1522                 if (!(data & 1))
1523                         break;
1524
1525                 /* ...but clean it before doing the actual write */
1526                 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1527
1528                 vcpu->arch.time_page =
1529                                 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1530
1531                 if (is_error_page(vcpu->arch.time_page)) {
1532                         kvm_release_page_clean(vcpu->arch.time_page);
1533                         vcpu->arch.time_page = NULL;
1534                 }
1535                 break;
1536         }
1537         case MSR_KVM_ASYNC_PF_EN:
1538                 if (kvm_pv_enable_async_pf(vcpu, data))
1539                         return 1;
1540                 break;
1541         case MSR_IA32_MCG_CTL:
1542         case MSR_IA32_MCG_STATUS:
1543         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1544                 return set_msr_mce(vcpu, msr, data);
1545
1546         /* Performance counters are not protected by a CPUID bit,
1547          * so we should check all of them in the generic path for the sake of
1548          * cross vendor migration.
1549          * Writing a zero into the event select MSRs disables them,
1550          * which we perfectly emulate ;-). Any other value should be at least
1551          * reported, some guests depend on them.
1552          */
1553         case MSR_P6_EVNTSEL0:
1554         case MSR_P6_EVNTSEL1:
1555         case MSR_K7_EVNTSEL0:
1556         case MSR_K7_EVNTSEL1:
1557         case MSR_K7_EVNTSEL2:
1558         case MSR_K7_EVNTSEL3:
1559                 if (data != 0)
1560                         pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1561                                 "0x%x data 0x%llx\n", msr, data);
1562                 break;
1563         /* at least RHEL 4 unconditionally writes to the perfctr registers,
1564          * so we ignore writes to make it happy.
1565          */
1566         case MSR_P6_PERFCTR0:
1567         case MSR_P6_PERFCTR1:
1568         case MSR_K7_PERFCTR0:
1569         case MSR_K7_PERFCTR1:
1570         case MSR_K7_PERFCTR2:
1571         case MSR_K7_PERFCTR3:
1572                 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1573                         "0x%x data 0x%llx\n", msr, data);
1574                 break;
1575         case MSR_K7_CLK_CTL:
1576                 /*
1577                  * Ignore all writes to this no longer documented MSR.
1578                  * Writes are only relevant for old K7 processors,
1579                  * all pre-dating SVM, but a recommended workaround from
1580                  * AMD for these chips. It is possible to speicify the
1581                  * affected processor models on the command line, hence
1582                  * the need to ignore the workaround.
1583                  */
1584                 break;
1585         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1586                 if (kvm_hv_msr_partition_wide(msr)) {
1587                         int r;
1588                         mutex_lock(&vcpu->kvm->lock);
1589                         r = set_msr_hyperv_pw(vcpu, msr, data);
1590                         mutex_unlock(&vcpu->kvm->lock);
1591                         return r;
1592                 } else
1593                         return set_msr_hyperv(vcpu, msr, data);
1594                 break;
1595         case MSR_IA32_BBL_CR_CTL3:
1596                 /* Drop writes to this legacy MSR -- see rdmsr
1597                  * counterpart for further detail.
1598                  */
1599                 pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
1600                 break;
1601         default:
1602                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1603                         return xen_hvm_config(vcpu, data);
1604                 if (!ignore_msrs) {
1605                         pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1606                                 msr, data);
1607                         return 1;
1608                 } else {
1609                         pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1610                                 msr, data);
1611                         break;
1612                 }
1613         }
1614         return 0;
1615 }
1616 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1617
1618
1619 /*
1620  * Reads an msr value (of 'msr_index') into 'pdata'.
1621  * Returns 0 on success, non-0 otherwise.
1622  * Assumes vcpu_load() was already called.
1623  */
1624 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1625 {
1626         return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1627 }
1628
1629 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1630 {
1631         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1632
1633         if (!msr_mtrr_valid(msr))
1634                 return 1;
1635
1636         if (msr == MSR_MTRRdefType)
1637                 *pdata = vcpu->arch.mtrr_state.def_type +
1638                          (vcpu->arch.mtrr_state.enabled << 10);
1639         else if (msr == MSR_MTRRfix64K_00000)
1640                 *pdata = p[0];
1641         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1642                 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1643         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1644                 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1645         else if (msr == MSR_IA32_CR_PAT)
1646                 *pdata = vcpu->arch.pat;
1647         else {  /* Variable MTRRs */
1648                 int idx, is_mtrr_mask;
1649                 u64 *pt;
1650
1651                 idx = (msr - 0x200) / 2;
1652                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1653                 if (!is_mtrr_mask)
1654                         pt =
1655                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1656                 else
1657                         pt =
1658                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1659                 *pdata = *pt;
1660         }
1661
1662         return 0;
1663 }
1664
1665 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1666 {
1667         u64 data;
1668         u64 mcg_cap = vcpu->arch.mcg_cap;
1669         unsigned bank_num = mcg_cap & 0xff;
1670
1671         switch (msr) {
1672         case MSR_IA32_P5_MC_ADDR:
1673         case MSR_IA32_P5_MC_TYPE:
1674                 data = 0;
1675                 break;
1676         case MSR_IA32_MCG_CAP:
1677                 data = vcpu->arch.mcg_cap;
1678                 break;
1679         case MSR_IA32_MCG_CTL:
1680                 if (!(mcg_cap & MCG_CTL_P))
1681                         return 1;
1682                 data = vcpu->arch.mcg_ctl;
1683                 break;
1684         case MSR_IA32_MCG_STATUS:
1685                 data = vcpu->arch.mcg_status;
1686                 break;
1687         default:
1688                 if (msr >= MSR_IA32_MC0_CTL &&
1689                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1690                         u32 offset = msr - MSR_IA32_MC0_CTL;
1691                         data = vcpu->arch.mce_banks[offset];
1692                         break;
1693                 }
1694                 return 1;
1695         }
1696         *pdata = data;
1697         return 0;
1698 }
1699
1700 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1701 {
1702         u64 data = 0;
1703         struct kvm *kvm = vcpu->kvm;
1704
1705         switch (msr) {
1706         case HV_X64_MSR_GUEST_OS_ID:
1707                 data = kvm->arch.hv_guest_os_id;
1708                 break;
1709         case HV_X64_MSR_HYPERCALL:
1710                 data = kvm->arch.hv_hypercall;
1711                 break;
1712         default:
1713                 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1714                 return 1;
1715         }
1716
1717         *pdata = data;
1718         return 0;
1719 }
1720
1721 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1722 {
1723         u64 data = 0;
1724
1725         switch (msr) {
1726         case HV_X64_MSR_VP_INDEX: {
1727                 int r;
1728                 struct kvm_vcpu *v;
1729                 kvm_for_each_vcpu(r, v, vcpu->kvm)
1730                         if (v == vcpu)
1731                                 data = r;
1732                 break;
1733         }
1734         case HV_X64_MSR_EOI:
1735                 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1736         case HV_X64_MSR_ICR:
1737                 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1738         case HV_X64_MSR_TPR:
1739                 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1740         default:
1741                 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1742                 return 1;
1743         }
1744         *pdata = data;
1745         return 0;
1746 }
1747
1748 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1749 {
1750         u64 data;
1751
1752         switch (msr) {
1753         case MSR_IA32_PLATFORM_ID:
1754         case MSR_IA32_UCODE_REV:
1755         case MSR_IA32_EBL_CR_POWERON:
1756         case MSR_IA32_DEBUGCTLMSR:
1757         case MSR_IA32_LASTBRANCHFROMIP:
1758         case MSR_IA32_LASTBRANCHTOIP:
1759         case MSR_IA32_LASTINTFROMIP:
1760         case MSR_IA32_LASTINTTOIP:
1761         case MSR_K8_SYSCFG:
1762         case MSR_K7_HWCR:
1763         case MSR_VM_HSAVE_PA:
1764         case MSR_P6_PERFCTR0:
1765         case MSR_P6_PERFCTR1:
1766         case MSR_P6_EVNTSEL0:
1767         case MSR_P6_EVNTSEL1:
1768         case MSR_K7_EVNTSEL0:
1769         case MSR_K7_PERFCTR0:
1770         case MSR_K8_INT_PENDING_MSG:
1771         case MSR_AMD64_NB_CFG:
1772         case MSR_FAM10H_MMIO_CONF_BASE:
1773                 data = 0;
1774                 break;
1775         case MSR_MTRRcap:
1776                 data = 0x500 | KVM_NR_VAR_MTRR;
1777                 break;
1778         case 0x200 ... 0x2ff:
1779                 return get_msr_mtrr(vcpu, msr, pdata);
1780         case 0xcd: /* fsb frequency */
1781                 data = 3;
1782                 break;
1783                 /*
1784                  * MSR_EBC_FREQUENCY_ID
1785                  * Conservative value valid for even the basic CPU models.
1786                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
1787                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
1788                  * and 266MHz for model 3, or 4. Set Core Clock
1789                  * Frequency to System Bus Frequency Ratio to 1 (bits
1790                  * 31:24) even though these are only valid for CPU
1791                  * models > 2, however guests may end up dividing or
1792                  * multiplying by zero otherwise.
1793                  */
1794         case MSR_EBC_FREQUENCY_ID:
1795                 data = 1 << 24;
1796                 break;
1797         case MSR_IA32_APICBASE:
1798                 data = kvm_get_apic_base(vcpu);
1799                 break;
1800         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1801                 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1802                 break;
1803         case MSR_IA32_MISC_ENABLE:
1804                 data = vcpu->arch.ia32_misc_enable_msr;
1805                 break;
1806         case MSR_IA32_PERF_STATUS:
1807                 /* TSC increment by tick */
1808                 data = 1000ULL;
1809                 /* CPU multiplier */
1810                 data |= (((uint64_t)4ULL) << 40);
1811                 break;
1812         case MSR_EFER:
1813                 data = vcpu->arch.efer;
1814                 break;
1815         case MSR_KVM_WALL_CLOCK:
1816         case MSR_KVM_WALL_CLOCK_NEW:
1817                 data = vcpu->kvm->arch.wall_clock;
1818                 break;
1819         case MSR_KVM_SYSTEM_TIME:
1820         case MSR_KVM_SYSTEM_TIME_NEW:
1821                 data = vcpu->arch.time;
1822                 break;
1823         case MSR_KVM_ASYNC_PF_EN:
1824                 data = vcpu->arch.apf.msr_val;
1825                 break;
1826         case MSR_IA32_P5_MC_ADDR:
1827         case MSR_IA32_P5_MC_TYPE:
1828         case MSR_IA32_MCG_CAP:
1829         case MSR_IA32_MCG_CTL:
1830         case MSR_IA32_MCG_STATUS:
1831         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1832                 return get_msr_mce(vcpu, msr, pdata);
1833         case MSR_K7_CLK_CTL:
1834                 /*
1835                  * Provide expected ramp-up count for K7. All other
1836                  * are set to zero, indicating minimum divisors for
1837                  * every field.
1838                  *
1839                  * This prevents guest kernels on AMD host with CPU
1840                  * type 6, model 8 and higher from exploding due to
1841                  * the rdmsr failing.
1842                  */
1843                 data = 0x20000000;
1844                 break;
1845         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1846                 if (kvm_hv_msr_partition_wide(msr)) {
1847                         int r;
1848                         mutex_lock(&vcpu->kvm->lock);
1849                         r = get_msr_hyperv_pw(vcpu, msr, pdata);
1850                         mutex_unlock(&vcpu->kvm->lock);
1851                         return r;
1852                 } else
1853                         return get_msr_hyperv(vcpu, msr, pdata);
1854                 break;
1855         case MSR_IA32_BBL_CR_CTL3:
1856                 /* This legacy MSR exists but isn't fully documented in current
1857                  * silicon.  It is however accessed by winxp in very narrow
1858                  * scenarios where it sets bit #19, itself documented as
1859                  * a "reserved" bit.  Best effort attempt to source coherent
1860                  * read data here should the balance of the register be
1861                  * interpreted by the guest:
1862                  *
1863                  * L2 cache control register 3: 64GB range, 256KB size,
1864                  * enabled, latency 0x1, configured
1865                  */
1866                 data = 0xbe702111;
1867                 break;
1868         default:
1869                 if (!ignore_msrs) {
1870                         pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1871                         return 1;
1872                 } else {
1873                         pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
1874                         data = 0;
1875                 }
1876                 break;
1877         }
1878         *pdata = data;
1879         return 0;
1880 }
1881 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1882
1883 /*
1884  * Read or write a bunch of msrs. All parameters are kernel addresses.
1885  *
1886  * @return number of msrs set successfully.
1887  */
1888 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1889                     struct kvm_msr_entry *entries,
1890                     int (*do_msr)(struct kvm_vcpu *vcpu,
1891                                   unsigned index, u64 *data))
1892 {
1893         int i, idx;
1894
1895         idx = srcu_read_lock(&vcpu->kvm->srcu);
1896         for (i = 0; i < msrs->nmsrs; ++i)
1897                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1898                         break;
1899         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1900
1901         return i;
1902 }
1903
1904 /*
1905  * Read or write a bunch of msrs. Parameters are user addresses.
1906  *
1907  * @return number of msrs set successfully.
1908  */
1909 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1910                   int (*do_msr)(struct kvm_vcpu *vcpu,
1911                                 unsigned index, u64 *data),
1912                   int writeback)
1913 {
1914         struct kvm_msrs msrs;
1915         struct kvm_msr_entry *entries;
1916         int r, n;
1917         unsigned size;
1918
1919         r = -EFAULT;
1920         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1921                 goto out;
1922
1923         r = -E2BIG;
1924         if (msrs.nmsrs >= MAX_IO_MSRS)
1925                 goto out;
1926
1927         r = -ENOMEM;
1928         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1929         entries = kmalloc(size, GFP_KERNEL);
1930         if (!entries)
1931                 goto out;
1932
1933         r = -EFAULT;
1934         if (copy_from_user(entries, user_msrs->entries, size))
1935                 goto out_free;
1936
1937         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1938         if (r < 0)
1939                 goto out_free;
1940
1941         r = -EFAULT;
1942         if (writeback && copy_to_user(user_msrs->entries, entries, size))
1943                 goto out_free;
1944
1945         r = n;
1946
1947 out_free:
1948         kfree(entries);
1949 out:
1950         return r;
1951 }
1952
1953 int kvm_dev_ioctl_check_extension(long ext)
1954 {
1955         int r;
1956
1957         switch (ext) {
1958         case KVM_CAP_IRQCHIP:
1959         case KVM_CAP_HLT:
1960         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1961         case KVM_CAP_SET_TSS_ADDR:
1962         case KVM_CAP_EXT_CPUID:
1963         case KVM_CAP_CLOCKSOURCE:
1964         case KVM_CAP_PIT:
1965         case KVM_CAP_NOP_IO_DELAY:
1966         case KVM_CAP_MP_STATE:
1967         case KVM_CAP_SYNC_MMU:
1968         case KVM_CAP_USER_NMI:
1969         case KVM_CAP_REINJECT_CONTROL:
1970         case KVM_CAP_IRQ_INJECT_STATUS:
1971         case KVM_CAP_ASSIGN_DEV_IRQ:
1972         case KVM_CAP_IRQFD:
1973         case KVM_CAP_IOEVENTFD:
1974         case KVM_CAP_PIT2:
1975         case KVM_CAP_PIT_STATE2:
1976         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
1977         case KVM_CAP_XEN_HVM:
1978         case KVM_CAP_ADJUST_CLOCK:
1979         case KVM_CAP_VCPU_EVENTS:
1980         case KVM_CAP_HYPERV:
1981         case KVM_CAP_HYPERV_VAPIC:
1982         case KVM_CAP_HYPERV_SPIN:
1983         case KVM_CAP_PCI_SEGMENT:
1984         case KVM_CAP_DEBUGREGS:
1985         case KVM_CAP_X86_ROBUST_SINGLESTEP:
1986         case KVM_CAP_XSAVE:
1987         case KVM_CAP_ASYNC_PF:
1988                 r = 1;
1989                 break;
1990         case KVM_CAP_COALESCED_MMIO:
1991                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1992                 break;
1993         case KVM_CAP_VAPIC:
1994                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
1995                 break;
1996         case KVM_CAP_NR_VCPUS:
1997                 r = KVM_MAX_VCPUS;
1998                 break;
1999         case KVM_CAP_NR_MEMSLOTS:
2000                 r = KVM_MEMORY_SLOTS;
2001                 break;
2002         case KVM_CAP_PV_MMU:    /* obsolete */
2003                 r = 0;
2004                 break;
2005         case KVM_CAP_IOMMU:
2006                 r = iommu_found();
2007                 break;
2008         case KVM_CAP_MCE:
2009                 r = KVM_MAX_MCE_BANKS;
2010                 break;
2011         case KVM_CAP_XCRS:
2012                 r = cpu_has_xsave;
2013                 break;
2014         default:
2015                 r = 0;
2016                 break;
2017         }
2018         return r;
2019
2020 }
2021
2022 long kvm_arch_dev_ioctl(struct file *filp,
2023                         unsigned int ioctl, unsigned long arg)
2024 {
2025         void __user *argp = (void __user *)arg;
2026         long r;
2027
2028         switch (ioctl) {
2029         case KVM_GET_MSR_INDEX_LIST: {
2030                 struct kvm_msr_list __user *user_msr_list = argp;
2031                 struct kvm_msr_list msr_list;
2032                 unsigned n;
2033
2034                 r = -EFAULT;
2035                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2036                         goto out;
2037                 n = msr_list.nmsrs;
2038                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2039                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2040                         goto out;
2041                 r = -E2BIG;
2042                 if (n < msr_list.nmsrs)
2043                         goto out;
2044                 r = -EFAULT;
2045                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2046                                  num_msrs_to_save * sizeof(u32)))
2047                         goto out;
2048                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2049                                  &emulated_msrs,
2050                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2051                         goto out;
2052                 r = 0;
2053                 break;
2054         }
2055         case KVM_GET_SUPPORTED_CPUID: {
2056                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2057                 struct kvm_cpuid2 cpuid;
2058
2059                 r = -EFAULT;
2060                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2061                         goto out;
2062                 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
2063                                                       cpuid_arg->entries);
2064                 if (r)
2065                         goto out;
2066
2067                 r = -EFAULT;
2068                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2069                         goto out;
2070                 r = 0;
2071                 break;
2072         }
2073         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2074                 u64 mce_cap;
2075
2076                 mce_cap = KVM_MCE_CAP_SUPPORTED;
2077                 r = -EFAULT;
2078                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2079                         goto out;
2080                 r = 0;
2081                 break;
2082         }
2083         default:
2084                 r = -EINVAL;
2085         }
2086 out:
2087         return r;
2088 }
2089
2090 static void wbinvd_ipi(void *garbage)
2091 {
2092         wbinvd();
2093 }
2094
2095 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2096 {
2097         return vcpu->kvm->arch.iommu_domain &&
2098                 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
2099 }
2100
2101 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2102 {
2103         /* Address WBINVD may be executed by guest */
2104         if (need_emulate_wbinvd(vcpu)) {
2105                 if (kvm_x86_ops->has_wbinvd_exit())
2106                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2107                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2108                         smp_call_function_single(vcpu->cpu,
2109                                         wbinvd_ipi, NULL, 1);
2110         }
2111
2112         kvm_x86_ops->vcpu_load(vcpu, cpu);
2113         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2114                 /* Make sure TSC doesn't go backwards */
2115                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2116                                 native_read_tsc() - vcpu->arch.last_host_tsc;
2117                 if (tsc_delta < 0)
2118                         mark_tsc_unstable("KVM discovered backwards TSC");
2119                 if (check_tsc_unstable()) {
2120                         kvm_x86_ops->adjust_tsc_offset(vcpu, -tsc_delta);
2121                         vcpu->arch.tsc_catchup = 1;
2122                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2123                 }
2124                 if (vcpu->cpu != cpu)
2125                         kvm_migrate_timers(vcpu);
2126                 vcpu->cpu = cpu;
2127         }
2128 }
2129
2130 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2131 {
2132         kvm_x86_ops->vcpu_put(vcpu);
2133         kvm_put_guest_fpu(vcpu);
2134         vcpu->arch.last_host_tsc = native_read_tsc();
2135 }
2136
2137 static int is_efer_nx(void)
2138 {
2139         unsigned long long efer = 0;
2140
2141         rdmsrl_safe(MSR_EFER, &efer);
2142         return efer & EFER_NX;
2143 }
2144
2145 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
2146 {
2147         int i;
2148         struct kvm_cpuid_entry2 *e, *entry;
2149
2150         entry = NULL;
2151         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
2152                 e = &vcpu->arch.cpuid_entries[i];
2153                 if (e->function == 0x80000001) {
2154                         entry = e;
2155                         break;
2156                 }
2157         }
2158         if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
2159                 entry->edx &= ~(1 << 20);
2160                 printk(KERN_INFO "kvm: guest NX capability removed\n");
2161         }
2162 }
2163
2164 /* when an old userspace process fills a new kernel module */
2165 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
2166                                     struct kvm_cpuid *cpuid,
2167                                     struct kvm_cpuid_entry __user *entries)
2168 {
2169         int r, i;
2170         struct kvm_cpuid_entry *cpuid_entries;
2171
2172         r = -E2BIG;
2173         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2174                 goto out;
2175         r = -ENOMEM;
2176         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
2177         if (!cpuid_entries)
2178                 goto out;
2179         r = -EFAULT;
2180         if (copy_from_user(cpuid_entries, entries,
2181                            cpuid->nent * sizeof(struct kvm_cpuid_entry)))
2182                 goto out_free;
2183         for (i = 0; i < cpuid->nent; i++) {
2184                 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
2185                 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
2186                 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
2187                 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
2188                 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
2189                 vcpu->arch.cpuid_entries[i].index = 0;
2190                 vcpu->arch.cpuid_entries[i].flags = 0;
2191                 vcpu->arch.cpuid_entries[i].padding[0] = 0;
2192                 vcpu->arch.cpuid_entries[i].padding[1] = 0;
2193                 vcpu->arch.cpuid_entries[i].padding[2] = 0;
2194         }
2195         vcpu->arch.cpuid_nent = cpuid->nent;
2196         cpuid_fix_nx_cap(vcpu);
2197         r = 0;
2198         kvm_apic_set_version(vcpu);
2199         kvm_x86_ops->cpuid_update(vcpu);
2200         update_cpuid(vcpu);
2201
2202 out_free:
2203         vfree(cpuid_entries);
2204 out:
2205         return r;
2206 }
2207
2208 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
2209                                      struct kvm_cpuid2 *cpuid,
2210                                      struct kvm_cpuid_entry2 __user *entries)
2211 {
2212         int r;
2213
2214         r = -E2BIG;
2215         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2216                 goto out;
2217         r = -EFAULT;
2218         if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
2219                            cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
2220                 goto out;
2221         vcpu->arch.cpuid_nent = cpuid->nent;
2222         kvm_apic_set_version(vcpu);
2223         kvm_x86_ops->cpuid_update(vcpu);
2224         update_cpuid(vcpu);
2225         return 0;
2226
2227 out:
2228         return r;
2229 }
2230
2231 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
2232                                      struct kvm_cpuid2 *cpuid,
2233                                      struct kvm_cpuid_entry2 __user *entries)
2234 {
2235         int r;
2236
2237         r = -E2BIG;
2238         if (cpuid->nent < vcpu->arch.cpuid_nent)
2239                 goto out;
2240         r = -EFAULT;
2241         if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
2242                          vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
2243                 goto out;
2244         return 0;
2245
2246 out:
2247         cpuid->nent = vcpu->arch.cpuid_nent;
2248         return r;
2249 }
2250
2251 static void cpuid_mask(u32 *word, int wordnum)
2252 {
2253         *word &= boot_cpu_data.x86_capability[wordnum];
2254 }
2255
2256 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
2257                            u32 index)
2258 {
2259         entry->function = function;
2260         entry->index = index;
2261         cpuid_count(entry->function, entry->index,
2262                     &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
2263         entry->flags = 0;
2264 }
2265
2266 #define F(x) bit(X86_FEATURE_##x)
2267
2268 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
2269                          u32 index, int *nent, int maxnent)
2270 {
2271         unsigned f_nx = is_efer_nx() ? F(NX) : 0;
2272 #ifdef CONFIG_X86_64
2273         unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
2274                                 ? F(GBPAGES) : 0;
2275         unsigned f_lm = F(LM);
2276 #else
2277         unsigned f_gbpages = 0;
2278         unsigned f_lm = 0;
2279 #endif
2280         unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
2281
2282         /* cpuid 1.edx */
2283         const u32 kvm_supported_word0_x86_features =
2284                 F(FPU) | F(VME) | F(DE) | F(PSE) |
2285                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
2286                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
2287                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
2288                 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
2289                 0 /* Reserved, DS, ACPI */ | F(MMX) |
2290                 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
2291                 0 /* HTT, TM, Reserved, PBE */;
2292         /* cpuid 0x80000001.edx */
2293         const u32 kvm_supported_word1_x86_features =
2294                 F(FPU) | F(VME) | F(DE) | F(PSE) |
2295                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
2296                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
2297                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
2298                 F(PAT) | F(PSE36) | 0 /* Reserved */ |
2299                 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
2300                 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
2301                 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
2302         /* cpuid 1.ecx */
2303         const u32 kvm_supported_word4_x86_features =
2304                 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
2305                 0 /* DS-CPL, VMX, SMX, EST */ |
2306                 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
2307                 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
2308                 0 /* Reserved, DCA */ | F(XMM4_1) |
2309                 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
2310                 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
2311                 F(F16C);
2312         /* cpuid 0x80000001.ecx */
2313         const u32 kvm_supported_word6_x86_features =
2314                 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
2315                 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
2316                 F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(XOP) |
2317                 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM);
2318
2319         /* all calls to cpuid_count() should be made on the same cpu */
2320         get_cpu();
2321         do_cpuid_1_ent(entry, function, index);
2322         ++*nent;
2323
2324         switch (function) {
2325         case 0:
2326                 entry->eax = min(entry->eax, (u32)0xd);
2327                 break;
2328         case 1:
2329                 entry->edx &= kvm_supported_word0_x86_features;
2330                 cpuid_mask(&entry->edx, 0);
2331                 entry->ecx &= kvm_supported_word4_x86_features;
2332                 cpuid_mask(&entry->ecx, 4);
2333                 /* we support x2apic emulation even if host does not support
2334                  * it since we emulate x2apic in software */
2335                 entry->ecx |= F(X2APIC);
2336                 break;
2337         /* function 2 entries are STATEFUL. That is, repeated cpuid commands
2338          * may return different values. This forces us to get_cpu() before
2339          * issuing the first command, and also to emulate this annoying behavior
2340          * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
2341         case 2: {
2342                 int t, times = entry->eax & 0xff;
2343
2344                 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
2345                 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
2346                 for (t = 1; t < times && *nent < maxnent; ++t) {
2347                         do_cpuid_1_ent(&entry[t], function, 0);
2348                         entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
2349                         ++*nent;
2350                 }
2351                 break;
2352         }
2353         /* function 4 and 0xb have additional index. */
2354         case 4: {
2355                 int i, cache_type;
2356
2357                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2358                 /* read more entries until cache_type is zero */
2359                 for (i = 1; *nent < maxnent; ++i) {
2360                         cache_type = entry[i - 1].eax & 0x1f;
2361                         if (!cache_type)
2362                                 break;
2363                         do_cpuid_1_ent(&entry[i], function, i);
2364                         entry[i].flags |=
2365                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2366                         ++*nent;
2367                 }
2368                 break;
2369         }
2370         case 0xb: {
2371                 int i, level_type;
2372
2373                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2374                 /* read more entries until level_type is zero */
2375                 for (i = 1; *nent < maxnent; ++i) {
2376                         level_type = entry[i - 1].ecx & 0xff00;
2377                         if (!level_type)
2378                                 break;
2379                         do_cpuid_1_ent(&entry[i], function, i);
2380                         entry[i].flags |=
2381                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2382                         ++*nent;
2383                 }
2384                 break;
2385         }
2386         case 0xd: {
2387                 int i;
2388
2389                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2390                 for (i = 1; *nent < maxnent; ++i) {
2391                         if (entry[i - 1].eax == 0 && i != 2)
2392                                 break;
2393                         do_cpuid_1_ent(&entry[i], function, i);
2394                         entry[i].flags |=
2395                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2396                         ++*nent;
2397                 }
2398                 break;
2399         }
2400         case KVM_CPUID_SIGNATURE: {
2401                 char signature[12] = "KVMKVMKVM\0\0";
2402                 u32 *sigptr = (u32 *)signature;
2403                 entry->eax = 0;
2404                 entry->ebx = sigptr[0];
2405                 entry->ecx = sigptr[1];
2406                 entry->edx = sigptr[2];
2407                 break;
2408         }
2409         case KVM_CPUID_FEATURES:
2410                 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
2411                              (1 << KVM_FEATURE_NOP_IO_DELAY) |
2412                              (1 << KVM_FEATURE_CLOCKSOURCE2) |
2413                              (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT);
2414                 entry->ebx = 0;
2415                 entry->ecx = 0;
2416                 entry->edx = 0;
2417                 break;
2418         case 0x80000000:
2419                 entry->eax = min(entry->eax, 0x8000001a);
2420                 break;
2421         case 0x80000001:
2422                 entry->edx &= kvm_supported_word1_x86_features;
2423                 cpuid_mask(&entry->edx, 1);
2424                 entry->ecx &= kvm_supported_word6_x86_features;
2425                 cpuid_mask(&entry->ecx, 6);
2426                 break;
2427         }
2428
2429         kvm_x86_ops->set_supported_cpuid(function, entry);
2430
2431         put_cpu();
2432 }
2433
2434 #undef F
2435
2436 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
2437                                      struct kvm_cpuid_entry2 __user *entries)
2438 {
2439         struct kvm_cpuid_entry2 *cpuid_entries;
2440         int limit, nent = 0, r = -E2BIG;
2441         u32 func;
2442
2443         if (cpuid->nent < 1)
2444                 goto out;
2445         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2446                 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
2447         r = -ENOMEM;
2448         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
2449         if (!cpuid_entries)
2450                 goto out;
2451
2452         do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
2453         limit = cpuid_entries[0].eax;
2454         for (func = 1; func <= limit && nent < cpuid->nent; ++func)
2455                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2456                              &nent, cpuid->nent);
2457         r = -E2BIG;
2458         if (nent >= cpuid->nent)
2459                 goto out_free;
2460
2461         do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
2462         limit = cpuid_entries[nent - 1].eax;
2463         for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
2464                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2465                              &nent, cpuid->nent);
2466
2467
2468
2469         r = -E2BIG;
2470         if (nent >= cpuid->nent)
2471                 goto out_free;
2472
2473         do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_SIGNATURE, 0, &nent,
2474                      cpuid->nent);
2475
2476         r = -E2BIG;
2477         if (nent >= cpuid->nent)
2478                 goto out_free;
2479
2480         do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_FEATURES, 0, &nent,
2481                      cpuid->nent);
2482
2483         r = -E2BIG;
2484         if (nent >= cpuid->nent)
2485                 goto out_free;
2486
2487         r = -EFAULT;
2488         if (copy_to_user(entries, cpuid_entries,
2489                          nent * sizeof(struct kvm_cpuid_entry2)))
2490                 goto out_free;
2491         cpuid->nent = nent;
2492         r = 0;
2493
2494 out_free:
2495         vfree(cpuid_entries);
2496 out:
2497         return r;
2498 }
2499
2500 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2501                                     struct kvm_lapic_state *s)
2502 {
2503         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2504
2505         return 0;
2506 }
2507
2508 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2509                                     struct kvm_lapic_state *s)
2510 {
2511         memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
2512         kvm_apic_post_state_restore(vcpu);
2513         update_cr8_intercept(vcpu);
2514
2515         return 0;
2516 }
2517
2518 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2519                                     struct kvm_interrupt *irq)
2520 {
2521         if (irq->irq < 0 || irq->irq >= 256)
2522                 return -EINVAL;
2523         if (irqchip_in_kernel(vcpu->kvm))
2524                 return -ENXIO;
2525
2526         kvm_queue_interrupt(vcpu, irq->irq, false);
2527         kvm_make_request(KVM_REQ_EVENT, vcpu);
2528
2529         return 0;
2530 }
2531
2532 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2533 {
2534         kvm_inject_nmi(vcpu);
2535
2536         return 0;
2537 }
2538
2539 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2540                                            struct kvm_tpr_access_ctl *tac)
2541 {
2542         if (tac->flags)
2543                 return -EINVAL;
2544         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2545         return 0;
2546 }
2547
2548 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2549                                         u64 mcg_cap)
2550 {
2551         int r;
2552         unsigned bank_num = mcg_cap & 0xff, bank;
2553
2554         r = -EINVAL;
2555         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2556                 goto out;
2557         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2558                 goto out;
2559         r = 0;
2560         vcpu->arch.mcg_cap = mcg_cap;
2561         /* Init IA32_MCG_CTL to all 1s */
2562         if (mcg_cap & MCG_CTL_P)
2563                 vcpu->arch.mcg_ctl = ~(u64)0;
2564         /* Init IA32_MCi_CTL to all 1s */
2565         for (bank = 0; bank < bank_num; bank++)
2566                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2567 out:
2568         return r;
2569 }
2570
2571 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2572                                       struct kvm_x86_mce *mce)
2573 {
2574         u64 mcg_cap = vcpu->arch.mcg_cap;
2575         unsigned bank_num = mcg_cap & 0xff;
2576         u64 *banks = vcpu->arch.mce_banks;
2577
2578         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2579                 return -EINVAL;
2580         /*
2581          * if IA32_MCG_CTL is not all 1s, the uncorrected error
2582          * reporting is disabled
2583          */
2584         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2585             vcpu->arch.mcg_ctl != ~(u64)0)
2586                 return 0;
2587         banks += 4 * mce->bank;
2588         /*
2589          * if IA32_MCi_CTL is not all 1s, the uncorrected error
2590          * reporting is disabled for the bank
2591          */
2592         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2593                 return 0;
2594         if (mce->status & MCI_STATUS_UC) {
2595                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2596                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2597                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2598                         return 0;
2599                 }
2600                 if (banks[1] & MCI_STATUS_VAL)
2601                         mce->status |= MCI_STATUS_OVER;
2602                 banks[2] = mce->addr;
2603                 banks[3] = mce->misc;
2604                 vcpu->arch.mcg_status = mce->mcg_status;
2605                 banks[1] = mce->status;
2606                 kvm_queue_exception(vcpu, MC_VECTOR);
2607         } else if (!(banks[1] & MCI_STATUS_VAL)
2608                    || !(banks[1] & MCI_STATUS_UC)) {
2609                 if (banks[1] & MCI_STATUS_VAL)
2610                         mce->status |= MCI_STATUS_OVER;
2611                 banks[2] = mce->addr;
2612                 banks[3] = mce->misc;
2613                 banks[1] = mce->status;
2614         } else
2615                 banks[1] |= MCI_STATUS_OVER;
2616         return 0;
2617 }
2618
2619 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2620                                                struct kvm_vcpu_events *events)
2621 {
2622         events->exception.injected =
2623                 vcpu->arch.exception.pending &&
2624                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2625         events->exception.nr = vcpu->arch.exception.nr;
2626         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2627         events->exception.pad = 0;
2628         events->exception.error_code = vcpu->arch.exception.error_code;
2629
2630         events->interrupt.injected =
2631                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2632         events->interrupt.nr = vcpu->arch.interrupt.nr;
2633         events->interrupt.soft = 0;
2634         events->interrupt.shadow =
2635                 kvm_x86_ops->get_interrupt_shadow(vcpu,
2636                         KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2637
2638         events->nmi.injected = vcpu->arch.nmi_injected;
2639         events->nmi.pending = vcpu->arch.nmi_pending;
2640         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2641         events->nmi.pad = 0;
2642
2643         events->sipi_vector = vcpu->arch.sipi_vector;
2644
2645         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2646                          | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2647                          | KVM_VCPUEVENT_VALID_SHADOW);
2648         memset(&events->reserved, 0, sizeof(events->reserved));
2649 }
2650
2651 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2652                                               struct kvm_vcpu_events *events)
2653 {
2654         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2655                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2656                               | KVM_VCPUEVENT_VALID_SHADOW))
2657                 return -EINVAL;
2658
2659         vcpu->arch.exception.pending = events->exception.injected;
2660         vcpu->arch.exception.nr = events->exception.nr;
2661         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2662         vcpu->arch.exception.error_code = events->exception.error_code;
2663
2664         vcpu->arch.interrupt.pending = events->interrupt.injected;
2665         vcpu->arch.interrupt.nr = events->interrupt.nr;
2666         vcpu->arch.interrupt.soft = events->interrupt.soft;
2667         if (vcpu->arch.interrupt.pending && irqchip_in_kernel(vcpu->kvm))
2668                 kvm_pic_clear_isr_ack(vcpu->kvm);
2669         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2670                 kvm_x86_ops->set_interrupt_shadow(vcpu,
2671                                                   events->interrupt.shadow);
2672
2673         vcpu->arch.nmi_injected = events->nmi.injected;
2674         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2675                 vcpu->arch.nmi_pending = events->nmi.pending;
2676         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2677
2678         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2679                 vcpu->arch.sipi_vector = events->sipi_vector;
2680
2681         kvm_make_request(KVM_REQ_EVENT, vcpu);
2682
2683         return 0;
2684 }
2685
2686 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2687                                              struct kvm_debugregs *dbgregs)
2688 {
2689         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2690         dbgregs->dr6 = vcpu->arch.dr6;
2691         dbgregs->dr7 = vcpu->arch.dr7;
2692         dbgregs->flags = 0;
2693         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2694 }
2695
2696 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2697                                             struct kvm_debugregs *dbgregs)
2698 {
2699         if (dbgregs->flags)
2700                 return -EINVAL;
2701
2702         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2703         vcpu->arch.dr6 = dbgregs->dr6;
2704         vcpu->arch.dr7 = dbgregs->dr7;
2705
2706         return 0;
2707 }
2708
2709 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2710                                          struct kvm_xsave *guest_xsave)
2711 {
2712         if (cpu_has_xsave)
2713                 memcpy(guest_xsave->region,
2714                         &vcpu->arch.guest_fpu.state->xsave,
2715                         xstate_size);
2716         else {
2717                 memcpy(guest_xsave->region,
2718                         &vcpu->arch.guest_fpu.state->fxsave,
2719                         sizeof(struct i387_fxsave_struct));
2720                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2721                         XSTATE_FPSSE;
2722         }
2723 }
2724
2725 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2726                                         struct kvm_xsave *guest_xsave)
2727 {
2728         u64 xstate_bv =
2729                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2730
2731         if (cpu_has_xsave)
2732                 memcpy(&vcpu->arch.guest_fpu.state->xsave,
2733                         guest_xsave->region, xstate_size);
2734         else {
2735                 if (xstate_bv & ~XSTATE_FPSSE)
2736                         return -EINVAL;
2737                 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2738                         guest_xsave->region, sizeof(struct i387_fxsave_struct));
2739         }
2740         return 0;
2741 }
2742
2743 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2744                                         struct kvm_xcrs *guest_xcrs)
2745 {
2746         if (!cpu_has_xsave) {
2747                 guest_xcrs->nr_xcrs = 0;
2748                 return;
2749         }
2750
2751         guest_xcrs->nr_xcrs = 1;
2752         guest_xcrs->flags = 0;
2753         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2754         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2755 }
2756
2757 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2758                                        struct kvm_xcrs *guest_xcrs)
2759 {
2760         int i, r = 0;
2761
2762         if (!cpu_has_xsave)
2763                 return -EINVAL;
2764
2765         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2766                 return -EINVAL;
2767
2768         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2769                 /* Only support XCR0 currently */
2770                 if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
2771                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
2772                                 guest_xcrs->xcrs[0].value);
2773                         break;
2774                 }
2775         if (r)
2776                 r = -EINVAL;
2777         return r;
2778 }
2779
2780 long kvm_arch_vcpu_ioctl(struct file *filp,
2781                          unsigned int ioctl, unsigned long arg)
2782 {
2783         struct kvm_vcpu *vcpu = filp->private_data;
2784         void __user *argp = (void __user *)arg;
2785         int r;
2786         union {
2787                 struct kvm_lapic_state *lapic;
2788                 struct kvm_xsave *xsave;
2789                 struct kvm_xcrs *xcrs;
2790                 void *buffer;
2791         } u;
2792
2793         u.buffer = NULL;
2794         switch (ioctl) {
2795         case KVM_GET_LAPIC: {
2796                 r = -EINVAL;
2797                 if (!vcpu->arch.apic)
2798                         goto out;
2799                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2800
2801                 r = -ENOMEM;
2802                 if (!u.lapic)
2803                         goto out;
2804                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
2805                 if (r)
2806                         goto out;
2807                 r = -EFAULT;
2808                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
2809                         goto out;
2810                 r = 0;
2811                 break;
2812         }
2813         case KVM_SET_LAPIC: {
2814                 r = -EINVAL;
2815                 if (!vcpu->arch.apic)
2816                         goto out;
2817                 u.lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2818                 r = -ENOMEM;
2819                 if (!u.lapic)
2820                         goto out;
2821                 r = -EFAULT;
2822                 if (copy_from_user(u.lapic, argp, sizeof(struct kvm_lapic_state)))
2823                         goto out;
2824                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
2825                 if (r)
2826                         goto out;
2827                 r = 0;
2828                 break;
2829         }
2830         case KVM_INTERRUPT: {
2831                 struct kvm_interrupt irq;
2832
2833                 r = -EFAULT;
2834                 if (copy_from_user(&irq, argp, sizeof irq))
2835                         goto out;
2836                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2837                 if (r)
2838                         goto out;
2839                 r = 0;
2840                 break;
2841         }
2842         case KVM_NMI: {
2843                 r = kvm_vcpu_ioctl_nmi(vcpu);
2844                 if (r)
2845                         goto out;
2846                 r = 0;
2847                 break;
2848         }
2849         case KVM_SET_CPUID: {
2850                 struct kvm_cpuid __user *cpuid_arg = argp;
2851                 struct kvm_cpuid cpuid;
2852
2853                 r = -EFAULT;
2854                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2855                         goto out;
2856                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2857                 if (r)
2858                         goto out;
2859                 break;
2860         }
2861         case KVM_SET_CPUID2: {
2862                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2863                 struct kvm_cpuid2 cpuid;
2864
2865                 r = -EFAULT;
2866                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2867                         goto out;
2868                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
2869                                               cpuid_arg->entries);
2870                 if (r)
2871                         goto out;
2872                 break;
2873         }
2874         case KVM_GET_CPUID2: {
2875                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2876                 struct kvm_cpuid2 cpuid;
2877
2878                 r = -EFAULT;
2879                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2880                         goto out;
2881                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
2882                                               cpuid_arg->entries);
2883                 if (r)
2884                         goto out;
2885                 r = -EFAULT;
2886                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2887                         goto out;
2888                 r = 0;
2889                 break;
2890         }
2891         case KVM_GET_MSRS:
2892                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2893                 break;
2894         case KVM_SET_MSRS:
2895                 r = msr_io(vcpu, argp, do_set_msr, 0);
2896                 break;
2897         case KVM_TPR_ACCESS_REPORTING: {
2898                 struct kvm_tpr_access_ctl tac;
2899
2900                 r = -EFAULT;
2901                 if (copy_from_user(&tac, argp, sizeof tac))
2902                         goto out;
2903                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
2904                 if (r)
2905                         goto out;
2906                 r = -EFAULT;
2907                 if (copy_to_user(argp, &tac, sizeof tac))
2908                         goto out;
2909                 r = 0;
2910                 break;
2911         };
2912         case KVM_SET_VAPIC_ADDR: {
2913                 struct kvm_vapic_addr va;
2914
2915                 r = -EINVAL;
2916                 if (!irqchip_in_kernel(vcpu->kvm))
2917                         goto out;
2918                 r = -EFAULT;
2919                 if (copy_from_user(&va, argp, sizeof va))
2920                         goto out;
2921                 r = 0;
2922                 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
2923                 break;
2924         }
2925         case KVM_X86_SETUP_MCE: {
2926                 u64 mcg_cap;
2927
2928                 r = -EFAULT;
2929                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
2930                         goto out;
2931                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
2932                 break;
2933         }
2934         case KVM_X86_SET_MCE: {
2935                 struct kvm_x86_mce mce;
2936
2937                 r = -EFAULT;
2938                 if (copy_from_user(&mce, argp, sizeof mce))
2939                         goto out;
2940                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
2941                 break;
2942         }
2943         case KVM_GET_VCPU_EVENTS: {
2944                 struct kvm_vcpu_events events;
2945
2946                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
2947
2948                 r = -EFAULT;
2949                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
2950                         break;
2951                 r = 0;
2952                 break;
2953         }
2954         case KVM_SET_VCPU_EVENTS: {
2955                 struct kvm_vcpu_events events;
2956
2957                 r = -EFAULT;
2958                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
2959                         break;
2960
2961                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
2962                 break;
2963         }
2964         case KVM_GET_DEBUGREGS: {
2965                 struct kvm_debugregs dbgregs;
2966
2967                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
2968
2969                 r = -EFAULT;
2970                 if (copy_to_user(argp, &dbgregs,
2971                                  sizeof(struct kvm_debugregs)))
2972                         break;
2973                 r = 0;
2974                 break;
2975         }
2976         case KVM_SET_DEBUGREGS: {
2977                 struct kvm_debugregs dbgregs;
2978
2979                 r = -EFAULT;
2980                 if (copy_from_user(&dbgregs, argp,
2981                                    sizeof(struct kvm_debugregs)))
2982                         break;
2983
2984                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
2985                 break;
2986         }
2987         case KVM_GET_XSAVE: {
2988                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
2989                 r = -ENOMEM;
2990                 if (!u.xsave)
2991                         break;
2992
2993                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
2994
2995                 r = -EFAULT;
2996                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
2997                         break;
2998                 r = 0;
2999                 break;
3000         }
3001         case KVM_SET_XSAVE: {
3002                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3003                 r = -ENOMEM;
3004                 if (!u.xsave)
3005                         break;
3006
3007                 r = -EFAULT;
3008                 if (copy_from_user(u.xsave, argp, sizeof(struct kvm_xsave)))
3009                         break;
3010
3011                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3012                 break;
3013         }
3014         case KVM_GET_XCRS: {
3015                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3016                 r = -ENOMEM;
3017                 if (!u.xcrs)
3018                         break;
3019
3020                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3021
3022                 r = -EFAULT;
3023                 if (copy_to_user(argp, u.xcrs,
3024                                  sizeof(struct kvm_xcrs)))
3025                         break;
3026                 r = 0;
3027                 break;
3028         }
3029         case KVM_SET_XCRS: {
3030                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3031                 r = -ENOMEM;
3032                 if (!u.xcrs)
3033                         break;
3034
3035                 r = -EFAULT;
3036                 if (copy_from_user(u.xcrs, argp,
3037                                    sizeof(struct kvm_xcrs)))
3038                         break;
3039
3040                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3041                 break;
3042         }
3043         default:
3044                 r = -EINVAL;
3045         }
3046 out:
3047         kfree(u.buffer);
3048         return r;
3049 }
3050
3051 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3052 {
3053         int ret;
3054
3055         if (addr > (unsigned int)(-3 * PAGE_SIZE))
3056                 return -1;
3057         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3058         return ret;
3059 }
3060
3061 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3062                                               u64 ident_addr)
3063 {
3064         kvm->arch.ept_identity_map_addr = ident_addr;
3065         return 0;
3066 }
3067
3068 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3069                                           u32 kvm_nr_mmu_pages)
3070 {
3071         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3072                 return -EINVAL;
3073
3074         mutex_lock(&kvm->slots_lock);
3075         spin_lock(&kvm->mmu_lock);
3076
3077         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3078         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3079
3080         spin_unlock(&kvm->mmu_lock);
3081         mutex_unlock(&kvm->slots_lock);
3082         return 0;
3083 }
3084
3085 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3086 {
3087         return kvm->arch.n_max_mmu_pages;
3088 }
3089
3090 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3091 {
3092         int r;
3093
3094         r = 0;
3095         switch (chip->chip_id) {
3096         case KVM_IRQCHIP_PIC_MASTER:
3097                 memcpy(&chip->chip.pic,
3098                         &pic_irqchip(kvm)->pics[0],
3099                         sizeof(struct kvm_pic_state));
3100                 break;
3101         case KVM_IRQCHIP_PIC_SLAVE:
3102                 memcpy(&chip->chip.pic,
3103                         &pic_irqchip(kvm)->pics[1],
3104                         sizeof(struct kvm_pic_state));
3105                 break;
3106         case KVM_IRQCHIP_IOAPIC:
3107                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3108                 break;
3109         default:
3110                 r = -EINVAL;
3111                 break;
3112         }
3113         return r;
3114 }
3115
3116 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3117 {
3118         int r;
3119
3120         r = 0;
3121         switch (chip->chip_id) {
3122         case KVM_IRQCHIP_PIC_MASTER:
3123                 spin_lock(&pic_irqchip(kvm)->lock);
3124                 memcpy(&pic_irqchip(kvm)->pics[0],
3125                         &chip->chip.pic,
3126                         sizeof(struct kvm_pic_state));
3127                 spin_unlock(&pic_irqchip(kvm)->lock);
3128                 break;
3129         case KVM_IRQCHIP_PIC_SLAVE:
3130                 spin_lock(&pic_irqchip(kvm)->lock);
3131                 memcpy(&pic_irqchip(kvm)->pics[1],
3132                         &chip->chip.pic,
3133                         sizeof(struct kvm_pic_state));
3134                 spin_unlock(&pic_irqchip(kvm)->lock);
3135                 break;
3136         case KVM_IRQCHIP_IOAPIC:
3137                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3138                 break;
3139         default:
3140                 r = -EINVAL;
3141                 break;
3142         }
3143         kvm_pic_update_irq(pic_irqchip(kvm));
3144         return r;
3145 }
3146
3147 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3148 {
3149         int r = 0;
3150
3151         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3152         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3153         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3154         return r;
3155 }
3156
3157 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3158 {
3159         int r = 0;
3160
3161         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3162         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3163         kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3164         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3165         return r;
3166 }
3167
3168 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3169 {
3170         int r = 0;
3171
3172         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3173         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3174                 sizeof(ps->channels));
3175         ps->flags = kvm->arch.vpit->pit_state.flags;
3176         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3177         memset(&ps->reserved, 0, sizeof(ps->reserved));
3178         return r;
3179 }
3180
3181 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3182 {
3183         int r = 0, start = 0;
3184         u32 prev_legacy, cur_legacy;
3185         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3186         prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3187         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3188         if (!prev_legacy && cur_legacy)
3189                 start = 1;
3190         memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3191                sizeof(kvm->arch.vpit->pit_state.channels));
3192         kvm->arch.vpit->pit_state.flags = ps->flags;
3193         kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3194         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3195         return r;
3196 }
3197
3198 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3199                                  struct kvm_reinject_control *control)
3200 {
3201         if (!kvm->arch.vpit)
3202                 return -ENXIO;
3203         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3204         kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
3205         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3206         return 0;
3207 }
3208
3209 /*
3210  * Get (and clear) the dirty memory log for a memory slot.
3211  */
3212 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
3213                                       struct kvm_dirty_log *log)
3214 {
3215         int r, i;
3216         struct kvm_memory_slot *memslot;
3217         unsigned long n;
3218         unsigned long is_dirty = 0;
3219
3220         mutex_lock(&kvm->slots_lock);
3221
3222         r = -EINVAL;
3223         if (log->slot >= KVM_MEMORY_SLOTS)
3224                 goto out;
3225
3226         memslot = &kvm->memslots->memslots[log->slot];
3227         r = -ENOENT;
3228         if (!memslot->dirty_bitmap)
3229                 goto out;
3230
3231         n = kvm_dirty_bitmap_bytes(memslot);
3232
3233         for (i = 0; !is_dirty && i < n/sizeof(long); i++)
3234                 is_dirty = memslot->dirty_bitmap[i];
3235
3236         /* If nothing is dirty, don't bother messing with page tables. */
3237         if (is_dirty) {
3238                 struct kvm_memslots *slots, *old_slots;
3239                 unsigned long *dirty_bitmap;
3240
3241                 dirty_bitmap = memslot->dirty_bitmap_head;
3242                 if (memslot->dirty_bitmap == dirty_bitmap)
3243                         dirty_bitmap += n / sizeof(long);
3244                 memset(dirty_bitmap, 0, n);
3245
3246                 r = -ENOMEM;
3247                 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
3248                 if (!slots)
3249                         goto out;
3250                 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
3251                 slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
3252                 slots->generation++;
3253
3254                 old_slots = kvm->memslots;
3255                 rcu_assign_pointer(kvm->memslots, slots);
3256                 synchronize_srcu_expedited(&kvm->srcu);
3257                 dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
3258                 kfree(old_slots);
3259
3260                 spin_lock(&kvm->mmu_lock);
3261                 kvm_mmu_slot_remove_write_access(kvm, log->slot);
3262                 spin_unlock(&kvm->mmu_lock);
3263
3264                 r = -EFAULT;
3265                 if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n))
3266                         goto out;
3267         } else {
3268                 r = -EFAULT;
3269                 if (clear_user(log->dirty_bitmap, n))
3270                         goto out;
3271         }
3272
3273         r = 0;
3274 out:
3275         mutex_unlock(&kvm->slots_lock);
3276         return r;
3277 }
3278
3279 long kvm_arch_vm_ioctl(struct file *filp,
3280                        unsigned int ioctl, unsigned long arg)
3281 {
3282         struct kvm *kvm = filp->private_data;
3283         void __user *argp = (void __user *)arg;
3284         int r = -ENOTTY;
3285         /*
3286          * This union makes it completely explicit to gcc-3.x
3287          * that these two variables' stack usage should be
3288          * combined, not added together.
3289          */
3290         union {
3291                 struct kvm_pit_state ps;
3292                 struct kvm_pit_state2 ps2;
3293                 struct kvm_pit_config pit_config;
3294         } u;
3295
3296         switch (ioctl) {
3297         case KVM_SET_TSS_ADDR:
3298                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3299                 if (r < 0)
3300                         goto out;
3301                 break;
3302         case KVM_SET_IDENTITY_MAP_ADDR: {
3303                 u64 ident_addr;
3304
3305                 r = -EFAULT;
3306                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3307                         goto out;
3308                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3309                 if (r < 0)
3310                         goto out;
3311                 break;
3312         }
3313         case KVM_SET_NR_MMU_PAGES:
3314                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3315                 if (r)
3316                         goto out;
3317                 break;
3318         case KVM_GET_NR_MMU_PAGES:
3319                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3320                 break;
3321         case KVM_CREATE_IRQCHIP: {
3322                 struct kvm_pic *vpic;
3323
3324                 mutex_lock(&kvm->lock);
3325                 r = -EEXIST;
3326                 if (kvm->arch.vpic)
3327                         goto create_irqchip_unlock;
3328                 r = -ENOMEM;
3329                 vpic = kvm_create_pic(kvm);
3330                 if (vpic) {
3331                         r = kvm_ioapic_init(kvm);
3332                         if (r) {
3333                                 mutex_lock(&kvm->slots_lock);
3334                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3335                                                           &vpic->dev);
3336                                 mutex_unlock(&kvm->slots_lock);
3337                                 kfree(vpic);
3338                                 goto create_irqchip_unlock;
3339                         }
3340                 } else
3341                         goto create_irqchip_unlock;
3342                 smp_wmb();
3343                 kvm->arch.vpic = vpic;
3344                 smp_wmb();
3345                 r = kvm_setup_default_irq_routing(kvm);
3346                 if (r) {
3347                         mutex_lock(&kvm->slots_lock);
3348                         mutex_lock(&kvm->irq_lock);
3349                         kvm_ioapic_destroy(kvm);
3350                         kvm_destroy_pic(kvm);
3351                         mutex_unlock(&kvm->irq_lock);
3352                         mutex_unlock(&kvm->slots_lock);
3353                 }
3354         create_irqchip_unlock:
3355                 mutex_unlock(&kvm->lock);
3356                 break;
3357         }
3358         case KVM_CREATE_PIT:
3359                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3360                 goto create_pit;
3361         case KVM_CREATE_PIT2:
3362                 r = -EFAULT;
3363                 if (copy_from_user(&u.pit_config, argp,
3364                                    sizeof(struct kvm_pit_config)))
3365                         goto out;
3366         create_pit:
3367                 mutex_lock(&kvm->slots_lock);
3368                 r = -EEXIST;
3369                 if (kvm->arch.vpit)
3370                         goto create_pit_unlock;
3371                 r = -ENOMEM;
3372                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3373                 if (kvm->arch.vpit)
3374                         r = 0;
3375         create_pit_unlock:
3376                 mutex_unlock(&kvm->slots_lock);
3377                 break;
3378         case KVM_IRQ_LINE_STATUS:
3379         case KVM_IRQ_LINE: {
3380                 struct kvm_irq_level irq_event;
3381
3382                 r = -EFAULT;
3383                 if (copy_from_user(&irq_event, argp, sizeof irq_event))
3384                         goto out;
3385                 r = -ENXIO;
3386                 if (irqchip_in_kernel(kvm)) {
3387                         __s32 status;
3388                         status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3389                                         irq_event.irq, irq_event.level);
3390                         if (ioctl == KVM_IRQ_LINE_STATUS) {
3391                                 r = -EFAULT;
3392                                 irq_event.status = status;
3393                                 if (copy_to_user(argp, &irq_event,
3394                                                         sizeof irq_event))
3395                                         goto out;
3396                         }
3397                         r = 0;
3398                 }
3399                 break;
3400         }
3401         case KVM_GET_IRQCHIP: {
3402                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3403                 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3404
3405                 r = -ENOMEM;
3406                 if (!chip)
3407                         goto out;
3408                 r = -EFAULT;
3409                 if (copy_from_user(chip, argp, sizeof *chip))
3410                         goto get_irqchip_out;
3411                 r = -ENXIO;
3412                 if (!irqchip_in_kernel(kvm))
3413                         goto get_irqchip_out;
3414                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3415                 if (r)
3416                         goto get_irqchip_out;
3417                 r = -EFAULT;
3418                 if (copy_to_user(argp, chip, sizeof *chip))
3419                         goto get_irqchip_out;
3420                 r = 0;
3421         get_irqchip_out:
3422                 kfree(chip);
3423                 if (r)
3424                         goto out;
3425                 break;
3426         }
3427         case KVM_SET_IRQCHIP: {
3428                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3429                 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3430
3431                 r = -ENOMEM;
3432                 if (!chip)
3433                         goto out;
3434                 r = -EFAULT;
3435                 if (copy_from_user(chip, argp, sizeof *chip))
3436                         goto set_irqchip_out;
3437                 r = -ENXIO;
3438                 if (!irqchip_in_kernel(kvm))
3439                         goto set_irqchip_out;
3440                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3441                 if (r)
3442                         goto set_irqchip_out;
3443                 r = 0;
3444         set_irqchip_out:
3445                 kfree(chip);
3446                 if (r)
3447                         goto out;
3448                 break;
3449         }
3450         case KVM_GET_PIT: {
3451                 r = -EFAULT;
3452                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3453                         goto out;
3454                 r = -ENXIO;
3455                 if (!kvm->arch.vpit)
3456                         goto out;
3457                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3458                 if (r)
3459                         goto out;
3460                 r = -EFAULT;
3461                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3462                         goto out;
3463                 r = 0;
3464                 break;
3465         }
3466         case KVM_SET_PIT: {
3467                 r = -EFAULT;
3468                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3469                         goto out;
3470                 r = -ENXIO;
3471                 if (!kvm->arch.vpit)
3472                         goto out;
3473                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3474                 if (r)
3475                         goto out;
3476                 r = 0;
3477                 break;
3478         }
3479         case KVM_GET_PIT2: {
3480                 r = -ENXIO;
3481                 if (!kvm->arch.vpit)
3482                         goto out;
3483                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3484                 if (r)
3485                         goto out;
3486                 r = -EFAULT;
3487                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3488                         goto out;
3489                 r = 0;
3490                 break;
3491         }
3492         case KVM_SET_PIT2: {
3493                 r = -EFAULT;
3494                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3495                         goto out;
3496                 r = -ENXIO;
3497                 if (!kvm->arch.vpit)
3498                         goto out;
3499                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3500                 if (r)
3501                         goto out;
3502                 r = 0;
3503                 break;
3504         }
3505         case KVM_REINJECT_CONTROL: {
3506                 struct kvm_reinject_control control;
3507                 r =  -EFAULT;
3508                 if (copy_from_user(&control, argp, sizeof(control)))
3509                         goto out;
3510                 r = kvm_vm_ioctl_reinject(kvm, &control);
3511                 if (r)
3512                         goto out;
3513                 r = 0;
3514                 break;
3515         }
3516         case KVM_XEN_HVM_CONFIG: {
3517                 r = -EFAULT;
3518                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3519                                    sizeof(struct kvm_xen_hvm_config)))
3520                         goto out;
3521                 r = -EINVAL;
3522                 if (kvm->arch.xen_hvm_config.flags)
3523                         goto out;
3524                 r = 0;
3525                 break;
3526         }
3527         case KVM_SET_CLOCK: {
3528                 struct kvm_clock_data user_ns;
3529                 u64 now_ns;
3530                 s64 delta;
3531
3532                 r = -EFAULT;
3533                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3534                         goto out;
3535
3536                 r = -EINVAL;
3537                 if (user_ns.flags)
3538                         goto out;
3539
3540                 r = 0;
3541                 local_irq_disable();
3542                 now_ns = get_kernel_ns();
3543                 delta = user_ns.clock - now_ns;
3544                 local_irq_enable();
3545                 kvm->arch.kvmclock_offset = delta;
3546                 break;
3547         }
3548         case KVM_GET_CLOCK: {
3549                 struct kvm_clock_data user_ns;
3550                 u64 now_ns;
3551
3552                 local_irq_disable();
3553                 now_ns = get_kernel_ns();
3554                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3555                 local_irq_enable();
3556                 user_ns.flags = 0;
3557                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3558
3559                 r = -EFAULT;
3560                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3561                         goto out;
3562                 r = 0;
3563                 break;
3564         }
3565
3566         default:
3567                 ;
3568         }
3569 out:
3570         return r;
3571 }
3572
3573 static void kvm_init_msr_list(void)
3574 {
3575         u32 dummy[2];
3576         unsigned i, j;
3577
3578         /* skip the first msrs in the list. KVM-specific */
3579         for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3580                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3581                         continue;
3582                 if (j < i)
3583                         msrs_to_save[j] = msrs_to_save[i];
3584                 j++;
3585         }
3586         num_msrs_to_save = j;
3587 }
3588
3589 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3590                            const void *v)
3591 {
3592         if (vcpu->arch.apic &&
3593             !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
3594                 return 0;
3595
3596         return kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3597 }
3598
3599 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3600 {
3601         if (vcpu->arch.apic &&
3602             !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
3603                 return 0;
3604
3605         return kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3606 }
3607
3608 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3609                         struct kvm_segment *var, int seg)
3610 {
3611         kvm_x86_ops->set_segment(vcpu, var, seg);
3612 }
3613
3614 void kvm_get_segment(struct kvm_vcpu *vcpu,
3615                      struct kvm_segment *var, int seg)
3616 {
3617         kvm_x86_ops->get_segment(vcpu, var, seg);
3618 }
3619
3620 static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3621 {
3622         return gpa;
3623 }
3624
3625 static gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3626 {
3627         gpa_t t_gpa;
3628         struct x86_exception exception;
3629
3630         BUG_ON(!mmu_is_nested(vcpu));
3631
3632         /* NPT walks are always user-walks */
3633         access |= PFERR_USER_MASK;
3634         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
3635
3636         return t_gpa;
3637 }
3638
3639 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3640                               struct x86_exception *exception)
3641 {
3642         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3643         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3644 }
3645
3646  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3647                                 struct x86_exception *exception)
3648 {
3649         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3650         access |= PFERR_FETCH_MASK;
3651         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3652 }
3653
3654 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3655                                struct x86_exception *exception)
3656 {
3657         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3658         access |= PFERR_WRITE_MASK;
3659         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3660 }
3661
3662 /* uses this to access any guest's mapped memory without checking CPL */
3663 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
3664                                 struct x86_exception *exception)
3665 {
3666         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3667 }
3668
3669 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3670                                       struct kvm_vcpu *vcpu, u32 access,
3671                                       struct x86_exception *exception)
3672 {
3673         void *data = val;
3674         int r = X86EMUL_CONTINUE;
3675
3676         while (bytes) {
3677                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3678                                                             exception);
3679                 unsigned offset = addr & (PAGE_SIZE-1);
3680                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3681                 int ret;
3682
3683                 if (gpa == UNMAPPED_GVA)
3684                         return X86EMUL_PROPAGATE_FAULT;
3685                 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3686                 if (ret < 0) {
3687                         r = X86EMUL_IO_NEEDED;
3688                         goto out;
3689                 }
3690
3691                 bytes -= toread;
3692                 data += toread;
3693                 addr += toread;
3694         }
3695 out:
3696         return r;
3697 }
3698
3699 /* used for instruction fetching */
3700 static int kvm_fetch_guest_virt(gva_t addr, void *val, unsigned int bytes,
3701                                 struct kvm_vcpu *vcpu,
3702                                 struct x86_exception *exception)
3703 {
3704         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3705         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3706                                           access | PFERR_FETCH_MASK,
3707                                           exception);
3708 }
3709
3710 static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
3711                                struct kvm_vcpu *vcpu,
3712                                struct x86_exception *exception)
3713 {
3714         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3715         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3716                                           exception);
3717 }
3718
3719 static int kvm_read_guest_virt_system(gva_t addr, void *val, unsigned int bytes,
3720                                       struct kvm_vcpu *vcpu,
3721                                       struct x86_exception *exception)
3722 {
3723         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
3724 }
3725
3726 static int kvm_write_guest_virt_system(gva_t addr, void *val,
3727                                        unsigned int bytes,
3728                                        struct kvm_vcpu *vcpu,
3729                                        struct x86_exception *exception)
3730 {
3731         void *data = val;
3732         int r = X86EMUL_CONTINUE;
3733
3734         while (bytes) {
3735                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
3736                                                              PFERR_WRITE_MASK,
3737                                                              exception);
3738                 unsigned offset = addr & (PAGE_SIZE-1);
3739                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3740                 int ret;
3741
3742                 if (gpa == UNMAPPED_GVA)
3743                         return X86EMUL_PROPAGATE_FAULT;
3744                 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3745                 if (ret < 0) {
3746                         r = X86EMUL_IO_NEEDED;
3747                         goto out;
3748                 }
3749
3750                 bytes -= towrite;
3751                 data += towrite;
3752                 addr += towrite;
3753         }
3754 out:
3755         return r;
3756 }
3757
3758 static int emulator_read_emulated(unsigned long addr,
3759                                   void *val,
3760                                   unsigned int bytes,
3761                                   struct x86_exception *exception,
3762                                   struct kvm_vcpu *vcpu)
3763 {
3764         gpa_t                 gpa;
3765
3766         if (vcpu->mmio_read_completed) {
3767                 memcpy(val, vcpu->mmio_data, bytes);
3768                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
3769                                vcpu->mmio_phys_addr, *(u64 *)val);
3770                 vcpu->mmio_read_completed = 0;
3771                 return X86EMUL_CONTINUE;
3772         }
3773
3774         gpa = kvm_mmu_gva_to_gpa_read(vcpu, addr, exception);
3775
3776         if (gpa == UNMAPPED_GVA)
3777                 return X86EMUL_PROPAGATE_FAULT;
3778
3779         /* For APIC access vmexit */
3780         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3781                 goto mmio;
3782
3783         if (kvm_read_guest_virt(addr, val, bytes, vcpu, exception)
3784             == X86EMUL_CONTINUE)
3785                 return X86EMUL_CONTINUE;
3786
3787 mmio:
3788         /*
3789          * Is this MMIO handled locally?
3790          */
3791         if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
3792                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
3793                 return X86EMUL_CONTINUE;
3794         }
3795
3796         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
3797
3798         vcpu->mmio_needed = 1;
3799         vcpu->run->exit_reason = KVM_EXIT_MMIO;
3800         vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
3801         vcpu->run->mmio.len = vcpu->mmio_size = bytes;
3802         vcpu->run->mmio.is_write = vcpu->mmio_is_write = 0;
3803
3804         return X86EMUL_IO_NEEDED;
3805 }
3806
3807 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
3808                         const void *val, int bytes)
3809 {
3810         int ret;
3811
3812         ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
3813         if (ret < 0)
3814                 return 0;
3815         kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
3816         return 1;
3817 }
3818
3819 static int emulator_write_emulated_onepage(unsigned long addr,
3820                                            const void *val,
3821                                            unsigned int bytes,
3822                                            struct x86_exception *exception,
3823                                            struct kvm_vcpu *vcpu)
3824 {
3825         gpa_t                 gpa;
3826
3827         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, exception);
3828
3829         if (gpa == UNMAPPED_GVA)
3830                 return X86EMUL_PROPAGATE_FAULT;
3831
3832         /* For APIC access vmexit */
3833         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3834                 goto mmio;
3835
3836         if (emulator_write_phys(vcpu, gpa, val, bytes))
3837                 return X86EMUL_CONTINUE;
3838
3839 mmio:
3840         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
3841         /*
3842          * Is this MMIO handled locally?
3843          */
3844         if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
3845                 return X86EMUL_CONTINUE;
3846
3847         vcpu->mmio_needed = 1;
3848         vcpu->run->exit_reason = KVM_EXIT_MMIO;
3849         vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
3850         vcpu->run->mmio.len = vcpu->mmio_size = bytes;
3851         vcpu->run->mmio.is_write = vcpu->mmio_is_write = 1;
3852         memcpy(vcpu->run->mmio.data, val, bytes);
3853
3854         return X86EMUL_CONTINUE;
3855 }
3856
3857 int emulator_write_emulated(unsigned long addr,
3858                             const void *val,
3859                             unsigned int bytes,
3860                             struct x86_exception *exception,
3861                             struct kvm_vcpu *vcpu)
3862 {
3863         /* Crossing a page boundary? */
3864         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
3865                 int rc, now;
3866
3867                 now = -addr & ~PAGE_MASK;
3868                 rc = emulator_write_emulated_onepage(addr, val, now, exception,
3869                                                      vcpu);
3870                 if (rc != X86EMUL_CONTINUE)
3871                         return rc;
3872                 addr += now;
3873                 val += now;
3874                 bytes -= now;
3875         }
3876         return emulator_write_emulated_onepage(addr, val, bytes, exception,
3877                                                vcpu);
3878 }
3879
3880 #define CMPXCHG_TYPE(t, ptr, old, new) \
3881         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
3882
3883 #ifdef CONFIG_X86_64
3884 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
3885 #else
3886 #  define CMPXCHG64(ptr, old, new) \
3887         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
3888 #endif
3889
3890 static int emulator_cmpxchg_emulated(unsigned long addr,
3891                                      const void *old,
3892                                      const void *new,
3893                                      unsigned int bytes,
3894                                      struct x86_exception *exception,
3895                                      struct kvm_vcpu *vcpu)
3896 {
3897         gpa_t gpa;
3898         struct page *page;
3899         char *kaddr;
3900         bool exchanged;
3901
3902         /* guests cmpxchg8b have to be emulated atomically */
3903         if (bytes > 8 || (bytes & (bytes - 1)))
3904                 goto emul_write;
3905
3906         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
3907
3908         if (gpa == UNMAPPED_GVA ||
3909             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3910                 goto emul_write;
3911
3912         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
3913                 goto emul_write;
3914
3915         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3916         if (is_error_page(page)) {
3917                 kvm_release_page_clean(page);
3918                 goto emul_write;
3919         }
3920
3921         kaddr = kmap_atomic(page, KM_USER0);
3922         kaddr += offset_in_page(gpa);
3923         switch (bytes) {
3924         case 1:
3925                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
3926                 break;
3927         case 2:
3928                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
3929                 break;
3930         case 4:
3931                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
3932                 break;
3933         case 8:
3934                 exchanged = CMPXCHG64(kaddr, old, new);
3935                 break;
3936         default:
3937                 BUG();
3938         }
3939         kunmap_atomic(kaddr, KM_USER0);
3940         kvm_release_page_dirty(page);
3941
3942         if (!exchanged)
3943                 return X86EMUL_CMPXCHG_FAILED;
3944
3945         kvm_mmu_pte_write(vcpu, gpa, new, bytes, 1);
3946
3947         return X86EMUL_CONTINUE;
3948
3949 emul_write:
3950         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
3951
3952         return emulator_write_emulated(addr, new, bytes, exception, vcpu);
3953 }
3954
3955 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
3956 {
3957         /* TODO: String I/O for in kernel device */
3958         int r;
3959
3960         if (vcpu->arch.pio.in)
3961                 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
3962                                     vcpu->arch.pio.size, pd);
3963         else
3964                 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
3965                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
3966                                      pd);
3967         return r;
3968 }
3969
3970
3971 static int emulator_pio_in_emulated(int size, unsigned short port, void *val,
3972                              unsigned int count, struct kvm_vcpu *vcpu)
3973 {
3974         if (vcpu->arch.pio.count)
3975                 goto data_avail;
3976
3977         trace_kvm_pio(0, port, size, count);
3978
3979         vcpu->arch.pio.port = port;
3980         vcpu->arch.pio.in = 1;
3981         vcpu->arch.pio.count  = count;
3982         vcpu->arch.pio.size = size;
3983
3984         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3985         data_avail:
3986                 memcpy(val, vcpu->arch.pio_data, size * count);
3987                 vcpu->arch.pio.count = 0;
3988                 return 1;
3989         }
3990
3991         vcpu->run->exit_reason = KVM_EXIT_IO;
3992         vcpu->run->io.direction = KVM_EXIT_IO_IN;
3993         vcpu->run->io.size = size;
3994         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3995         vcpu->run->io.count = count;
3996         vcpu->run->io.port = port;
3997
3998         return 0;
3999 }
4000
4001 static int emulator_pio_out_emulated(int size, unsigned short port,
4002                               const void *val, unsigned int count,
4003                               struct kvm_vcpu *vcpu)
4004 {
4005         trace_kvm_pio(1, port, size, count);
4006
4007         vcpu->arch.pio.port = port;
4008         vcpu->arch.pio.in = 0;
4009         vcpu->arch.pio.count = count;
4010         vcpu->arch.pio.size = size;
4011
4012         memcpy(vcpu->arch.pio_data, val, size * count);
4013
4014         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4015                 vcpu->arch.pio.count = 0;
4016                 return 1;
4017         }
4018
4019         vcpu->run->exit_reason = KVM_EXIT_IO;
4020         vcpu->run->io.direction = KVM_EXIT_IO_OUT;
4021         vcpu->run->io.size = size;
4022         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4023         vcpu->run->io.count = count;
4024         vcpu->run->io.port = port;
4025
4026         return 0;
4027 }
4028
4029 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4030 {
4031         return kvm_x86_ops->get_segment_base(vcpu, seg);
4032 }
4033
4034 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
4035 {
4036         kvm_mmu_invlpg(vcpu, address);
4037         return X86EMUL_CONTINUE;
4038 }
4039
4040 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4041 {
4042         if (!need_emulate_wbinvd(vcpu))
4043                 return X86EMUL_CONTINUE;
4044
4045         if (kvm_x86_ops->has_wbinvd_exit()) {
4046                 int cpu = get_cpu();
4047
4048                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4049                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4050                                 wbinvd_ipi, NULL, 1);
4051                 put_cpu();
4052                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4053         } else
4054                 wbinvd();
4055         return X86EMUL_CONTINUE;
4056 }
4057 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4058
4059 int emulate_clts(struct kvm_vcpu *vcpu)
4060 {
4061         kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4062         kvm_x86_ops->fpu_activate(vcpu);
4063         return X86EMUL_CONTINUE;
4064 }
4065
4066 int emulator_get_dr(int dr, unsigned long *dest, struct kvm_vcpu *vcpu)
4067 {
4068         return _kvm_get_dr(vcpu, dr, dest);
4069 }
4070
4071 int emulator_set_dr(int dr, unsigned long value, struct kvm_vcpu *vcpu)
4072 {
4073
4074         return __kvm_set_dr(vcpu, dr, value);
4075 }
4076
4077 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4078 {
4079         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4080 }
4081
4082 static unsigned long emulator_get_cr(int cr, struct kvm_vcpu *vcpu)
4083 {
4084         unsigned long value;
4085
4086         switch (cr) {
4087         case 0:
4088                 value = kvm_read_cr0(vcpu);
4089                 break;
4090         case 2:
4091                 value = vcpu->arch.cr2;
4092                 break;
4093         case 3:
4094                 value = kvm_read_cr3(vcpu);
4095                 break;
4096         case 4:
4097                 value = kvm_read_cr4(vcpu);
4098                 break;
4099         case 8:
4100                 value = kvm_get_cr8(vcpu);
4101                 break;
4102         default:
4103                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4104                 return 0;
4105         }
4106
4107         return value;
4108 }
4109
4110 static int emulator_set_cr(int cr, unsigned long val, struct kvm_vcpu *vcpu)
4111 {
4112         int res = 0;
4113
4114         switch (cr) {
4115         case 0:
4116                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4117                 break;
4118         case 2:
4119                 vcpu->arch.cr2 = val;
4120                 break;
4121         case 3:
4122                 res = kvm_set_cr3(vcpu, val);
4123                 break;
4124         case 4:
4125                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4126                 break;
4127         case 8:
4128                 res = kvm_set_cr8(vcpu, val);
4129                 break;
4130         default:
4131                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4132                 res = -1;
4133         }
4134
4135         return res;
4136 }
4137
4138 static int emulator_get_cpl(struct kvm_vcpu *vcpu)
4139 {
4140         return kvm_x86_ops->get_cpl(vcpu);
4141 }
4142
4143 static void emulator_get_gdt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
4144 {
4145         kvm_x86_ops->get_gdt(vcpu, dt);
4146 }
4147
4148 static void emulator_get_idt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
4149 {
4150         kvm_x86_ops->get_idt(vcpu, dt);
4151 }
4152
4153 static unsigned long emulator_get_cached_segment_base(int seg,
4154                                                       struct kvm_vcpu *vcpu)
4155 {
4156         return get_segment_base(vcpu, seg);
4157 }
4158
4159 static bool emulator_get_cached_descriptor(struct desc_struct *desc, int seg,
4160                                            struct kvm_vcpu *vcpu)
4161 {
4162         struct kvm_segment var;
4163
4164         kvm_get_segment(vcpu, &var, seg);
4165
4166         if (var.unusable)
4167                 return false;
4168
4169         if (var.g)
4170                 var.limit >>= 12;
4171         set_desc_limit(desc, var.limit);
4172         set_desc_base(desc, (unsigned long)var.base);
4173         desc->type = var.type;
4174         desc->s = var.s;
4175         desc->dpl = var.dpl;
4176         desc->p = var.present;
4177         desc->avl = var.avl;
4178         desc->l = var.l;
4179         desc->d = var.db;
4180         desc->g = var.g;
4181
4182         return true;
4183 }
4184
4185 static void emulator_set_cached_descriptor(struct desc_struct *desc, int seg,
4186                                            struct kvm_vcpu *vcpu)
4187 {
4188         struct kvm_segment var;
4189
4190         /* needed to preserve selector */
4191         kvm_get_segment(vcpu, &var, seg);
4192
4193         var.base = get_desc_base(desc);
4194         var.limit = get_desc_limit(desc);
4195         if (desc->g)
4196                 var.limit = (var.limit << 12) | 0xfff;
4197         var.type = desc->type;
4198         var.present = desc->p;
4199         var.dpl = desc->dpl;
4200         var.db = desc->d;
4201         var.s = desc->s;
4202         var.l = desc->l;
4203         var.g = desc->g;
4204         var.avl = desc->avl;
4205         var.present = desc->p;
4206         var.unusable = !var.present;
4207         var.padding = 0;
4208
4209         kvm_set_segment(vcpu, &var, seg);
4210         return;
4211 }
4212
4213 static u16 emulator_get_segment_selector(int seg, struct kvm_vcpu *vcpu)
4214 {
4215         struct kvm_segment kvm_seg;
4216
4217         kvm_get_segment(vcpu, &kvm_seg, seg);
4218         return kvm_seg.selector;
4219 }
4220
4221 static void emulator_set_segment_selector(u16 sel, int seg,
4222                                           struct kvm_vcpu *vcpu)
4223 {
4224         struct kvm_segment kvm_seg;
4225
4226         kvm_get_segment(vcpu, &kvm_seg, seg);
4227         kvm_seg.selector = sel;
4228         kvm_set_segment(vcpu, &kvm_seg, seg);
4229 }
4230
4231 static struct x86_emulate_ops emulate_ops = {
4232         .read_std            = kvm_read_guest_virt_system,
4233         .write_std           = kvm_write_guest_virt_system,
4234         .fetch               = kvm_fetch_guest_virt,
4235         .read_emulated       = emulator_read_emulated,
4236         .write_emulated      = emulator_write_emulated,
4237         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
4238         .pio_in_emulated     = emulator_pio_in_emulated,
4239         .pio_out_emulated    = emulator_pio_out_emulated,
4240         .get_cached_descriptor = emulator_get_cached_descriptor,
4241         .set_cached_descriptor = emulator_set_cached_descriptor,
4242         .get_segment_selector = emulator_get_segment_selector,
4243         .set_segment_selector = emulator_set_segment_selector,
4244         .get_cached_segment_base = emulator_get_cached_segment_base,
4245         .get_gdt             = emulator_get_gdt,
4246         .get_idt             = emulator_get_idt,
4247         .get_cr              = emulator_get_cr,
4248         .set_cr              = emulator_set_cr,
4249         .cpl                 = emulator_get_cpl,
4250         .get_dr              = emulator_get_dr,
4251         .set_dr              = emulator_set_dr,
4252         .set_msr             = kvm_set_msr,
4253         .get_msr             = kvm_get_msr,
4254 };
4255
4256 static void cache_all_regs(struct kvm_vcpu *vcpu)
4257 {
4258         kvm_register_read(vcpu, VCPU_REGS_RAX);
4259         kvm_register_read(vcpu, VCPU_REGS_RSP);
4260         kvm_register_read(vcpu, VCPU_REGS_RIP);
4261         vcpu->arch.regs_dirty = ~0;
4262 }
4263
4264 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4265 {
4266         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4267         /*
4268          * an sti; sti; sequence only disable interrupts for the first
4269          * instruction. So, if the last instruction, be it emulated or
4270          * not, left the system with the INT_STI flag enabled, it
4271          * means that the last instruction is an sti. We should not
4272          * leave the flag on in this case. The same goes for mov ss
4273          */
4274         if (!(int_shadow & mask))
4275                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4276 }
4277
4278 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4279 {
4280         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4281         if (ctxt->exception.vector == PF_VECTOR)
4282                 kvm_propagate_fault(vcpu, &ctxt->exception);
4283         else if (ctxt->exception.error_code_valid)
4284                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4285                                       ctxt->exception.error_code);
4286         else
4287                 kvm_queue_exception(vcpu, ctxt->exception.vector);
4288 }
4289
4290 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4291 {
4292         struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
4293         int cs_db, cs_l;
4294
4295         cache_all_regs(vcpu);
4296
4297         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4298
4299         vcpu->arch.emulate_ctxt.vcpu = vcpu;
4300         vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
4301         vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu);
4302         vcpu->arch.emulate_ctxt.mode =
4303                 (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
4304                 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
4305                 ? X86EMUL_MODE_VM86 : cs_l
4306                 ? X86EMUL_MODE_PROT64 : cs_db
4307                 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
4308         memset(c, 0, sizeof(struct decode_cache));
4309         memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
4310 }
4311
4312 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq)
4313 {
4314         struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
4315         int ret;
4316
4317         init_emulate_ctxt(vcpu);
4318
4319         vcpu->arch.emulate_ctxt.decode.op_bytes = 2;
4320         vcpu->arch.emulate_ctxt.decode.ad_bytes = 2;
4321         vcpu->arch.emulate_ctxt.decode.eip = vcpu->arch.emulate_ctxt.eip;
4322         ret = emulate_int_real(&vcpu->arch.emulate_ctxt, &emulate_ops, irq);
4323
4324         if (ret != X86EMUL_CONTINUE)
4325                 return EMULATE_FAIL;
4326
4327         vcpu->arch.emulate_ctxt.eip = c->eip;
4328         memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
4329         kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
4330         kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
4331
4332         if (irq == NMI_VECTOR)
4333                 vcpu->arch.nmi_pending = false;
4334         else
4335                 vcpu->arch.interrupt.pending = false;
4336
4337         return EMULATE_DONE;
4338 }
4339 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4340
4341 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4342 {
4343         int r = EMULATE_DONE;
4344
4345         ++vcpu->stat.insn_emulation_fail;
4346         trace_kvm_emulate_insn_failed(vcpu);
4347         if (!is_guest_mode(vcpu)) {
4348                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4349                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4350                 vcpu->run->internal.ndata = 0;
4351                 r = EMULATE_FAIL;
4352         }
4353         kvm_queue_exception(vcpu, UD_VECTOR);
4354
4355         return r;
4356 }
4357
4358 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
4359 {
4360         gpa_t gpa;
4361
4362         if (tdp_enabled)
4363                 return false;
4364
4365         /*
4366          * if emulation was due to access to shadowed page table
4367          * and it failed try to unshadow page and re-entetr the
4368          * guest to let CPU execute the instruction.
4369          */
4370         if (kvm_mmu_unprotect_page_virt(vcpu, gva))
4371                 return true;
4372
4373         gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
4374
4375         if (gpa == UNMAPPED_GVA)
4376                 return true; /* let cpu generate fault */
4377
4378         if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT)))
4379                 return true;
4380
4381         return false;
4382 }
4383
4384 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
4385                             unsigned long cr2,
4386                             int emulation_type,
4387                             void *insn,
4388                             int insn_len)
4389 {
4390         int r;
4391         struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
4392
4393         kvm_clear_exception_queue(vcpu);
4394         vcpu->arch.mmio_fault_cr2 = cr2;
4395         /*
4396          * TODO: fix emulate.c to use guest_read/write_register
4397          * instead of direct ->regs accesses, can save hundred cycles
4398          * on Intel for instructions that don't read/change RSP, for
4399          * for example.
4400          */
4401         cache_all_regs(vcpu);
4402
4403         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
4404                 init_emulate_ctxt(vcpu);
4405                 vcpu->arch.emulate_ctxt.interruptibility = 0;
4406                 vcpu->arch.emulate_ctxt.have_exception = false;
4407                 vcpu->arch.emulate_ctxt.perm_ok = false;
4408
4409                 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, insn, insn_len);
4410                 if (r == X86EMUL_PROPAGATE_FAULT)
4411                         goto done;
4412
4413                 trace_kvm_emulate_insn_start(vcpu);
4414
4415                 /* Only allow emulation of specific instructions on #UD
4416                  * (namely VMMCALL, sysenter, sysexit, syscall)*/
4417                 if (emulation_type & EMULTYPE_TRAP_UD) {
4418                         if (!c->twobyte)
4419                                 return EMULATE_FAIL;
4420                         switch (c->b) {
4421                         case 0x01: /* VMMCALL */
4422                                 if (c->modrm_mod != 3 || c->modrm_rm != 1)
4423                                         return EMULATE_FAIL;
4424                                 break;
4425                         case 0x34: /* sysenter */
4426                         case 0x35: /* sysexit */
4427                                 if (c->modrm_mod != 0 || c->modrm_rm != 0)
4428                                         return EMULATE_FAIL;
4429                                 break;
4430                         case 0x05: /* syscall */
4431                                 if (c->modrm_mod != 0 || c->modrm_rm != 0)
4432                                         return EMULATE_FAIL;
4433                                 break;
4434                         default:
4435                                 return EMULATE_FAIL;
4436                         }
4437
4438                         if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
4439                                 return EMULATE_FAIL;
4440                 }
4441
4442                 ++vcpu->stat.insn_emulation;
4443                 if (r)  {
4444                         if (reexecute_instruction(vcpu, cr2))
4445                                 return EMULATE_DONE;
4446                         if (emulation_type & EMULTYPE_SKIP)
4447                                 return EMULATE_FAIL;
4448                         return handle_emulation_failure(vcpu);
4449                 }
4450         }
4451
4452         if (emulation_type & EMULTYPE_SKIP) {
4453                 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
4454                 return EMULATE_DONE;
4455         }
4456
4457         /* this is needed for vmware backdor interface to work since it
4458            changes registers values  during IO operation */
4459         memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
4460
4461 restart:
4462         r = x86_emulate_insn(&vcpu->arch.emulate_ctxt);
4463
4464         if (r == EMULATION_FAILED) {
4465                 if (reexecute_instruction(vcpu, cr2))
4466                         return EMULATE_DONE;
4467
4468                 return handle_emulation_failure(vcpu);
4469         }
4470
4471 done:
4472         if (vcpu->arch.emulate_ctxt.have_exception) {
4473                 inject_emulated_exception(vcpu);
4474                 r = EMULATE_DONE;
4475         } else if (vcpu->arch.pio.count) {
4476                 if (!vcpu->arch.pio.in)
4477                         vcpu->arch.pio.count = 0;
4478                 r = EMULATE_DO_MMIO;
4479         } else if (vcpu->mmio_needed) {
4480                 if (vcpu->mmio_is_write)
4481                         vcpu->mmio_needed = 0;
4482                 r = EMULATE_DO_MMIO;
4483         } else if (r == EMULATION_RESTART)
4484                 goto restart;
4485         else
4486                 r = EMULATE_DONE;
4487
4488         toggle_interruptibility(vcpu, vcpu->arch.emulate_ctxt.interruptibility);
4489         kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
4490         kvm_make_request(KVM_REQ_EVENT, vcpu);
4491         memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
4492         kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
4493
4494         return r;
4495 }
4496 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
4497
4498 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
4499 {
4500         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
4501         int ret = emulator_pio_out_emulated(size, port, &val, 1, vcpu);
4502         /* do not return to emulator after return from userspace */
4503         vcpu->arch.pio.count = 0;
4504         return ret;
4505 }
4506 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
4507
4508 static void tsc_bad(void *info)
4509 {
4510         __this_cpu_write(cpu_tsc_khz, 0);
4511 }
4512
4513 static void tsc_khz_changed(void *data)
4514 {
4515         struct cpufreq_freqs *freq = data;
4516         unsigned long khz = 0;
4517
4518         if (data)
4519                 khz = freq->new;
4520         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4521                 khz = cpufreq_quick_get(raw_smp_processor_id());
4522         if (!khz)
4523                 khz = tsc_khz;
4524         __this_cpu_write(cpu_tsc_khz, khz);
4525 }
4526
4527 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
4528                                      void *data)
4529 {
4530         struct cpufreq_freqs *freq = data;
4531         struct kvm *kvm;
4532         struct kvm_vcpu *vcpu;
4533         int i, send_ipi = 0;
4534
4535         /*
4536          * We allow guests to temporarily run on slowing clocks,
4537          * provided we notify them after, or to run on accelerating
4538          * clocks, provided we notify them before.  Thus time never
4539          * goes backwards.
4540          *
4541          * However, we have a problem.  We can't atomically update
4542          * the frequency of a given CPU from this function; it is
4543          * merely a notifier, which can be called from any CPU.
4544          * Changing the TSC frequency at arbitrary points in time
4545          * requires a recomputation of local variables related to
4546          * the TSC for each VCPU.  We must flag these local variables
4547          * to be updated and be sure the update takes place with the
4548          * new frequency before any guests proceed.
4549          *
4550          * Unfortunately, the combination of hotplug CPU and frequency
4551          * change creates an intractable locking scenario; the order
4552          * of when these callouts happen is undefined with respect to
4553          * CPU hotplug, and they can race with each other.  As such,
4554          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
4555          * undefined; you can actually have a CPU frequency change take
4556          * place in between the computation of X and the setting of the
4557          * variable.  To protect against this problem, all updates of
4558          * the per_cpu tsc_khz variable are done in an interrupt
4559          * protected IPI, and all callers wishing to update the value
4560          * must wait for a synchronous IPI to complete (which is trivial
4561          * if the caller is on the CPU already).  This establishes the
4562          * necessary total order on variable updates.
4563          *
4564          * Note that because a guest time update may take place
4565          * anytime after the setting of the VCPU's request bit, the
4566          * correct TSC value must be set before the request.  However,
4567          * to ensure the update actually makes it to any guest which
4568          * starts running in hardware virtualization between the set
4569          * and the acquisition of the spinlock, we must also ping the
4570          * CPU after setting the request bit.
4571          *
4572          */
4573
4574         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
4575                 return 0;
4576         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
4577                 return 0;
4578
4579         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4580
4581         spin_lock(&kvm_lock);
4582         list_for_each_entry(kvm, &vm_list, vm_list) {
4583                 kvm_for_each_vcpu(i, vcpu, kvm) {
4584                         if (vcpu->cpu != freq->cpu)
4585                                 continue;
4586                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4587                         if (vcpu->cpu != smp_processor_id())
4588                                 send_ipi = 1;
4589                 }
4590         }
4591         spin_unlock(&kvm_lock);
4592
4593         if (freq->old < freq->new && send_ipi) {
4594                 /*
4595                  * We upscale the frequency.  Must make the guest
4596                  * doesn't see old kvmclock values while running with
4597                  * the new frequency, otherwise we risk the guest sees
4598                  * time go backwards.
4599                  *
4600                  * In case we update the frequency for another cpu
4601                  * (which might be in guest context) send an interrupt
4602                  * to kick the cpu out of guest context.  Next time
4603                  * guest context is entered kvmclock will be updated,
4604                  * so the guest will not see stale values.
4605                  */
4606                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4607         }
4608         return 0;
4609 }
4610
4611 static struct notifier_block kvmclock_cpufreq_notifier_block = {
4612         .notifier_call  = kvmclock_cpufreq_notifier
4613 };
4614
4615 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
4616                                         unsigned long action, void *hcpu)
4617 {
4618         unsigned int cpu = (unsigned long)hcpu;
4619
4620         switch (action) {
4621                 case CPU_ONLINE:
4622                 case CPU_DOWN_FAILED:
4623                         smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4624                         break;
4625                 case CPU_DOWN_PREPARE:
4626                         smp_call_function_single(cpu, tsc_bad, NULL, 1);
4627                         break;
4628         }
4629         return NOTIFY_OK;
4630 }
4631
4632 static struct notifier_block kvmclock_cpu_notifier_block = {
4633         .notifier_call  = kvmclock_cpu_notifier,
4634         .priority = -INT_MAX
4635 };
4636
4637 static void kvm_timer_init(void)
4638 {
4639         int cpu;
4640
4641         max_tsc_khz = tsc_khz;
4642         register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4643         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
4644 #ifdef CONFIG_CPU_FREQ
4645                 struct cpufreq_policy policy;
4646                 memset(&policy, 0, sizeof(policy));
4647                 cpu = get_cpu();
4648                 cpufreq_get_policy(&policy, cpu);
4649                 if (policy.cpuinfo.max_freq)
4650                         max_tsc_khz = policy.cpuinfo.max_freq;
4651                 put_cpu();
4652 #endif
4653                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
4654                                           CPUFREQ_TRANSITION_NOTIFIER);
4655         }
4656         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
4657         for_each_online_cpu(cpu)
4658                 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4659 }
4660
4661 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
4662
4663 static int kvm_is_in_guest(void)
4664 {
4665         return percpu_read(current_vcpu) != NULL;
4666 }
4667
4668 static int kvm_is_user_mode(void)
4669 {
4670         int user_mode = 3;
4671
4672         if (percpu_read(current_vcpu))
4673                 user_mode = kvm_x86_ops->get_cpl(percpu_read(current_vcpu));
4674
4675         return user_mode != 0;
4676 }
4677
4678 static unsigned long kvm_get_guest_ip(void)
4679 {
4680         unsigned long ip = 0;
4681
4682         if (percpu_read(current_vcpu))
4683                 ip = kvm_rip_read(percpu_read(current_vcpu));
4684
4685         return ip;
4686 }
4687
4688 static struct perf_guest_info_callbacks kvm_guest_cbs = {
4689         .is_in_guest            = kvm_is_in_guest,
4690         .is_user_mode           = kvm_is_user_mode,
4691         .get_guest_ip           = kvm_get_guest_ip,
4692 };
4693
4694 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
4695 {
4696         percpu_write(current_vcpu, vcpu);
4697 }
4698 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
4699
4700 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
4701 {
4702         percpu_write(current_vcpu, NULL);
4703 }
4704 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
4705
4706 int kvm_arch_init(void *opaque)
4707 {
4708         int r;
4709         struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
4710
4711         if (kvm_x86_ops) {
4712                 printk(KERN_ERR "kvm: already loaded the other module\n");
4713                 r = -EEXIST;
4714                 goto out;
4715         }
4716
4717         if (!ops->cpu_has_kvm_support()) {
4718                 printk(KERN_ERR "kvm: no hardware support\n");
4719                 r = -EOPNOTSUPP;
4720                 goto out;
4721         }
4722         if (ops->disabled_by_bios()) {
4723                 printk(KERN_ERR "kvm: disabled by bios\n");
4724                 r = -EOPNOTSUPP;
4725                 goto out;
4726         }
4727
4728         r = kvm_mmu_module_init();
4729         if (r)
4730                 goto out;
4731
4732         kvm_init_msr_list();
4733
4734         kvm_x86_ops = ops;
4735         kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
4736         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
4737                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
4738
4739         kvm_timer_init();
4740
4741         perf_register_guest_info_callbacks(&kvm_guest_cbs);
4742
4743         if (cpu_has_xsave)
4744                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
4745
4746         return 0;
4747
4748 out:
4749         return r;
4750 }
4751
4752 void kvm_arch_exit(void)
4753 {
4754         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
4755
4756         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4757                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
4758                                             CPUFREQ_TRANSITION_NOTIFIER);
4759         unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4760         kvm_x86_ops = NULL;
4761         kvm_mmu_module_exit();
4762 }
4763
4764 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
4765 {
4766         ++vcpu->stat.halt_exits;
4767         if (irqchip_in_kernel(vcpu->kvm)) {
4768                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
4769                 return 1;
4770         } else {
4771                 vcpu->run->exit_reason = KVM_EXIT_HLT;
4772                 return 0;
4773         }
4774 }
4775 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
4776
4777 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
4778                            unsigned long a1)
4779 {
4780         if (is_long_mode(vcpu))
4781                 return a0;
4782         else
4783                 return a0 | ((gpa_t)a1 << 32);
4784 }
4785
4786 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
4787 {
4788         u64 param, ingpa, outgpa, ret;
4789         uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
4790         bool fast, longmode;
4791         int cs_db, cs_l;
4792
4793         /*
4794          * hypercall generates UD from non zero cpl and real mode
4795          * per HYPER-V spec
4796          */
4797         if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
4798                 kvm_queue_exception(vcpu, UD_VECTOR);
4799                 return 0;
4800         }
4801
4802         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4803         longmode = is_long_mode(vcpu) && cs_l == 1;
4804
4805         if (!longmode) {
4806                 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
4807                         (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
4808                 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
4809                         (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
4810                 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
4811                         (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
4812         }
4813 #ifdef CONFIG_X86_64
4814         else {
4815                 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
4816                 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
4817                 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
4818         }
4819 #endif
4820
4821         code = param & 0xffff;
4822         fast = (param >> 16) & 0x1;
4823         rep_cnt = (param >> 32) & 0xfff;
4824         rep_idx = (param >> 48) & 0xfff;
4825
4826         trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
4827
4828         switch (code) {
4829         case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
4830                 kvm_vcpu_on_spin(vcpu);
4831                 break;
4832         default:
4833                 res = HV_STATUS_INVALID_HYPERCALL_CODE;
4834                 break;
4835         }
4836
4837         ret = res | (((u64)rep_done & 0xfff) << 32);
4838         if (longmode) {
4839                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4840         } else {
4841                 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
4842                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
4843         }
4844
4845         return 1;
4846 }
4847
4848 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
4849 {
4850         unsigned long nr, a0, a1, a2, a3, ret;
4851         int r = 1;
4852
4853         if (kvm_hv_hypercall_enabled(vcpu->kvm))
4854                 return kvm_hv_hypercall(vcpu);
4855
4856         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
4857         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
4858         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
4859         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
4860         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
4861
4862         trace_kvm_hypercall(nr, a0, a1, a2, a3);
4863
4864         if (!is_long_mode(vcpu)) {
4865                 nr &= 0xFFFFFFFF;
4866                 a0 &= 0xFFFFFFFF;
4867                 a1 &= 0xFFFFFFFF;
4868                 a2 &= 0xFFFFFFFF;
4869                 a3 &= 0xFFFFFFFF;
4870         }
4871
4872         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
4873                 ret = -KVM_EPERM;
4874                 goto out;
4875         }
4876
4877         switch (nr) {
4878         case KVM_HC_VAPIC_POLL_IRQ:
4879                 ret = 0;
4880                 break;
4881         case KVM_HC_MMU_OP:
4882                 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
4883                 break;
4884         default:
4885                 ret = -KVM_ENOSYS;
4886                 break;
4887         }
4888 out:
4889         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4890         ++vcpu->stat.hypercalls;
4891         return r;
4892 }
4893 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
4894
4895 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
4896 {
4897         char instruction[3];
4898         unsigned long rip = kvm_rip_read(vcpu);
4899
4900         /*
4901          * Blow out the MMU to ensure that no other VCPU has an active mapping
4902          * to ensure that the updated hypercall appears atomically across all
4903          * VCPUs.
4904          */
4905         kvm_mmu_zap_all(vcpu->kvm);
4906
4907         kvm_x86_ops->patch_hypercall(vcpu, instruction);
4908
4909         return emulator_write_emulated(rip, instruction, 3, NULL, vcpu);
4910 }
4911
4912 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
4913 {
4914         struct desc_ptr dt = { limit, base };
4915
4916         kvm_x86_ops->set_gdt(vcpu, &dt);
4917 }
4918
4919 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
4920 {
4921         struct desc_ptr dt = { limit, base };
4922
4923         kvm_x86_ops->set_idt(vcpu, &dt);
4924 }
4925
4926 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
4927 {
4928         struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
4929         int j, nent = vcpu->arch.cpuid_nent;
4930
4931         e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
4932         /* when no next entry is found, the current entry[i] is reselected */
4933         for (j = i + 1; ; j = (j + 1) % nent) {
4934                 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
4935                 if (ej->function == e->function) {
4936                         ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
4937                         return j;
4938                 }
4939         }
4940         return 0; /* silence gcc, even though control never reaches here */
4941 }
4942
4943 /* find an entry with matching function, matching index (if needed), and that
4944  * should be read next (if it's stateful) */
4945 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
4946         u32 function, u32 index)
4947 {
4948         if (e->function != function)
4949                 return 0;
4950         if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
4951                 return 0;
4952         if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
4953             !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
4954                 return 0;
4955         return 1;
4956 }
4957
4958 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
4959                                               u32 function, u32 index)
4960 {
4961         int i;
4962         struct kvm_cpuid_entry2 *best = NULL;
4963
4964         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
4965                 struct kvm_cpuid_entry2 *e;
4966
4967                 e = &vcpu->arch.cpuid_entries[i];
4968                 if (is_matching_cpuid_entry(e, function, index)) {
4969                         if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
4970                                 move_to_next_stateful_cpuid_entry(vcpu, i);
4971                         best = e;
4972                         break;
4973                 }
4974                 /*
4975                  * Both basic or both extended?
4976                  */
4977                 if (((e->function ^ function) & 0x80000000) == 0)
4978                         if (!best || e->function > best->function)
4979                                 best = e;
4980         }
4981         return best;
4982 }
4983 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
4984
4985 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
4986 {
4987         struct kvm_cpuid_entry2 *best;
4988
4989         best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
4990         if (!best || best->eax < 0x80000008)
4991                 goto not_found;
4992         best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
4993         if (best)
4994                 return best->eax & 0xff;
4995 not_found:
4996         return 36;
4997 }
4998
4999 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
5000 {
5001         u32 function, index;
5002         struct kvm_cpuid_entry2 *best;
5003
5004         function = kvm_register_read(vcpu, VCPU_REGS_RAX);
5005         index = kvm_register_read(vcpu, VCPU_REGS_RCX);
5006         kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
5007         kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
5008         kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
5009         kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
5010         best = kvm_find_cpuid_entry(vcpu, function, index);
5011         if (best) {
5012                 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
5013                 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
5014                 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
5015                 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
5016         }
5017         kvm_x86_ops->skip_emulated_instruction(vcpu);
5018         trace_kvm_cpuid(function,
5019                         kvm_register_read(vcpu, VCPU_REGS_RAX),
5020                         kvm_register_read(vcpu, VCPU_REGS_RBX),
5021                         kvm_register_read(vcpu, VCPU_REGS_RCX),
5022                         kvm_register_read(vcpu, VCPU_REGS_RDX));
5023 }
5024 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
5025
5026 /*
5027  * Check if userspace requested an interrupt window, and that the
5028  * interrupt window is open.
5029  *
5030  * No need to exit to userspace if we already have an interrupt queued.
5031  */
5032 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5033 {
5034         return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5035                 vcpu->run->request_interrupt_window &&
5036                 kvm_arch_interrupt_allowed(vcpu));
5037 }
5038
5039 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5040 {
5041         struct kvm_run *kvm_run = vcpu->run;
5042
5043         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5044         kvm_run->cr8 = kvm_get_cr8(vcpu);
5045         kvm_run->apic_base = kvm_get_apic_base(vcpu);
5046         if (irqchip_in_kernel(vcpu->kvm))
5047                 kvm_run->ready_for_interrupt_injection = 1;
5048         else
5049                 kvm_run->ready_for_interrupt_injection =
5050                         kvm_arch_interrupt_allowed(vcpu) &&
5051                         !kvm_cpu_has_interrupt(vcpu) &&
5052                         !kvm_event_needs_reinjection(vcpu);
5053 }
5054
5055 static void vapic_enter(struct kvm_vcpu *vcpu)
5056 {
5057         struct kvm_lapic *apic = vcpu->arch.apic;
5058         struct page *page;
5059
5060         if (!apic || !apic->vapic_addr)
5061                 return;
5062
5063         page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5064
5065         vcpu->arch.apic->vapic_page = page;
5066 }
5067
5068 static void vapic_exit(struct kvm_vcpu *vcpu)
5069 {
5070         struct kvm_lapic *apic = vcpu->arch.apic;
5071         int idx;
5072
5073         if (!apic || !apic->vapic_addr)
5074                 return;
5075
5076         idx = srcu_read_lock(&vcpu->kvm->srcu);
5077         kvm_release_page_dirty(apic->vapic_page);
5078         mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5079         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5080 }
5081
5082 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5083 {
5084         int max_irr, tpr;
5085
5086         if (!kvm_x86_ops->update_cr8_intercept)
5087                 return;
5088
5089         if (!vcpu->arch.apic)
5090                 return;
5091
5092         if (!vcpu->arch.apic->vapic_addr)
5093                 max_irr = kvm_lapic_find_highest_irr(vcpu);
5094         else
5095                 max_irr = -1;
5096
5097         if (max_irr != -1)
5098                 max_irr >>= 4;
5099
5100         tpr = kvm_lapic_get_cr8(vcpu);
5101
5102         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5103 }
5104
5105 static void inject_pending_event(struct kvm_vcpu *vcpu)
5106 {
5107         /* try to reinject previous events if any */
5108         if (vcpu->arch.exception.pending) {
5109                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
5110                                         vcpu->arch.exception.has_error_code,
5111                                         vcpu->arch.exception.error_code);
5112                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5113                                           vcpu->arch.exception.has_error_code,
5114                                           vcpu->arch.exception.error_code,
5115                                           vcpu->arch.exception.reinject);
5116                 return;
5117         }
5118
5119         if (vcpu->arch.nmi_injected) {
5120                 kvm_x86_ops->set_nmi(vcpu);
5121                 return;
5122         }
5123
5124         if (vcpu->arch.interrupt.pending) {
5125                 kvm_x86_ops->set_irq(vcpu);
5126                 return;
5127         }
5128
5129         /* try to inject new event if pending */
5130         if (vcpu->arch.nmi_pending) {
5131                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
5132                         vcpu->arch.nmi_pending = false;
5133                         vcpu->arch.nmi_injected = true;
5134                         kvm_x86_ops->set_nmi(vcpu);
5135                 }
5136         } else if (kvm_cpu_has_interrupt(vcpu)) {
5137                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5138                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5139                                             false);
5140                         kvm_x86_ops->set_irq(vcpu);
5141                 }
5142         }
5143 }
5144
5145 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
5146 {
5147         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
5148                         !vcpu->guest_xcr0_loaded) {
5149                 /* kvm_set_xcr() also depends on this */
5150                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
5151                 vcpu->guest_xcr0_loaded = 1;
5152         }
5153 }
5154
5155 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
5156 {
5157         if (vcpu->guest_xcr0_loaded) {
5158                 if (vcpu->arch.xcr0 != host_xcr0)
5159                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
5160                 vcpu->guest_xcr0_loaded = 0;
5161         }
5162 }
5163
5164 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5165 {
5166         int r;
5167         bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5168                 vcpu->run->request_interrupt_window;
5169
5170         if (vcpu->requests) {
5171                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5172                         kvm_mmu_unload(vcpu);
5173                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5174                         __kvm_migrate_timers(vcpu);
5175                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5176                         r = kvm_guest_time_update(vcpu);
5177                         if (unlikely(r))
5178                                 goto out;
5179                 }
5180                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5181                         kvm_mmu_sync_roots(vcpu);
5182                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5183                         kvm_x86_ops->tlb_flush(vcpu);
5184                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5185                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5186                         r = 0;
5187                         goto out;
5188                 }
5189                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5190                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5191                         r = 0;
5192                         goto out;
5193                 }
5194                 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5195                         vcpu->fpu_active = 0;
5196                         kvm_x86_ops->fpu_deactivate(vcpu);
5197                 }
5198                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5199                         /* Page is swapped out. Do synthetic halt */
5200                         vcpu->arch.apf.halted = true;
5201                         r = 1;
5202                         goto out;
5203                 }
5204         }
5205
5206         r = kvm_mmu_reload(vcpu);
5207         if (unlikely(r))
5208                 goto out;
5209
5210         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5211                 inject_pending_event(vcpu);
5212
5213                 /* enable NMI/IRQ window open exits if needed */
5214                 if (vcpu->arch.nmi_pending)
5215                         kvm_x86_ops->enable_nmi_window(vcpu);
5216                 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
5217                         kvm_x86_ops->enable_irq_window(vcpu);
5218
5219                 if (kvm_lapic_enabled(vcpu)) {
5220                         update_cr8_intercept(vcpu);
5221                         kvm_lapic_sync_to_vapic(vcpu);
5222                 }
5223         }
5224
5225         preempt_disable();
5226
5227         kvm_x86_ops->prepare_guest_switch(vcpu);
5228         if (vcpu->fpu_active)
5229                 kvm_load_guest_fpu(vcpu);
5230         kvm_load_guest_xcr0(vcpu);
5231
5232         vcpu->mode = IN_GUEST_MODE;
5233
5234         /* We should set ->mode before check ->requests,
5235          * see the comment in make_all_cpus_request.
5236          */
5237         smp_mb();
5238
5239         local_irq_disable();
5240
5241         if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
5242             || need_resched() || signal_pending(current)) {
5243                 vcpu->mode = OUTSIDE_GUEST_MODE;
5244                 smp_wmb();
5245                 local_irq_enable();
5246                 preempt_enable();
5247                 kvm_x86_ops->cancel_injection(vcpu);
5248                 r = 1;
5249                 goto out;
5250         }
5251
5252         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5253
5254         kvm_guest_enter();
5255
5256         if (unlikely(vcpu->arch.switch_db_regs)) {
5257                 set_debugreg(0, 7);
5258                 set_debugreg(vcpu->arch.eff_db[0], 0);
5259                 set_debugreg(vcpu->arch.eff_db[1], 1);
5260                 set_debugreg(vcpu->arch.eff_db[2], 2);
5261                 set_debugreg(vcpu->arch.eff_db[3], 3);
5262         }
5263
5264         trace_kvm_entry(vcpu->vcpu_id);
5265         kvm_x86_ops->run(vcpu);
5266
5267         /*
5268          * If the guest has used debug registers, at least dr7
5269          * will be disabled while returning to the host.
5270          * If we don't have active breakpoints in the host, we don't
5271          * care about the messed up debug address registers. But if
5272          * we have some of them active, restore the old state.
5273          */
5274         if (hw_breakpoint_active())
5275                 hw_breakpoint_restore();
5276
5277         kvm_get_msr(vcpu, MSR_IA32_TSC, &vcpu->arch.last_guest_tsc);
5278
5279         vcpu->mode = OUTSIDE_GUEST_MODE;
5280         smp_wmb();
5281         local_irq_enable();
5282
5283         ++vcpu->stat.exits;
5284
5285         /*
5286          * We must have an instruction between local_irq_enable() and
5287          * kvm_guest_exit(), so the timer interrupt isn't delayed by
5288          * the interrupt shadow.  The stat.exits increment will do nicely.
5289          * But we need to prevent reordering, hence this barrier():
5290          */
5291         barrier();
5292
5293         kvm_guest_exit();
5294
5295         preempt_enable();
5296
5297         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5298
5299         /*
5300          * Profile KVM exit RIPs:
5301          */
5302         if (unlikely(prof_on == KVM_PROFILING)) {
5303                 unsigned long rip = kvm_rip_read(vcpu);
5304                 profile_hit(KVM_PROFILING, (void *)rip);
5305         }
5306
5307
5308         kvm_lapic_sync_from_vapic(vcpu);
5309
5310         r = kvm_x86_ops->handle_exit(vcpu);
5311 out:
5312         return r;
5313 }
5314
5315
5316 static int __vcpu_run(struct kvm_vcpu *vcpu)
5317 {
5318         int r;
5319         struct kvm *kvm = vcpu->kvm;
5320
5321         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
5322                 pr_debug("vcpu %d received sipi with vector # %x\n",
5323                          vcpu->vcpu_id, vcpu->arch.sipi_vector);
5324                 kvm_lapic_reset(vcpu);
5325                 r = kvm_arch_vcpu_reset(vcpu);
5326                 if (r)
5327                         return r;
5328                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5329         }
5330
5331         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5332         vapic_enter(vcpu);
5333
5334         r = 1;
5335         while (r > 0) {
5336                 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
5337                     !vcpu->arch.apf.halted)
5338                         r = vcpu_enter_guest(vcpu);
5339                 else {
5340                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5341                         kvm_vcpu_block(vcpu);
5342                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5343                         if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
5344                         {
5345                                 switch(vcpu->arch.mp_state) {
5346                                 case KVM_MP_STATE_HALTED:
5347                                         vcpu->arch.mp_state =
5348                                                 KVM_MP_STATE_RUNNABLE;
5349                                 case KVM_MP_STATE_RUNNABLE:
5350                                         vcpu->arch.apf.halted = false;
5351                                         break;
5352                                 case KVM_MP_STATE_SIPI_RECEIVED:
5353                                 default:
5354                                         r = -EINTR;
5355                                         break;
5356                                 }
5357                         }
5358                 }
5359
5360                 if (r <= 0)
5361                         break;
5362
5363                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
5364                 if (kvm_cpu_has_pending_timer(vcpu))
5365                         kvm_inject_pending_timer_irqs(vcpu);
5366
5367                 if (dm_request_for_irq_injection(vcpu)) {
5368                         r = -EINTR;
5369                         vcpu->run->exit_reason = KVM_EXIT_INTR;
5370                         ++vcpu->stat.request_irq_exits;
5371                 }
5372
5373                 kvm_check_async_pf_completion(vcpu);
5374
5375                 if (signal_pending(current)) {
5376                         r = -EINTR;
5377                         vcpu->run->exit_reason = KVM_EXIT_INTR;
5378                         ++vcpu->stat.signal_exits;
5379                 }
5380                 if (need_resched()) {
5381                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5382                         kvm_resched(vcpu);
5383                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5384                 }
5385         }
5386
5387         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5388
5389         vapic_exit(vcpu);
5390
5391         return r;
5392 }
5393
5394 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
5395 {
5396         int r;
5397         sigset_t sigsaved;
5398
5399         if (!tsk_used_math(current) && init_fpu(current))
5400                 return -ENOMEM;
5401
5402         if (vcpu->sigset_active)
5403                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
5404
5405         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
5406                 kvm_vcpu_block(vcpu);
5407                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
5408                 r = -EAGAIN;
5409                 goto out;
5410         }
5411
5412         /* re-sync apic's tpr */
5413         if (!irqchip_in_kernel(vcpu->kvm)) {
5414                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
5415                         r = -EINVAL;
5416                         goto out;
5417                 }
5418         }
5419
5420         if (vcpu->arch.pio.count || vcpu->mmio_needed) {
5421                 if (vcpu->mmio_needed) {
5422                         memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
5423                         vcpu->mmio_read_completed = 1;
5424                         vcpu->mmio_needed = 0;
5425                 }
5426                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5427                 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
5428                 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5429                 if (r != EMULATE_DONE) {
5430                         r = 0;
5431                         goto out;
5432                 }
5433         }
5434         if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
5435                 kvm_register_write(vcpu, VCPU_REGS_RAX,
5436                                      kvm_run->hypercall.ret);
5437
5438         r = __vcpu_run(vcpu);
5439
5440 out:
5441         post_kvm_run_save(vcpu);
5442         if (vcpu->sigset_active)
5443                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
5444
5445         return r;
5446 }
5447
5448 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5449 {
5450         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
5451         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
5452         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
5453         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
5454         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
5455         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
5456         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
5457         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
5458 #ifdef CONFIG_X86_64
5459         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
5460         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
5461         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
5462         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
5463         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
5464         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
5465         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
5466         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
5467 #endif
5468
5469         regs->rip = kvm_rip_read(vcpu);
5470         regs->rflags = kvm_get_rflags(vcpu);
5471
5472         return 0;
5473 }
5474
5475 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5476 {
5477         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
5478         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
5479         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
5480         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
5481         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
5482         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
5483         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
5484         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
5485 #ifdef CONFIG_X86_64
5486         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
5487         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
5488         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
5489         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
5490         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
5491         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
5492         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
5493         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
5494 #endif
5495
5496         kvm_rip_write(vcpu, regs->rip);
5497         kvm_set_rflags(vcpu, regs->rflags);
5498
5499         vcpu->arch.exception.pending = false;
5500
5501         kvm_make_request(KVM_REQ_EVENT, vcpu);
5502
5503         return 0;
5504 }
5505
5506 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
5507 {
5508         struct kvm_segment cs;
5509
5510         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
5511         *db = cs.db;
5512         *l = cs.l;
5513 }
5514 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
5515
5516 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
5517                                   struct kvm_sregs *sregs)
5518 {
5519         struct desc_ptr dt;
5520
5521         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5522         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5523         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5524         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5525         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5526         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5527
5528         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5529         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5530
5531         kvm_x86_ops->get_idt(vcpu, &dt);
5532         sregs->idt.limit = dt.size;
5533         sregs->idt.base = dt.address;
5534         kvm_x86_ops->get_gdt(vcpu, &dt);
5535         sregs->gdt.limit = dt.size;
5536         sregs->gdt.base = dt.address;
5537
5538         sregs->cr0 = kvm_read_cr0(vcpu);
5539         sregs->cr2 = vcpu->arch.cr2;
5540         sregs->cr3 = kvm_read_cr3(vcpu);
5541         sregs->cr4 = kvm_read_cr4(vcpu);
5542         sregs->cr8 = kvm_get_cr8(vcpu);
5543         sregs->efer = vcpu->arch.efer;
5544         sregs->apic_base = kvm_get_apic_base(vcpu);
5545
5546         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
5547
5548         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
5549                 set_bit(vcpu->arch.interrupt.nr,
5550                         (unsigned long *)sregs->interrupt_bitmap);
5551
5552         return 0;
5553 }
5554
5555 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
5556                                     struct kvm_mp_state *mp_state)
5557 {
5558         mp_state->mp_state = vcpu->arch.mp_state;
5559         return 0;
5560 }
5561
5562 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
5563                                     struct kvm_mp_state *mp_state)
5564 {
5565         vcpu->arch.mp_state = mp_state->mp_state;
5566         kvm_make_request(KVM_REQ_EVENT, vcpu);
5567         return 0;
5568 }
5569
5570 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason,
5571                     bool has_error_code, u32 error_code)
5572 {
5573         struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
5574         int ret;
5575
5576         init_emulate_ctxt(vcpu);
5577
5578         ret = emulator_task_switch(&vcpu->arch.emulate_ctxt,
5579                                    tss_selector, reason, has_error_code,
5580                                    error_code);
5581
5582         if (ret)
5583                 return EMULATE_FAIL;
5584
5585         memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
5586         kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
5587         kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
5588         kvm_make_request(KVM_REQ_EVENT, vcpu);
5589         return EMULATE_DONE;
5590 }
5591 EXPORT_SYMBOL_GPL(kvm_task_switch);
5592
5593 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
5594                                   struct kvm_sregs *sregs)
5595 {
5596         int mmu_reset_needed = 0;
5597         int pending_vec, max_bits, idx;
5598         struct desc_ptr dt;
5599
5600         dt.size = sregs->idt.limit;
5601         dt.address = sregs->idt.base;
5602         kvm_x86_ops->set_idt(vcpu, &dt);
5603         dt.size = sregs->gdt.limit;
5604         dt.address = sregs->gdt.base;
5605         kvm_x86_ops->set_gdt(vcpu, &dt);
5606
5607         vcpu->arch.cr2 = sregs->cr2;
5608         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
5609         vcpu->arch.cr3 = sregs->cr3;
5610         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
5611
5612         kvm_set_cr8(vcpu, sregs->cr8);
5613
5614         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
5615         kvm_x86_ops->set_efer(vcpu, sregs->efer);
5616         kvm_set_apic_base(vcpu, sregs->apic_base);
5617
5618         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
5619         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
5620         vcpu->arch.cr0 = sregs->cr0;
5621
5622         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
5623         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
5624         if (sregs->cr4 & X86_CR4_OSXSAVE)
5625                 update_cpuid(vcpu);
5626
5627         idx = srcu_read_lock(&vcpu->kvm->srcu);
5628         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
5629                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
5630                 mmu_reset_needed = 1;
5631         }
5632         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5633
5634         if (mmu_reset_needed)
5635                 kvm_mmu_reset_context(vcpu);
5636
5637         max_bits = (sizeof sregs->interrupt_bitmap) << 3;
5638         pending_vec = find_first_bit(
5639                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
5640         if (pending_vec < max_bits) {
5641                 kvm_queue_interrupt(vcpu, pending_vec, false);
5642                 pr_debug("Set back pending irq %d\n", pending_vec);
5643                 if (irqchip_in_kernel(vcpu->kvm))
5644                         kvm_pic_clear_isr_ack(vcpu->kvm);
5645         }
5646
5647         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5648         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5649         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5650         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5651         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5652         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5653
5654         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5655         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5656
5657         update_cr8_intercept(vcpu);
5658
5659         /* Older userspace won't unhalt the vcpu on reset. */
5660         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
5661             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
5662             !is_protmode(vcpu))
5663                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5664
5665         kvm_make_request(KVM_REQ_EVENT, vcpu);
5666
5667         return 0;
5668 }
5669
5670 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
5671                                         struct kvm_guest_debug *dbg)
5672 {
5673         unsigned long rflags;
5674         int i, r;
5675
5676         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
5677                 r = -EBUSY;
5678                 if (vcpu->arch.exception.pending)
5679                         goto out;
5680                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
5681                         kvm_queue_exception(vcpu, DB_VECTOR);
5682                 else
5683                         kvm_queue_exception(vcpu, BP_VECTOR);
5684         }
5685
5686         /*
5687          * Read rflags as long as potentially injected trace flags are still
5688          * filtered out.
5689          */
5690         rflags = kvm_get_rflags(vcpu);
5691
5692         vcpu->guest_debug = dbg->control;
5693         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
5694                 vcpu->guest_debug = 0;
5695
5696         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5697                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
5698                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
5699                 vcpu->arch.switch_db_regs =
5700                         (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
5701         } else {
5702                 for (i = 0; i < KVM_NR_DB_REGS; i++)
5703                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
5704                 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
5705         }
5706
5707         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5708                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
5709                         get_segment_base(vcpu, VCPU_SREG_CS);
5710
5711         /*
5712          * Trigger an rflags update that will inject or remove the trace
5713          * flags.
5714          */
5715         kvm_set_rflags(vcpu, rflags);
5716
5717         kvm_x86_ops->set_guest_debug(vcpu, dbg);
5718
5719         r = 0;
5720
5721 out:
5722
5723         return r;
5724 }
5725
5726 /*
5727  * Translate a guest virtual address to a guest physical address.
5728  */
5729 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
5730                                     struct kvm_translation *tr)
5731 {
5732         unsigned long vaddr = tr->linear_address;
5733         gpa_t gpa;
5734         int idx;
5735
5736         idx = srcu_read_lock(&vcpu->kvm->srcu);
5737         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
5738         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5739         tr->physical_address = gpa;
5740         tr->valid = gpa != UNMAPPED_GVA;
5741         tr->writeable = 1;
5742         tr->usermode = 0;
5743
5744         return 0;
5745 }
5746
5747 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5748 {
5749         struct i387_fxsave_struct *fxsave =
5750                         &vcpu->arch.guest_fpu.state->fxsave;
5751
5752         memcpy(fpu->fpr, fxsave->st_space, 128);
5753         fpu->fcw = fxsave->cwd;
5754         fpu->fsw = fxsave->swd;
5755         fpu->ftwx = fxsave->twd;
5756         fpu->last_opcode = fxsave->fop;
5757         fpu->last_ip = fxsave->rip;
5758         fpu->last_dp = fxsave->rdp;
5759         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
5760
5761         return 0;
5762 }
5763
5764 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5765 {
5766         struct i387_fxsave_struct *fxsave =
5767                         &vcpu->arch.guest_fpu.state->fxsave;
5768
5769         memcpy(fxsave->st_space, fpu->fpr, 128);
5770         fxsave->cwd = fpu->fcw;
5771         fxsave->swd = fpu->fsw;
5772         fxsave->twd = fpu->ftwx;
5773         fxsave->fop = fpu->last_opcode;
5774         fxsave->rip = fpu->last_ip;
5775         fxsave->rdp = fpu->last_dp;
5776         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
5777
5778         return 0;
5779 }
5780
5781 int fx_init(struct kvm_vcpu *vcpu)
5782 {
5783         int err;
5784
5785         err = fpu_alloc(&vcpu->arch.guest_fpu);
5786         if (err)
5787                 return err;
5788
5789         fpu_finit(&vcpu->arch.guest_fpu);
5790
5791         /*
5792          * Ensure guest xcr0 is valid for loading
5793          */
5794         vcpu->arch.xcr0 = XSTATE_FP;
5795
5796         vcpu->arch.cr0 |= X86_CR0_ET;
5797
5798         return 0;
5799 }
5800 EXPORT_SYMBOL_GPL(fx_init);
5801
5802 static void fx_free(struct kvm_vcpu *vcpu)
5803 {
5804         fpu_free(&vcpu->arch.guest_fpu);
5805 }
5806
5807 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
5808 {
5809         if (vcpu->guest_fpu_loaded)
5810                 return;
5811
5812         /*
5813          * Restore all possible states in the guest,
5814          * and assume host would use all available bits.
5815          * Guest xcr0 would be loaded later.
5816          */
5817         kvm_put_guest_xcr0(vcpu);
5818         vcpu->guest_fpu_loaded = 1;
5819         unlazy_fpu(current);
5820         fpu_restore_checking(&vcpu->arch.guest_fpu);
5821         trace_kvm_fpu(1);
5822 }
5823
5824 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
5825 {
5826         kvm_put_guest_xcr0(vcpu);
5827
5828         if (!vcpu->guest_fpu_loaded)
5829                 return;
5830
5831         vcpu->guest_fpu_loaded = 0;
5832         fpu_save_init(&vcpu->arch.guest_fpu);
5833         ++vcpu->stat.fpu_reload;
5834         kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
5835         trace_kvm_fpu(0);
5836 }
5837
5838 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
5839 {
5840         if (vcpu->arch.time_page) {
5841                 kvm_release_page_dirty(vcpu->arch.time_page);
5842                 vcpu->arch.time_page = NULL;
5843         }
5844
5845         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
5846         fx_free(vcpu);
5847         kvm_x86_ops->vcpu_free(vcpu);
5848 }
5849
5850 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
5851                                                 unsigned int id)
5852 {
5853         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
5854                 printk_once(KERN_WARNING
5855                 "kvm: SMP vm created on host with unstable TSC; "
5856                 "guest TSC will not be reliable\n");
5857         return kvm_x86_ops->vcpu_create(kvm, id);
5858 }
5859
5860 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
5861 {
5862         int r;
5863
5864         vcpu->arch.mtrr_state.have_fixed = 1;
5865         vcpu_load(vcpu);
5866         r = kvm_arch_vcpu_reset(vcpu);
5867         if (r == 0)
5868                 r = kvm_mmu_setup(vcpu);
5869         vcpu_put(vcpu);
5870         if (r < 0)
5871                 goto free_vcpu;
5872
5873         return 0;
5874 free_vcpu:
5875         kvm_x86_ops->vcpu_free(vcpu);
5876         return r;
5877 }
5878
5879 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
5880 {
5881         vcpu->arch.apf.msr_val = 0;
5882
5883         vcpu_load(vcpu);
5884         kvm_mmu_unload(vcpu);
5885         vcpu_put(vcpu);
5886
5887         fx_free(vcpu);
5888         kvm_x86_ops->vcpu_free(vcpu);
5889 }
5890
5891 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
5892 {
5893         vcpu->arch.nmi_pending = false;
5894         vcpu->arch.nmi_injected = false;
5895
5896         vcpu->arch.switch_db_regs = 0;
5897         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
5898         vcpu->arch.dr6 = DR6_FIXED_1;
5899         vcpu->arch.dr7 = DR7_FIXED_1;
5900
5901         kvm_make_request(KVM_REQ_EVENT, vcpu);
5902         vcpu->arch.apf.msr_val = 0;
5903
5904         kvm_clear_async_pf_completion_queue(vcpu);
5905         kvm_async_pf_hash_reset(vcpu);
5906         vcpu->arch.apf.halted = false;
5907
5908         return kvm_x86_ops->vcpu_reset(vcpu);
5909 }
5910
5911 int kvm_arch_hardware_enable(void *garbage)
5912 {
5913         struct kvm *kvm;
5914         struct kvm_vcpu *vcpu;
5915         int i;
5916
5917         kvm_shared_msr_cpu_online();
5918         list_for_each_entry(kvm, &vm_list, vm_list)
5919                 kvm_for_each_vcpu(i, vcpu, kvm)
5920                         if (vcpu->cpu == smp_processor_id())
5921                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5922         return kvm_x86_ops->hardware_enable(garbage);
5923 }
5924
5925 void kvm_arch_hardware_disable(void *garbage)
5926 {
5927         kvm_x86_ops->hardware_disable(garbage);
5928         drop_user_return_notifiers(garbage);
5929 }
5930
5931 int kvm_arch_hardware_setup(void)
5932 {
5933         return kvm_x86_ops->hardware_setup();
5934 }
5935
5936 void kvm_arch_hardware_unsetup(void)
5937 {
5938         kvm_x86_ops->hardware_unsetup();
5939 }
5940
5941 void kvm_arch_check_processor_compat(void *rtn)
5942 {
5943         kvm_x86_ops->check_processor_compatibility(rtn);
5944 }
5945
5946 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
5947 {
5948         struct page *page;
5949         struct kvm *kvm;
5950         int r;
5951
5952         BUG_ON(vcpu->kvm == NULL);
5953         kvm = vcpu->kvm;
5954
5955         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
5956         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
5957         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
5958         vcpu->arch.mmu.translate_gpa = translate_gpa;
5959         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5960         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
5961                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5962         else
5963                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
5964
5965         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
5966         if (!page) {
5967                 r = -ENOMEM;
5968                 goto fail;
5969         }
5970         vcpu->arch.pio_data = page_address(page);
5971
5972         if (!kvm->arch.virtual_tsc_khz)
5973                 kvm_arch_set_tsc_khz(kvm, max_tsc_khz);
5974
5975         r = kvm_mmu_create(vcpu);
5976         if (r < 0)
5977                 goto fail_free_pio_data;
5978
5979         if (irqchip_in_kernel(kvm)) {
5980                 r = kvm_create_lapic(vcpu);
5981                 if (r < 0)
5982                         goto fail_mmu_destroy;
5983         }
5984
5985         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
5986                                        GFP_KERNEL);
5987         if (!vcpu->arch.mce_banks) {
5988                 r = -ENOMEM;
5989                 goto fail_free_lapic;
5990         }
5991         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
5992
5993         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
5994                 goto fail_free_mce_banks;
5995
5996         kvm_async_pf_hash_reset(vcpu);
5997
5998         return 0;
5999 fail_free_mce_banks:
6000         kfree(vcpu->arch.mce_banks);
6001 fail_free_lapic:
6002         kvm_free_lapic(vcpu);
6003 fail_mmu_destroy:
6004         kvm_mmu_destroy(vcpu);
6005 fail_free_pio_data:
6006         free_page((unsigned long)vcpu->arch.pio_data);
6007 fail:
6008         return r;
6009 }
6010
6011 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
6012 {
6013         int idx;
6014
6015         kfree(vcpu->arch.mce_banks);
6016         kvm_free_lapic(vcpu);
6017         idx = srcu_read_lock(&vcpu->kvm->srcu);
6018         kvm_mmu_destroy(vcpu);
6019         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6020         free_page((unsigned long)vcpu->arch.pio_data);
6021 }
6022
6023 int kvm_arch_init_vm(struct kvm *kvm)
6024 {
6025         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
6026         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
6027
6028         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
6029         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
6030
6031         spin_lock_init(&kvm->arch.tsc_write_lock);
6032
6033         return 0;
6034 }
6035
6036 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
6037 {
6038         vcpu_load(vcpu);
6039         kvm_mmu_unload(vcpu);
6040         vcpu_put(vcpu);
6041 }
6042
6043 static void kvm_free_vcpus(struct kvm *kvm)
6044 {
6045         unsigned int i;
6046         struct kvm_vcpu *vcpu;
6047
6048         /*
6049          * Unpin any mmu pages first.
6050          */
6051         kvm_for_each_vcpu(i, vcpu, kvm) {
6052                 kvm_clear_async_pf_completion_queue(vcpu);
6053                 kvm_unload_vcpu_mmu(vcpu);
6054         }
6055         kvm_for_each_vcpu(i, vcpu, kvm)
6056                 kvm_arch_vcpu_free(vcpu);
6057
6058         mutex_lock(&kvm->lock);
6059         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
6060                 kvm->vcpus[i] = NULL;
6061
6062         atomic_set(&kvm->online_vcpus, 0);
6063         mutex_unlock(&kvm->lock);
6064 }
6065
6066 void kvm_arch_sync_events(struct kvm *kvm)
6067 {
6068         kvm_free_all_assigned_devices(kvm);
6069         kvm_free_pit(kvm);
6070 }
6071
6072 void kvm_arch_destroy_vm(struct kvm *kvm)
6073 {
6074         kvm_iommu_unmap_guest(kvm);
6075         kfree(kvm->arch.vpic);
6076         kfree(kvm->arch.vioapic);
6077         kvm_free_vcpus(kvm);
6078         if (kvm->arch.apic_access_page)
6079                 put_page(kvm->arch.apic_access_page);
6080         if (kvm->arch.ept_identity_pagetable)
6081                 put_page(kvm->arch.ept_identity_pagetable);
6082 }
6083
6084 int kvm_arch_prepare_memory_region(struct kvm *kvm,
6085                                 struct kvm_memory_slot *memslot,
6086                                 struct kvm_memory_slot old,
6087                                 struct kvm_userspace_memory_region *mem,
6088                                 int user_alloc)
6089 {
6090         int npages = memslot->npages;
6091         int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
6092
6093         /* Prevent internal slot pages from being moved by fork()/COW. */
6094         if (memslot->id >= KVM_MEMORY_SLOTS)
6095                 map_flags = MAP_SHARED | MAP_ANONYMOUS;
6096
6097         /*To keep backward compatibility with older userspace,
6098          *x86 needs to hanlde !user_alloc case.
6099          */
6100         if (!user_alloc) {
6101                 if (npages && !old.rmap) {
6102                         unsigned long userspace_addr;
6103
6104                         down_write(&current->mm->mmap_sem);
6105                         userspace_addr = do_mmap(NULL, 0,
6106                                                  npages * PAGE_SIZE,
6107                                                  PROT_READ | PROT_WRITE,
6108                                                  map_flags,
6109                                                  0);
6110                         up_write(&current->mm->mmap_sem);
6111
6112                         if (IS_ERR((void *)userspace_addr))
6113                                 return PTR_ERR((void *)userspace_addr);
6114
6115                         memslot->userspace_addr = userspace_addr;
6116                 }
6117         }
6118
6119
6120         return 0;
6121 }
6122
6123 void kvm_arch_commit_memory_region(struct kvm *kvm,
6124                                 struct kvm_userspace_memory_region *mem,
6125                                 struct kvm_memory_slot old,
6126                                 int user_alloc)
6127 {
6128
6129         int npages = mem->memory_size >> PAGE_SHIFT;
6130
6131         if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
6132                 int ret;
6133
6134                 down_write(&current->mm->mmap_sem);
6135                 ret = do_munmap(current->mm, old.userspace_addr,
6136                                 old.npages * PAGE_SIZE);
6137                 up_write(&current->mm->mmap_sem);
6138                 if (ret < 0)
6139                         printk(KERN_WARNING
6140                                "kvm_vm_ioctl_set_memory_region: "
6141                                "failed to munmap memory\n");
6142         }
6143
6144         spin_lock(&kvm->mmu_lock);
6145         if (!kvm->arch.n_requested_mmu_pages) {
6146                 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
6147                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
6148         }
6149
6150         kvm_mmu_slot_remove_write_access(kvm, mem->slot);
6151         spin_unlock(&kvm->mmu_lock);
6152 }
6153
6154 void kvm_arch_flush_shadow(struct kvm *kvm)
6155 {
6156         kvm_mmu_zap_all(kvm);
6157         kvm_reload_remote_mmus(kvm);
6158 }
6159
6160 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
6161 {
6162         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6163                 !vcpu->arch.apf.halted)
6164                 || !list_empty_careful(&vcpu->async_pf.done)
6165                 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
6166                 || vcpu->arch.nmi_pending ||
6167                 (kvm_arch_interrupt_allowed(vcpu) &&
6168                  kvm_cpu_has_interrupt(vcpu));
6169 }
6170
6171 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
6172 {
6173         int me;
6174         int cpu = vcpu->cpu;
6175
6176         if (waitqueue_active(&vcpu->wq)) {
6177                 wake_up_interruptible(&vcpu->wq);
6178                 ++vcpu->stat.halt_wakeup;
6179         }
6180
6181         me = get_cpu();
6182         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
6183                 if (kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE)
6184                         smp_send_reschedule(cpu);
6185         put_cpu();
6186 }
6187
6188 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
6189 {
6190         return kvm_x86_ops->interrupt_allowed(vcpu);
6191 }
6192
6193 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
6194 {
6195         unsigned long current_rip = kvm_rip_read(vcpu) +
6196                 get_segment_base(vcpu, VCPU_SREG_CS);
6197
6198         return current_rip == linear_rip;
6199 }
6200 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
6201
6202 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
6203 {
6204         unsigned long rflags;
6205
6206         rflags = kvm_x86_ops->get_rflags(vcpu);
6207         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6208                 rflags &= ~X86_EFLAGS_TF;
6209         return rflags;
6210 }
6211 EXPORT_SYMBOL_GPL(kvm_get_rflags);
6212
6213 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
6214 {
6215         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
6216             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
6217                 rflags |= X86_EFLAGS_TF;
6218         kvm_x86_ops->set_rflags(vcpu, rflags);
6219         kvm_make_request(KVM_REQ_EVENT, vcpu);
6220 }
6221 EXPORT_SYMBOL_GPL(kvm_set_rflags);
6222
6223 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
6224 {
6225         int r;
6226
6227         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
6228               is_error_page(work->page))
6229                 return;
6230
6231         r = kvm_mmu_reload(vcpu);
6232         if (unlikely(r))
6233                 return;
6234
6235         if (!vcpu->arch.mmu.direct_map &&
6236               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
6237                 return;
6238
6239         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
6240 }
6241
6242 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
6243 {
6244         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
6245 }
6246
6247 static inline u32 kvm_async_pf_next_probe(u32 key)
6248 {
6249         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
6250 }
6251
6252 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6253 {
6254         u32 key = kvm_async_pf_hash_fn(gfn);
6255
6256         while (vcpu->arch.apf.gfns[key] != ~0)
6257                 key = kvm_async_pf_next_probe(key);
6258
6259         vcpu->arch.apf.gfns[key] = gfn;
6260 }
6261
6262 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
6263 {
6264         int i;
6265         u32 key = kvm_async_pf_hash_fn(gfn);
6266
6267         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
6268                      (vcpu->arch.apf.gfns[key] != gfn &&
6269                       vcpu->arch.apf.gfns[key] != ~0); i++)
6270                 key = kvm_async_pf_next_probe(key);
6271
6272         return key;
6273 }
6274
6275 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6276 {
6277         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
6278 }
6279
6280 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6281 {
6282         u32 i, j, k;
6283
6284         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
6285         while (true) {
6286                 vcpu->arch.apf.gfns[i] = ~0;
6287                 do {
6288                         j = kvm_async_pf_next_probe(j);
6289                         if (vcpu->arch.apf.gfns[j] == ~0)
6290                                 return;
6291                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
6292                         /*
6293                          * k lies cyclically in ]i,j]
6294                          * |    i.k.j |
6295                          * |....j i.k.| or  |.k..j i...|
6296                          */
6297                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
6298                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
6299                 i = j;
6300         }
6301 }
6302
6303 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
6304 {
6305
6306         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
6307                                       sizeof(val));
6308 }
6309
6310 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
6311                                      struct kvm_async_pf *work)
6312 {
6313         struct x86_exception fault;
6314
6315         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
6316         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
6317
6318         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
6319             (vcpu->arch.apf.send_user_only &&
6320              kvm_x86_ops->get_cpl(vcpu) == 0))
6321                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
6322         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
6323                 fault.vector = PF_VECTOR;
6324                 fault.error_code_valid = true;
6325                 fault.error_code = 0;
6326                 fault.nested_page_fault = false;
6327                 fault.address = work->arch.token;
6328                 kvm_inject_page_fault(vcpu, &fault);
6329         }
6330 }
6331
6332 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
6333                                  struct kvm_async_pf *work)
6334 {
6335         struct x86_exception fault;
6336
6337         trace_kvm_async_pf_ready(work->arch.token, work->gva);
6338         if (is_error_page(work->page))
6339                 work->arch.token = ~0; /* broadcast wakeup */
6340         else
6341                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
6342
6343         if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
6344             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
6345                 fault.vector = PF_VECTOR;
6346                 fault.error_code_valid = true;
6347                 fault.error_code = 0;
6348                 fault.nested_page_fault = false;
6349                 fault.address = work->arch.token;
6350                 kvm_inject_page_fault(vcpu, &fault);
6351         }
6352         vcpu->arch.apf.halted = false;
6353 }
6354
6355 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
6356 {
6357         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
6358                 return true;
6359         else
6360                 return !kvm_event_needs_reinjection(vcpu) &&
6361                         kvm_x86_ops->interrupt_allowed(vcpu);
6362 }
6363
6364 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
6365 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
6366 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
6367 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
6368 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
6369 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
6370 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
6371 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
6372 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
6373 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
6374 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
6375 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);