2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
22 #include <linux/kvm_host.h>
27 #include "kvm_cache_regs.h"
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/mem_encrypt.h>
59 #include <trace/events/kvm.h>
61 #include <asm/debugreg.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70 #include <asm/mshyperv.h>
71 #include <asm/hypervisor.h>
73 #define CREATE_TRACE_POINTS
76 #define MAX_IO_MSRS 256
77 #define KVM_MAX_MCE_BANKS 32
78 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
79 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
81 #define emul_to_vcpu(ctxt) \
82 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
85 * - enable syscall per default because its emulated by KVM
86 * - enable LME and LMA per default on 64 bit KVM
90 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
92 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
95 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
96 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
98 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
99 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
101 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
102 static void process_nmi(struct kvm_vcpu *vcpu);
103 static void enter_smm(struct kvm_vcpu *vcpu);
104 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
105 static void store_regs(struct kvm_vcpu *vcpu);
106 static int sync_regs(struct kvm_vcpu *vcpu);
108 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
109 EXPORT_SYMBOL_GPL(kvm_x86_ops);
111 static bool __read_mostly ignore_msrs = 0;
112 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
114 static bool __read_mostly report_ignored_msrs = true;
115 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
117 unsigned int min_timer_period_us = 200;
118 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
120 static bool __read_mostly kvmclock_periodic_sync = true;
121 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
123 bool __read_mostly kvm_has_tsc_control;
124 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
125 u32 __read_mostly kvm_max_guest_tsc_khz;
126 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
127 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits;
128 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
129 u64 __read_mostly kvm_max_tsc_scaling_ratio;
130 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
131 u64 __read_mostly kvm_default_tsc_scaling_ratio;
132 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
134 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
135 static u32 __read_mostly tsc_tolerance_ppm = 250;
136 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
138 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
139 unsigned int __read_mostly lapic_timer_advance_ns = 0;
140 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
141 EXPORT_SYMBOL_GPL(lapic_timer_advance_ns);
143 static bool __read_mostly vector_hashing = true;
144 module_param(vector_hashing, bool, S_IRUGO);
146 bool __read_mostly enable_vmware_backdoor = false;
147 module_param(enable_vmware_backdoor, bool, S_IRUGO);
148 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
150 static bool __read_mostly force_emulation_prefix = false;
151 module_param(force_emulation_prefix, bool, S_IRUGO);
153 #define KVM_NR_SHARED_MSRS 16
155 struct kvm_shared_msrs_global {
157 u32 msrs[KVM_NR_SHARED_MSRS];
160 struct kvm_shared_msrs {
161 struct user_return_notifier urn;
163 struct kvm_shared_msr_values {
166 } values[KVM_NR_SHARED_MSRS];
169 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
170 static struct kvm_shared_msrs __percpu *shared_msrs;
172 struct kvm_stats_debugfs_item debugfs_entries[] = {
173 { "pf_fixed", VCPU_STAT(pf_fixed) },
174 { "pf_guest", VCPU_STAT(pf_guest) },
175 { "tlb_flush", VCPU_STAT(tlb_flush) },
176 { "invlpg", VCPU_STAT(invlpg) },
177 { "exits", VCPU_STAT(exits) },
178 { "io_exits", VCPU_STAT(io_exits) },
179 { "mmio_exits", VCPU_STAT(mmio_exits) },
180 { "signal_exits", VCPU_STAT(signal_exits) },
181 { "irq_window", VCPU_STAT(irq_window_exits) },
182 { "nmi_window", VCPU_STAT(nmi_window_exits) },
183 { "halt_exits", VCPU_STAT(halt_exits) },
184 { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
185 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
186 { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
187 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
188 { "hypercalls", VCPU_STAT(hypercalls) },
189 { "request_irq", VCPU_STAT(request_irq_exits) },
190 { "irq_exits", VCPU_STAT(irq_exits) },
191 { "host_state_reload", VCPU_STAT(host_state_reload) },
192 { "fpu_reload", VCPU_STAT(fpu_reload) },
193 { "insn_emulation", VCPU_STAT(insn_emulation) },
194 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
195 { "irq_injections", VCPU_STAT(irq_injections) },
196 { "nmi_injections", VCPU_STAT(nmi_injections) },
197 { "req_event", VCPU_STAT(req_event) },
198 { "l1d_flush", VCPU_STAT(l1d_flush) },
199 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
200 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
201 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
202 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
203 { "mmu_flooded", VM_STAT(mmu_flooded) },
204 { "mmu_recycled", VM_STAT(mmu_recycled) },
205 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
206 { "mmu_unsync", VM_STAT(mmu_unsync) },
207 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
208 { "largepages", VM_STAT(lpages) },
209 { "max_mmu_page_hash_collisions",
210 VM_STAT(max_mmu_page_hash_collisions) },
214 u64 __read_mostly host_xcr0;
216 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
218 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
221 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
222 vcpu->arch.apf.gfns[i] = ~0;
225 static void kvm_on_user_return(struct user_return_notifier *urn)
228 struct kvm_shared_msrs *locals
229 = container_of(urn, struct kvm_shared_msrs, urn);
230 struct kvm_shared_msr_values *values;
234 * Disabling irqs at this point since the following code could be
235 * interrupted and executed through kvm_arch_hardware_disable()
237 local_irq_save(flags);
238 if (locals->registered) {
239 locals->registered = false;
240 user_return_notifier_unregister(urn);
242 local_irq_restore(flags);
243 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
244 values = &locals->values[slot];
245 if (values->host != values->curr) {
246 wrmsrl(shared_msrs_global.msrs[slot], values->host);
247 values->curr = values->host;
252 static void shared_msr_update(unsigned slot, u32 msr)
255 unsigned int cpu = smp_processor_id();
256 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
258 /* only read, and nobody should modify it at this time,
259 * so don't need lock */
260 if (slot >= shared_msrs_global.nr) {
261 printk(KERN_ERR "kvm: invalid MSR slot!");
264 rdmsrl_safe(msr, &value);
265 smsr->values[slot].host = value;
266 smsr->values[slot].curr = value;
269 void kvm_define_shared_msr(unsigned slot, u32 msr)
271 BUG_ON(slot >= KVM_NR_SHARED_MSRS);
272 shared_msrs_global.msrs[slot] = msr;
273 if (slot >= shared_msrs_global.nr)
274 shared_msrs_global.nr = slot + 1;
276 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
278 static void kvm_shared_msr_cpu_online(void)
282 for (i = 0; i < shared_msrs_global.nr; ++i)
283 shared_msr_update(i, shared_msrs_global.msrs[i]);
286 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
288 unsigned int cpu = smp_processor_id();
289 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
292 if (((value ^ smsr->values[slot].curr) & mask) == 0)
294 smsr->values[slot].curr = value;
295 err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
299 if (!smsr->registered) {
300 smsr->urn.on_user_return = kvm_on_user_return;
301 user_return_notifier_register(&smsr->urn);
302 smsr->registered = true;
306 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
308 static void drop_user_return_notifiers(void)
310 unsigned int cpu = smp_processor_id();
311 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
313 if (smsr->registered)
314 kvm_on_user_return(&smsr->urn);
317 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
319 return vcpu->arch.apic_base;
321 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
323 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
325 return kvm_apic_mode(kvm_get_apic_base(vcpu));
327 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
329 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
331 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
332 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
333 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
334 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
336 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
338 if (!msr_info->host_initiated) {
339 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
341 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
345 kvm_lapic_set_base(vcpu, msr_info->data);
348 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
350 asmlinkage __visible void kvm_spurious_fault(void)
352 /* Fault while not rebooting. We want the trace. */
355 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
357 #define EXCPT_BENIGN 0
358 #define EXCPT_CONTRIBUTORY 1
361 static int exception_class(int vector)
371 return EXCPT_CONTRIBUTORY;
378 #define EXCPT_FAULT 0
380 #define EXCPT_ABORT 2
381 #define EXCPT_INTERRUPT 3
383 static int exception_type(int vector)
387 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
388 return EXCPT_INTERRUPT;
392 /* #DB is trap, as instruction watchpoints are handled elsewhere */
393 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
396 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
399 /* Reserved exceptions will result in fault */
403 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
404 unsigned nr, bool has_error, u32 error_code,
410 kvm_make_request(KVM_REQ_EVENT, vcpu);
412 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
414 if (has_error && !is_protmode(vcpu))
418 * On vmentry, vcpu->arch.exception.pending is only
419 * true if an event injection was blocked by
420 * nested_run_pending. In that case, however,
421 * vcpu_enter_guest requests an immediate exit,
422 * and the guest shouldn't proceed far enough to
425 WARN_ON_ONCE(vcpu->arch.exception.pending);
426 vcpu->arch.exception.injected = true;
428 vcpu->arch.exception.pending = true;
429 vcpu->arch.exception.injected = false;
431 vcpu->arch.exception.has_error_code = has_error;
432 vcpu->arch.exception.nr = nr;
433 vcpu->arch.exception.error_code = error_code;
437 /* to check exception */
438 prev_nr = vcpu->arch.exception.nr;
439 if (prev_nr == DF_VECTOR) {
440 /* triple fault -> shutdown */
441 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
444 class1 = exception_class(prev_nr);
445 class2 = exception_class(nr);
446 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
447 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
449 * Generate double fault per SDM Table 5-5. Set
450 * exception.pending = true so that the double fault
451 * can trigger a nested vmexit.
453 vcpu->arch.exception.pending = true;
454 vcpu->arch.exception.injected = false;
455 vcpu->arch.exception.has_error_code = true;
456 vcpu->arch.exception.nr = DF_VECTOR;
457 vcpu->arch.exception.error_code = 0;
459 /* replace previous exception with a new one in a hope
460 that instruction re-execution will regenerate lost
465 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
467 kvm_multiple_exception(vcpu, nr, false, 0, false);
469 EXPORT_SYMBOL_GPL(kvm_queue_exception);
471 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
473 kvm_multiple_exception(vcpu, nr, false, 0, true);
475 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
477 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
480 kvm_inject_gp(vcpu, 0);
482 return kvm_skip_emulated_instruction(vcpu);
486 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
488 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
490 ++vcpu->stat.pf_guest;
491 vcpu->arch.exception.nested_apf =
492 is_guest_mode(vcpu) && fault->async_page_fault;
493 if (vcpu->arch.exception.nested_apf)
494 vcpu->arch.apf.nested_apf_token = fault->address;
496 vcpu->arch.cr2 = fault->address;
497 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
499 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
501 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
503 if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
504 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
506 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
508 return fault->nested_page_fault;
511 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
513 atomic_inc(&vcpu->arch.nmi_queued);
514 kvm_make_request(KVM_REQ_NMI, vcpu);
516 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
518 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
520 kvm_multiple_exception(vcpu, nr, true, error_code, false);
522 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
524 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
526 kvm_multiple_exception(vcpu, nr, true, error_code, true);
528 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
531 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
532 * a #GP and return false.
534 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
536 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
538 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
541 EXPORT_SYMBOL_GPL(kvm_require_cpl);
543 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
545 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
548 kvm_queue_exception(vcpu, UD_VECTOR);
551 EXPORT_SYMBOL_GPL(kvm_require_dr);
554 * This function will be used to read from the physical memory of the currently
555 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
556 * can read from guest physical or from the guest's guest physical memory.
558 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
559 gfn_t ngfn, void *data, int offset, int len,
562 struct x86_exception exception;
566 ngpa = gfn_to_gpa(ngfn);
567 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
568 if (real_gfn == UNMAPPED_GVA)
571 real_gfn = gpa_to_gfn(real_gfn);
573 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
575 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
577 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
578 void *data, int offset, int len, u32 access)
580 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
581 data, offset, len, access);
585 * Load the pae pdptrs. Return true is they are all valid.
587 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
589 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
590 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
593 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
595 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
596 offset * sizeof(u64), sizeof(pdpte),
597 PFERR_USER_MASK|PFERR_WRITE_MASK);
602 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
603 if ((pdpte[i] & PT_PRESENT_MASK) &&
605 vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
612 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
613 __set_bit(VCPU_EXREG_PDPTR,
614 (unsigned long *)&vcpu->arch.regs_avail);
615 __set_bit(VCPU_EXREG_PDPTR,
616 (unsigned long *)&vcpu->arch.regs_dirty);
621 EXPORT_SYMBOL_GPL(load_pdptrs);
623 bool pdptrs_changed(struct kvm_vcpu *vcpu)
625 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
631 if (is_long_mode(vcpu) || !is_pae(vcpu))
634 if (!test_bit(VCPU_EXREG_PDPTR,
635 (unsigned long *)&vcpu->arch.regs_avail))
638 gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
639 offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
640 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
641 PFERR_USER_MASK | PFERR_WRITE_MASK);
644 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
649 EXPORT_SYMBOL_GPL(pdptrs_changed);
651 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
653 unsigned long old_cr0 = kvm_read_cr0(vcpu);
654 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
659 if (cr0 & 0xffffffff00000000UL)
663 cr0 &= ~CR0_RESERVED_BITS;
665 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
668 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
671 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
673 if ((vcpu->arch.efer & EFER_LME)) {
678 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
683 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
688 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
691 kvm_x86_ops->set_cr0(vcpu, cr0);
693 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
694 kvm_clear_async_pf_completion_queue(vcpu);
695 kvm_async_pf_hash_reset(vcpu);
698 if ((cr0 ^ old_cr0) & update_bits)
699 kvm_mmu_reset_context(vcpu);
701 if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
702 kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
703 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
704 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
708 EXPORT_SYMBOL_GPL(kvm_set_cr0);
710 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
712 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
714 EXPORT_SYMBOL_GPL(kvm_lmsw);
716 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
718 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
719 !vcpu->guest_xcr0_loaded) {
720 /* kvm_set_xcr() also depends on this */
721 if (vcpu->arch.xcr0 != host_xcr0)
722 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
723 vcpu->guest_xcr0_loaded = 1;
727 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
729 if (vcpu->guest_xcr0_loaded) {
730 if (vcpu->arch.xcr0 != host_xcr0)
731 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
732 vcpu->guest_xcr0_loaded = 0;
736 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
739 u64 old_xcr0 = vcpu->arch.xcr0;
742 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
743 if (index != XCR_XFEATURE_ENABLED_MASK)
745 if (!(xcr0 & XFEATURE_MASK_FP))
747 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
751 * Do not allow the guest to set bits that we do not support
752 * saving. However, xcr0 bit 0 is always set, even if the
753 * emulated CPU does not support XSAVE (see fx_init).
755 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
756 if (xcr0 & ~valid_bits)
759 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
760 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
763 if (xcr0 & XFEATURE_MASK_AVX512) {
764 if (!(xcr0 & XFEATURE_MASK_YMM))
766 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
769 vcpu->arch.xcr0 = xcr0;
771 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
772 kvm_update_cpuid(vcpu);
776 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
778 if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
779 __kvm_set_xcr(vcpu, index, xcr)) {
780 kvm_inject_gp(vcpu, 0);
785 EXPORT_SYMBOL_GPL(kvm_set_xcr);
787 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
789 unsigned long old_cr4 = kvm_read_cr4(vcpu);
790 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
791 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
793 if (cr4 & CR4_RESERVED_BITS)
796 if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE))
799 if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP))
802 if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP))
805 if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE))
808 if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE))
811 if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57))
814 if (!guest_cpuid_has(vcpu, X86_FEATURE_UMIP) && (cr4 & X86_CR4_UMIP))
817 if (is_long_mode(vcpu)) {
818 if (!(cr4 & X86_CR4_PAE))
820 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
821 && ((cr4 ^ old_cr4) & pdptr_bits)
822 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
826 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
827 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
830 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
831 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
835 if (kvm_x86_ops->set_cr4(vcpu, cr4))
838 if (((cr4 ^ old_cr4) & pdptr_bits) ||
839 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
840 kvm_mmu_reset_context(vcpu);
842 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
843 kvm_update_cpuid(vcpu);
847 EXPORT_SYMBOL_GPL(kvm_set_cr4);
849 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
851 bool skip_tlb_flush = false;
853 bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
856 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
857 cr3 &= ~X86_CR3_PCID_NOFLUSH;
861 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
862 if (!skip_tlb_flush) {
863 kvm_mmu_sync_roots(vcpu);
864 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
869 if (is_long_mode(vcpu) &&
870 (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63)))
872 else if (is_pae(vcpu) && is_paging(vcpu) &&
873 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
876 kvm_mmu_new_cr3(vcpu, cr3, skip_tlb_flush);
877 vcpu->arch.cr3 = cr3;
878 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
882 EXPORT_SYMBOL_GPL(kvm_set_cr3);
884 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
886 if (cr8 & CR8_RESERVED_BITS)
888 if (lapic_in_kernel(vcpu))
889 kvm_lapic_set_tpr(vcpu, cr8);
891 vcpu->arch.cr8 = cr8;
894 EXPORT_SYMBOL_GPL(kvm_set_cr8);
896 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
898 if (lapic_in_kernel(vcpu))
899 return kvm_lapic_get_cr8(vcpu);
901 return vcpu->arch.cr8;
903 EXPORT_SYMBOL_GPL(kvm_get_cr8);
905 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
909 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
910 for (i = 0; i < KVM_NR_DB_REGS; i++)
911 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
912 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
916 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
918 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
919 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
922 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
926 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
927 dr7 = vcpu->arch.guest_debug_dr7;
929 dr7 = vcpu->arch.dr7;
930 kvm_x86_ops->set_dr7(vcpu, dr7);
931 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
932 if (dr7 & DR7_BP_EN_MASK)
933 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
936 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
938 u64 fixed = DR6_FIXED_1;
940 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
945 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
949 vcpu->arch.db[dr] = val;
950 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
951 vcpu->arch.eff_db[dr] = val;
956 if (val & 0xffffffff00000000ULL)
958 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
959 kvm_update_dr6(vcpu);
964 if (val & 0xffffffff00000000ULL)
966 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
967 kvm_update_dr7(vcpu);
974 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
976 if (__kvm_set_dr(vcpu, dr, val)) {
977 kvm_inject_gp(vcpu, 0);
982 EXPORT_SYMBOL_GPL(kvm_set_dr);
984 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
988 *val = vcpu->arch.db[dr];
993 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
994 *val = vcpu->arch.dr6;
996 *val = kvm_x86_ops->get_dr6(vcpu);
1001 *val = vcpu->arch.dr7;
1006 EXPORT_SYMBOL_GPL(kvm_get_dr);
1008 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1010 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
1014 err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1017 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
1018 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
1021 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1024 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1025 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1027 * This list is modified at module load time to reflect the
1028 * capabilities of the host cpu. This capabilities test skips MSRs that are
1029 * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
1030 * may depend on host virtualization features rather than host cpu features.
1033 static u32 msrs_to_save[] = {
1034 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1036 #ifdef CONFIG_X86_64
1037 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1039 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1040 MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1041 MSR_IA32_SPEC_CTRL, MSR_IA32_ARCH_CAPABILITIES
1044 static unsigned num_msrs_to_save;
1046 static u32 emulated_msrs[] = {
1047 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1048 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1049 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1050 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1051 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1052 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1053 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1055 HV_X64_MSR_VP_INDEX,
1056 HV_X64_MSR_VP_RUNTIME,
1057 HV_X64_MSR_SCONTROL,
1058 HV_X64_MSR_STIMER0_CONFIG,
1059 HV_X64_MSR_VP_ASSIST_PAGE,
1060 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1061 HV_X64_MSR_TSC_EMULATION_STATUS,
1063 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1066 MSR_IA32_TSC_ADJUST,
1067 MSR_IA32_TSCDEADLINE,
1068 MSR_IA32_MISC_ENABLE,
1069 MSR_IA32_MCG_STATUS,
1071 MSR_IA32_MCG_EXT_CTL,
1075 MSR_MISC_FEATURES_ENABLES,
1076 MSR_AMD64_VIRT_SPEC_CTRL,
1079 static unsigned num_emulated_msrs;
1082 * List of msr numbers which are used to expose MSR-based features that
1083 * can be used by a hypervisor to validate requested CPU features.
1085 static u32 msr_based_features[] = {
1087 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1088 MSR_IA32_VMX_PINBASED_CTLS,
1089 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1090 MSR_IA32_VMX_PROCBASED_CTLS,
1091 MSR_IA32_VMX_TRUE_EXIT_CTLS,
1092 MSR_IA32_VMX_EXIT_CTLS,
1093 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1094 MSR_IA32_VMX_ENTRY_CTLS,
1096 MSR_IA32_VMX_CR0_FIXED0,
1097 MSR_IA32_VMX_CR0_FIXED1,
1098 MSR_IA32_VMX_CR4_FIXED0,
1099 MSR_IA32_VMX_CR4_FIXED1,
1100 MSR_IA32_VMX_VMCS_ENUM,
1101 MSR_IA32_VMX_PROCBASED_CTLS2,
1102 MSR_IA32_VMX_EPT_VPID_CAP,
1103 MSR_IA32_VMX_VMFUNC,
1107 MSR_IA32_ARCH_CAPABILITIES,
1110 static unsigned int num_msr_based_features;
1112 u64 kvm_get_arch_capabilities(void)
1116 rdmsrl_safe(MSR_IA32_ARCH_CAPABILITIES, &data);
1119 * If we're doing cache flushes (either "always" or "cond")
1120 * we will do one whenever the guest does a vmlaunch/vmresume.
1121 * If an outer hypervisor is doing the cache flush for us
1122 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1123 * capability to the guest too, and if EPT is disabled we're not
1124 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will
1125 * require a nested hypervisor to do a flush of its own.
1127 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1128 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1132 EXPORT_SYMBOL_GPL(kvm_get_arch_capabilities);
1134 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1136 switch (msr->index) {
1137 case MSR_IA32_ARCH_CAPABILITIES:
1138 msr->data = kvm_get_arch_capabilities();
1140 case MSR_IA32_UCODE_REV:
1141 rdmsrl_safe(msr->index, &msr->data);
1144 if (kvm_x86_ops->get_msr_feature(msr))
1150 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1152 struct kvm_msr_entry msr;
1156 r = kvm_get_msr_feature(&msr);
1165 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1167 if (efer & efer_reserved_bits)
1170 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1173 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1178 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1180 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1182 u64 old_efer = vcpu->arch.efer;
1184 if (!kvm_valid_efer(vcpu, efer))
1188 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1192 efer |= vcpu->arch.efer & EFER_LMA;
1194 kvm_x86_ops->set_efer(vcpu, efer);
1196 /* Update reserved bits */
1197 if ((efer ^ old_efer) & EFER_NX)
1198 kvm_mmu_reset_context(vcpu);
1203 void kvm_enable_efer_bits(u64 mask)
1205 efer_reserved_bits &= ~mask;
1207 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1210 * Writes msr value into into the appropriate "register".
1211 * Returns 0 on success, non-0 otherwise.
1212 * Assumes vcpu_load() was already called.
1214 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1216 switch (msr->index) {
1219 case MSR_KERNEL_GS_BASE:
1222 if (is_noncanonical_address(msr->data, vcpu))
1225 case MSR_IA32_SYSENTER_EIP:
1226 case MSR_IA32_SYSENTER_ESP:
1228 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1229 * non-canonical address is written on Intel but not on
1230 * AMD (which ignores the top 32-bits, because it does
1231 * not implement 64-bit SYSENTER).
1233 * 64-bit code should hence be able to write a non-canonical
1234 * value on AMD. Making the address canonical ensures that
1235 * vmentry does not fail on Intel after writing a non-canonical
1236 * value, and that something deterministic happens if the guest
1237 * invokes 64-bit SYSENTER.
1239 msr->data = get_canonical(msr->data, vcpu_virt_addr_bits(vcpu));
1241 return kvm_x86_ops->set_msr(vcpu, msr);
1243 EXPORT_SYMBOL_GPL(kvm_set_msr);
1246 * Adapt set_msr() to msr_io()'s calling convention
1248 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1250 struct msr_data msr;
1254 msr.host_initiated = true;
1255 r = kvm_get_msr(vcpu, &msr);
1263 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1265 struct msr_data msr;
1269 msr.host_initiated = true;
1270 return kvm_set_msr(vcpu, &msr);
1273 #ifdef CONFIG_X86_64
1274 struct pvclock_gtod_data {
1277 struct { /* extract of a clocksource struct */
1290 static struct pvclock_gtod_data pvclock_gtod_data;
1292 static void update_pvclock_gtod(struct timekeeper *tk)
1294 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1297 boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1299 write_seqcount_begin(&vdata->seq);
1301 /* copy pvclock gtod data */
1302 vdata->clock.vclock_mode = tk->tkr_mono.clock->archdata.vclock_mode;
1303 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
1304 vdata->clock.mask = tk->tkr_mono.mask;
1305 vdata->clock.mult = tk->tkr_mono.mult;
1306 vdata->clock.shift = tk->tkr_mono.shift;
1308 vdata->boot_ns = boot_ns;
1309 vdata->nsec_base = tk->tkr_mono.xtime_nsec;
1311 vdata->wall_time_sec = tk->xtime_sec;
1313 write_seqcount_end(&vdata->seq);
1317 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1320 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1321 * vcpu_enter_guest. This function is only called from
1322 * the physical CPU that is running vcpu.
1324 kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1327 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1331 struct pvclock_wall_clock wc;
1332 struct timespec64 boot;
1337 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1342 ++version; /* first time write, random junk */
1346 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1350 * The guest calculates current wall clock time by adding
1351 * system time (updated by kvm_guest_time_update below) to the
1352 * wall clock specified here. guest system time equals host
1353 * system time for us, thus we must fill in host boot time here.
1355 getboottime64(&boot);
1357 if (kvm->arch.kvmclock_offset) {
1358 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1359 boot = timespec64_sub(boot, ts);
1361 wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1362 wc.nsec = boot.tv_nsec;
1363 wc.version = version;
1365 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1368 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1371 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1373 do_shl32_div32(dividend, divisor);
1377 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1378 s8 *pshift, u32 *pmultiplier)
1386 scaled64 = scaled_hz;
1387 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1392 tps32 = (uint32_t)tps64;
1393 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1394 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1402 *pmultiplier = div_frac(scaled64, tps32);
1404 pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1405 __func__, base_hz, scaled_hz, shift, *pmultiplier);
1408 #ifdef CONFIG_X86_64
1409 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1412 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1413 static unsigned long max_tsc_khz;
1415 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1417 u64 v = (u64)khz * (1000000 + ppm);
1422 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1426 /* Guest TSC same frequency as host TSC? */
1428 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1432 /* TSC scaling supported? */
1433 if (!kvm_has_tsc_control) {
1434 if (user_tsc_khz > tsc_khz) {
1435 vcpu->arch.tsc_catchup = 1;
1436 vcpu->arch.tsc_always_catchup = 1;
1439 WARN(1, "user requested TSC rate below hardware speed\n");
1444 /* TSC scaling required - calculate ratio */
1445 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1446 user_tsc_khz, tsc_khz);
1448 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1449 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1454 vcpu->arch.tsc_scaling_ratio = ratio;
1458 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1460 u32 thresh_lo, thresh_hi;
1461 int use_scaling = 0;
1463 /* tsc_khz can be zero if TSC calibration fails */
1464 if (user_tsc_khz == 0) {
1465 /* set tsc_scaling_ratio to a safe value */
1466 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1470 /* Compute a scale to convert nanoseconds in TSC cycles */
1471 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1472 &vcpu->arch.virtual_tsc_shift,
1473 &vcpu->arch.virtual_tsc_mult);
1474 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1477 * Compute the variation in TSC rate which is acceptable
1478 * within the range of tolerance and decide if the
1479 * rate being applied is within that bounds of the hardware
1480 * rate. If so, no scaling or compensation need be done.
1482 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1483 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1484 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1485 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1488 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1491 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1493 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1494 vcpu->arch.virtual_tsc_mult,
1495 vcpu->arch.virtual_tsc_shift);
1496 tsc += vcpu->arch.this_tsc_write;
1500 static inline int gtod_is_based_on_tsc(int mode)
1502 return mode == VCLOCK_TSC || mode == VCLOCK_HVCLOCK;
1505 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1507 #ifdef CONFIG_X86_64
1509 struct kvm_arch *ka = &vcpu->kvm->arch;
1510 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1512 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1513 atomic_read(&vcpu->kvm->online_vcpus));
1516 * Once the masterclock is enabled, always perform request in
1517 * order to update it.
1519 * In order to enable masterclock, the host clocksource must be TSC
1520 * and the vcpus need to have matched TSCs. When that happens,
1521 * perform request to enable masterclock.
1523 if (ka->use_master_clock ||
1524 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
1525 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1527 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1528 atomic_read(&vcpu->kvm->online_vcpus),
1529 ka->use_master_clock, gtod->clock.vclock_mode);
1533 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1535 u64 curr_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1536 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1540 * Multiply tsc by a fixed point number represented by ratio.
1542 * The most significant 64-N bits (mult) of ratio represent the
1543 * integral part of the fixed point number; the remaining N bits
1544 * (frac) represent the fractional part, ie. ratio represents a fixed
1545 * point number (mult + frac * 2^(-N)).
1547 * N equals to kvm_tsc_scaling_ratio_frac_bits.
1549 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1551 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1554 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1557 u64 ratio = vcpu->arch.tsc_scaling_ratio;
1559 if (ratio != kvm_default_tsc_scaling_ratio)
1560 _tsc = __scale_tsc(ratio, tsc);
1564 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1566 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1570 tsc = kvm_scale_tsc(vcpu, rdtsc());
1572 return target_tsc - tsc;
1575 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1577 u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1579 return tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1581 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1583 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1585 kvm_x86_ops->write_tsc_offset(vcpu, offset);
1586 vcpu->arch.tsc_offset = offset;
1589 static inline bool kvm_check_tsc_unstable(void)
1591 #ifdef CONFIG_X86_64
1593 * TSC is marked unstable when we're running on Hyper-V,
1594 * 'TSC page' clocksource is good.
1596 if (pvclock_gtod_data.clock.vclock_mode == VCLOCK_HVCLOCK)
1599 return check_tsc_unstable();
1602 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1604 struct kvm *kvm = vcpu->kvm;
1605 u64 offset, ns, elapsed;
1606 unsigned long flags;
1608 bool already_matched;
1609 u64 data = msr->data;
1610 bool synchronizing = false;
1612 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1613 offset = kvm_compute_tsc_offset(vcpu, data);
1614 ns = ktime_get_boot_ns();
1615 elapsed = ns - kvm->arch.last_tsc_nsec;
1617 if (vcpu->arch.virtual_tsc_khz) {
1618 if (data == 0 && msr->host_initiated) {
1620 * detection of vcpu initialization -- need to sync
1621 * with other vCPUs. This particularly helps to keep
1622 * kvm_clock stable after CPU hotplug
1624 synchronizing = true;
1626 u64 tsc_exp = kvm->arch.last_tsc_write +
1627 nsec_to_cycles(vcpu, elapsed);
1628 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1630 * Special case: TSC write with a small delta (1 second)
1631 * of virtual cycle time against real time is
1632 * interpreted as an attempt to synchronize the CPU.
1634 synchronizing = data < tsc_exp + tsc_hz &&
1635 data + tsc_hz > tsc_exp;
1640 * For a reliable TSC, we can match TSC offsets, and for an unstable
1641 * TSC, we add elapsed time in this computation. We could let the
1642 * compensation code attempt to catch up if we fall behind, but
1643 * it's better to try to match offsets from the beginning.
1645 if (synchronizing &&
1646 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1647 if (!kvm_check_tsc_unstable()) {
1648 offset = kvm->arch.cur_tsc_offset;
1649 pr_debug("kvm: matched tsc offset for %llu\n", data);
1651 u64 delta = nsec_to_cycles(vcpu, elapsed);
1653 offset = kvm_compute_tsc_offset(vcpu, data);
1654 pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1657 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1660 * We split periods of matched TSC writes into generations.
1661 * For each generation, we track the original measured
1662 * nanosecond time, offset, and write, so if TSCs are in
1663 * sync, we can match exact offset, and if not, we can match
1664 * exact software computation in compute_guest_tsc()
1666 * These values are tracked in kvm->arch.cur_xxx variables.
1668 kvm->arch.cur_tsc_generation++;
1669 kvm->arch.cur_tsc_nsec = ns;
1670 kvm->arch.cur_tsc_write = data;
1671 kvm->arch.cur_tsc_offset = offset;
1673 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1674 kvm->arch.cur_tsc_generation, data);
1678 * We also track th most recent recorded KHZ, write and time to
1679 * allow the matching interval to be extended at each write.
1681 kvm->arch.last_tsc_nsec = ns;
1682 kvm->arch.last_tsc_write = data;
1683 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1685 vcpu->arch.last_guest_tsc = data;
1687 /* Keep track of which generation this VCPU has synchronized to */
1688 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1689 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1690 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1692 if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
1693 update_ia32_tsc_adjust_msr(vcpu, offset);
1695 kvm_vcpu_write_tsc_offset(vcpu, offset);
1696 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1698 spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1700 kvm->arch.nr_vcpus_matched_tsc = 0;
1701 } else if (!already_matched) {
1702 kvm->arch.nr_vcpus_matched_tsc++;
1705 kvm_track_tsc_matching(vcpu);
1706 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1709 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1711 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1714 kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment);
1717 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1719 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1720 WARN_ON(adjustment < 0);
1721 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1722 adjust_tsc_offset_guest(vcpu, adjustment);
1725 #ifdef CONFIG_X86_64
1727 static u64 read_tsc(void)
1729 u64 ret = (u64)rdtsc_ordered();
1730 u64 last = pvclock_gtod_data.clock.cycle_last;
1732 if (likely(ret >= last))
1736 * GCC likes to generate cmov here, but this branch is extremely
1737 * predictable (it's just a function of time and the likely is
1738 * very likely) and there's a data dependence, so force GCC
1739 * to generate a branch instead. I don't barrier() because
1740 * we don't actually need a barrier, and if this function
1741 * ever gets inlined it will generate worse code.
1747 static inline u64 vgettsc(u64 *tsc_timestamp, int *mode)
1750 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1753 switch (gtod->clock.vclock_mode) {
1754 case VCLOCK_HVCLOCK:
1755 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
1757 if (tsc_pg_val != U64_MAX) {
1758 /* TSC page valid */
1759 *mode = VCLOCK_HVCLOCK;
1760 v = (tsc_pg_val - gtod->clock.cycle_last) &
1763 /* TSC page invalid */
1764 *mode = VCLOCK_NONE;
1769 *tsc_timestamp = read_tsc();
1770 v = (*tsc_timestamp - gtod->clock.cycle_last) &
1774 *mode = VCLOCK_NONE;
1777 if (*mode == VCLOCK_NONE)
1778 *tsc_timestamp = v = 0;
1780 return v * gtod->clock.mult;
1783 static int do_monotonic_boot(s64 *t, u64 *tsc_timestamp)
1785 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1791 seq = read_seqcount_begin(>od->seq);
1792 ns = gtod->nsec_base;
1793 ns += vgettsc(tsc_timestamp, &mode);
1794 ns >>= gtod->clock.shift;
1795 ns += gtod->boot_ns;
1796 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
1802 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
1804 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1810 seq = read_seqcount_begin(>od->seq);
1811 ts->tv_sec = gtod->wall_time_sec;
1812 ns = gtod->nsec_base;
1813 ns += vgettsc(tsc_timestamp, &mode);
1814 ns >>= gtod->clock.shift;
1815 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
1817 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1823 /* returns true if host is using TSC based clocksource */
1824 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
1826 /* checked again under seqlock below */
1827 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1830 return gtod_is_based_on_tsc(do_monotonic_boot(kernel_ns,
1834 /* returns true if host is using TSC based clocksource */
1835 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
1838 /* checked again under seqlock below */
1839 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1842 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
1848 * Assuming a stable TSC across physical CPUS, and a stable TSC
1849 * across virtual CPUs, the following condition is possible.
1850 * Each numbered line represents an event visible to both
1851 * CPUs at the next numbered event.
1853 * "timespecX" represents host monotonic time. "tscX" represents
1856 * VCPU0 on CPU0 | VCPU1 on CPU1
1858 * 1. read timespec0,tsc0
1859 * 2. | timespec1 = timespec0 + N
1861 * 3. transition to guest | transition to guest
1862 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1863 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
1864 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1866 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1869 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1871 * - 0 < N - M => M < N
1873 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1874 * always the case (the difference between two distinct xtime instances
1875 * might be smaller then the difference between corresponding TSC reads,
1876 * when updating guest vcpus pvclock areas).
1878 * To avoid that problem, do not allow visibility of distinct
1879 * system_timestamp/tsc_timestamp values simultaneously: use a master
1880 * copy of host monotonic time values. Update that master copy
1883 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1887 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1889 #ifdef CONFIG_X86_64
1890 struct kvm_arch *ka = &kvm->arch;
1892 bool host_tsc_clocksource, vcpus_matched;
1894 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1895 atomic_read(&kvm->online_vcpus));
1898 * If the host uses TSC clock, then passthrough TSC as stable
1901 host_tsc_clocksource = kvm_get_time_and_clockread(
1902 &ka->master_kernel_ns,
1903 &ka->master_cycle_now);
1905 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1906 && !ka->backwards_tsc_observed
1907 && !ka->boot_vcpu_runs_old_kvmclock;
1909 if (ka->use_master_clock)
1910 atomic_set(&kvm_guest_has_master_clock, 1);
1912 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1913 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1918 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1920 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1923 static void kvm_gen_update_masterclock(struct kvm *kvm)
1925 #ifdef CONFIG_X86_64
1927 struct kvm_vcpu *vcpu;
1928 struct kvm_arch *ka = &kvm->arch;
1930 spin_lock(&ka->pvclock_gtod_sync_lock);
1931 kvm_make_mclock_inprogress_request(kvm);
1932 /* no guest entries from this point */
1933 pvclock_update_vm_gtod_copy(kvm);
1935 kvm_for_each_vcpu(i, vcpu, kvm)
1936 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1938 /* guest entries allowed */
1939 kvm_for_each_vcpu(i, vcpu, kvm)
1940 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
1942 spin_unlock(&ka->pvclock_gtod_sync_lock);
1946 u64 get_kvmclock_ns(struct kvm *kvm)
1948 struct kvm_arch *ka = &kvm->arch;
1949 struct pvclock_vcpu_time_info hv_clock;
1952 spin_lock(&ka->pvclock_gtod_sync_lock);
1953 if (!ka->use_master_clock) {
1954 spin_unlock(&ka->pvclock_gtod_sync_lock);
1955 return ktime_get_boot_ns() + ka->kvmclock_offset;
1958 hv_clock.tsc_timestamp = ka->master_cycle_now;
1959 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
1960 spin_unlock(&ka->pvclock_gtod_sync_lock);
1962 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
1965 if (__this_cpu_read(cpu_tsc_khz)) {
1966 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
1967 &hv_clock.tsc_shift,
1968 &hv_clock.tsc_to_system_mul);
1969 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
1971 ret = ktime_get_boot_ns() + ka->kvmclock_offset;
1978 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
1980 struct kvm_vcpu_arch *vcpu = &v->arch;
1981 struct pvclock_vcpu_time_info guest_hv_clock;
1983 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1984 &guest_hv_clock, sizeof(guest_hv_clock))))
1987 /* This VCPU is paused, but it's legal for a guest to read another
1988 * VCPU's kvmclock, so we really have to follow the specification where
1989 * it says that version is odd if data is being modified, and even after
1992 * Version field updates must be kept separate. This is because
1993 * kvm_write_guest_cached might use a "rep movs" instruction, and
1994 * writes within a string instruction are weakly ordered. So there
1995 * are three writes overall.
1997 * As a small optimization, only write the version field in the first
1998 * and third write. The vcpu->pv_time cache is still valid, because the
1999 * version field is the first in the struct.
2001 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2003 if (guest_hv_clock.version & 1)
2004 ++guest_hv_clock.version; /* first time write, random junk */
2006 vcpu->hv_clock.version = guest_hv_clock.version + 1;
2007 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2009 sizeof(vcpu->hv_clock.version));
2013 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2014 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2016 if (vcpu->pvclock_set_guest_stopped_request) {
2017 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2018 vcpu->pvclock_set_guest_stopped_request = false;
2021 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2023 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2025 sizeof(vcpu->hv_clock));
2029 vcpu->hv_clock.version++;
2030 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2032 sizeof(vcpu->hv_clock.version));
2035 static int kvm_guest_time_update(struct kvm_vcpu *v)
2037 unsigned long flags, tgt_tsc_khz;
2038 struct kvm_vcpu_arch *vcpu = &v->arch;
2039 struct kvm_arch *ka = &v->kvm->arch;
2041 u64 tsc_timestamp, host_tsc;
2043 bool use_master_clock;
2049 * If the host uses TSC clock, then passthrough TSC as stable
2052 spin_lock(&ka->pvclock_gtod_sync_lock);
2053 use_master_clock = ka->use_master_clock;
2054 if (use_master_clock) {
2055 host_tsc = ka->master_cycle_now;
2056 kernel_ns = ka->master_kernel_ns;
2058 spin_unlock(&ka->pvclock_gtod_sync_lock);
2060 /* Keep irq disabled to prevent changes to the clock */
2061 local_irq_save(flags);
2062 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2063 if (unlikely(tgt_tsc_khz == 0)) {
2064 local_irq_restore(flags);
2065 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2068 if (!use_master_clock) {
2070 kernel_ns = ktime_get_boot_ns();
2073 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2076 * We may have to catch up the TSC to match elapsed wall clock
2077 * time for two reasons, even if kvmclock is used.
2078 * 1) CPU could have been running below the maximum TSC rate
2079 * 2) Broken TSC compensation resets the base at each VCPU
2080 * entry to avoid unknown leaps of TSC even when running
2081 * again on the same CPU. This may cause apparent elapsed
2082 * time to disappear, and the guest to stand still or run
2085 if (vcpu->tsc_catchup) {
2086 u64 tsc = compute_guest_tsc(v, kernel_ns);
2087 if (tsc > tsc_timestamp) {
2088 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2089 tsc_timestamp = tsc;
2093 local_irq_restore(flags);
2095 /* With all the info we got, fill in the values */
2097 if (kvm_has_tsc_control)
2098 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2100 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2101 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2102 &vcpu->hv_clock.tsc_shift,
2103 &vcpu->hv_clock.tsc_to_system_mul);
2104 vcpu->hw_tsc_khz = tgt_tsc_khz;
2107 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2108 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2109 vcpu->last_guest_tsc = tsc_timestamp;
2111 /* If the host uses TSC clocksource, then it is stable */
2113 if (use_master_clock)
2114 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2116 vcpu->hv_clock.flags = pvclock_flags;
2118 if (vcpu->pv_time_enabled)
2119 kvm_setup_pvclock_page(v);
2120 if (v == kvm_get_vcpu(v->kvm, 0))
2121 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2126 * kvmclock updates which are isolated to a given vcpu, such as
2127 * vcpu->cpu migration, should not allow system_timestamp from
2128 * the rest of the vcpus to remain static. Otherwise ntp frequency
2129 * correction applies to one vcpu's system_timestamp but not
2132 * So in those cases, request a kvmclock update for all vcpus.
2133 * We need to rate-limit these requests though, as they can
2134 * considerably slow guests that have a large number of vcpus.
2135 * The time for a remote vcpu to update its kvmclock is bound
2136 * by the delay we use to rate-limit the updates.
2139 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2141 static void kvmclock_update_fn(struct work_struct *work)
2144 struct delayed_work *dwork = to_delayed_work(work);
2145 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2146 kvmclock_update_work);
2147 struct kvm *kvm = container_of(ka, struct kvm, arch);
2148 struct kvm_vcpu *vcpu;
2150 kvm_for_each_vcpu(i, vcpu, kvm) {
2151 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2152 kvm_vcpu_kick(vcpu);
2156 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2158 struct kvm *kvm = v->kvm;
2160 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2161 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2162 KVMCLOCK_UPDATE_DELAY);
2165 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2167 static void kvmclock_sync_fn(struct work_struct *work)
2169 struct delayed_work *dwork = to_delayed_work(work);
2170 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2171 kvmclock_sync_work);
2172 struct kvm *kvm = container_of(ka, struct kvm, arch);
2174 if (!kvmclock_periodic_sync)
2177 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2178 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2179 KVMCLOCK_SYNC_PERIOD);
2182 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2184 u64 mcg_cap = vcpu->arch.mcg_cap;
2185 unsigned bank_num = mcg_cap & 0xff;
2186 u32 msr = msr_info->index;
2187 u64 data = msr_info->data;
2190 case MSR_IA32_MCG_STATUS:
2191 vcpu->arch.mcg_status = data;
2193 case MSR_IA32_MCG_CTL:
2194 if (!(mcg_cap & MCG_CTL_P) &&
2195 (data || !msr_info->host_initiated))
2197 if (data != 0 && data != ~(u64)0)
2199 vcpu->arch.mcg_ctl = data;
2202 if (msr >= MSR_IA32_MC0_CTL &&
2203 msr < MSR_IA32_MCx_CTL(bank_num)) {
2204 u32 offset = msr - MSR_IA32_MC0_CTL;
2205 /* only 0 or all 1s can be written to IA32_MCi_CTL
2206 * some Linux kernels though clear bit 10 in bank 4 to
2207 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2208 * this to avoid an uncatched #GP in the guest
2210 if ((offset & 0x3) == 0 &&
2211 data != 0 && (data | (1 << 10)) != ~(u64)0)
2213 if (!msr_info->host_initiated &&
2214 (offset & 0x3) == 1 && data != 0)
2216 vcpu->arch.mce_banks[offset] = data;
2224 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2226 struct kvm *kvm = vcpu->kvm;
2227 int lm = is_long_mode(vcpu);
2228 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2229 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2230 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2231 : kvm->arch.xen_hvm_config.blob_size_32;
2232 u32 page_num = data & ~PAGE_MASK;
2233 u64 page_addr = data & PAGE_MASK;
2238 if (page_num >= blob_size)
2241 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2246 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2255 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2257 gpa_t gpa = data & ~0x3f;
2259 /* Bits 3:5 are reserved, Should be zero */
2263 vcpu->arch.apf.msr_val = data;
2265 if (!(data & KVM_ASYNC_PF_ENABLED)) {
2266 kvm_clear_async_pf_completion_queue(vcpu);
2267 kvm_async_pf_hash_reset(vcpu);
2271 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2275 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2276 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2277 kvm_async_pf_wakeup_all(vcpu);
2281 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2283 vcpu->arch.pv_time_enabled = false;
2286 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
2288 ++vcpu->stat.tlb_flush;
2289 kvm_x86_ops->tlb_flush(vcpu, invalidate_gpa);
2292 static void record_steal_time(struct kvm_vcpu *vcpu)
2294 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2297 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2298 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2302 * Doing a TLB flush here, on the guest's behalf, can avoid
2305 if (xchg(&vcpu->arch.st.steal.preempted, 0) & KVM_VCPU_FLUSH_TLB)
2306 kvm_vcpu_flush_tlb(vcpu, false);
2308 if (vcpu->arch.st.steal.version & 1)
2309 vcpu->arch.st.steal.version += 1; /* first time write, random junk */
2311 vcpu->arch.st.steal.version += 1;
2313 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2314 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2318 vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2319 vcpu->arch.st.last_steal;
2320 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2322 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2323 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2327 vcpu->arch.st.steal.version += 1;
2329 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2330 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2333 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2336 u32 msr = msr_info->index;
2337 u64 data = msr_info->data;
2340 case MSR_AMD64_NB_CFG:
2341 case MSR_IA32_UCODE_WRITE:
2342 case MSR_VM_HSAVE_PA:
2343 case MSR_AMD64_PATCH_LOADER:
2344 case MSR_AMD64_BU_CFG2:
2345 case MSR_AMD64_DC_CFG:
2348 case MSR_IA32_UCODE_REV:
2349 if (msr_info->host_initiated)
2350 vcpu->arch.microcode_version = data;
2353 return set_efer(vcpu, data);
2355 data &= ~(u64)0x40; /* ignore flush filter disable */
2356 data &= ~(u64)0x100; /* ignore ignne emulation enable */
2357 data &= ~(u64)0x8; /* ignore TLB cache disable */
2358 data &= ~(u64)0x40000; /* ignore Mc status write enable */
2360 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2365 case MSR_FAM10H_MMIO_CONF_BASE:
2367 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2372 case MSR_IA32_DEBUGCTLMSR:
2374 /* We support the non-activated case already */
2376 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2377 /* Values other than LBR and BTF are vendor-specific,
2378 thus reserved and should throw a #GP */
2381 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2384 case 0x200 ... 0x2ff:
2385 return kvm_mtrr_set_msr(vcpu, msr, data);
2386 case MSR_IA32_APICBASE:
2387 return kvm_set_apic_base(vcpu, msr_info);
2388 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2389 return kvm_x2apic_msr_write(vcpu, msr, data);
2390 case MSR_IA32_TSCDEADLINE:
2391 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2393 case MSR_IA32_TSC_ADJUST:
2394 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2395 if (!msr_info->host_initiated) {
2396 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2397 adjust_tsc_offset_guest(vcpu, adj);
2399 vcpu->arch.ia32_tsc_adjust_msr = data;
2402 case MSR_IA32_MISC_ENABLE:
2403 vcpu->arch.ia32_misc_enable_msr = data;
2405 case MSR_IA32_SMBASE:
2406 if (!msr_info->host_initiated)
2408 vcpu->arch.smbase = data;
2411 kvm_write_tsc(vcpu, msr_info);
2414 if (!msr_info->host_initiated)
2416 vcpu->arch.smi_count = data;
2418 case MSR_KVM_WALL_CLOCK_NEW:
2419 case MSR_KVM_WALL_CLOCK:
2420 vcpu->kvm->arch.wall_clock = data;
2421 kvm_write_wall_clock(vcpu->kvm, data);
2423 case MSR_KVM_SYSTEM_TIME_NEW:
2424 case MSR_KVM_SYSTEM_TIME: {
2425 struct kvm_arch *ka = &vcpu->kvm->arch;
2427 kvmclock_reset(vcpu);
2429 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2430 bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2432 if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2433 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2435 ka->boot_vcpu_runs_old_kvmclock = tmp;
2438 vcpu->arch.time = data;
2439 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2441 /* we verify if the enable bit is set... */
2445 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2446 &vcpu->arch.pv_time, data & ~1ULL,
2447 sizeof(struct pvclock_vcpu_time_info)))
2448 vcpu->arch.pv_time_enabled = false;
2450 vcpu->arch.pv_time_enabled = true;
2454 case MSR_KVM_ASYNC_PF_EN:
2455 if (kvm_pv_enable_async_pf(vcpu, data))
2458 case MSR_KVM_STEAL_TIME:
2460 if (unlikely(!sched_info_on()))
2463 if (data & KVM_STEAL_RESERVED_MASK)
2466 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2467 data & KVM_STEAL_VALID_BITS,
2468 sizeof(struct kvm_steal_time)))
2471 vcpu->arch.st.msr_val = data;
2473 if (!(data & KVM_MSR_ENABLED))
2476 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2479 case MSR_KVM_PV_EOI_EN:
2480 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2484 case MSR_IA32_MCG_CTL:
2485 case MSR_IA32_MCG_STATUS:
2486 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2487 return set_msr_mce(vcpu, msr_info);
2489 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2490 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2491 pr = true; /* fall through */
2492 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2493 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2494 if (kvm_pmu_is_valid_msr(vcpu, msr))
2495 return kvm_pmu_set_msr(vcpu, msr_info);
2497 if (pr || data != 0)
2498 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2499 "0x%x data 0x%llx\n", msr, data);
2501 case MSR_K7_CLK_CTL:
2503 * Ignore all writes to this no longer documented MSR.
2504 * Writes are only relevant for old K7 processors,
2505 * all pre-dating SVM, but a recommended workaround from
2506 * AMD for these chips. It is possible to specify the
2507 * affected processor models on the command line, hence
2508 * the need to ignore the workaround.
2511 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2512 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2513 case HV_X64_MSR_CRASH_CTL:
2514 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2515 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2516 case HV_X64_MSR_TSC_EMULATION_CONTROL:
2517 case HV_X64_MSR_TSC_EMULATION_STATUS:
2518 return kvm_hv_set_msr_common(vcpu, msr, data,
2519 msr_info->host_initiated);
2520 case MSR_IA32_BBL_CR_CTL3:
2521 /* Drop writes to this legacy MSR -- see rdmsr
2522 * counterpart for further detail.
2524 if (report_ignored_msrs)
2525 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2528 case MSR_AMD64_OSVW_ID_LENGTH:
2529 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2531 vcpu->arch.osvw.length = data;
2533 case MSR_AMD64_OSVW_STATUS:
2534 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2536 vcpu->arch.osvw.status = data;
2538 case MSR_PLATFORM_INFO:
2539 if (!msr_info->host_initiated ||
2540 data & ~MSR_PLATFORM_INFO_CPUID_FAULT ||
2541 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2542 cpuid_fault_enabled(vcpu)))
2544 vcpu->arch.msr_platform_info = data;
2546 case MSR_MISC_FEATURES_ENABLES:
2547 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2548 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2549 !supports_cpuid_fault(vcpu)))
2551 vcpu->arch.msr_misc_features_enables = data;
2554 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2555 return xen_hvm_config(vcpu, data);
2556 if (kvm_pmu_is_valid_msr(vcpu, msr))
2557 return kvm_pmu_set_msr(vcpu, msr_info);
2559 vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2563 if (report_ignored_msrs)
2565 "ignored wrmsr: 0x%x data 0x%llx\n",
2572 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2576 * Reads an msr value (of 'msr_index') into 'pdata'.
2577 * Returns 0 on success, non-0 otherwise.
2578 * Assumes vcpu_load() was already called.
2580 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2582 return kvm_x86_ops->get_msr(vcpu, msr);
2584 EXPORT_SYMBOL_GPL(kvm_get_msr);
2586 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
2589 u64 mcg_cap = vcpu->arch.mcg_cap;
2590 unsigned bank_num = mcg_cap & 0xff;
2593 case MSR_IA32_P5_MC_ADDR:
2594 case MSR_IA32_P5_MC_TYPE:
2597 case MSR_IA32_MCG_CAP:
2598 data = vcpu->arch.mcg_cap;
2600 case MSR_IA32_MCG_CTL:
2601 if (!(mcg_cap & MCG_CTL_P) && !host)
2603 data = vcpu->arch.mcg_ctl;
2605 case MSR_IA32_MCG_STATUS:
2606 data = vcpu->arch.mcg_status;
2609 if (msr >= MSR_IA32_MC0_CTL &&
2610 msr < MSR_IA32_MCx_CTL(bank_num)) {
2611 u32 offset = msr - MSR_IA32_MC0_CTL;
2612 data = vcpu->arch.mce_banks[offset];
2621 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2623 switch (msr_info->index) {
2624 case MSR_IA32_PLATFORM_ID:
2625 case MSR_IA32_EBL_CR_POWERON:
2626 case MSR_IA32_DEBUGCTLMSR:
2627 case MSR_IA32_LASTBRANCHFROMIP:
2628 case MSR_IA32_LASTBRANCHTOIP:
2629 case MSR_IA32_LASTINTFROMIP:
2630 case MSR_IA32_LASTINTTOIP:
2632 case MSR_K8_TSEG_ADDR:
2633 case MSR_K8_TSEG_MASK:
2635 case MSR_VM_HSAVE_PA:
2636 case MSR_K8_INT_PENDING_MSG:
2637 case MSR_AMD64_NB_CFG:
2638 case MSR_FAM10H_MMIO_CONF_BASE:
2639 case MSR_AMD64_BU_CFG2:
2640 case MSR_IA32_PERF_CTL:
2641 case MSR_AMD64_DC_CFG:
2644 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
2645 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2646 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2647 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2648 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2649 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2650 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2653 case MSR_IA32_UCODE_REV:
2654 msr_info->data = vcpu->arch.microcode_version;
2657 msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset;
2660 case 0x200 ... 0x2ff:
2661 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2662 case 0xcd: /* fsb frequency */
2666 * MSR_EBC_FREQUENCY_ID
2667 * Conservative value valid for even the basic CPU models.
2668 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2669 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2670 * and 266MHz for model 3, or 4. Set Core Clock
2671 * Frequency to System Bus Frequency Ratio to 1 (bits
2672 * 31:24) even though these are only valid for CPU
2673 * models > 2, however guests may end up dividing or
2674 * multiplying by zero otherwise.
2676 case MSR_EBC_FREQUENCY_ID:
2677 msr_info->data = 1 << 24;
2679 case MSR_IA32_APICBASE:
2680 msr_info->data = kvm_get_apic_base(vcpu);
2682 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2683 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2685 case MSR_IA32_TSCDEADLINE:
2686 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2688 case MSR_IA32_TSC_ADJUST:
2689 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2691 case MSR_IA32_MISC_ENABLE:
2692 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2694 case MSR_IA32_SMBASE:
2695 if (!msr_info->host_initiated)
2697 msr_info->data = vcpu->arch.smbase;
2700 msr_info->data = vcpu->arch.smi_count;
2702 case MSR_IA32_PERF_STATUS:
2703 /* TSC increment by tick */
2704 msr_info->data = 1000ULL;
2705 /* CPU multiplier */
2706 msr_info->data |= (((uint64_t)4ULL) << 40);
2709 msr_info->data = vcpu->arch.efer;
2711 case MSR_KVM_WALL_CLOCK:
2712 case MSR_KVM_WALL_CLOCK_NEW:
2713 msr_info->data = vcpu->kvm->arch.wall_clock;
2715 case MSR_KVM_SYSTEM_TIME:
2716 case MSR_KVM_SYSTEM_TIME_NEW:
2717 msr_info->data = vcpu->arch.time;
2719 case MSR_KVM_ASYNC_PF_EN:
2720 msr_info->data = vcpu->arch.apf.msr_val;
2722 case MSR_KVM_STEAL_TIME:
2723 msr_info->data = vcpu->arch.st.msr_val;
2725 case MSR_KVM_PV_EOI_EN:
2726 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2728 case MSR_IA32_P5_MC_ADDR:
2729 case MSR_IA32_P5_MC_TYPE:
2730 case MSR_IA32_MCG_CAP:
2731 case MSR_IA32_MCG_CTL:
2732 case MSR_IA32_MCG_STATUS:
2733 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2734 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
2735 msr_info->host_initiated);
2736 case MSR_K7_CLK_CTL:
2738 * Provide expected ramp-up count for K7. All other
2739 * are set to zero, indicating minimum divisors for
2742 * This prevents guest kernels on AMD host with CPU
2743 * type 6, model 8 and higher from exploding due to
2744 * the rdmsr failing.
2746 msr_info->data = 0x20000000;
2748 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2749 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2750 case HV_X64_MSR_CRASH_CTL:
2751 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2752 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2753 case HV_X64_MSR_TSC_EMULATION_CONTROL:
2754 case HV_X64_MSR_TSC_EMULATION_STATUS:
2755 return kvm_hv_get_msr_common(vcpu,
2756 msr_info->index, &msr_info->data,
2757 msr_info->host_initiated);
2759 case MSR_IA32_BBL_CR_CTL3:
2760 /* This legacy MSR exists but isn't fully documented in current
2761 * silicon. It is however accessed by winxp in very narrow
2762 * scenarios where it sets bit #19, itself documented as
2763 * a "reserved" bit. Best effort attempt to source coherent
2764 * read data here should the balance of the register be
2765 * interpreted by the guest:
2767 * L2 cache control register 3: 64GB range, 256KB size,
2768 * enabled, latency 0x1, configured
2770 msr_info->data = 0xbe702111;
2772 case MSR_AMD64_OSVW_ID_LENGTH:
2773 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2775 msr_info->data = vcpu->arch.osvw.length;
2777 case MSR_AMD64_OSVW_STATUS:
2778 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2780 msr_info->data = vcpu->arch.osvw.status;
2782 case MSR_PLATFORM_INFO:
2783 msr_info->data = vcpu->arch.msr_platform_info;
2785 case MSR_MISC_FEATURES_ENABLES:
2786 msr_info->data = vcpu->arch.msr_misc_features_enables;
2789 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2790 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2792 vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2796 if (report_ignored_msrs)
2797 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n",
2805 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2808 * Read or write a bunch of msrs. All parameters are kernel addresses.
2810 * @return number of msrs set successfully.
2812 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2813 struct kvm_msr_entry *entries,
2814 int (*do_msr)(struct kvm_vcpu *vcpu,
2815 unsigned index, u64 *data))
2819 for (i = 0; i < msrs->nmsrs; ++i)
2820 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2827 * Read or write a bunch of msrs. Parameters are user addresses.
2829 * @return number of msrs set successfully.
2831 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2832 int (*do_msr)(struct kvm_vcpu *vcpu,
2833 unsigned index, u64 *data),
2836 struct kvm_msrs msrs;
2837 struct kvm_msr_entry *entries;
2842 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2846 if (msrs.nmsrs >= MAX_IO_MSRS)
2849 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2850 entries = memdup_user(user_msrs->entries, size);
2851 if (IS_ERR(entries)) {
2852 r = PTR_ERR(entries);
2856 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2861 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2872 static inline bool kvm_can_mwait_in_guest(void)
2874 return boot_cpu_has(X86_FEATURE_MWAIT) &&
2875 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
2876 boot_cpu_has(X86_FEATURE_ARAT);
2879 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2884 case KVM_CAP_IRQCHIP:
2886 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2887 case KVM_CAP_SET_TSS_ADDR:
2888 case KVM_CAP_EXT_CPUID:
2889 case KVM_CAP_EXT_EMUL_CPUID:
2890 case KVM_CAP_CLOCKSOURCE:
2892 case KVM_CAP_NOP_IO_DELAY:
2893 case KVM_CAP_MP_STATE:
2894 case KVM_CAP_SYNC_MMU:
2895 case KVM_CAP_USER_NMI:
2896 case KVM_CAP_REINJECT_CONTROL:
2897 case KVM_CAP_IRQ_INJECT_STATUS:
2898 case KVM_CAP_IOEVENTFD:
2899 case KVM_CAP_IOEVENTFD_NO_LENGTH:
2901 case KVM_CAP_PIT_STATE2:
2902 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2903 case KVM_CAP_XEN_HVM:
2904 case KVM_CAP_VCPU_EVENTS:
2905 case KVM_CAP_HYPERV:
2906 case KVM_CAP_HYPERV_VAPIC:
2907 case KVM_CAP_HYPERV_SPIN:
2908 case KVM_CAP_HYPERV_SYNIC:
2909 case KVM_CAP_HYPERV_SYNIC2:
2910 case KVM_CAP_HYPERV_VP_INDEX:
2911 case KVM_CAP_HYPERV_EVENTFD:
2912 case KVM_CAP_HYPERV_TLBFLUSH:
2913 case KVM_CAP_PCI_SEGMENT:
2914 case KVM_CAP_DEBUGREGS:
2915 case KVM_CAP_X86_ROBUST_SINGLESTEP:
2917 case KVM_CAP_ASYNC_PF:
2918 case KVM_CAP_GET_TSC_KHZ:
2919 case KVM_CAP_KVMCLOCK_CTRL:
2920 case KVM_CAP_READONLY_MEM:
2921 case KVM_CAP_HYPERV_TIME:
2922 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2923 case KVM_CAP_TSC_DEADLINE_TIMER:
2924 case KVM_CAP_ENABLE_CAP_VM:
2925 case KVM_CAP_DISABLE_QUIRKS:
2926 case KVM_CAP_SET_BOOT_CPU_ID:
2927 case KVM_CAP_SPLIT_IRQCHIP:
2928 case KVM_CAP_IMMEDIATE_EXIT:
2929 case KVM_CAP_GET_MSR_FEATURES:
2932 case KVM_CAP_SYNC_REGS:
2933 r = KVM_SYNC_X86_VALID_FIELDS;
2935 case KVM_CAP_ADJUST_CLOCK:
2936 r = KVM_CLOCK_TSC_STABLE;
2938 case KVM_CAP_X86_DISABLE_EXITS:
2939 r |= KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE;
2940 if(kvm_can_mwait_in_guest())
2941 r |= KVM_X86_DISABLE_EXITS_MWAIT;
2943 case KVM_CAP_X86_SMM:
2944 /* SMBASE is usually relocated above 1M on modern chipsets,
2945 * and SMM handlers might indeed rely on 4G segment limits,
2946 * so do not report SMM to be available if real mode is
2947 * emulated via vm86 mode. Still, do not go to great lengths
2948 * to avoid userspace's usage of the feature, because it is a
2949 * fringe case that is not enabled except via specific settings
2950 * of the module parameters.
2952 r = kvm_x86_ops->has_emulated_msr(MSR_IA32_SMBASE);
2955 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2957 case KVM_CAP_NR_VCPUS:
2958 r = KVM_SOFT_MAX_VCPUS;
2960 case KVM_CAP_MAX_VCPUS:
2963 case KVM_CAP_NR_MEMSLOTS:
2964 r = KVM_USER_MEM_SLOTS;
2966 case KVM_CAP_PV_MMU: /* obsolete */
2970 r = KVM_MAX_MCE_BANKS;
2973 r = boot_cpu_has(X86_FEATURE_XSAVE);
2975 case KVM_CAP_TSC_CONTROL:
2976 r = kvm_has_tsc_control;
2978 case KVM_CAP_X2APIC_API:
2979 r = KVM_X2APIC_API_VALID_FLAGS;
2981 case KVM_CAP_NESTED_STATE:
2982 r = kvm_x86_ops->get_nested_state ?
2983 kvm_x86_ops->get_nested_state(NULL, 0, 0) : 0;
2992 long kvm_arch_dev_ioctl(struct file *filp,
2993 unsigned int ioctl, unsigned long arg)
2995 void __user *argp = (void __user *)arg;
2999 case KVM_GET_MSR_INDEX_LIST: {
3000 struct kvm_msr_list __user *user_msr_list = argp;
3001 struct kvm_msr_list msr_list;
3005 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
3008 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3009 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
3012 if (n < msr_list.nmsrs)
3015 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3016 num_msrs_to_save * sizeof(u32)))
3018 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3020 num_emulated_msrs * sizeof(u32)))
3025 case KVM_GET_SUPPORTED_CPUID:
3026 case KVM_GET_EMULATED_CPUID: {
3027 struct kvm_cpuid2 __user *cpuid_arg = argp;
3028 struct kvm_cpuid2 cpuid;
3031 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3034 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3040 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3045 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
3047 if (copy_to_user(argp, &kvm_mce_cap_supported,
3048 sizeof(kvm_mce_cap_supported)))
3052 case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3053 struct kvm_msr_list __user *user_msr_list = argp;
3054 struct kvm_msr_list msr_list;
3058 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3061 msr_list.nmsrs = num_msr_based_features;
3062 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3065 if (n < msr_list.nmsrs)
3068 if (copy_to_user(user_msr_list->indices, &msr_based_features,
3069 num_msr_based_features * sizeof(u32)))
3075 r = msr_io(NULL, argp, do_get_msr_feature, 1);
3085 static void wbinvd_ipi(void *garbage)
3090 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3092 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3095 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3097 /* Address WBINVD may be executed by guest */
3098 if (need_emulate_wbinvd(vcpu)) {
3099 if (kvm_x86_ops->has_wbinvd_exit())
3100 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3101 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3102 smp_call_function_single(vcpu->cpu,
3103 wbinvd_ipi, NULL, 1);
3106 kvm_x86_ops->vcpu_load(vcpu, cpu);
3108 /* Apply any externally detected TSC adjustments (due to suspend) */
3109 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3110 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3111 vcpu->arch.tsc_offset_adjustment = 0;
3112 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3115 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3116 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3117 rdtsc() - vcpu->arch.last_host_tsc;
3119 mark_tsc_unstable("KVM discovered backwards TSC");
3121 if (kvm_check_tsc_unstable()) {
3122 u64 offset = kvm_compute_tsc_offset(vcpu,
3123 vcpu->arch.last_guest_tsc);
3124 kvm_vcpu_write_tsc_offset(vcpu, offset);
3125 vcpu->arch.tsc_catchup = 1;
3128 if (kvm_lapic_hv_timer_in_use(vcpu))
3129 kvm_lapic_restart_hv_timer(vcpu);
3132 * On a host with synchronized TSC, there is no need to update
3133 * kvmclock on vcpu->cpu migration
3135 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3136 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3137 if (vcpu->cpu != cpu)
3138 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3142 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3145 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3147 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3150 vcpu->arch.st.steal.preempted = KVM_VCPU_PREEMPTED;
3152 kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
3153 &vcpu->arch.st.steal.preempted,
3154 offsetof(struct kvm_steal_time, preempted),
3155 sizeof(vcpu->arch.st.steal.preempted));
3158 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3162 if (vcpu->preempted)
3163 vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu);
3166 * Disable page faults because we're in atomic context here.
3167 * kvm_write_guest_offset_cached() would call might_fault()
3168 * that relies on pagefault_disable() to tell if there's a
3169 * bug. NOTE: the write to guest memory may not go through if
3170 * during postcopy live migration or if there's heavy guest
3173 pagefault_disable();
3175 * kvm_memslots() will be called by
3176 * kvm_write_guest_offset_cached() so take the srcu lock.
3178 idx = srcu_read_lock(&vcpu->kvm->srcu);
3179 kvm_steal_time_set_preempted(vcpu);
3180 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3182 kvm_x86_ops->vcpu_put(vcpu);
3183 vcpu->arch.last_host_tsc = rdtsc();
3185 * If userspace has set any breakpoints or watchpoints, dr6 is restored
3186 * on every vmexit, but if not, we might have a stale dr6 from the
3187 * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3192 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3193 struct kvm_lapic_state *s)
3195 if (vcpu->arch.apicv_active)
3196 kvm_x86_ops->sync_pir_to_irr(vcpu);
3198 return kvm_apic_get_state(vcpu, s);
3201 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3202 struct kvm_lapic_state *s)
3206 r = kvm_apic_set_state(vcpu, s);
3209 update_cr8_intercept(vcpu);
3214 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
3216 return (!lapic_in_kernel(vcpu) ||
3217 kvm_apic_accept_pic_intr(vcpu));
3221 * if userspace requested an interrupt window, check that the
3222 * interrupt window is open.
3224 * No need to exit to userspace if we already have an interrupt queued.
3226 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
3228 return kvm_arch_interrupt_allowed(vcpu) &&
3229 !kvm_cpu_has_interrupt(vcpu) &&
3230 !kvm_event_needs_reinjection(vcpu) &&
3231 kvm_cpu_accept_dm_intr(vcpu);
3234 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3235 struct kvm_interrupt *irq)
3237 if (irq->irq >= KVM_NR_INTERRUPTS)
3240 if (!irqchip_in_kernel(vcpu->kvm)) {
3241 kvm_queue_interrupt(vcpu, irq->irq, false);
3242 kvm_make_request(KVM_REQ_EVENT, vcpu);
3247 * With in-kernel LAPIC, we only use this to inject EXTINT, so
3248 * fail for in-kernel 8259.
3250 if (pic_in_kernel(vcpu->kvm))
3253 if (vcpu->arch.pending_external_vector != -1)
3256 vcpu->arch.pending_external_vector = irq->irq;
3257 kvm_make_request(KVM_REQ_EVENT, vcpu);
3261 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3263 kvm_inject_nmi(vcpu);
3268 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3270 kvm_make_request(KVM_REQ_SMI, vcpu);
3275 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3276 struct kvm_tpr_access_ctl *tac)
3280 vcpu->arch.tpr_access_reporting = !!tac->enabled;
3284 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3288 unsigned bank_num = mcg_cap & 0xff, bank;
3291 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3293 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3296 vcpu->arch.mcg_cap = mcg_cap;
3297 /* Init IA32_MCG_CTL to all 1s */
3298 if (mcg_cap & MCG_CTL_P)
3299 vcpu->arch.mcg_ctl = ~(u64)0;
3300 /* Init IA32_MCi_CTL to all 1s */
3301 for (bank = 0; bank < bank_num; bank++)
3302 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3304 if (kvm_x86_ops->setup_mce)
3305 kvm_x86_ops->setup_mce(vcpu);
3310 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3311 struct kvm_x86_mce *mce)
3313 u64 mcg_cap = vcpu->arch.mcg_cap;
3314 unsigned bank_num = mcg_cap & 0xff;
3315 u64 *banks = vcpu->arch.mce_banks;
3317 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3320 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3321 * reporting is disabled
3323 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3324 vcpu->arch.mcg_ctl != ~(u64)0)
3326 banks += 4 * mce->bank;
3328 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3329 * reporting is disabled for the bank
3331 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3333 if (mce->status & MCI_STATUS_UC) {
3334 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3335 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3336 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3339 if (banks[1] & MCI_STATUS_VAL)
3340 mce->status |= MCI_STATUS_OVER;
3341 banks[2] = mce->addr;
3342 banks[3] = mce->misc;
3343 vcpu->arch.mcg_status = mce->mcg_status;
3344 banks[1] = mce->status;
3345 kvm_queue_exception(vcpu, MC_VECTOR);
3346 } else if (!(banks[1] & MCI_STATUS_VAL)
3347 || !(banks[1] & MCI_STATUS_UC)) {
3348 if (banks[1] & MCI_STATUS_VAL)
3349 mce->status |= MCI_STATUS_OVER;
3350 banks[2] = mce->addr;
3351 banks[3] = mce->misc;
3352 banks[1] = mce->status;
3354 banks[1] |= MCI_STATUS_OVER;
3358 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3359 struct kvm_vcpu_events *events)
3363 * FIXME: pass injected and pending separately. This is only
3364 * needed for nested virtualization, whose state cannot be
3365 * migrated yet. For now we can combine them.
3367 events->exception.injected =
3368 (vcpu->arch.exception.pending ||
3369 vcpu->arch.exception.injected) &&
3370 !kvm_exception_is_soft(vcpu->arch.exception.nr);
3371 events->exception.nr = vcpu->arch.exception.nr;
3372 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3373 events->exception.pad = 0;
3374 events->exception.error_code = vcpu->arch.exception.error_code;
3376 events->interrupt.injected =
3377 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
3378 events->interrupt.nr = vcpu->arch.interrupt.nr;
3379 events->interrupt.soft = 0;
3380 events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3382 events->nmi.injected = vcpu->arch.nmi_injected;
3383 events->nmi.pending = vcpu->arch.nmi_pending != 0;
3384 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3385 events->nmi.pad = 0;
3387 events->sipi_vector = 0; /* never valid when reporting to user space */
3389 events->smi.smm = is_smm(vcpu);
3390 events->smi.pending = vcpu->arch.smi_pending;
3391 events->smi.smm_inside_nmi =
3392 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3393 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3395 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3396 | KVM_VCPUEVENT_VALID_SHADOW
3397 | KVM_VCPUEVENT_VALID_SMM);
3398 memset(&events->reserved, 0, sizeof(events->reserved));
3401 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags);
3403 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3404 struct kvm_vcpu_events *events)
3406 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3407 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3408 | KVM_VCPUEVENT_VALID_SHADOW
3409 | KVM_VCPUEVENT_VALID_SMM))
3412 if (events->exception.injected &&
3413 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR ||
3414 is_guest_mode(vcpu)))
3417 /* INITs are latched while in SMM */
3418 if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3419 (events->smi.smm || events->smi.pending) &&
3420 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3424 vcpu->arch.exception.injected = false;
3425 vcpu->arch.exception.pending = events->exception.injected;
3426 vcpu->arch.exception.nr = events->exception.nr;
3427 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3428 vcpu->arch.exception.error_code = events->exception.error_code;
3430 vcpu->arch.interrupt.injected = events->interrupt.injected;
3431 vcpu->arch.interrupt.nr = events->interrupt.nr;
3432 vcpu->arch.interrupt.soft = events->interrupt.soft;
3433 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3434 kvm_x86_ops->set_interrupt_shadow(vcpu,
3435 events->interrupt.shadow);
3437 vcpu->arch.nmi_injected = events->nmi.injected;
3438 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3439 vcpu->arch.nmi_pending = events->nmi.pending;
3440 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3442 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3443 lapic_in_kernel(vcpu))
3444 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3446 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3447 u32 hflags = vcpu->arch.hflags;
3448 if (events->smi.smm)
3449 hflags |= HF_SMM_MASK;
3451 hflags &= ~HF_SMM_MASK;
3452 kvm_set_hflags(vcpu, hflags);
3454 vcpu->arch.smi_pending = events->smi.pending;
3456 if (events->smi.smm) {
3457 if (events->smi.smm_inside_nmi)
3458 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3460 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3461 if (lapic_in_kernel(vcpu)) {
3462 if (events->smi.latched_init)
3463 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3465 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3470 kvm_make_request(KVM_REQ_EVENT, vcpu);
3475 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3476 struct kvm_debugregs *dbgregs)
3480 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3481 kvm_get_dr(vcpu, 6, &val);
3483 dbgregs->dr7 = vcpu->arch.dr7;
3485 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3488 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3489 struct kvm_debugregs *dbgregs)
3494 if (dbgregs->dr6 & ~0xffffffffull)
3496 if (dbgregs->dr7 & ~0xffffffffull)
3499 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3500 kvm_update_dr0123(vcpu);
3501 vcpu->arch.dr6 = dbgregs->dr6;
3502 kvm_update_dr6(vcpu);
3503 vcpu->arch.dr7 = dbgregs->dr7;
3504 kvm_update_dr7(vcpu);
3509 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3511 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3513 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3514 u64 xstate_bv = xsave->header.xfeatures;
3518 * Copy legacy XSAVE area, to avoid complications with CPUID
3519 * leaves 0 and 1 in the loop below.
3521 memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3524 xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3525 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3528 * Copy each region from the possibly compacted offset to the
3529 * non-compacted offset.
3531 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3533 u64 feature = valid & -valid;
3534 int index = fls64(feature) - 1;
3535 void *src = get_xsave_addr(xsave, feature);
3538 u32 size, offset, ecx, edx;
3539 cpuid_count(XSTATE_CPUID, index,
3540 &size, &offset, &ecx, &edx);
3541 if (feature == XFEATURE_MASK_PKRU)
3542 memcpy(dest + offset, &vcpu->arch.pkru,
3543 sizeof(vcpu->arch.pkru));
3545 memcpy(dest + offset, src, size);
3553 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3555 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3556 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3560 * Copy legacy XSAVE area, to avoid complications with CPUID
3561 * leaves 0 and 1 in the loop below.
3563 memcpy(xsave, src, XSAVE_HDR_OFFSET);
3565 /* Set XSTATE_BV and possibly XCOMP_BV. */
3566 xsave->header.xfeatures = xstate_bv;
3567 if (boot_cpu_has(X86_FEATURE_XSAVES))
3568 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3571 * Copy each region from the non-compacted offset to the
3572 * possibly compacted offset.
3574 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3576 u64 feature = valid & -valid;
3577 int index = fls64(feature) - 1;
3578 void *dest = get_xsave_addr(xsave, feature);
3581 u32 size, offset, ecx, edx;
3582 cpuid_count(XSTATE_CPUID, index,
3583 &size, &offset, &ecx, &edx);
3584 if (feature == XFEATURE_MASK_PKRU)
3585 memcpy(&vcpu->arch.pkru, src + offset,
3586 sizeof(vcpu->arch.pkru));
3588 memcpy(dest, src + offset, size);
3595 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3596 struct kvm_xsave *guest_xsave)
3598 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3599 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3600 fill_xsave((u8 *) guest_xsave->region, vcpu);
3602 memcpy(guest_xsave->region,
3603 &vcpu->arch.guest_fpu.state.fxsave,
3604 sizeof(struct fxregs_state));
3605 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3606 XFEATURE_MASK_FPSSE;
3610 #define XSAVE_MXCSR_OFFSET 24
3612 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3613 struct kvm_xsave *guest_xsave)
3616 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3617 u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3619 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3621 * Here we allow setting states that are not present in
3622 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
3623 * with old userspace.
3625 if (xstate_bv & ~kvm_supported_xcr0() ||
3626 mxcsr & ~mxcsr_feature_mask)
3628 load_xsave(vcpu, (u8 *)guest_xsave->region);
3630 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
3631 mxcsr & ~mxcsr_feature_mask)
3633 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3634 guest_xsave->region, sizeof(struct fxregs_state));
3639 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3640 struct kvm_xcrs *guest_xcrs)
3642 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3643 guest_xcrs->nr_xcrs = 0;
3647 guest_xcrs->nr_xcrs = 1;
3648 guest_xcrs->flags = 0;
3649 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3650 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3653 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3654 struct kvm_xcrs *guest_xcrs)
3658 if (!boot_cpu_has(X86_FEATURE_XSAVE))
3661 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3664 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3665 /* Only support XCR0 currently */
3666 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3667 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3668 guest_xcrs->xcrs[i].value);
3677 * kvm_set_guest_paused() indicates to the guest kernel that it has been
3678 * stopped by the hypervisor. This function will be called from the host only.
3679 * EINVAL is returned when the host attempts to set the flag for a guest that
3680 * does not support pv clocks.
3682 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3684 if (!vcpu->arch.pv_time_enabled)
3686 vcpu->arch.pvclock_set_guest_stopped_request = true;
3687 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3691 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3692 struct kvm_enable_cap *cap)
3698 case KVM_CAP_HYPERV_SYNIC2:
3701 case KVM_CAP_HYPERV_SYNIC:
3702 if (!irqchip_in_kernel(vcpu->kvm))
3704 return kvm_hv_activate_synic(vcpu, cap->cap ==
3705 KVM_CAP_HYPERV_SYNIC2);
3711 long kvm_arch_vcpu_ioctl(struct file *filp,
3712 unsigned int ioctl, unsigned long arg)
3714 struct kvm_vcpu *vcpu = filp->private_data;
3715 void __user *argp = (void __user *)arg;
3718 struct kvm_lapic_state *lapic;
3719 struct kvm_xsave *xsave;
3720 struct kvm_xcrs *xcrs;
3728 case KVM_GET_LAPIC: {
3730 if (!lapic_in_kernel(vcpu))
3732 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3737 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3741 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3746 case KVM_SET_LAPIC: {
3748 if (!lapic_in_kernel(vcpu))
3750 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3751 if (IS_ERR(u.lapic)) {
3752 r = PTR_ERR(u.lapic);
3756 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3759 case KVM_INTERRUPT: {
3760 struct kvm_interrupt irq;
3763 if (copy_from_user(&irq, argp, sizeof irq))
3765 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3769 r = kvm_vcpu_ioctl_nmi(vcpu);
3773 r = kvm_vcpu_ioctl_smi(vcpu);
3776 case KVM_SET_CPUID: {
3777 struct kvm_cpuid __user *cpuid_arg = argp;
3778 struct kvm_cpuid cpuid;
3781 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3783 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3786 case KVM_SET_CPUID2: {
3787 struct kvm_cpuid2 __user *cpuid_arg = argp;
3788 struct kvm_cpuid2 cpuid;
3791 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3793 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3794 cpuid_arg->entries);
3797 case KVM_GET_CPUID2: {
3798 struct kvm_cpuid2 __user *cpuid_arg = argp;
3799 struct kvm_cpuid2 cpuid;
3802 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3804 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3805 cpuid_arg->entries);
3809 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3814 case KVM_GET_MSRS: {
3815 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3816 r = msr_io(vcpu, argp, do_get_msr, 1);
3817 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3820 case KVM_SET_MSRS: {
3821 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3822 r = msr_io(vcpu, argp, do_set_msr, 0);
3823 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3826 case KVM_TPR_ACCESS_REPORTING: {
3827 struct kvm_tpr_access_ctl tac;
3830 if (copy_from_user(&tac, argp, sizeof tac))
3832 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3836 if (copy_to_user(argp, &tac, sizeof tac))
3841 case KVM_SET_VAPIC_ADDR: {
3842 struct kvm_vapic_addr va;
3846 if (!lapic_in_kernel(vcpu))
3849 if (copy_from_user(&va, argp, sizeof va))
3851 idx = srcu_read_lock(&vcpu->kvm->srcu);
3852 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3853 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3856 case KVM_X86_SETUP_MCE: {
3860 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3862 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3865 case KVM_X86_SET_MCE: {
3866 struct kvm_x86_mce mce;
3869 if (copy_from_user(&mce, argp, sizeof mce))
3871 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3874 case KVM_GET_VCPU_EVENTS: {
3875 struct kvm_vcpu_events events;
3877 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3880 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3885 case KVM_SET_VCPU_EVENTS: {
3886 struct kvm_vcpu_events events;
3889 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3892 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3895 case KVM_GET_DEBUGREGS: {
3896 struct kvm_debugregs dbgregs;
3898 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3901 if (copy_to_user(argp, &dbgregs,
3902 sizeof(struct kvm_debugregs)))
3907 case KVM_SET_DEBUGREGS: {
3908 struct kvm_debugregs dbgregs;
3911 if (copy_from_user(&dbgregs, argp,
3912 sizeof(struct kvm_debugregs)))
3915 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3918 case KVM_GET_XSAVE: {
3919 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3924 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3927 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3932 case KVM_SET_XSAVE: {
3933 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3934 if (IS_ERR(u.xsave)) {
3935 r = PTR_ERR(u.xsave);
3939 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3942 case KVM_GET_XCRS: {
3943 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3948 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3951 if (copy_to_user(argp, u.xcrs,
3952 sizeof(struct kvm_xcrs)))
3957 case KVM_SET_XCRS: {
3958 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3959 if (IS_ERR(u.xcrs)) {
3960 r = PTR_ERR(u.xcrs);
3964 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3967 case KVM_SET_TSC_KHZ: {
3971 user_tsc_khz = (u32)arg;
3973 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3976 if (user_tsc_khz == 0)
3977 user_tsc_khz = tsc_khz;
3979 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3984 case KVM_GET_TSC_KHZ: {
3985 r = vcpu->arch.virtual_tsc_khz;
3988 case KVM_KVMCLOCK_CTRL: {
3989 r = kvm_set_guest_paused(vcpu);
3992 case KVM_ENABLE_CAP: {
3993 struct kvm_enable_cap cap;
3996 if (copy_from_user(&cap, argp, sizeof(cap)))
3998 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
4001 case KVM_GET_NESTED_STATE: {
4002 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4006 if (!kvm_x86_ops->get_nested_state)
4009 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
4010 if (get_user(user_data_size, &user_kvm_nested_state->size))
4013 r = kvm_x86_ops->get_nested_state(vcpu, user_kvm_nested_state,
4018 if (r > user_data_size) {
4019 if (put_user(r, &user_kvm_nested_state->size))
4026 case KVM_SET_NESTED_STATE: {
4027 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4028 struct kvm_nested_state kvm_state;
4031 if (!kvm_x86_ops->set_nested_state)
4034 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
4037 if (kvm_state.size < sizeof(kvm_state))
4040 if (kvm_state.flags &
4041 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE))
4044 /* nested_run_pending implies guest_mode. */
4045 if (kvm_state.flags == KVM_STATE_NESTED_RUN_PENDING)
4048 r = kvm_x86_ops->set_nested_state(vcpu, user_kvm_nested_state, &kvm_state);
4061 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
4063 return VM_FAULT_SIGBUS;
4066 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
4070 if (addr > (unsigned int)(-3 * PAGE_SIZE))
4072 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
4076 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
4079 return kvm_x86_ops->set_identity_map_addr(kvm, ident_addr);
4082 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
4083 u32 kvm_nr_mmu_pages)
4085 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
4088 mutex_lock(&kvm->slots_lock);
4090 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
4091 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
4093 mutex_unlock(&kvm->slots_lock);
4097 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
4099 return kvm->arch.n_max_mmu_pages;
4102 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4104 struct kvm_pic *pic = kvm->arch.vpic;
4108 switch (chip->chip_id) {
4109 case KVM_IRQCHIP_PIC_MASTER:
4110 memcpy(&chip->chip.pic, &pic->pics[0],
4111 sizeof(struct kvm_pic_state));
4113 case KVM_IRQCHIP_PIC_SLAVE:
4114 memcpy(&chip->chip.pic, &pic->pics[1],
4115 sizeof(struct kvm_pic_state));
4117 case KVM_IRQCHIP_IOAPIC:
4118 kvm_get_ioapic(kvm, &chip->chip.ioapic);
4127 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4129 struct kvm_pic *pic = kvm->arch.vpic;
4133 switch (chip->chip_id) {
4134 case KVM_IRQCHIP_PIC_MASTER:
4135 spin_lock(&pic->lock);
4136 memcpy(&pic->pics[0], &chip->chip.pic,
4137 sizeof(struct kvm_pic_state));
4138 spin_unlock(&pic->lock);
4140 case KVM_IRQCHIP_PIC_SLAVE:
4141 spin_lock(&pic->lock);
4142 memcpy(&pic->pics[1], &chip->chip.pic,
4143 sizeof(struct kvm_pic_state));
4144 spin_unlock(&pic->lock);
4146 case KVM_IRQCHIP_IOAPIC:
4147 kvm_set_ioapic(kvm, &chip->chip.ioapic);
4153 kvm_pic_update_irq(pic);
4157 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4159 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
4161 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
4163 mutex_lock(&kps->lock);
4164 memcpy(ps, &kps->channels, sizeof(*ps));
4165 mutex_unlock(&kps->lock);
4169 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4172 struct kvm_pit *pit = kvm->arch.vpit;
4174 mutex_lock(&pit->pit_state.lock);
4175 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
4176 for (i = 0; i < 3; i++)
4177 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
4178 mutex_unlock(&pit->pit_state.lock);
4182 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4184 mutex_lock(&kvm->arch.vpit->pit_state.lock);
4185 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
4186 sizeof(ps->channels));
4187 ps->flags = kvm->arch.vpit->pit_state.flags;
4188 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
4189 memset(&ps->reserved, 0, sizeof(ps->reserved));
4193 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4197 u32 prev_legacy, cur_legacy;
4198 struct kvm_pit *pit = kvm->arch.vpit;
4200 mutex_lock(&pit->pit_state.lock);
4201 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
4202 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
4203 if (!prev_legacy && cur_legacy)
4205 memcpy(&pit->pit_state.channels, &ps->channels,
4206 sizeof(pit->pit_state.channels));
4207 pit->pit_state.flags = ps->flags;
4208 for (i = 0; i < 3; i++)
4209 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
4211 mutex_unlock(&pit->pit_state.lock);
4215 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
4216 struct kvm_reinject_control *control)
4218 struct kvm_pit *pit = kvm->arch.vpit;
4223 /* pit->pit_state.lock was overloaded to prevent userspace from getting
4224 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
4225 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
4227 mutex_lock(&pit->pit_state.lock);
4228 kvm_pit_set_reinject(pit, control->pit_reinject);
4229 mutex_unlock(&pit->pit_state.lock);
4235 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
4236 * @kvm: kvm instance
4237 * @log: slot id and address to which we copy the log
4239 * Steps 1-4 below provide general overview of dirty page logging. See
4240 * kvm_get_dirty_log_protect() function description for additional details.
4242 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
4243 * always flush the TLB (step 4) even if previous step failed and the dirty
4244 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
4245 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
4246 * writes will be marked dirty for next log read.
4248 * 1. Take a snapshot of the bit and clear it if needed.
4249 * 2. Write protect the corresponding page.
4250 * 3. Copy the snapshot to the userspace.
4251 * 4. Flush TLB's if needed.
4253 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
4255 bool is_dirty = false;
4258 mutex_lock(&kvm->slots_lock);
4261 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4263 if (kvm_x86_ops->flush_log_dirty)
4264 kvm_x86_ops->flush_log_dirty(kvm);
4266 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
4269 * All the TLBs can be flushed out of mmu lock, see the comments in
4270 * kvm_mmu_slot_remove_write_access().
4272 lockdep_assert_held(&kvm->slots_lock);
4274 kvm_flush_remote_tlbs(kvm);
4276 mutex_unlock(&kvm->slots_lock);
4280 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
4283 if (!irqchip_in_kernel(kvm))
4286 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
4287 irq_event->irq, irq_event->level,
4292 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4293 struct kvm_enable_cap *cap)
4301 case KVM_CAP_DISABLE_QUIRKS:
4302 kvm->arch.disabled_quirks = cap->args[0];
4305 case KVM_CAP_SPLIT_IRQCHIP: {
4306 mutex_lock(&kvm->lock);
4308 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
4309 goto split_irqchip_unlock;
4311 if (irqchip_in_kernel(kvm))
4312 goto split_irqchip_unlock;
4313 if (kvm->created_vcpus)
4314 goto split_irqchip_unlock;
4315 r = kvm_setup_empty_irq_routing(kvm);
4317 goto split_irqchip_unlock;
4318 /* Pairs with irqchip_in_kernel. */
4320 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4321 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4323 split_irqchip_unlock:
4324 mutex_unlock(&kvm->lock);
4327 case KVM_CAP_X2APIC_API:
4329 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4332 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4333 kvm->arch.x2apic_format = true;
4334 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4335 kvm->arch.x2apic_broadcast_quirk_disabled = true;
4339 case KVM_CAP_X86_DISABLE_EXITS:
4341 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
4344 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
4345 kvm_can_mwait_in_guest())
4346 kvm->arch.mwait_in_guest = true;
4347 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
4348 kvm->arch.hlt_in_guest = true;
4349 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
4350 kvm->arch.pause_in_guest = true;
4360 long kvm_arch_vm_ioctl(struct file *filp,
4361 unsigned int ioctl, unsigned long arg)
4363 struct kvm *kvm = filp->private_data;
4364 void __user *argp = (void __user *)arg;
4367 * This union makes it completely explicit to gcc-3.x
4368 * that these two variables' stack usage should be
4369 * combined, not added together.
4372 struct kvm_pit_state ps;
4373 struct kvm_pit_state2 ps2;
4374 struct kvm_pit_config pit_config;
4378 case KVM_SET_TSS_ADDR:
4379 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4381 case KVM_SET_IDENTITY_MAP_ADDR: {
4384 mutex_lock(&kvm->lock);
4386 if (kvm->created_vcpus)
4387 goto set_identity_unlock;
4389 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
4390 goto set_identity_unlock;
4391 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4392 set_identity_unlock:
4393 mutex_unlock(&kvm->lock);
4396 case KVM_SET_NR_MMU_PAGES:
4397 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4399 case KVM_GET_NR_MMU_PAGES:
4400 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4402 case KVM_CREATE_IRQCHIP: {
4403 mutex_lock(&kvm->lock);
4406 if (irqchip_in_kernel(kvm))
4407 goto create_irqchip_unlock;
4410 if (kvm->created_vcpus)
4411 goto create_irqchip_unlock;
4413 r = kvm_pic_init(kvm);
4415 goto create_irqchip_unlock;
4417 r = kvm_ioapic_init(kvm);
4419 kvm_pic_destroy(kvm);
4420 goto create_irqchip_unlock;
4423 r = kvm_setup_default_irq_routing(kvm);
4425 kvm_ioapic_destroy(kvm);
4426 kvm_pic_destroy(kvm);
4427 goto create_irqchip_unlock;
4429 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4431 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4432 create_irqchip_unlock:
4433 mutex_unlock(&kvm->lock);
4436 case KVM_CREATE_PIT:
4437 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4439 case KVM_CREATE_PIT2:
4441 if (copy_from_user(&u.pit_config, argp,
4442 sizeof(struct kvm_pit_config)))
4445 mutex_lock(&kvm->lock);
4448 goto create_pit_unlock;
4450 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4454 mutex_unlock(&kvm->lock);
4456 case KVM_GET_IRQCHIP: {
4457 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4458 struct kvm_irqchip *chip;
4460 chip = memdup_user(argp, sizeof(*chip));
4467 if (!irqchip_kernel(kvm))
4468 goto get_irqchip_out;
4469 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4471 goto get_irqchip_out;
4473 if (copy_to_user(argp, chip, sizeof *chip))
4474 goto get_irqchip_out;
4480 case KVM_SET_IRQCHIP: {
4481 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4482 struct kvm_irqchip *chip;
4484 chip = memdup_user(argp, sizeof(*chip));
4491 if (!irqchip_kernel(kvm))
4492 goto set_irqchip_out;
4493 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4495 goto set_irqchip_out;
4503 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4506 if (!kvm->arch.vpit)
4508 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4512 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4519 if (copy_from_user(&u.ps, argp, sizeof u.ps))
4522 if (!kvm->arch.vpit)
4524 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4527 case KVM_GET_PIT2: {
4529 if (!kvm->arch.vpit)
4531 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4535 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4540 case KVM_SET_PIT2: {
4542 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4545 if (!kvm->arch.vpit)
4547 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4550 case KVM_REINJECT_CONTROL: {
4551 struct kvm_reinject_control control;
4553 if (copy_from_user(&control, argp, sizeof(control)))
4555 r = kvm_vm_ioctl_reinject(kvm, &control);
4558 case KVM_SET_BOOT_CPU_ID:
4560 mutex_lock(&kvm->lock);
4561 if (kvm->created_vcpus)
4564 kvm->arch.bsp_vcpu_id = arg;
4565 mutex_unlock(&kvm->lock);
4567 case KVM_XEN_HVM_CONFIG: {
4568 struct kvm_xen_hvm_config xhc;
4570 if (copy_from_user(&xhc, argp, sizeof(xhc)))
4575 memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
4579 case KVM_SET_CLOCK: {
4580 struct kvm_clock_data user_ns;
4584 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4593 * TODO: userspace has to take care of races with VCPU_RUN, so
4594 * kvm_gen_update_masterclock() can be cut down to locked
4595 * pvclock_update_vm_gtod_copy().
4597 kvm_gen_update_masterclock(kvm);
4598 now_ns = get_kvmclock_ns(kvm);
4599 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4600 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
4603 case KVM_GET_CLOCK: {
4604 struct kvm_clock_data user_ns;
4607 now_ns = get_kvmclock_ns(kvm);
4608 user_ns.clock = now_ns;
4609 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4610 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4613 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4618 case KVM_ENABLE_CAP: {
4619 struct kvm_enable_cap cap;
4622 if (copy_from_user(&cap, argp, sizeof(cap)))
4624 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4627 case KVM_MEMORY_ENCRYPT_OP: {
4629 if (kvm_x86_ops->mem_enc_op)
4630 r = kvm_x86_ops->mem_enc_op(kvm, argp);
4633 case KVM_MEMORY_ENCRYPT_REG_REGION: {
4634 struct kvm_enc_region region;
4637 if (copy_from_user(®ion, argp, sizeof(region)))
4641 if (kvm_x86_ops->mem_enc_reg_region)
4642 r = kvm_x86_ops->mem_enc_reg_region(kvm, ®ion);
4645 case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
4646 struct kvm_enc_region region;
4649 if (copy_from_user(®ion, argp, sizeof(region)))
4653 if (kvm_x86_ops->mem_enc_unreg_region)
4654 r = kvm_x86_ops->mem_enc_unreg_region(kvm, ®ion);
4657 case KVM_HYPERV_EVENTFD: {
4658 struct kvm_hyperv_eventfd hvevfd;
4661 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
4663 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
4673 static void kvm_init_msr_list(void)
4678 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4679 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4683 * Even MSRs that are valid in the host may not be exposed
4684 * to the guests in some cases.
4686 switch (msrs_to_save[i]) {
4687 case MSR_IA32_BNDCFGS:
4688 if (!kvm_x86_ops->mpx_supported())
4692 if (!kvm_x86_ops->rdtscp_supported())
4700 msrs_to_save[j] = msrs_to_save[i];
4703 num_msrs_to_save = j;
4705 for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4706 if (!kvm_x86_ops->has_emulated_msr(emulated_msrs[i]))
4710 emulated_msrs[j] = emulated_msrs[i];
4713 num_emulated_msrs = j;
4715 for (i = j = 0; i < ARRAY_SIZE(msr_based_features); i++) {
4716 struct kvm_msr_entry msr;
4718 msr.index = msr_based_features[i];
4719 if (kvm_get_msr_feature(&msr))
4723 msr_based_features[j] = msr_based_features[i];
4726 num_msr_based_features = j;
4729 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4737 if (!(lapic_in_kernel(vcpu) &&
4738 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4739 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4750 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4757 if (!(lapic_in_kernel(vcpu) &&
4758 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4760 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4762 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
4772 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4773 struct kvm_segment *var, int seg)
4775 kvm_x86_ops->set_segment(vcpu, var, seg);
4778 void kvm_get_segment(struct kvm_vcpu *vcpu,
4779 struct kvm_segment *var, int seg)
4781 kvm_x86_ops->get_segment(vcpu, var, seg);
4784 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4785 struct x86_exception *exception)
4789 BUG_ON(!mmu_is_nested(vcpu));
4791 /* NPT walks are always user-walks */
4792 access |= PFERR_USER_MASK;
4793 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4798 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4799 struct x86_exception *exception)
4801 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4802 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4805 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4806 struct x86_exception *exception)
4808 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4809 access |= PFERR_FETCH_MASK;
4810 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4813 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4814 struct x86_exception *exception)
4816 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4817 access |= PFERR_WRITE_MASK;
4818 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4821 /* uses this to access any guest's mapped memory without checking CPL */
4822 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4823 struct x86_exception *exception)
4825 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4828 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4829 struct kvm_vcpu *vcpu, u32 access,
4830 struct x86_exception *exception)
4833 int r = X86EMUL_CONTINUE;
4836 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4838 unsigned offset = addr & (PAGE_SIZE-1);
4839 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4842 if (gpa == UNMAPPED_GVA)
4843 return X86EMUL_PROPAGATE_FAULT;
4844 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4847 r = X86EMUL_IO_NEEDED;
4859 /* used for instruction fetching */
4860 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4861 gva_t addr, void *val, unsigned int bytes,
4862 struct x86_exception *exception)
4864 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4865 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4869 /* Inline kvm_read_guest_virt_helper for speed. */
4870 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4872 if (unlikely(gpa == UNMAPPED_GVA))
4873 return X86EMUL_PROPAGATE_FAULT;
4875 offset = addr & (PAGE_SIZE-1);
4876 if (WARN_ON(offset + bytes > PAGE_SIZE))
4877 bytes = (unsigned)PAGE_SIZE - offset;
4878 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4880 if (unlikely(ret < 0))
4881 return X86EMUL_IO_NEEDED;
4883 return X86EMUL_CONTINUE;
4886 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
4887 gva_t addr, void *val, unsigned int bytes,
4888 struct x86_exception *exception)
4890 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4892 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4895 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4897 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
4898 gva_t addr, void *val, unsigned int bytes,
4899 struct x86_exception *exception, bool system)
4901 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4904 if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
4905 access |= PFERR_USER_MASK;
4907 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
4910 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4911 unsigned long addr, void *val, unsigned int bytes)
4913 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4914 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4916 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4919 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4920 struct kvm_vcpu *vcpu, u32 access,
4921 struct x86_exception *exception)
4924 int r = X86EMUL_CONTINUE;
4927 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4930 unsigned offset = addr & (PAGE_SIZE-1);
4931 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4934 if (gpa == UNMAPPED_GVA)
4935 return X86EMUL_PROPAGATE_FAULT;
4936 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4938 r = X86EMUL_IO_NEEDED;
4950 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
4951 unsigned int bytes, struct x86_exception *exception,
4954 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4955 u32 access = PFERR_WRITE_MASK;
4957 if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
4958 access |= PFERR_USER_MASK;
4960 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
4964 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
4965 unsigned int bytes, struct x86_exception *exception)
4967 /* kvm_write_guest_virt_system can pull in tons of pages. */
4968 vcpu->arch.l1tf_flush_l1d = true;
4970 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
4971 PFERR_WRITE_MASK, exception);
4973 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4975 int handle_ud(struct kvm_vcpu *vcpu)
4977 int emul_type = EMULTYPE_TRAP_UD;
4978 enum emulation_result er;
4979 char sig[5]; /* ud2; .ascii "kvm" */
4980 struct x86_exception e;
4982 if (force_emulation_prefix &&
4983 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
4984 sig, sizeof(sig), &e) == 0 &&
4985 memcmp(sig, "\xf\xbkvm", sizeof(sig)) == 0) {
4986 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
4990 er = emulate_instruction(vcpu, emul_type);
4991 if (er == EMULATE_USER_EXIT)
4993 if (er != EMULATE_DONE)
4994 kvm_queue_exception(vcpu, UD_VECTOR);
4997 EXPORT_SYMBOL_GPL(handle_ud);
4999 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5000 gpa_t gpa, bool write)
5002 /* For APIC access vmexit */
5003 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5006 if (vcpu_match_mmio_gpa(vcpu, gpa)) {
5007 trace_vcpu_match_mmio(gva, gpa, write, true);
5014 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5015 gpa_t *gpa, struct x86_exception *exception,
5018 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
5019 | (write ? PFERR_WRITE_MASK : 0);
5022 * currently PKRU is only applied to ept enabled guest so
5023 * there is no pkey in EPT page table for L1 guest or EPT
5024 * shadow page table for L2 guest.
5026 if (vcpu_match_mmio_gva(vcpu, gva)
5027 && !permission_fault(vcpu, vcpu->arch.walk_mmu,
5028 vcpu->arch.access, 0, access)) {
5029 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
5030 (gva & (PAGE_SIZE - 1));
5031 trace_vcpu_match_mmio(gva, *gpa, write, false);
5035 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5037 if (*gpa == UNMAPPED_GVA)
5040 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
5043 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
5044 const void *val, int bytes)
5048 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
5051 kvm_page_track_write(vcpu, gpa, val, bytes);
5055 struct read_write_emulator_ops {
5056 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
5058 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
5059 void *val, int bytes);
5060 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5061 int bytes, void *val);
5062 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5063 void *val, int bytes);
5067 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
5069 if (vcpu->mmio_read_completed) {
5070 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
5071 vcpu->mmio_fragments[0].gpa, val);
5072 vcpu->mmio_read_completed = 0;
5079 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5080 void *val, int bytes)
5082 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
5085 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5086 void *val, int bytes)
5088 return emulator_write_phys(vcpu, gpa, val, bytes);
5091 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
5093 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
5094 return vcpu_mmio_write(vcpu, gpa, bytes, val);
5097 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5098 void *val, int bytes)
5100 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
5101 return X86EMUL_IO_NEEDED;
5104 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5105 void *val, int bytes)
5107 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
5109 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
5110 return X86EMUL_CONTINUE;
5113 static const struct read_write_emulator_ops read_emultor = {
5114 .read_write_prepare = read_prepare,
5115 .read_write_emulate = read_emulate,
5116 .read_write_mmio = vcpu_mmio_read,
5117 .read_write_exit_mmio = read_exit_mmio,
5120 static const struct read_write_emulator_ops write_emultor = {
5121 .read_write_emulate = write_emulate,
5122 .read_write_mmio = write_mmio,
5123 .read_write_exit_mmio = write_exit_mmio,
5127 static int emulator_read_write_onepage(unsigned long addr, void *val,
5129 struct x86_exception *exception,
5130 struct kvm_vcpu *vcpu,
5131 const struct read_write_emulator_ops *ops)
5135 bool write = ops->write;
5136 struct kvm_mmio_fragment *frag;
5137 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5140 * If the exit was due to a NPF we may already have a GPA.
5141 * If the GPA is present, use it to avoid the GVA to GPA table walk.
5142 * Note, this cannot be used on string operations since string
5143 * operation using rep will only have the initial GPA from the NPF
5146 if (vcpu->arch.gpa_available &&
5147 emulator_can_use_gpa(ctxt) &&
5148 (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) {
5149 gpa = vcpu->arch.gpa_val;
5150 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
5152 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
5154 return X86EMUL_PROPAGATE_FAULT;
5157 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
5158 return X86EMUL_CONTINUE;
5161 * Is this MMIO handled locally?
5163 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
5164 if (handled == bytes)
5165 return X86EMUL_CONTINUE;
5171 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
5172 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
5176 return X86EMUL_CONTINUE;
5179 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
5181 void *val, unsigned int bytes,
5182 struct x86_exception *exception,
5183 const struct read_write_emulator_ops *ops)
5185 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5189 if (ops->read_write_prepare &&
5190 ops->read_write_prepare(vcpu, val, bytes))
5191 return X86EMUL_CONTINUE;
5193 vcpu->mmio_nr_fragments = 0;
5195 /* Crossing a page boundary? */
5196 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
5199 now = -addr & ~PAGE_MASK;
5200 rc = emulator_read_write_onepage(addr, val, now, exception,
5203 if (rc != X86EMUL_CONTINUE)
5206 if (ctxt->mode != X86EMUL_MODE_PROT64)
5212 rc = emulator_read_write_onepage(addr, val, bytes, exception,
5214 if (rc != X86EMUL_CONTINUE)
5217 if (!vcpu->mmio_nr_fragments)
5220 gpa = vcpu->mmio_fragments[0].gpa;
5222 vcpu->mmio_needed = 1;
5223 vcpu->mmio_cur_fragment = 0;
5225 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
5226 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
5227 vcpu->run->exit_reason = KVM_EXIT_MMIO;
5228 vcpu->run->mmio.phys_addr = gpa;
5230 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
5233 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
5237 struct x86_exception *exception)
5239 return emulator_read_write(ctxt, addr, val, bytes,
5240 exception, &read_emultor);
5243 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
5247 struct x86_exception *exception)
5249 return emulator_read_write(ctxt, addr, (void *)val, bytes,
5250 exception, &write_emultor);
5253 #define CMPXCHG_TYPE(t, ptr, old, new) \
5254 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
5256 #ifdef CONFIG_X86_64
5257 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
5259 # define CMPXCHG64(ptr, old, new) \
5260 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
5263 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
5268 struct x86_exception *exception)
5270 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5276 /* guests cmpxchg8b have to be emulated atomically */
5277 if (bytes > 8 || (bytes & (bytes - 1)))
5280 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
5282 if (gpa == UNMAPPED_GVA ||
5283 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5286 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
5289 page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
5290 if (is_error_page(page))
5293 kaddr = kmap_atomic(page);
5294 kaddr += offset_in_page(gpa);
5297 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
5300 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
5303 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
5306 exchanged = CMPXCHG64(kaddr, old, new);
5311 kunmap_atomic(kaddr);
5312 kvm_release_page_dirty(page);
5315 return X86EMUL_CMPXCHG_FAILED;
5317 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5318 kvm_page_track_write(vcpu, gpa, new, bytes);
5320 return X86EMUL_CONTINUE;
5323 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
5325 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
5328 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
5332 for (i = 0; i < vcpu->arch.pio.count; i++) {
5333 if (vcpu->arch.pio.in)
5334 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
5335 vcpu->arch.pio.size, pd);
5337 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
5338 vcpu->arch.pio.port, vcpu->arch.pio.size,
5342 pd += vcpu->arch.pio.size;
5347 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
5348 unsigned short port, void *val,
5349 unsigned int count, bool in)
5351 vcpu->arch.pio.port = port;
5352 vcpu->arch.pio.in = in;
5353 vcpu->arch.pio.count = count;
5354 vcpu->arch.pio.size = size;
5356 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
5357 vcpu->arch.pio.count = 0;
5361 vcpu->run->exit_reason = KVM_EXIT_IO;
5362 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
5363 vcpu->run->io.size = size;
5364 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
5365 vcpu->run->io.count = count;
5366 vcpu->run->io.port = port;
5371 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
5372 int size, unsigned short port, void *val,
5375 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5378 if (vcpu->arch.pio.count)
5381 memset(vcpu->arch.pio_data, 0, size * count);
5383 ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
5386 memcpy(val, vcpu->arch.pio_data, size * count);
5387 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
5388 vcpu->arch.pio.count = 0;
5395 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
5396 int size, unsigned short port,
5397 const void *val, unsigned int count)
5399 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5401 memcpy(vcpu->arch.pio_data, val, size * count);
5402 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
5403 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
5406 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
5408 return kvm_x86_ops->get_segment_base(vcpu, seg);
5411 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
5413 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
5416 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
5418 if (!need_emulate_wbinvd(vcpu))
5419 return X86EMUL_CONTINUE;
5421 if (kvm_x86_ops->has_wbinvd_exit()) {
5422 int cpu = get_cpu();
5424 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
5425 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
5426 wbinvd_ipi, NULL, 1);
5428 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
5431 return X86EMUL_CONTINUE;
5434 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
5436 kvm_emulate_wbinvd_noskip(vcpu);
5437 return kvm_skip_emulated_instruction(vcpu);
5439 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
5443 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
5445 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
5448 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
5449 unsigned long *dest)
5451 return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
5454 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
5455 unsigned long value)
5458 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
5461 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
5463 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
5466 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
5468 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5469 unsigned long value;
5473 value = kvm_read_cr0(vcpu);
5476 value = vcpu->arch.cr2;
5479 value = kvm_read_cr3(vcpu);
5482 value = kvm_read_cr4(vcpu);
5485 value = kvm_get_cr8(vcpu);
5488 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5495 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5497 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5502 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5505 vcpu->arch.cr2 = val;
5508 res = kvm_set_cr3(vcpu, val);
5511 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5514 res = kvm_set_cr8(vcpu, val);
5517 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5524 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5526 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5529 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5531 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5534 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5536 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5539 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5541 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5544 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5546 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5549 static unsigned long emulator_get_cached_segment_base(
5550 struct x86_emulate_ctxt *ctxt, int seg)
5552 return get_segment_base(emul_to_vcpu(ctxt), seg);
5555 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5556 struct desc_struct *desc, u32 *base3,
5559 struct kvm_segment var;
5561 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5562 *selector = var.selector;
5565 memset(desc, 0, sizeof(*desc));
5573 set_desc_limit(desc, var.limit);
5574 set_desc_base(desc, (unsigned long)var.base);
5575 #ifdef CONFIG_X86_64
5577 *base3 = var.base >> 32;
5579 desc->type = var.type;
5581 desc->dpl = var.dpl;
5582 desc->p = var.present;
5583 desc->avl = var.avl;
5591 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5592 struct desc_struct *desc, u32 base3,
5595 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5596 struct kvm_segment var;
5598 var.selector = selector;
5599 var.base = get_desc_base(desc);
5600 #ifdef CONFIG_X86_64
5601 var.base |= ((u64)base3) << 32;
5603 var.limit = get_desc_limit(desc);
5605 var.limit = (var.limit << 12) | 0xfff;
5606 var.type = desc->type;
5607 var.dpl = desc->dpl;
5612 var.avl = desc->avl;
5613 var.present = desc->p;
5614 var.unusable = !var.present;
5617 kvm_set_segment(vcpu, &var, seg);
5621 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5622 u32 msr_index, u64 *pdata)
5624 struct msr_data msr;
5627 msr.index = msr_index;
5628 msr.host_initiated = false;
5629 r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5637 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5638 u32 msr_index, u64 data)
5640 struct msr_data msr;
5643 msr.index = msr_index;
5644 msr.host_initiated = false;
5645 return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5648 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5650 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5652 return vcpu->arch.smbase;
5655 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5657 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5659 vcpu->arch.smbase = smbase;
5662 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5665 return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5668 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5669 u32 pmc, u64 *pdata)
5671 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5674 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5676 emul_to_vcpu(ctxt)->arch.halt_request = 1;
5679 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5680 struct x86_instruction_info *info,
5681 enum x86_intercept_stage stage)
5683 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5686 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5687 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit)
5689 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit);
5692 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5694 return kvm_register_read(emul_to_vcpu(ctxt), reg);
5697 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5699 kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5702 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5704 kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5707 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
5709 return emul_to_vcpu(ctxt)->arch.hflags;
5712 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
5714 kvm_set_hflags(emul_to_vcpu(ctxt), emul_flags);
5717 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt, u64 smbase)
5719 return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smbase);
5722 static const struct x86_emulate_ops emulate_ops = {
5723 .read_gpr = emulator_read_gpr,
5724 .write_gpr = emulator_write_gpr,
5725 .read_std = emulator_read_std,
5726 .write_std = emulator_write_std,
5727 .read_phys = kvm_read_guest_phys_system,
5728 .fetch = kvm_fetch_guest_virt,
5729 .read_emulated = emulator_read_emulated,
5730 .write_emulated = emulator_write_emulated,
5731 .cmpxchg_emulated = emulator_cmpxchg_emulated,
5732 .invlpg = emulator_invlpg,
5733 .pio_in_emulated = emulator_pio_in_emulated,
5734 .pio_out_emulated = emulator_pio_out_emulated,
5735 .get_segment = emulator_get_segment,
5736 .set_segment = emulator_set_segment,
5737 .get_cached_segment_base = emulator_get_cached_segment_base,
5738 .get_gdt = emulator_get_gdt,
5739 .get_idt = emulator_get_idt,
5740 .set_gdt = emulator_set_gdt,
5741 .set_idt = emulator_set_idt,
5742 .get_cr = emulator_get_cr,
5743 .set_cr = emulator_set_cr,
5744 .cpl = emulator_get_cpl,
5745 .get_dr = emulator_get_dr,
5746 .set_dr = emulator_set_dr,
5747 .get_smbase = emulator_get_smbase,
5748 .set_smbase = emulator_set_smbase,
5749 .set_msr = emulator_set_msr,
5750 .get_msr = emulator_get_msr,
5751 .check_pmc = emulator_check_pmc,
5752 .read_pmc = emulator_read_pmc,
5753 .halt = emulator_halt,
5754 .wbinvd = emulator_wbinvd,
5755 .fix_hypercall = emulator_fix_hypercall,
5756 .intercept = emulator_intercept,
5757 .get_cpuid = emulator_get_cpuid,
5758 .set_nmi_mask = emulator_set_nmi_mask,
5759 .get_hflags = emulator_get_hflags,
5760 .set_hflags = emulator_set_hflags,
5761 .pre_leave_smm = emulator_pre_leave_smm,
5764 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5766 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5768 * an sti; sti; sequence only disable interrupts for the first
5769 * instruction. So, if the last instruction, be it emulated or
5770 * not, left the system with the INT_STI flag enabled, it
5771 * means that the last instruction is an sti. We should not
5772 * leave the flag on in this case. The same goes for mov ss
5774 if (int_shadow & mask)
5776 if (unlikely(int_shadow || mask)) {
5777 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5779 kvm_make_request(KVM_REQ_EVENT, vcpu);
5783 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5785 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5786 if (ctxt->exception.vector == PF_VECTOR)
5787 return kvm_propagate_fault(vcpu, &ctxt->exception);
5789 if (ctxt->exception.error_code_valid)
5790 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5791 ctxt->exception.error_code);
5793 kvm_queue_exception(vcpu, ctxt->exception.vector);
5797 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5799 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5802 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5804 ctxt->eflags = kvm_get_rflags(vcpu);
5805 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
5807 ctxt->eip = kvm_rip_read(vcpu);
5808 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
5809 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
5810 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
5811 cs_db ? X86EMUL_MODE_PROT32 :
5812 X86EMUL_MODE_PROT16;
5813 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5814 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5815 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5817 init_decode_cache(ctxt);
5818 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5821 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5823 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5826 init_emulate_ctxt(vcpu);
5830 ctxt->_eip = ctxt->eip + inc_eip;
5831 ret = emulate_int_real(ctxt, irq);
5833 if (ret != X86EMUL_CONTINUE)
5834 return EMULATE_FAIL;
5836 ctxt->eip = ctxt->_eip;
5837 kvm_rip_write(vcpu, ctxt->eip);
5838 kvm_set_rflags(vcpu, ctxt->eflags);
5840 return EMULATE_DONE;
5842 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5844 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
5846 int r = EMULATE_DONE;
5848 ++vcpu->stat.insn_emulation_fail;
5849 trace_kvm_emulate_insn_failed(vcpu);
5851 if (emulation_type & EMULTYPE_NO_UD_ON_FAIL)
5852 return EMULATE_FAIL;
5854 if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5855 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5856 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5857 vcpu->run->internal.ndata = 0;
5858 r = EMULATE_USER_EXIT;
5861 kvm_queue_exception(vcpu, UD_VECTOR);
5866 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5867 bool write_fault_to_shadow_pgtable,
5873 if (emulation_type & EMULTYPE_NO_REEXECUTE)
5876 if (!vcpu->arch.mmu.direct_map) {
5878 * Write permission should be allowed since only
5879 * write access need to be emulated.
5881 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5884 * If the mapping is invalid in guest, let cpu retry
5885 * it to generate fault.
5887 if (gpa == UNMAPPED_GVA)
5892 * Do not retry the unhandleable instruction if it faults on the
5893 * readonly host memory, otherwise it will goto a infinite loop:
5894 * retry instruction -> write #PF -> emulation fail -> retry
5895 * instruction -> ...
5897 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5900 * If the instruction failed on the error pfn, it can not be fixed,
5901 * report the error to userspace.
5903 if (is_error_noslot_pfn(pfn))
5906 kvm_release_pfn_clean(pfn);
5908 /* The instructions are well-emulated on direct mmu. */
5909 if (vcpu->arch.mmu.direct_map) {
5910 unsigned int indirect_shadow_pages;
5912 spin_lock(&vcpu->kvm->mmu_lock);
5913 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5914 spin_unlock(&vcpu->kvm->mmu_lock);
5916 if (indirect_shadow_pages)
5917 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5923 * if emulation was due to access to shadowed page table
5924 * and it failed try to unshadow page and re-enter the
5925 * guest to let CPU execute the instruction.
5927 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5930 * If the access faults on its page table, it can not
5931 * be fixed by unprotecting shadow page and it should
5932 * be reported to userspace.
5934 return !write_fault_to_shadow_pgtable;
5937 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5938 unsigned long cr2, int emulation_type)
5940 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5941 unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5943 last_retry_eip = vcpu->arch.last_retry_eip;
5944 last_retry_addr = vcpu->arch.last_retry_addr;
5947 * If the emulation is caused by #PF and it is non-page_table
5948 * writing instruction, it means the VM-EXIT is caused by shadow
5949 * page protected, we can zap the shadow page and retry this
5950 * instruction directly.
5952 * Note: if the guest uses a non-page-table modifying instruction
5953 * on the PDE that points to the instruction, then we will unmap
5954 * the instruction and go to an infinite loop. So, we cache the
5955 * last retried eip and the last fault address, if we meet the eip
5956 * and the address again, we can break out of the potential infinite
5959 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5961 if (!(emulation_type & EMULTYPE_RETRY))
5964 if (x86_page_table_writing_insn(ctxt))
5967 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5970 vcpu->arch.last_retry_eip = ctxt->eip;
5971 vcpu->arch.last_retry_addr = cr2;
5973 if (!vcpu->arch.mmu.direct_map)
5974 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5976 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5981 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5982 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5984 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5986 if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5987 /* This is a good place to trace that we are exiting SMM. */
5988 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5990 /* Process a latched INIT or SMI, if any. */
5991 kvm_make_request(KVM_REQ_EVENT, vcpu);
5994 kvm_mmu_reset_context(vcpu);
5997 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5999 unsigned changed = vcpu->arch.hflags ^ emul_flags;
6001 vcpu->arch.hflags = emul_flags;
6003 if (changed & HF_SMM_MASK)
6004 kvm_smm_changed(vcpu);
6007 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
6016 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
6017 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
6022 static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r)
6024 struct kvm_run *kvm_run = vcpu->run;
6026 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
6027 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
6028 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
6029 kvm_run->debug.arch.exception = DB_VECTOR;
6030 kvm_run->exit_reason = KVM_EXIT_DEBUG;
6031 *r = EMULATE_USER_EXIT;
6034 * "Certain debug exceptions may clear bit 0-3. The
6035 * remaining contents of the DR6 register are never
6036 * cleared by the processor".
6038 vcpu->arch.dr6 &= ~15;
6039 vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
6040 kvm_queue_exception(vcpu, DB_VECTOR);
6044 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
6046 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6047 int r = EMULATE_DONE;
6049 kvm_x86_ops->skip_emulated_instruction(vcpu);
6052 * rflags is the old, "raw" value of the flags. The new value has
6053 * not been saved yet.
6055 * This is correct even for TF set by the guest, because "the
6056 * processor will not generate this exception after the instruction
6057 * that sets the TF flag".
6059 if (unlikely(rflags & X86_EFLAGS_TF))
6060 kvm_vcpu_do_singlestep(vcpu, &r);
6061 return r == EMULATE_DONE;
6063 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
6065 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
6067 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
6068 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
6069 struct kvm_run *kvm_run = vcpu->run;
6070 unsigned long eip = kvm_get_linear_rip(vcpu);
6071 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6072 vcpu->arch.guest_debug_dr7,
6076 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
6077 kvm_run->debug.arch.pc = eip;
6078 kvm_run->debug.arch.exception = DB_VECTOR;
6079 kvm_run->exit_reason = KVM_EXIT_DEBUG;
6080 *r = EMULATE_USER_EXIT;
6085 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
6086 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
6087 unsigned long eip = kvm_get_linear_rip(vcpu);
6088 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6093 vcpu->arch.dr6 &= ~15;
6094 vcpu->arch.dr6 |= dr6 | DR6_RTM;
6095 kvm_queue_exception(vcpu, DB_VECTOR);
6104 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
6106 switch (ctxt->opcode_len) {
6113 case 0xe6: /* OUT */
6117 case 0x6c: /* INS */
6119 case 0x6e: /* OUTS */
6126 case 0x33: /* RDPMC */
6135 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
6142 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6143 bool writeback = true;
6144 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
6146 vcpu->arch.l1tf_flush_l1d = true;
6149 * Clear write_fault_to_shadow_pgtable here to ensure it is
6152 vcpu->arch.write_fault_to_shadow_pgtable = false;
6153 kvm_clear_exception_queue(vcpu);
6155 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
6156 init_emulate_ctxt(vcpu);
6159 * We will reenter on the same instruction since
6160 * we do not set complete_userspace_io. This does not
6161 * handle watchpoints yet, those would be handled in
6164 if (!(emulation_type & EMULTYPE_SKIP) &&
6165 kvm_vcpu_check_breakpoint(vcpu, &r))
6168 ctxt->interruptibility = 0;
6169 ctxt->have_exception = false;
6170 ctxt->exception.vector = -1;
6171 ctxt->perm_ok = false;
6173 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
6175 r = x86_decode_insn(ctxt, insn, insn_len);
6177 trace_kvm_emulate_insn_start(vcpu);
6178 ++vcpu->stat.insn_emulation;
6179 if (r != EMULATION_OK) {
6180 if (emulation_type & EMULTYPE_TRAP_UD)
6181 return EMULATE_FAIL;
6182 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6184 return EMULATE_DONE;
6185 if (ctxt->have_exception && inject_emulated_exception(vcpu))
6186 return EMULATE_DONE;
6187 if (emulation_type & EMULTYPE_SKIP)
6188 return EMULATE_FAIL;
6189 return handle_emulation_failure(vcpu, emulation_type);
6193 if ((emulation_type & EMULTYPE_VMWARE) &&
6194 !is_vmware_backdoor_opcode(ctxt))
6195 return EMULATE_FAIL;
6197 if (emulation_type & EMULTYPE_SKIP) {
6198 kvm_rip_write(vcpu, ctxt->_eip);
6199 if (ctxt->eflags & X86_EFLAGS_RF)
6200 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
6201 return EMULATE_DONE;
6204 if (retry_instruction(ctxt, cr2, emulation_type))
6205 return EMULATE_DONE;
6207 /* this is needed for vmware backdoor interface to work since it
6208 changes registers values during IO operation */
6209 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
6210 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6211 emulator_invalidate_register_cache(ctxt);
6215 /* Save the faulting GPA (cr2) in the address field */
6216 ctxt->exception.address = cr2;
6218 r = x86_emulate_insn(ctxt);
6220 if (r == EMULATION_INTERCEPTED)
6221 return EMULATE_DONE;
6223 if (r == EMULATION_FAILED) {
6224 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6226 return EMULATE_DONE;
6228 return handle_emulation_failure(vcpu, emulation_type);
6231 if (ctxt->have_exception) {
6233 if (inject_emulated_exception(vcpu))
6235 } else if (vcpu->arch.pio.count) {
6236 if (!vcpu->arch.pio.in) {
6237 /* FIXME: return into emulator if single-stepping. */
6238 vcpu->arch.pio.count = 0;
6241 vcpu->arch.complete_userspace_io = complete_emulated_pio;
6243 r = EMULATE_USER_EXIT;
6244 } else if (vcpu->mmio_needed) {
6245 if (!vcpu->mmio_is_write)
6247 r = EMULATE_USER_EXIT;
6248 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6249 } else if (r == EMULATION_RESTART)
6255 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6256 toggle_interruptibility(vcpu, ctxt->interruptibility);
6257 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6258 kvm_rip_write(vcpu, ctxt->eip);
6259 if (r == EMULATE_DONE &&
6260 (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
6261 kvm_vcpu_do_singlestep(vcpu, &r);
6262 if (!ctxt->have_exception ||
6263 exception_type(ctxt->exception.vector) == EXCPT_TRAP)
6264 __kvm_set_rflags(vcpu, ctxt->eflags);
6267 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
6268 * do nothing, and it will be requested again as soon as
6269 * the shadow expires. But we still need to check here,
6270 * because POPF has no interrupt shadow.
6272 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
6273 kvm_make_request(KVM_REQ_EVENT, vcpu);
6275 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
6279 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
6281 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
6282 unsigned short port)
6284 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
6285 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
6286 size, port, &val, 1);
6287 /* do not return to emulator after return from userspace */
6288 vcpu->arch.pio.count = 0;
6292 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
6296 /* We should only ever be called with arch.pio.count equal to 1 */
6297 BUG_ON(vcpu->arch.pio.count != 1);
6299 /* For size less than 4 we merge, else we zero extend */
6300 val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX)
6304 * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
6305 * the copy and tracing
6307 emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
6308 vcpu->arch.pio.port, &val, 1);
6309 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
6314 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
6315 unsigned short port)
6320 /* For size less than 4 we merge, else we zero extend */
6321 val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0;
6323 ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
6326 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
6330 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
6335 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
6337 int ret = kvm_skip_emulated_instruction(vcpu);
6340 * TODO: we might be squashing a KVM_GUESTDBG_SINGLESTEP-triggered
6341 * KVM_EXIT_DEBUG here.
6344 return kvm_fast_pio_in(vcpu, size, port) && ret;
6346 return kvm_fast_pio_out(vcpu, size, port) && ret;
6348 EXPORT_SYMBOL_GPL(kvm_fast_pio);
6350 static int kvmclock_cpu_down_prep(unsigned int cpu)
6352 __this_cpu_write(cpu_tsc_khz, 0);
6356 static void tsc_khz_changed(void *data)
6358 struct cpufreq_freqs *freq = data;
6359 unsigned long khz = 0;
6363 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6364 khz = cpufreq_quick_get(raw_smp_processor_id());
6367 __this_cpu_write(cpu_tsc_khz, khz);
6370 #ifdef CONFIG_X86_64
6371 static void kvm_hyperv_tsc_notifier(void)
6374 struct kvm_vcpu *vcpu;
6377 spin_lock(&kvm_lock);
6378 list_for_each_entry(kvm, &vm_list, vm_list)
6379 kvm_make_mclock_inprogress_request(kvm);
6381 hyperv_stop_tsc_emulation();
6383 /* TSC frequency always matches when on Hyper-V */
6384 for_each_present_cpu(cpu)
6385 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
6386 kvm_max_guest_tsc_khz = tsc_khz;
6388 list_for_each_entry(kvm, &vm_list, vm_list) {
6389 struct kvm_arch *ka = &kvm->arch;
6391 spin_lock(&ka->pvclock_gtod_sync_lock);
6393 pvclock_update_vm_gtod_copy(kvm);
6395 kvm_for_each_vcpu(cpu, vcpu, kvm)
6396 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6398 kvm_for_each_vcpu(cpu, vcpu, kvm)
6399 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
6401 spin_unlock(&ka->pvclock_gtod_sync_lock);
6403 spin_unlock(&kvm_lock);
6407 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
6410 struct cpufreq_freqs *freq = data;
6412 struct kvm_vcpu *vcpu;
6413 int i, send_ipi = 0;
6416 * We allow guests to temporarily run on slowing clocks,
6417 * provided we notify them after, or to run on accelerating
6418 * clocks, provided we notify them before. Thus time never
6421 * However, we have a problem. We can't atomically update
6422 * the frequency of a given CPU from this function; it is
6423 * merely a notifier, which can be called from any CPU.
6424 * Changing the TSC frequency at arbitrary points in time
6425 * requires a recomputation of local variables related to
6426 * the TSC for each VCPU. We must flag these local variables
6427 * to be updated and be sure the update takes place with the
6428 * new frequency before any guests proceed.
6430 * Unfortunately, the combination of hotplug CPU and frequency
6431 * change creates an intractable locking scenario; the order
6432 * of when these callouts happen is undefined with respect to
6433 * CPU hotplug, and they can race with each other. As such,
6434 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
6435 * undefined; you can actually have a CPU frequency change take
6436 * place in between the computation of X and the setting of the
6437 * variable. To protect against this problem, all updates of
6438 * the per_cpu tsc_khz variable are done in an interrupt
6439 * protected IPI, and all callers wishing to update the value
6440 * must wait for a synchronous IPI to complete (which is trivial
6441 * if the caller is on the CPU already). This establishes the
6442 * necessary total order on variable updates.
6444 * Note that because a guest time update may take place
6445 * anytime after the setting of the VCPU's request bit, the
6446 * correct TSC value must be set before the request. However,
6447 * to ensure the update actually makes it to any guest which
6448 * starts running in hardware virtualization between the set
6449 * and the acquisition of the spinlock, we must also ping the
6450 * CPU after setting the request bit.
6454 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
6456 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
6459 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6461 spin_lock(&kvm_lock);
6462 list_for_each_entry(kvm, &vm_list, vm_list) {
6463 kvm_for_each_vcpu(i, vcpu, kvm) {
6464 if (vcpu->cpu != freq->cpu)
6466 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6467 if (vcpu->cpu != smp_processor_id())
6471 spin_unlock(&kvm_lock);
6473 if (freq->old < freq->new && send_ipi) {
6475 * We upscale the frequency. Must make the guest
6476 * doesn't see old kvmclock values while running with
6477 * the new frequency, otherwise we risk the guest sees
6478 * time go backwards.
6480 * In case we update the frequency for another cpu
6481 * (which might be in guest context) send an interrupt
6482 * to kick the cpu out of guest context. Next time
6483 * guest context is entered kvmclock will be updated,
6484 * so the guest will not see stale values.
6486 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6491 static struct notifier_block kvmclock_cpufreq_notifier_block = {
6492 .notifier_call = kvmclock_cpufreq_notifier
6495 static int kvmclock_cpu_online(unsigned int cpu)
6497 tsc_khz_changed(NULL);
6501 static void kvm_timer_init(void)
6503 max_tsc_khz = tsc_khz;
6505 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
6506 #ifdef CONFIG_CPU_FREQ
6507 struct cpufreq_policy policy;
6510 memset(&policy, 0, sizeof(policy));
6512 cpufreq_get_policy(&policy, cpu);
6513 if (policy.cpuinfo.max_freq)
6514 max_tsc_khz = policy.cpuinfo.max_freq;
6517 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
6518 CPUFREQ_TRANSITION_NOTIFIER);
6520 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
6522 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
6523 kvmclock_cpu_online, kvmclock_cpu_down_prep);
6526 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
6527 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
6529 int kvm_is_in_guest(void)
6531 return __this_cpu_read(current_vcpu) != NULL;
6534 static int kvm_is_user_mode(void)
6538 if (__this_cpu_read(current_vcpu))
6539 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
6541 return user_mode != 0;
6544 static unsigned long kvm_get_guest_ip(void)
6546 unsigned long ip = 0;
6548 if (__this_cpu_read(current_vcpu))
6549 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
6554 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6555 .is_in_guest = kvm_is_in_guest,
6556 .is_user_mode = kvm_is_user_mode,
6557 .get_guest_ip = kvm_get_guest_ip,
6560 static void kvm_set_mmio_spte_mask(void)
6563 int maxphyaddr = boot_cpu_data.x86_phys_bits;
6566 * Set the reserved bits and the present bit of an paging-structure
6567 * entry to generate page fault with PFER.RSV = 1.
6571 * Mask the uppermost physical address bit, which would be reserved as
6572 * long as the supported physical address width is less than 52.
6576 /* Set the present bit. */
6579 #ifdef CONFIG_X86_64
6581 * If reserved bit is not supported, clear the present bit to disable
6584 if (maxphyaddr == 52)
6588 kvm_mmu_set_mmio_spte_mask(mask, mask);
6591 #ifdef CONFIG_X86_64
6592 static void pvclock_gtod_update_fn(struct work_struct *work)
6596 struct kvm_vcpu *vcpu;
6599 spin_lock(&kvm_lock);
6600 list_for_each_entry(kvm, &vm_list, vm_list)
6601 kvm_for_each_vcpu(i, vcpu, kvm)
6602 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6603 atomic_set(&kvm_guest_has_master_clock, 0);
6604 spin_unlock(&kvm_lock);
6607 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6610 * Notification about pvclock gtod data update.
6612 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6615 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6616 struct timekeeper *tk = priv;
6618 update_pvclock_gtod(tk);
6620 /* disable master clock if host does not trust, or does not
6621 * use, TSC based clocksource.
6623 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
6624 atomic_read(&kvm_guest_has_master_clock) != 0)
6625 queue_work(system_long_wq, &pvclock_gtod_work);
6630 static struct notifier_block pvclock_gtod_notifier = {
6631 .notifier_call = pvclock_gtod_notify,
6635 int kvm_arch_init(void *opaque)
6638 struct kvm_x86_ops *ops = opaque;
6641 printk(KERN_ERR "kvm: already loaded the other module\n");
6646 if (!ops->cpu_has_kvm_support()) {
6647 printk(KERN_ERR "kvm: no hardware support\n");
6651 if (ops->disabled_by_bios()) {
6652 printk(KERN_ERR "kvm: disabled by bios\n");
6658 shared_msrs = alloc_percpu(struct kvm_shared_msrs);
6660 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
6664 r = kvm_mmu_module_init();
6666 goto out_free_percpu;
6668 kvm_set_mmio_spte_mask();
6672 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
6673 PT_DIRTY_MASK, PT64_NX_MASK, 0,
6674 PT_PRESENT_MASK, 0, sme_me_mask);
6677 perf_register_guest_info_callbacks(&kvm_guest_cbs);
6679 if (boot_cpu_has(X86_FEATURE_XSAVE))
6680 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
6683 #ifdef CONFIG_X86_64
6684 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6686 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
6687 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
6693 free_percpu(shared_msrs);
6698 void kvm_arch_exit(void)
6700 #ifdef CONFIG_X86_64
6701 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
6702 clear_hv_tscchange_cb();
6705 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6707 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6708 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
6709 CPUFREQ_TRANSITION_NOTIFIER);
6710 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
6711 #ifdef CONFIG_X86_64
6712 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
6715 kvm_mmu_module_exit();
6716 free_percpu(shared_msrs);
6719 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
6721 ++vcpu->stat.halt_exits;
6722 if (lapic_in_kernel(vcpu)) {
6723 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
6726 vcpu->run->exit_reason = KVM_EXIT_HLT;
6730 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
6732 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
6734 int ret = kvm_skip_emulated_instruction(vcpu);
6736 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
6737 * KVM_EXIT_DEBUG here.
6739 return kvm_vcpu_halt(vcpu) && ret;
6741 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
6743 #ifdef CONFIG_X86_64
6744 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
6745 unsigned long clock_type)
6747 struct kvm_clock_pairing clock_pairing;
6748 struct timespec64 ts;
6752 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
6753 return -KVM_EOPNOTSUPP;
6755 if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
6756 return -KVM_EOPNOTSUPP;
6758 clock_pairing.sec = ts.tv_sec;
6759 clock_pairing.nsec = ts.tv_nsec;
6760 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
6761 clock_pairing.flags = 0;
6764 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
6765 sizeof(struct kvm_clock_pairing)))
6773 * kvm_pv_kick_cpu_op: Kick a vcpu.
6775 * @apicid - apicid of vcpu to be kicked.
6777 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
6779 struct kvm_lapic_irq lapic_irq;
6781 lapic_irq.shorthand = 0;
6782 lapic_irq.dest_mode = 0;
6783 lapic_irq.level = 0;
6784 lapic_irq.dest_id = apicid;
6785 lapic_irq.msi_redir_hint = false;
6787 lapic_irq.delivery_mode = APIC_DM_REMRD;
6788 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
6791 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
6793 vcpu->arch.apicv_active = false;
6794 kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
6797 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
6799 unsigned long nr, a0, a1, a2, a3, ret;
6802 if (kvm_hv_hypercall_enabled(vcpu->kvm))
6803 return kvm_hv_hypercall(vcpu);
6805 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
6806 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
6807 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
6808 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
6809 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
6811 trace_kvm_hypercall(nr, a0, a1, a2, a3);
6813 op_64_bit = is_64_bit_mode(vcpu);
6822 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
6828 case KVM_HC_VAPIC_POLL_IRQ:
6831 case KVM_HC_KICK_CPU:
6832 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6835 #ifdef CONFIG_X86_64
6836 case KVM_HC_CLOCK_PAIRING:
6837 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
6839 case KVM_HC_SEND_IPI:
6840 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
6850 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6852 ++vcpu->stat.hypercalls;
6853 return kvm_skip_emulated_instruction(vcpu);
6855 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6857 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6859 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6860 char instruction[3];
6861 unsigned long rip = kvm_rip_read(vcpu);
6863 kvm_x86_ops->patch_hypercall(vcpu, instruction);
6865 return emulator_write_emulated(ctxt, rip, instruction, 3,
6869 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6871 return vcpu->run->request_interrupt_window &&
6872 likely(!pic_in_kernel(vcpu->kvm));
6875 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6877 struct kvm_run *kvm_run = vcpu->run;
6879 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6880 kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6881 kvm_run->cr8 = kvm_get_cr8(vcpu);
6882 kvm_run->apic_base = kvm_get_apic_base(vcpu);
6883 kvm_run->ready_for_interrupt_injection =
6884 pic_in_kernel(vcpu->kvm) ||
6885 kvm_vcpu_ready_for_interrupt_injection(vcpu);
6888 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6892 if (!kvm_x86_ops->update_cr8_intercept)
6895 if (!lapic_in_kernel(vcpu))
6898 if (vcpu->arch.apicv_active)
6901 if (!vcpu->arch.apic->vapic_addr)
6902 max_irr = kvm_lapic_find_highest_irr(vcpu);
6909 tpr = kvm_lapic_get_cr8(vcpu);
6911 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6914 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6918 /* try to reinject previous events if any */
6920 if (vcpu->arch.exception.injected)
6921 kvm_x86_ops->queue_exception(vcpu);
6923 * Do not inject an NMI or interrupt if there is a pending
6924 * exception. Exceptions and interrupts are recognized at
6925 * instruction boundaries, i.e. the start of an instruction.
6926 * Trap-like exceptions, e.g. #DB, have higher priority than
6927 * NMIs and interrupts, i.e. traps are recognized before an
6928 * NMI/interrupt that's pending on the same instruction.
6929 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
6930 * priority, but are only generated (pended) during instruction
6931 * execution, i.e. a pending fault-like exception means the
6932 * fault occurred on the *previous* instruction and must be
6933 * serviced prior to recognizing any new events in order to
6934 * fully complete the previous instruction.
6936 else if (!vcpu->arch.exception.pending) {
6937 if (vcpu->arch.nmi_injected)
6938 kvm_x86_ops->set_nmi(vcpu);
6939 else if (vcpu->arch.interrupt.injected)
6940 kvm_x86_ops->set_irq(vcpu);
6944 * Call check_nested_events() even if we reinjected a previous event
6945 * in order for caller to determine if it should require immediate-exit
6946 * from L2 to L1 due to pending L1 events which require exit
6949 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6950 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6955 /* try to inject new event if pending */
6956 if (vcpu->arch.exception.pending) {
6957 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6958 vcpu->arch.exception.has_error_code,
6959 vcpu->arch.exception.error_code);
6961 WARN_ON_ONCE(vcpu->arch.exception.injected);
6962 vcpu->arch.exception.pending = false;
6963 vcpu->arch.exception.injected = true;
6965 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6966 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6969 if (vcpu->arch.exception.nr == DB_VECTOR &&
6970 (vcpu->arch.dr7 & DR7_GD)) {
6971 vcpu->arch.dr7 &= ~DR7_GD;
6972 kvm_update_dr7(vcpu);
6975 kvm_x86_ops->queue_exception(vcpu);
6978 /* Don't consider new event if we re-injected an event */
6979 if (kvm_event_needs_reinjection(vcpu))
6982 if (vcpu->arch.smi_pending && !is_smm(vcpu) &&
6983 kvm_x86_ops->smi_allowed(vcpu)) {
6984 vcpu->arch.smi_pending = false;
6985 ++vcpu->arch.smi_count;
6987 } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6988 --vcpu->arch.nmi_pending;
6989 vcpu->arch.nmi_injected = true;
6990 kvm_x86_ops->set_nmi(vcpu);
6991 } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6993 * Because interrupts can be injected asynchronously, we are
6994 * calling check_nested_events again here to avoid a race condition.
6995 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6996 * proposal and current concerns. Perhaps we should be setting
6997 * KVM_REQ_EVENT only on certain events and not unconditionally?
6999 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7000 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
7004 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
7005 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
7007 kvm_x86_ops->set_irq(vcpu);
7014 static void process_nmi(struct kvm_vcpu *vcpu)
7019 * x86 is limited to one NMI running, and one NMI pending after it.
7020 * If an NMI is already in progress, limit further NMIs to just one.
7021 * Otherwise, allow two (and we'll inject the first one immediately).
7023 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
7026 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
7027 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
7028 kvm_make_request(KVM_REQ_EVENT, vcpu);
7031 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
7034 flags |= seg->g << 23;
7035 flags |= seg->db << 22;
7036 flags |= seg->l << 21;
7037 flags |= seg->avl << 20;
7038 flags |= seg->present << 15;
7039 flags |= seg->dpl << 13;
7040 flags |= seg->s << 12;
7041 flags |= seg->type << 8;
7045 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
7047 struct kvm_segment seg;
7050 kvm_get_segment(vcpu, &seg, n);
7051 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
7054 offset = 0x7f84 + n * 12;
7056 offset = 0x7f2c + (n - 3) * 12;
7058 put_smstate(u32, buf, offset + 8, seg.base);
7059 put_smstate(u32, buf, offset + 4, seg.limit);
7060 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
7063 #ifdef CONFIG_X86_64
7064 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
7066 struct kvm_segment seg;
7070 kvm_get_segment(vcpu, &seg, n);
7071 offset = 0x7e00 + n * 16;
7073 flags = enter_smm_get_segment_flags(&seg) >> 8;
7074 put_smstate(u16, buf, offset, seg.selector);
7075 put_smstate(u16, buf, offset + 2, flags);
7076 put_smstate(u32, buf, offset + 4, seg.limit);
7077 put_smstate(u64, buf, offset + 8, seg.base);
7081 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
7084 struct kvm_segment seg;
7088 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
7089 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
7090 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
7091 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
7093 for (i = 0; i < 8; i++)
7094 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
7096 kvm_get_dr(vcpu, 6, &val);
7097 put_smstate(u32, buf, 0x7fcc, (u32)val);
7098 kvm_get_dr(vcpu, 7, &val);
7099 put_smstate(u32, buf, 0x7fc8, (u32)val);
7101 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7102 put_smstate(u32, buf, 0x7fc4, seg.selector);
7103 put_smstate(u32, buf, 0x7f64, seg.base);
7104 put_smstate(u32, buf, 0x7f60, seg.limit);
7105 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
7107 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7108 put_smstate(u32, buf, 0x7fc0, seg.selector);
7109 put_smstate(u32, buf, 0x7f80, seg.base);
7110 put_smstate(u32, buf, 0x7f7c, seg.limit);
7111 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
7113 kvm_x86_ops->get_gdt(vcpu, &dt);
7114 put_smstate(u32, buf, 0x7f74, dt.address);
7115 put_smstate(u32, buf, 0x7f70, dt.size);
7117 kvm_x86_ops->get_idt(vcpu, &dt);
7118 put_smstate(u32, buf, 0x7f58, dt.address);
7119 put_smstate(u32, buf, 0x7f54, dt.size);
7121 for (i = 0; i < 6; i++)
7122 enter_smm_save_seg_32(vcpu, buf, i);
7124 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
7127 put_smstate(u32, buf, 0x7efc, 0x00020000);
7128 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
7131 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
7133 #ifdef CONFIG_X86_64
7135 struct kvm_segment seg;
7139 for (i = 0; i < 16; i++)
7140 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
7142 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
7143 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
7145 kvm_get_dr(vcpu, 6, &val);
7146 put_smstate(u64, buf, 0x7f68, val);
7147 kvm_get_dr(vcpu, 7, &val);
7148 put_smstate(u64, buf, 0x7f60, val);
7150 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
7151 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
7152 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
7154 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
7157 put_smstate(u32, buf, 0x7efc, 0x00020064);
7159 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
7161 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7162 put_smstate(u16, buf, 0x7e90, seg.selector);
7163 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
7164 put_smstate(u32, buf, 0x7e94, seg.limit);
7165 put_smstate(u64, buf, 0x7e98, seg.base);
7167 kvm_x86_ops->get_idt(vcpu, &dt);
7168 put_smstate(u32, buf, 0x7e84, dt.size);
7169 put_smstate(u64, buf, 0x7e88, dt.address);
7171 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7172 put_smstate(u16, buf, 0x7e70, seg.selector);
7173 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
7174 put_smstate(u32, buf, 0x7e74, seg.limit);
7175 put_smstate(u64, buf, 0x7e78, seg.base);
7177 kvm_x86_ops->get_gdt(vcpu, &dt);
7178 put_smstate(u32, buf, 0x7e64, dt.size);
7179 put_smstate(u64, buf, 0x7e68, dt.address);
7181 for (i = 0; i < 6; i++)
7182 enter_smm_save_seg_64(vcpu, buf, i);
7188 static void enter_smm(struct kvm_vcpu *vcpu)
7190 struct kvm_segment cs, ds;
7195 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
7196 memset(buf, 0, 512);
7197 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7198 enter_smm_save_state_64(vcpu, buf);
7200 enter_smm_save_state_32(vcpu, buf);
7203 * Give pre_enter_smm() a chance to make ISA-specific changes to the
7204 * vCPU state (e.g. leave guest mode) after we've saved the state into
7205 * the SMM state-save area.
7207 kvm_x86_ops->pre_enter_smm(vcpu, buf);
7209 vcpu->arch.hflags |= HF_SMM_MASK;
7210 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
7212 if (kvm_x86_ops->get_nmi_mask(vcpu))
7213 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
7215 kvm_x86_ops->set_nmi_mask(vcpu, true);
7217 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
7218 kvm_rip_write(vcpu, 0x8000);
7220 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
7221 kvm_x86_ops->set_cr0(vcpu, cr0);
7222 vcpu->arch.cr0 = cr0;
7224 kvm_x86_ops->set_cr4(vcpu, 0);
7226 /* Undocumented: IDT limit is set to zero on entry to SMM. */
7227 dt.address = dt.size = 0;
7228 kvm_x86_ops->set_idt(vcpu, &dt);
7230 __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
7232 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
7233 cs.base = vcpu->arch.smbase;
7238 cs.limit = ds.limit = 0xffffffff;
7239 cs.type = ds.type = 0x3;
7240 cs.dpl = ds.dpl = 0;
7245 cs.avl = ds.avl = 0;
7246 cs.present = ds.present = 1;
7247 cs.unusable = ds.unusable = 0;
7248 cs.padding = ds.padding = 0;
7250 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7251 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
7252 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
7253 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
7254 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
7255 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
7257 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7258 kvm_x86_ops->set_efer(vcpu, 0);
7260 kvm_update_cpuid(vcpu);
7261 kvm_mmu_reset_context(vcpu);
7264 static void process_smi(struct kvm_vcpu *vcpu)
7266 vcpu->arch.smi_pending = true;
7267 kvm_make_request(KVM_REQ_EVENT, vcpu);
7270 void kvm_make_scan_ioapic_request(struct kvm *kvm)
7272 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
7275 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
7277 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
7280 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
7282 if (irqchip_split(vcpu->kvm))
7283 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
7285 if (vcpu->arch.apicv_active)
7286 kvm_x86_ops->sync_pir_to_irr(vcpu);
7287 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
7290 if (is_guest_mode(vcpu))
7291 vcpu->arch.load_eoi_exitmap_pending = true;
7293 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
7296 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
7298 u64 eoi_exit_bitmap[4];
7300 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
7303 bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
7304 vcpu_to_synic(vcpu)->vec_bitmap, 256);
7305 kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
7308 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
7309 unsigned long start, unsigned long end)
7311 unsigned long apic_address;
7314 * The physical address of apic access page is stored in the VMCS.
7315 * Update it when it becomes invalid.
7317 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7318 if (start <= apic_address && apic_address < end)
7319 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
7322 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
7324 struct page *page = NULL;
7326 if (!lapic_in_kernel(vcpu))
7329 if (!kvm_x86_ops->set_apic_access_page_addr)
7332 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7333 if (is_error_page(page))
7335 kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
7338 * Do not pin apic access page in memory, the MMU notifier
7339 * will call us again if it is migrated or swapped out.
7343 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
7346 * Returns 1 to let vcpu_run() continue the guest execution loop without
7347 * exiting to the userspace. Otherwise, the value will be returned to the
7350 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
7354 dm_request_for_irq_injection(vcpu) &&
7355 kvm_cpu_accept_dm_intr(vcpu);
7357 bool req_immediate_exit = false;
7359 if (kvm_request_pending(vcpu)) {
7360 if (kvm_check_request(KVM_REQ_GET_VMCS12_PAGES, vcpu))
7361 kvm_x86_ops->get_vmcs12_pages(vcpu);
7362 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
7363 kvm_mmu_unload(vcpu);
7364 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
7365 __kvm_migrate_timers(vcpu);
7366 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
7367 kvm_gen_update_masterclock(vcpu->kvm);
7368 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
7369 kvm_gen_kvmclock_update(vcpu);
7370 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
7371 r = kvm_guest_time_update(vcpu);
7375 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
7376 kvm_mmu_sync_roots(vcpu);
7377 if (kvm_check_request(KVM_REQ_LOAD_CR3, vcpu))
7378 kvm_mmu_load_cr3(vcpu);
7379 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
7380 kvm_vcpu_flush_tlb(vcpu, true);
7381 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
7382 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
7386 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
7387 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
7388 vcpu->mmio_needed = 0;
7392 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
7393 /* Page is swapped out. Do synthetic halt */
7394 vcpu->arch.apf.halted = true;
7398 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
7399 record_steal_time(vcpu);
7400 if (kvm_check_request(KVM_REQ_SMI, vcpu))
7402 if (kvm_check_request(KVM_REQ_NMI, vcpu))
7404 if (kvm_check_request(KVM_REQ_PMU, vcpu))
7405 kvm_pmu_handle_event(vcpu);
7406 if (kvm_check_request(KVM_REQ_PMI, vcpu))
7407 kvm_pmu_deliver_pmi(vcpu);
7408 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
7409 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
7410 if (test_bit(vcpu->arch.pending_ioapic_eoi,
7411 vcpu->arch.ioapic_handled_vectors)) {
7412 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
7413 vcpu->run->eoi.vector =
7414 vcpu->arch.pending_ioapic_eoi;
7419 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
7420 vcpu_scan_ioapic(vcpu);
7421 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
7422 vcpu_load_eoi_exitmap(vcpu);
7423 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
7424 kvm_vcpu_reload_apic_access_page(vcpu);
7425 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
7426 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7427 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
7431 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
7432 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7433 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
7437 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
7438 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
7439 vcpu->run->hyperv = vcpu->arch.hyperv.exit;
7445 * KVM_REQ_HV_STIMER has to be processed after
7446 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
7447 * depend on the guest clock being up-to-date
7449 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
7450 kvm_hv_process_stimers(vcpu);
7453 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
7454 ++vcpu->stat.req_event;
7455 kvm_apic_accept_events(vcpu);
7456 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
7461 if (inject_pending_event(vcpu, req_int_win) != 0)
7462 req_immediate_exit = true;
7464 /* Enable SMI/NMI/IRQ window open exits if needed.
7466 * SMIs have three cases:
7467 * 1) They can be nested, and then there is nothing to
7468 * do here because RSM will cause a vmexit anyway.
7469 * 2) There is an ISA-specific reason why SMI cannot be
7470 * injected, and the moment when this changes can be
7472 * 3) Or the SMI can be pending because
7473 * inject_pending_event has completed the injection
7474 * of an IRQ or NMI from the previous vmexit, and
7475 * then we request an immediate exit to inject the
7478 if (vcpu->arch.smi_pending && !is_smm(vcpu))
7479 if (!kvm_x86_ops->enable_smi_window(vcpu))
7480 req_immediate_exit = true;
7481 if (vcpu->arch.nmi_pending)
7482 kvm_x86_ops->enable_nmi_window(vcpu);
7483 if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
7484 kvm_x86_ops->enable_irq_window(vcpu);
7485 WARN_ON(vcpu->arch.exception.pending);
7488 if (kvm_lapic_enabled(vcpu)) {
7489 update_cr8_intercept(vcpu);
7490 kvm_lapic_sync_to_vapic(vcpu);
7494 r = kvm_mmu_reload(vcpu);
7496 goto cancel_injection;
7501 kvm_x86_ops->prepare_guest_switch(vcpu);
7504 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
7505 * IPI are then delayed after guest entry, which ensures that they
7506 * result in virtual interrupt delivery.
7508 local_irq_disable();
7509 vcpu->mode = IN_GUEST_MODE;
7511 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7514 * 1) We should set ->mode before checking ->requests. Please see
7515 * the comment in kvm_vcpu_exiting_guest_mode().
7517 * 2) For APICv, we should set ->mode before checking PIR.ON. This
7518 * pairs with the memory barrier implicit in pi_test_and_set_on
7519 * (see vmx_deliver_posted_interrupt).
7521 * 3) This also orders the write to mode from any reads to the page
7522 * tables done while the VCPU is running. Please see the comment
7523 * in kvm_flush_remote_tlbs.
7525 smp_mb__after_srcu_read_unlock();
7528 * This handles the case where a posted interrupt was
7529 * notified with kvm_vcpu_kick.
7531 if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
7532 kvm_x86_ops->sync_pir_to_irr(vcpu);
7534 if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
7535 || need_resched() || signal_pending(current)) {
7536 vcpu->mode = OUTSIDE_GUEST_MODE;
7540 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7542 goto cancel_injection;
7545 kvm_load_guest_xcr0(vcpu);
7547 if (req_immediate_exit) {
7548 kvm_make_request(KVM_REQ_EVENT, vcpu);
7549 smp_send_reschedule(vcpu->cpu);
7552 trace_kvm_entry(vcpu->vcpu_id);
7553 if (lapic_timer_advance_ns)
7554 wait_lapic_expire(vcpu);
7555 guest_enter_irqoff();
7557 if (unlikely(vcpu->arch.switch_db_regs)) {
7559 set_debugreg(vcpu->arch.eff_db[0], 0);
7560 set_debugreg(vcpu->arch.eff_db[1], 1);
7561 set_debugreg(vcpu->arch.eff_db[2], 2);
7562 set_debugreg(vcpu->arch.eff_db[3], 3);
7563 set_debugreg(vcpu->arch.dr6, 6);
7564 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7567 kvm_x86_ops->run(vcpu);
7570 * Do this here before restoring debug registers on the host. And
7571 * since we do this before handling the vmexit, a DR access vmexit
7572 * can (a) read the correct value of the debug registers, (b) set
7573 * KVM_DEBUGREG_WONT_EXIT again.
7575 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
7576 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
7577 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
7578 kvm_update_dr0123(vcpu);
7579 kvm_update_dr6(vcpu);
7580 kvm_update_dr7(vcpu);
7581 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7585 * If the guest has used debug registers, at least dr7
7586 * will be disabled while returning to the host.
7587 * If we don't have active breakpoints in the host, we don't
7588 * care about the messed up debug address registers. But if
7589 * we have some of them active, restore the old state.
7591 if (hw_breakpoint_active())
7592 hw_breakpoint_restore();
7594 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
7596 vcpu->mode = OUTSIDE_GUEST_MODE;
7599 kvm_put_guest_xcr0(vcpu);
7601 kvm_before_interrupt(vcpu);
7602 kvm_x86_ops->handle_external_intr(vcpu);
7603 kvm_after_interrupt(vcpu);
7607 guest_exit_irqoff();
7612 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7615 * Profile KVM exit RIPs:
7617 if (unlikely(prof_on == KVM_PROFILING)) {
7618 unsigned long rip = kvm_rip_read(vcpu);
7619 profile_hit(KVM_PROFILING, (void *)rip);
7622 if (unlikely(vcpu->arch.tsc_always_catchup))
7623 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7625 if (vcpu->arch.apic_attention)
7626 kvm_lapic_sync_from_vapic(vcpu);
7628 vcpu->arch.gpa_available = false;
7629 r = kvm_x86_ops->handle_exit(vcpu);
7633 kvm_x86_ops->cancel_injection(vcpu);
7634 if (unlikely(vcpu->arch.apic_attention))
7635 kvm_lapic_sync_from_vapic(vcpu);
7640 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
7642 if (!kvm_arch_vcpu_runnable(vcpu) &&
7643 (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
7644 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7645 kvm_vcpu_block(vcpu);
7646 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7648 if (kvm_x86_ops->post_block)
7649 kvm_x86_ops->post_block(vcpu);
7651 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
7655 kvm_apic_accept_events(vcpu);
7656 switch(vcpu->arch.mp_state) {
7657 case KVM_MP_STATE_HALTED:
7658 vcpu->arch.pv.pv_unhalted = false;
7659 vcpu->arch.mp_state =
7660 KVM_MP_STATE_RUNNABLE;
7661 case KVM_MP_STATE_RUNNABLE:
7662 vcpu->arch.apf.halted = false;
7664 case KVM_MP_STATE_INIT_RECEIVED:
7673 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
7675 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7676 kvm_x86_ops->check_nested_events(vcpu, false);
7678 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7679 !vcpu->arch.apf.halted);
7682 static int vcpu_run(struct kvm_vcpu *vcpu)
7685 struct kvm *kvm = vcpu->kvm;
7687 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7688 vcpu->arch.l1tf_flush_l1d = true;
7691 if (kvm_vcpu_running(vcpu)) {
7692 r = vcpu_enter_guest(vcpu);
7694 r = vcpu_block(kvm, vcpu);
7700 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
7701 if (kvm_cpu_has_pending_timer(vcpu))
7702 kvm_inject_pending_timer_irqs(vcpu);
7704 if (dm_request_for_irq_injection(vcpu) &&
7705 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
7707 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
7708 ++vcpu->stat.request_irq_exits;
7712 kvm_check_async_pf_completion(vcpu);
7714 if (signal_pending(current)) {
7716 vcpu->run->exit_reason = KVM_EXIT_INTR;
7717 ++vcpu->stat.signal_exits;
7720 if (need_resched()) {
7721 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7723 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7727 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7732 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
7735 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7736 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
7737 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7738 if (r != EMULATE_DONE)
7743 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
7745 BUG_ON(!vcpu->arch.pio.count);
7747 return complete_emulated_io(vcpu);
7751 * Implements the following, as a state machine:
7755 * for each mmio piece in the fragment
7763 * for each mmio piece in the fragment
7768 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
7770 struct kvm_run *run = vcpu->run;
7771 struct kvm_mmio_fragment *frag;
7774 BUG_ON(!vcpu->mmio_needed);
7776 /* Complete previous fragment */
7777 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
7778 len = min(8u, frag->len);
7779 if (!vcpu->mmio_is_write)
7780 memcpy(frag->data, run->mmio.data, len);
7782 if (frag->len <= 8) {
7783 /* Switch to the next fragment. */
7785 vcpu->mmio_cur_fragment++;
7787 /* Go forward to the next mmio piece. */
7793 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
7794 vcpu->mmio_needed = 0;
7796 /* FIXME: return into emulator if single-stepping. */
7797 if (vcpu->mmio_is_write)
7799 vcpu->mmio_read_completed = 1;
7800 return complete_emulated_io(vcpu);
7803 run->exit_reason = KVM_EXIT_MMIO;
7804 run->mmio.phys_addr = frag->gpa;
7805 if (vcpu->mmio_is_write)
7806 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
7807 run->mmio.len = min(8u, frag->len);
7808 run->mmio.is_write = vcpu->mmio_is_write;
7809 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7813 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
7818 kvm_sigset_activate(vcpu);
7819 kvm_load_guest_fpu(vcpu);
7821 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
7822 if (kvm_run->immediate_exit) {
7826 kvm_vcpu_block(vcpu);
7827 kvm_apic_accept_events(vcpu);
7828 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
7830 if (signal_pending(current)) {
7832 vcpu->run->exit_reason = KVM_EXIT_INTR;
7833 ++vcpu->stat.signal_exits;
7838 if (vcpu->run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
7843 if (vcpu->run->kvm_dirty_regs) {
7844 r = sync_regs(vcpu);
7849 /* re-sync apic's tpr */
7850 if (!lapic_in_kernel(vcpu)) {
7851 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
7857 if (unlikely(vcpu->arch.complete_userspace_io)) {
7858 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
7859 vcpu->arch.complete_userspace_io = NULL;
7864 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
7866 if (kvm_run->immediate_exit)
7872 kvm_put_guest_fpu(vcpu);
7873 if (vcpu->run->kvm_valid_regs)
7875 post_kvm_run_save(vcpu);
7876 kvm_sigset_deactivate(vcpu);
7882 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7884 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
7886 * We are here if userspace calls get_regs() in the middle of
7887 * instruction emulation. Registers state needs to be copied
7888 * back from emulation context to vcpu. Userspace shouldn't do
7889 * that usually, but some bad designed PV devices (vmware
7890 * backdoor interface) need this to work
7892 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
7893 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7895 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
7896 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
7897 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
7898 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
7899 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
7900 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
7901 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7902 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
7903 #ifdef CONFIG_X86_64
7904 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
7905 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
7906 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
7907 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
7908 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
7909 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
7910 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
7911 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
7914 regs->rip = kvm_rip_read(vcpu);
7915 regs->rflags = kvm_get_rflags(vcpu);
7918 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7921 __get_regs(vcpu, regs);
7926 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7928 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
7929 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7931 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
7932 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
7933 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
7934 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
7935 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
7936 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
7937 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
7938 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
7939 #ifdef CONFIG_X86_64
7940 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
7941 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
7942 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
7943 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
7944 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
7945 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
7946 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
7947 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
7950 kvm_rip_write(vcpu, regs->rip);
7951 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
7953 vcpu->arch.exception.pending = false;
7955 kvm_make_request(KVM_REQ_EVENT, vcpu);
7958 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7961 __set_regs(vcpu, regs);
7966 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7968 struct kvm_segment cs;
7970 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7974 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7976 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
7980 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7981 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7982 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7983 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7984 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7985 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7987 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7988 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7990 kvm_x86_ops->get_idt(vcpu, &dt);
7991 sregs->idt.limit = dt.size;
7992 sregs->idt.base = dt.address;
7993 kvm_x86_ops->get_gdt(vcpu, &dt);
7994 sregs->gdt.limit = dt.size;
7995 sregs->gdt.base = dt.address;
7997 sregs->cr0 = kvm_read_cr0(vcpu);
7998 sregs->cr2 = vcpu->arch.cr2;
7999 sregs->cr3 = kvm_read_cr3(vcpu);
8000 sregs->cr4 = kvm_read_cr4(vcpu);
8001 sregs->cr8 = kvm_get_cr8(vcpu);
8002 sregs->efer = vcpu->arch.efer;
8003 sregs->apic_base = kvm_get_apic_base(vcpu);
8005 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
8007 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
8008 set_bit(vcpu->arch.interrupt.nr,
8009 (unsigned long *)sregs->interrupt_bitmap);
8012 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
8013 struct kvm_sregs *sregs)
8016 __get_sregs(vcpu, sregs);
8021 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
8022 struct kvm_mp_state *mp_state)
8026 kvm_apic_accept_events(vcpu);
8027 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
8028 vcpu->arch.pv.pv_unhalted)
8029 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
8031 mp_state->mp_state = vcpu->arch.mp_state;
8037 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
8038 struct kvm_mp_state *mp_state)
8044 if (!lapic_in_kernel(vcpu) &&
8045 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
8048 /* INITs are latched while in SMM */
8049 if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
8050 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
8051 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
8054 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
8055 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
8056 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
8058 vcpu->arch.mp_state = mp_state->mp_state;
8059 kvm_make_request(KVM_REQ_EVENT, vcpu);
8067 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
8068 int reason, bool has_error_code, u32 error_code)
8070 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
8073 init_emulate_ctxt(vcpu);
8075 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
8076 has_error_code, error_code);
8079 return EMULATE_FAIL;
8081 kvm_rip_write(vcpu, ctxt->eip);
8082 kvm_set_rflags(vcpu, ctxt->eflags);
8083 kvm_make_request(KVM_REQ_EVENT, vcpu);
8084 return EMULATE_DONE;
8086 EXPORT_SYMBOL_GPL(kvm_task_switch);
8088 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8090 if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
8091 (sregs->cr4 & X86_CR4_OSXSAVE))
8094 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
8096 * When EFER.LME and CR0.PG are set, the processor is in
8097 * 64-bit mode (though maybe in a 32-bit code segment).
8098 * CR4.PAE and EFER.LMA must be set.
8100 if (!(sregs->cr4 & X86_CR4_PAE)
8101 || !(sregs->efer & EFER_LMA))
8105 * Not in 64-bit mode: EFER.LMA is clear and the code
8106 * segment cannot be 64-bit.
8108 if (sregs->efer & EFER_LMA || sregs->cs.l)
8115 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8117 struct msr_data apic_base_msr;
8118 int mmu_reset_needed = 0;
8119 int cpuid_update_needed = 0;
8120 int pending_vec, max_bits, idx;
8124 if (kvm_valid_sregs(vcpu, sregs))
8127 apic_base_msr.data = sregs->apic_base;
8128 apic_base_msr.host_initiated = true;
8129 if (kvm_set_apic_base(vcpu, &apic_base_msr))
8132 dt.size = sregs->idt.limit;
8133 dt.address = sregs->idt.base;
8134 kvm_x86_ops->set_idt(vcpu, &dt);
8135 dt.size = sregs->gdt.limit;
8136 dt.address = sregs->gdt.base;
8137 kvm_x86_ops->set_gdt(vcpu, &dt);
8139 vcpu->arch.cr2 = sregs->cr2;
8140 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
8141 vcpu->arch.cr3 = sregs->cr3;
8142 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
8144 kvm_set_cr8(vcpu, sregs->cr8);
8146 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
8147 kvm_x86_ops->set_efer(vcpu, sregs->efer);
8149 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
8150 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
8151 vcpu->arch.cr0 = sregs->cr0;
8153 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
8154 cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
8155 (X86_CR4_OSXSAVE | X86_CR4_PKE));
8156 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
8157 if (cpuid_update_needed)
8158 kvm_update_cpuid(vcpu);
8160 idx = srcu_read_lock(&vcpu->kvm->srcu);
8161 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
8162 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
8163 mmu_reset_needed = 1;
8165 srcu_read_unlock(&vcpu->kvm->srcu, idx);
8167 if (mmu_reset_needed)
8168 kvm_mmu_reset_context(vcpu);
8170 max_bits = KVM_NR_INTERRUPTS;
8171 pending_vec = find_first_bit(
8172 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
8173 if (pending_vec < max_bits) {
8174 kvm_queue_interrupt(vcpu, pending_vec, false);
8175 pr_debug("Set back pending irq %d\n", pending_vec);
8178 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8179 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8180 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8181 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8182 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8183 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8185 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8186 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8188 update_cr8_intercept(vcpu);
8190 /* Older userspace won't unhalt the vcpu on reset. */
8191 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
8192 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
8194 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8196 kvm_make_request(KVM_REQ_EVENT, vcpu);
8203 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
8204 struct kvm_sregs *sregs)
8209 ret = __set_sregs(vcpu, sregs);
8214 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
8215 struct kvm_guest_debug *dbg)
8217 unsigned long rflags;
8222 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
8224 if (vcpu->arch.exception.pending)
8226 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
8227 kvm_queue_exception(vcpu, DB_VECTOR);
8229 kvm_queue_exception(vcpu, BP_VECTOR);
8233 * Read rflags as long as potentially injected trace flags are still
8236 rflags = kvm_get_rflags(vcpu);
8238 vcpu->guest_debug = dbg->control;
8239 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
8240 vcpu->guest_debug = 0;
8242 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
8243 for (i = 0; i < KVM_NR_DB_REGS; ++i)
8244 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
8245 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
8247 for (i = 0; i < KVM_NR_DB_REGS; i++)
8248 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
8250 kvm_update_dr7(vcpu);
8252 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8253 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
8254 get_segment_base(vcpu, VCPU_SREG_CS);
8257 * Trigger an rflags update that will inject or remove the trace
8260 kvm_set_rflags(vcpu, rflags);
8262 kvm_x86_ops->update_bp_intercept(vcpu);
8272 * Translate a guest virtual address to a guest physical address.
8274 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
8275 struct kvm_translation *tr)
8277 unsigned long vaddr = tr->linear_address;
8283 idx = srcu_read_lock(&vcpu->kvm->srcu);
8284 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
8285 srcu_read_unlock(&vcpu->kvm->srcu, idx);
8286 tr->physical_address = gpa;
8287 tr->valid = gpa != UNMAPPED_GVA;
8295 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8297 struct fxregs_state *fxsave;
8301 fxsave = &vcpu->arch.guest_fpu.state.fxsave;
8302 memcpy(fpu->fpr, fxsave->st_space, 128);
8303 fpu->fcw = fxsave->cwd;
8304 fpu->fsw = fxsave->swd;
8305 fpu->ftwx = fxsave->twd;
8306 fpu->last_opcode = fxsave->fop;
8307 fpu->last_ip = fxsave->rip;
8308 fpu->last_dp = fxsave->rdp;
8309 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
8315 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8317 struct fxregs_state *fxsave;
8321 fxsave = &vcpu->arch.guest_fpu.state.fxsave;
8323 memcpy(fxsave->st_space, fpu->fpr, 128);
8324 fxsave->cwd = fpu->fcw;
8325 fxsave->swd = fpu->fsw;
8326 fxsave->twd = fpu->ftwx;
8327 fxsave->fop = fpu->last_opcode;
8328 fxsave->rip = fpu->last_ip;
8329 fxsave->rdp = fpu->last_dp;
8330 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
8336 static void store_regs(struct kvm_vcpu *vcpu)
8338 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
8340 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
8341 __get_regs(vcpu, &vcpu->run->s.regs.regs);
8343 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
8344 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
8346 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
8347 kvm_vcpu_ioctl_x86_get_vcpu_events(
8348 vcpu, &vcpu->run->s.regs.events);
8351 static int sync_regs(struct kvm_vcpu *vcpu)
8353 if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
8356 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
8357 __set_regs(vcpu, &vcpu->run->s.regs.regs);
8358 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
8360 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
8361 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
8363 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
8365 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
8366 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
8367 vcpu, &vcpu->run->s.regs.events))
8369 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
8375 static void fx_init(struct kvm_vcpu *vcpu)
8377 fpstate_init(&vcpu->arch.guest_fpu.state);
8378 if (boot_cpu_has(X86_FEATURE_XSAVES))
8379 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
8380 host_xcr0 | XSTATE_COMPACTION_ENABLED;
8383 * Ensure guest xcr0 is valid for loading
8385 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8387 vcpu->arch.cr0 |= X86_CR0_ET;
8390 /* Swap (qemu) user FPU context for the guest FPU context. */
8391 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
8394 copy_fpregs_to_fpstate(&vcpu->arch.user_fpu);
8395 /* PKRU is separately restored in kvm_x86_ops->run. */
8396 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state,
8397 ~XFEATURE_MASK_PKRU);
8402 /* When vcpu_run ends, restore user space FPU context. */
8403 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
8406 copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
8407 copy_kernel_to_fpregs(&vcpu->arch.user_fpu.state);
8409 ++vcpu->stat.fpu_reload;
8413 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
8415 void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
8417 kvmclock_reset(vcpu);
8419 kvm_x86_ops->vcpu_free(vcpu);
8420 free_cpumask_var(wbinvd_dirty_mask);
8423 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
8426 struct kvm_vcpu *vcpu;
8428 if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
8429 printk_once(KERN_WARNING
8430 "kvm: SMP vm created on host with unstable TSC; "
8431 "guest TSC will not be reliable\n");
8433 vcpu = kvm_x86_ops->vcpu_create(kvm, id);
8438 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
8440 kvm_vcpu_mtrr_init(vcpu);
8442 kvm_vcpu_reset(vcpu, false);
8443 kvm_mmu_setup(vcpu);
8448 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
8450 struct msr_data msr;
8451 struct kvm *kvm = vcpu->kvm;
8453 kvm_hv_vcpu_postcreate(vcpu);
8455 if (mutex_lock_killable(&vcpu->mutex))
8459 msr.index = MSR_IA32_TSC;
8460 msr.host_initiated = true;
8461 kvm_write_tsc(vcpu, &msr);
8463 mutex_unlock(&vcpu->mutex);
8465 if (!kvmclock_periodic_sync)
8468 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
8469 KVMCLOCK_SYNC_PERIOD);
8472 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
8474 vcpu->arch.apf.msr_val = 0;
8477 kvm_mmu_unload(vcpu);
8480 kvm_x86_ops->vcpu_free(vcpu);
8483 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
8485 kvm_lapic_reset(vcpu, init_event);
8487 vcpu->arch.hflags = 0;
8489 vcpu->arch.smi_pending = 0;
8490 vcpu->arch.smi_count = 0;
8491 atomic_set(&vcpu->arch.nmi_queued, 0);
8492 vcpu->arch.nmi_pending = 0;
8493 vcpu->arch.nmi_injected = false;
8494 kvm_clear_interrupt_queue(vcpu);
8495 kvm_clear_exception_queue(vcpu);
8496 vcpu->arch.exception.pending = false;
8498 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
8499 kvm_update_dr0123(vcpu);
8500 vcpu->arch.dr6 = DR6_INIT;
8501 kvm_update_dr6(vcpu);
8502 vcpu->arch.dr7 = DR7_FIXED_1;
8503 kvm_update_dr7(vcpu);
8507 kvm_make_request(KVM_REQ_EVENT, vcpu);
8508 vcpu->arch.apf.msr_val = 0;
8509 vcpu->arch.st.msr_val = 0;
8511 kvmclock_reset(vcpu);
8513 kvm_clear_async_pf_completion_queue(vcpu);
8514 kvm_async_pf_hash_reset(vcpu);
8515 vcpu->arch.apf.halted = false;
8517 if (kvm_mpx_supported()) {
8518 void *mpx_state_buffer;
8521 * To avoid have the INIT path from kvm_apic_has_events() that be
8522 * called with loaded FPU and does not let userspace fix the state.
8525 kvm_put_guest_fpu(vcpu);
8526 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
8527 XFEATURE_MASK_BNDREGS);
8528 if (mpx_state_buffer)
8529 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
8530 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
8531 XFEATURE_MASK_BNDCSR);
8532 if (mpx_state_buffer)
8533 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
8535 kvm_load_guest_fpu(vcpu);
8539 kvm_pmu_reset(vcpu);
8540 vcpu->arch.smbase = 0x30000;
8542 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
8543 vcpu->arch.msr_misc_features_enables = 0;
8545 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8548 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
8549 vcpu->arch.regs_avail = ~0;
8550 vcpu->arch.regs_dirty = ~0;
8552 vcpu->arch.ia32_xss = 0;
8554 kvm_x86_ops->vcpu_reset(vcpu, init_event);
8557 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
8559 struct kvm_segment cs;
8561 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8562 cs.selector = vector << 8;
8563 cs.base = vector << 12;
8564 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8565 kvm_rip_write(vcpu, 0);
8568 int kvm_arch_hardware_enable(void)
8571 struct kvm_vcpu *vcpu;
8576 bool stable, backwards_tsc = false;
8578 kvm_shared_msr_cpu_online();
8579 ret = kvm_x86_ops->hardware_enable();
8583 local_tsc = rdtsc();
8584 stable = !kvm_check_tsc_unstable();
8585 list_for_each_entry(kvm, &vm_list, vm_list) {
8586 kvm_for_each_vcpu(i, vcpu, kvm) {
8587 if (!stable && vcpu->cpu == smp_processor_id())
8588 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8589 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
8590 backwards_tsc = true;
8591 if (vcpu->arch.last_host_tsc > max_tsc)
8592 max_tsc = vcpu->arch.last_host_tsc;
8598 * Sometimes, even reliable TSCs go backwards. This happens on
8599 * platforms that reset TSC during suspend or hibernate actions, but
8600 * maintain synchronization. We must compensate. Fortunately, we can
8601 * detect that condition here, which happens early in CPU bringup,
8602 * before any KVM threads can be running. Unfortunately, we can't
8603 * bring the TSCs fully up to date with real time, as we aren't yet far
8604 * enough into CPU bringup that we know how much real time has actually
8605 * elapsed; our helper function, ktime_get_boot_ns() will be using boot
8606 * variables that haven't been updated yet.
8608 * So we simply find the maximum observed TSC above, then record the
8609 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
8610 * the adjustment will be applied. Note that we accumulate
8611 * adjustments, in case multiple suspend cycles happen before some VCPU
8612 * gets a chance to run again. In the event that no KVM threads get a
8613 * chance to run, we will miss the entire elapsed period, as we'll have
8614 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
8615 * loose cycle time. This isn't too big a deal, since the loss will be
8616 * uniform across all VCPUs (not to mention the scenario is extremely
8617 * unlikely). It is possible that a second hibernate recovery happens
8618 * much faster than a first, causing the observed TSC here to be
8619 * smaller; this would require additional padding adjustment, which is
8620 * why we set last_host_tsc to the local tsc observed here.
8622 * N.B. - this code below runs only on platforms with reliable TSC,
8623 * as that is the only way backwards_tsc is set above. Also note
8624 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
8625 * have the same delta_cyc adjustment applied if backwards_tsc
8626 * is detected. Note further, this adjustment is only done once,
8627 * as we reset last_host_tsc on all VCPUs to stop this from being
8628 * called multiple times (one for each physical CPU bringup).
8630 * Platforms with unreliable TSCs don't have to deal with this, they
8631 * will be compensated by the logic in vcpu_load, which sets the TSC to
8632 * catchup mode. This will catchup all VCPUs to real time, but cannot
8633 * guarantee that they stay in perfect synchronization.
8635 if (backwards_tsc) {
8636 u64 delta_cyc = max_tsc - local_tsc;
8637 list_for_each_entry(kvm, &vm_list, vm_list) {
8638 kvm->arch.backwards_tsc_observed = true;
8639 kvm_for_each_vcpu(i, vcpu, kvm) {
8640 vcpu->arch.tsc_offset_adjustment += delta_cyc;
8641 vcpu->arch.last_host_tsc = local_tsc;
8642 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8646 * We have to disable TSC offset matching.. if you were
8647 * booting a VM while issuing an S4 host suspend....
8648 * you may have some problem. Solving this issue is
8649 * left as an exercise to the reader.
8651 kvm->arch.last_tsc_nsec = 0;
8652 kvm->arch.last_tsc_write = 0;
8659 void kvm_arch_hardware_disable(void)
8661 kvm_x86_ops->hardware_disable();
8662 drop_user_return_notifiers();
8665 int kvm_arch_hardware_setup(void)
8669 r = kvm_x86_ops->hardware_setup();
8673 if (kvm_has_tsc_control) {
8675 * Make sure the user can only configure tsc_khz values that
8676 * fit into a signed integer.
8677 * A min value is not calculated because it will always
8678 * be 1 on all machines.
8680 u64 max = min(0x7fffffffULL,
8681 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
8682 kvm_max_guest_tsc_khz = max;
8684 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
8687 kvm_init_msr_list();
8691 void kvm_arch_hardware_unsetup(void)
8693 kvm_x86_ops->hardware_unsetup();
8696 void kvm_arch_check_processor_compat(void *rtn)
8698 kvm_x86_ops->check_processor_compatibility(rtn);
8701 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
8703 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
8705 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
8707 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
8709 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
8712 struct static_key kvm_no_apic_vcpu __read_mostly;
8713 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
8715 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
8720 vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu);
8721 vcpu->arch.emulate_ctxt.ops = &emulate_ops;
8722 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
8723 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8725 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
8727 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
8732 vcpu->arch.pio_data = page_address(page);
8734 kvm_set_tsc_khz(vcpu, max_tsc_khz);
8736 r = kvm_mmu_create(vcpu);
8738 goto fail_free_pio_data;
8740 if (irqchip_in_kernel(vcpu->kvm)) {
8741 r = kvm_create_lapic(vcpu);
8743 goto fail_mmu_destroy;
8745 static_key_slow_inc(&kvm_no_apic_vcpu);
8747 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
8749 if (!vcpu->arch.mce_banks) {
8751 goto fail_free_lapic;
8753 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
8755 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
8757 goto fail_free_mce_banks;
8762 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
8764 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
8766 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
8768 kvm_async_pf_hash_reset(vcpu);
8771 vcpu->arch.pending_external_vector = -1;
8772 vcpu->arch.preempted_in_kernel = false;
8774 kvm_hv_vcpu_init(vcpu);
8778 fail_free_mce_banks:
8779 kfree(vcpu->arch.mce_banks);
8781 kvm_free_lapic(vcpu);
8783 kvm_mmu_destroy(vcpu);
8785 free_page((unsigned long)vcpu->arch.pio_data);
8790 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
8794 kvm_hv_vcpu_uninit(vcpu);
8795 kvm_pmu_destroy(vcpu);
8796 kfree(vcpu->arch.mce_banks);
8797 kvm_free_lapic(vcpu);
8798 idx = srcu_read_lock(&vcpu->kvm->srcu);
8799 kvm_mmu_destroy(vcpu);
8800 srcu_read_unlock(&vcpu->kvm->srcu, idx);
8801 free_page((unsigned long)vcpu->arch.pio_data);
8802 if (!lapic_in_kernel(vcpu))
8803 static_key_slow_dec(&kvm_no_apic_vcpu);
8806 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
8808 vcpu->arch.l1tf_flush_l1d = true;
8809 kvm_x86_ops->sched_in(vcpu, cpu);
8812 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
8817 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
8818 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
8819 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
8820 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
8821 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
8823 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
8824 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
8825 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
8826 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
8827 &kvm->arch.irq_sources_bitmap);
8829 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
8830 mutex_init(&kvm->arch.apic_map_lock);
8831 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
8833 kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
8834 pvclock_update_vm_gtod_copy(kvm);
8836 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
8837 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
8839 kvm_hv_init_vm(kvm);
8840 kvm_page_track_init(kvm);
8841 kvm_mmu_init_vm(kvm);
8843 if (kvm_x86_ops->vm_init)
8844 return kvm_x86_ops->vm_init(kvm);
8849 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
8852 kvm_mmu_unload(vcpu);
8856 static void kvm_free_vcpus(struct kvm *kvm)
8859 struct kvm_vcpu *vcpu;
8862 * Unpin any mmu pages first.
8864 kvm_for_each_vcpu(i, vcpu, kvm) {
8865 kvm_clear_async_pf_completion_queue(vcpu);
8866 kvm_unload_vcpu_mmu(vcpu);
8868 kvm_for_each_vcpu(i, vcpu, kvm)
8869 kvm_arch_vcpu_free(vcpu);
8871 mutex_lock(&kvm->lock);
8872 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
8873 kvm->vcpus[i] = NULL;
8875 atomic_set(&kvm->online_vcpus, 0);
8876 mutex_unlock(&kvm->lock);
8879 void kvm_arch_sync_events(struct kvm *kvm)
8881 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
8882 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
8886 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8890 struct kvm_memslots *slots = kvm_memslots(kvm);
8891 struct kvm_memory_slot *slot, old;
8893 /* Called with kvm->slots_lock held. */
8894 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
8897 slot = id_to_memslot(slots, id);
8903 * MAP_SHARED to prevent internal slot pages from being moved
8906 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
8907 MAP_SHARED | MAP_ANONYMOUS, 0);
8908 if (IS_ERR((void *)hva))
8909 return PTR_ERR((void *)hva);
8918 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
8919 struct kvm_userspace_memory_region m;
8921 m.slot = id | (i << 16);
8923 m.guest_phys_addr = gpa;
8924 m.userspace_addr = hva;
8925 m.memory_size = size;
8926 r = __kvm_set_memory_region(kvm, &m);
8932 vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
8936 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
8938 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8942 mutex_lock(&kvm->slots_lock);
8943 r = __x86_set_memory_region(kvm, id, gpa, size);
8944 mutex_unlock(&kvm->slots_lock);
8948 EXPORT_SYMBOL_GPL(x86_set_memory_region);
8950 void kvm_arch_destroy_vm(struct kvm *kvm)
8952 if (current->mm == kvm->mm) {
8954 * Free memory regions allocated on behalf of userspace,
8955 * unless the the memory map has changed due to process exit
8958 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
8959 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
8960 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
8962 if (kvm_x86_ops->vm_destroy)
8963 kvm_x86_ops->vm_destroy(kvm);
8964 kvm_pic_destroy(kvm);
8965 kvm_ioapic_destroy(kvm);
8966 kvm_free_vcpus(kvm);
8967 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
8968 kvm_mmu_uninit_vm(kvm);
8969 kvm_page_track_cleanup(kvm);
8970 kvm_hv_destroy_vm(kvm);
8973 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
8974 struct kvm_memory_slot *dont)
8978 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8979 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
8980 kvfree(free->arch.rmap[i]);
8981 free->arch.rmap[i] = NULL;
8986 if (!dont || free->arch.lpage_info[i - 1] !=
8987 dont->arch.lpage_info[i - 1]) {
8988 kvfree(free->arch.lpage_info[i - 1]);
8989 free->arch.lpage_info[i - 1] = NULL;
8993 kvm_page_track_free_memslot(free, dont);
8996 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
8997 unsigned long npages)
9001 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9002 struct kvm_lpage_info *linfo;
9007 lpages = gfn_to_index(slot->base_gfn + npages - 1,
9008 slot->base_gfn, level) + 1;
9010 slot->arch.rmap[i] =
9011 kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
9013 if (!slot->arch.rmap[i])
9018 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL);
9022 slot->arch.lpage_info[i - 1] = linfo;
9024 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
9025 linfo[0].disallow_lpage = 1;
9026 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
9027 linfo[lpages - 1].disallow_lpage = 1;
9028 ugfn = slot->userspace_addr >> PAGE_SHIFT;
9030 * If the gfn and userspace address are not aligned wrt each
9031 * other, or if explicitly asked to, disable large page
9032 * support for this slot
9034 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
9035 !kvm_largepages_enabled()) {
9038 for (j = 0; j < lpages; ++j)
9039 linfo[j].disallow_lpage = 1;
9043 if (kvm_page_track_create_memslot(slot, npages))
9049 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9050 kvfree(slot->arch.rmap[i]);
9051 slot->arch.rmap[i] = NULL;
9055 kvfree(slot->arch.lpage_info[i - 1]);
9056 slot->arch.lpage_info[i - 1] = NULL;
9061 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
9064 * memslots->generation has been incremented.
9065 * mmio generation may have reached its maximum value.
9067 kvm_mmu_invalidate_mmio_sptes(kvm, slots);
9070 int kvm_arch_prepare_memory_region(struct kvm *kvm,
9071 struct kvm_memory_slot *memslot,
9072 const struct kvm_userspace_memory_region *mem,
9073 enum kvm_mr_change change)
9078 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
9079 struct kvm_memory_slot *new)
9081 /* Still write protect RO slot */
9082 if (new->flags & KVM_MEM_READONLY) {
9083 kvm_mmu_slot_remove_write_access(kvm, new);
9088 * Call kvm_x86_ops dirty logging hooks when they are valid.
9090 * kvm_x86_ops->slot_disable_log_dirty is called when:
9092 * - KVM_MR_CREATE with dirty logging is disabled
9093 * - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
9095 * The reason is, in case of PML, we need to set D-bit for any slots
9096 * with dirty logging disabled in order to eliminate unnecessary GPA
9097 * logging in PML buffer (and potential PML buffer full VMEXT). This
9098 * guarantees leaving PML enabled during guest's lifetime won't have
9099 * any additonal overhead from PML when guest is running with dirty
9100 * logging disabled for memory slots.
9102 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
9103 * to dirty logging mode.
9105 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
9107 * In case of write protect:
9109 * Write protect all pages for dirty logging.
9111 * All the sptes including the large sptes which point to this
9112 * slot are set to readonly. We can not create any new large
9113 * spte on this slot until the end of the logging.
9115 * See the comments in fast_page_fault().
9117 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
9118 if (kvm_x86_ops->slot_enable_log_dirty)
9119 kvm_x86_ops->slot_enable_log_dirty(kvm, new);
9121 kvm_mmu_slot_remove_write_access(kvm, new);
9123 if (kvm_x86_ops->slot_disable_log_dirty)
9124 kvm_x86_ops->slot_disable_log_dirty(kvm, new);
9128 void kvm_arch_commit_memory_region(struct kvm *kvm,
9129 const struct kvm_userspace_memory_region *mem,
9130 const struct kvm_memory_slot *old,
9131 const struct kvm_memory_slot *new,
9132 enum kvm_mr_change change)
9134 int nr_mmu_pages = 0;
9136 if (!kvm->arch.n_requested_mmu_pages)
9137 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
9140 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
9143 * Dirty logging tracks sptes in 4k granularity, meaning that large
9144 * sptes have to be split. If live migration is successful, the guest
9145 * in the source machine will be destroyed and large sptes will be
9146 * created in the destination. However, if the guest continues to run
9147 * in the source machine (for example if live migration fails), small
9148 * sptes will remain around and cause bad performance.
9150 * Scan sptes if dirty logging has been stopped, dropping those
9151 * which can be collapsed into a single large-page spte. Later
9152 * page faults will create the large-page sptes.
9154 if ((change != KVM_MR_DELETE) &&
9155 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
9156 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
9157 kvm_mmu_zap_collapsible_sptes(kvm, new);
9160 * Set up write protection and/or dirty logging for the new slot.
9162 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
9163 * been zapped so no dirty logging staff is needed for old slot. For
9164 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
9165 * new and it's also covered when dealing with the new slot.
9167 * FIXME: const-ify all uses of struct kvm_memory_slot.
9169 if (change != KVM_MR_DELETE)
9170 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
9173 void kvm_arch_flush_shadow_all(struct kvm *kvm)
9175 kvm_mmu_invalidate_zap_all_pages(kvm);
9178 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
9179 struct kvm_memory_slot *slot)
9181 kvm_page_track_flush_slot(kvm, slot);
9184 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
9186 if (!list_empty_careful(&vcpu->async_pf.done))
9189 if (kvm_apic_has_events(vcpu))
9192 if (vcpu->arch.pv.pv_unhalted)
9195 if (vcpu->arch.exception.pending)
9198 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
9199 (vcpu->arch.nmi_pending &&
9200 kvm_x86_ops->nmi_allowed(vcpu)))
9203 if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
9204 (vcpu->arch.smi_pending && !is_smm(vcpu)))
9207 if (kvm_arch_interrupt_allowed(vcpu) &&
9208 kvm_cpu_has_interrupt(vcpu))
9211 if (kvm_hv_has_stimer_pending(vcpu))
9217 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
9219 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
9222 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
9224 return vcpu->arch.preempted_in_kernel;
9227 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
9229 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
9232 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
9234 return kvm_x86_ops->interrupt_allowed(vcpu);
9237 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
9239 if (is_64_bit_mode(vcpu))
9240 return kvm_rip_read(vcpu);
9241 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
9242 kvm_rip_read(vcpu));
9244 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
9246 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
9248 return kvm_get_linear_rip(vcpu) == linear_rip;
9250 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
9252 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
9254 unsigned long rflags;
9256 rflags = kvm_x86_ops->get_rflags(vcpu);
9257 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9258 rflags &= ~X86_EFLAGS_TF;
9261 EXPORT_SYMBOL_GPL(kvm_get_rflags);
9263 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9265 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
9266 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
9267 rflags |= X86_EFLAGS_TF;
9268 kvm_x86_ops->set_rflags(vcpu, rflags);
9271 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9273 __kvm_set_rflags(vcpu, rflags);
9274 kvm_make_request(KVM_REQ_EVENT, vcpu);
9276 EXPORT_SYMBOL_GPL(kvm_set_rflags);
9278 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
9282 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
9286 r = kvm_mmu_reload(vcpu);
9290 if (!vcpu->arch.mmu.direct_map &&
9291 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
9294 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
9297 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
9299 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
9302 static inline u32 kvm_async_pf_next_probe(u32 key)
9304 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
9307 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9309 u32 key = kvm_async_pf_hash_fn(gfn);
9311 while (vcpu->arch.apf.gfns[key] != ~0)
9312 key = kvm_async_pf_next_probe(key);
9314 vcpu->arch.apf.gfns[key] = gfn;
9317 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
9320 u32 key = kvm_async_pf_hash_fn(gfn);
9322 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
9323 (vcpu->arch.apf.gfns[key] != gfn &&
9324 vcpu->arch.apf.gfns[key] != ~0); i++)
9325 key = kvm_async_pf_next_probe(key);
9330 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9332 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
9335 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9339 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
9341 vcpu->arch.apf.gfns[i] = ~0;
9343 j = kvm_async_pf_next_probe(j);
9344 if (vcpu->arch.apf.gfns[j] == ~0)
9346 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
9348 * k lies cyclically in ]i,j]
9350 * |....j i.k.| or |.k..j i...|
9352 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
9353 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
9358 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
9361 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
9365 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
9368 return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
9372 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
9373 struct kvm_async_pf *work)
9375 struct x86_exception fault;
9377 trace_kvm_async_pf_not_present(work->arch.token, work->gva);
9378 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
9380 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
9381 (vcpu->arch.apf.send_user_only &&
9382 kvm_x86_ops->get_cpl(vcpu) == 0))
9383 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
9384 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
9385 fault.vector = PF_VECTOR;
9386 fault.error_code_valid = true;
9387 fault.error_code = 0;
9388 fault.nested_page_fault = false;
9389 fault.address = work->arch.token;
9390 fault.async_page_fault = true;
9391 kvm_inject_page_fault(vcpu, &fault);
9395 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
9396 struct kvm_async_pf *work)
9398 struct x86_exception fault;
9401 if (work->wakeup_all)
9402 work->arch.token = ~0; /* broadcast wakeup */
9404 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
9405 trace_kvm_async_pf_ready(work->arch.token, work->gva);
9407 if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
9408 !apf_get_user(vcpu, &val)) {
9409 if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
9410 vcpu->arch.exception.pending &&
9411 vcpu->arch.exception.nr == PF_VECTOR &&
9412 !apf_put_user(vcpu, 0)) {
9413 vcpu->arch.exception.injected = false;
9414 vcpu->arch.exception.pending = false;
9415 vcpu->arch.exception.nr = 0;
9416 vcpu->arch.exception.has_error_code = false;
9417 vcpu->arch.exception.error_code = 0;
9418 } else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
9419 fault.vector = PF_VECTOR;
9420 fault.error_code_valid = true;
9421 fault.error_code = 0;
9422 fault.nested_page_fault = false;
9423 fault.address = work->arch.token;
9424 fault.async_page_fault = true;
9425 kvm_inject_page_fault(vcpu, &fault);
9428 vcpu->arch.apf.halted = false;
9429 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9432 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
9434 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
9437 return kvm_can_do_async_pf(vcpu);
9440 void kvm_arch_start_assignment(struct kvm *kvm)
9442 atomic_inc(&kvm->arch.assigned_device_count);
9444 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
9446 void kvm_arch_end_assignment(struct kvm *kvm)
9448 atomic_dec(&kvm->arch.assigned_device_count);
9450 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
9452 bool kvm_arch_has_assigned_device(struct kvm *kvm)
9454 return atomic_read(&kvm->arch.assigned_device_count);
9456 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
9458 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
9460 atomic_inc(&kvm->arch.noncoherent_dma_count);
9462 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
9464 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
9466 atomic_dec(&kvm->arch.noncoherent_dma_count);
9468 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
9470 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
9472 return atomic_read(&kvm->arch.noncoherent_dma_count);
9474 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
9476 bool kvm_arch_has_irq_bypass(void)
9478 return kvm_x86_ops->update_pi_irte != NULL;
9481 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
9482 struct irq_bypass_producer *prod)
9484 struct kvm_kernel_irqfd *irqfd =
9485 container_of(cons, struct kvm_kernel_irqfd, consumer);
9487 irqfd->producer = prod;
9489 return kvm_x86_ops->update_pi_irte(irqfd->kvm,
9490 prod->irq, irqfd->gsi, 1);
9493 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
9494 struct irq_bypass_producer *prod)
9497 struct kvm_kernel_irqfd *irqfd =
9498 container_of(cons, struct kvm_kernel_irqfd, consumer);
9500 WARN_ON(irqfd->producer != prod);
9501 irqfd->producer = NULL;
9504 * When producer of consumer is unregistered, we change back to
9505 * remapped mode, so we can re-use the current implementation
9506 * when the irq is masked/disabled or the consumer side (KVM
9507 * int this case doesn't want to receive the interrupts.
9509 ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
9511 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
9512 " fails: %d\n", irqfd->consumer.token, ret);
9515 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
9516 uint32_t guest_irq, bool set)
9518 if (!kvm_x86_ops->update_pi_irte)
9521 return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
9524 bool kvm_vector_hashing_enabled(void)
9526 return vector_hashing;
9528 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
9530 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
9531 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
9532 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
9533 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
9534 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
9535 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
9536 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
9537 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
9538 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
9539 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
9540 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
9541 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
9542 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
9543 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
9544 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
9545 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
9546 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
9547 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
9548 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);