1 // SPDX-License-Identifier: GPL-2.0-only
3 * Kernel-based Virtual Machine driver for Linux
5 * derived from drivers/kvm/kvm_main.c
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright (C) 2008 Qumranet, Inc.
9 * Copyright IBM Corporation, 2008
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
13 * Avi Kivity <avi@qumranet.com>
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Amit Shah <amit.shah@qumranet.com>
16 * Ben-Ami Yassour <benami@il.ibm.com>
19 #include <linux/kvm_host.h>
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/intel-iommu.h>
45 #include <linux/cpufreq.h>
46 #include <linux/user-return-notifier.h>
47 #include <linux/srcu.h>
48 #include <linux/slab.h>
49 #include <linux/perf_event.h>
50 #include <linux/uaccess.h>
51 #include <linux/hash.h>
52 #include <linux/pci.h>
53 #include <linux/timekeeper_internal.h>
54 #include <linux/pvclock_gtod.h>
55 #include <linux/kvm_irqfd.h>
56 #include <linux/irqbypass.h>
57 #include <linux/sched/stat.h>
58 #include <linux/sched/isolation.h>
59 #include <linux/mem_encrypt.h>
60 #include <linux/entry-kvm.h>
62 #include <trace/events/kvm.h>
64 #include <asm/debugreg.h>
68 #include <linux/kernel_stat.h>
69 #include <asm/fpu/internal.h> /* Ugh! */
70 #include <asm/pvclock.h>
71 #include <asm/div64.h>
72 #include <asm/irq_remapping.h>
73 #include <asm/mshyperv.h>
74 #include <asm/hypervisor.h>
75 #include <asm/tlbflush.h>
76 #include <asm/intel_pt.h>
77 #include <asm/emulate_prefix.h>
78 #include <clocksource/hyperv_timer.h>
80 #define CREATE_TRACE_POINTS
83 #define MAX_IO_MSRS 256
84 #define KVM_MAX_MCE_BANKS 32
85 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
86 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
88 #define emul_to_vcpu(ctxt) \
89 ((struct kvm_vcpu *)(ctxt)->vcpu)
92 * - enable syscall per default because its emulated by KVM
93 * - enable LME and LMA per default on 64 bit KVM
97 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
99 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
102 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
104 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
105 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
107 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
108 static void process_nmi(struct kvm_vcpu *vcpu);
109 static void process_smi(struct kvm_vcpu *vcpu);
110 static void enter_smm(struct kvm_vcpu *vcpu);
111 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
112 static void store_regs(struct kvm_vcpu *vcpu);
113 static int sync_regs(struct kvm_vcpu *vcpu);
115 struct kvm_x86_ops kvm_x86_ops __read_mostly;
116 EXPORT_SYMBOL_GPL(kvm_x86_ops);
118 #define KVM_X86_OP(func) \
119 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \
120 *(((struct kvm_x86_ops *)0)->func));
121 #define KVM_X86_OP_NULL KVM_X86_OP
122 #include <asm/kvm-x86-ops.h>
123 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
124 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
125 EXPORT_STATIC_CALL_GPL(kvm_x86_tlb_flush_current);
127 static bool __read_mostly ignore_msrs = 0;
128 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
130 bool __read_mostly report_ignored_msrs = true;
131 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
132 EXPORT_SYMBOL_GPL(report_ignored_msrs);
134 unsigned int min_timer_period_us = 200;
135 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
137 static bool __read_mostly kvmclock_periodic_sync = true;
138 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
140 bool __read_mostly kvm_has_tsc_control;
141 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
142 u32 __read_mostly kvm_max_guest_tsc_khz;
143 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
144 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits;
145 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
146 u64 __read_mostly kvm_max_tsc_scaling_ratio;
147 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
148 u64 __read_mostly kvm_default_tsc_scaling_ratio;
149 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
150 bool __read_mostly kvm_has_bus_lock_exit;
151 EXPORT_SYMBOL_GPL(kvm_has_bus_lock_exit);
153 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
154 static u32 __read_mostly tsc_tolerance_ppm = 250;
155 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
158 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables
159 * adaptive tuning starting from default advancement of 1000ns. '0' disables
160 * advancement entirely. Any other value is used as-is and disables adaptive
161 * tuning, i.e. allows privileged userspace to set an exact advancement time.
163 static int __read_mostly lapic_timer_advance_ns = -1;
164 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
166 static bool __read_mostly vector_hashing = true;
167 module_param(vector_hashing, bool, S_IRUGO);
169 bool __read_mostly enable_vmware_backdoor = false;
170 module_param(enable_vmware_backdoor, bool, S_IRUGO);
171 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
173 static bool __read_mostly force_emulation_prefix = false;
174 module_param(force_emulation_prefix, bool, S_IRUGO);
176 int __read_mostly pi_inject_timer = -1;
177 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
180 * Restoring the host value for MSRs that are only consumed when running in
181 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
182 * returns to userspace, i.e. the kernel can run with the guest's value.
184 #define KVM_MAX_NR_USER_RETURN_MSRS 16
186 struct kvm_user_return_msrs_global {
188 u32 msrs[KVM_MAX_NR_USER_RETURN_MSRS];
191 struct kvm_user_return_msrs {
192 struct user_return_notifier urn;
194 struct kvm_user_return_msr_values {
197 } values[KVM_MAX_NR_USER_RETURN_MSRS];
200 static struct kvm_user_return_msrs_global __read_mostly user_return_msrs_global;
201 static struct kvm_user_return_msrs __percpu *user_return_msrs;
203 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
204 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
205 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
206 | XFEATURE_MASK_PKRU)
208 u64 __read_mostly host_efer;
209 EXPORT_SYMBOL_GPL(host_efer);
211 bool __read_mostly allow_smaller_maxphyaddr = 0;
212 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
214 u64 __read_mostly host_xss;
215 EXPORT_SYMBOL_GPL(host_xss);
216 u64 __read_mostly supported_xss;
217 EXPORT_SYMBOL_GPL(supported_xss);
219 struct kvm_stats_debugfs_item debugfs_entries[] = {
220 VCPU_STAT("pf_fixed", pf_fixed),
221 VCPU_STAT("pf_guest", pf_guest),
222 VCPU_STAT("tlb_flush", tlb_flush),
223 VCPU_STAT("invlpg", invlpg),
224 VCPU_STAT("exits", exits),
225 VCPU_STAT("io_exits", io_exits),
226 VCPU_STAT("mmio_exits", mmio_exits),
227 VCPU_STAT("signal_exits", signal_exits),
228 VCPU_STAT("irq_window", irq_window_exits),
229 VCPU_STAT("nmi_window", nmi_window_exits),
230 VCPU_STAT("halt_exits", halt_exits),
231 VCPU_STAT("halt_successful_poll", halt_successful_poll),
232 VCPU_STAT("halt_attempted_poll", halt_attempted_poll),
233 VCPU_STAT("halt_poll_invalid", halt_poll_invalid),
234 VCPU_STAT("halt_wakeup", halt_wakeup),
235 VCPU_STAT("hypercalls", hypercalls),
236 VCPU_STAT("request_irq", request_irq_exits),
237 VCPU_STAT("irq_exits", irq_exits),
238 VCPU_STAT("host_state_reload", host_state_reload),
239 VCPU_STAT("fpu_reload", fpu_reload),
240 VCPU_STAT("insn_emulation", insn_emulation),
241 VCPU_STAT("insn_emulation_fail", insn_emulation_fail),
242 VCPU_STAT("irq_injections", irq_injections),
243 VCPU_STAT("nmi_injections", nmi_injections),
244 VCPU_STAT("req_event", req_event),
245 VCPU_STAT("l1d_flush", l1d_flush),
246 VCPU_STAT("halt_poll_success_ns", halt_poll_success_ns),
247 VCPU_STAT("halt_poll_fail_ns", halt_poll_fail_ns),
248 VM_STAT("mmu_shadow_zapped", mmu_shadow_zapped),
249 VM_STAT("mmu_pte_write", mmu_pte_write),
250 VM_STAT("mmu_pde_zapped", mmu_pde_zapped),
251 VM_STAT("mmu_flooded", mmu_flooded),
252 VM_STAT("mmu_recycled", mmu_recycled),
253 VM_STAT("mmu_cache_miss", mmu_cache_miss),
254 VM_STAT("mmu_unsync", mmu_unsync),
255 VM_STAT("remote_tlb_flush", remote_tlb_flush),
256 VM_STAT("largepages", lpages, .mode = 0444),
257 VM_STAT("nx_largepages_splitted", nx_lpage_splits, .mode = 0444),
258 VM_STAT("max_mmu_page_hash_collisions", max_mmu_page_hash_collisions),
262 u64 __read_mostly host_xcr0;
263 u64 __read_mostly supported_xcr0;
264 EXPORT_SYMBOL_GPL(supported_xcr0);
266 static struct kmem_cache *x86_fpu_cache;
268 static struct kmem_cache *x86_emulator_cache;
271 * When called, it means the previous get/set msr reached an invalid msr.
272 * Return true if we want to ignore/silent this failed msr access.
274 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
276 const char *op = write ? "wrmsr" : "rdmsr";
279 if (report_ignored_msrs)
280 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
285 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
291 static struct kmem_cache *kvm_alloc_emulator_cache(void)
293 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
294 unsigned int size = sizeof(struct x86_emulate_ctxt);
296 return kmem_cache_create_usercopy("x86_emulator", size,
297 __alignof__(struct x86_emulate_ctxt),
298 SLAB_ACCOUNT, useroffset,
299 size - useroffset, NULL);
302 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
304 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
307 for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
308 vcpu->arch.apf.gfns[i] = ~0;
311 static void kvm_on_user_return(struct user_return_notifier *urn)
314 struct kvm_user_return_msrs *msrs
315 = container_of(urn, struct kvm_user_return_msrs, urn);
316 struct kvm_user_return_msr_values *values;
320 * Disabling irqs at this point since the following code could be
321 * interrupted and executed through kvm_arch_hardware_disable()
323 local_irq_save(flags);
324 if (msrs->registered) {
325 msrs->registered = false;
326 user_return_notifier_unregister(urn);
328 local_irq_restore(flags);
329 for (slot = 0; slot < user_return_msrs_global.nr; ++slot) {
330 values = &msrs->values[slot];
331 if (values->host != values->curr) {
332 wrmsrl(user_return_msrs_global.msrs[slot], values->host);
333 values->curr = values->host;
338 void kvm_define_user_return_msr(unsigned slot, u32 msr)
340 BUG_ON(slot >= KVM_MAX_NR_USER_RETURN_MSRS);
341 user_return_msrs_global.msrs[slot] = msr;
342 if (slot >= user_return_msrs_global.nr)
343 user_return_msrs_global.nr = slot + 1;
345 EXPORT_SYMBOL_GPL(kvm_define_user_return_msr);
347 static void kvm_user_return_msr_cpu_online(void)
349 unsigned int cpu = smp_processor_id();
350 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
354 for (i = 0; i < user_return_msrs_global.nr; ++i) {
355 rdmsrl_safe(user_return_msrs_global.msrs[i], &value);
356 msrs->values[i].host = value;
357 msrs->values[i].curr = value;
361 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
363 unsigned int cpu = smp_processor_id();
364 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
367 value = (value & mask) | (msrs->values[slot].host & ~mask);
368 if (value == msrs->values[slot].curr)
370 err = wrmsrl_safe(user_return_msrs_global.msrs[slot], value);
374 msrs->values[slot].curr = value;
375 if (!msrs->registered) {
376 msrs->urn.on_user_return = kvm_on_user_return;
377 user_return_notifier_register(&msrs->urn);
378 msrs->registered = true;
382 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
384 static void drop_user_return_notifiers(void)
386 unsigned int cpu = smp_processor_id();
387 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
389 if (msrs->registered)
390 kvm_on_user_return(&msrs->urn);
393 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
395 return vcpu->arch.apic_base;
397 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
399 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
401 return kvm_apic_mode(kvm_get_apic_base(vcpu));
403 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
405 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
407 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
408 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
409 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
410 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
412 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
414 if (!msr_info->host_initiated) {
415 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
417 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
421 kvm_lapic_set_base(vcpu, msr_info->data);
422 kvm_recalculate_apic_map(vcpu->kvm);
425 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
427 asmlinkage __visible noinstr void kvm_spurious_fault(void)
429 /* Fault while not rebooting. We want the trace. */
430 BUG_ON(!kvm_rebooting);
432 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
434 #define EXCPT_BENIGN 0
435 #define EXCPT_CONTRIBUTORY 1
438 static int exception_class(int vector)
448 return EXCPT_CONTRIBUTORY;
455 #define EXCPT_FAULT 0
457 #define EXCPT_ABORT 2
458 #define EXCPT_INTERRUPT 3
460 static int exception_type(int vector)
464 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
465 return EXCPT_INTERRUPT;
469 /* #DB is trap, as instruction watchpoints are handled elsewhere */
470 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
473 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
476 /* Reserved exceptions will result in fault */
480 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
482 unsigned nr = vcpu->arch.exception.nr;
483 bool has_payload = vcpu->arch.exception.has_payload;
484 unsigned long payload = vcpu->arch.exception.payload;
492 * "Certain debug exceptions may clear bit 0-3. The
493 * remaining contents of the DR6 register are never
494 * cleared by the processor".
496 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
498 * In order to reflect the #DB exception payload in guest
499 * dr6, three components need to be considered: active low
500 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
502 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
503 * In the target guest dr6:
504 * FIXED_1 bits should always be set.
505 * Active low bits should be cleared if 1-setting in payload.
506 * Active high bits should be set if 1-setting in payload.
508 * Note, the payload is compatible with the pending debug
509 * exceptions/exit qualification under VMX, that active_low bits
510 * are active high in payload.
511 * So they need to be flipped for DR6.
513 vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
514 vcpu->arch.dr6 |= payload;
515 vcpu->arch.dr6 ^= payload & DR6_ACTIVE_LOW;
518 * The #DB payload is defined as compatible with the 'pending
519 * debug exceptions' field under VMX, not DR6. While bit 12 is
520 * defined in the 'pending debug exceptions' field (enabled
521 * breakpoint), it is reserved and must be zero in DR6.
523 vcpu->arch.dr6 &= ~BIT(12);
526 vcpu->arch.cr2 = payload;
530 vcpu->arch.exception.has_payload = false;
531 vcpu->arch.exception.payload = 0;
533 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
535 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
536 unsigned nr, bool has_error, u32 error_code,
537 bool has_payload, unsigned long payload, bool reinject)
542 kvm_make_request(KVM_REQ_EVENT, vcpu);
544 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
546 if (has_error && !is_protmode(vcpu))
550 * On vmentry, vcpu->arch.exception.pending is only
551 * true if an event injection was blocked by
552 * nested_run_pending. In that case, however,
553 * vcpu_enter_guest requests an immediate exit,
554 * and the guest shouldn't proceed far enough to
557 WARN_ON_ONCE(vcpu->arch.exception.pending);
558 vcpu->arch.exception.injected = true;
559 if (WARN_ON_ONCE(has_payload)) {
561 * A reinjected event has already
562 * delivered its payload.
568 vcpu->arch.exception.pending = true;
569 vcpu->arch.exception.injected = false;
571 vcpu->arch.exception.has_error_code = has_error;
572 vcpu->arch.exception.nr = nr;
573 vcpu->arch.exception.error_code = error_code;
574 vcpu->arch.exception.has_payload = has_payload;
575 vcpu->arch.exception.payload = payload;
576 if (!is_guest_mode(vcpu))
577 kvm_deliver_exception_payload(vcpu);
581 /* to check exception */
582 prev_nr = vcpu->arch.exception.nr;
583 if (prev_nr == DF_VECTOR) {
584 /* triple fault -> shutdown */
585 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
588 class1 = exception_class(prev_nr);
589 class2 = exception_class(nr);
590 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
591 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
593 * Generate double fault per SDM Table 5-5. Set
594 * exception.pending = true so that the double fault
595 * can trigger a nested vmexit.
597 vcpu->arch.exception.pending = true;
598 vcpu->arch.exception.injected = false;
599 vcpu->arch.exception.has_error_code = true;
600 vcpu->arch.exception.nr = DF_VECTOR;
601 vcpu->arch.exception.error_code = 0;
602 vcpu->arch.exception.has_payload = false;
603 vcpu->arch.exception.payload = 0;
605 /* replace previous exception with a new one in a hope
606 that instruction re-execution will regenerate lost
611 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
613 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
615 EXPORT_SYMBOL_GPL(kvm_queue_exception);
617 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
619 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
621 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
623 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
624 unsigned long payload)
626 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
628 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
630 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
631 u32 error_code, unsigned long payload)
633 kvm_multiple_exception(vcpu, nr, true, error_code,
634 true, payload, false);
637 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
640 kvm_inject_gp(vcpu, 0);
642 return kvm_skip_emulated_instruction(vcpu);
646 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
648 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
650 ++vcpu->stat.pf_guest;
651 vcpu->arch.exception.nested_apf =
652 is_guest_mode(vcpu) && fault->async_page_fault;
653 if (vcpu->arch.exception.nested_apf) {
654 vcpu->arch.apf.nested_apf_token = fault->address;
655 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
657 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
661 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
663 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
664 struct x86_exception *fault)
666 struct kvm_mmu *fault_mmu;
667 WARN_ON_ONCE(fault->vector != PF_VECTOR);
669 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
673 * Invalidate the TLB entry for the faulting address, if it exists,
674 * else the access will fault indefinitely (and to emulate hardware).
676 if ((fault->error_code & PFERR_PRESENT_MASK) &&
677 !(fault->error_code & PFERR_RSVD_MASK))
678 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
679 fault_mmu->root_hpa);
681 fault_mmu->inject_page_fault(vcpu, fault);
682 return fault->nested_page_fault;
684 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
686 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
688 atomic_inc(&vcpu->arch.nmi_queued);
689 kvm_make_request(KVM_REQ_NMI, vcpu);
691 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
693 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
695 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
697 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
699 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
701 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
703 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
706 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
707 * a #GP and return false.
709 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
711 if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
713 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
716 EXPORT_SYMBOL_GPL(kvm_require_cpl);
718 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
720 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
723 kvm_queue_exception(vcpu, UD_VECTOR);
726 EXPORT_SYMBOL_GPL(kvm_require_dr);
729 * This function will be used to read from the physical memory of the currently
730 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
731 * can read from guest physical or from the guest's guest physical memory.
733 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
734 gfn_t ngfn, void *data, int offset, int len,
737 struct x86_exception exception;
741 ngpa = gfn_to_gpa(ngfn);
742 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
743 if (real_gfn == UNMAPPED_GVA)
746 real_gfn = gpa_to_gfn(real_gfn);
748 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
750 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
752 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
753 void *data, int offset, int len, u32 access)
755 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
756 data, offset, len, access);
759 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
761 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
765 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise.
767 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
769 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
770 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
773 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
775 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
776 offset * sizeof(u64), sizeof(pdpte),
777 PFERR_USER_MASK|PFERR_WRITE_MASK);
782 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
783 if ((pdpte[i] & PT_PRESENT_MASK) &&
784 (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
791 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
792 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
798 EXPORT_SYMBOL_GPL(load_pdptrs);
800 bool pdptrs_changed(struct kvm_vcpu *vcpu)
802 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
807 if (!is_pae_paging(vcpu))
810 if (!kvm_register_is_available(vcpu, VCPU_EXREG_PDPTR))
813 gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
814 offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
815 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
816 PFERR_USER_MASK | PFERR_WRITE_MASK);
820 return memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
822 EXPORT_SYMBOL_GPL(pdptrs_changed);
824 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
826 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
828 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
829 kvm_clear_async_pf_completion_queue(vcpu);
830 kvm_async_pf_hash_reset(vcpu);
833 if ((cr0 ^ old_cr0) & update_bits)
834 kvm_mmu_reset_context(vcpu);
836 if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
837 kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
838 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
839 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
841 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
843 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
845 unsigned long old_cr0 = kvm_read_cr0(vcpu);
846 unsigned long pdptr_bits = X86_CR0_CD | X86_CR0_NW | X86_CR0_PG;
851 if (cr0 & 0xffffffff00000000UL)
855 cr0 &= ~CR0_RESERVED_BITS;
857 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
860 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
864 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
865 (cr0 & X86_CR0_PG)) {
870 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
875 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
876 is_pae(vcpu) && ((cr0 ^ old_cr0) & pdptr_bits) &&
877 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)))
880 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
883 static_call(kvm_x86_set_cr0)(vcpu, cr0);
885 kvm_post_set_cr0(vcpu, old_cr0, cr0);
889 EXPORT_SYMBOL_GPL(kvm_set_cr0);
891 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
893 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
895 EXPORT_SYMBOL_GPL(kvm_lmsw);
897 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
899 if (vcpu->arch.guest_state_protected)
902 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
904 if (vcpu->arch.xcr0 != host_xcr0)
905 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
907 if (vcpu->arch.xsaves_enabled &&
908 vcpu->arch.ia32_xss != host_xss)
909 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
912 if (static_cpu_has(X86_FEATURE_PKU) &&
913 (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
914 (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) &&
915 vcpu->arch.pkru != vcpu->arch.host_pkru)
916 __write_pkru(vcpu->arch.pkru);
918 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
920 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
922 if (vcpu->arch.guest_state_protected)
925 if (static_cpu_has(X86_FEATURE_PKU) &&
926 (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
927 (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) {
928 vcpu->arch.pkru = rdpkru();
929 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
930 __write_pkru(vcpu->arch.host_pkru);
933 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
935 if (vcpu->arch.xcr0 != host_xcr0)
936 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
938 if (vcpu->arch.xsaves_enabled &&
939 vcpu->arch.ia32_xss != host_xss)
940 wrmsrl(MSR_IA32_XSS, host_xss);
944 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
946 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
949 u64 old_xcr0 = vcpu->arch.xcr0;
952 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
953 if (index != XCR_XFEATURE_ENABLED_MASK)
955 if (!(xcr0 & XFEATURE_MASK_FP))
957 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
961 * Do not allow the guest to set bits that we do not support
962 * saving. However, xcr0 bit 0 is always set, even if the
963 * emulated CPU does not support XSAVE (see fx_init).
965 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
966 if (xcr0 & ~valid_bits)
969 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
970 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
973 if (xcr0 & XFEATURE_MASK_AVX512) {
974 if (!(xcr0 & XFEATURE_MASK_YMM))
976 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
979 vcpu->arch.xcr0 = xcr0;
981 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
982 kvm_update_cpuid_runtime(vcpu);
986 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
988 if (static_call(kvm_x86_get_cpl)(vcpu) == 0)
989 return __kvm_set_xcr(vcpu, index, xcr);
993 EXPORT_SYMBOL_GPL(kvm_set_xcr);
995 bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
997 if (cr4 & cr4_reserved_bits)
1000 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1003 return static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1005 EXPORT_SYMBOL_GPL(kvm_is_valid_cr4);
1007 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1009 unsigned long mmu_role_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
1010 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
1012 if (((cr4 ^ old_cr4) & mmu_role_bits) ||
1013 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1014 kvm_mmu_reset_context(vcpu);
1016 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1018 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1020 unsigned long old_cr4 = kvm_read_cr4(vcpu);
1021 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
1024 if (!kvm_is_valid_cr4(vcpu, cr4))
1027 if (is_long_mode(vcpu)) {
1028 if (!(cr4 & X86_CR4_PAE))
1030 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1032 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1033 && ((cr4 ^ old_cr4) & pdptr_bits)
1034 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
1035 kvm_read_cr3(vcpu)))
1038 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1039 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1042 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1043 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1047 static_call(kvm_x86_set_cr4)(vcpu, cr4);
1049 kvm_post_set_cr4(vcpu, old_cr4, cr4);
1053 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1055 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1057 bool skip_tlb_flush = false;
1058 #ifdef CONFIG_X86_64
1059 bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1062 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1063 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1067 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
1068 if (!skip_tlb_flush) {
1069 kvm_mmu_sync_roots(vcpu);
1070 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1075 if (is_long_mode(vcpu) && kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1077 else if (is_pae_paging(vcpu) &&
1078 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
1081 kvm_mmu_new_pgd(vcpu, cr3, skip_tlb_flush, skip_tlb_flush);
1082 vcpu->arch.cr3 = cr3;
1083 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1087 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1089 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1091 if (cr8 & CR8_RESERVED_BITS)
1093 if (lapic_in_kernel(vcpu))
1094 kvm_lapic_set_tpr(vcpu, cr8);
1096 vcpu->arch.cr8 = cr8;
1099 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1101 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1103 if (lapic_in_kernel(vcpu))
1104 return kvm_lapic_get_cr8(vcpu);
1106 return vcpu->arch.cr8;
1108 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1110 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1114 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1115 for (i = 0; i < KVM_NR_DB_REGS; i++)
1116 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1117 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
1121 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1125 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1126 dr7 = vcpu->arch.guest_debug_dr7;
1128 dr7 = vcpu->arch.dr7;
1129 static_call(kvm_x86_set_dr7)(vcpu, dr7);
1130 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1131 if (dr7 & DR7_BP_EN_MASK)
1132 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1134 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1136 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1138 u64 fixed = DR6_FIXED_1;
1140 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1145 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1147 size_t size = ARRAY_SIZE(vcpu->arch.db);
1151 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1152 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1153 vcpu->arch.eff_db[dr] = val;
1157 if (!kvm_dr6_valid(val))
1159 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1163 if (!kvm_dr7_valid(val))
1165 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1166 kvm_update_dr7(vcpu);
1172 EXPORT_SYMBOL_GPL(kvm_set_dr);
1174 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1176 size_t size = ARRAY_SIZE(vcpu->arch.db);
1180 *val = vcpu->arch.db[array_index_nospec(dr, size)];
1184 *val = vcpu->arch.dr6;
1188 *val = vcpu->arch.dr7;
1192 EXPORT_SYMBOL_GPL(kvm_get_dr);
1194 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1196 u32 ecx = kvm_rcx_read(vcpu);
1200 err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1203 kvm_rax_write(vcpu, (u32)data);
1204 kvm_rdx_write(vcpu, data >> 32);
1207 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1210 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1211 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1213 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1214 * extract the supported MSRs from the related const lists.
1215 * msrs_to_save is selected from the msrs_to_save_all to reflect the
1216 * capabilities of the host cpu. This capabilities test skips MSRs that are
1217 * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1218 * may depend on host virtualization features rather than host cpu features.
1221 static const u32 msrs_to_save_all[] = {
1222 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1224 #ifdef CONFIG_X86_64
1225 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1227 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1228 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1230 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1231 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1232 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1233 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1234 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1235 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1236 MSR_IA32_UMWAIT_CONTROL,
1238 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1239 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, MSR_ARCH_PERFMON_FIXED_CTR0 + 3,
1240 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1241 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1242 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1243 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1244 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1245 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1246 MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1247 MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1248 MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1249 MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1250 MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1251 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1252 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1253 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1254 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1255 MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1256 MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1257 MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1258 MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1259 MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1262 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1263 static unsigned num_msrs_to_save;
1265 static const u32 emulated_msrs_all[] = {
1266 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1267 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1268 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1269 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1270 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1271 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1272 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1274 HV_X64_MSR_VP_INDEX,
1275 HV_X64_MSR_VP_RUNTIME,
1276 HV_X64_MSR_SCONTROL,
1277 HV_X64_MSR_STIMER0_CONFIG,
1278 HV_X64_MSR_VP_ASSIST_PAGE,
1279 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1280 HV_X64_MSR_TSC_EMULATION_STATUS,
1281 HV_X64_MSR_SYNDBG_OPTIONS,
1282 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1283 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1284 HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1286 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1287 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1289 MSR_IA32_TSC_ADJUST,
1290 MSR_IA32_TSC_DEADLINE,
1291 MSR_IA32_ARCH_CAPABILITIES,
1292 MSR_IA32_PERF_CAPABILITIES,
1293 MSR_IA32_MISC_ENABLE,
1294 MSR_IA32_MCG_STATUS,
1296 MSR_IA32_MCG_EXT_CTL,
1300 MSR_MISC_FEATURES_ENABLES,
1301 MSR_AMD64_VIRT_SPEC_CTRL,
1306 * The following list leaves out MSRs whose values are determined
1307 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1308 * We always support the "true" VMX control MSRs, even if the host
1309 * processor does not, so I am putting these registers here rather
1310 * than in msrs_to_save_all.
1313 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1314 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1315 MSR_IA32_VMX_TRUE_EXIT_CTLS,
1316 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1318 MSR_IA32_VMX_CR0_FIXED0,
1319 MSR_IA32_VMX_CR4_FIXED0,
1320 MSR_IA32_VMX_VMCS_ENUM,
1321 MSR_IA32_VMX_PROCBASED_CTLS2,
1322 MSR_IA32_VMX_EPT_VPID_CAP,
1323 MSR_IA32_VMX_VMFUNC,
1326 MSR_KVM_POLL_CONTROL,
1329 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1330 static unsigned num_emulated_msrs;
1333 * List of msr numbers which are used to expose MSR-based features that
1334 * can be used by a hypervisor to validate requested CPU features.
1336 static const u32 msr_based_features_all[] = {
1338 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1339 MSR_IA32_VMX_PINBASED_CTLS,
1340 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1341 MSR_IA32_VMX_PROCBASED_CTLS,
1342 MSR_IA32_VMX_TRUE_EXIT_CTLS,
1343 MSR_IA32_VMX_EXIT_CTLS,
1344 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1345 MSR_IA32_VMX_ENTRY_CTLS,
1347 MSR_IA32_VMX_CR0_FIXED0,
1348 MSR_IA32_VMX_CR0_FIXED1,
1349 MSR_IA32_VMX_CR4_FIXED0,
1350 MSR_IA32_VMX_CR4_FIXED1,
1351 MSR_IA32_VMX_VMCS_ENUM,
1352 MSR_IA32_VMX_PROCBASED_CTLS2,
1353 MSR_IA32_VMX_EPT_VPID_CAP,
1354 MSR_IA32_VMX_VMFUNC,
1358 MSR_IA32_ARCH_CAPABILITIES,
1359 MSR_IA32_PERF_CAPABILITIES,
1362 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1363 static unsigned int num_msr_based_features;
1365 static u64 kvm_get_arch_capabilities(void)
1369 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1370 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1373 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1374 * the nested hypervisor runs with NX huge pages. If it is not,
1375 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1376 * L1 guests, so it need not worry about its own (L2) guests.
1378 data |= ARCH_CAP_PSCHANGE_MC_NO;
1381 * If we're doing cache flushes (either "always" or "cond")
1382 * we will do one whenever the guest does a vmlaunch/vmresume.
1383 * If an outer hypervisor is doing the cache flush for us
1384 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1385 * capability to the guest too, and if EPT is disabled we're not
1386 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will
1387 * require a nested hypervisor to do a flush of its own.
1389 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1390 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1392 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1393 data |= ARCH_CAP_RDCL_NO;
1394 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1395 data |= ARCH_CAP_SSB_NO;
1396 if (!boot_cpu_has_bug(X86_BUG_MDS))
1397 data |= ARCH_CAP_MDS_NO;
1399 if (!boot_cpu_has(X86_FEATURE_RTM)) {
1401 * If RTM=0 because the kernel has disabled TSX, the host might
1402 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0
1403 * and therefore knows that there cannot be TAA) but keep
1404 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1405 * and we want to allow migrating those guests to tsx=off hosts.
1407 data &= ~ARCH_CAP_TAA_NO;
1408 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1409 data |= ARCH_CAP_TAA_NO;
1412 * Nothing to do here; we emulate TSX_CTRL if present on the
1413 * host so the guest can choose between disabling TSX or
1414 * using VERW to clear CPU buffers.
1421 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1423 switch (msr->index) {
1424 case MSR_IA32_ARCH_CAPABILITIES:
1425 msr->data = kvm_get_arch_capabilities();
1427 case MSR_IA32_UCODE_REV:
1428 rdmsrl_safe(msr->index, &msr->data);
1431 return static_call(kvm_x86_get_msr_feature)(msr);
1436 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1438 struct kvm_msr_entry msr;
1442 r = kvm_get_msr_feature(&msr);
1444 if (r == KVM_MSR_RET_INVALID) {
1445 /* Unconditionally clear the output for simplicity */
1447 if (kvm_msr_ignored_check(index, 0, false))
1459 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1461 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1464 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1467 if (efer & (EFER_LME | EFER_LMA) &&
1468 !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1471 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1477 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1479 if (efer & efer_reserved_bits)
1482 return __kvm_valid_efer(vcpu, efer);
1484 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1486 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1488 u64 old_efer = vcpu->arch.efer;
1489 u64 efer = msr_info->data;
1492 if (efer & efer_reserved_bits)
1495 if (!msr_info->host_initiated) {
1496 if (!__kvm_valid_efer(vcpu, efer))
1499 if (is_paging(vcpu) &&
1500 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1505 efer |= vcpu->arch.efer & EFER_LMA;
1507 r = static_call(kvm_x86_set_efer)(vcpu, efer);
1513 /* Update reserved bits */
1514 if ((efer ^ old_efer) & EFER_NX)
1515 kvm_mmu_reset_context(vcpu);
1520 void kvm_enable_efer_bits(u64 mask)
1522 efer_reserved_bits &= ~mask;
1524 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1526 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1528 struct kvm_x86_msr_filter *msr_filter;
1529 struct msr_bitmap_range *ranges;
1530 struct kvm *kvm = vcpu->kvm;
1535 /* x2APIC MSRs do not support filtering. */
1536 if (index >= 0x800 && index <= 0x8ff)
1539 idx = srcu_read_lock(&kvm->srcu);
1541 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1547 allowed = msr_filter->default_allow;
1548 ranges = msr_filter->ranges;
1550 for (i = 0; i < msr_filter->count; i++) {
1551 u32 start = ranges[i].base;
1552 u32 end = start + ranges[i].nmsrs;
1553 u32 flags = ranges[i].flags;
1554 unsigned long *bitmap = ranges[i].bitmap;
1556 if ((index >= start) && (index < end) && (flags & type)) {
1557 allowed = !!test_bit(index - start, bitmap);
1563 srcu_read_unlock(&kvm->srcu, idx);
1567 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1570 * Write @data into the MSR specified by @index. Select MSR specific fault
1571 * checks are bypassed if @host_initiated is %true.
1572 * Returns 0 on success, non-0 otherwise.
1573 * Assumes vcpu_load() was already called.
1575 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1576 bool host_initiated)
1578 struct msr_data msr;
1580 if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1581 return KVM_MSR_RET_FILTERED;
1586 case MSR_KERNEL_GS_BASE:
1589 if (is_noncanonical_address(data, vcpu))
1592 case MSR_IA32_SYSENTER_EIP:
1593 case MSR_IA32_SYSENTER_ESP:
1595 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1596 * non-canonical address is written on Intel but not on
1597 * AMD (which ignores the top 32-bits, because it does
1598 * not implement 64-bit SYSENTER).
1600 * 64-bit code should hence be able to write a non-canonical
1601 * value on AMD. Making the address canonical ensures that
1602 * vmentry does not fail on Intel after writing a non-canonical
1603 * value, and that something deterministic happens if the guest
1604 * invokes 64-bit SYSENTER.
1606 data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1611 msr.host_initiated = host_initiated;
1613 return static_call(kvm_x86_set_msr)(vcpu, &msr);
1616 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1617 u32 index, u64 data, bool host_initiated)
1619 int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1621 if (ret == KVM_MSR_RET_INVALID)
1622 if (kvm_msr_ignored_check(index, data, true))
1629 * Read the MSR specified by @index into @data. Select MSR specific fault
1630 * checks are bypassed if @host_initiated is %true.
1631 * Returns 0 on success, non-0 otherwise.
1632 * Assumes vcpu_load() was already called.
1634 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1635 bool host_initiated)
1637 struct msr_data msr;
1640 if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1641 return KVM_MSR_RET_FILTERED;
1644 msr.host_initiated = host_initiated;
1646 ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1652 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1653 u32 index, u64 *data, bool host_initiated)
1655 int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1657 if (ret == KVM_MSR_RET_INVALID) {
1658 /* Unconditionally clear *data for simplicity */
1660 if (kvm_msr_ignored_check(index, 0, false))
1667 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1669 return kvm_get_msr_ignored_check(vcpu, index, data, false);
1671 EXPORT_SYMBOL_GPL(kvm_get_msr);
1673 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1675 return kvm_set_msr_ignored_check(vcpu, index, data, false);
1677 EXPORT_SYMBOL_GPL(kvm_set_msr);
1679 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1681 int err = vcpu->run->msr.error;
1683 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1684 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1687 return static_call(kvm_x86_complete_emulated_msr)(vcpu, err);
1690 static int complete_emulated_wrmsr(struct kvm_vcpu *vcpu)
1692 return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1695 static u64 kvm_msr_reason(int r)
1698 case KVM_MSR_RET_INVALID:
1699 return KVM_MSR_EXIT_REASON_UNKNOWN;
1700 case KVM_MSR_RET_FILTERED:
1701 return KVM_MSR_EXIT_REASON_FILTER;
1703 return KVM_MSR_EXIT_REASON_INVAL;
1707 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1708 u32 exit_reason, u64 data,
1709 int (*completion)(struct kvm_vcpu *vcpu),
1712 u64 msr_reason = kvm_msr_reason(r);
1714 /* Check if the user wanted to know about this MSR fault */
1715 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1718 vcpu->run->exit_reason = exit_reason;
1719 vcpu->run->msr.error = 0;
1720 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1721 vcpu->run->msr.reason = msr_reason;
1722 vcpu->run->msr.index = index;
1723 vcpu->run->msr.data = data;
1724 vcpu->arch.complete_userspace_io = completion;
1729 static int kvm_get_msr_user_space(struct kvm_vcpu *vcpu, u32 index, int r)
1731 return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_RDMSR, 0,
1732 complete_emulated_rdmsr, r);
1735 static int kvm_set_msr_user_space(struct kvm_vcpu *vcpu, u32 index, u64 data, int r)
1737 return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_WRMSR, data,
1738 complete_emulated_wrmsr, r);
1741 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1743 u32 ecx = kvm_rcx_read(vcpu);
1747 r = kvm_get_msr(vcpu, ecx, &data);
1749 /* MSR read failed? See if we should ask user space */
1750 if (r && kvm_get_msr_user_space(vcpu, ecx, r)) {
1751 /* Bounce to user space */
1756 trace_kvm_msr_read(ecx, data);
1758 kvm_rax_write(vcpu, data & -1u);
1759 kvm_rdx_write(vcpu, (data >> 32) & -1u);
1761 trace_kvm_msr_read_ex(ecx);
1764 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1766 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1768 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1770 u32 ecx = kvm_rcx_read(vcpu);
1771 u64 data = kvm_read_edx_eax(vcpu);
1774 r = kvm_set_msr(vcpu, ecx, data);
1776 /* MSR write failed? See if we should ask user space */
1777 if (r && kvm_set_msr_user_space(vcpu, ecx, data, r))
1778 /* Bounce to user space */
1781 /* Signal all other negative errors to userspace */
1786 trace_kvm_msr_write(ecx, data);
1788 trace_kvm_msr_write_ex(ecx, data);
1790 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1792 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1794 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
1796 xfer_to_guest_mode_prepare();
1797 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
1798 xfer_to_guest_mode_work_pending();
1802 * The fast path for frequent and performance sensitive wrmsr emulation,
1803 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
1804 * the latency of virtual IPI by avoiding the expensive bits of transitioning
1805 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
1806 * other cases which must be called after interrupts are enabled on the host.
1808 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
1810 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
1813 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
1814 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
1815 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
1816 ((u32)(data >> 32) != X2APIC_BROADCAST)) {
1819 kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32));
1820 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
1821 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data);
1822 trace_kvm_apic_write(APIC_ICR, (u32)data);
1829 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
1831 if (!kvm_can_use_hv_timer(vcpu))
1834 kvm_set_lapic_tscdeadline_msr(vcpu, data);
1838 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
1840 u32 msr = kvm_rcx_read(vcpu);
1842 fastpath_t ret = EXIT_FASTPATH_NONE;
1845 case APIC_BASE_MSR + (APIC_ICR >> 4):
1846 data = kvm_read_edx_eax(vcpu);
1847 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
1848 kvm_skip_emulated_instruction(vcpu);
1849 ret = EXIT_FASTPATH_EXIT_HANDLED;
1852 case MSR_IA32_TSC_DEADLINE:
1853 data = kvm_read_edx_eax(vcpu);
1854 if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
1855 kvm_skip_emulated_instruction(vcpu);
1856 ret = EXIT_FASTPATH_REENTER_GUEST;
1863 if (ret != EXIT_FASTPATH_NONE)
1864 trace_kvm_msr_write(msr, data);
1868 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
1871 * Adapt set_msr() to msr_io()'s calling convention
1873 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1875 return kvm_get_msr_ignored_check(vcpu, index, data, true);
1878 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1880 return kvm_set_msr_ignored_check(vcpu, index, *data, true);
1883 #ifdef CONFIG_X86_64
1884 struct pvclock_clock {
1894 struct pvclock_gtod_data {
1897 struct pvclock_clock clock; /* extract of a clocksource struct */
1898 struct pvclock_clock raw_clock; /* extract of a clocksource struct */
1904 static struct pvclock_gtod_data pvclock_gtod_data;
1906 static void update_pvclock_gtod(struct timekeeper *tk)
1908 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1910 write_seqcount_begin(&vdata->seq);
1912 /* copy pvclock gtod data */
1913 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode;
1914 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
1915 vdata->clock.mask = tk->tkr_mono.mask;
1916 vdata->clock.mult = tk->tkr_mono.mult;
1917 vdata->clock.shift = tk->tkr_mono.shift;
1918 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec;
1919 vdata->clock.offset = tk->tkr_mono.base;
1921 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode;
1922 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last;
1923 vdata->raw_clock.mask = tk->tkr_raw.mask;
1924 vdata->raw_clock.mult = tk->tkr_raw.mult;
1925 vdata->raw_clock.shift = tk->tkr_raw.shift;
1926 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec;
1927 vdata->raw_clock.offset = tk->tkr_raw.base;
1929 vdata->wall_time_sec = tk->xtime_sec;
1931 vdata->offs_boot = tk->offs_boot;
1933 write_seqcount_end(&vdata->seq);
1936 static s64 get_kvmclock_base_ns(void)
1938 /* Count up from boot time, but with the frequency of the raw clock. */
1939 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
1942 static s64 get_kvmclock_base_ns(void)
1944 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */
1945 return ktime_get_boottime_ns();
1949 void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
1953 struct pvclock_wall_clock wc;
1960 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1965 ++version; /* first time write, random junk */
1969 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1973 * The guest calculates current wall clock time by adding
1974 * system time (updated by kvm_guest_time_update below) to the
1975 * wall clock specified here. We do the reverse here.
1977 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
1979 wc.nsec = do_div(wall_nsec, 1000000000);
1980 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
1981 wc.version = version;
1983 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1986 wc_sec_hi = wall_nsec >> 32;
1987 kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
1988 &wc_sec_hi, sizeof(wc_sec_hi));
1992 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1995 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
1996 bool old_msr, bool host_initiated)
1998 struct kvm_arch *ka = &vcpu->kvm->arch;
2000 if (vcpu->vcpu_id == 0 && !host_initiated) {
2001 if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2002 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2004 ka->boot_vcpu_runs_old_kvmclock = old_msr;
2007 vcpu->arch.time = system_time;
2008 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2010 /* we verify if the enable bit is set... */
2011 vcpu->arch.pv_time_enabled = false;
2012 if (!(system_time & 1))
2015 if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2016 &vcpu->arch.pv_time, system_time & ~1ULL,
2017 sizeof(struct pvclock_vcpu_time_info)))
2018 vcpu->arch.pv_time_enabled = true;
2023 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2025 do_shl32_div32(dividend, divisor);
2029 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2030 s8 *pshift, u32 *pmultiplier)
2038 scaled64 = scaled_hz;
2039 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2044 tps32 = (uint32_t)tps64;
2045 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2046 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2054 *pmultiplier = div_frac(scaled64, tps32);
2057 #ifdef CONFIG_X86_64
2058 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2061 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2062 static unsigned long max_tsc_khz;
2064 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2066 u64 v = (u64)khz * (1000000 + ppm);
2071 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2075 /* Guest TSC same frequency as host TSC? */
2077 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
2081 /* TSC scaling supported? */
2082 if (!kvm_has_tsc_control) {
2083 if (user_tsc_khz > tsc_khz) {
2084 vcpu->arch.tsc_catchup = 1;
2085 vcpu->arch.tsc_always_catchup = 1;
2088 pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2093 /* TSC scaling required - calculate ratio */
2094 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
2095 user_tsc_khz, tsc_khz);
2097 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
2098 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2103 vcpu->arch.tsc_scaling_ratio = ratio;
2107 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2109 u32 thresh_lo, thresh_hi;
2110 int use_scaling = 0;
2112 /* tsc_khz can be zero if TSC calibration fails */
2113 if (user_tsc_khz == 0) {
2114 /* set tsc_scaling_ratio to a safe value */
2115 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
2119 /* Compute a scale to convert nanoseconds in TSC cycles */
2120 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2121 &vcpu->arch.virtual_tsc_shift,
2122 &vcpu->arch.virtual_tsc_mult);
2123 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2126 * Compute the variation in TSC rate which is acceptable
2127 * within the range of tolerance and decide if the
2128 * rate being applied is within that bounds of the hardware
2129 * rate. If so, no scaling or compensation need be done.
2131 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2132 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2133 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2134 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2137 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2140 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2142 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2143 vcpu->arch.virtual_tsc_mult,
2144 vcpu->arch.virtual_tsc_shift);
2145 tsc += vcpu->arch.this_tsc_write;
2149 static inline int gtod_is_based_on_tsc(int mode)
2151 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2154 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2156 #ifdef CONFIG_X86_64
2158 struct kvm_arch *ka = &vcpu->kvm->arch;
2159 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2161 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2162 atomic_read(&vcpu->kvm->online_vcpus));
2165 * Once the masterclock is enabled, always perform request in
2166 * order to update it.
2168 * In order to enable masterclock, the host clocksource must be TSC
2169 * and the vcpus need to have matched TSCs. When that happens,
2170 * perform request to enable masterclock.
2172 if (ka->use_master_clock ||
2173 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2174 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2176 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2177 atomic_read(&vcpu->kvm->online_vcpus),
2178 ka->use_master_clock, gtod->clock.vclock_mode);
2183 * Multiply tsc by a fixed point number represented by ratio.
2185 * The most significant 64-N bits (mult) of ratio represent the
2186 * integral part of the fixed point number; the remaining N bits
2187 * (frac) represent the fractional part, ie. ratio represents a fixed
2188 * point number (mult + frac * 2^(-N)).
2190 * N equals to kvm_tsc_scaling_ratio_frac_bits.
2192 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2194 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
2197 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
2200 u64 ratio = vcpu->arch.tsc_scaling_ratio;
2202 if (ratio != kvm_default_tsc_scaling_ratio)
2203 _tsc = __scale_tsc(ratio, tsc);
2207 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2209 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2213 tsc = kvm_scale_tsc(vcpu, rdtsc());
2215 return target_tsc - tsc;
2218 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2220 return vcpu->arch.l1_tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
2222 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2224 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2226 vcpu->arch.l1_tsc_offset = offset;
2227 vcpu->arch.tsc_offset = static_call(kvm_x86_write_l1_tsc_offset)(vcpu, offset);
2230 static inline bool kvm_check_tsc_unstable(void)
2232 #ifdef CONFIG_X86_64
2234 * TSC is marked unstable when we're running on Hyper-V,
2235 * 'TSC page' clocksource is good.
2237 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2240 return check_tsc_unstable();
2243 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2245 struct kvm *kvm = vcpu->kvm;
2246 u64 offset, ns, elapsed;
2247 unsigned long flags;
2249 bool already_matched;
2250 bool synchronizing = false;
2252 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2253 offset = kvm_compute_tsc_offset(vcpu, data);
2254 ns = get_kvmclock_base_ns();
2255 elapsed = ns - kvm->arch.last_tsc_nsec;
2257 if (vcpu->arch.virtual_tsc_khz) {
2260 * detection of vcpu initialization -- need to sync
2261 * with other vCPUs. This particularly helps to keep
2262 * kvm_clock stable after CPU hotplug
2264 synchronizing = true;
2266 u64 tsc_exp = kvm->arch.last_tsc_write +
2267 nsec_to_cycles(vcpu, elapsed);
2268 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2270 * Special case: TSC write with a small delta (1 second)
2271 * of virtual cycle time against real time is
2272 * interpreted as an attempt to synchronize the CPU.
2274 synchronizing = data < tsc_exp + tsc_hz &&
2275 data + tsc_hz > tsc_exp;
2280 * For a reliable TSC, we can match TSC offsets, and for an unstable
2281 * TSC, we add elapsed time in this computation. We could let the
2282 * compensation code attempt to catch up if we fall behind, but
2283 * it's better to try to match offsets from the beginning.
2285 if (synchronizing &&
2286 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2287 if (!kvm_check_tsc_unstable()) {
2288 offset = kvm->arch.cur_tsc_offset;
2290 u64 delta = nsec_to_cycles(vcpu, elapsed);
2292 offset = kvm_compute_tsc_offset(vcpu, data);
2295 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
2298 * We split periods of matched TSC writes into generations.
2299 * For each generation, we track the original measured
2300 * nanosecond time, offset, and write, so if TSCs are in
2301 * sync, we can match exact offset, and if not, we can match
2302 * exact software computation in compute_guest_tsc()
2304 * These values are tracked in kvm->arch.cur_xxx variables.
2306 kvm->arch.cur_tsc_generation++;
2307 kvm->arch.cur_tsc_nsec = ns;
2308 kvm->arch.cur_tsc_write = data;
2309 kvm->arch.cur_tsc_offset = offset;
2314 * We also track th most recent recorded KHZ, write and time to
2315 * allow the matching interval to be extended at each write.
2317 kvm->arch.last_tsc_nsec = ns;
2318 kvm->arch.last_tsc_write = data;
2319 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2321 vcpu->arch.last_guest_tsc = data;
2323 /* Keep track of which generation this VCPU has synchronized to */
2324 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2325 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2326 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2328 kvm_vcpu_write_tsc_offset(vcpu, offset);
2329 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2331 spin_lock_irqsave(&kvm->arch.pvclock_gtod_sync_lock, flags);
2333 kvm->arch.nr_vcpus_matched_tsc = 0;
2334 } else if (!already_matched) {
2335 kvm->arch.nr_vcpus_matched_tsc++;
2338 kvm_track_tsc_matching(vcpu);
2339 spin_unlock_irqrestore(&kvm->arch.pvclock_gtod_sync_lock, flags);
2342 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2345 u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2346 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2349 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2351 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2352 WARN_ON(adjustment < 0);
2353 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
2354 adjust_tsc_offset_guest(vcpu, adjustment);
2357 #ifdef CONFIG_X86_64
2359 static u64 read_tsc(void)
2361 u64 ret = (u64)rdtsc_ordered();
2362 u64 last = pvclock_gtod_data.clock.cycle_last;
2364 if (likely(ret >= last))
2368 * GCC likes to generate cmov here, but this branch is extremely
2369 * predictable (it's just a function of time and the likely is
2370 * very likely) and there's a data dependence, so force GCC
2371 * to generate a branch instead. I don't barrier() because
2372 * we don't actually need a barrier, and if this function
2373 * ever gets inlined it will generate worse code.
2379 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2385 switch (clock->vclock_mode) {
2386 case VDSO_CLOCKMODE_HVCLOCK:
2387 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2389 if (tsc_pg_val != U64_MAX) {
2390 /* TSC page valid */
2391 *mode = VDSO_CLOCKMODE_HVCLOCK;
2392 v = (tsc_pg_val - clock->cycle_last) &
2395 /* TSC page invalid */
2396 *mode = VDSO_CLOCKMODE_NONE;
2399 case VDSO_CLOCKMODE_TSC:
2400 *mode = VDSO_CLOCKMODE_TSC;
2401 *tsc_timestamp = read_tsc();
2402 v = (*tsc_timestamp - clock->cycle_last) &
2406 *mode = VDSO_CLOCKMODE_NONE;
2409 if (*mode == VDSO_CLOCKMODE_NONE)
2410 *tsc_timestamp = v = 0;
2412 return v * clock->mult;
2415 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2417 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2423 seq = read_seqcount_begin(>od->seq);
2424 ns = gtod->raw_clock.base_cycles;
2425 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode);
2426 ns >>= gtod->raw_clock.shift;
2427 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2428 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
2434 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2436 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2442 seq = read_seqcount_begin(>od->seq);
2443 ts->tv_sec = gtod->wall_time_sec;
2444 ns = gtod->clock.base_cycles;
2445 ns += vgettsc(>od->clock, tsc_timestamp, &mode);
2446 ns >>= gtod->clock.shift;
2447 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
2449 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2455 /* returns true if host is using TSC based clocksource */
2456 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2458 /* checked again under seqlock below */
2459 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2462 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2466 /* returns true if host is using TSC based clocksource */
2467 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2470 /* checked again under seqlock below */
2471 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2474 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2480 * Assuming a stable TSC across physical CPUS, and a stable TSC
2481 * across virtual CPUs, the following condition is possible.
2482 * Each numbered line represents an event visible to both
2483 * CPUs at the next numbered event.
2485 * "timespecX" represents host monotonic time. "tscX" represents
2488 * VCPU0 on CPU0 | VCPU1 on CPU1
2490 * 1. read timespec0,tsc0
2491 * 2. | timespec1 = timespec0 + N
2493 * 3. transition to guest | transition to guest
2494 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2495 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
2496 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2498 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2501 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2503 * - 0 < N - M => M < N
2505 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2506 * always the case (the difference between two distinct xtime instances
2507 * might be smaller then the difference between corresponding TSC reads,
2508 * when updating guest vcpus pvclock areas).
2510 * To avoid that problem, do not allow visibility of distinct
2511 * system_timestamp/tsc_timestamp values simultaneously: use a master
2512 * copy of host monotonic time values. Update that master copy
2515 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2519 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2521 #ifdef CONFIG_X86_64
2522 struct kvm_arch *ka = &kvm->arch;
2524 bool host_tsc_clocksource, vcpus_matched;
2526 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2527 atomic_read(&kvm->online_vcpus));
2530 * If the host uses TSC clock, then passthrough TSC as stable
2533 host_tsc_clocksource = kvm_get_time_and_clockread(
2534 &ka->master_kernel_ns,
2535 &ka->master_cycle_now);
2537 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2538 && !ka->backwards_tsc_observed
2539 && !ka->boot_vcpu_runs_old_kvmclock;
2541 if (ka->use_master_clock)
2542 atomic_set(&kvm_guest_has_master_clock, 1);
2544 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2545 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2550 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2552 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2555 static void kvm_gen_update_masterclock(struct kvm *kvm)
2557 #ifdef CONFIG_X86_64
2559 struct kvm_vcpu *vcpu;
2560 struct kvm_arch *ka = &kvm->arch;
2561 unsigned long flags;
2563 kvm_hv_invalidate_tsc_page(kvm);
2565 kvm_make_mclock_inprogress_request(kvm);
2567 /* no guest entries from this point */
2568 spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
2569 pvclock_update_vm_gtod_copy(kvm);
2570 spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2572 kvm_for_each_vcpu(i, vcpu, kvm)
2573 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2575 /* guest entries allowed */
2576 kvm_for_each_vcpu(i, vcpu, kvm)
2577 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2581 u64 get_kvmclock_ns(struct kvm *kvm)
2583 struct kvm_arch *ka = &kvm->arch;
2584 struct pvclock_vcpu_time_info hv_clock;
2585 unsigned long flags;
2588 spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
2589 if (!ka->use_master_clock) {
2590 spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2591 return get_kvmclock_base_ns() + ka->kvmclock_offset;
2594 hv_clock.tsc_timestamp = ka->master_cycle_now;
2595 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2596 spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2598 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2601 if (__this_cpu_read(cpu_tsc_khz)) {
2602 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2603 &hv_clock.tsc_shift,
2604 &hv_clock.tsc_to_system_mul);
2605 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2607 ret = get_kvmclock_base_ns() + ka->kvmclock_offset;
2614 static void kvm_setup_pvclock_page(struct kvm_vcpu *v,
2615 struct gfn_to_hva_cache *cache,
2616 unsigned int offset)
2618 struct kvm_vcpu_arch *vcpu = &v->arch;
2619 struct pvclock_vcpu_time_info guest_hv_clock;
2621 if (unlikely(kvm_read_guest_offset_cached(v->kvm, cache,
2622 &guest_hv_clock, offset, sizeof(guest_hv_clock))))
2625 /* This VCPU is paused, but it's legal for a guest to read another
2626 * VCPU's kvmclock, so we really have to follow the specification where
2627 * it says that version is odd if data is being modified, and even after
2630 * Version field updates must be kept separate. This is because
2631 * kvm_write_guest_cached might use a "rep movs" instruction, and
2632 * writes within a string instruction are weakly ordered. So there
2633 * are three writes overall.
2635 * As a small optimization, only write the version field in the first
2636 * and third write. The vcpu->pv_time cache is still valid, because the
2637 * version field is the first in the struct.
2639 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2641 if (guest_hv_clock.version & 1)
2642 ++guest_hv_clock.version; /* first time write, random junk */
2644 vcpu->hv_clock.version = guest_hv_clock.version + 1;
2645 kvm_write_guest_offset_cached(v->kvm, cache,
2646 &vcpu->hv_clock, offset,
2647 sizeof(vcpu->hv_clock.version));
2651 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2652 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2654 if (vcpu->pvclock_set_guest_stopped_request) {
2655 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2656 vcpu->pvclock_set_guest_stopped_request = false;
2659 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2661 kvm_write_guest_offset_cached(v->kvm, cache,
2662 &vcpu->hv_clock, offset,
2663 sizeof(vcpu->hv_clock));
2667 vcpu->hv_clock.version++;
2668 kvm_write_guest_offset_cached(v->kvm, cache,
2669 &vcpu->hv_clock, offset,
2670 sizeof(vcpu->hv_clock.version));
2673 static int kvm_guest_time_update(struct kvm_vcpu *v)
2675 unsigned long flags, tgt_tsc_khz;
2676 struct kvm_vcpu_arch *vcpu = &v->arch;
2677 struct kvm_arch *ka = &v->kvm->arch;
2679 u64 tsc_timestamp, host_tsc;
2681 bool use_master_clock;
2687 * If the host uses TSC clock, then passthrough TSC as stable
2690 spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
2691 use_master_clock = ka->use_master_clock;
2692 if (use_master_clock) {
2693 host_tsc = ka->master_cycle_now;
2694 kernel_ns = ka->master_kernel_ns;
2696 spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2698 /* Keep irq disabled to prevent changes to the clock */
2699 local_irq_save(flags);
2700 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2701 if (unlikely(tgt_tsc_khz == 0)) {
2702 local_irq_restore(flags);
2703 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2706 if (!use_master_clock) {
2708 kernel_ns = get_kvmclock_base_ns();
2711 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2714 * We may have to catch up the TSC to match elapsed wall clock
2715 * time for two reasons, even if kvmclock is used.
2716 * 1) CPU could have been running below the maximum TSC rate
2717 * 2) Broken TSC compensation resets the base at each VCPU
2718 * entry to avoid unknown leaps of TSC even when running
2719 * again on the same CPU. This may cause apparent elapsed
2720 * time to disappear, and the guest to stand still or run
2723 if (vcpu->tsc_catchup) {
2724 u64 tsc = compute_guest_tsc(v, kernel_ns);
2725 if (tsc > tsc_timestamp) {
2726 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2727 tsc_timestamp = tsc;
2731 local_irq_restore(flags);
2733 /* With all the info we got, fill in the values */
2735 if (kvm_has_tsc_control)
2736 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2738 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2739 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2740 &vcpu->hv_clock.tsc_shift,
2741 &vcpu->hv_clock.tsc_to_system_mul);
2742 vcpu->hw_tsc_khz = tgt_tsc_khz;
2745 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2746 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2747 vcpu->last_guest_tsc = tsc_timestamp;
2749 /* If the host uses TSC clocksource, then it is stable */
2751 if (use_master_clock)
2752 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2754 vcpu->hv_clock.flags = pvclock_flags;
2756 if (vcpu->pv_time_enabled)
2757 kvm_setup_pvclock_page(v, &vcpu->pv_time, 0);
2758 if (vcpu->xen.vcpu_info_set)
2759 kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_info_cache,
2760 offsetof(struct compat_vcpu_info, time));
2761 if (vcpu->xen.vcpu_time_info_set)
2762 kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_time_info_cache, 0);
2763 if (v == kvm_get_vcpu(v->kvm, 0))
2764 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2769 * kvmclock updates which are isolated to a given vcpu, such as
2770 * vcpu->cpu migration, should not allow system_timestamp from
2771 * the rest of the vcpus to remain static. Otherwise ntp frequency
2772 * correction applies to one vcpu's system_timestamp but not
2775 * So in those cases, request a kvmclock update for all vcpus.
2776 * We need to rate-limit these requests though, as they can
2777 * considerably slow guests that have a large number of vcpus.
2778 * The time for a remote vcpu to update its kvmclock is bound
2779 * by the delay we use to rate-limit the updates.
2782 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2784 static void kvmclock_update_fn(struct work_struct *work)
2787 struct delayed_work *dwork = to_delayed_work(work);
2788 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2789 kvmclock_update_work);
2790 struct kvm *kvm = container_of(ka, struct kvm, arch);
2791 struct kvm_vcpu *vcpu;
2793 kvm_for_each_vcpu(i, vcpu, kvm) {
2794 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2795 kvm_vcpu_kick(vcpu);
2799 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2801 struct kvm *kvm = v->kvm;
2803 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2804 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2805 KVMCLOCK_UPDATE_DELAY);
2808 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2810 static void kvmclock_sync_fn(struct work_struct *work)
2812 struct delayed_work *dwork = to_delayed_work(work);
2813 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2814 kvmclock_sync_work);
2815 struct kvm *kvm = container_of(ka, struct kvm, arch);
2817 if (!kvmclock_periodic_sync)
2820 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2821 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2822 KVMCLOCK_SYNC_PERIOD);
2826 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
2828 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
2830 /* McStatusWrEn enabled? */
2831 if (guest_cpuid_is_amd_or_hygon(vcpu))
2832 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
2837 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2839 u64 mcg_cap = vcpu->arch.mcg_cap;
2840 unsigned bank_num = mcg_cap & 0xff;
2841 u32 msr = msr_info->index;
2842 u64 data = msr_info->data;
2845 case MSR_IA32_MCG_STATUS:
2846 vcpu->arch.mcg_status = data;
2848 case MSR_IA32_MCG_CTL:
2849 if (!(mcg_cap & MCG_CTL_P) &&
2850 (data || !msr_info->host_initiated))
2852 if (data != 0 && data != ~(u64)0)
2854 vcpu->arch.mcg_ctl = data;
2857 if (msr >= MSR_IA32_MC0_CTL &&
2858 msr < MSR_IA32_MCx_CTL(bank_num)) {
2859 u32 offset = array_index_nospec(
2860 msr - MSR_IA32_MC0_CTL,
2861 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
2863 /* only 0 or all 1s can be written to IA32_MCi_CTL
2864 * some Linux kernels though clear bit 10 in bank 4 to
2865 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2866 * this to avoid an uncatched #GP in the guest
2868 if ((offset & 0x3) == 0 &&
2869 data != 0 && (data | (1 << 10)) != ~(u64)0)
2873 if (!msr_info->host_initiated &&
2874 (offset & 0x3) == 1 && data != 0) {
2875 if (!can_set_mci_status(vcpu))
2879 vcpu->arch.mce_banks[offset] = data;
2887 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
2889 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
2891 return (vcpu->arch.apf.msr_en_val & mask) == mask;
2894 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2896 gpa_t gpa = data & ~0x3f;
2898 /* Bits 4:5 are reserved, Should be zero */
2902 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
2903 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
2906 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
2907 (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
2910 if (!lapic_in_kernel(vcpu))
2911 return data ? 1 : 0;
2913 vcpu->arch.apf.msr_en_val = data;
2915 if (!kvm_pv_async_pf_enabled(vcpu)) {
2916 kvm_clear_async_pf_completion_queue(vcpu);
2917 kvm_async_pf_hash_reset(vcpu);
2921 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2925 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2926 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2928 kvm_async_pf_wakeup_all(vcpu);
2933 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
2935 /* Bits 8-63 are reserved */
2939 if (!lapic_in_kernel(vcpu))
2942 vcpu->arch.apf.msr_int_val = data;
2944 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
2949 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2951 vcpu->arch.pv_time_enabled = false;
2952 vcpu->arch.time = 0;
2955 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
2957 ++vcpu->stat.tlb_flush;
2958 static_call(kvm_x86_tlb_flush_all)(vcpu);
2961 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
2963 ++vcpu->stat.tlb_flush;
2964 static_call(kvm_x86_tlb_flush_guest)(vcpu);
2967 static void record_steal_time(struct kvm_vcpu *vcpu)
2969 struct kvm_host_map map;
2970 struct kvm_steal_time *st;
2972 if (kvm_xen_msr_enabled(vcpu->kvm)) {
2973 kvm_xen_runstate_set_running(vcpu);
2977 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2980 /* -EAGAIN is returned in atomic context so we can just return. */
2981 if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT,
2982 &map, &vcpu->arch.st.cache, false))
2986 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
2989 * Doing a TLB flush here, on the guest's behalf, can avoid
2992 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
2993 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
2994 st->preempted & KVM_VCPU_FLUSH_TLB);
2995 if (xchg(&st->preempted, 0) & KVM_VCPU_FLUSH_TLB)
2996 kvm_vcpu_flush_tlb_guest(vcpu);
2999 vcpu->arch.st.preempted = 0;
3001 if (st->version & 1)
3002 st->version += 1; /* first time write, random junk */
3008 st->steal += current->sched_info.run_delay -
3009 vcpu->arch.st.last_steal;
3010 vcpu->arch.st.last_steal = current->sched_info.run_delay;
3016 kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, false);
3019 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3022 u32 msr = msr_info->index;
3023 u64 data = msr_info->data;
3025 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3026 return kvm_xen_write_hypercall_page(vcpu, data);
3029 case MSR_AMD64_NB_CFG:
3030 case MSR_IA32_UCODE_WRITE:
3031 case MSR_VM_HSAVE_PA:
3032 case MSR_AMD64_PATCH_LOADER:
3033 case MSR_AMD64_BU_CFG2:
3034 case MSR_AMD64_DC_CFG:
3035 case MSR_F15H_EX_CFG:
3038 case MSR_IA32_UCODE_REV:
3039 if (msr_info->host_initiated)
3040 vcpu->arch.microcode_version = data;
3042 case MSR_IA32_ARCH_CAPABILITIES:
3043 if (!msr_info->host_initiated)
3045 vcpu->arch.arch_capabilities = data;
3047 case MSR_IA32_PERF_CAPABILITIES: {
3048 struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3050 if (!msr_info->host_initiated)
3052 if (guest_cpuid_has(vcpu, X86_FEATURE_PDCM) && kvm_get_msr_feature(&msr_ent))
3054 if (data & ~msr_ent.data)
3057 vcpu->arch.perf_capabilities = data;
3062 return set_efer(vcpu, msr_info);
3064 data &= ~(u64)0x40; /* ignore flush filter disable */
3065 data &= ~(u64)0x100; /* ignore ignne emulation enable */
3066 data &= ~(u64)0x8; /* ignore TLB cache disable */
3068 /* Handle McStatusWrEn */
3069 if (data == BIT_ULL(18)) {
3070 vcpu->arch.msr_hwcr = data;
3071 } else if (data != 0) {
3072 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3077 case MSR_FAM10H_MMIO_CONF_BASE:
3079 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3084 case 0x200 ... 0x2ff:
3085 return kvm_mtrr_set_msr(vcpu, msr, data);
3086 case MSR_IA32_APICBASE:
3087 return kvm_set_apic_base(vcpu, msr_info);
3088 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3089 return kvm_x2apic_msr_write(vcpu, msr, data);
3090 case MSR_IA32_TSC_DEADLINE:
3091 kvm_set_lapic_tscdeadline_msr(vcpu, data);
3093 case MSR_IA32_TSC_ADJUST:
3094 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3095 if (!msr_info->host_initiated) {
3096 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3097 adjust_tsc_offset_guest(vcpu, adj);
3099 vcpu->arch.ia32_tsc_adjust_msr = data;
3102 case MSR_IA32_MISC_ENABLE:
3103 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3104 ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3105 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3107 vcpu->arch.ia32_misc_enable_msr = data;
3108 kvm_update_cpuid_runtime(vcpu);
3110 vcpu->arch.ia32_misc_enable_msr = data;
3113 case MSR_IA32_SMBASE:
3114 if (!msr_info->host_initiated)
3116 vcpu->arch.smbase = data;
3118 case MSR_IA32_POWER_CTL:
3119 vcpu->arch.msr_ia32_power_ctl = data;
3122 if (msr_info->host_initiated) {
3123 kvm_synchronize_tsc(vcpu, data);
3125 u64 adj = kvm_compute_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3126 adjust_tsc_offset_guest(vcpu, adj);
3127 vcpu->arch.ia32_tsc_adjust_msr += adj;
3131 if (!msr_info->host_initiated &&
3132 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3135 * KVM supports exposing PT to the guest, but does not support
3136 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3137 * XSAVES/XRSTORS to save/restore PT MSRs.
3139 if (data & ~supported_xss)
3141 vcpu->arch.ia32_xss = data;
3144 if (!msr_info->host_initiated)
3146 vcpu->arch.smi_count = data;
3148 case MSR_KVM_WALL_CLOCK_NEW:
3149 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3152 vcpu->kvm->arch.wall_clock = data;
3153 kvm_write_wall_clock(vcpu->kvm, data, 0);
3155 case MSR_KVM_WALL_CLOCK:
3156 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3159 vcpu->kvm->arch.wall_clock = data;
3160 kvm_write_wall_clock(vcpu->kvm, data, 0);
3162 case MSR_KVM_SYSTEM_TIME_NEW:
3163 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3166 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3168 case MSR_KVM_SYSTEM_TIME:
3169 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3172 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated);
3174 case MSR_KVM_ASYNC_PF_EN:
3175 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3178 if (kvm_pv_enable_async_pf(vcpu, data))
3181 case MSR_KVM_ASYNC_PF_INT:
3182 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3185 if (kvm_pv_enable_async_pf_int(vcpu, data))
3188 case MSR_KVM_ASYNC_PF_ACK:
3189 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3192 vcpu->arch.apf.pageready_pending = false;
3193 kvm_check_async_pf_completion(vcpu);
3196 case MSR_KVM_STEAL_TIME:
3197 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3200 if (unlikely(!sched_info_on()))
3203 if (data & KVM_STEAL_RESERVED_MASK)
3206 vcpu->arch.st.msr_val = data;
3208 if (!(data & KVM_MSR_ENABLED))
3211 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3214 case MSR_KVM_PV_EOI_EN:
3215 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3218 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
3222 case MSR_KVM_POLL_CONTROL:
3223 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3226 /* only enable bit supported */
3227 if (data & (-1ULL << 1))
3230 vcpu->arch.msr_kvm_poll_control = data;
3233 case MSR_IA32_MCG_CTL:
3234 case MSR_IA32_MCG_STATUS:
3235 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3236 return set_msr_mce(vcpu, msr_info);
3238 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3239 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3242 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3243 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3244 if (kvm_pmu_is_valid_msr(vcpu, msr))
3245 return kvm_pmu_set_msr(vcpu, msr_info);
3247 if (pr || data != 0)
3248 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3249 "0x%x data 0x%llx\n", msr, data);
3251 case MSR_K7_CLK_CTL:
3253 * Ignore all writes to this no longer documented MSR.
3254 * Writes are only relevant for old K7 processors,
3255 * all pre-dating SVM, but a recommended workaround from
3256 * AMD for these chips. It is possible to specify the
3257 * affected processor models on the command line, hence
3258 * the need to ignore the workaround.
3261 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3262 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3263 case HV_X64_MSR_SYNDBG_OPTIONS:
3264 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3265 case HV_X64_MSR_CRASH_CTL:
3266 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3267 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3268 case HV_X64_MSR_TSC_EMULATION_CONTROL:
3269 case HV_X64_MSR_TSC_EMULATION_STATUS:
3270 return kvm_hv_set_msr_common(vcpu, msr, data,
3271 msr_info->host_initiated);
3272 case MSR_IA32_BBL_CR_CTL3:
3273 /* Drop writes to this legacy MSR -- see rdmsr
3274 * counterpart for further detail.
3276 if (report_ignored_msrs)
3277 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3280 case MSR_AMD64_OSVW_ID_LENGTH:
3281 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3283 vcpu->arch.osvw.length = data;
3285 case MSR_AMD64_OSVW_STATUS:
3286 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3288 vcpu->arch.osvw.status = data;
3290 case MSR_PLATFORM_INFO:
3291 if (!msr_info->host_initiated ||
3292 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3293 cpuid_fault_enabled(vcpu)))
3295 vcpu->arch.msr_platform_info = data;
3297 case MSR_MISC_FEATURES_ENABLES:
3298 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3299 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3300 !supports_cpuid_fault(vcpu)))
3302 vcpu->arch.msr_misc_features_enables = data;
3305 if (kvm_pmu_is_valid_msr(vcpu, msr))
3306 return kvm_pmu_set_msr(vcpu, msr_info);
3307 return KVM_MSR_RET_INVALID;
3311 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3313 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3316 u64 mcg_cap = vcpu->arch.mcg_cap;
3317 unsigned bank_num = mcg_cap & 0xff;
3320 case MSR_IA32_P5_MC_ADDR:
3321 case MSR_IA32_P5_MC_TYPE:
3324 case MSR_IA32_MCG_CAP:
3325 data = vcpu->arch.mcg_cap;
3327 case MSR_IA32_MCG_CTL:
3328 if (!(mcg_cap & MCG_CTL_P) && !host)
3330 data = vcpu->arch.mcg_ctl;
3332 case MSR_IA32_MCG_STATUS:
3333 data = vcpu->arch.mcg_status;
3336 if (msr >= MSR_IA32_MC0_CTL &&
3337 msr < MSR_IA32_MCx_CTL(bank_num)) {
3338 u32 offset = array_index_nospec(
3339 msr - MSR_IA32_MC0_CTL,
3340 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3342 data = vcpu->arch.mce_banks[offset];
3351 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3353 switch (msr_info->index) {
3354 case MSR_IA32_PLATFORM_ID:
3355 case MSR_IA32_EBL_CR_POWERON:
3356 case MSR_IA32_LASTBRANCHFROMIP:
3357 case MSR_IA32_LASTBRANCHTOIP:
3358 case MSR_IA32_LASTINTFROMIP:
3359 case MSR_IA32_LASTINTTOIP:
3361 case MSR_K8_TSEG_ADDR:
3362 case MSR_K8_TSEG_MASK:
3363 case MSR_VM_HSAVE_PA:
3364 case MSR_K8_INT_PENDING_MSG:
3365 case MSR_AMD64_NB_CFG:
3366 case MSR_FAM10H_MMIO_CONF_BASE:
3367 case MSR_AMD64_BU_CFG2:
3368 case MSR_IA32_PERF_CTL:
3369 case MSR_AMD64_DC_CFG:
3370 case MSR_F15H_EX_CFG:
3372 * Intel Sandy Bridge CPUs must support the RAPL (running average power
3373 * limit) MSRs. Just return 0, as we do not want to expose the host
3374 * data here. Do not conditionalize this on CPUID, as KVM does not do
3375 * so for existing CPU-specific MSRs.
3377 case MSR_RAPL_POWER_UNIT:
3378 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */
3379 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */
3380 case MSR_PKG_ENERGY_STATUS: /* Total package */
3381 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */
3384 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3385 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3386 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3387 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3388 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3389 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3390 return kvm_pmu_get_msr(vcpu, msr_info);
3393 case MSR_IA32_UCODE_REV:
3394 msr_info->data = vcpu->arch.microcode_version;
3396 case MSR_IA32_ARCH_CAPABILITIES:
3397 if (!msr_info->host_initiated &&
3398 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3400 msr_info->data = vcpu->arch.arch_capabilities;
3402 case MSR_IA32_PERF_CAPABILITIES:
3403 if (!msr_info->host_initiated &&
3404 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3406 msr_info->data = vcpu->arch.perf_capabilities;
3408 case MSR_IA32_POWER_CTL:
3409 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3411 case MSR_IA32_TSC: {
3413 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3414 * even when not intercepted. AMD manual doesn't explicitly
3415 * state this but appears to behave the same.
3417 * On userspace reads and writes, however, we unconditionally
3418 * return L1's TSC value to ensure backwards-compatible
3419 * behavior for migration.
3421 u64 tsc_offset = msr_info->host_initiated ? vcpu->arch.l1_tsc_offset :
3422 vcpu->arch.tsc_offset;
3424 msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + tsc_offset;
3428 case 0x200 ... 0x2ff:
3429 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3430 case 0xcd: /* fsb frequency */
3434 * MSR_EBC_FREQUENCY_ID
3435 * Conservative value valid for even the basic CPU models.
3436 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3437 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3438 * and 266MHz for model 3, or 4. Set Core Clock
3439 * Frequency to System Bus Frequency Ratio to 1 (bits
3440 * 31:24) even though these are only valid for CPU
3441 * models > 2, however guests may end up dividing or
3442 * multiplying by zero otherwise.
3444 case MSR_EBC_FREQUENCY_ID:
3445 msr_info->data = 1 << 24;
3447 case MSR_IA32_APICBASE:
3448 msr_info->data = kvm_get_apic_base(vcpu);
3450 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3451 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3452 case MSR_IA32_TSC_DEADLINE:
3453 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3455 case MSR_IA32_TSC_ADJUST:
3456 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3458 case MSR_IA32_MISC_ENABLE:
3459 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3461 case MSR_IA32_SMBASE:
3462 if (!msr_info->host_initiated)
3464 msr_info->data = vcpu->arch.smbase;
3467 msr_info->data = vcpu->arch.smi_count;
3469 case MSR_IA32_PERF_STATUS:
3470 /* TSC increment by tick */
3471 msr_info->data = 1000ULL;
3472 /* CPU multiplier */
3473 msr_info->data |= (((uint64_t)4ULL) << 40);
3476 msr_info->data = vcpu->arch.efer;
3478 case MSR_KVM_WALL_CLOCK:
3479 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3482 msr_info->data = vcpu->kvm->arch.wall_clock;
3484 case MSR_KVM_WALL_CLOCK_NEW:
3485 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3488 msr_info->data = vcpu->kvm->arch.wall_clock;
3490 case MSR_KVM_SYSTEM_TIME:
3491 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3494 msr_info->data = vcpu->arch.time;
3496 case MSR_KVM_SYSTEM_TIME_NEW:
3497 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3500 msr_info->data = vcpu->arch.time;
3502 case MSR_KVM_ASYNC_PF_EN:
3503 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3506 msr_info->data = vcpu->arch.apf.msr_en_val;
3508 case MSR_KVM_ASYNC_PF_INT:
3509 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3512 msr_info->data = vcpu->arch.apf.msr_int_val;
3514 case MSR_KVM_ASYNC_PF_ACK:
3515 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3520 case MSR_KVM_STEAL_TIME:
3521 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3524 msr_info->data = vcpu->arch.st.msr_val;
3526 case MSR_KVM_PV_EOI_EN:
3527 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3530 msr_info->data = vcpu->arch.pv_eoi.msr_val;
3532 case MSR_KVM_POLL_CONTROL:
3533 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3536 msr_info->data = vcpu->arch.msr_kvm_poll_control;
3538 case MSR_IA32_P5_MC_ADDR:
3539 case MSR_IA32_P5_MC_TYPE:
3540 case MSR_IA32_MCG_CAP:
3541 case MSR_IA32_MCG_CTL:
3542 case MSR_IA32_MCG_STATUS:
3543 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3544 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3545 msr_info->host_initiated);
3547 if (!msr_info->host_initiated &&
3548 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3550 msr_info->data = vcpu->arch.ia32_xss;
3552 case MSR_K7_CLK_CTL:
3554 * Provide expected ramp-up count for K7. All other
3555 * are set to zero, indicating minimum divisors for
3558 * This prevents guest kernels on AMD host with CPU
3559 * type 6, model 8 and higher from exploding due to
3560 * the rdmsr failing.
3562 msr_info->data = 0x20000000;
3564 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3565 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3566 case HV_X64_MSR_SYNDBG_OPTIONS:
3567 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3568 case HV_X64_MSR_CRASH_CTL:
3569 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3570 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3571 case HV_X64_MSR_TSC_EMULATION_CONTROL:
3572 case HV_X64_MSR_TSC_EMULATION_STATUS:
3573 return kvm_hv_get_msr_common(vcpu,
3574 msr_info->index, &msr_info->data,
3575 msr_info->host_initiated);
3576 case MSR_IA32_BBL_CR_CTL3:
3577 /* This legacy MSR exists but isn't fully documented in current
3578 * silicon. It is however accessed by winxp in very narrow
3579 * scenarios where it sets bit #19, itself documented as
3580 * a "reserved" bit. Best effort attempt to source coherent
3581 * read data here should the balance of the register be
3582 * interpreted by the guest:
3584 * L2 cache control register 3: 64GB range, 256KB size,
3585 * enabled, latency 0x1, configured
3587 msr_info->data = 0xbe702111;
3589 case MSR_AMD64_OSVW_ID_LENGTH:
3590 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3592 msr_info->data = vcpu->arch.osvw.length;
3594 case MSR_AMD64_OSVW_STATUS:
3595 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3597 msr_info->data = vcpu->arch.osvw.status;
3599 case MSR_PLATFORM_INFO:
3600 if (!msr_info->host_initiated &&
3601 !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3603 msr_info->data = vcpu->arch.msr_platform_info;
3605 case MSR_MISC_FEATURES_ENABLES:
3606 msr_info->data = vcpu->arch.msr_misc_features_enables;
3609 msr_info->data = vcpu->arch.msr_hwcr;
3612 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3613 return kvm_pmu_get_msr(vcpu, msr_info);
3614 return KVM_MSR_RET_INVALID;
3618 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3621 * Read or write a bunch of msrs. All parameters are kernel addresses.
3623 * @return number of msrs set successfully.
3625 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3626 struct kvm_msr_entry *entries,
3627 int (*do_msr)(struct kvm_vcpu *vcpu,
3628 unsigned index, u64 *data))
3632 for (i = 0; i < msrs->nmsrs; ++i)
3633 if (do_msr(vcpu, entries[i].index, &entries[i].data))
3640 * Read or write a bunch of msrs. Parameters are user addresses.
3642 * @return number of msrs set successfully.
3644 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3645 int (*do_msr)(struct kvm_vcpu *vcpu,
3646 unsigned index, u64 *data),
3649 struct kvm_msrs msrs;
3650 struct kvm_msr_entry *entries;
3655 if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3659 if (msrs.nmsrs >= MAX_IO_MSRS)
3662 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3663 entries = memdup_user(user_msrs->entries, size);
3664 if (IS_ERR(entries)) {
3665 r = PTR_ERR(entries);
3669 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3674 if (writeback && copy_to_user(user_msrs->entries, entries, size))
3685 static inline bool kvm_can_mwait_in_guest(void)
3687 return boot_cpu_has(X86_FEATURE_MWAIT) &&
3688 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
3689 boot_cpu_has(X86_FEATURE_ARAT);
3692 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
3693 struct kvm_cpuid2 __user *cpuid_arg)
3695 struct kvm_cpuid2 cpuid;
3699 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3702 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3707 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3713 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
3718 case KVM_CAP_IRQCHIP:
3720 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3721 case KVM_CAP_SET_TSS_ADDR:
3722 case KVM_CAP_EXT_CPUID:
3723 case KVM_CAP_EXT_EMUL_CPUID:
3724 case KVM_CAP_CLOCKSOURCE:
3726 case KVM_CAP_NOP_IO_DELAY:
3727 case KVM_CAP_MP_STATE:
3728 case KVM_CAP_SYNC_MMU:
3729 case KVM_CAP_USER_NMI:
3730 case KVM_CAP_REINJECT_CONTROL:
3731 case KVM_CAP_IRQ_INJECT_STATUS:
3732 case KVM_CAP_IOEVENTFD:
3733 case KVM_CAP_IOEVENTFD_NO_LENGTH:
3735 case KVM_CAP_PIT_STATE2:
3736 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3737 case KVM_CAP_VCPU_EVENTS:
3738 case KVM_CAP_HYPERV:
3739 case KVM_CAP_HYPERV_VAPIC:
3740 case KVM_CAP_HYPERV_SPIN:
3741 case KVM_CAP_HYPERV_SYNIC:
3742 case KVM_CAP_HYPERV_SYNIC2:
3743 case KVM_CAP_HYPERV_VP_INDEX:
3744 case KVM_CAP_HYPERV_EVENTFD:
3745 case KVM_CAP_HYPERV_TLBFLUSH:
3746 case KVM_CAP_HYPERV_SEND_IPI:
3747 case KVM_CAP_HYPERV_CPUID:
3748 case KVM_CAP_SYS_HYPERV_CPUID:
3749 case KVM_CAP_PCI_SEGMENT:
3750 case KVM_CAP_DEBUGREGS:
3751 case KVM_CAP_X86_ROBUST_SINGLESTEP:
3753 case KVM_CAP_ASYNC_PF:
3754 case KVM_CAP_ASYNC_PF_INT:
3755 case KVM_CAP_GET_TSC_KHZ:
3756 case KVM_CAP_KVMCLOCK_CTRL:
3757 case KVM_CAP_READONLY_MEM:
3758 case KVM_CAP_HYPERV_TIME:
3759 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3760 case KVM_CAP_TSC_DEADLINE_TIMER:
3761 case KVM_CAP_DISABLE_QUIRKS:
3762 case KVM_CAP_SET_BOOT_CPU_ID:
3763 case KVM_CAP_SPLIT_IRQCHIP:
3764 case KVM_CAP_IMMEDIATE_EXIT:
3765 case KVM_CAP_PMU_EVENT_FILTER:
3766 case KVM_CAP_GET_MSR_FEATURES:
3767 case KVM_CAP_MSR_PLATFORM_INFO:
3768 case KVM_CAP_EXCEPTION_PAYLOAD:
3769 case KVM_CAP_SET_GUEST_DEBUG:
3770 case KVM_CAP_LAST_CPU:
3771 case KVM_CAP_X86_USER_SPACE_MSR:
3772 case KVM_CAP_X86_MSR_FILTER:
3773 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
3776 #ifdef CONFIG_KVM_XEN
3777 case KVM_CAP_XEN_HVM:
3778 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
3779 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
3780 KVM_XEN_HVM_CONFIG_SHARED_INFO;
3781 if (sched_info_on())
3782 r |= KVM_XEN_HVM_CONFIG_RUNSTATE;
3785 case KVM_CAP_SYNC_REGS:
3786 r = KVM_SYNC_X86_VALID_FIELDS;
3788 case KVM_CAP_ADJUST_CLOCK:
3789 r = KVM_CLOCK_TSC_STABLE;
3791 case KVM_CAP_X86_DISABLE_EXITS:
3792 r |= KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
3793 KVM_X86_DISABLE_EXITS_CSTATE;
3794 if(kvm_can_mwait_in_guest())
3795 r |= KVM_X86_DISABLE_EXITS_MWAIT;
3797 case KVM_CAP_X86_SMM:
3798 /* SMBASE is usually relocated above 1M on modern chipsets,
3799 * and SMM handlers might indeed rely on 4G segment limits,
3800 * so do not report SMM to be available if real mode is
3801 * emulated via vm86 mode. Still, do not go to great lengths
3802 * to avoid userspace's usage of the feature, because it is a
3803 * fringe case that is not enabled except via specific settings
3804 * of the module parameters.
3806 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
3809 r = !static_call(kvm_x86_cpu_has_accelerated_tpr)();
3811 case KVM_CAP_NR_VCPUS:
3812 r = KVM_SOFT_MAX_VCPUS;
3814 case KVM_CAP_MAX_VCPUS:
3817 case KVM_CAP_MAX_VCPU_ID:
3818 r = KVM_MAX_VCPU_ID;
3820 case KVM_CAP_PV_MMU: /* obsolete */
3824 r = KVM_MAX_MCE_BANKS;
3827 r = boot_cpu_has(X86_FEATURE_XSAVE);
3829 case KVM_CAP_TSC_CONTROL:
3830 r = kvm_has_tsc_control;
3832 case KVM_CAP_X2APIC_API:
3833 r = KVM_X2APIC_API_VALID_FLAGS;
3835 case KVM_CAP_NESTED_STATE:
3836 r = kvm_x86_ops.nested_ops->get_state ?
3837 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
3839 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
3840 r = kvm_x86_ops.enable_direct_tlbflush != NULL;
3842 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3843 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
3845 case KVM_CAP_SMALLER_MAXPHYADDR:
3846 r = (int) allow_smaller_maxphyaddr;
3848 case KVM_CAP_STEAL_TIME:
3849 r = sched_info_on();
3851 case KVM_CAP_X86_BUS_LOCK_EXIT:
3852 if (kvm_has_bus_lock_exit)
3853 r = KVM_BUS_LOCK_DETECTION_OFF |
3854 KVM_BUS_LOCK_DETECTION_EXIT;
3865 long kvm_arch_dev_ioctl(struct file *filp,
3866 unsigned int ioctl, unsigned long arg)
3868 void __user *argp = (void __user *)arg;
3872 case KVM_GET_MSR_INDEX_LIST: {
3873 struct kvm_msr_list __user *user_msr_list = argp;
3874 struct kvm_msr_list msr_list;
3878 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3881 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3882 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3885 if (n < msr_list.nmsrs)
3888 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3889 num_msrs_to_save * sizeof(u32)))
3891 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3893 num_emulated_msrs * sizeof(u32)))
3898 case KVM_GET_SUPPORTED_CPUID:
3899 case KVM_GET_EMULATED_CPUID: {
3900 struct kvm_cpuid2 __user *cpuid_arg = argp;
3901 struct kvm_cpuid2 cpuid;
3904 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3907 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3913 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3918 case KVM_X86_GET_MCE_CAP_SUPPORTED:
3920 if (copy_to_user(argp, &kvm_mce_cap_supported,
3921 sizeof(kvm_mce_cap_supported)))
3925 case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3926 struct kvm_msr_list __user *user_msr_list = argp;
3927 struct kvm_msr_list msr_list;
3931 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3934 msr_list.nmsrs = num_msr_based_features;
3935 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3938 if (n < msr_list.nmsrs)
3941 if (copy_to_user(user_msr_list->indices, &msr_based_features,
3942 num_msr_based_features * sizeof(u32)))
3948 r = msr_io(NULL, argp, do_get_msr_feature, 1);
3950 case KVM_GET_SUPPORTED_HV_CPUID:
3951 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
3961 static void wbinvd_ipi(void *garbage)
3966 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3968 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3971 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3973 /* Address WBINVD may be executed by guest */
3974 if (need_emulate_wbinvd(vcpu)) {
3975 if (static_call(kvm_x86_has_wbinvd_exit)())
3976 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3977 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3978 smp_call_function_single(vcpu->cpu,
3979 wbinvd_ipi, NULL, 1);
3982 static_call(kvm_x86_vcpu_load)(vcpu, cpu);
3984 /* Save host pkru register if supported */
3985 vcpu->arch.host_pkru = read_pkru();
3987 /* Apply any externally detected TSC adjustments (due to suspend) */
3988 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3989 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3990 vcpu->arch.tsc_offset_adjustment = 0;
3991 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3994 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3995 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3996 rdtsc() - vcpu->arch.last_host_tsc;
3998 mark_tsc_unstable("KVM discovered backwards TSC");
4000 if (kvm_check_tsc_unstable()) {
4001 u64 offset = kvm_compute_tsc_offset(vcpu,
4002 vcpu->arch.last_guest_tsc);
4003 kvm_vcpu_write_tsc_offset(vcpu, offset);
4004 vcpu->arch.tsc_catchup = 1;
4007 if (kvm_lapic_hv_timer_in_use(vcpu))
4008 kvm_lapic_restart_hv_timer(vcpu);
4011 * On a host with synchronized TSC, there is no need to update
4012 * kvmclock on vcpu->cpu migration
4014 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4015 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4016 if (vcpu->cpu != cpu)
4017 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4021 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4024 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4026 struct kvm_host_map map;
4027 struct kvm_steal_time *st;
4029 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4032 if (vcpu->arch.st.preempted)
4035 if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT, &map,
4036 &vcpu->arch.st.cache, true))
4040 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
4042 st->preempted = vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4044 kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, true);
4047 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4051 if (vcpu->preempted && !vcpu->arch.guest_state_protected)
4052 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4055 * Take the srcu lock as memslots will be accessed to check the gfn
4056 * cache generation against the memslots generation.
4058 idx = srcu_read_lock(&vcpu->kvm->srcu);
4059 if (kvm_xen_msr_enabled(vcpu->kvm))
4060 kvm_xen_runstate_set_preempted(vcpu);
4062 kvm_steal_time_set_preempted(vcpu);
4063 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4065 static_call(kvm_x86_vcpu_put)(vcpu);
4066 vcpu->arch.last_host_tsc = rdtsc();
4068 * If userspace has set any breakpoints or watchpoints, dr6 is restored
4069 * on every vmexit, but if not, we might have a stale dr6 from the
4070 * guest. do_debug expects dr6 to be cleared after it runs, do the same.
4075 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4076 struct kvm_lapic_state *s)
4078 if (vcpu->arch.apicv_active)
4079 static_call(kvm_x86_sync_pir_to_irr)(vcpu);
4081 return kvm_apic_get_state(vcpu, s);
4084 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4085 struct kvm_lapic_state *s)
4089 r = kvm_apic_set_state(vcpu, s);
4092 update_cr8_intercept(vcpu);
4097 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4100 * We can accept userspace's request for interrupt injection
4101 * as long as we have a place to store the interrupt number.
4102 * The actual injection will happen when the CPU is able to
4103 * deliver the interrupt.
4105 if (kvm_cpu_has_extint(vcpu))
4108 /* Acknowledging ExtINT does not happen if LINT0 is masked. */
4109 return (!lapic_in_kernel(vcpu) ||
4110 kvm_apic_accept_pic_intr(vcpu));
4113 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4115 return kvm_arch_interrupt_allowed(vcpu) &&
4116 kvm_cpu_accept_dm_intr(vcpu);
4119 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4120 struct kvm_interrupt *irq)
4122 if (irq->irq >= KVM_NR_INTERRUPTS)
4125 if (!irqchip_in_kernel(vcpu->kvm)) {
4126 kvm_queue_interrupt(vcpu, irq->irq, false);
4127 kvm_make_request(KVM_REQ_EVENT, vcpu);
4132 * With in-kernel LAPIC, we only use this to inject EXTINT, so
4133 * fail for in-kernel 8259.
4135 if (pic_in_kernel(vcpu->kvm))
4138 if (vcpu->arch.pending_external_vector != -1)
4141 vcpu->arch.pending_external_vector = irq->irq;
4142 kvm_make_request(KVM_REQ_EVENT, vcpu);
4146 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4148 kvm_inject_nmi(vcpu);
4153 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4155 kvm_make_request(KVM_REQ_SMI, vcpu);
4160 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4161 struct kvm_tpr_access_ctl *tac)
4165 vcpu->arch.tpr_access_reporting = !!tac->enabled;
4169 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4173 unsigned bank_num = mcg_cap & 0xff, bank;
4176 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4178 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
4181 vcpu->arch.mcg_cap = mcg_cap;
4182 /* Init IA32_MCG_CTL to all 1s */
4183 if (mcg_cap & MCG_CTL_P)
4184 vcpu->arch.mcg_ctl = ~(u64)0;
4185 /* Init IA32_MCi_CTL to all 1s */
4186 for (bank = 0; bank < bank_num; bank++)
4187 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4189 static_call(kvm_x86_setup_mce)(vcpu);
4194 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4195 struct kvm_x86_mce *mce)
4197 u64 mcg_cap = vcpu->arch.mcg_cap;
4198 unsigned bank_num = mcg_cap & 0xff;
4199 u64 *banks = vcpu->arch.mce_banks;
4201 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4204 * if IA32_MCG_CTL is not all 1s, the uncorrected error
4205 * reporting is disabled
4207 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
4208 vcpu->arch.mcg_ctl != ~(u64)0)
4210 banks += 4 * mce->bank;
4212 * if IA32_MCi_CTL is not all 1s, the uncorrected error
4213 * reporting is disabled for the bank
4215 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
4217 if (mce->status & MCI_STATUS_UC) {
4218 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
4219 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
4220 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4223 if (banks[1] & MCI_STATUS_VAL)
4224 mce->status |= MCI_STATUS_OVER;
4225 banks[2] = mce->addr;
4226 banks[3] = mce->misc;
4227 vcpu->arch.mcg_status = mce->mcg_status;
4228 banks[1] = mce->status;
4229 kvm_queue_exception(vcpu, MC_VECTOR);
4230 } else if (!(banks[1] & MCI_STATUS_VAL)
4231 || !(banks[1] & MCI_STATUS_UC)) {
4232 if (banks[1] & MCI_STATUS_VAL)
4233 mce->status |= MCI_STATUS_OVER;
4234 banks[2] = mce->addr;
4235 banks[3] = mce->misc;
4236 banks[1] = mce->status;
4238 banks[1] |= MCI_STATUS_OVER;
4242 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
4243 struct kvm_vcpu_events *events)
4247 if (kvm_check_request(KVM_REQ_SMI, vcpu))
4251 * In guest mode, payload delivery should be deferred,
4252 * so that the L1 hypervisor can intercept #PF before
4253 * CR2 is modified (or intercept #DB before DR6 is
4254 * modified under nVMX). Unless the per-VM capability,
4255 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
4256 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
4257 * opportunistically defer the exception payload, deliver it if the
4258 * capability hasn't been requested before processing a
4259 * KVM_GET_VCPU_EVENTS.
4261 if (!vcpu->kvm->arch.exception_payload_enabled &&
4262 vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
4263 kvm_deliver_exception_payload(vcpu);
4266 * The API doesn't provide the instruction length for software
4267 * exceptions, so don't report them. As long as the guest RIP
4268 * isn't advanced, we should expect to encounter the exception
4271 if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
4272 events->exception.injected = 0;
4273 events->exception.pending = 0;
4275 events->exception.injected = vcpu->arch.exception.injected;
4276 events->exception.pending = vcpu->arch.exception.pending;
4278 * For ABI compatibility, deliberately conflate
4279 * pending and injected exceptions when
4280 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
4282 if (!vcpu->kvm->arch.exception_payload_enabled)
4283 events->exception.injected |=
4284 vcpu->arch.exception.pending;
4286 events->exception.nr = vcpu->arch.exception.nr;
4287 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
4288 events->exception.error_code = vcpu->arch.exception.error_code;
4289 events->exception_has_payload = vcpu->arch.exception.has_payload;
4290 events->exception_payload = vcpu->arch.exception.payload;
4292 events->interrupt.injected =
4293 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
4294 events->interrupt.nr = vcpu->arch.interrupt.nr;
4295 events->interrupt.soft = 0;
4296 events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
4298 events->nmi.injected = vcpu->arch.nmi_injected;
4299 events->nmi.pending = vcpu->arch.nmi_pending != 0;
4300 events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
4301 events->nmi.pad = 0;
4303 events->sipi_vector = 0; /* never valid when reporting to user space */
4305 events->smi.smm = is_smm(vcpu);
4306 events->smi.pending = vcpu->arch.smi_pending;
4307 events->smi.smm_inside_nmi =
4308 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
4309 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
4311 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
4312 | KVM_VCPUEVENT_VALID_SHADOW
4313 | KVM_VCPUEVENT_VALID_SMM);
4314 if (vcpu->kvm->arch.exception_payload_enabled)
4315 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4317 memset(&events->reserved, 0, sizeof(events->reserved));
4320 static void kvm_smm_changed(struct kvm_vcpu *vcpu);
4322 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
4323 struct kvm_vcpu_events *events)
4325 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4326 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4327 | KVM_VCPUEVENT_VALID_SHADOW
4328 | KVM_VCPUEVENT_VALID_SMM
4329 | KVM_VCPUEVENT_VALID_PAYLOAD))
4332 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4333 if (!vcpu->kvm->arch.exception_payload_enabled)
4335 if (events->exception.pending)
4336 events->exception.injected = 0;
4338 events->exception_has_payload = 0;
4340 events->exception.pending = 0;
4341 events->exception_has_payload = 0;
4344 if ((events->exception.injected || events->exception.pending) &&
4345 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
4348 /* INITs are latched while in SMM */
4349 if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4350 (events->smi.smm || events->smi.pending) &&
4351 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4355 vcpu->arch.exception.injected = events->exception.injected;
4356 vcpu->arch.exception.pending = events->exception.pending;
4357 vcpu->arch.exception.nr = events->exception.nr;
4358 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4359 vcpu->arch.exception.error_code = events->exception.error_code;
4360 vcpu->arch.exception.has_payload = events->exception_has_payload;
4361 vcpu->arch.exception.payload = events->exception_payload;
4363 vcpu->arch.interrupt.injected = events->interrupt.injected;
4364 vcpu->arch.interrupt.nr = events->interrupt.nr;
4365 vcpu->arch.interrupt.soft = events->interrupt.soft;
4366 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
4367 static_call(kvm_x86_set_interrupt_shadow)(vcpu,
4368 events->interrupt.shadow);
4370 vcpu->arch.nmi_injected = events->nmi.injected;
4371 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
4372 vcpu->arch.nmi_pending = events->nmi.pending;
4373 static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
4375 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
4376 lapic_in_kernel(vcpu))
4377 vcpu->arch.apic->sipi_vector = events->sipi_vector;
4379 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
4380 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
4381 if (events->smi.smm)
4382 vcpu->arch.hflags |= HF_SMM_MASK;
4384 vcpu->arch.hflags &= ~HF_SMM_MASK;
4385 kvm_smm_changed(vcpu);
4388 vcpu->arch.smi_pending = events->smi.pending;
4390 if (events->smi.smm) {
4391 if (events->smi.smm_inside_nmi)
4392 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
4394 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
4397 if (lapic_in_kernel(vcpu)) {
4398 if (events->smi.latched_init)
4399 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4401 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4405 kvm_make_request(KVM_REQ_EVENT, vcpu);
4410 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
4411 struct kvm_debugregs *dbgregs)
4415 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
4416 kvm_get_dr(vcpu, 6, &val);
4418 dbgregs->dr7 = vcpu->arch.dr7;
4420 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
4423 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
4424 struct kvm_debugregs *dbgregs)
4429 if (!kvm_dr6_valid(dbgregs->dr6))
4431 if (!kvm_dr7_valid(dbgregs->dr7))
4434 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
4435 kvm_update_dr0123(vcpu);
4436 vcpu->arch.dr6 = dbgregs->dr6;
4437 vcpu->arch.dr7 = dbgregs->dr7;
4438 kvm_update_dr7(vcpu);
4443 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
4445 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
4447 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4448 u64 xstate_bv = xsave->header.xfeatures;
4452 * Copy legacy XSAVE area, to avoid complications with CPUID
4453 * leaves 0 and 1 in the loop below.
4455 memcpy(dest, xsave, XSAVE_HDR_OFFSET);
4458 xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
4459 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
4462 * Copy each region from the possibly compacted offset to the
4463 * non-compacted offset.
4465 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4467 u64 xfeature_mask = valid & -valid;
4468 int xfeature_nr = fls64(xfeature_mask) - 1;
4469 void *src = get_xsave_addr(xsave, xfeature_nr);
4472 u32 size, offset, ecx, edx;
4473 cpuid_count(XSTATE_CPUID, xfeature_nr,
4474 &size, &offset, &ecx, &edx);
4475 if (xfeature_nr == XFEATURE_PKRU)
4476 memcpy(dest + offset, &vcpu->arch.pkru,
4477 sizeof(vcpu->arch.pkru));
4479 memcpy(dest + offset, src, size);
4483 valid -= xfeature_mask;
4487 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
4489 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4490 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
4494 * Copy legacy XSAVE area, to avoid complications with CPUID
4495 * leaves 0 and 1 in the loop below.
4497 memcpy(xsave, src, XSAVE_HDR_OFFSET);
4499 /* Set XSTATE_BV and possibly XCOMP_BV. */
4500 xsave->header.xfeatures = xstate_bv;
4501 if (boot_cpu_has(X86_FEATURE_XSAVES))
4502 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
4505 * Copy each region from the non-compacted offset to the
4506 * possibly compacted offset.
4508 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4510 u64 xfeature_mask = valid & -valid;
4511 int xfeature_nr = fls64(xfeature_mask) - 1;
4512 void *dest = get_xsave_addr(xsave, xfeature_nr);
4515 u32 size, offset, ecx, edx;
4516 cpuid_count(XSTATE_CPUID, xfeature_nr,
4517 &size, &offset, &ecx, &edx);
4518 if (xfeature_nr == XFEATURE_PKRU)
4519 memcpy(&vcpu->arch.pkru, src + offset,
4520 sizeof(vcpu->arch.pkru));
4522 memcpy(dest, src + offset, size);
4525 valid -= xfeature_mask;
4529 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4530 struct kvm_xsave *guest_xsave)
4532 if (!vcpu->arch.guest_fpu)
4535 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4536 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
4537 fill_xsave((u8 *) guest_xsave->region, vcpu);
4539 memcpy(guest_xsave->region,
4540 &vcpu->arch.guest_fpu->state.fxsave,
4541 sizeof(struct fxregs_state));
4542 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
4543 XFEATURE_MASK_FPSSE;
4547 #define XSAVE_MXCSR_OFFSET 24
4549 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
4550 struct kvm_xsave *guest_xsave)
4555 if (!vcpu->arch.guest_fpu)
4558 xstate_bv = *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
4559 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
4561 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4563 * Here we allow setting states that are not present in
4564 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
4565 * with old userspace.
4567 if (xstate_bv & ~supported_xcr0 || mxcsr & ~mxcsr_feature_mask)
4569 load_xsave(vcpu, (u8 *)guest_xsave->region);
4571 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
4572 mxcsr & ~mxcsr_feature_mask)
4574 memcpy(&vcpu->arch.guest_fpu->state.fxsave,
4575 guest_xsave->region, sizeof(struct fxregs_state));
4580 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
4581 struct kvm_xcrs *guest_xcrs)
4583 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
4584 guest_xcrs->nr_xcrs = 0;
4588 guest_xcrs->nr_xcrs = 1;
4589 guest_xcrs->flags = 0;
4590 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
4591 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
4594 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
4595 struct kvm_xcrs *guest_xcrs)
4599 if (!boot_cpu_has(X86_FEATURE_XSAVE))
4602 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
4605 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
4606 /* Only support XCR0 currently */
4607 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
4608 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
4609 guest_xcrs->xcrs[i].value);
4618 * kvm_set_guest_paused() indicates to the guest kernel that it has been
4619 * stopped by the hypervisor. This function will be called from the host only.
4620 * EINVAL is returned when the host attempts to set the flag for a guest that
4621 * does not support pv clocks.
4623 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
4625 if (!vcpu->arch.pv_time_enabled)
4627 vcpu->arch.pvclock_set_guest_stopped_request = true;
4628 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4632 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
4633 struct kvm_enable_cap *cap)
4636 uint16_t vmcs_version;
4637 void __user *user_ptr;
4643 case KVM_CAP_HYPERV_SYNIC2:
4648 case KVM_CAP_HYPERV_SYNIC:
4649 if (!irqchip_in_kernel(vcpu->kvm))
4651 return kvm_hv_activate_synic(vcpu, cap->cap ==
4652 KVM_CAP_HYPERV_SYNIC2);
4653 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4654 if (!kvm_x86_ops.nested_ops->enable_evmcs)
4656 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
4658 user_ptr = (void __user *)(uintptr_t)cap->args[0];
4659 if (copy_to_user(user_ptr, &vmcs_version,
4660 sizeof(vmcs_version)))
4664 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4665 if (!kvm_x86_ops.enable_direct_tlbflush)
4668 return static_call(kvm_x86_enable_direct_tlbflush)(vcpu);
4670 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4671 vcpu->arch.pv_cpuid.enforce = cap->args[0];
4672 if (vcpu->arch.pv_cpuid.enforce)
4673 kvm_update_pv_runtime(vcpu);
4682 long kvm_arch_vcpu_ioctl(struct file *filp,
4683 unsigned int ioctl, unsigned long arg)
4685 struct kvm_vcpu *vcpu = filp->private_data;
4686 void __user *argp = (void __user *)arg;
4689 struct kvm_lapic_state *lapic;
4690 struct kvm_xsave *xsave;
4691 struct kvm_xcrs *xcrs;
4699 case KVM_GET_LAPIC: {
4701 if (!lapic_in_kernel(vcpu))
4703 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
4704 GFP_KERNEL_ACCOUNT);
4709 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
4713 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
4718 case KVM_SET_LAPIC: {
4720 if (!lapic_in_kernel(vcpu))
4722 u.lapic = memdup_user(argp, sizeof(*u.lapic));
4723 if (IS_ERR(u.lapic)) {
4724 r = PTR_ERR(u.lapic);
4728 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
4731 case KVM_INTERRUPT: {
4732 struct kvm_interrupt irq;
4735 if (copy_from_user(&irq, argp, sizeof(irq)))
4737 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
4741 r = kvm_vcpu_ioctl_nmi(vcpu);
4745 r = kvm_vcpu_ioctl_smi(vcpu);
4748 case KVM_SET_CPUID: {
4749 struct kvm_cpuid __user *cpuid_arg = argp;
4750 struct kvm_cpuid cpuid;
4753 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4755 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4758 case KVM_SET_CPUID2: {
4759 struct kvm_cpuid2 __user *cpuid_arg = argp;
4760 struct kvm_cpuid2 cpuid;
4763 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4765 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
4766 cpuid_arg->entries);
4769 case KVM_GET_CPUID2: {
4770 struct kvm_cpuid2 __user *cpuid_arg = argp;
4771 struct kvm_cpuid2 cpuid;
4774 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4776 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
4777 cpuid_arg->entries);
4781 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4786 case KVM_GET_MSRS: {
4787 int idx = srcu_read_lock(&vcpu->kvm->srcu);
4788 r = msr_io(vcpu, argp, do_get_msr, 1);
4789 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4792 case KVM_SET_MSRS: {
4793 int idx = srcu_read_lock(&vcpu->kvm->srcu);
4794 r = msr_io(vcpu, argp, do_set_msr, 0);
4795 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4798 case KVM_TPR_ACCESS_REPORTING: {
4799 struct kvm_tpr_access_ctl tac;
4802 if (copy_from_user(&tac, argp, sizeof(tac)))
4804 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
4808 if (copy_to_user(argp, &tac, sizeof(tac)))
4813 case KVM_SET_VAPIC_ADDR: {
4814 struct kvm_vapic_addr va;
4818 if (!lapic_in_kernel(vcpu))
4821 if (copy_from_user(&va, argp, sizeof(va)))
4823 idx = srcu_read_lock(&vcpu->kvm->srcu);
4824 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
4825 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4828 case KVM_X86_SETUP_MCE: {
4832 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
4834 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
4837 case KVM_X86_SET_MCE: {
4838 struct kvm_x86_mce mce;
4841 if (copy_from_user(&mce, argp, sizeof(mce)))
4843 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4846 case KVM_GET_VCPU_EVENTS: {
4847 struct kvm_vcpu_events events;
4849 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4852 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4857 case KVM_SET_VCPU_EVENTS: {
4858 struct kvm_vcpu_events events;
4861 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
4864 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4867 case KVM_GET_DEBUGREGS: {
4868 struct kvm_debugregs dbgregs;
4870 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4873 if (copy_to_user(argp, &dbgregs,
4874 sizeof(struct kvm_debugregs)))
4879 case KVM_SET_DEBUGREGS: {
4880 struct kvm_debugregs dbgregs;
4883 if (copy_from_user(&dbgregs, argp,
4884 sizeof(struct kvm_debugregs)))
4887 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
4890 case KVM_GET_XSAVE: {
4891 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
4896 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
4899 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
4904 case KVM_SET_XSAVE: {
4905 u.xsave = memdup_user(argp, sizeof(*u.xsave));
4906 if (IS_ERR(u.xsave)) {
4907 r = PTR_ERR(u.xsave);
4911 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
4914 case KVM_GET_XCRS: {
4915 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
4920 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
4923 if (copy_to_user(argp, u.xcrs,
4924 sizeof(struct kvm_xcrs)))
4929 case KVM_SET_XCRS: {
4930 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
4931 if (IS_ERR(u.xcrs)) {
4932 r = PTR_ERR(u.xcrs);
4936 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
4939 case KVM_SET_TSC_KHZ: {
4943 user_tsc_khz = (u32)arg;
4945 if (kvm_has_tsc_control &&
4946 user_tsc_khz >= kvm_max_guest_tsc_khz)
4949 if (user_tsc_khz == 0)
4950 user_tsc_khz = tsc_khz;
4952 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
4957 case KVM_GET_TSC_KHZ: {
4958 r = vcpu->arch.virtual_tsc_khz;
4961 case KVM_KVMCLOCK_CTRL: {
4962 r = kvm_set_guest_paused(vcpu);
4965 case KVM_ENABLE_CAP: {
4966 struct kvm_enable_cap cap;
4969 if (copy_from_user(&cap, argp, sizeof(cap)))
4971 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
4974 case KVM_GET_NESTED_STATE: {
4975 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4979 if (!kvm_x86_ops.nested_ops->get_state)
4982 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
4984 if (get_user(user_data_size, &user_kvm_nested_state->size))
4987 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
4992 if (r > user_data_size) {
4993 if (put_user(r, &user_kvm_nested_state->size))
5003 case KVM_SET_NESTED_STATE: {
5004 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5005 struct kvm_nested_state kvm_state;
5009 if (!kvm_x86_ops.nested_ops->set_state)
5013 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5017 if (kvm_state.size < sizeof(kvm_state))
5020 if (kvm_state.flags &
5021 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5022 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5023 | KVM_STATE_NESTED_GIF_SET))
5026 /* nested_run_pending implies guest_mode. */
5027 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5028 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5031 idx = srcu_read_lock(&vcpu->kvm->srcu);
5032 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5033 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5036 case KVM_GET_SUPPORTED_HV_CPUID:
5037 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5039 #ifdef CONFIG_KVM_XEN
5040 case KVM_XEN_VCPU_GET_ATTR: {
5041 struct kvm_xen_vcpu_attr xva;
5044 if (copy_from_user(&xva, argp, sizeof(xva)))
5046 r = kvm_xen_vcpu_get_attr(vcpu, &xva);
5047 if (!r && copy_to_user(argp, &xva, sizeof(xva)))
5051 case KVM_XEN_VCPU_SET_ATTR: {
5052 struct kvm_xen_vcpu_attr xva;
5055 if (copy_from_user(&xva, argp, sizeof(xva)))
5057 r = kvm_xen_vcpu_set_attr(vcpu, &xva);
5071 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5073 return VM_FAULT_SIGBUS;
5076 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5080 if (addr > (unsigned int)(-3 * PAGE_SIZE))
5082 ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
5086 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5089 return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
5092 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5093 unsigned long kvm_nr_mmu_pages)
5095 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5098 mutex_lock(&kvm->slots_lock);
5100 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5101 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5103 mutex_unlock(&kvm->slots_lock);
5107 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5109 return kvm->arch.n_max_mmu_pages;
5112 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5114 struct kvm_pic *pic = kvm->arch.vpic;
5118 switch (chip->chip_id) {
5119 case KVM_IRQCHIP_PIC_MASTER:
5120 memcpy(&chip->chip.pic, &pic->pics[0],
5121 sizeof(struct kvm_pic_state));
5123 case KVM_IRQCHIP_PIC_SLAVE:
5124 memcpy(&chip->chip.pic, &pic->pics[1],
5125 sizeof(struct kvm_pic_state));
5127 case KVM_IRQCHIP_IOAPIC:
5128 kvm_get_ioapic(kvm, &chip->chip.ioapic);
5137 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5139 struct kvm_pic *pic = kvm->arch.vpic;
5143 switch (chip->chip_id) {
5144 case KVM_IRQCHIP_PIC_MASTER:
5145 spin_lock(&pic->lock);
5146 memcpy(&pic->pics[0], &chip->chip.pic,
5147 sizeof(struct kvm_pic_state));
5148 spin_unlock(&pic->lock);
5150 case KVM_IRQCHIP_PIC_SLAVE:
5151 spin_lock(&pic->lock);
5152 memcpy(&pic->pics[1], &chip->chip.pic,
5153 sizeof(struct kvm_pic_state));
5154 spin_unlock(&pic->lock);
5156 case KVM_IRQCHIP_IOAPIC:
5157 kvm_set_ioapic(kvm, &chip->chip.ioapic);
5163 kvm_pic_update_irq(pic);
5167 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5169 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
5171 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
5173 mutex_lock(&kps->lock);
5174 memcpy(ps, &kps->channels, sizeof(*ps));
5175 mutex_unlock(&kps->lock);
5179 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5182 struct kvm_pit *pit = kvm->arch.vpit;
5184 mutex_lock(&pit->pit_state.lock);
5185 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
5186 for (i = 0; i < 3; i++)
5187 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
5188 mutex_unlock(&pit->pit_state.lock);
5192 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5194 mutex_lock(&kvm->arch.vpit->pit_state.lock);
5195 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
5196 sizeof(ps->channels));
5197 ps->flags = kvm->arch.vpit->pit_state.flags;
5198 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
5199 memset(&ps->reserved, 0, sizeof(ps->reserved));
5203 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5207 u32 prev_legacy, cur_legacy;
5208 struct kvm_pit *pit = kvm->arch.vpit;
5210 mutex_lock(&pit->pit_state.lock);
5211 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
5212 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
5213 if (!prev_legacy && cur_legacy)
5215 memcpy(&pit->pit_state.channels, &ps->channels,
5216 sizeof(pit->pit_state.channels));
5217 pit->pit_state.flags = ps->flags;
5218 for (i = 0; i < 3; i++)
5219 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
5221 mutex_unlock(&pit->pit_state.lock);
5225 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
5226 struct kvm_reinject_control *control)
5228 struct kvm_pit *pit = kvm->arch.vpit;
5230 /* pit->pit_state.lock was overloaded to prevent userspace from getting
5231 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
5232 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
5234 mutex_lock(&pit->pit_state.lock);
5235 kvm_pit_set_reinject(pit, control->pit_reinject);
5236 mutex_unlock(&pit->pit_state.lock);
5241 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
5245 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called
5246 * before reporting dirty_bitmap to userspace. KVM flushes the buffers
5247 * on all VM-Exits, thus we only need to kick running vCPUs to force a
5250 struct kvm_vcpu *vcpu;
5253 kvm_for_each_vcpu(i, vcpu, kvm)
5254 kvm_vcpu_kick(vcpu);
5257 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
5260 if (!irqchip_in_kernel(kvm))
5263 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
5264 irq_event->irq, irq_event->level,
5269 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
5270 struct kvm_enable_cap *cap)
5278 case KVM_CAP_DISABLE_QUIRKS:
5279 kvm->arch.disabled_quirks = cap->args[0];
5282 case KVM_CAP_SPLIT_IRQCHIP: {
5283 mutex_lock(&kvm->lock);
5285 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
5286 goto split_irqchip_unlock;
5288 if (irqchip_in_kernel(kvm))
5289 goto split_irqchip_unlock;
5290 if (kvm->created_vcpus)
5291 goto split_irqchip_unlock;
5292 r = kvm_setup_empty_irq_routing(kvm);
5294 goto split_irqchip_unlock;
5295 /* Pairs with irqchip_in_kernel. */
5297 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
5298 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
5300 split_irqchip_unlock:
5301 mutex_unlock(&kvm->lock);
5304 case KVM_CAP_X2APIC_API:
5306 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
5309 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
5310 kvm->arch.x2apic_format = true;
5311 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
5312 kvm->arch.x2apic_broadcast_quirk_disabled = true;
5316 case KVM_CAP_X86_DISABLE_EXITS:
5318 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
5321 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
5322 kvm_can_mwait_in_guest())
5323 kvm->arch.mwait_in_guest = true;
5324 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
5325 kvm->arch.hlt_in_guest = true;
5326 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
5327 kvm->arch.pause_in_guest = true;
5328 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
5329 kvm->arch.cstate_in_guest = true;
5332 case KVM_CAP_MSR_PLATFORM_INFO:
5333 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
5336 case KVM_CAP_EXCEPTION_PAYLOAD:
5337 kvm->arch.exception_payload_enabled = cap->args[0];
5340 case KVM_CAP_X86_USER_SPACE_MSR:
5341 kvm->arch.user_space_msr_mask = cap->args[0];
5344 case KVM_CAP_X86_BUS_LOCK_EXIT:
5346 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
5349 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
5350 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
5353 if (kvm_has_bus_lock_exit &&
5354 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
5355 kvm->arch.bus_lock_detection_enabled = true;
5365 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
5367 struct kvm_x86_msr_filter *msr_filter;
5369 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
5373 msr_filter->default_allow = default_allow;
5377 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
5384 for (i = 0; i < msr_filter->count; i++)
5385 kfree(msr_filter->ranges[i].bitmap);
5390 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
5391 struct kvm_msr_filter_range *user_range)
5393 struct msr_bitmap_range range;
5394 unsigned long *bitmap = NULL;
5398 if (!user_range->nmsrs)
5401 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
5402 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
5405 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
5407 return PTR_ERR(bitmap);
5409 range = (struct msr_bitmap_range) {
5410 .flags = user_range->flags,
5411 .base = user_range->base,
5412 .nmsrs = user_range->nmsrs,
5416 if (range.flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE)) {
5426 /* Everything ok, add this range identifier. */
5427 msr_filter->ranges[msr_filter->count] = range;
5428 msr_filter->count++;
5436 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp)
5438 struct kvm_msr_filter __user *user_msr_filter = argp;
5439 struct kvm_x86_msr_filter *new_filter, *old_filter;
5440 struct kvm_msr_filter filter;
5446 if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
5449 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++)
5450 empty &= !filter.ranges[i].nmsrs;
5452 default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY);
5453 if (empty && !default_allow)
5456 new_filter = kvm_alloc_msr_filter(default_allow);
5460 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
5461 r = kvm_add_msr_filter(new_filter, &filter.ranges[i]);
5463 kvm_free_msr_filter(new_filter);
5468 mutex_lock(&kvm->lock);
5470 /* The per-VM filter is protected by kvm->lock... */
5471 old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1);
5473 rcu_assign_pointer(kvm->arch.msr_filter, new_filter);
5474 synchronize_srcu(&kvm->srcu);
5476 kvm_free_msr_filter(old_filter);
5478 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
5479 mutex_unlock(&kvm->lock);
5484 long kvm_arch_vm_ioctl(struct file *filp,
5485 unsigned int ioctl, unsigned long arg)
5487 struct kvm *kvm = filp->private_data;
5488 void __user *argp = (void __user *)arg;
5491 * This union makes it completely explicit to gcc-3.x
5492 * that these two variables' stack usage should be
5493 * combined, not added together.
5496 struct kvm_pit_state ps;
5497 struct kvm_pit_state2 ps2;
5498 struct kvm_pit_config pit_config;
5502 case KVM_SET_TSS_ADDR:
5503 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
5505 case KVM_SET_IDENTITY_MAP_ADDR: {
5508 mutex_lock(&kvm->lock);
5510 if (kvm->created_vcpus)
5511 goto set_identity_unlock;
5513 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
5514 goto set_identity_unlock;
5515 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
5516 set_identity_unlock:
5517 mutex_unlock(&kvm->lock);
5520 case KVM_SET_NR_MMU_PAGES:
5521 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
5523 case KVM_GET_NR_MMU_PAGES:
5524 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
5526 case KVM_CREATE_IRQCHIP: {
5527 mutex_lock(&kvm->lock);
5530 if (irqchip_in_kernel(kvm))
5531 goto create_irqchip_unlock;
5534 if (kvm->created_vcpus)
5535 goto create_irqchip_unlock;
5537 r = kvm_pic_init(kvm);
5539 goto create_irqchip_unlock;
5541 r = kvm_ioapic_init(kvm);
5543 kvm_pic_destroy(kvm);
5544 goto create_irqchip_unlock;
5547 r = kvm_setup_default_irq_routing(kvm);
5549 kvm_ioapic_destroy(kvm);
5550 kvm_pic_destroy(kvm);
5551 goto create_irqchip_unlock;
5553 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
5555 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
5556 create_irqchip_unlock:
5557 mutex_unlock(&kvm->lock);
5560 case KVM_CREATE_PIT:
5561 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
5563 case KVM_CREATE_PIT2:
5565 if (copy_from_user(&u.pit_config, argp,
5566 sizeof(struct kvm_pit_config)))
5569 mutex_lock(&kvm->lock);
5572 goto create_pit_unlock;
5574 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
5578 mutex_unlock(&kvm->lock);
5580 case KVM_GET_IRQCHIP: {
5581 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5582 struct kvm_irqchip *chip;
5584 chip = memdup_user(argp, sizeof(*chip));
5591 if (!irqchip_kernel(kvm))
5592 goto get_irqchip_out;
5593 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
5595 goto get_irqchip_out;
5597 if (copy_to_user(argp, chip, sizeof(*chip)))
5598 goto get_irqchip_out;
5604 case KVM_SET_IRQCHIP: {
5605 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5606 struct kvm_irqchip *chip;
5608 chip = memdup_user(argp, sizeof(*chip));
5615 if (!irqchip_kernel(kvm))
5616 goto set_irqchip_out;
5617 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
5624 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
5627 if (!kvm->arch.vpit)
5629 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
5633 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
5640 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
5642 mutex_lock(&kvm->lock);
5644 if (!kvm->arch.vpit)
5646 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
5648 mutex_unlock(&kvm->lock);
5651 case KVM_GET_PIT2: {
5653 if (!kvm->arch.vpit)
5655 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
5659 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
5664 case KVM_SET_PIT2: {
5666 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
5668 mutex_lock(&kvm->lock);
5670 if (!kvm->arch.vpit)
5672 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
5674 mutex_unlock(&kvm->lock);
5677 case KVM_REINJECT_CONTROL: {
5678 struct kvm_reinject_control control;
5680 if (copy_from_user(&control, argp, sizeof(control)))
5683 if (!kvm->arch.vpit)
5685 r = kvm_vm_ioctl_reinject(kvm, &control);
5688 case KVM_SET_BOOT_CPU_ID:
5690 mutex_lock(&kvm->lock);
5691 if (kvm->created_vcpus)
5694 kvm->arch.bsp_vcpu_id = arg;
5695 mutex_unlock(&kvm->lock);
5697 #ifdef CONFIG_KVM_XEN
5698 case KVM_XEN_HVM_CONFIG: {
5699 struct kvm_xen_hvm_config xhc;
5701 if (copy_from_user(&xhc, argp, sizeof(xhc)))
5703 r = kvm_xen_hvm_config(kvm, &xhc);
5706 case KVM_XEN_HVM_GET_ATTR: {
5707 struct kvm_xen_hvm_attr xha;
5710 if (copy_from_user(&xha, argp, sizeof(xha)))
5712 r = kvm_xen_hvm_get_attr(kvm, &xha);
5713 if (!r && copy_to_user(argp, &xha, sizeof(xha)))
5717 case KVM_XEN_HVM_SET_ATTR: {
5718 struct kvm_xen_hvm_attr xha;
5721 if (copy_from_user(&xha, argp, sizeof(xha)))
5723 r = kvm_xen_hvm_set_attr(kvm, &xha);
5727 case KVM_SET_CLOCK: {
5728 struct kvm_arch *ka = &kvm->arch;
5729 struct kvm_clock_data user_ns;
5733 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
5742 * TODO: userspace has to take care of races with VCPU_RUN, so
5743 * kvm_gen_update_masterclock() can be cut down to locked
5744 * pvclock_update_vm_gtod_copy().
5746 kvm_gen_update_masterclock(kvm);
5749 * This pairs with kvm_guest_time_update(): when masterclock is
5750 * in use, we use master_kernel_ns + kvmclock_offset to set
5751 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
5752 * is slightly ahead) here we risk going negative on unsigned
5753 * 'system_time' when 'user_ns.clock' is very small.
5755 spin_lock_irq(&ka->pvclock_gtod_sync_lock);
5756 if (kvm->arch.use_master_clock)
5757 now_ns = ka->master_kernel_ns;
5759 now_ns = get_kvmclock_base_ns();
5760 ka->kvmclock_offset = user_ns.clock - now_ns;
5761 spin_unlock_irq(&ka->pvclock_gtod_sync_lock);
5763 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
5766 case KVM_GET_CLOCK: {
5767 struct kvm_clock_data user_ns;
5770 now_ns = get_kvmclock_ns(kvm);
5771 user_ns.clock = now_ns;
5772 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
5773 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
5776 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
5781 case KVM_MEMORY_ENCRYPT_OP: {
5783 if (kvm_x86_ops.mem_enc_op)
5784 r = static_call(kvm_x86_mem_enc_op)(kvm, argp);
5787 case KVM_MEMORY_ENCRYPT_REG_REGION: {
5788 struct kvm_enc_region region;
5791 if (copy_from_user(®ion, argp, sizeof(region)))
5795 if (kvm_x86_ops.mem_enc_reg_region)
5796 r = static_call(kvm_x86_mem_enc_reg_region)(kvm, ®ion);
5799 case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
5800 struct kvm_enc_region region;
5803 if (copy_from_user(®ion, argp, sizeof(region)))
5807 if (kvm_x86_ops.mem_enc_unreg_region)
5808 r = static_call(kvm_x86_mem_enc_unreg_region)(kvm, ®ion);
5811 case KVM_HYPERV_EVENTFD: {
5812 struct kvm_hyperv_eventfd hvevfd;
5815 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
5817 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
5820 case KVM_SET_PMU_EVENT_FILTER:
5821 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
5823 case KVM_X86_SET_MSR_FILTER:
5824 r = kvm_vm_ioctl_set_msr_filter(kvm, argp);
5833 static void kvm_init_msr_list(void)
5835 struct x86_pmu_capability x86_pmu;
5839 BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
5840 "Please update the fixed PMCs in msrs_to_saved_all[]");
5842 perf_get_x86_pmu_capability(&x86_pmu);
5844 num_msrs_to_save = 0;
5845 num_emulated_msrs = 0;
5846 num_msr_based_features = 0;
5848 for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
5849 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
5853 * Even MSRs that are valid in the host may not be exposed
5854 * to the guests in some cases.
5856 switch (msrs_to_save_all[i]) {
5857 case MSR_IA32_BNDCFGS:
5858 if (!kvm_mpx_supported())
5862 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
5865 case MSR_IA32_UMWAIT_CONTROL:
5866 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
5869 case MSR_IA32_RTIT_CTL:
5870 case MSR_IA32_RTIT_STATUS:
5871 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
5874 case MSR_IA32_RTIT_CR3_MATCH:
5875 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5876 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
5879 case MSR_IA32_RTIT_OUTPUT_BASE:
5880 case MSR_IA32_RTIT_OUTPUT_MASK:
5881 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5882 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
5883 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
5886 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
5887 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5888 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
5889 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
5892 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
5893 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
5894 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5897 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
5898 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
5899 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5906 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
5909 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
5910 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
5913 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
5916 for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
5917 struct kvm_msr_entry msr;
5919 msr.index = msr_based_features_all[i];
5920 if (kvm_get_msr_feature(&msr))
5923 msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
5927 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
5935 if (!(lapic_in_kernel(vcpu) &&
5936 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
5937 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
5948 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
5955 if (!(lapic_in_kernel(vcpu) &&
5956 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
5958 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
5960 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
5970 static void kvm_set_segment(struct kvm_vcpu *vcpu,
5971 struct kvm_segment *var, int seg)
5973 static_call(kvm_x86_set_segment)(vcpu, var, seg);
5976 void kvm_get_segment(struct kvm_vcpu *vcpu,
5977 struct kvm_segment *var, int seg)
5979 static_call(kvm_x86_get_segment)(vcpu, var, seg);
5982 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
5983 struct x86_exception *exception)
5987 BUG_ON(!mmu_is_nested(vcpu));
5989 /* NPT walks are always user-walks */
5990 access |= PFERR_USER_MASK;
5991 t_gpa = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
5996 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
5997 struct x86_exception *exception)
5999 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6000 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6003 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
6004 struct x86_exception *exception)
6006 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6007 access |= PFERR_FETCH_MASK;
6008 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6011 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
6012 struct x86_exception *exception)
6014 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6015 access |= PFERR_WRITE_MASK;
6016 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6019 /* uses this to access any guest's mapped memory without checking CPL */
6020 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
6021 struct x86_exception *exception)
6023 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
6026 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6027 struct kvm_vcpu *vcpu, u32 access,
6028 struct x86_exception *exception)
6031 int r = X86EMUL_CONTINUE;
6034 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
6036 unsigned offset = addr & (PAGE_SIZE-1);
6037 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
6040 if (gpa == UNMAPPED_GVA)
6041 return X86EMUL_PROPAGATE_FAULT;
6042 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
6045 r = X86EMUL_IO_NEEDED;
6057 /* used for instruction fetching */
6058 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
6059 gva_t addr, void *val, unsigned int bytes,
6060 struct x86_exception *exception)
6062 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6063 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6067 /* Inline kvm_read_guest_virt_helper for speed. */
6068 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
6070 if (unlikely(gpa == UNMAPPED_GVA))
6071 return X86EMUL_PROPAGATE_FAULT;
6073 offset = addr & (PAGE_SIZE-1);
6074 if (WARN_ON(offset + bytes > PAGE_SIZE))
6075 bytes = (unsigned)PAGE_SIZE - offset;
6076 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
6078 if (unlikely(ret < 0))
6079 return X86EMUL_IO_NEEDED;
6081 return X86EMUL_CONTINUE;
6084 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
6085 gva_t addr, void *val, unsigned int bytes,
6086 struct x86_exception *exception)
6088 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6091 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
6092 * is returned, but our callers are not ready for that and they blindly
6093 * call kvm_inject_page_fault. Ensure that they at least do not leak
6094 * uninitialized kernel stack memory into cr2 and error code.
6096 memset(exception, 0, sizeof(*exception));
6097 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
6100 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
6102 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
6103 gva_t addr, void *val, unsigned int bytes,
6104 struct x86_exception *exception, bool system)
6106 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6109 if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6110 access |= PFERR_USER_MASK;
6112 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
6115 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
6116 unsigned long addr, void *val, unsigned int bytes)
6118 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6119 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
6121 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
6124 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6125 struct kvm_vcpu *vcpu, u32 access,
6126 struct x86_exception *exception)
6129 int r = X86EMUL_CONTINUE;
6132 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
6135 unsigned offset = addr & (PAGE_SIZE-1);
6136 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
6139 if (gpa == UNMAPPED_GVA)
6140 return X86EMUL_PROPAGATE_FAULT;
6141 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
6143 r = X86EMUL_IO_NEEDED;
6155 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
6156 unsigned int bytes, struct x86_exception *exception,
6159 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6160 u32 access = PFERR_WRITE_MASK;
6162 if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6163 access |= PFERR_USER_MASK;
6165 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6169 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
6170 unsigned int bytes, struct x86_exception *exception)
6172 /* kvm_write_guest_virt_system can pull in tons of pages. */
6173 vcpu->arch.l1tf_flush_l1d = true;
6175 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6176 PFERR_WRITE_MASK, exception);
6178 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
6180 int handle_ud(struct kvm_vcpu *vcpu)
6182 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
6183 int emul_type = EMULTYPE_TRAP_UD;
6184 char sig[5]; /* ud2; .ascii "kvm" */
6185 struct x86_exception e;
6187 if (unlikely(!static_call(kvm_x86_can_emulate_instruction)(vcpu, NULL, 0)))
6190 if (force_emulation_prefix &&
6191 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
6192 sig, sizeof(sig), &e) == 0 &&
6193 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
6194 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
6195 emul_type = EMULTYPE_TRAP_UD_FORCED;
6198 return kvm_emulate_instruction(vcpu, emul_type);
6200 EXPORT_SYMBOL_GPL(handle_ud);
6202 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6203 gpa_t gpa, bool write)
6205 /* For APIC access vmexit */
6206 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6209 if (vcpu_match_mmio_gpa(vcpu, gpa)) {
6210 trace_vcpu_match_mmio(gva, gpa, write, true);
6217 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6218 gpa_t *gpa, struct x86_exception *exception,
6221 u32 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
6222 | (write ? PFERR_WRITE_MASK : 0);
6225 * currently PKRU is only applied to ept enabled guest so
6226 * there is no pkey in EPT page table for L1 guest or EPT
6227 * shadow page table for L2 guest.
6229 if (vcpu_match_mmio_gva(vcpu, gva)
6230 && !permission_fault(vcpu, vcpu->arch.walk_mmu,
6231 vcpu->arch.mmio_access, 0, access)) {
6232 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
6233 (gva & (PAGE_SIZE - 1));
6234 trace_vcpu_match_mmio(gva, *gpa, write, false);
6238 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6240 if (*gpa == UNMAPPED_GVA)
6243 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
6246 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
6247 const void *val, int bytes)
6251 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
6254 kvm_page_track_write(vcpu, gpa, val, bytes);
6258 struct read_write_emulator_ops {
6259 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
6261 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
6262 void *val, int bytes);
6263 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6264 int bytes, void *val);
6265 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6266 void *val, int bytes);
6270 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
6272 if (vcpu->mmio_read_completed) {
6273 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
6274 vcpu->mmio_fragments[0].gpa, val);
6275 vcpu->mmio_read_completed = 0;
6282 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6283 void *val, int bytes)
6285 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
6288 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6289 void *val, int bytes)
6291 return emulator_write_phys(vcpu, gpa, val, bytes);
6294 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
6296 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
6297 return vcpu_mmio_write(vcpu, gpa, bytes, val);
6300 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6301 void *val, int bytes)
6303 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
6304 return X86EMUL_IO_NEEDED;
6307 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6308 void *val, int bytes)
6310 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
6312 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
6313 return X86EMUL_CONTINUE;
6316 static const struct read_write_emulator_ops read_emultor = {
6317 .read_write_prepare = read_prepare,
6318 .read_write_emulate = read_emulate,
6319 .read_write_mmio = vcpu_mmio_read,
6320 .read_write_exit_mmio = read_exit_mmio,
6323 static const struct read_write_emulator_ops write_emultor = {
6324 .read_write_emulate = write_emulate,
6325 .read_write_mmio = write_mmio,
6326 .read_write_exit_mmio = write_exit_mmio,
6330 static int emulator_read_write_onepage(unsigned long addr, void *val,
6332 struct x86_exception *exception,
6333 struct kvm_vcpu *vcpu,
6334 const struct read_write_emulator_ops *ops)
6338 bool write = ops->write;
6339 struct kvm_mmio_fragment *frag;
6340 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6343 * If the exit was due to a NPF we may already have a GPA.
6344 * If the GPA is present, use it to avoid the GVA to GPA table walk.
6345 * Note, this cannot be used on string operations since string
6346 * operation using rep will only have the initial GPA from the NPF
6349 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
6350 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
6351 gpa = ctxt->gpa_val;
6352 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
6354 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
6356 return X86EMUL_PROPAGATE_FAULT;
6359 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
6360 return X86EMUL_CONTINUE;
6363 * Is this MMIO handled locally?
6365 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
6366 if (handled == bytes)
6367 return X86EMUL_CONTINUE;
6373 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
6374 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
6378 return X86EMUL_CONTINUE;
6381 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
6383 void *val, unsigned int bytes,
6384 struct x86_exception *exception,
6385 const struct read_write_emulator_ops *ops)
6387 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6391 if (ops->read_write_prepare &&
6392 ops->read_write_prepare(vcpu, val, bytes))
6393 return X86EMUL_CONTINUE;
6395 vcpu->mmio_nr_fragments = 0;
6397 /* Crossing a page boundary? */
6398 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
6401 now = -addr & ~PAGE_MASK;
6402 rc = emulator_read_write_onepage(addr, val, now, exception,
6405 if (rc != X86EMUL_CONTINUE)
6408 if (ctxt->mode != X86EMUL_MODE_PROT64)
6414 rc = emulator_read_write_onepage(addr, val, bytes, exception,
6416 if (rc != X86EMUL_CONTINUE)
6419 if (!vcpu->mmio_nr_fragments)
6422 gpa = vcpu->mmio_fragments[0].gpa;
6424 vcpu->mmio_needed = 1;
6425 vcpu->mmio_cur_fragment = 0;
6427 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
6428 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
6429 vcpu->run->exit_reason = KVM_EXIT_MMIO;
6430 vcpu->run->mmio.phys_addr = gpa;
6432 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
6435 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
6439 struct x86_exception *exception)
6441 return emulator_read_write(ctxt, addr, val, bytes,
6442 exception, &read_emultor);
6445 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
6449 struct x86_exception *exception)
6451 return emulator_read_write(ctxt, addr, (void *)val, bytes,
6452 exception, &write_emultor);
6455 #define CMPXCHG_TYPE(t, ptr, old, new) \
6456 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
6458 #ifdef CONFIG_X86_64
6459 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
6461 # define CMPXCHG64(ptr, old, new) \
6462 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
6465 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
6470 struct x86_exception *exception)
6472 struct kvm_host_map map;
6473 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6479 /* guests cmpxchg8b have to be emulated atomically */
6480 if (bytes > 8 || (bytes & (bytes - 1)))
6483 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
6485 if (gpa == UNMAPPED_GVA ||
6486 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6490 * Emulate the atomic as a straight write to avoid #AC if SLD is
6491 * enabled in the host and the access splits a cache line.
6493 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
6494 page_line_mask = ~(cache_line_size() - 1);
6496 page_line_mask = PAGE_MASK;
6498 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
6501 if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
6504 kaddr = map.hva + offset_in_page(gpa);
6508 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
6511 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
6514 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
6517 exchanged = CMPXCHG64(kaddr, old, new);
6523 kvm_vcpu_unmap(vcpu, &map, true);
6526 return X86EMUL_CMPXCHG_FAILED;
6528 kvm_page_track_write(vcpu, gpa, new, bytes);
6530 return X86EMUL_CONTINUE;
6533 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
6535 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
6538 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
6542 for (i = 0; i < vcpu->arch.pio.count; i++) {
6543 if (vcpu->arch.pio.in)
6544 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
6545 vcpu->arch.pio.size, pd);
6547 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
6548 vcpu->arch.pio.port, vcpu->arch.pio.size,
6552 pd += vcpu->arch.pio.size;
6557 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
6558 unsigned short port, void *val,
6559 unsigned int count, bool in)
6561 vcpu->arch.pio.port = port;
6562 vcpu->arch.pio.in = in;
6563 vcpu->arch.pio.count = count;
6564 vcpu->arch.pio.size = size;
6566 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
6567 vcpu->arch.pio.count = 0;
6571 vcpu->run->exit_reason = KVM_EXIT_IO;
6572 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
6573 vcpu->run->io.size = size;
6574 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
6575 vcpu->run->io.count = count;
6576 vcpu->run->io.port = port;
6581 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
6582 unsigned short port, void *val, unsigned int count)
6586 if (vcpu->arch.pio.count)
6589 memset(vcpu->arch.pio_data, 0, size * count);
6591 ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
6594 memcpy(val, vcpu->arch.pio_data, size * count);
6595 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
6596 vcpu->arch.pio.count = 0;
6603 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
6604 int size, unsigned short port, void *val,
6607 return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
6611 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
6612 unsigned short port, const void *val,
6615 memcpy(vcpu->arch.pio_data, val, size * count);
6616 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
6617 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
6620 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
6621 int size, unsigned short port,
6622 const void *val, unsigned int count)
6624 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
6627 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
6629 return static_call(kvm_x86_get_segment_base)(vcpu, seg);
6632 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
6634 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
6637 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
6639 if (!need_emulate_wbinvd(vcpu))
6640 return X86EMUL_CONTINUE;
6642 if (static_call(kvm_x86_has_wbinvd_exit)()) {
6643 int cpu = get_cpu();
6645 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
6646 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
6647 wbinvd_ipi, NULL, 1);
6649 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
6652 return X86EMUL_CONTINUE;
6655 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
6657 kvm_emulate_wbinvd_noskip(vcpu);
6658 return kvm_skip_emulated_instruction(vcpu);
6660 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
6664 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
6666 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
6669 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
6670 unsigned long *dest)
6672 kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
6675 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
6676 unsigned long value)
6679 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
6682 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
6684 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
6687 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
6689 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6690 unsigned long value;
6694 value = kvm_read_cr0(vcpu);
6697 value = vcpu->arch.cr2;
6700 value = kvm_read_cr3(vcpu);
6703 value = kvm_read_cr4(vcpu);
6706 value = kvm_get_cr8(vcpu);
6709 kvm_err("%s: unexpected cr %u\n", __func__, cr);
6716 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
6718 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6723 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
6726 vcpu->arch.cr2 = val;
6729 res = kvm_set_cr3(vcpu, val);
6732 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
6735 res = kvm_set_cr8(vcpu, val);
6738 kvm_err("%s: unexpected cr %u\n", __func__, cr);
6745 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
6747 return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
6750 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6752 static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
6755 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6757 static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
6760 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6762 static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
6765 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6767 static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
6770 static unsigned long emulator_get_cached_segment_base(
6771 struct x86_emulate_ctxt *ctxt, int seg)
6773 return get_segment_base(emul_to_vcpu(ctxt), seg);
6776 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
6777 struct desc_struct *desc, u32 *base3,
6780 struct kvm_segment var;
6782 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
6783 *selector = var.selector;
6786 memset(desc, 0, sizeof(*desc));
6794 set_desc_limit(desc, var.limit);
6795 set_desc_base(desc, (unsigned long)var.base);
6796 #ifdef CONFIG_X86_64
6798 *base3 = var.base >> 32;
6800 desc->type = var.type;
6802 desc->dpl = var.dpl;
6803 desc->p = var.present;
6804 desc->avl = var.avl;
6812 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
6813 struct desc_struct *desc, u32 base3,
6816 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6817 struct kvm_segment var;
6819 var.selector = selector;
6820 var.base = get_desc_base(desc);
6821 #ifdef CONFIG_X86_64
6822 var.base |= ((u64)base3) << 32;
6824 var.limit = get_desc_limit(desc);
6826 var.limit = (var.limit << 12) | 0xfff;
6827 var.type = desc->type;
6828 var.dpl = desc->dpl;
6833 var.avl = desc->avl;
6834 var.present = desc->p;
6835 var.unusable = !var.present;
6838 kvm_set_segment(vcpu, &var, seg);
6842 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
6843 u32 msr_index, u64 *pdata)
6845 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6848 r = kvm_get_msr(vcpu, msr_index, pdata);
6850 if (r && kvm_get_msr_user_space(vcpu, msr_index, r)) {
6851 /* Bounce to user space */
6852 return X86EMUL_IO_NEEDED;
6858 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
6859 u32 msr_index, u64 data)
6861 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6864 r = kvm_set_msr(vcpu, msr_index, data);
6866 if (r && kvm_set_msr_user_space(vcpu, msr_index, data, r)) {
6867 /* Bounce to user space */
6868 return X86EMUL_IO_NEEDED;
6874 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
6876 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6878 return vcpu->arch.smbase;
6881 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
6883 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6885 vcpu->arch.smbase = smbase;
6888 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
6891 return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc);
6894 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
6895 u32 pmc, u64 *pdata)
6897 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
6900 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
6902 emul_to_vcpu(ctxt)->arch.halt_request = 1;
6905 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
6906 struct x86_instruction_info *info,
6907 enum x86_intercept_stage stage)
6909 return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
6913 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
6914 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
6917 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
6920 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
6922 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
6925 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
6927 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
6930 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
6932 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
6935 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
6937 return kvm_register_read(emul_to_vcpu(ctxt), reg);
6940 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
6942 kvm_register_write(emul_to_vcpu(ctxt), reg, val);
6945 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
6947 static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
6950 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
6952 return emul_to_vcpu(ctxt)->arch.hflags;
6955 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
6957 emul_to_vcpu(ctxt)->arch.hflags = emul_flags;
6960 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt,
6961 const char *smstate)
6963 return static_call(kvm_x86_pre_leave_smm)(emul_to_vcpu(ctxt), smstate);
6966 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt)
6968 kvm_smm_changed(emul_to_vcpu(ctxt));
6971 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
6973 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
6976 static const struct x86_emulate_ops emulate_ops = {
6977 .read_gpr = emulator_read_gpr,
6978 .write_gpr = emulator_write_gpr,
6979 .read_std = emulator_read_std,
6980 .write_std = emulator_write_std,
6981 .read_phys = kvm_read_guest_phys_system,
6982 .fetch = kvm_fetch_guest_virt,
6983 .read_emulated = emulator_read_emulated,
6984 .write_emulated = emulator_write_emulated,
6985 .cmpxchg_emulated = emulator_cmpxchg_emulated,
6986 .invlpg = emulator_invlpg,
6987 .pio_in_emulated = emulator_pio_in_emulated,
6988 .pio_out_emulated = emulator_pio_out_emulated,
6989 .get_segment = emulator_get_segment,
6990 .set_segment = emulator_set_segment,
6991 .get_cached_segment_base = emulator_get_cached_segment_base,
6992 .get_gdt = emulator_get_gdt,
6993 .get_idt = emulator_get_idt,
6994 .set_gdt = emulator_set_gdt,
6995 .set_idt = emulator_set_idt,
6996 .get_cr = emulator_get_cr,
6997 .set_cr = emulator_set_cr,
6998 .cpl = emulator_get_cpl,
6999 .get_dr = emulator_get_dr,
7000 .set_dr = emulator_set_dr,
7001 .get_smbase = emulator_get_smbase,
7002 .set_smbase = emulator_set_smbase,
7003 .set_msr = emulator_set_msr,
7004 .get_msr = emulator_get_msr,
7005 .check_pmc = emulator_check_pmc,
7006 .read_pmc = emulator_read_pmc,
7007 .halt = emulator_halt,
7008 .wbinvd = emulator_wbinvd,
7009 .fix_hypercall = emulator_fix_hypercall,
7010 .intercept = emulator_intercept,
7011 .get_cpuid = emulator_get_cpuid,
7012 .guest_has_long_mode = emulator_guest_has_long_mode,
7013 .guest_has_movbe = emulator_guest_has_movbe,
7014 .guest_has_fxsr = emulator_guest_has_fxsr,
7015 .set_nmi_mask = emulator_set_nmi_mask,
7016 .get_hflags = emulator_get_hflags,
7017 .set_hflags = emulator_set_hflags,
7018 .pre_leave_smm = emulator_pre_leave_smm,
7019 .post_leave_smm = emulator_post_leave_smm,
7020 .set_xcr = emulator_set_xcr,
7023 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
7025 u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
7027 * an sti; sti; sequence only disable interrupts for the first
7028 * instruction. So, if the last instruction, be it emulated or
7029 * not, left the system with the INT_STI flag enabled, it
7030 * means that the last instruction is an sti. We should not
7031 * leave the flag on in this case. The same goes for mov ss
7033 if (int_shadow & mask)
7035 if (unlikely(int_shadow || mask)) {
7036 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
7038 kvm_make_request(KVM_REQ_EVENT, vcpu);
7042 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
7044 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7045 if (ctxt->exception.vector == PF_VECTOR)
7046 return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
7048 if (ctxt->exception.error_code_valid)
7049 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
7050 ctxt->exception.error_code);
7052 kvm_queue_exception(vcpu, ctxt->exception.vector);
7056 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
7058 struct x86_emulate_ctxt *ctxt;
7060 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
7062 pr_err("kvm: failed to allocate vcpu's emulator\n");
7067 ctxt->ops = &emulate_ops;
7068 vcpu->arch.emulate_ctxt = ctxt;
7073 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
7075 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7078 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
7080 ctxt->gpa_available = false;
7081 ctxt->eflags = kvm_get_rflags(vcpu);
7082 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
7084 ctxt->eip = kvm_rip_read(vcpu);
7085 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
7086 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
7087 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
7088 cs_db ? X86EMUL_MODE_PROT32 :
7089 X86EMUL_MODE_PROT16;
7090 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
7091 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
7092 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
7094 init_decode_cache(ctxt);
7095 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7098 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
7100 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7103 init_emulate_ctxt(vcpu);
7107 ctxt->_eip = ctxt->eip + inc_eip;
7108 ret = emulate_int_real(ctxt, irq);
7110 if (ret != X86EMUL_CONTINUE) {
7111 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7113 ctxt->eip = ctxt->_eip;
7114 kvm_rip_write(vcpu, ctxt->eip);
7115 kvm_set_rflags(vcpu, ctxt->eflags);
7118 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
7120 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
7122 ++vcpu->stat.insn_emulation_fail;
7123 trace_kvm_emulate_insn_failed(vcpu);
7125 if (emulation_type & EMULTYPE_VMWARE_GP) {
7126 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7130 if (emulation_type & EMULTYPE_SKIP) {
7131 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7132 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7133 vcpu->run->internal.ndata = 0;
7137 kvm_queue_exception(vcpu, UD_VECTOR);
7139 if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
7140 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7141 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7142 vcpu->run->internal.ndata = 0;
7149 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7150 bool write_fault_to_shadow_pgtable,
7153 gpa_t gpa = cr2_or_gpa;
7156 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7159 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7160 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7163 if (!vcpu->arch.mmu->direct_map) {
7165 * Write permission should be allowed since only
7166 * write access need to be emulated.
7168 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7171 * If the mapping is invalid in guest, let cpu retry
7172 * it to generate fault.
7174 if (gpa == UNMAPPED_GVA)
7179 * Do not retry the unhandleable instruction if it faults on the
7180 * readonly host memory, otherwise it will goto a infinite loop:
7181 * retry instruction -> write #PF -> emulation fail -> retry
7182 * instruction -> ...
7184 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
7187 * If the instruction failed on the error pfn, it can not be fixed,
7188 * report the error to userspace.
7190 if (is_error_noslot_pfn(pfn))
7193 kvm_release_pfn_clean(pfn);
7195 /* The instructions are well-emulated on direct mmu. */
7196 if (vcpu->arch.mmu->direct_map) {
7197 unsigned int indirect_shadow_pages;
7199 write_lock(&vcpu->kvm->mmu_lock);
7200 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
7201 write_unlock(&vcpu->kvm->mmu_lock);
7203 if (indirect_shadow_pages)
7204 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7210 * if emulation was due to access to shadowed page table
7211 * and it failed try to unshadow page and re-enter the
7212 * guest to let CPU execute the instruction.
7214 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7217 * If the access faults on its page table, it can not
7218 * be fixed by unprotecting shadow page and it should
7219 * be reported to userspace.
7221 return !write_fault_to_shadow_pgtable;
7224 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
7225 gpa_t cr2_or_gpa, int emulation_type)
7227 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7228 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
7230 last_retry_eip = vcpu->arch.last_retry_eip;
7231 last_retry_addr = vcpu->arch.last_retry_addr;
7234 * If the emulation is caused by #PF and it is non-page_table
7235 * writing instruction, it means the VM-EXIT is caused by shadow
7236 * page protected, we can zap the shadow page and retry this
7237 * instruction directly.
7239 * Note: if the guest uses a non-page-table modifying instruction
7240 * on the PDE that points to the instruction, then we will unmap
7241 * the instruction and go to an infinite loop. So, we cache the
7242 * last retried eip and the last fault address, if we meet the eip
7243 * and the address again, we can break out of the potential infinite
7246 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
7248 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7251 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7252 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7255 if (x86_page_table_writing_insn(ctxt))
7258 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
7261 vcpu->arch.last_retry_eip = ctxt->eip;
7262 vcpu->arch.last_retry_addr = cr2_or_gpa;
7264 if (!vcpu->arch.mmu->direct_map)
7265 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7267 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7272 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
7273 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
7275 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
7277 if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
7278 /* This is a good place to trace that we are exiting SMM. */
7279 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
7281 /* Process a latched INIT or SMI, if any. */
7282 kvm_make_request(KVM_REQ_EVENT, vcpu);
7285 kvm_mmu_reset_context(vcpu);
7288 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
7297 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
7298 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
7303 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
7305 struct kvm_run *kvm_run = vcpu->run;
7307 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
7308 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
7309 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
7310 kvm_run->debug.arch.exception = DB_VECTOR;
7311 kvm_run->exit_reason = KVM_EXIT_DEBUG;
7314 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
7318 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
7320 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
7323 r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
7328 * rflags is the old, "raw" value of the flags. The new value has
7329 * not been saved yet.
7331 * This is correct even for TF set by the guest, because "the
7332 * processor will not generate this exception after the instruction
7333 * that sets the TF flag".
7335 if (unlikely(rflags & X86_EFLAGS_TF))
7336 r = kvm_vcpu_do_singlestep(vcpu);
7339 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
7341 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
7343 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
7344 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
7345 struct kvm_run *kvm_run = vcpu->run;
7346 unsigned long eip = kvm_get_linear_rip(vcpu);
7347 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7348 vcpu->arch.guest_debug_dr7,
7352 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
7353 kvm_run->debug.arch.pc = eip;
7354 kvm_run->debug.arch.exception = DB_VECTOR;
7355 kvm_run->exit_reason = KVM_EXIT_DEBUG;
7361 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
7362 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
7363 unsigned long eip = kvm_get_linear_rip(vcpu);
7364 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7369 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
7378 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
7380 switch (ctxt->opcode_len) {
7387 case 0xe6: /* OUT */
7391 case 0x6c: /* INS */
7393 case 0x6e: /* OUTS */
7400 case 0x33: /* RDPMC */
7410 * Decode to be emulated instruction. Return EMULATION_OK if success.
7412 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
7413 void *insn, int insn_len)
7415 int r = EMULATION_OK;
7416 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7418 init_emulate_ctxt(vcpu);
7421 * We will reenter on the same instruction since we do not set
7422 * complete_userspace_io. This does not handle watchpoints yet,
7423 * those would be handled in the emulate_ops.
7425 if (!(emulation_type & EMULTYPE_SKIP) &&
7426 kvm_vcpu_check_breakpoint(vcpu, &r))
7429 ctxt->interruptibility = 0;
7430 ctxt->have_exception = false;
7431 ctxt->exception.vector = -1;
7432 ctxt->perm_ok = false;
7434 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
7436 r = x86_decode_insn(ctxt, insn, insn_len);
7438 trace_kvm_emulate_insn_start(vcpu);
7439 ++vcpu->stat.insn_emulation;
7443 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
7445 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7446 int emulation_type, void *insn, int insn_len)
7449 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7450 bool writeback = true;
7451 bool write_fault_to_spt;
7453 if (unlikely(!static_call(kvm_x86_can_emulate_instruction)(vcpu, insn, insn_len)))
7456 vcpu->arch.l1tf_flush_l1d = true;
7459 * Clear write_fault_to_shadow_pgtable here to ensure it is
7462 write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
7463 vcpu->arch.write_fault_to_shadow_pgtable = false;
7465 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
7466 kvm_clear_exception_queue(vcpu);
7468 r = x86_decode_emulated_instruction(vcpu, emulation_type,
7470 if (r != EMULATION_OK) {
7471 if ((emulation_type & EMULTYPE_TRAP_UD) ||
7472 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
7473 kvm_queue_exception(vcpu, UD_VECTOR);
7476 if (reexecute_instruction(vcpu, cr2_or_gpa,
7480 if (ctxt->have_exception) {
7482 * #UD should result in just EMULATION_FAILED, and trap-like
7483 * exception should not be encountered during decode.
7485 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
7486 exception_type(ctxt->exception.vector) == EXCPT_TRAP);
7487 inject_emulated_exception(vcpu);
7490 return handle_emulation_failure(vcpu, emulation_type);
7494 if ((emulation_type & EMULTYPE_VMWARE_GP) &&
7495 !is_vmware_backdoor_opcode(ctxt)) {
7496 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7501 * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
7502 * for kvm_skip_emulated_instruction(). The caller is responsible for
7503 * updating interruptibility state and injecting single-step #DBs.
7505 if (emulation_type & EMULTYPE_SKIP) {
7506 kvm_rip_write(vcpu, ctxt->_eip);
7507 if (ctxt->eflags & X86_EFLAGS_RF)
7508 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
7512 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
7515 /* this is needed for vmware backdoor interface to work since it
7516 changes registers values during IO operation */
7517 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
7518 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7519 emulator_invalidate_register_cache(ctxt);
7523 if (emulation_type & EMULTYPE_PF) {
7524 /* Save the faulting GPA (cr2) in the address field */
7525 ctxt->exception.address = cr2_or_gpa;
7527 /* With shadow page tables, cr2 contains a GVA or nGPA. */
7528 if (vcpu->arch.mmu->direct_map) {
7529 ctxt->gpa_available = true;
7530 ctxt->gpa_val = cr2_or_gpa;
7533 /* Sanitize the address out of an abundance of paranoia. */
7534 ctxt->exception.address = 0;
7537 r = x86_emulate_insn(ctxt);
7539 if (r == EMULATION_INTERCEPTED)
7542 if (r == EMULATION_FAILED) {
7543 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
7547 return handle_emulation_failure(vcpu, emulation_type);
7550 if (ctxt->have_exception) {
7552 if (inject_emulated_exception(vcpu))
7554 } else if (vcpu->arch.pio.count) {
7555 if (!vcpu->arch.pio.in) {
7556 /* FIXME: return into emulator if single-stepping. */
7557 vcpu->arch.pio.count = 0;
7560 vcpu->arch.complete_userspace_io = complete_emulated_pio;
7563 } else if (vcpu->mmio_needed) {
7564 ++vcpu->stat.mmio_exits;
7566 if (!vcpu->mmio_is_write)
7569 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7570 } else if (r == EMULATION_RESTART)
7576 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
7577 toggle_interruptibility(vcpu, ctxt->interruptibility);
7578 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7579 if (!ctxt->have_exception ||
7580 exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
7581 kvm_rip_write(vcpu, ctxt->eip);
7582 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
7583 r = kvm_vcpu_do_singlestep(vcpu);
7584 if (kvm_x86_ops.update_emulated_instruction)
7585 static_call(kvm_x86_update_emulated_instruction)(vcpu);
7586 __kvm_set_rflags(vcpu, ctxt->eflags);
7590 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
7591 * do nothing, and it will be requested again as soon as
7592 * the shadow expires. But we still need to check here,
7593 * because POPF has no interrupt shadow.
7595 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
7596 kvm_make_request(KVM_REQ_EVENT, vcpu);
7598 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
7603 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
7605 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
7607 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
7609 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
7610 void *insn, int insn_len)
7612 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
7614 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
7616 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
7618 vcpu->arch.pio.count = 0;
7622 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
7624 vcpu->arch.pio.count = 0;
7626 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
7629 return kvm_skip_emulated_instruction(vcpu);
7632 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
7633 unsigned short port)
7635 unsigned long val = kvm_rax_read(vcpu);
7636 int ret = emulator_pio_out(vcpu, size, port, &val, 1);
7642 * Workaround userspace that relies on old KVM behavior of %rip being
7643 * incremented prior to exiting to userspace to handle "OUT 0x7e".
7646 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
7647 vcpu->arch.complete_userspace_io =
7648 complete_fast_pio_out_port_0x7e;
7649 kvm_skip_emulated_instruction(vcpu);
7651 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7652 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
7657 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
7661 /* We should only ever be called with arch.pio.count equal to 1 */
7662 BUG_ON(vcpu->arch.pio.count != 1);
7664 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
7665 vcpu->arch.pio.count = 0;
7669 /* For size less than 4 we merge, else we zero extend */
7670 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
7673 * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
7674 * the copy and tracing
7676 emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
7677 kvm_rax_write(vcpu, val);
7679 return kvm_skip_emulated_instruction(vcpu);
7682 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
7683 unsigned short port)
7688 /* For size less than 4 we merge, else we zero extend */
7689 val = (size < 4) ? kvm_rax_read(vcpu) : 0;
7691 ret = emulator_pio_in(vcpu, size, port, &val, 1);
7693 kvm_rax_write(vcpu, val);
7697 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7698 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
7703 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
7708 ret = kvm_fast_pio_in(vcpu, size, port);
7710 ret = kvm_fast_pio_out(vcpu, size, port);
7711 return ret && kvm_skip_emulated_instruction(vcpu);
7713 EXPORT_SYMBOL_GPL(kvm_fast_pio);
7715 static int kvmclock_cpu_down_prep(unsigned int cpu)
7717 __this_cpu_write(cpu_tsc_khz, 0);
7721 static void tsc_khz_changed(void *data)
7723 struct cpufreq_freqs *freq = data;
7724 unsigned long khz = 0;
7728 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7729 khz = cpufreq_quick_get(raw_smp_processor_id());
7732 __this_cpu_write(cpu_tsc_khz, khz);
7735 #ifdef CONFIG_X86_64
7736 static void kvm_hyperv_tsc_notifier(void)
7739 struct kvm_vcpu *vcpu;
7741 unsigned long flags;
7743 mutex_lock(&kvm_lock);
7744 list_for_each_entry(kvm, &vm_list, vm_list)
7745 kvm_make_mclock_inprogress_request(kvm);
7747 hyperv_stop_tsc_emulation();
7749 /* TSC frequency always matches when on Hyper-V */
7750 for_each_present_cpu(cpu)
7751 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
7752 kvm_max_guest_tsc_khz = tsc_khz;
7754 list_for_each_entry(kvm, &vm_list, vm_list) {
7755 struct kvm_arch *ka = &kvm->arch;
7757 spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
7758 pvclock_update_vm_gtod_copy(kvm);
7759 spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
7761 kvm_for_each_vcpu(cpu, vcpu, kvm)
7762 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7764 kvm_for_each_vcpu(cpu, vcpu, kvm)
7765 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
7767 mutex_unlock(&kvm_lock);
7771 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
7774 struct kvm_vcpu *vcpu;
7775 int i, send_ipi = 0;
7778 * We allow guests to temporarily run on slowing clocks,
7779 * provided we notify them after, or to run on accelerating
7780 * clocks, provided we notify them before. Thus time never
7783 * However, we have a problem. We can't atomically update
7784 * the frequency of a given CPU from this function; it is
7785 * merely a notifier, which can be called from any CPU.
7786 * Changing the TSC frequency at arbitrary points in time
7787 * requires a recomputation of local variables related to
7788 * the TSC for each VCPU. We must flag these local variables
7789 * to be updated and be sure the update takes place with the
7790 * new frequency before any guests proceed.
7792 * Unfortunately, the combination of hotplug CPU and frequency
7793 * change creates an intractable locking scenario; the order
7794 * of when these callouts happen is undefined with respect to
7795 * CPU hotplug, and they can race with each other. As such,
7796 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
7797 * undefined; you can actually have a CPU frequency change take
7798 * place in between the computation of X and the setting of the
7799 * variable. To protect against this problem, all updates of
7800 * the per_cpu tsc_khz variable are done in an interrupt
7801 * protected IPI, and all callers wishing to update the value
7802 * must wait for a synchronous IPI to complete (which is trivial
7803 * if the caller is on the CPU already). This establishes the
7804 * necessary total order on variable updates.
7806 * Note that because a guest time update may take place
7807 * anytime after the setting of the VCPU's request bit, the
7808 * correct TSC value must be set before the request. However,
7809 * to ensure the update actually makes it to any guest which
7810 * starts running in hardware virtualization between the set
7811 * and the acquisition of the spinlock, we must also ping the
7812 * CPU after setting the request bit.
7816 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7818 mutex_lock(&kvm_lock);
7819 list_for_each_entry(kvm, &vm_list, vm_list) {
7820 kvm_for_each_vcpu(i, vcpu, kvm) {
7821 if (vcpu->cpu != cpu)
7823 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7824 if (vcpu->cpu != raw_smp_processor_id())
7828 mutex_unlock(&kvm_lock);
7830 if (freq->old < freq->new && send_ipi) {
7832 * We upscale the frequency. Must make the guest
7833 * doesn't see old kvmclock values while running with
7834 * the new frequency, otherwise we risk the guest sees
7835 * time go backwards.
7837 * In case we update the frequency for another cpu
7838 * (which might be in guest context) send an interrupt
7839 * to kick the cpu out of guest context. Next time
7840 * guest context is entered kvmclock will be updated,
7841 * so the guest will not see stale values.
7843 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7847 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
7850 struct cpufreq_freqs *freq = data;
7853 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
7855 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
7858 for_each_cpu(cpu, freq->policy->cpus)
7859 __kvmclock_cpufreq_notifier(freq, cpu);
7864 static struct notifier_block kvmclock_cpufreq_notifier_block = {
7865 .notifier_call = kvmclock_cpufreq_notifier
7868 static int kvmclock_cpu_online(unsigned int cpu)
7870 tsc_khz_changed(NULL);
7874 static void kvm_timer_init(void)
7876 max_tsc_khz = tsc_khz;
7878 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
7879 #ifdef CONFIG_CPU_FREQ
7880 struct cpufreq_policy *policy;
7884 policy = cpufreq_cpu_get(cpu);
7886 if (policy->cpuinfo.max_freq)
7887 max_tsc_khz = policy->cpuinfo.max_freq;
7888 cpufreq_cpu_put(policy);
7892 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
7893 CPUFREQ_TRANSITION_NOTIFIER);
7896 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
7897 kvmclock_cpu_online, kvmclock_cpu_down_prep);
7900 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
7901 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
7903 int kvm_is_in_guest(void)
7905 return __this_cpu_read(current_vcpu) != NULL;
7908 static int kvm_is_user_mode(void)
7912 if (__this_cpu_read(current_vcpu))
7913 user_mode = static_call(kvm_x86_get_cpl)(__this_cpu_read(current_vcpu));
7915 return user_mode != 0;
7918 static unsigned long kvm_get_guest_ip(void)
7920 unsigned long ip = 0;
7922 if (__this_cpu_read(current_vcpu))
7923 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
7928 static void kvm_handle_intel_pt_intr(void)
7930 struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
7932 kvm_make_request(KVM_REQ_PMI, vcpu);
7933 __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
7934 (unsigned long *)&vcpu->arch.pmu.global_status);
7937 static struct perf_guest_info_callbacks kvm_guest_cbs = {
7938 .is_in_guest = kvm_is_in_guest,
7939 .is_user_mode = kvm_is_user_mode,
7940 .get_guest_ip = kvm_get_guest_ip,
7941 .handle_intel_pt_intr = kvm_handle_intel_pt_intr,
7944 #ifdef CONFIG_X86_64
7945 static void pvclock_gtod_update_fn(struct work_struct *work)
7949 struct kvm_vcpu *vcpu;
7952 mutex_lock(&kvm_lock);
7953 list_for_each_entry(kvm, &vm_list, vm_list)
7954 kvm_for_each_vcpu(i, vcpu, kvm)
7955 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7956 atomic_set(&kvm_guest_has_master_clock, 0);
7957 mutex_unlock(&kvm_lock);
7960 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
7963 * Notification about pvclock gtod data update.
7965 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
7968 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
7969 struct timekeeper *tk = priv;
7971 update_pvclock_gtod(tk);
7973 /* disable master clock if host does not trust, or does not
7974 * use, TSC based clocksource.
7976 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
7977 atomic_read(&kvm_guest_has_master_clock) != 0)
7978 queue_work(system_long_wq, &pvclock_gtod_work);
7983 static struct notifier_block pvclock_gtod_notifier = {
7984 .notifier_call = pvclock_gtod_notify,
7988 int kvm_arch_init(void *opaque)
7990 struct kvm_x86_init_ops *ops = opaque;
7993 if (kvm_x86_ops.hardware_enable) {
7994 printk(KERN_ERR "kvm: already loaded the other module\n");
7999 if (!ops->cpu_has_kvm_support()) {
8000 pr_err_ratelimited("kvm: no hardware support\n");
8004 if (ops->disabled_by_bios()) {
8005 pr_err_ratelimited("kvm: disabled by bios\n");
8011 * KVM explicitly assumes that the guest has an FPU and
8012 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
8013 * vCPU's FPU state as a fxregs_state struct.
8015 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
8016 printk(KERN_ERR "kvm: inadequate fpu\n");
8022 x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
8023 __alignof__(struct fpu), SLAB_ACCOUNT,
8025 if (!x86_fpu_cache) {
8026 printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
8030 x86_emulator_cache = kvm_alloc_emulator_cache();
8031 if (!x86_emulator_cache) {
8032 pr_err("kvm: failed to allocate cache for x86 emulator\n");
8033 goto out_free_x86_fpu_cache;
8036 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
8037 if (!user_return_msrs) {
8038 printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
8039 goto out_free_x86_emulator_cache;
8042 r = kvm_mmu_module_init();
8044 goto out_free_percpu;
8046 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
8047 PT_DIRTY_MASK, PT64_NX_MASK, 0,
8048 PT_PRESENT_MASK, 0, sme_me_mask);
8051 perf_register_guest_info_callbacks(&kvm_guest_cbs);
8053 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
8054 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
8055 supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
8058 if (pi_inject_timer == -1)
8059 pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
8060 #ifdef CONFIG_X86_64
8061 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
8063 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8064 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
8070 free_percpu(user_return_msrs);
8071 out_free_x86_emulator_cache:
8072 kmem_cache_destroy(x86_emulator_cache);
8073 out_free_x86_fpu_cache:
8074 kmem_cache_destroy(x86_fpu_cache);
8079 void kvm_arch_exit(void)
8081 #ifdef CONFIG_X86_64
8082 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8083 clear_hv_tscchange_cb();
8086 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
8088 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8089 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
8090 CPUFREQ_TRANSITION_NOTIFIER);
8091 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
8092 #ifdef CONFIG_X86_64
8093 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
8095 kvm_x86_ops.hardware_enable = NULL;
8096 kvm_mmu_module_exit();
8097 free_percpu(user_return_msrs);
8098 kmem_cache_destroy(x86_fpu_cache);
8099 #ifdef CONFIG_KVM_XEN
8100 static_key_deferred_flush(&kvm_xen_enabled);
8101 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
8105 static int __kvm_vcpu_halt(struct kvm_vcpu *vcpu, int state, int reason)
8107 ++vcpu->stat.halt_exits;
8108 if (lapic_in_kernel(vcpu)) {
8109 vcpu->arch.mp_state = state;
8112 vcpu->run->exit_reason = reason;
8117 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
8119 return __kvm_vcpu_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
8121 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
8123 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
8125 int ret = kvm_skip_emulated_instruction(vcpu);
8127 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
8128 * KVM_EXIT_DEBUG here.
8130 return kvm_vcpu_halt(vcpu) && ret;
8132 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
8134 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
8136 int ret = kvm_skip_emulated_instruction(vcpu);
8138 return __kvm_vcpu_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, KVM_EXIT_AP_RESET_HOLD) && ret;
8140 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
8142 #ifdef CONFIG_X86_64
8143 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
8144 unsigned long clock_type)
8146 struct kvm_clock_pairing clock_pairing;
8147 struct timespec64 ts;
8151 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
8152 return -KVM_EOPNOTSUPP;
8154 if (!kvm_get_walltime_and_clockread(&ts, &cycle))
8155 return -KVM_EOPNOTSUPP;
8157 clock_pairing.sec = ts.tv_sec;
8158 clock_pairing.nsec = ts.tv_nsec;
8159 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
8160 clock_pairing.flags = 0;
8161 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
8164 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
8165 sizeof(struct kvm_clock_pairing)))
8173 * kvm_pv_kick_cpu_op: Kick a vcpu.
8175 * @apicid - apicid of vcpu to be kicked.
8177 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
8179 struct kvm_lapic_irq lapic_irq;
8181 lapic_irq.shorthand = APIC_DEST_NOSHORT;
8182 lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
8183 lapic_irq.level = 0;
8184 lapic_irq.dest_id = apicid;
8185 lapic_irq.msi_redir_hint = false;
8187 lapic_irq.delivery_mode = APIC_DM_REMRD;
8188 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
8191 bool kvm_apicv_activated(struct kvm *kvm)
8193 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
8195 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
8197 void kvm_apicv_init(struct kvm *kvm, bool enable)
8200 clear_bit(APICV_INHIBIT_REASON_DISABLE,
8201 &kvm->arch.apicv_inhibit_reasons);
8203 set_bit(APICV_INHIBIT_REASON_DISABLE,
8204 &kvm->arch.apicv_inhibit_reasons);
8206 EXPORT_SYMBOL_GPL(kvm_apicv_init);
8208 static void kvm_sched_yield(struct kvm *kvm, unsigned long dest_id)
8210 struct kvm_vcpu *target = NULL;
8211 struct kvm_apic_map *map;
8214 map = rcu_dereference(kvm->arch.apic_map);
8216 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
8217 target = map->phys_map[dest_id]->vcpu;
8221 if (target && READ_ONCE(target->ready))
8222 kvm_vcpu_yield_to(target);
8225 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
8227 unsigned long nr, a0, a1, a2, a3, ret;
8230 if (kvm_xen_hypercall_enabled(vcpu->kvm))
8231 return kvm_xen_hypercall(vcpu);
8233 if (kvm_hv_hypercall_enabled(vcpu))
8234 return kvm_hv_hypercall(vcpu);
8236 nr = kvm_rax_read(vcpu);
8237 a0 = kvm_rbx_read(vcpu);
8238 a1 = kvm_rcx_read(vcpu);
8239 a2 = kvm_rdx_read(vcpu);
8240 a3 = kvm_rsi_read(vcpu);
8242 trace_kvm_hypercall(nr, a0, a1, a2, a3);
8244 op_64_bit = is_64_bit_mode(vcpu);
8253 if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
8261 case KVM_HC_VAPIC_POLL_IRQ:
8264 case KVM_HC_KICK_CPU:
8265 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
8268 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
8269 kvm_sched_yield(vcpu->kvm, a1);
8272 #ifdef CONFIG_X86_64
8273 case KVM_HC_CLOCK_PAIRING:
8274 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
8277 case KVM_HC_SEND_IPI:
8278 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
8281 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
8283 case KVM_HC_SCHED_YIELD:
8284 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
8287 kvm_sched_yield(vcpu->kvm, a0);
8297 kvm_rax_write(vcpu, ret);
8299 ++vcpu->stat.hypercalls;
8300 return kvm_skip_emulated_instruction(vcpu);
8302 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
8304 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
8306 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8307 char instruction[3];
8308 unsigned long rip = kvm_rip_read(vcpu);
8310 static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
8312 return emulator_write_emulated(ctxt, rip, instruction, 3,
8316 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
8318 return vcpu->run->request_interrupt_window &&
8319 likely(!pic_in_kernel(vcpu->kvm));
8322 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
8324 struct kvm_run *kvm_run = vcpu->run;
8327 * if_flag is obsolete and useless, so do not bother
8328 * setting it for SEV-ES guests. Userspace can just
8329 * use kvm_run->ready_for_interrupt_injection.
8331 kvm_run->if_flag = !vcpu->arch.guest_state_protected
8332 && (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
8334 kvm_run->cr8 = kvm_get_cr8(vcpu);
8335 kvm_run->apic_base = kvm_get_apic_base(vcpu);
8336 kvm_run->ready_for_interrupt_injection =
8337 pic_in_kernel(vcpu->kvm) ||
8338 kvm_vcpu_ready_for_interrupt_injection(vcpu);
8341 kvm_run->flags |= KVM_RUN_X86_SMM;
8344 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
8348 if (!kvm_x86_ops.update_cr8_intercept)
8351 if (!lapic_in_kernel(vcpu))
8354 if (vcpu->arch.apicv_active)
8357 if (!vcpu->arch.apic->vapic_addr)
8358 max_irr = kvm_lapic_find_highest_irr(vcpu);
8365 tpr = kvm_lapic_get_cr8(vcpu);
8367 static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
8370 static void inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
8373 bool can_inject = true;
8375 /* try to reinject previous events if any */
8377 if (vcpu->arch.exception.injected) {
8378 static_call(kvm_x86_queue_exception)(vcpu);
8382 * Do not inject an NMI or interrupt if there is a pending
8383 * exception. Exceptions and interrupts are recognized at
8384 * instruction boundaries, i.e. the start of an instruction.
8385 * Trap-like exceptions, e.g. #DB, have higher priority than
8386 * NMIs and interrupts, i.e. traps are recognized before an
8387 * NMI/interrupt that's pending on the same instruction.
8388 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
8389 * priority, but are only generated (pended) during instruction
8390 * execution, i.e. a pending fault-like exception means the
8391 * fault occurred on the *previous* instruction and must be
8392 * serviced prior to recognizing any new events in order to
8393 * fully complete the previous instruction.
8395 else if (!vcpu->arch.exception.pending) {
8396 if (vcpu->arch.nmi_injected) {
8397 static_call(kvm_x86_set_nmi)(vcpu);
8399 } else if (vcpu->arch.interrupt.injected) {
8400 static_call(kvm_x86_set_irq)(vcpu);
8405 WARN_ON_ONCE(vcpu->arch.exception.injected &&
8406 vcpu->arch.exception.pending);
8409 * Call check_nested_events() even if we reinjected a previous event
8410 * in order for caller to determine if it should require immediate-exit
8411 * from L2 to L1 due to pending L1 events which require exit
8414 if (is_guest_mode(vcpu)) {
8415 r = kvm_x86_ops.nested_ops->check_events(vcpu);
8420 /* try to inject new event if pending */
8421 if (vcpu->arch.exception.pending) {
8422 trace_kvm_inj_exception(vcpu->arch.exception.nr,
8423 vcpu->arch.exception.has_error_code,
8424 vcpu->arch.exception.error_code);
8426 vcpu->arch.exception.pending = false;
8427 vcpu->arch.exception.injected = true;
8429 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
8430 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
8433 if (vcpu->arch.exception.nr == DB_VECTOR) {
8434 kvm_deliver_exception_payload(vcpu);
8435 if (vcpu->arch.dr7 & DR7_GD) {
8436 vcpu->arch.dr7 &= ~DR7_GD;
8437 kvm_update_dr7(vcpu);
8441 static_call(kvm_x86_queue_exception)(vcpu);
8446 * Finally, inject interrupt events. If an event cannot be injected
8447 * due to architectural conditions (e.g. IF=0) a window-open exit
8448 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending
8449 * and can architecturally be injected, but we cannot do it right now:
8450 * an interrupt could have arrived just now and we have to inject it
8451 * as a vmexit, or there could already an event in the queue, which is
8452 * indicated by can_inject. In that case we request an immediate exit
8453 * in order to make progress and get back here for another iteration.
8454 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
8456 if (vcpu->arch.smi_pending) {
8457 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
8461 vcpu->arch.smi_pending = false;
8462 ++vcpu->arch.smi_count;
8466 static_call(kvm_x86_enable_smi_window)(vcpu);
8469 if (vcpu->arch.nmi_pending) {
8470 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
8474 --vcpu->arch.nmi_pending;
8475 vcpu->arch.nmi_injected = true;
8476 static_call(kvm_x86_set_nmi)(vcpu);
8478 WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
8480 if (vcpu->arch.nmi_pending)
8481 static_call(kvm_x86_enable_nmi_window)(vcpu);
8484 if (kvm_cpu_has_injectable_intr(vcpu)) {
8485 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
8489 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
8490 static_call(kvm_x86_set_irq)(vcpu);
8491 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
8493 if (kvm_cpu_has_injectable_intr(vcpu))
8494 static_call(kvm_x86_enable_irq_window)(vcpu);
8497 if (is_guest_mode(vcpu) &&
8498 kvm_x86_ops.nested_ops->hv_timer_pending &&
8499 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
8500 *req_immediate_exit = true;
8502 WARN_ON(vcpu->arch.exception.pending);
8506 *req_immediate_exit = true;
8510 static void process_nmi(struct kvm_vcpu *vcpu)
8515 * x86 is limited to one NMI running, and one NMI pending after it.
8516 * If an NMI is already in progress, limit further NMIs to just one.
8517 * Otherwise, allow two (and we'll inject the first one immediately).
8519 if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
8522 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
8523 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
8524 kvm_make_request(KVM_REQ_EVENT, vcpu);
8527 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
8530 flags |= seg->g << 23;
8531 flags |= seg->db << 22;
8532 flags |= seg->l << 21;
8533 flags |= seg->avl << 20;
8534 flags |= seg->present << 15;
8535 flags |= seg->dpl << 13;
8536 flags |= seg->s << 12;
8537 flags |= seg->type << 8;
8541 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
8543 struct kvm_segment seg;
8546 kvm_get_segment(vcpu, &seg, n);
8547 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
8550 offset = 0x7f84 + n * 12;
8552 offset = 0x7f2c + (n - 3) * 12;
8554 put_smstate(u32, buf, offset + 8, seg.base);
8555 put_smstate(u32, buf, offset + 4, seg.limit);
8556 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
8559 #ifdef CONFIG_X86_64
8560 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
8562 struct kvm_segment seg;
8566 kvm_get_segment(vcpu, &seg, n);
8567 offset = 0x7e00 + n * 16;
8569 flags = enter_smm_get_segment_flags(&seg) >> 8;
8570 put_smstate(u16, buf, offset, seg.selector);
8571 put_smstate(u16, buf, offset + 2, flags);
8572 put_smstate(u32, buf, offset + 4, seg.limit);
8573 put_smstate(u64, buf, offset + 8, seg.base);
8577 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
8580 struct kvm_segment seg;
8584 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
8585 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
8586 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
8587 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
8589 for (i = 0; i < 8; i++)
8590 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
8592 kvm_get_dr(vcpu, 6, &val);
8593 put_smstate(u32, buf, 0x7fcc, (u32)val);
8594 kvm_get_dr(vcpu, 7, &val);
8595 put_smstate(u32, buf, 0x7fc8, (u32)val);
8597 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
8598 put_smstate(u32, buf, 0x7fc4, seg.selector);
8599 put_smstate(u32, buf, 0x7f64, seg.base);
8600 put_smstate(u32, buf, 0x7f60, seg.limit);
8601 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
8603 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
8604 put_smstate(u32, buf, 0x7fc0, seg.selector);
8605 put_smstate(u32, buf, 0x7f80, seg.base);
8606 put_smstate(u32, buf, 0x7f7c, seg.limit);
8607 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
8609 static_call(kvm_x86_get_gdt)(vcpu, &dt);
8610 put_smstate(u32, buf, 0x7f74, dt.address);
8611 put_smstate(u32, buf, 0x7f70, dt.size);
8613 static_call(kvm_x86_get_idt)(vcpu, &dt);
8614 put_smstate(u32, buf, 0x7f58, dt.address);
8615 put_smstate(u32, buf, 0x7f54, dt.size);
8617 for (i = 0; i < 6; i++)
8618 enter_smm_save_seg_32(vcpu, buf, i);
8620 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
8623 put_smstate(u32, buf, 0x7efc, 0x00020000);
8624 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
8627 #ifdef CONFIG_X86_64
8628 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
8631 struct kvm_segment seg;
8635 for (i = 0; i < 16; i++)
8636 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
8638 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
8639 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
8641 kvm_get_dr(vcpu, 6, &val);
8642 put_smstate(u64, buf, 0x7f68, val);
8643 kvm_get_dr(vcpu, 7, &val);
8644 put_smstate(u64, buf, 0x7f60, val);
8646 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
8647 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
8648 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
8650 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
8653 put_smstate(u32, buf, 0x7efc, 0x00020064);
8655 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
8657 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
8658 put_smstate(u16, buf, 0x7e90, seg.selector);
8659 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
8660 put_smstate(u32, buf, 0x7e94, seg.limit);
8661 put_smstate(u64, buf, 0x7e98, seg.base);
8663 static_call(kvm_x86_get_idt)(vcpu, &dt);
8664 put_smstate(u32, buf, 0x7e84, dt.size);
8665 put_smstate(u64, buf, 0x7e88, dt.address);
8667 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
8668 put_smstate(u16, buf, 0x7e70, seg.selector);
8669 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
8670 put_smstate(u32, buf, 0x7e74, seg.limit);
8671 put_smstate(u64, buf, 0x7e78, seg.base);
8673 static_call(kvm_x86_get_gdt)(vcpu, &dt);
8674 put_smstate(u32, buf, 0x7e64, dt.size);
8675 put_smstate(u64, buf, 0x7e68, dt.address);
8677 for (i = 0; i < 6; i++)
8678 enter_smm_save_seg_64(vcpu, buf, i);
8682 static void enter_smm(struct kvm_vcpu *vcpu)
8684 struct kvm_segment cs, ds;
8689 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
8690 memset(buf, 0, 512);
8691 #ifdef CONFIG_X86_64
8692 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
8693 enter_smm_save_state_64(vcpu, buf);
8696 enter_smm_save_state_32(vcpu, buf);
8699 * Give pre_enter_smm() a chance to make ISA-specific changes to the
8700 * vCPU state (e.g. leave guest mode) after we've saved the state into
8701 * the SMM state-save area.
8703 static_call(kvm_x86_pre_enter_smm)(vcpu, buf);
8705 vcpu->arch.hflags |= HF_SMM_MASK;
8706 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
8708 if (static_call(kvm_x86_get_nmi_mask)(vcpu))
8709 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
8711 static_call(kvm_x86_set_nmi_mask)(vcpu, true);
8713 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
8714 kvm_rip_write(vcpu, 0x8000);
8716 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
8717 static_call(kvm_x86_set_cr0)(vcpu, cr0);
8718 vcpu->arch.cr0 = cr0;
8720 static_call(kvm_x86_set_cr4)(vcpu, 0);
8722 /* Undocumented: IDT limit is set to zero on entry to SMM. */
8723 dt.address = dt.size = 0;
8724 static_call(kvm_x86_set_idt)(vcpu, &dt);
8726 kvm_set_dr(vcpu, 7, DR7_FIXED_1);
8728 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
8729 cs.base = vcpu->arch.smbase;
8734 cs.limit = ds.limit = 0xffffffff;
8735 cs.type = ds.type = 0x3;
8736 cs.dpl = ds.dpl = 0;
8741 cs.avl = ds.avl = 0;
8742 cs.present = ds.present = 1;
8743 cs.unusable = ds.unusable = 0;
8744 cs.padding = ds.padding = 0;
8746 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8747 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
8748 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
8749 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
8750 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
8751 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
8753 #ifdef CONFIG_X86_64
8754 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
8755 static_call(kvm_x86_set_efer)(vcpu, 0);
8758 kvm_update_cpuid_runtime(vcpu);
8759 kvm_mmu_reset_context(vcpu);
8762 static void process_smi(struct kvm_vcpu *vcpu)
8764 vcpu->arch.smi_pending = true;
8765 kvm_make_request(KVM_REQ_EVENT, vcpu);
8768 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
8769 unsigned long *vcpu_bitmap)
8773 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
8775 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC,
8776 NULL, vcpu_bitmap, cpus);
8778 free_cpumask_var(cpus);
8781 void kvm_make_scan_ioapic_request(struct kvm *kvm)
8783 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
8786 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
8788 if (!lapic_in_kernel(vcpu))
8791 vcpu->arch.apicv_active = kvm_apicv_activated(vcpu->kvm);
8792 kvm_apic_update_apicv(vcpu);
8793 static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
8795 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
8798 * NOTE: Do not hold any lock prior to calling this.
8800 * In particular, kvm_request_apicv_update() expects kvm->srcu not to be
8801 * locked, because it calls __x86_set_memory_region() which does
8802 * synchronize_srcu(&kvm->srcu).
8804 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
8806 struct kvm_vcpu *except;
8807 unsigned long old, new, expected;
8809 if (!kvm_x86_ops.check_apicv_inhibit_reasons ||
8810 !static_call(kvm_x86_check_apicv_inhibit_reasons)(bit))
8813 old = READ_ONCE(kvm->arch.apicv_inhibit_reasons);
8815 expected = new = old;
8817 __clear_bit(bit, &new);
8819 __set_bit(bit, &new);
8822 old = cmpxchg(&kvm->arch.apicv_inhibit_reasons, expected, new);
8823 } while (old != expected);
8828 trace_kvm_apicv_update_request(activate, bit);
8829 if (kvm_x86_ops.pre_update_apicv_exec_ctrl)
8830 static_call(kvm_x86_pre_update_apicv_exec_ctrl)(kvm, activate);
8833 * Sending request to update APICV for all other vcpus,
8834 * while update the calling vcpu immediately instead of
8835 * waiting for another #VMEXIT to handle the request.
8837 except = kvm_get_running_vcpu();
8838 kvm_make_all_cpus_request_except(kvm, KVM_REQ_APICV_UPDATE,
8841 kvm_vcpu_update_apicv(except);
8843 EXPORT_SYMBOL_GPL(kvm_request_apicv_update);
8845 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
8847 if (!kvm_apic_present(vcpu))
8850 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
8852 if (irqchip_split(vcpu->kvm))
8853 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
8855 if (vcpu->arch.apicv_active)
8856 static_call(kvm_x86_sync_pir_to_irr)(vcpu);
8857 if (ioapic_in_kernel(vcpu->kvm))
8858 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
8861 if (is_guest_mode(vcpu))
8862 vcpu->arch.load_eoi_exitmap_pending = true;
8864 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
8867 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
8869 u64 eoi_exit_bitmap[4];
8871 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
8874 if (to_hv_vcpu(vcpu))
8875 bitmap_or((ulong *)eoi_exit_bitmap,
8876 vcpu->arch.ioapic_handled_vectors,
8877 to_hv_synic(vcpu)->vec_bitmap, 256);
8879 static_call(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
8882 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
8883 unsigned long start, unsigned long end)
8885 unsigned long apic_address;
8888 * The physical address of apic access page is stored in the VMCS.
8889 * Update it when it becomes invalid.
8891 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
8892 if (start <= apic_address && apic_address < end)
8893 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
8896 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
8898 if (!lapic_in_kernel(vcpu))
8901 if (!kvm_x86_ops.set_apic_access_page_addr)
8904 static_call(kvm_x86_set_apic_access_page_addr)(vcpu);
8907 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
8909 smp_send_reschedule(vcpu->cpu);
8911 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
8914 * Returns 1 to let vcpu_run() continue the guest execution loop without
8915 * exiting to the userspace. Otherwise, the value will be returned to the
8918 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
8922 dm_request_for_irq_injection(vcpu) &&
8923 kvm_cpu_accept_dm_intr(vcpu);
8924 fastpath_t exit_fastpath;
8926 bool req_immediate_exit = false;
8928 /* Forbid vmenter if vcpu dirty ring is soft-full */
8929 if (unlikely(vcpu->kvm->dirty_ring_size &&
8930 kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) {
8931 vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL;
8932 trace_kvm_dirty_ring_exit(vcpu);
8937 if (kvm_request_pending(vcpu)) {
8938 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
8939 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
8944 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
8945 kvm_mmu_unload(vcpu);
8946 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
8947 __kvm_migrate_timers(vcpu);
8948 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
8949 kvm_gen_update_masterclock(vcpu->kvm);
8950 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
8951 kvm_gen_kvmclock_update(vcpu);
8952 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
8953 r = kvm_guest_time_update(vcpu);
8957 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
8958 kvm_mmu_sync_roots(vcpu);
8959 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
8960 kvm_mmu_load_pgd(vcpu);
8961 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
8962 kvm_vcpu_flush_tlb_all(vcpu);
8964 /* Flushing all ASIDs flushes the current ASID... */
8965 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
8967 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
8968 kvm_vcpu_flush_tlb_current(vcpu);
8969 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu))
8970 kvm_vcpu_flush_tlb_guest(vcpu);
8972 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
8973 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
8977 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
8978 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
8979 vcpu->mmio_needed = 0;
8983 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
8984 /* Page is swapped out. Do synthetic halt */
8985 vcpu->arch.apf.halted = true;
8989 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
8990 record_steal_time(vcpu);
8991 if (kvm_check_request(KVM_REQ_SMI, vcpu))
8993 if (kvm_check_request(KVM_REQ_NMI, vcpu))
8995 if (kvm_check_request(KVM_REQ_PMU, vcpu))
8996 kvm_pmu_handle_event(vcpu);
8997 if (kvm_check_request(KVM_REQ_PMI, vcpu))
8998 kvm_pmu_deliver_pmi(vcpu);
8999 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
9000 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
9001 if (test_bit(vcpu->arch.pending_ioapic_eoi,
9002 vcpu->arch.ioapic_handled_vectors)) {
9003 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
9004 vcpu->run->eoi.vector =
9005 vcpu->arch.pending_ioapic_eoi;
9010 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
9011 vcpu_scan_ioapic(vcpu);
9012 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
9013 vcpu_load_eoi_exitmap(vcpu);
9014 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
9015 kvm_vcpu_reload_apic_access_page(vcpu);
9016 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
9017 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9018 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
9022 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
9023 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9024 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
9028 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
9029 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
9031 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
9032 vcpu->run->hyperv = hv_vcpu->exit;
9038 * KVM_REQ_HV_STIMER has to be processed after
9039 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
9040 * depend on the guest clock being up-to-date
9042 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
9043 kvm_hv_process_stimers(vcpu);
9044 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
9045 kvm_vcpu_update_apicv(vcpu);
9046 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
9047 kvm_check_async_pf_completion(vcpu);
9048 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
9049 static_call(kvm_x86_msr_filter_changed)(vcpu);
9051 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
9052 static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
9055 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
9056 kvm_xen_has_interrupt(vcpu)) {
9057 ++vcpu->stat.req_event;
9058 kvm_apic_accept_events(vcpu);
9059 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
9064 inject_pending_event(vcpu, &req_immediate_exit);
9066 static_call(kvm_x86_enable_irq_window)(vcpu);
9068 if (kvm_lapic_enabled(vcpu)) {
9069 update_cr8_intercept(vcpu);
9070 kvm_lapic_sync_to_vapic(vcpu);
9074 r = kvm_mmu_reload(vcpu);
9076 goto cancel_injection;
9081 static_call(kvm_x86_prepare_guest_switch)(vcpu);
9084 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
9085 * IPI are then delayed after guest entry, which ensures that they
9086 * result in virtual interrupt delivery.
9088 local_irq_disable();
9089 vcpu->mode = IN_GUEST_MODE;
9091 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9094 * 1) We should set ->mode before checking ->requests. Please see
9095 * the comment in kvm_vcpu_exiting_guest_mode().
9097 * 2) For APICv, we should set ->mode before checking PID.ON. This
9098 * pairs with the memory barrier implicit in pi_test_and_set_on
9099 * (see vmx_deliver_posted_interrupt).
9101 * 3) This also orders the write to mode from any reads to the page
9102 * tables done while the VCPU is running. Please see the comment
9103 * in kvm_flush_remote_tlbs.
9105 smp_mb__after_srcu_read_unlock();
9108 * This handles the case where a posted interrupt was
9109 * notified with kvm_vcpu_kick.
9111 if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
9112 static_call(kvm_x86_sync_pir_to_irr)(vcpu);
9114 if (kvm_vcpu_exit_request(vcpu)) {
9115 vcpu->mode = OUTSIDE_GUEST_MODE;
9119 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9121 goto cancel_injection;
9124 if (req_immediate_exit) {
9125 kvm_make_request(KVM_REQ_EVENT, vcpu);
9126 static_call(kvm_x86_request_immediate_exit)(vcpu);
9129 fpregs_assert_state_consistent();
9130 if (test_thread_flag(TIF_NEED_FPU_LOAD))
9131 switch_fpu_return();
9133 if (unlikely(vcpu->arch.switch_db_regs)) {
9135 set_debugreg(vcpu->arch.eff_db[0], 0);
9136 set_debugreg(vcpu->arch.eff_db[1], 1);
9137 set_debugreg(vcpu->arch.eff_db[2], 2);
9138 set_debugreg(vcpu->arch.eff_db[3], 3);
9139 set_debugreg(vcpu->arch.dr6, 6);
9140 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
9144 exit_fastpath = static_call(kvm_x86_run)(vcpu);
9145 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
9148 if (unlikely(kvm_vcpu_exit_request(vcpu))) {
9149 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
9153 if (vcpu->arch.apicv_active)
9154 static_call(kvm_x86_sync_pir_to_irr)(vcpu);
9158 * Do this here before restoring debug registers on the host. And
9159 * since we do this before handling the vmexit, a DR access vmexit
9160 * can (a) read the correct value of the debug registers, (b) set
9161 * KVM_DEBUGREG_WONT_EXIT again.
9163 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
9164 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
9165 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
9166 kvm_update_dr0123(vcpu);
9167 kvm_update_dr7(vcpu);
9168 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
9172 * If the guest has used debug registers, at least dr7
9173 * will be disabled while returning to the host.
9174 * If we don't have active breakpoints in the host, we don't
9175 * care about the messed up debug address registers. But if
9176 * we have some of them active, restore the old state.
9178 if (hw_breakpoint_active())
9179 hw_breakpoint_restore();
9181 vcpu->arch.last_vmentry_cpu = vcpu->cpu;
9182 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
9184 vcpu->mode = OUTSIDE_GUEST_MODE;
9187 static_call(kvm_x86_handle_exit_irqoff)(vcpu);
9190 * Consume any pending interrupts, including the possible source of
9191 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
9192 * An instruction is required after local_irq_enable() to fully unblock
9193 * interrupts on processors that implement an interrupt shadow, the
9194 * stat.exits increment will do nicely.
9196 kvm_before_interrupt(vcpu);
9199 local_irq_disable();
9200 kvm_after_interrupt(vcpu);
9202 if (lapic_in_kernel(vcpu)) {
9203 s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
9204 if (delta != S64_MIN) {
9205 trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
9206 vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
9213 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9216 * Profile KVM exit RIPs:
9218 if (unlikely(prof_on == KVM_PROFILING)) {
9219 unsigned long rip = kvm_rip_read(vcpu);
9220 profile_hit(KVM_PROFILING, (void *)rip);
9223 if (unlikely(vcpu->arch.tsc_always_catchup))
9224 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9226 if (vcpu->arch.apic_attention)
9227 kvm_lapic_sync_from_vapic(vcpu);
9229 r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
9233 if (req_immediate_exit)
9234 kvm_make_request(KVM_REQ_EVENT, vcpu);
9235 static_call(kvm_x86_cancel_injection)(vcpu);
9236 if (unlikely(vcpu->arch.apic_attention))
9237 kvm_lapic_sync_from_vapic(vcpu);
9242 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
9244 if (!kvm_arch_vcpu_runnable(vcpu) &&
9245 (!kvm_x86_ops.pre_block || static_call(kvm_x86_pre_block)(vcpu) == 0)) {
9246 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9247 kvm_vcpu_block(vcpu);
9248 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9250 if (kvm_x86_ops.post_block)
9251 static_call(kvm_x86_post_block)(vcpu);
9253 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
9257 kvm_apic_accept_events(vcpu);
9258 switch(vcpu->arch.mp_state) {
9259 case KVM_MP_STATE_HALTED:
9260 case KVM_MP_STATE_AP_RESET_HOLD:
9261 vcpu->arch.pv.pv_unhalted = false;
9262 vcpu->arch.mp_state =
9263 KVM_MP_STATE_RUNNABLE;
9265 case KVM_MP_STATE_RUNNABLE:
9266 vcpu->arch.apf.halted = false;
9268 case KVM_MP_STATE_INIT_RECEIVED:
9276 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
9278 if (is_guest_mode(vcpu))
9279 kvm_x86_ops.nested_ops->check_events(vcpu);
9281 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
9282 !vcpu->arch.apf.halted);
9285 static int vcpu_run(struct kvm_vcpu *vcpu)
9288 struct kvm *kvm = vcpu->kvm;
9290 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9291 vcpu->arch.l1tf_flush_l1d = true;
9294 if (kvm_vcpu_running(vcpu)) {
9295 r = vcpu_enter_guest(vcpu);
9297 r = vcpu_block(kvm, vcpu);
9303 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
9304 if (kvm_cpu_has_pending_timer(vcpu))
9305 kvm_inject_pending_timer_irqs(vcpu);
9307 if (dm_request_for_irq_injection(vcpu) &&
9308 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
9310 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
9311 ++vcpu->stat.request_irq_exits;
9315 if (__xfer_to_guest_mode_work_pending()) {
9316 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9317 r = xfer_to_guest_mode_handle_work(vcpu);
9320 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9324 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9329 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
9333 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9334 r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
9335 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9339 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
9341 BUG_ON(!vcpu->arch.pio.count);
9343 return complete_emulated_io(vcpu);
9347 * Implements the following, as a state machine:
9351 * for each mmio piece in the fragment
9359 * for each mmio piece in the fragment
9364 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
9366 struct kvm_run *run = vcpu->run;
9367 struct kvm_mmio_fragment *frag;
9370 BUG_ON(!vcpu->mmio_needed);
9372 /* Complete previous fragment */
9373 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
9374 len = min(8u, frag->len);
9375 if (!vcpu->mmio_is_write)
9376 memcpy(frag->data, run->mmio.data, len);
9378 if (frag->len <= 8) {
9379 /* Switch to the next fragment. */
9381 vcpu->mmio_cur_fragment++;
9383 /* Go forward to the next mmio piece. */
9389 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
9390 vcpu->mmio_needed = 0;
9392 /* FIXME: return into emulator if single-stepping. */
9393 if (vcpu->mmio_is_write)
9395 vcpu->mmio_read_completed = 1;
9396 return complete_emulated_io(vcpu);
9399 run->exit_reason = KVM_EXIT_MMIO;
9400 run->mmio.phys_addr = frag->gpa;
9401 if (vcpu->mmio_is_write)
9402 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
9403 run->mmio.len = min(8u, frag->len);
9404 run->mmio.is_write = vcpu->mmio_is_write;
9405 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9409 static void kvm_save_current_fpu(struct fpu *fpu)
9412 * If the target FPU state is not resident in the CPU registers, just
9413 * memcpy() from current, else save CPU state directly to the target.
9415 if (test_thread_flag(TIF_NEED_FPU_LOAD))
9416 memcpy(&fpu->state, ¤t->thread.fpu.state,
9417 fpu_kernel_xstate_size);
9419 copy_fpregs_to_fpstate(fpu);
9422 /* Swap (qemu) user FPU context for the guest FPU context. */
9423 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
9427 kvm_save_current_fpu(vcpu->arch.user_fpu);
9430 * Guests with protected state can't have it set by the hypervisor,
9431 * so skip trying to set it.
9433 if (vcpu->arch.guest_fpu)
9434 /* PKRU is separately restored in kvm_x86_ops.run. */
9435 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state,
9436 ~XFEATURE_MASK_PKRU);
9438 fpregs_mark_activate();
9444 /* When vcpu_run ends, restore user space FPU context. */
9445 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
9450 * Guests with protected state can't have it read by the hypervisor,
9451 * so skip trying to save it.
9453 if (vcpu->arch.guest_fpu)
9454 kvm_save_current_fpu(vcpu->arch.guest_fpu);
9456 copy_kernel_to_fpregs(&vcpu->arch.user_fpu->state);
9458 fpregs_mark_activate();
9461 ++vcpu->stat.fpu_reload;
9465 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
9467 struct kvm_run *kvm_run = vcpu->run;
9471 kvm_sigset_activate(vcpu);
9473 kvm_load_guest_fpu(vcpu);
9475 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
9476 if (kvm_run->immediate_exit) {
9480 kvm_vcpu_block(vcpu);
9481 kvm_apic_accept_events(vcpu);
9482 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
9484 if (signal_pending(current)) {
9486 kvm_run->exit_reason = KVM_EXIT_INTR;
9487 ++vcpu->stat.signal_exits;
9492 if (kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
9497 if (kvm_run->kvm_dirty_regs) {
9498 r = sync_regs(vcpu);
9503 /* re-sync apic's tpr */
9504 if (!lapic_in_kernel(vcpu)) {
9505 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
9511 if (unlikely(vcpu->arch.complete_userspace_io)) {
9512 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
9513 vcpu->arch.complete_userspace_io = NULL;
9518 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
9520 if (kvm_run->immediate_exit)
9526 kvm_put_guest_fpu(vcpu);
9527 if (kvm_run->kvm_valid_regs)
9529 post_kvm_run_save(vcpu);
9530 kvm_sigset_deactivate(vcpu);
9536 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9538 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
9540 * We are here if userspace calls get_regs() in the middle of
9541 * instruction emulation. Registers state needs to be copied
9542 * back from emulation context to vcpu. Userspace shouldn't do
9543 * that usually, but some bad designed PV devices (vmware
9544 * backdoor interface) need this to work
9546 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
9547 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9549 regs->rax = kvm_rax_read(vcpu);
9550 regs->rbx = kvm_rbx_read(vcpu);
9551 regs->rcx = kvm_rcx_read(vcpu);
9552 regs->rdx = kvm_rdx_read(vcpu);
9553 regs->rsi = kvm_rsi_read(vcpu);
9554 regs->rdi = kvm_rdi_read(vcpu);
9555 regs->rsp = kvm_rsp_read(vcpu);
9556 regs->rbp = kvm_rbp_read(vcpu);
9557 #ifdef CONFIG_X86_64
9558 regs->r8 = kvm_r8_read(vcpu);
9559 regs->r9 = kvm_r9_read(vcpu);
9560 regs->r10 = kvm_r10_read(vcpu);
9561 regs->r11 = kvm_r11_read(vcpu);
9562 regs->r12 = kvm_r12_read(vcpu);
9563 regs->r13 = kvm_r13_read(vcpu);
9564 regs->r14 = kvm_r14_read(vcpu);
9565 regs->r15 = kvm_r15_read(vcpu);
9568 regs->rip = kvm_rip_read(vcpu);
9569 regs->rflags = kvm_get_rflags(vcpu);
9572 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9575 __get_regs(vcpu, regs);
9580 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9582 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
9583 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9585 kvm_rax_write(vcpu, regs->rax);
9586 kvm_rbx_write(vcpu, regs->rbx);
9587 kvm_rcx_write(vcpu, regs->rcx);
9588 kvm_rdx_write(vcpu, regs->rdx);
9589 kvm_rsi_write(vcpu, regs->rsi);
9590 kvm_rdi_write(vcpu, regs->rdi);
9591 kvm_rsp_write(vcpu, regs->rsp);
9592 kvm_rbp_write(vcpu, regs->rbp);
9593 #ifdef CONFIG_X86_64
9594 kvm_r8_write(vcpu, regs->r8);
9595 kvm_r9_write(vcpu, regs->r9);
9596 kvm_r10_write(vcpu, regs->r10);
9597 kvm_r11_write(vcpu, regs->r11);
9598 kvm_r12_write(vcpu, regs->r12);
9599 kvm_r13_write(vcpu, regs->r13);
9600 kvm_r14_write(vcpu, regs->r14);
9601 kvm_r15_write(vcpu, regs->r15);
9604 kvm_rip_write(vcpu, regs->rip);
9605 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
9607 vcpu->arch.exception.pending = false;
9609 kvm_make_request(KVM_REQ_EVENT, vcpu);
9612 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9615 __set_regs(vcpu, regs);
9620 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
9622 struct kvm_segment cs;
9624 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
9628 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
9630 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9634 if (vcpu->arch.guest_state_protected)
9635 goto skip_protected_regs;
9637 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
9638 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
9639 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
9640 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9641 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9642 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
9644 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9645 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
9647 static_call(kvm_x86_get_idt)(vcpu, &dt);
9648 sregs->idt.limit = dt.size;
9649 sregs->idt.base = dt.address;
9650 static_call(kvm_x86_get_gdt)(vcpu, &dt);
9651 sregs->gdt.limit = dt.size;
9652 sregs->gdt.base = dt.address;
9654 sregs->cr2 = vcpu->arch.cr2;
9655 sregs->cr3 = kvm_read_cr3(vcpu);
9657 skip_protected_regs:
9658 sregs->cr0 = kvm_read_cr0(vcpu);
9659 sregs->cr4 = kvm_read_cr4(vcpu);
9660 sregs->cr8 = kvm_get_cr8(vcpu);
9661 sregs->efer = vcpu->arch.efer;
9662 sregs->apic_base = kvm_get_apic_base(vcpu);
9664 memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
9666 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
9667 set_bit(vcpu->arch.interrupt.nr,
9668 (unsigned long *)sregs->interrupt_bitmap);
9671 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
9672 struct kvm_sregs *sregs)
9675 __get_sregs(vcpu, sregs);
9680 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
9681 struct kvm_mp_state *mp_state)
9684 if (kvm_mpx_supported())
9685 kvm_load_guest_fpu(vcpu);
9687 kvm_apic_accept_events(vcpu);
9688 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
9689 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
9690 vcpu->arch.pv.pv_unhalted)
9691 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
9693 mp_state->mp_state = vcpu->arch.mp_state;
9695 if (kvm_mpx_supported())
9696 kvm_put_guest_fpu(vcpu);
9701 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
9702 struct kvm_mp_state *mp_state)
9708 if (!lapic_in_kernel(vcpu) &&
9709 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
9713 * KVM_MP_STATE_INIT_RECEIVED means the processor is in
9714 * INIT state; latched init should be reported using
9715 * KVM_SET_VCPU_EVENTS, so reject it here.
9717 if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
9718 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
9719 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
9722 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
9723 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
9724 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
9726 vcpu->arch.mp_state = mp_state->mp_state;
9727 kvm_make_request(KVM_REQ_EVENT, vcpu);
9735 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
9736 int reason, bool has_error_code, u32 error_code)
9738 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9741 init_emulate_ctxt(vcpu);
9743 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
9744 has_error_code, error_code);
9746 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
9747 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
9748 vcpu->run->internal.ndata = 0;
9752 kvm_rip_write(vcpu, ctxt->eip);
9753 kvm_set_rflags(vcpu, ctxt->eflags);
9756 EXPORT_SYMBOL_GPL(kvm_task_switch);
9758 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9760 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
9762 * When EFER.LME and CR0.PG are set, the processor is in
9763 * 64-bit mode (though maybe in a 32-bit code segment).
9764 * CR4.PAE and EFER.LMA must be set.
9766 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
9768 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
9772 * Not in 64-bit mode: EFER.LMA is clear and the code
9773 * segment cannot be 64-bit.
9775 if (sregs->efer & EFER_LMA || sregs->cs.l)
9779 return kvm_is_valid_cr4(vcpu, sregs->cr4);
9782 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9784 struct msr_data apic_base_msr;
9785 int mmu_reset_needed = 0;
9786 int pending_vec, max_bits, idx;
9790 if (!kvm_is_valid_sregs(vcpu, sregs))
9793 apic_base_msr.data = sregs->apic_base;
9794 apic_base_msr.host_initiated = true;
9795 if (kvm_set_apic_base(vcpu, &apic_base_msr))
9798 if (vcpu->arch.guest_state_protected)
9799 goto skip_protected_regs;
9801 dt.size = sregs->idt.limit;
9802 dt.address = sregs->idt.base;
9803 static_call(kvm_x86_set_idt)(vcpu, &dt);
9804 dt.size = sregs->gdt.limit;
9805 dt.address = sregs->gdt.base;
9806 static_call(kvm_x86_set_gdt)(vcpu, &dt);
9808 vcpu->arch.cr2 = sregs->cr2;
9809 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
9810 vcpu->arch.cr3 = sregs->cr3;
9811 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
9813 kvm_set_cr8(vcpu, sregs->cr8);
9815 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
9816 static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
9818 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
9819 static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
9820 vcpu->arch.cr0 = sregs->cr0;
9822 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
9823 static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
9825 idx = srcu_read_lock(&vcpu->kvm->srcu);
9826 if (is_pae_paging(vcpu)) {
9827 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
9828 mmu_reset_needed = 1;
9830 srcu_read_unlock(&vcpu->kvm->srcu, idx);
9832 if (mmu_reset_needed)
9833 kvm_mmu_reset_context(vcpu);
9835 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
9836 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
9837 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
9838 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9839 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9840 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
9842 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9843 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
9845 update_cr8_intercept(vcpu);
9847 /* Older userspace won't unhalt the vcpu on reset. */
9848 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
9849 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
9851 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9853 skip_protected_regs:
9854 max_bits = KVM_NR_INTERRUPTS;
9855 pending_vec = find_first_bit(
9856 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
9857 if (pending_vec < max_bits) {
9858 kvm_queue_interrupt(vcpu, pending_vec, false);
9859 pr_debug("Set back pending irq %d\n", pending_vec);
9862 kvm_make_request(KVM_REQ_EVENT, vcpu);
9869 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
9870 struct kvm_sregs *sregs)
9875 ret = __set_sregs(vcpu, sregs);
9880 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
9881 struct kvm_guest_debug *dbg)
9883 unsigned long rflags;
9886 if (vcpu->arch.guest_state_protected)
9891 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
9893 if (vcpu->arch.exception.pending)
9895 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
9896 kvm_queue_exception(vcpu, DB_VECTOR);
9898 kvm_queue_exception(vcpu, BP_VECTOR);
9902 * Read rflags as long as potentially injected trace flags are still
9905 rflags = kvm_get_rflags(vcpu);
9907 vcpu->guest_debug = dbg->control;
9908 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
9909 vcpu->guest_debug = 0;
9911 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
9912 for (i = 0; i < KVM_NR_DB_REGS; ++i)
9913 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
9914 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
9916 for (i = 0; i < KVM_NR_DB_REGS; i++)
9917 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
9919 kvm_update_dr7(vcpu);
9921 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9922 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
9923 get_segment_base(vcpu, VCPU_SREG_CS);
9926 * Trigger an rflags update that will inject or remove the trace
9929 kvm_set_rflags(vcpu, rflags);
9931 static_call(kvm_x86_update_exception_bitmap)(vcpu);
9941 * Translate a guest virtual address to a guest physical address.
9943 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
9944 struct kvm_translation *tr)
9946 unsigned long vaddr = tr->linear_address;
9952 idx = srcu_read_lock(&vcpu->kvm->srcu);
9953 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
9954 srcu_read_unlock(&vcpu->kvm->srcu, idx);
9955 tr->physical_address = gpa;
9956 tr->valid = gpa != UNMAPPED_GVA;
9964 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9966 struct fxregs_state *fxsave;
9968 if (!vcpu->arch.guest_fpu)
9973 fxsave = &vcpu->arch.guest_fpu->state.fxsave;
9974 memcpy(fpu->fpr, fxsave->st_space, 128);
9975 fpu->fcw = fxsave->cwd;
9976 fpu->fsw = fxsave->swd;
9977 fpu->ftwx = fxsave->twd;
9978 fpu->last_opcode = fxsave->fop;
9979 fpu->last_ip = fxsave->rip;
9980 fpu->last_dp = fxsave->rdp;
9981 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
9987 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9989 struct fxregs_state *fxsave;
9991 if (!vcpu->arch.guest_fpu)
9996 fxsave = &vcpu->arch.guest_fpu->state.fxsave;
9998 memcpy(fxsave->st_space, fpu->fpr, 128);
9999 fxsave->cwd = fpu->fcw;
10000 fxsave->swd = fpu->fsw;
10001 fxsave->twd = fpu->ftwx;
10002 fxsave->fop = fpu->last_opcode;
10003 fxsave->rip = fpu->last_ip;
10004 fxsave->rdp = fpu->last_dp;
10005 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
10011 static void store_regs(struct kvm_vcpu *vcpu)
10013 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
10015 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
10016 __get_regs(vcpu, &vcpu->run->s.regs.regs);
10018 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
10019 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
10021 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
10022 kvm_vcpu_ioctl_x86_get_vcpu_events(
10023 vcpu, &vcpu->run->s.regs.events);
10026 static int sync_regs(struct kvm_vcpu *vcpu)
10028 if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
10031 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
10032 __set_regs(vcpu, &vcpu->run->s.regs.regs);
10033 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
10035 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
10036 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
10038 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
10040 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
10041 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
10042 vcpu, &vcpu->run->s.regs.events))
10044 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
10050 static void fx_init(struct kvm_vcpu *vcpu)
10052 if (!vcpu->arch.guest_fpu)
10055 fpstate_init(&vcpu->arch.guest_fpu->state);
10056 if (boot_cpu_has(X86_FEATURE_XSAVES))
10057 vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
10058 host_xcr0 | XSTATE_COMPACTION_ENABLED;
10061 * Ensure guest xcr0 is valid for loading
10063 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
10065 vcpu->arch.cr0 |= X86_CR0_ET;
10068 void kvm_free_guest_fpu(struct kvm_vcpu *vcpu)
10070 if (vcpu->arch.guest_fpu) {
10071 kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
10072 vcpu->arch.guest_fpu = NULL;
10075 EXPORT_SYMBOL_GPL(kvm_free_guest_fpu);
10077 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
10079 if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
10080 pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
10081 "guest TSC will not be reliable\n");
10086 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
10091 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
10092 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10094 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
10096 kvm_set_tsc_khz(vcpu, max_tsc_khz);
10098 r = kvm_mmu_create(vcpu);
10102 if (irqchip_in_kernel(vcpu->kvm)) {
10103 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
10105 goto fail_mmu_destroy;
10106 if (kvm_apicv_activated(vcpu->kvm))
10107 vcpu->arch.apicv_active = true;
10109 static_branch_inc(&kvm_has_noapic_vcpu);
10113 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
10115 goto fail_free_lapic;
10116 vcpu->arch.pio_data = page_address(page);
10118 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
10119 GFP_KERNEL_ACCOUNT);
10120 if (!vcpu->arch.mce_banks)
10121 goto fail_free_pio_data;
10122 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
10124 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
10125 GFP_KERNEL_ACCOUNT))
10126 goto fail_free_mce_banks;
10128 if (!alloc_emulate_ctxt(vcpu))
10129 goto free_wbinvd_dirty_mask;
10131 vcpu->arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
10132 GFP_KERNEL_ACCOUNT);
10133 if (!vcpu->arch.user_fpu) {
10134 pr_err("kvm: failed to allocate userspace's fpu\n");
10135 goto free_emulate_ctxt;
10138 vcpu->arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
10139 GFP_KERNEL_ACCOUNT);
10140 if (!vcpu->arch.guest_fpu) {
10141 pr_err("kvm: failed to allocate vcpu's fpu\n");
10142 goto free_user_fpu;
10146 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
10147 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
10149 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
10151 kvm_async_pf_hash_reset(vcpu);
10152 kvm_pmu_init(vcpu);
10154 vcpu->arch.pending_external_vector = -1;
10155 vcpu->arch.preempted_in_kernel = false;
10157 r = static_call(kvm_x86_vcpu_create)(vcpu);
10159 goto free_guest_fpu;
10161 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
10162 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
10163 kvm_vcpu_mtrr_init(vcpu);
10165 kvm_vcpu_reset(vcpu, false);
10166 kvm_init_mmu(vcpu, false);
10171 kvm_free_guest_fpu(vcpu);
10173 kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
10175 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10176 free_wbinvd_dirty_mask:
10177 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10178 fail_free_mce_banks:
10179 kfree(vcpu->arch.mce_banks);
10180 fail_free_pio_data:
10181 free_page((unsigned long)vcpu->arch.pio_data);
10183 kvm_free_lapic(vcpu);
10185 kvm_mmu_destroy(vcpu);
10189 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
10191 struct kvm *kvm = vcpu->kvm;
10193 if (mutex_lock_killable(&vcpu->mutex))
10196 kvm_synchronize_tsc(vcpu, 0);
10199 /* poll control enabled by default */
10200 vcpu->arch.msr_kvm_poll_control = 1;
10202 mutex_unlock(&vcpu->mutex);
10204 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
10205 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
10206 KVMCLOCK_SYNC_PERIOD);
10209 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
10211 struct gfn_to_pfn_cache *cache = &vcpu->arch.st.cache;
10214 kvm_release_pfn(cache->pfn, cache->dirty, cache);
10216 kvmclock_reset(vcpu);
10218 static_call(kvm_x86_vcpu_free)(vcpu);
10220 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10221 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10222 kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
10223 kvm_free_guest_fpu(vcpu);
10225 kvm_hv_vcpu_uninit(vcpu);
10226 kvm_pmu_destroy(vcpu);
10227 kfree(vcpu->arch.mce_banks);
10228 kvm_free_lapic(vcpu);
10229 idx = srcu_read_lock(&vcpu->kvm->srcu);
10230 kvm_mmu_destroy(vcpu);
10231 srcu_read_unlock(&vcpu->kvm->srcu, idx);
10232 free_page((unsigned long)vcpu->arch.pio_data);
10233 kvfree(vcpu->arch.cpuid_entries);
10234 if (!lapic_in_kernel(vcpu))
10235 static_branch_dec(&kvm_has_noapic_vcpu);
10238 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
10240 kvm_lapic_reset(vcpu, init_event);
10242 vcpu->arch.hflags = 0;
10244 vcpu->arch.smi_pending = 0;
10245 vcpu->arch.smi_count = 0;
10246 atomic_set(&vcpu->arch.nmi_queued, 0);
10247 vcpu->arch.nmi_pending = 0;
10248 vcpu->arch.nmi_injected = false;
10249 kvm_clear_interrupt_queue(vcpu);
10250 kvm_clear_exception_queue(vcpu);
10252 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
10253 kvm_update_dr0123(vcpu);
10254 vcpu->arch.dr6 = DR6_ACTIVE_LOW;
10255 vcpu->arch.dr7 = DR7_FIXED_1;
10256 kvm_update_dr7(vcpu);
10258 vcpu->arch.cr2 = 0;
10260 kvm_make_request(KVM_REQ_EVENT, vcpu);
10261 vcpu->arch.apf.msr_en_val = 0;
10262 vcpu->arch.apf.msr_int_val = 0;
10263 vcpu->arch.st.msr_val = 0;
10265 kvmclock_reset(vcpu);
10267 kvm_clear_async_pf_completion_queue(vcpu);
10268 kvm_async_pf_hash_reset(vcpu);
10269 vcpu->arch.apf.halted = false;
10271 if (vcpu->arch.guest_fpu && kvm_mpx_supported()) {
10272 void *mpx_state_buffer;
10275 * To avoid have the INIT path from kvm_apic_has_events() that be
10276 * called with loaded FPU and does not let userspace fix the state.
10279 kvm_put_guest_fpu(vcpu);
10280 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10282 if (mpx_state_buffer)
10283 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
10284 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10286 if (mpx_state_buffer)
10287 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
10289 kvm_load_guest_fpu(vcpu);
10293 kvm_pmu_reset(vcpu);
10294 vcpu->arch.smbase = 0x30000;
10296 vcpu->arch.msr_misc_features_enables = 0;
10298 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
10301 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
10302 vcpu->arch.regs_avail = ~0;
10303 vcpu->arch.regs_dirty = ~0;
10305 vcpu->arch.ia32_xss = 0;
10307 static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
10310 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
10312 struct kvm_segment cs;
10314 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
10315 cs.selector = vector << 8;
10316 cs.base = vector << 12;
10317 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
10318 kvm_rip_write(vcpu, 0);
10320 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
10322 int kvm_arch_hardware_enable(void)
10325 struct kvm_vcpu *vcpu;
10330 bool stable, backwards_tsc = false;
10332 kvm_user_return_msr_cpu_online();
10333 ret = static_call(kvm_x86_hardware_enable)();
10337 local_tsc = rdtsc();
10338 stable = !kvm_check_tsc_unstable();
10339 list_for_each_entry(kvm, &vm_list, vm_list) {
10340 kvm_for_each_vcpu(i, vcpu, kvm) {
10341 if (!stable && vcpu->cpu == smp_processor_id())
10342 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10343 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
10344 backwards_tsc = true;
10345 if (vcpu->arch.last_host_tsc > max_tsc)
10346 max_tsc = vcpu->arch.last_host_tsc;
10352 * Sometimes, even reliable TSCs go backwards. This happens on
10353 * platforms that reset TSC during suspend or hibernate actions, but
10354 * maintain synchronization. We must compensate. Fortunately, we can
10355 * detect that condition here, which happens early in CPU bringup,
10356 * before any KVM threads can be running. Unfortunately, we can't
10357 * bring the TSCs fully up to date with real time, as we aren't yet far
10358 * enough into CPU bringup that we know how much real time has actually
10359 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
10360 * variables that haven't been updated yet.
10362 * So we simply find the maximum observed TSC above, then record the
10363 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
10364 * the adjustment will be applied. Note that we accumulate
10365 * adjustments, in case multiple suspend cycles happen before some VCPU
10366 * gets a chance to run again. In the event that no KVM threads get a
10367 * chance to run, we will miss the entire elapsed period, as we'll have
10368 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
10369 * loose cycle time. This isn't too big a deal, since the loss will be
10370 * uniform across all VCPUs (not to mention the scenario is extremely
10371 * unlikely). It is possible that a second hibernate recovery happens
10372 * much faster than a first, causing the observed TSC here to be
10373 * smaller; this would require additional padding adjustment, which is
10374 * why we set last_host_tsc to the local tsc observed here.
10376 * N.B. - this code below runs only on platforms with reliable TSC,
10377 * as that is the only way backwards_tsc is set above. Also note
10378 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
10379 * have the same delta_cyc adjustment applied if backwards_tsc
10380 * is detected. Note further, this adjustment is only done once,
10381 * as we reset last_host_tsc on all VCPUs to stop this from being
10382 * called multiple times (one for each physical CPU bringup).
10384 * Platforms with unreliable TSCs don't have to deal with this, they
10385 * will be compensated by the logic in vcpu_load, which sets the TSC to
10386 * catchup mode. This will catchup all VCPUs to real time, but cannot
10387 * guarantee that they stay in perfect synchronization.
10389 if (backwards_tsc) {
10390 u64 delta_cyc = max_tsc - local_tsc;
10391 list_for_each_entry(kvm, &vm_list, vm_list) {
10392 kvm->arch.backwards_tsc_observed = true;
10393 kvm_for_each_vcpu(i, vcpu, kvm) {
10394 vcpu->arch.tsc_offset_adjustment += delta_cyc;
10395 vcpu->arch.last_host_tsc = local_tsc;
10396 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
10400 * We have to disable TSC offset matching.. if you were
10401 * booting a VM while issuing an S4 host suspend....
10402 * you may have some problem. Solving this issue is
10403 * left as an exercise to the reader.
10405 kvm->arch.last_tsc_nsec = 0;
10406 kvm->arch.last_tsc_write = 0;
10413 void kvm_arch_hardware_disable(void)
10415 static_call(kvm_x86_hardware_disable)();
10416 drop_user_return_notifiers();
10419 int kvm_arch_hardware_setup(void *opaque)
10421 struct kvm_x86_init_ops *ops = opaque;
10424 rdmsrl_safe(MSR_EFER, &host_efer);
10426 if (boot_cpu_has(X86_FEATURE_XSAVES))
10427 rdmsrl(MSR_IA32_XSS, host_xss);
10429 r = ops->hardware_setup();
10433 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
10434 kvm_ops_static_call_update();
10436 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
10439 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
10440 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
10441 #undef __kvm_cpu_cap_has
10443 if (kvm_has_tsc_control) {
10445 * Make sure the user can only configure tsc_khz values that
10446 * fit into a signed integer.
10447 * A min value is not calculated because it will always
10448 * be 1 on all machines.
10450 u64 max = min(0x7fffffffULL,
10451 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
10452 kvm_max_guest_tsc_khz = max;
10454 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
10457 kvm_init_msr_list();
10461 void kvm_arch_hardware_unsetup(void)
10463 static_call(kvm_x86_hardware_unsetup)();
10466 int kvm_arch_check_processor_compat(void *opaque)
10468 struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
10469 struct kvm_x86_init_ops *ops = opaque;
10471 WARN_ON(!irqs_disabled());
10473 if (__cr4_reserved_bits(cpu_has, c) !=
10474 __cr4_reserved_bits(cpu_has, &boot_cpu_data))
10477 return ops->check_processor_compatibility();
10480 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
10482 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
10484 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
10486 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
10488 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
10491 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
10492 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
10494 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
10496 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
10498 vcpu->arch.l1tf_flush_l1d = true;
10499 if (pmu->version && unlikely(pmu->event_count)) {
10500 pmu->need_cleanup = true;
10501 kvm_make_request(KVM_REQ_PMU, vcpu);
10503 static_call(kvm_x86_sched_in)(vcpu, cpu);
10506 void kvm_arch_free_vm(struct kvm *kvm)
10508 kfree(to_kvm_hv(kvm)->hv_pa_pg);
10513 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
10518 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
10519 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
10520 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
10521 INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
10522 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
10523 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
10525 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
10526 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
10527 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
10528 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
10529 &kvm->arch.irq_sources_bitmap);
10531 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
10532 mutex_init(&kvm->arch.apic_map_lock);
10533 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
10535 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
10536 pvclock_update_vm_gtod_copy(kvm);
10538 kvm->arch.guest_can_read_msr_platform_info = true;
10540 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
10541 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
10543 kvm_hv_init_vm(kvm);
10544 kvm_page_track_init(kvm);
10545 kvm_mmu_init_vm(kvm);
10547 return static_call(kvm_x86_vm_init)(kvm);
10550 int kvm_arch_post_init_vm(struct kvm *kvm)
10552 return kvm_mmu_post_init_vm(kvm);
10555 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
10558 kvm_mmu_unload(vcpu);
10562 static void kvm_free_vcpus(struct kvm *kvm)
10565 struct kvm_vcpu *vcpu;
10568 * Unpin any mmu pages first.
10570 kvm_for_each_vcpu(i, vcpu, kvm) {
10571 kvm_clear_async_pf_completion_queue(vcpu);
10572 kvm_unload_vcpu_mmu(vcpu);
10574 kvm_for_each_vcpu(i, vcpu, kvm)
10575 kvm_vcpu_destroy(vcpu);
10577 mutex_lock(&kvm->lock);
10578 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
10579 kvm->vcpus[i] = NULL;
10581 atomic_set(&kvm->online_vcpus, 0);
10582 mutex_unlock(&kvm->lock);
10585 void kvm_arch_sync_events(struct kvm *kvm)
10587 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
10588 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
10592 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e))
10595 * __x86_set_memory_region: Setup KVM internal memory slot
10597 * @kvm: the kvm pointer to the VM.
10598 * @id: the slot ID to setup.
10599 * @gpa: the GPA to install the slot (unused when @size == 0).
10600 * @size: the size of the slot. Set to zero to uninstall a slot.
10602 * This function helps to setup a KVM internal memory slot. Specify
10603 * @size > 0 to install a new slot, while @size == 0 to uninstall a
10604 * slot. The return code can be one of the following:
10606 * HVA: on success (uninstall will return a bogus HVA)
10609 * The caller should always use IS_ERR() to check the return value
10610 * before use. Note, the KVM internal memory slots are guaranteed to
10611 * remain valid and unchanged until the VM is destroyed, i.e., the
10612 * GPA->HVA translation will not change. However, the HVA is a user
10613 * address, i.e. its accessibility is not guaranteed, and must be
10614 * accessed via __copy_{to,from}_user().
10616 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
10620 unsigned long hva, old_npages;
10621 struct kvm_memslots *slots = kvm_memslots(kvm);
10622 struct kvm_memory_slot *slot;
10624 /* Called with kvm->slots_lock held. */
10625 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
10626 return ERR_PTR_USR(-EINVAL);
10628 slot = id_to_memslot(slots, id);
10630 if (slot && slot->npages)
10631 return ERR_PTR_USR(-EEXIST);
10634 * MAP_SHARED to prevent internal slot pages from being moved
10637 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
10638 MAP_SHARED | MAP_ANONYMOUS, 0);
10639 if (IS_ERR((void *)hva))
10640 return (void __user *)hva;
10642 if (!slot || !slot->npages)
10645 old_npages = slot->npages;
10646 hva = slot->userspace_addr;
10649 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
10650 struct kvm_userspace_memory_region m;
10652 m.slot = id | (i << 16);
10654 m.guest_phys_addr = gpa;
10655 m.userspace_addr = hva;
10656 m.memory_size = size;
10657 r = __kvm_set_memory_region(kvm, &m);
10659 return ERR_PTR_USR(r);
10663 vm_munmap(hva, old_npages * PAGE_SIZE);
10665 return (void __user *)hva;
10667 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
10669 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
10671 kvm_mmu_pre_destroy_vm(kvm);
10674 void kvm_arch_destroy_vm(struct kvm *kvm)
10676 if (current->mm == kvm->mm) {
10678 * Free memory regions allocated on behalf of userspace,
10679 * unless the the memory map has changed due to process exit
10682 mutex_lock(&kvm->slots_lock);
10683 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
10685 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
10687 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
10688 mutex_unlock(&kvm->slots_lock);
10690 static_call_cond(kvm_x86_vm_destroy)(kvm);
10691 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
10692 kvm_pic_destroy(kvm);
10693 kvm_ioapic_destroy(kvm);
10694 kvm_free_vcpus(kvm);
10695 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
10696 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
10697 kvm_mmu_uninit_vm(kvm);
10698 kvm_page_track_cleanup(kvm);
10699 kvm_xen_destroy_vm(kvm);
10700 kvm_hv_destroy_vm(kvm);
10703 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
10707 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10708 kvfree(slot->arch.rmap[i]);
10709 slot->arch.rmap[i] = NULL;
10714 kvfree(slot->arch.lpage_info[i - 1]);
10715 slot->arch.lpage_info[i - 1] = NULL;
10718 kvm_page_track_free_memslot(slot);
10721 static int kvm_alloc_memslot_metadata(struct kvm_memory_slot *slot,
10722 unsigned long npages)
10727 * Clear out the previous array pointers for the KVM_MR_MOVE case. The
10728 * old arrays will be freed by __kvm_set_memory_region() if installing
10729 * the new memslot is successful.
10731 memset(&slot->arch, 0, sizeof(slot->arch));
10733 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10734 struct kvm_lpage_info *linfo;
10735 unsigned long ugfn;
10739 lpages = gfn_to_index(slot->base_gfn + npages - 1,
10740 slot->base_gfn, level) + 1;
10742 slot->arch.rmap[i] =
10743 kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
10744 GFP_KERNEL_ACCOUNT);
10745 if (!slot->arch.rmap[i])
10750 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
10754 slot->arch.lpage_info[i - 1] = linfo;
10756 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
10757 linfo[0].disallow_lpage = 1;
10758 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
10759 linfo[lpages - 1].disallow_lpage = 1;
10760 ugfn = slot->userspace_addr >> PAGE_SHIFT;
10762 * If the gfn and userspace address are not aligned wrt each
10763 * other, disable large page support for this slot.
10765 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
10768 for (j = 0; j < lpages; ++j)
10769 linfo[j].disallow_lpage = 1;
10773 if (kvm_page_track_create_memslot(slot, npages))
10779 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10780 kvfree(slot->arch.rmap[i]);
10781 slot->arch.rmap[i] = NULL;
10785 kvfree(slot->arch.lpage_info[i - 1]);
10786 slot->arch.lpage_info[i - 1] = NULL;
10791 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
10793 struct kvm_vcpu *vcpu;
10797 * memslots->generation has been incremented.
10798 * mmio generation may have reached its maximum value.
10800 kvm_mmu_invalidate_mmio_sptes(kvm, gen);
10802 /* Force re-initialization of steal_time cache */
10803 kvm_for_each_vcpu(i, vcpu, kvm)
10804 kvm_vcpu_kick(vcpu);
10807 int kvm_arch_prepare_memory_region(struct kvm *kvm,
10808 struct kvm_memory_slot *memslot,
10809 const struct kvm_userspace_memory_region *mem,
10810 enum kvm_mr_change change)
10812 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE)
10813 return kvm_alloc_memslot_metadata(memslot,
10814 mem->memory_size >> PAGE_SHIFT);
10819 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
10821 struct kvm_arch *ka = &kvm->arch;
10823 if (!kvm_x86_ops.cpu_dirty_log_size)
10826 if ((enable && ++ka->cpu_dirty_logging_count == 1) ||
10827 (!enable && --ka->cpu_dirty_logging_count == 0))
10828 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
10830 WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0);
10833 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
10834 struct kvm_memory_slot *old,
10835 struct kvm_memory_slot *new,
10836 enum kvm_mr_change change)
10838 bool log_dirty_pages = new->flags & KVM_MEM_LOG_DIRTY_PAGES;
10841 * Update CPU dirty logging if dirty logging is being toggled. This
10842 * applies to all operations.
10844 if ((old->flags ^ new->flags) & KVM_MEM_LOG_DIRTY_PAGES)
10845 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
10848 * Nothing more to do for RO slots (which can't be dirtied and can't be
10849 * made writable) or CREATE/MOVE/DELETE of a slot.
10851 * For a memslot with dirty logging disabled:
10852 * CREATE: No dirty mappings will already exist.
10853 * MOVE/DELETE: The old mappings will already have been cleaned up by
10854 * kvm_arch_flush_shadow_memslot()
10856 * For a memslot with dirty logging enabled:
10857 * CREATE: No shadow pages exist, thus nothing to write-protect
10858 * and no dirty bits to clear.
10859 * MOVE/DELETE: The old mappings will already have been cleaned up by
10860 * kvm_arch_flush_shadow_memslot().
10862 if ((change != KVM_MR_FLAGS_ONLY) || (new->flags & KVM_MEM_READONLY))
10866 * READONLY and non-flags changes were filtered out above, and the only
10867 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
10868 * logging isn't being toggled on or off.
10870 if (WARN_ON_ONCE(!((old->flags ^ new->flags) & KVM_MEM_LOG_DIRTY_PAGES)))
10873 if (!log_dirty_pages) {
10875 * Dirty logging tracks sptes in 4k granularity, meaning that
10876 * large sptes have to be split. If live migration succeeds,
10877 * the guest in the source machine will be destroyed and large
10878 * sptes will be created in the destination. However, if the
10879 * guest continues to run in the source machine (for example if
10880 * live migration fails), small sptes will remain around and
10881 * cause bad performance.
10883 * Scan sptes if dirty logging has been stopped, dropping those
10884 * which can be collapsed into a single large-page spte. Later
10885 * page faults will create the large-page sptes.
10887 kvm_mmu_zap_collapsible_sptes(kvm, new);
10889 /* By default, write-protect everything to log writes. */
10890 int level = PG_LEVEL_4K;
10892 if (kvm_x86_ops.cpu_dirty_log_size) {
10894 * Clear all dirty bits, unless pages are treated as
10895 * dirty from the get-go.
10897 if (!kvm_dirty_log_manual_protect_and_init_set(kvm))
10898 kvm_mmu_slot_leaf_clear_dirty(kvm, new);
10901 * Write-protect large pages on write so that dirty
10902 * logging happens at 4k granularity. No need to
10903 * write-protect small SPTEs since write accesses are
10904 * logged by the CPU via dirty bits.
10906 level = PG_LEVEL_2M;
10907 } else if (kvm_dirty_log_manual_protect_and_init_set(kvm)) {
10909 * If we're with initial-all-set, we don't need
10910 * to write protect any small page because
10911 * they're reported as dirty already. However
10912 * we still need to write-protect huge pages
10913 * so that the page split can happen lazily on
10914 * the first write to the huge page.
10916 level = PG_LEVEL_2M;
10918 kvm_mmu_slot_remove_write_access(kvm, new, level);
10922 void kvm_arch_commit_memory_region(struct kvm *kvm,
10923 const struct kvm_userspace_memory_region *mem,
10924 struct kvm_memory_slot *old,
10925 const struct kvm_memory_slot *new,
10926 enum kvm_mr_change change)
10928 if (!kvm->arch.n_requested_mmu_pages)
10929 kvm_mmu_change_mmu_pages(kvm,
10930 kvm_mmu_calculate_default_mmu_pages(kvm));
10933 * FIXME: const-ify all uses of struct kvm_memory_slot.
10935 kvm_mmu_slot_apply_flags(kvm, old, (struct kvm_memory_slot *) new, change);
10937 /* Free the arrays associated with the old memslot. */
10938 if (change == KVM_MR_MOVE)
10939 kvm_arch_free_memslot(kvm, old);
10942 void kvm_arch_flush_shadow_all(struct kvm *kvm)
10944 kvm_mmu_zap_all(kvm);
10947 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
10948 struct kvm_memory_slot *slot)
10950 kvm_page_track_flush_slot(kvm, slot);
10953 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
10955 return (is_guest_mode(vcpu) &&
10956 kvm_x86_ops.guest_apic_has_interrupt &&
10957 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
10960 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
10962 if (!list_empty_careful(&vcpu->async_pf.done))
10965 if (kvm_apic_has_events(vcpu))
10968 if (vcpu->arch.pv.pv_unhalted)
10971 if (vcpu->arch.exception.pending)
10974 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
10975 (vcpu->arch.nmi_pending &&
10976 static_call(kvm_x86_nmi_allowed)(vcpu, false)))
10979 if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
10980 (vcpu->arch.smi_pending &&
10981 static_call(kvm_x86_smi_allowed)(vcpu, false)))
10984 if (kvm_arch_interrupt_allowed(vcpu) &&
10985 (kvm_cpu_has_interrupt(vcpu) ||
10986 kvm_guest_apic_has_interrupt(vcpu)))
10989 if (kvm_hv_has_stimer_pending(vcpu))
10992 if (is_guest_mode(vcpu) &&
10993 kvm_x86_ops.nested_ops->hv_timer_pending &&
10994 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
11000 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
11002 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
11005 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
11007 if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
11010 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11011 kvm_test_request(KVM_REQ_SMI, vcpu) ||
11012 kvm_test_request(KVM_REQ_EVENT, vcpu))
11015 if (vcpu->arch.apicv_active && static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
11021 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
11023 return vcpu->arch.preempted_in_kernel;
11026 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
11028 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
11031 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
11033 return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
11036 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
11038 /* Can't read the RIP when guest state is protected, just return 0 */
11039 if (vcpu->arch.guest_state_protected)
11042 if (is_64_bit_mode(vcpu))
11043 return kvm_rip_read(vcpu);
11044 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
11045 kvm_rip_read(vcpu));
11047 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
11049 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
11051 return kvm_get_linear_rip(vcpu) == linear_rip;
11053 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
11055 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
11057 unsigned long rflags;
11059 rflags = static_call(kvm_x86_get_rflags)(vcpu);
11060 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11061 rflags &= ~X86_EFLAGS_TF;
11064 EXPORT_SYMBOL_GPL(kvm_get_rflags);
11066 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
11068 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
11069 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
11070 rflags |= X86_EFLAGS_TF;
11071 static_call(kvm_x86_set_rflags)(vcpu, rflags);
11074 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
11076 __kvm_set_rflags(vcpu, rflags);
11077 kvm_make_request(KVM_REQ_EVENT, vcpu);
11079 EXPORT_SYMBOL_GPL(kvm_set_rflags);
11081 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
11085 if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
11089 r = kvm_mmu_reload(vcpu);
11093 if (!vcpu->arch.mmu->direct_map &&
11094 work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
11097 kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
11100 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
11102 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
11104 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
11107 static inline u32 kvm_async_pf_next_probe(u32 key)
11109 return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
11112 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11114 u32 key = kvm_async_pf_hash_fn(gfn);
11116 while (vcpu->arch.apf.gfns[key] != ~0)
11117 key = kvm_async_pf_next_probe(key);
11119 vcpu->arch.apf.gfns[key] = gfn;
11122 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
11125 u32 key = kvm_async_pf_hash_fn(gfn);
11127 for (i = 0; i < ASYNC_PF_PER_VCPU &&
11128 (vcpu->arch.apf.gfns[key] != gfn &&
11129 vcpu->arch.apf.gfns[key] != ~0); i++)
11130 key = kvm_async_pf_next_probe(key);
11135 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11137 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
11140 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11144 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
11146 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
11150 vcpu->arch.apf.gfns[i] = ~0;
11152 j = kvm_async_pf_next_probe(j);
11153 if (vcpu->arch.apf.gfns[j] == ~0)
11155 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
11157 * k lies cyclically in ]i,j]
11159 * |....j i.k.| or |.k..j i...|
11161 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
11162 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
11167 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
11169 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
11171 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
11175 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
11177 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
11179 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
11180 &token, offset, sizeof(token));
11183 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
11185 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
11188 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
11189 &val, offset, sizeof(val)))
11195 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
11197 if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
11200 if (!kvm_pv_async_pf_enabled(vcpu) ||
11201 (vcpu->arch.apf.send_user_only && static_call(kvm_x86_get_cpl)(vcpu) == 0))
11207 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
11209 if (unlikely(!lapic_in_kernel(vcpu) ||
11210 kvm_event_needs_reinjection(vcpu) ||
11211 vcpu->arch.exception.pending))
11214 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
11218 * If interrupts are off we cannot even use an artificial
11221 return kvm_arch_interrupt_allowed(vcpu);
11224 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
11225 struct kvm_async_pf *work)
11227 struct x86_exception fault;
11229 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
11230 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
11232 if (kvm_can_deliver_async_pf(vcpu) &&
11233 !apf_put_user_notpresent(vcpu)) {
11234 fault.vector = PF_VECTOR;
11235 fault.error_code_valid = true;
11236 fault.error_code = 0;
11237 fault.nested_page_fault = false;
11238 fault.address = work->arch.token;
11239 fault.async_page_fault = true;
11240 kvm_inject_page_fault(vcpu, &fault);
11244 * It is not possible to deliver a paravirtualized asynchronous
11245 * page fault, but putting the guest in an artificial halt state
11246 * can be beneficial nevertheless: if an interrupt arrives, we
11247 * can deliver it timely and perhaps the guest will schedule
11248 * another process. When the instruction that triggered a page
11249 * fault is retried, hopefully the page will be ready in the host.
11251 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
11256 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
11257 struct kvm_async_pf *work)
11259 struct kvm_lapic_irq irq = {
11260 .delivery_mode = APIC_DM_FIXED,
11261 .vector = vcpu->arch.apf.vec
11264 if (work->wakeup_all)
11265 work->arch.token = ~0; /* broadcast wakeup */
11267 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
11268 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
11270 if ((work->wakeup_all || work->notpresent_injected) &&
11271 kvm_pv_async_pf_enabled(vcpu) &&
11272 !apf_put_user_ready(vcpu, work->arch.token)) {
11273 vcpu->arch.apf.pageready_pending = true;
11274 kvm_apic_set_irq(vcpu, &irq, NULL);
11277 vcpu->arch.apf.halted = false;
11278 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11281 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
11283 kvm_make_request(KVM_REQ_APF_READY, vcpu);
11284 if (!vcpu->arch.apf.pageready_pending)
11285 kvm_vcpu_kick(vcpu);
11288 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
11290 if (!kvm_pv_async_pf_enabled(vcpu))
11293 return apf_pageready_slot_free(vcpu);
11296 void kvm_arch_start_assignment(struct kvm *kvm)
11298 atomic_inc(&kvm->arch.assigned_device_count);
11300 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
11302 void kvm_arch_end_assignment(struct kvm *kvm)
11304 atomic_dec(&kvm->arch.assigned_device_count);
11306 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
11308 bool kvm_arch_has_assigned_device(struct kvm *kvm)
11310 return atomic_read(&kvm->arch.assigned_device_count);
11312 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
11314 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
11316 atomic_inc(&kvm->arch.noncoherent_dma_count);
11318 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
11320 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
11322 atomic_dec(&kvm->arch.noncoherent_dma_count);
11324 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
11326 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
11328 return atomic_read(&kvm->arch.noncoherent_dma_count);
11330 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
11332 bool kvm_arch_has_irq_bypass(void)
11337 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
11338 struct irq_bypass_producer *prod)
11340 struct kvm_kernel_irqfd *irqfd =
11341 container_of(cons, struct kvm_kernel_irqfd, consumer);
11344 irqfd->producer = prod;
11345 kvm_arch_start_assignment(irqfd->kvm);
11346 ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm,
11347 prod->irq, irqfd->gsi, 1);
11350 kvm_arch_end_assignment(irqfd->kvm);
11355 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
11356 struct irq_bypass_producer *prod)
11359 struct kvm_kernel_irqfd *irqfd =
11360 container_of(cons, struct kvm_kernel_irqfd, consumer);
11362 WARN_ON(irqfd->producer != prod);
11363 irqfd->producer = NULL;
11366 * When producer of consumer is unregistered, we change back to
11367 * remapped mode, so we can re-use the current implementation
11368 * when the irq is masked/disabled or the consumer side (KVM
11369 * int this case doesn't want to receive the interrupts.
11371 ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
11373 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
11374 " fails: %d\n", irqfd->consumer.token, ret);
11376 kvm_arch_end_assignment(irqfd->kvm);
11379 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
11380 uint32_t guest_irq, bool set)
11382 return static_call(kvm_x86_update_pi_irte)(kvm, host_irq, guest_irq, set);
11385 bool kvm_vector_hashing_enabled(void)
11387 return vector_hashing;
11390 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
11392 return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
11394 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
11397 int kvm_spec_ctrl_test_value(u64 value)
11400 * test that setting IA32_SPEC_CTRL to given value
11401 * is allowed by the host processor
11405 unsigned long flags;
11408 local_irq_save(flags);
11410 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
11412 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
11415 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
11417 local_irq_restore(flags);
11421 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
11423 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
11425 struct x86_exception fault;
11426 u32 access = error_code &
11427 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
11429 if (!(error_code & PFERR_PRESENT_MASK) ||
11430 vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, &fault) != UNMAPPED_GVA) {
11432 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
11433 * tables probably do not match the TLB. Just proceed
11434 * with the error code that the processor gave.
11436 fault.vector = PF_VECTOR;
11437 fault.error_code_valid = true;
11438 fault.error_code = error_code;
11439 fault.nested_page_fault = false;
11440 fault.address = gva;
11442 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
11444 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
11447 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
11448 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
11449 * indicates whether exit to userspace is needed.
11451 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
11452 struct x86_exception *e)
11454 if (r == X86EMUL_PROPAGATE_FAULT) {
11455 kvm_inject_emulated_page_fault(vcpu, e);
11460 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
11461 * while handling a VMX instruction KVM could've handled the request
11462 * correctly by exiting to userspace and performing I/O but there
11463 * doesn't seem to be a real use-case behind such requests, just return
11464 * KVM_EXIT_INTERNAL_ERROR for now.
11466 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11467 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11468 vcpu->run->internal.ndata = 0;
11472 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
11474 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
11477 struct x86_exception e;
11479 unsigned long roots_to_free = 0;
11486 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
11487 if (r != X86EMUL_CONTINUE)
11488 return kvm_handle_memory_failure(vcpu, r, &e);
11490 if (operand.pcid >> 12 != 0) {
11491 kvm_inject_gp(vcpu, 0);
11495 pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
11498 case INVPCID_TYPE_INDIV_ADDR:
11499 if ((!pcid_enabled && (operand.pcid != 0)) ||
11500 is_noncanonical_address(operand.gla, vcpu)) {
11501 kvm_inject_gp(vcpu, 0);
11504 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
11505 return kvm_skip_emulated_instruction(vcpu);
11507 case INVPCID_TYPE_SINGLE_CTXT:
11508 if (!pcid_enabled && (operand.pcid != 0)) {
11509 kvm_inject_gp(vcpu, 0);
11513 if (kvm_get_active_pcid(vcpu) == operand.pcid) {
11514 kvm_mmu_sync_roots(vcpu);
11515 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
11518 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
11519 if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].pgd)
11521 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
11523 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
11525 * If neither the current cr3 nor any of the prev_roots use the
11526 * given PCID, then nothing needs to be done here because a
11527 * resync will happen anyway before switching to any other CR3.
11530 return kvm_skip_emulated_instruction(vcpu);
11532 case INVPCID_TYPE_ALL_NON_GLOBAL:
11534 * Currently, KVM doesn't mark global entries in the shadow
11535 * page tables, so a non-global flush just degenerates to a
11536 * global flush. If needed, we could optimize this later by
11537 * keeping track of global entries in shadow page tables.
11541 case INVPCID_TYPE_ALL_INCL_GLOBAL:
11542 kvm_mmu_unload(vcpu);
11543 return kvm_skip_emulated_instruction(vcpu);
11546 BUG(); /* We have already checked above that type <= 3 */
11549 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
11551 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
11553 struct kvm_run *run = vcpu->run;
11554 struct kvm_mmio_fragment *frag;
11557 BUG_ON(!vcpu->mmio_needed);
11559 /* Complete previous fragment */
11560 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
11561 len = min(8u, frag->len);
11562 if (!vcpu->mmio_is_write)
11563 memcpy(frag->data, run->mmio.data, len);
11565 if (frag->len <= 8) {
11566 /* Switch to the next fragment. */
11568 vcpu->mmio_cur_fragment++;
11570 /* Go forward to the next mmio piece. */
11576 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
11577 vcpu->mmio_needed = 0;
11579 // VMG change, at this point, we're always done
11580 // RIP has already been advanced
11584 // More MMIO is needed
11585 run->mmio.phys_addr = frag->gpa;
11586 run->mmio.len = min(8u, frag->len);
11587 run->mmio.is_write = vcpu->mmio_is_write;
11588 if (run->mmio.is_write)
11589 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
11590 run->exit_reason = KVM_EXIT_MMIO;
11592 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
11597 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
11601 struct kvm_mmio_fragment *frag;
11606 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
11607 if (handled == bytes)
11614 /*TODO: Check if need to increment number of frags */
11615 frag = vcpu->mmio_fragments;
11616 vcpu->mmio_nr_fragments = 1;
11621 vcpu->mmio_needed = 1;
11622 vcpu->mmio_cur_fragment = 0;
11624 vcpu->run->mmio.phys_addr = gpa;
11625 vcpu->run->mmio.len = min(8u, frag->len);
11626 vcpu->run->mmio.is_write = 1;
11627 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
11628 vcpu->run->exit_reason = KVM_EXIT_MMIO;
11630 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
11634 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
11636 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
11640 struct kvm_mmio_fragment *frag;
11645 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
11646 if (handled == bytes)
11653 /*TODO: Check if need to increment number of frags */
11654 frag = vcpu->mmio_fragments;
11655 vcpu->mmio_nr_fragments = 1;
11660 vcpu->mmio_needed = 1;
11661 vcpu->mmio_cur_fragment = 0;
11663 vcpu->run->mmio.phys_addr = gpa;
11664 vcpu->run->mmio.len = min(8u, frag->len);
11665 vcpu->run->mmio.is_write = 0;
11666 vcpu->run->exit_reason = KVM_EXIT_MMIO;
11668 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
11672 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
11674 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
11676 memcpy(vcpu->arch.guest_ins_data, vcpu->arch.pio_data,
11677 vcpu->arch.pio.count * vcpu->arch.pio.size);
11678 vcpu->arch.pio.count = 0;
11683 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
11684 unsigned int port, void *data, unsigned int count)
11688 ret = emulator_pio_out_emulated(vcpu->arch.emulate_ctxt, size, port,
11693 vcpu->arch.pio.count = 0;
11698 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
11699 unsigned int port, void *data, unsigned int count)
11703 ret = emulator_pio_in_emulated(vcpu->arch.emulate_ctxt, size, port,
11706 vcpu->arch.pio.count = 0;
11708 vcpu->arch.guest_ins_data = data;
11709 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
11715 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
11716 unsigned int port, void *data, unsigned int count,
11719 return in ? kvm_sev_es_ins(vcpu, size, port, data, count)
11720 : kvm_sev_es_outs(vcpu, size, port, data, count);
11722 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
11724 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
11725 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
11726 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
11727 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
11728 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
11729 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
11730 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
11731 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
11732 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
11733 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
11734 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
11735 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
11736 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
11737 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
11738 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
11739 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
11740 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
11741 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
11742 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
11743 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
11744 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
11745 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
11746 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request);
11747 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
11748 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
11749 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
11750 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);