1 // SPDX-License-Identifier: GPL-2.0-only
3 * Kernel-based Virtual Machine driver for Linux
5 * derived from drivers/kvm/kvm_main.c
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright (C) 2008 Qumranet, Inc.
9 * Copyright IBM Corporation, 2008
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
13 * Avi Kivity <avi@qumranet.com>
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Amit Shah <amit.shah@qumranet.com>
16 * Ben-Ami Yassour <benami@il.ibm.com>
19 #include <linux/kvm_host.h>
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/intel-iommu.h>
45 #include <linux/cpufreq.h>
46 #include <linux/user-return-notifier.h>
47 #include <linux/srcu.h>
48 #include <linux/slab.h>
49 #include <linux/perf_event.h>
50 #include <linux/uaccess.h>
51 #include <linux/hash.h>
52 #include <linux/pci.h>
53 #include <linux/timekeeper_internal.h>
54 #include <linux/pvclock_gtod.h>
55 #include <linux/kvm_irqfd.h>
56 #include <linux/irqbypass.h>
57 #include <linux/sched/stat.h>
58 #include <linux/sched/isolation.h>
59 #include <linux/mem_encrypt.h>
60 #include <linux/entry-kvm.h>
61 #include <linux/suspend.h>
63 #include <trace/events/kvm.h>
65 #include <asm/debugreg.h>
70 #include <linux/kernel_stat.h>
71 #include <asm/fpu/api.h>
72 #include <asm/fpu/xcr.h>
73 #include <asm/fpu/xstate.h>
74 #include <asm/pvclock.h>
75 #include <asm/div64.h>
76 #include <asm/irq_remapping.h>
77 #include <asm/mshyperv.h>
78 #include <asm/hypervisor.h>
79 #include <asm/tlbflush.h>
80 #include <asm/intel_pt.h>
81 #include <asm/emulate_prefix.h>
83 #include <clocksource/hyperv_timer.h>
85 #define CREATE_TRACE_POINTS
88 #define MAX_IO_MSRS 256
89 #define KVM_MAX_MCE_BANKS 32
90 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
91 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
93 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e))
95 #define emul_to_vcpu(ctxt) \
96 ((struct kvm_vcpu *)(ctxt)->vcpu)
99 * - enable syscall per default because its emulated by KVM
100 * - enable LME and LMA per default on 64 bit KVM
104 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
106 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
109 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
111 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
113 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
114 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
116 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
117 static void process_nmi(struct kvm_vcpu *vcpu);
118 static void process_smi(struct kvm_vcpu *vcpu);
119 static void enter_smm(struct kvm_vcpu *vcpu);
120 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
121 static void store_regs(struct kvm_vcpu *vcpu);
122 static int sync_regs(struct kvm_vcpu *vcpu);
123 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
125 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
126 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
128 struct kvm_x86_ops kvm_x86_ops __read_mostly;
129 EXPORT_SYMBOL_GPL(kvm_x86_ops);
131 #define KVM_X86_OP(func) \
132 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \
133 *(((struct kvm_x86_ops *)0)->func));
134 #define KVM_X86_OP_NULL KVM_X86_OP
135 #include <asm/kvm-x86-ops.h>
136 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
137 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
138 EXPORT_STATIC_CALL_GPL(kvm_x86_tlb_flush_current);
140 static bool __read_mostly ignore_msrs = 0;
141 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
143 bool __read_mostly report_ignored_msrs = true;
144 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
145 EXPORT_SYMBOL_GPL(report_ignored_msrs);
147 unsigned int min_timer_period_us = 200;
148 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
150 static bool __read_mostly kvmclock_periodic_sync = true;
151 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
153 bool __read_mostly kvm_has_tsc_control;
154 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
155 u32 __read_mostly kvm_max_guest_tsc_khz;
156 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
157 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits;
158 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
159 u64 __read_mostly kvm_max_tsc_scaling_ratio;
160 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
161 u64 __read_mostly kvm_default_tsc_scaling_ratio;
162 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
163 bool __read_mostly kvm_has_bus_lock_exit;
164 EXPORT_SYMBOL_GPL(kvm_has_bus_lock_exit);
166 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
167 static u32 __read_mostly tsc_tolerance_ppm = 250;
168 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
171 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables
172 * adaptive tuning starting from default advancement of 1000ns. '0' disables
173 * advancement entirely. Any other value is used as-is and disables adaptive
174 * tuning, i.e. allows privileged userspace to set an exact advancement time.
176 static int __read_mostly lapic_timer_advance_ns = -1;
177 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
179 static bool __read_mostly vector_hashing = true;
180 module_param(vector_hashing, bool, S_IRUGO);
182 bool __read_mostly enable_vmware_backdoor = false;
183 module_param(enable_vmware_backdoor, bool, S_IRUGO);
184 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
186 static bool __read_mostly force_emulation_prefix = false;
187 module_param(force_emulation_prefix, bool, S_IRUGO);
189 int __read_mostly pi_inject_timer = -1;
190 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
192 /* Enable/disable PMU virtualization */
193 bool __read_mostly enable_pmu = true;
194 EXPORT_SYMBOL_GPL(enable_pmu);
195 module_param(enable_pmu, bool, 0444);
198 * Restoring the host value for MSRs that are only consumed when running in
199 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
200 * returns to userspace, i.e. the kernel can run with the guest's value.
202 #define KVM_MAX_NR_USER_RETURN_MSRS 16
204 struct kvm_user_return_msrs {
205 struct user_return_notifier urn;
207 struct kvm_user_return_msr_values {
210 } values[KVM_MAX_NR_USER_RETURN_MSRS];
213 u32 __read_mostly kvm_nr_uret_msrs;
214 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
215 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
216 static struct kvm_user_return_msrs __percpu *user_return_msrs;
218 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
219 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
220 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
221 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
223 u64 __read_mostly host_efer;
224 EXPORT_SYMBOL_GPL(host_efer);
226 bool __read_mostly allow_smaller_maxphyaddr = 0;
227 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
229 bool __read_mostly enable_apicv = true;
230 EXPORT_SYMBOL_GPL(enable_apicv);
232 u64 __read_mostly host_xss;
233 EXPORT_SYMBOL_GPL(host_xss);
234 u64 __read_mostly supported_xss;
235 EXPORT_SYMBOL_GPL(supported_xss);
237 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
238 KVM_GENERIC_VM_STATS(),
239 STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
240 STATS_DESC_COUNTER(VM, mmu_pte_write),
241 STATS_DESC_COUNTER(VM, mmu_pde_zapped),
242 STATS_DESC_COUNTER(VM, mmu_flooded),
243 STATS_DESC_COUNTER(VM, mmu_recycled),
244 STATS_DESC_COUNTER(VM, mmu_cache_miss),
245 STATS_DESC_ICOUNTER(VM, mmu_unsync),
246 STATS_DESC_ICOUNTER(VM, pages_4k),
247 STATS_DESC_ICOUNTER(VM, pages_2m),
248 STATS_DESC_ICOUNTER(VM, pages_1g),
249 STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
250 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
251 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
254 const struct kvm_stats_header kvm_vm_stats_header = {
255 .name_size = KVM_STATS_NAME_SIZE,
256 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
257 .id_offset = sizeof(struct kvm_stats_header),
258 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
259 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
260 sizeof(kvm_vm_stats_desc),
263 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
264 KVM_GENERIC_VCPU_STATS(),
265 STATS_DESC_COUNTER(VCPU, pf_fixed),
266 STATS_DESC_COUNTER(VCPU, pf_guest),
267 STATS_DESC_COUNTER(VCPU, tlb_flush),
268 STATS_DESC_COUNTER(VCPU, invlpg),
269 STATS_DESC_COUNTER(VCPU, exits),
270 STATS_DESC_COUNTER(VCPU, io_exits),
271 STATS_DESC_COUNTER(VCPU, mmio_exits),
272 STATS_DESC_COUNTER(VCPU, signal_exits),
273 STATS_DESC_COUNTER(VCPU, irq_window_exits),
274 STATS_DESC_COUNTER(VCPU, nmi_window_exits),
275 STATS_DESC_COUNTER(VCPU, l1d_flush),
276 STATS_DESC_COUNTER(VCPU, halt_exits),
277 STATS_DESC_COUNTER(VCPU, request_irq_exits),
278 STATS_DESC_COUNTER(VCPU, irq_exits),
279 STATS_DESC_COUNTER(VCPU, host_state_reload),
280 STATS_DESC_COUNTER(VCPU, fpu_reload),
281 STATS_DESC_COUNTER(VCPU, insn_emulation),
282 STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
283 STATS_DESC_COUNTER(VCPU, hypercalls),
284 STATS_DESC_COUNTER(VCPU, irq_injections),
285 STATS_DESC_COUNTER(VCPU, nmi_injections),
286 STATS_DESC_COUNTER(VCPU, req_event),
287 STATS_DESC_COUNTER(VCPU, nested_run),
288 STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
289 STATS_DESC_COUNTER(VCPU, directed_yield_successful),
290 STATS_DESC_ICOUNTER(VCPU, guest_mode)
293 const struct kvm_stats_header kvm_vcpu_stats_header = {
294 .name_size = KVM_STATS_NAME_SIZE,
295 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
296 .id_offset = sizeof(struct kvm_stats_header),
297 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
298 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
299 sizeof(kvm_vcpu_stats_desc),
302 u64 __read_mostly host_xcr0;
303 u64 __read_mostly supported_xcr0;
304 EXPORT_SYMBOL_GPL(supported_xcr0);
306 static struct kmem_cache *x86_emulator_cache;
309 * When called, it means the previous get/set msr reached an invalid msr.
310 * Return true if we want to ignore/silent this failed msr access.
312 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
314 const char *op = write ? "wrmsr" : "rdmsr";
317 if (report_ignored_msrs)
318 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
323 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
329 static struct kmem_cache *kvm_alloc_emulator_cache(void)
331 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
332 unsigned int size = sizeof(struct x86_emulate_ctxt);
334 return kmem_cache_create_usercopy("x86_emulator", size,
335 __alignof__(struct x86_emulate_ctxt),
336 SLAB_ACCOUNT, useroffset,
337 size - useroffset, NULL);
340 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
342 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
345 for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
346 vcpu->arch.apf.gfns[i] = ~0;
349 static void kvm_on_user_return(struct user_return_notifier *urn)
352 struct kvm_user_return_msrs *msrs
353 = container_of(urn, struct kvm_user_return_msrs, urn);
354 struct kvm_user_return_msr_values *values;
358 * Disabling irqs at this point since the following code could be
359 * interrupted and executed through kvm_arch_hardware_disable()
361 local_irq_save(flags);
362 if (msrs->registered) {
363 msrs->registered = false;
364 user_return_notifier_unregister(urn);
366 local_irq_restore(flags);
367 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
368 values = &msrs->values[slot];
369 if (values->host != values->curr) {
370 wrmsrl(kvm_uret_msrs_list[slot], values->host);
371 values->curr = values->host;
376 static int kvm_probe_user_return_msr(u32 msr)
382 ret = rdmsrl_safe(msr, &val);
385 ret = wrmsrl_safe(msr, val);
391 int kvm_add_user_return_msr(u32 msr)
393 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
395 if (kvm_probe_user_return_msr(msr))
398 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
399 return kvm_nr_uret_msrs++;
401 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
403 int kvm_find_user_return_msr(u32 msr)
407 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
408 if (kvm_uret_msrs_list[i] == msr)
413 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
415 static void kvm_user_return_msr_cpu_online(void)
417 unsigned int cpu = smp_processor_id();
418 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
422 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
423 rdmsrl_safe(kvm_uret_msrs_list[i], &value);
424 msrs->values[i].host = value;
425 msrs->values[i].curr = value;
429 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
431 unsigned int cpu = smp_processor_id();
432 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
435 value = (value & mask) | (msrs->values[slot].host & ~mask);
436 if (value == msrs->values[slot].curr)
438 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
442 msrs->values[slot].curr = value;
443 if (!msrs->registered) {
444 msrs->urn.on_user_return = kvm_on_user_return;
445 user_return_notifier_register(&msrs->urn);
446 msrs->registered = true;
450 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
452 static void drop_user_return_notifiers(void)
454 unsigned int cpu = smp_processor_id();
455 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
457 if (msrs->registered)
458 kvm_on_user_return(&msrs->urn);
461 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
463 return vcpu->arch.apic_base;
465 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
467 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
469 return kvm_apic_mode(kvm_get_apic_base(vcpu));
471 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
473 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
475 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
476 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
477 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
478 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
480 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
482 if (!msr_info->host_initiated) {
483 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
485 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
489 kvm_lapic_set_base(vcpu, msr_info->data);
490 kvm_recalculate_apic_map(vcpu->kvm);
493 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
496 * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
498 * Hardware virtualization extension instructions may fault if a reboot turns
499 * off virtualization while processes are running. Usually after catching the
500 * fault we just panic; during reboot instead the instruction is ignored.
502 noinstr void kvm_spurious_fault(void)
504 /* Fault while not rebooting. We want the trace. */
505 BUG_ON(!kvm_rebooting);
507 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
509 #define EXCPT_BENIGN 0
510 #define EXCPT_CONTRIBUTORY 1
513 static int exception_class(int vector)
523 return EXCPT_CONTRIBUTORY;
530 #define EXCPT_FAULT 0
532 #define EXCPT_ABORT 2
533 #define EXCPT_INTERRUPT 3
535 static int exception_type(int vector)
539 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
540 return EXCPT_INTERRUPT;
544 /* #DB is trap, as instruction watchpoints are handled elsewhere */
545 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
548 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
551 /* Reserved exceptions will result in fault */
555 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
557 unsigned nr = vcpu->arch.exception.nr;
558 bool has_payload = vcpu->arch.exception.has_payload;
559 unsigned long payload = vcpu->arch.exception.payload;
567 * "Certain debug exceptions may clear bit 0-3. The
568 * remaining contents of the DR6 register are never
569 * cleared by the processor".
571 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
573 * In order to reflect the #DB exception payload in guest
574 * dr6, three components need to be considered: active low
575 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
577 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
578 * In the target guest dr6:
579 * FIXED_1 bits should always be set.
580 * Active low bits should be cleared if 1-setting in payload.
581 * Active high bits should be set if 1-setting in payload.
583 * Note, the payload is compatible with the pending debug
584 * exceptions/exit qualification under VMX, that active_low bits
585 * are active high in payload.
586 * So they need to be flipped for DR6.
588 vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
589 vcpu->arch.dr6 |= payload;
590 vcpu->arch.dr6 ^= payload & DR6_ACTIVE_LOW;
593 * The #DB payload is defined as compatible with the 'pending
594 * debug exceptions' field under VMX, not DR6. While bit 12 is
595 * defined in the 'pending debug exceptions' field (enabled
596 * breakpoint), it is reserved and must be zero in DR6.
598 vcpu->arch.dr6 &= ~BIT(12);
601 vcpu->arch.cr2 = payload;
605 vcpu->arch.exception.has_payload = false;
606 vcpu->arch.exception.payload = 0;
608 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
610 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
611 unsigned nr, bool has_error, u32 error_code,
612 bool has_payload, unsigned long payload, bool reinject)
617 kvm_make_request(KVM_REQ_EVENT, vcpu);
619 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
623 * On vmentry, vcpu->arch.exception.pending is only
624 * true if an event injection was blocked by
625 * nested_run_pending. In that case, however,
626 * vcpu_enter_guest requests an immediate exit,
627 * and the guest shouldn't proceed far enough to
630 WARN_ON_ONCE(vcpu->arch.exception.pending);
631 vcpu->arch.exception.injected = true;
632 if (WARN_ON_ONCE(has_payload)) {
634 * A reinjected event has already
635 * delivered its payload.
641 vcpu->arch.exception.pending = true;
642 vcpu->arch.exception.injected = false;
644 vcpu->arch.exception.has_error_code = has_error;
645 vcpu->arch.exception.nr = nr;
646 vcpu->arch.exception.error_code = error_code;
647 vcpu->arch.exception.has_payload = has_payload;
648 vcpu->arch.exception.payload = payload;
649 if (!is_guest_mode(vcpu))
650 kvm_deliver_exception_payload(vcpu);
654 /* to check exception */
655 prev_nr = vcpu->arch.exception.nr;
656 if (prev_nr == DF_VECTOR) {
657 /* triple fault -> shutdown */
658 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
661 class1 = exception_class(prev_nr);
662 class2 = exception_class(nr);
663 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
664 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
666 * Generate double fault per SDM Table 5-5. Set
667 * exception.pending = true so that the double fault
668 * can trigger a nested vmexit.
670 vcpu->arch.exception.pending = true;
671 vcpu->arch.exception.injected = false;
672 vcpu->arch.exception.has_error_code = true;
673 vcpu->arch.exception.nr = DF_VECTOR;
674 vcpu->arch.exception.error_code = 0;
675 vcpu->arch.exception.has_payload = false;
676 vcpu->arch.exception.payload = 0;
678 /* replace previous exception with a new one in a hope
679 that instruction re-execution will regenerate lost
684 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
686 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
688 EXPORT_SYMBOL_GPL(kvm_queue_exception);
690 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
692 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
694 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
696 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
697 unsigned long payload)
699 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
701 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
703 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
704 u32 error_code, unsigned long payload)
706 kvm_multiple_exception(vcpu, nr, true, error_code,
707 true, payload, false);
710 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
713 kvm_inject_gp(vcpu, 0);
715 return kvm_skip_emulated_instruction(vcpu);
719 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
721 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
724 kvm_inject_gp(vcpu, 0);
728 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
729 EMULTYPE_COMPLETE_USER_EXIT);
732 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
734 ++vcpu->stat.pf_guest;
735 vcpu->arch.exception.nested_apf =
736 is_guest_mode(vcpu) && fault->async_page_fault;
737 if (vcpu->arch.exception.nested_apf) {
738 vcpu->arch.apf.nested_apf_token = fault->address;
739 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
741 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
745 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
747 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
748 struct x86_exception *fault)
750 struct kvm_mmu *fault_mmu;
751 WARN_ON_ONCE(fault->vector != PF_VECTOR);
753 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
757 * Invalidate the TLB entry for the faulting address, if it exists,
758 * else the access will fault indefinitely (and to emulate hardware).
760 if ((fault->error_code & PFERR_PRESENT_MASK) &&
761 !(fault->error_code & PFERR_RSVD_MASK))
762 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
763 fault_mmu->root_hpa);
765 fault_mmu->inject_page_fault(vcpu, fault);
766 return fault->nested_page_fault;
768 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
770 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
772 atomic_inc(&vcpu->arch.nmi_queued);
773 kvm_make_request(KVM_REQ_NMI, vcpu);
775 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
777 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
779 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
781 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
783 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
785 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
787 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
790 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
791 * a #GP and return false.
793 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
795 if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
797 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
800 EXPORT_SYMBOL_GPL(kvm_require_cpl);
802 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
804 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
807 kvm_queue_exception(vcpu, UD_VECTOR);
810 EXPORT_SYMBOL_GPL(kvm_require_dr);
812 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
814 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
818 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise.
820 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
822 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
823 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
827 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
830 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
833 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
834 PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
835 if (real_gpa == UNMAPPED_GVA)
838 /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
839 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
840 cr3 & GENMASK(11, 5), sizeof(pdpte));
844 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
845 if ((pdpte[i] & PT_PRESENT_MASK) &&
846 (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
852 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
853 * Shadow page roots need to be reconstructed instead.
855 if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
856 kvm_mmu_free_roots(vcpu, mmu, KVM_MMU_ROOT_CURRENT);
858 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
859 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
860 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
861 vcpu->arch.pdptrs_from_userspace = false;
865 EXPORT_SYMBOL_GPL(load_pdptrs);
867 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
869 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
870 kvm_clear_async_pf_completion_queue(vcpu);
871 kvm_async_pf_hash_reset(vcpu);
874 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
875 kvm_mmu_reset_context(vcpu);
877 if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
878 kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
879 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
880 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
882 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
884 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
886 unsigned long old_cr0 = kvm_read_cr0(vcpu);
891 if (cr0 & 0xffffffff00000000UL)
895 cr0 &= ~CR0_RESERVED_BITS;
897 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
900 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
904 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
905 (cr0 & X86_CR0_PG)) {
910 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
915 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
916 is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
917 !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
920 if (!(cr0 & X86_CR0_PG) &&
921 (is_64_bit_mode(vcpu) || kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)))
924 static_call(kvm_x86_set_cr0)(vcpu, cr0);
926 kvm_post_set_cr0(vcpu, old_cr0, cr0);
930 EXPORT_SYMBOL_GPL(kvm_set_cr0);
932 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
934 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
936 EXPORT_SYMBOL_GPL(kvm_lmsw);
938 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
940 if (vcpu->arch.guest_state_protected)
943 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
945 if (vcpu->arch.xcr0 != host_xcr0)
946 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
948 if (vcpu->arch.xsaves_enabled &&
949 vcpu->arch.ia32_xss != host_xss)
950 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
953 if (static_cpu_has(X86_FEATURE_PKU) &&
954 (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
955 (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) &&
956 vcpu->arch.pkru != vcpu->arch.host_pkru)
957 write_pkru(vcpu->arch.pkru);
959 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
961 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
963 if (vcpu->arch.guest_state_protected)
966 if (static_cpu_has(X86_FEATURE_PKU) &&
967 (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
968 (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) {
969 vcpu->arch.pkru = rdpkru();
970 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
971 write_pkru(vcpu->arch.host_pkru);
974 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
976 if (vcpu->arch.xcr0 != host_xcr0)
977 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
979 if (vcpu->arch.xsaves_enabled &&
980 vcpu->arch.ia32_xss != host_xss)
981 wrmsrl(MSR_IA32_XSS, host_xss);
985 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
987 static inline u64 kvm_guest_supported_xcr0(struct kvm_vcpu *vcpu)
989 return vcpu->arch.guest_fpu.fpstate->user_xfeatures;
993 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
995 return kvm_guest_supported_xcr0(vcpu) & XFEATURE_MASK_USER_DYNAMIC;
999 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1002 u64 old_xcr0 = vcpu->arch.xcr0;
1005 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
1006 if (index != XCR_XFEATURE_ENABLED_MASK)
1008 if (!(xcr0 & XFEATURE_MASK_FP))
1010 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1014 * Do not allow the guest to set bits that we do not support
1015 * saving. However, xcr0 bit 0 is always set, even if the
1016 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1018 valid_bits = kvm_guest_supported_xcr0(vcpu) | XFEATURE_MASK_FP;
1019 if (xcr0 & ~valid_bits)
1022 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1023 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1026 if (xcr0 & XFEATURE_MASK_AVX512) {
1027 if (!(xcr0 & XFEATURE_MASK_YMM))
1029 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1033 if ((xcr0 & XFEATURE_MASK_XTILE) &&
1034 ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1037 vcpu->arch.xcr0 = xcr0;
1039 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1040 kvm_update_cpuid_runtime(vcpu);
1044 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1046 if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1047 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1048 kvm_inject_gp(vcpu, 0);
1052 return kvm_skip_emulated_instruction(vcpu);
1054 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1056 bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1058 if (cr4 & cr4_reserved_bits)
1061 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1064 return static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1066 EXPORT_SYMBOL_GPL(kvm_is_valid_cr4);
1068 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1071 * If any role bit is changed, the MMU needs to be reset.
1073 * If CR4.PCIDE is changed 1 -> 0, the guest TLB must be flushed.
1074 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1075 * according to the SDM; however, stale prev_roots could be reused
1076 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1077 * free them all. KVM_REQ_MMU_RELOAD is fit for the both cases; it
1078 * is slow, but changing CR4.PCIDE is a rare case.
1080 * If CR4.PGE is changed, the guest TLB must be flushed.
1082 * Note: resetting MMU is a superset of KVM_REQ_MMU_RELOAD and
1083 * KVM_REQ_MMU_RELOAD is a superset of KVM_REQ_TLB_FLUSH_GUEST, hence
1084 * the usage of "else if".
1086 if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1087 kvm_mmu_reset_context(vcpu);
1088 else if ((cr4 ^ old_cr4) & X86_CR4_PCIDE)
1089 kvm_make_request(KVM_REQ_MMU_RELOAD, vcpu);
1090 else if ((cr4 ^ old_cr4) & X86_CR4_PGE)
1091 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1093 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1095 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1097 unsigned long old_cr4 = kvm_read_cr4(vcpu);
1099 if (!kvm_is_valid_cr4(vcpu, cr4))
1102 if (is_long_mode(vcpu)) {
1103 if (!(cr4 & X86_CR4_PAE))
1105 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1107 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1108 && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1109 && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1112 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1113 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1116 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1117 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1121 static_call(kvm_x86_set_cr4)(vcpu, cr4);
1123 kvm_post_set_cr4(vcpu, old_cr4, cr4);
1127 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1129 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1131 struct kvm_mmu *mmu = vcpu->arch.mmu;
1132 unsigned long roots_to_free = 0;
1136 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1137 * this is reachable when running EPT=1 and unrestricted_guest=0, and
1138 * also via the emulator. KVM's TDP page tables are not in the scope of
1139 * the invalidation, but the guest's TLB entries need to be flushed as
1140 * the CPU may have cached entries in its TLB for the target PCID.
1142 if (unlikely(tdp_enabled)) {
1143 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1148 * If neither the current CR3 nor any of the prev_roots use the given
1149 * PCID, then nothing needs to be done here because a resync will
1150 * happen anyway before switching to any other CR3.
1152 if (kvm_get_active_pcid(vcpu) == pcid) {
1153 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1154 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1158 * If PCID is disabled, there is no need to free prev_roots even if the
1159 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1162 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
1165 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1166 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1167 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1169 kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
1172 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1174 bool skip_tlb_flush = false;
1175 unsigned long pcid = 0;
1176 #ifdef CONFIG_X86_64
1177 bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1180 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1181 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1182 pcid = cr3 & X86_CR3_PCID_MASK;
1186 /* PDPTRs are always reloaded for PAE paging. */
1187 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1188 goto handle_tlb_flush;
1191 * Do not condition the GPA check on long mode, this helper is used to
1192 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1193 * the current vCPU mode is accurate.
1195 if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1198 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1201 if (cr3 != kvm_read_cr3(vcpu))
1202 kvm_mmu_new_pgd(vcpu, cr3);
1204 vcpu->arch.cr3 = cr3;
1205 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1206 /* Do not call post_set_cr3, we do not get here for confidential guests. */
1210 * A load of CR3 that flushes the TLB flushes only the current PCID,
1211 * even if PCID is disabled, in which case PCID=0 is flushed. It's a
1212 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1213 * and it's impossible to use a non-zero PCID when PCID is disabled,
1214 * i.e. only PCID=0 can be relevant.
1216 if (!skip_tlb_flush)
1217 kvm_invalidate_pcid(vcpu, pcid);
1221 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1223 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1225 if (cr8 & CR8_RESERVED_BITS)
1227 if (lapic_in_kernel(vcpu))
1228 kvm_lapic_set_tpr(vcpu, cr8);
1230 vcpu->arch.cr8 = cr8;
1233 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1235 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1237 if (lapic_in_kernel(vcpu))
1238 return kvm_lapic_get_cr8(vcpu);
1240 return vcpu->arch.cr8;
1242 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1244 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1248 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1249 for (i = 0; i < KVM_NR_DB_REGS; i++)
1250 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1254 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1258 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1259 dr7 = vcpu->arch.guest_debug_dr7;
1261 dr7 = vcpu->arch.dr7;
1262 static_call(kvm_x86_set_dr7)(vcpu, dr7);
1263 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1264 if (dr7 & DR7_BP_EN_MASK)
1265 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1267 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1269 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1271 u64 fixed = DR6_FIXED_1;
1273 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1276 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1277 fixed |= DR6_BUS_LOCK;
1281 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1283 size_t size = ARRAY_SIZE(vcpu->arch.db);
1287 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1288 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1289 vcpu->arch.eff_db[dr] = val;
1293 if (!kvm_dr6_valid(val))
1295 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1299 if (!kvm_dr7_valid(val))
1301 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1302 kvm_update_dr7(vcpu);
1308 EXPORT_SYMBOL_GPL(kvm_set_dr);
1310 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1312 size_t size = ARRAY_SIZE(vcpu->arch.db);
1316 *val = vcpu->arch.db[array_index_nospec(dr, size)];
1320 *val = vcpu->arch.dr6;
1324 *val = vcpu->arch.dr7;
1328 EXPORT_SYMBOL_GPL(kvm_get_dr);
1330 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1332 u32 ecx = kvm_rcx_read(vcpu);
1335 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1336 kvm_inject_gp(vcpu, 0);
1340 kvm_rax_write(vcpu, (u32)data);
1341 kvm_rdx_write(vcpu, data >> 32);
1342 return kvm_skip_emulated_instruction(vcpu);
1344 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1347 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1348 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1350 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1351 * extract the supported MSRs from the related const lists.
1352 * msrs_to_save is selected from the msrs_to_save_all to reflect the
1353 * capabilities of the host cpu. This capabilities test skips MSRs that are
1354 * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1355 * may depend on host virtualization features rather than host cpu features.
1358 static const u32 msrs_to_save_all[] = {
1359 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1361 #ifdef CONFIG_X86_64
1362 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1364 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1365 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1367 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1368 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1369 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1370 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1371 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1372 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1373 MSR_IA32_UMWAIT_CONTROL,
1375 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1376 MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1377 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1378 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1379 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1380 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1381 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1382 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1383 MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1384 MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1385 MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1386 MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1387 MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1388 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1389 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1390 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1391 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1392 MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1393 MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1394 MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1395 MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1396 MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1398 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1399 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1400 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1401 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1402 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1403 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1404 MSR_IA32_XFD, MSR_IA32_XFD_ERR,
1407 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1408 static unsigned num_msrs_to_save;
1410 static const u32 emulated_msrs_all[] = {
1411 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1412 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1413 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1414 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1415 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1416 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1417 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1419 HV_X64_MSR_VP_INDEX,
1420 HV_X64_MSR_VP_RUNTIME,
1421 HV_X64_MSR_SCONTROL,
1422 HV_X64_MSR_STIMER0_CONFIG,
1423 HV_X64_MSR_VP_ASSIST_PAGE,
1424 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1425 HV_X64_MSR_TSC_EMULATION_STATUS,
1426 HV_X64_MSR_SYNDBG_OPTIONS,
1427 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1428 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1429 HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1431 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1432 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1434 MSR_IA32_TSC_ADJUST,
1435 MSR_IA32_TSC_DEADLINE,
1436 MSR_IA32_ARCH_CAPABILITIES,
1437 MSR_IA32_PERF_CAPABILITIES,
1438 MSR_IA32_MISC_ENABLE,
1439 MSR_IA32_MCG_STATUS,
1441 MSR_IA32_MCG_EXT_CTL,
1445 MSR_MISC_FEATURES_ENABLES,
1446 MSR_AMD64_VIRT_SPEC_CTRL,
1447 MSR_AMD64_TSC_RATIO,
1452 * The following list leaves out MSRs whose values are determined
1453 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1454 * We always support the "true" VMX control MSRs, even if the host
1455 * processor does not, so I am putting these registers here rather
1456 * than in msrs_to_save_all.
1459 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1460 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1461 MSR_IA32_VMX_TRUE_EXIT_CTLS,
1462 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1464 MSR_IA32_VMX_CR0_FIXED0,
1465 MSR_IA32_VMX_CR4_FIXED0,
1466 MSR_IA32_VMX_VMCS_ENUM,
1467 MSR_IA32_VMX_PROCBASED_CTLS2,
1468 MSR_IA32_VMX_EPT_VPID_CAP,
1469 MSR_IA32_VMX_VMFUNC,
1472 MSR_KVM_POLL_CONTROL,
1475 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1476 static unsigned num_emulated_msrs;
1479 * List of msr numbers which are used to expose MSR-based features that
1480 * can be used by a hypervisor to validate requested CPU features.
1482 static const u32 msr_based_features_all[] = {
1484 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1485 MSR_IA32_VMX_PINBASED_CTLS,
1486 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1487 MSR_IA32_VMX_PROCBASED_CTLS,
1488 MSR_IA32_VMX_TRUE_EXIT_CTLS,
1489 MSR_IA32_VMX_EXIT_CTLS,
1490 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1491 MSR_IA32_VMX_ENTRY_CTLS,
1493 MSR_IA32_VMX_CR0_FIXED0,
1494 MSR_IA32_VMX_CR0_FIXED1,
1495 MSR_IA32_VMX_CR4_FIXED0,
1496 MSR_IA32_VMX_CR4_FIXED1,
1497 MSR_IA32_VMX_VMCS_ENUM,
1498 MSR_IA32_VMX_PROCBASED_CTLS2,
1499 MSR_IA32_VMX_EPT_VPID_CAP,
1500 MSR_IA32_VMX_VMFUNC,
1504 MSR_IA32_ARCH_CAPABILITIES,
1505 MSR_IA32_PERF_CAPABILITIES,
1508 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1509 static unsigned int num_msr_based_features;
1511 static u64 kvm_get_arch_capabilities(void)
1515 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1516 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1519 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1520 * the nested hypervisor runs with NX huge pages. If it is not,
1521 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1522 * L1 guests, so it need not worry about its own (L2) guests.
1524 data |= ARCH_CAP_PSCHANGE_MC_NO;
1527 * If we're doing cache flushes (either "always" or "cond")
1528 * we will do one whenever the guest does a vmlaunch/vmresume.
1529 * If an outer hypervisor is doing the cache flush for us
1530 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1531 * capability to the guest too, and if EPT is disabled we're not
1532 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will
1533 * require a nested hypervisor to do a flush of its own.
1535 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1536 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1538 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1539 data |= ARCH_CAP_RDCL_NO;
1540 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1541 data |= ARCH_CAP_SSB_NO;
1542 if (!boot_cpu_has_bug(X86_BUG_MDS))
1543 data |= ARCH_CAP_MDS_NO;
1545 if (!boot_cpu_has(X86_FEATURE_RTM)) {
1547 * If RTM=0 because the kernel has disabled TSX, the host might
1548 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0
1549 * and therefore knows that there cannot be TAA) but keep
1550 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1551 * and we want to allow migrating those guests to tsx=off hosts.
1553 data &= ~ARCH_CAP_TAA_NO;
1554 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1555 data |= ARCH_CAP_TAA_NO;
1558 * Nothing to do here; we emulate TSX_CTRL if present on the
1559 * host so the guest can choose between disabling TSX or
1560 * using VERW to clear CPU buffers.
1567 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1569 switch (msr->index) {
1570 case MSR_IA32_ARCH_CAPABILITIES:
1571 msr->data = kvm_get_arch_capabilities();
1573 case MSR_IA32_UCODE_REV:
1574 rdmsrl_safe(msr->index, &msr->data);
1577 return static_call(kvm_x86_get_msr_feature)(msr);
1582 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1584 struct kvm_msr_entry msr;
1588 r = kvm_get_msr_feature(&msr);
1590 if (r == KVM_MSR_RET_INVALID) {
1591 /* Unconditionally clear the output for simplicity */
1593 if (kvm_msr_ignored_check(index, 0, false))
1605 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1607 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1610 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1613 if (efer & (EFER_LME | EFER_LMA) &&
1614 !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1617 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1623 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1625 if (efer & efer_reserved_bits)
1628 return __kvm_valid_efer(vcpu, efer);
1630 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1632 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1634 u64 old_efer = vcpu->arch.efer;
1635 u64 efer = msr_info->data;
1638 if (efer & efer_reserved_bits)
1641 if (!msr_info->host_initiated) {
1642 if (!__kvm_valid_efer(vcpu, efer))
1645 if (is_paging(vcpu) &&
1646 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1651 efer |= vcpu->arch.efer & EFER_LMA;
1653 r = static_call(kvm_x86_set_efer)(vcpu, efer);
1659 /* Update reserved bits */
1660 if ((efer ^ old_efer) & EFER_NX)
1661 kvm_mmu_reset_context(vcpu);
1666 void kvm_enable_efer_bits(u64 mask)
1668 efer_reserved_bits &= ~mask;
1670 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1672 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1674 struct kvm_x86_msr_filter *msr_filter;
1675 struct msr_bitmap_range *ranges;
1676 struct kvm *kvm = vcpu->kvm;
1681 /* x2APIC MSRs do not support filtering. */
1682 if (index >= 0x800 && index <= 0x8ff)
1685 idx = srcu_read_lock(&kvm->srcu);
1687 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1693 allowed = msr_filter->default_allow;
1694 ranges = msr_filter->ranges;
1696 for (i = 0; i < msr_filter->count; i++) {
1697 u32 start = ranges[i].base;
1698 u32 end = start + ranges[i].nmsrs;
1699 u32 flags = ranges[i].flags;
1700 unsigned long *bitmap = ranges[i].bitmap;
1702 if ((index >= start) && (index < end) && (flags & type)) {
1703 allowed = !!test_bit(index - start, bitmap);
1709 srcu_read_unlock(&kvm->srcu, idx);
1713 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1716 * Write @data into the MSR specified by @index. Select MSR specific fault
1717 * checks are bypassed if @host_initiated is %true.
1718 * Returns 0 on success, non-0 otherwise.
1719 * Assumes vcpu_load() was already called.
1721 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1722 bool host_initiated)
1724 struct msr_data msr;
1726 if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1727 return KVM_MSR_RET_FILTERED;
1732 case MSR_KERNEL_GS_BASE:
1735 if (is_noncanonical_address(data, vcpu))
1738 case MSR_IA32_SYSENTER_EIP:
1739 case MSR_IA32_SYSENTER_ESP:
1741 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1742 * non-canonical address is written on Intel but not on
1743 * AMD (which ignores the top 32-bits, because it does
1744 * not implement 64-bit SYSENTER).
1746 * 64-bit code should hence be able to write a non-canonical
1747 * value on AMD. Making the address canonical ensures that
1748 * vmentry does not fail on Intel after writing a non-canonical
1749 * value, and that something deterministic happens if the guest
1750 * invokes 64-bit SYSENTER.
1752 data = __canonical_address(data, vcpu_virt_addr_bits(vcpu));
1755 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1758 if (!host_initiated &&
1759 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1760 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1764 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1765 * incomplete and conflicting architectural behavior. Current
1766 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1767 * reserved and always read as zeros. Enforce Intel's reserved
1768 * bits check if and only if the guest CPU is Intel, and clear
1769 * the bits in all other cases. This ensures cross-vendor
1770 * migration will provide consistent behavior for the guest.
1772 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1781 msr.host_initiated = host_initiated;
1783 return static_call(kvm_x86_set_msr)(vcpu, &msr);
1786 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1787 u32 index, u64 data, bool host_initiated)
1789 int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1791 if (ret == KVM_MSR_RET_INVALID)
1792 if (kvm_msr_ignored_check(index, data, true))
1799 * Read the MSR specified by @index into @data. Select MSR specific fault
1800 * checks are bypassed if @host_initiated is %true.
1801 * Returns 0 on success, non-0 otherwise.
1802 * Assumes vcpu_load() was already called.
1804 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1805 bool host_initiated)
1807 struct msr_data msr;
1810 if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1811 return KVM_MSR_RET_FILTERED;
1815 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1818 if (!host_initiated &&
1819 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1820 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1826 msr.host_initiated = host_initiated;
1828 ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1834 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1835 u32 index, u64 *data, bool host_initiated)
1837 int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1839 if (ret == KVM_MSR_RET_INVALID) {
1840 /* Unconditionally clear *data for simplicity */
1842 if (kvm_msr_ignored_check(index, 0, false))
1849 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1851 return kvm_get_msr_ignored_check(vcpu, index, data, false);
1853 EXPORT_SYMBOL_GPL(kvm_get_msr);
1855 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1857 return kvm_set_msr_ignored_check(vcpu, index, data, false);
1859 EXPORT_SYMBOL_GPL(kvm_set_msr);
1861 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1863 if (!vcpu->run->msr.error) {
1864 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1865 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1869 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
1871 return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
1874 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1876 complete_userspace_rdmsr(vcpu);
1877 return complete_emulated_msr_access(vcpu);
1880 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
1882 return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1885 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
1887 complete_userspace_rdmsr(vcpu);
1888 return complete_fast_msr_access(vcpu);
1891 static u64 kvm_msr_reason(int r)
1894 case KVM_MSR_RET_INVALID:
1895 return KVM_MSR_EXIT_REASON_UNKNOWN;
1896 case KVM_MSR_RET_FILTERED:
1897 return KVM_MSR_EXIT_REASON_FILTER;
1899 return KVM_MSR_EXIT_REASON_INVAL;
1903 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1904 u32 exit_reason, u64 data,
1905 int (*completion)(struct kvm_vcpu *vcpu),
1908 u64 msr_reason = kvm_msr_reason(r);
1910 /* Check if the user wanted to know about this MSR fault */
1911 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1914 vcpu->run->exit_reason = exit_reason;
1915 vcpu->run->msr.error = 0;
1916 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1917 vcpu->run->msr.reason = msr_reason;
1918 vcpu->run->msr.index = index;
1919 vcpu->run->msr.data = data;
1920 vcpu->arch.complete_userspace_io = completion;
1925 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1927 u32 ecx = kvm_rcx_read(vcpu);
1931 r = kvm_get_msr(vcpu, ecx, &data);
1934 trace_kvm_msr_read(ecx, data);
1936 kvm_rax_write(vcpu, data & -1u);
1937 kvm_rdx_write(vcpu, (data >> 32) & -1u);
1939 /* MSR read failed? See if we should ask user space */
1940 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
1941 complete_fast_rdmsr, r))
1943 trace_kvm_msr_read_ex(ecx);
1946 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1948 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1950 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1952 u32 ecx = kvm_rcx_read(vcpu);
1953 u64 data = kvm_read_edx_eax(vcpu);
1956 r = kvm_set_msr(vcpu, ecx, data);
1959 trace_kvm_msr_write(ecx, data);
1961 /* MSR write failed? See if we should ask user space */
1962 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
1963 complete_fast_msr_access, r))
1965 /* Signal all other negative errors to userspace */
1968 trace_kvm_msr_write_ex(ecx, data);
1971 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1973 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1975 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
1977 return kvm_skip_emulated_instruction(vcpu);
1979 EXPORT_SYMBOL_GPL(kvm_emulate_as_nop);
1981 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
1983 /* Treat an INVD instruction as a NOP and just skip it. */
1984 return kvm_emulate_as_nop(vcpu);
1986 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
1988 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
1990 pr_warn_once("kvm: MWAIT instruction emulated as NOP!\n");
1991 return kvm_emulate_as_nop(vcpu);
1993 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
1995 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
1997 kvm_queue_exception(vcpu, UD_VECTOR);
2000 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
2002 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2004 pr_warn_once("kvm: MONITOR instruction emulated as NOP!\n");
2005 return kvm_emulate_as_nop(vcpu);
2007 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2009 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2011 xfer_to_guest_mode_prepare();
2012 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
2013 xfer_to_guest_mode_work_pending();
2017 * The fast path for frequent and performance sensitive wrmsr emulation,
2018 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2019 * the latency of virtual IPI by avoiding the expensive bits of transitioning
2020 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2021 * other cases which must be called after interrupts are enabled on the host.
2023 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2025 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2028 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2029 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2030 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2031 ((u32)(data >> 32) != X2APIC_BROADCAST)) {
2034 kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32));
2035 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
2036 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data);
2037 trace_kvm_apic_write(APIC_ICR, (u32)data);
2044 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2046 if (!kvm_can_use_hv_timer(vcpu))
2049 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2053 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2055 u32 msr = kvm_rcx_read(vcpu);
2057 fastpath_t ret = EXIT_FASTPATH_NONE;
2060 case APIC_BASE_MSR + (APIC_ICR >> 4):
2061 data = kvm_read_edx_eax(vcpu);
2062 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2063 kvm_skip_emulated_instruction(vcpu);
2064 ret = EXIT_FASTPATH_EXIT_HANDLED;
2067 case MSR_IA32_TSC_DEADLINE:
2068 data = kvm_read_edx_eax(vcpu);
2069 if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2070 kvm_skip_emulated_instruction(vcpu);
2071 ret = EXIT_FASTPATH_REENTER_GUEST;
2078 if (ret != EXIT_FASTPATH_NONE)
2079 trace_kvm_msr_write(msr, data);
2083 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2086 * Adapt set_msr() to msr_io()'s calling convention
2088 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2090 return kvm_get_msr_ignored_check(vcpu, index, data, true);
2093 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2095 return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2098 #ifdef CONFIG_X86_64
2099 struct pvclock_clock {
2109 struct pvclock_gtod_data {
2112 struct pvclock_clock clock; /* extract of a clocksource struct */
2113 struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2119 static struct pvclock_gtod_data pvclock_gtod_data;
2121 static void update_pvclock_gtod(struct timekeeper *tk)
2123 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2125 write_seqcount_begin(&vdata->seq);
2127 /* copy pvclock gtod data */
2128 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode;
2129 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
2130 vdata->clock.mask = tk->tkr_mono.mask;
2131 vdata->clock.mult = tk->tkr_mono.mult;
2132 vdata->clock.shift = tk->tkr_mono.shift;
2133 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec;
2134 vdata->clock.offset = tk->tkr_mono.base;
2136 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode;
2137 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last;
2138 vdata->raw_clock.mask = tk->tkr_raw.mask;
2139 vdata->raw_clock.mult = tk->tkr_raw.mult;
2140 vdata->raw_clock.shift = tk->tkr_raw.shift;
2141 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec;
2142 vdata->raw_clock.offset = tk->tkr_raw.base;
2144 vdata->wall_time_sec = tk->xtime_sec;
2146 vdata->offs_boot = tk->offs_boot;
2148 write_seqcount_end(&vdata->seq);
2151 static s64 get_kvmclock_base_ns(void)
2153 /* Count up from boot time, but with the frequency of the raw clock. */
2154 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2157 static s64 get_kvmclock_base_ns(void)
2159 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */
2160 return ktime_get_boottime_ns();
2164 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2168 struct pvclock_wall_clock wc;
2175 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2180 ++version; /* first time write, random junk */
2184 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2188 * The guest calculates current wall clock time by adding
2189 * system time (updated by kvm_guest_time_update below) to the
2190 * wall clock specified here. We do the reverse here.
2192 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2194 wc.nsec = do_div(wall_nsec, 1000000000);
2195 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2196 wc.version = version;
2198 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2201 wc_sec_hi = wall_nsec >> 32;
2202 kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2203 &wc_sec_hi, sizeof(wc_sec_hi));
2207 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2210 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2211 bool old_msr, bool host_initiated)
2213 struct kvm_arch *ka = &vcpu->kvm->arch;
2215 if (vcpu->vcpu_id == 0 && !host_initiated) {
2216 if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2217 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2219 ka->boot_vcpu_runs_old_kvmclock = old_msr;
2222 vcpu->arch.time = system_time;
2223 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2225 /* we verify if the enable bit is set... */
2226 vcpu->arch.pv_time_enabled = false;
2227 if (!(system_time & 1))
2230 if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2231 &vcpu->arch.pv_time, system_time & ~1ULL,
2232 sizeof(struct pvclock_vcpu_time_info)))
2233 vcpu->arch.pv_time_enabled = true;
2238 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2240 do_shl32_div32(dividend, divisor);
2244 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2245 s8 *pshift, u32 *pmultiplier)
2253 scaled64 = scaled_hz;
2254 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2259 tps32 = (uint32_t)tps64;
2260 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2261 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2269 *pmultiplier = div_frac(scaled64, tps32);
2272 #ifdef CONFIG_X86_64
2273 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2276 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2277 static unsigned long max_tsc_khz;
2279 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2281 u64 v = (u64)khz * (1000000 + ppm);
2286 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2288 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2292 /* Guest TSC same frequency as host TSC? */
2294 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2298 /* TSC scaling supported? */
2299 if (!kvm_has_tsc_control) {
2300 if (user_tsc_khz > tsc_khz) {
2301 vcpu->arch.tsc_catchup = 1;
2302 vcpu->arch.tsc_always_catchup = 1;
2305 pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2310 /* TSC scaling required - calculate ratio */
2311 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
2312 user_tsc_khz, tsc_khz);
2314 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
2315 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2320 kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2324 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2326 u32 thresh_lo, thresh_hi;
2327 int use_scaling = 0;
2329 /* tsc_khz can be zero if TSC calibration fails */
2330 if (user_tsc_khz == 0) {
2331 /* set tsc_scaling_ratio to a safe value */
2332 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2336 /* Compute a scale to convert nanoseconds in TSC cycles */
2337 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2338 &vcpu->arch.virtual_tsc_shift,
2339 &vcpu->arch.virtual_tsc_mult);
2340 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2343 * Compute the variation in TSC rate which is acceptable
2344 * within the range of tolerance and decide if the
2345 * rate being applied is within that bounds of the hardware
2346 * rate. If so, no scaling or compensation need be done.
2348 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2349 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2350 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2351 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2354 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2357 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2359 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2360 vcpu->arch.virtual_tsc_mult,
2361 vcpu->arch.virtual_tsc_shift);
2362 tsc += vcpu->arch.this_tsc_write;
2366 #ifdef CONFIG_X86_64
2367 static inline int gtod_is_based_on_tsc(int mode)
2369 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2373 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2375 #ifdef CONFIG_X86_64
2377 struct kvm_arch *ka = &vcpu->kvm->arch;
2378 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2380 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2381 atomic_read(&vcpu->kvm->online_vcpus));
2384 * Once the masterclock is enabled, always perform request in
2385 * order to update it.
2387 * In order to enable masterclock, the host clocksource must be TSC
2388 * and the vcpus need to have matched TSCs. When that happens,
2389 * perform request to enable masterclock.
2391 if (ka->use_master_clock ||
2392 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2393 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2395 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2396 atomic_read(&vcpu->kvm->online_vcpus),
2397 ka->use_master_clock, gtod->clock.vclock_mode);
2402 * Multiply tsc by a fixed point number represented by ratio.
2404 * The most significant 64-N bits (mult) of ratio represent the
2405 * integral part of the fixed point number; the remaining N bits
2406 * (frac) represent the fractional part, ie. ratio represents a fixed
2407 * point number (mult + frac * 2^(-N)).
2409 * N equals to kvm_tsc_scaling_ratio_frac_bits.
2411 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2413 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
2416 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc, u64 ratio)
2420 if (ratio != kvm_default_tsc_scaling_ratio)
2421 _tsc = __scale_tsc(ratio, tsc);
2425 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2427 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2431 tsc = kvm_scale_tsc(vcpu, rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2433 return target_tsc - tsc;
2436 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2438 return vcpu->arch.l1_tsc_offset +
2439 kvm_scale_tsc(vcpu, host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2441 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2443 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2447 if (l2_multiplier == kvm_default_tsc_scaling_ratio)
2448 nested_offset = l1_offset;
2450 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2451 kvm_tsc_scaling_ratio_frac_bits);
2453 nested_offset += l2_offset;
2454 return nested_offset;
2456 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2458 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2460 if (l2_multiplier != kvm_default_tsc_scaling_ratio)
2461 return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2462 kvm_tsc_scaling_ratio_frac_bits);
2464 return l1_multiplier;
2466 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2468 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2470 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2471 vcpu->arch.l1_tsc_offset,
2474 vcpu->arch.l1_tsc_offset = l1_offset;
2477 * If we are here because L1 chose not to trap WRMSR to TSC then
2478 * according to the spec this should set L1's TSC (as opposed to
2479 * setting L1's offset for L2).
2481 if (is_guest_mode(vcpu))
2482 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2484 static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2485 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2487 vcpu->arch.tsc_offset = l1_offset;
2489 static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset);
2492 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2494 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2496 /* Userspace is changing the multiplier while L2 is active */
2497 if (is_guest_mode(vcpu))
2498 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2500 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2502 vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2504 if (kvm_has_tsc_control)
2505 static_call(kvm_x86_write_tsc_multiplier)(
2506 vcpu, vcpu->arch.tsc_scaling_ratio);
2509 static inline bool kvm_check_tsc_unstable(void)
2511 #ifdef CONFIG_X86_64
2513 * TSC is marked unstable when we're running on Hyper-V,
2514 * 'TSC page' clocksource is good.
2516 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2519 return check_tsc_unstable();
2523 * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2524 * offset for the vcpu and tracks the TSC matching generation that the vcpu
2527 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2528 u64 ns, bool matched)
2530 struct kvm *kvm = vcpu->kvm;
2532 lockdep_assert_held(&kvm->arch.tsc_write_lock);
2535 * We also track th most recent recorded KHZ, write and time to
2536 * allow the matching interval to be extended at each write.
2538 kvm->arch.last_tsc_nsec = ns;
2539 kvm->arch.last_tsc_write = tsc;
2540 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2541 kvm->arch.last_tsc_offset = offset;
2543 vcpu->arch.last_guest_tsc = tsc;
2545 kvm_vcpu_write_tsc_offset(vcpu, offset);
2549 * We split periods of matched TSC writes into generations.
2550 * For each generation, we track the original measured
2551 * nanosecond time, offset, and write, so if TSCs are in
2552 * sync, we can match exact offset, and if not, we can match
2553 * exact software computation in compute_guest_tsc()
2555 * These values are tracked in kvm->arch.cur_xxx variables.
2557 kvm->arch.cur_tsc_generation++;
2558 kvm->arch.cur_tsc_nsec = ns;
2559 kvm->arch.cur_tsc_write = tsc;
2560 kvm->arch.cur_tsc_offset = offset;
2561 kvm->arch.nr_vcpus_matched_tsc = 0;
2562 } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2563 kvm->arch.nr_vcpus_matched_tsc++;
2566 /* Keep track of which generation this VCPU has synchronized to */
2567 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2568 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2569 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2571 kvm_track_tsc_matching(vcpu);
2574 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2576 struct kvm *kvm = vcpu->kvm;
2577 u64 offset, ns, elapsed;
2578 unsigned long flags;
2579 bool matched = false;
2580 bool synchronizing = false;
2582 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2583 offset = kvm_compute_l1_tsc_offset(vcpu, data);
2584 ns = get_kvmclock_base_ns();
2585 elapsed = ns - kvm->arch.last_tsc_nsec;
2587 if (vcpu->arch.virtual_tsc_khz) {
2590 * detection of vcpu initialization -- need to sync
2591 * with other vCPUs. This particularly helps to keep
2592 * kvm_clock stable after CPU hotplug
2594 synchronizing = true;
2596 u64 tsc_exp = kvm->arch.last_tsc_write +
2597 nsec_to_cycles(vcpu, elapsed);
2598 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2600 * Special case: TSC write with a small delta (1 second)
2601 * of virtual cycle time against real time is
2602 * interpreted as an attempt to synchronize the CPU.
2604 synchronizing = data < tsc_exp + tsc_hz &&
2605 data + tsc_hz > tsc_exp;
2610 * For a reliable TSC, we can match TSC offsets, and for an unstable
2611 * TSC, we add elapsed time in this computation. We could let the
2612 * compensation code attempt to catch up if we fall behind, but
2613 * it's better to try to match offsets from the beginning.
2615 if (synchronizing &&
2616 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2617 if (!kvm_check_tsc_unstable()) {
2618 offset = kvm->arch.cur_tsc_offset;
2620 u64 delta = nsec_to_cycles(vcpu, elapsed);
2622 offset = kvm_compute_l1_tsc_offset(vcpu, data);
2627 __kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2628 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2631 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2634 u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2635 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2638 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2640 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2641 WARN_ON(adjustment < 0);
2642 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment,
2643 vcpu->arch.l1_tsc_scaling_ratio);
2644 adjust_tsc_offset_guest(vcpu, adjustment);
2647 #ifdef CONFIG_X86_64
2649 static u64 read_tsc(void)
2651 u64 ret = (u64)rdtsc_ordered();
2652 u64 last = pvclock_gtod_data.clock.cycle_last;
2654 if (likely(ret >= last))
2658 * GCC likes to generate cmov here, but this branch is extremely
2659 * predictable (it's just a function of time and the likely is
2660 * very likely) and there's a data dependence, so force GCC
2661 * to generate a branch instead. I don't barrier() because
2662 * we don't actually need a barrier, and if this function
2663 * ever gets inlined it will generate worse code.
2669 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2675 switch (clock->vclock_mode) {
2676 case VDSO_CLOCKMODE_HVCLOCK:
2677 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2679 if (tsc_pg_val != U64_MAX) {
2680 /* TSC page valid */
2681 *mode = VDSO_CLOCKMODE_HVCLOCK;
2682 v = (tsc_pg_val - clock->cycle_last) &
2685 /* TSC page invalid */
2686 *mode = VDSO_CLOCKMODE_NONE;
2689 case VDSO_CLOCKMODE_TSC:
2690 *mode = VDSO_CLOCKMODE_TSC;
2691 *tsc_timestamp = read_tsc();
2692 v = (*tsc_timestamp - clock->cycle_last) &
2696 *mode = VDSO_CLOCKMODE_NONE;
2699 if (*mode == VDSO_CLOCKMODE_NONE)
2700 *tsc_timestamp = v = 0;
2702 return v * clock->mult;
2705 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2707 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2713 seq = read_seqcount_begin(>od->seq);
2714 ns = gtod->raw_clock.base_cycles;
2715 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode);
2716 ns >>= gtod->raw_clock.shift;
2717 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2718 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
2724 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2726 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2732 seq = read_seqcount_begin(>od->seq);
2733 ts->tv_sec = gtod->wall_time_sec;
2734 ns = gtod->clock.base_cycles;
2735 ns += vgettsc(>od->clock, tsc_timestamp, &mode);
2736 ns >>= gtod->clock.shift;
2737 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
2739 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2745 /* returns true if host is using TSC based clocksource */
2746 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2748 /* checked again under seqlock below */
2749 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2752 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2756 /* returns true if host is using TSC based clocksource */
2757 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2760 /* checked again under seqlock below */
2761 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2764 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2770 * Assuming a stable TSC across physical CPUS, and a stable TSC
2771 * across virtual CPUs, the following condition is possible.
2772 * Each numbered line represents an event visible to both
2773 * CPUs at the next numbered event.
2775 * "timespecX" represents host monotonic time. "tscX" represents
2778 * VCPU0 on CPU0 | VCPU1 on CPU1
2780 * 1. read timespec0,tsc0
2781 * 2. | timespec1 = timespec0 + N
2783 * 3. transition to guest | transition to guest
2784 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2785 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
2786 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2788 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2791 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2793 * - 0 < N - M => M < N
2795 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2796 * always the case (the difference between two distinct xtime instances
2797 * might be smaller then the difference between corresponding TSC reads,
2798 * when updating guest vcpus pvclock areas).
2800 * To avoid that problem, do not allow visibility of distinct
2801 * system_timestamp/tsc_timestamp values simultaneously: use a master
2802 * copy of host monotonic time values. Update that master copy
2805 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2809 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2811 #ifdef CONFIG_X86_64
2812 struct kvm_arch *ka = &kvm->arch;
2814 bool host_tsc_clocksource, vcpus_matched;
2816 lockdep_assert_held(&kvm->arch.tsc_write_lock);
2817 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2818 atomic_read(&kvm->online_vcpus));
2821 * If the host uses TSC clock, then passthrough TSC as stable
2824 host_tsc_clocksource = kvm_get_time_and_clockread(
2825 &ka->master_kernel_ns,
2826 &ka->master_cycle_now);
2828 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2829 && !ka->backwards_tsc_observed
2830 && !ka->boot_vcpu_runs_old_kvmclock;
2832 if (ka->use_master_clock)
2833 atomic_set(&kvm_guest_has_master_clock, 1);
2835 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2836 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2841 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2843 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2846 static void __kvm_start_pvclock_update(struct kvm *kvm)
2848 raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
2849 write_seqcount_begin(&kvm->arch.pvclock_sc);
2852 static void kvm_start_pvclock_update(struct kvm *kvm)
2854 kvm_make_mclock_inprogress_request(kvm);
2856 /* no guest entries from this point */
2857 __kvm_start_pvclock_update(kvm);
2860 static void kvm_end_pvclock_update(struct kvm *kvm)
2862 struct kvm_arch *ka = &kvm->arch;
2863 struct kvm_vcpu *vcpu;
2866 write_seqcount_end(&ka->pvclock_sc);
2867 raw_spin_unlock_irq(&ka->tsc_write_lock);
2868 kvm_for_each_vcpu(i, vcpu, kvm)
2869 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2871 /* guest entries allowed */
2872 kvm_for_each_vcpu(i, vcpu, kvm)
2873 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2876 static void kvm_update_masterclock(struct kvm *kvm)
2878 kvm_hv_invalidate_tsc_page(kvm);
2879 kvm_start_pvclock_update(kvm);
2880 pvclock_update_vm_gtod_copy(kvm);
2881 kvm_end_pvclock_update(kvm);
2884 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */
2885 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
2887 struct kvm_arch *ka = &kvm->arch;
2888 struct pvclock_vcpu_time_info hv_clock;
2890 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2894 if (ka->use_master_clock && __this_cpu_read(cpu_tsc_khz)) {
2895 #ifdef CONFIG_X86_64
2896 struct timespec64 ts;
2898 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
2899 data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
2900 data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
2903 data->host_tsc = rdtsc();
2905 data->flags |= KVM_CLOCK_TSC_STABLE;
2906 hv_clock.tsc_timestamp = ka->master_cycle_now;
2907 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2908 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2909 &hv_clock.tsc_shift,
2910 &hv_clock.tsc_to_system_mul);
2911 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
2913 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
2919 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
2921 struct kvm_arch *ka = &kvm->arch;
2925 seq = read_seqcount_begin(&ka->pvclock_sc);
2926 __get_kvmclock(kvm, data);
2927 } while (read_seqcount_retry(&ka->pvclock_sc, seq));
2930 u64 get_kvmclock_ns(struct kvm *kvm)
2932 struct kvm_clock_data data;
2934 get_kvmclock(kvm, &data);
2938 static void kvm_setup_pvclock_page(struct kvm_vcpu *v,
2939 struct gfn_to_hva_cache *cache,
2940 unsigned int offset)
2942 struct kvm_vcpu_arch *vcpu = &v->arch;
2943 struct pvclock_vcpu_time_info guest_hv_clock;
2945 if (unlikely(kvm_read_guest_offset_cached(v->kvm, cache,
2946 &guest_hv_clock, offset, sizeof(guest_hv_clock))))
2949 /* This VCPU is paused, but it's legal for a guest to read another
2950 * VCPU's kvmclock, so we really have to follow the specification where
2951 * it says that version is odd if data is being modified, and even after
2954 * Version field updates must be kept separate. This is because
2955 * kvm_write_guest_cached might use a "rep movs" instruction, and
2956 * writes within a string instruction are weakly ordered. So there
2957 * are three writes overall.
2959 * As a small optimization, only write the version field in the first
2960 * and third write. The vcpu->pv_time cache is still valid, because the
2961 * version field is the first in the struct.
2963 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2965 if (guest_hv_clock.version & 1)
2966 ++guest_hv_clock.version; /* first time write, random junk */
2968 vcpu->hv_clock.version = guest_hv_clock.version + 1;
2969 kvm_write_guest_offset_cached(v->kvm, cache,
2970 &vcpu->hv_clock, offset,
2971 sizeof(vcpu->hv_clock.version));
2975 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2976 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2978 if (vcpu->pvclock_set_guest_stopped_request) {
2979 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2980 vcpu->pvclock_set_guest_stopped_request = false;
2983 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2985 kvm_write_guest_offset_cached(v->kvm, cache,
2986 &vcpu->hv_clock, offset,
2987 sizeof(vcpu->hv_clock));
2991 vcpu->hv_clock.version++;
2992 kvm_write_guest_offset_cached(v->kvm, cache,
2993 &vcpu->hv_clock, offset,
2994 sizeof(vcpu->hv_clock.version));
2997 static int kvm_guest_time_update(struct kvm_vcpu *v)
2999 unsigned long flags, tgt_tsc_khz;
3001 struct kvm_vcpu_arch *vcpu = &v->arch;
3002 struct kvm_arch *ka = &v->kvm->arch;
3004 u64 tsc_timestamp, host_tsc;
3006 bool use_master_clock;
3012 * If the host uses TSC clock, then passthrough TSC as stable
3016 seq = read_seqcount_begin(&ka->pvclock_sc);
3017 use_master_clock = ka->use_master_clock;
3018 if (use_master_clock) {
3019 host_tsc = ka->master_cycle_now;
3020 kernel_ns = ka->master_kernel_ns;
3022 } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3024 /* Keep irq disabled to prevent changes to the clock */
3025 local_irq_save(flags);
3026 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
3027 if (unlikely(tgt_tsc_khz == 0)) {
3028 local_irq_restore(flags);
3029 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3032 if (!use_master_clock) {
3034 kernel_ns = get_kvmclock_base_ns();
3037 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3040 * We may have to catch up the TSC to match elapsed wall clock
3041 * time for two reasons, even if kvmclock is used.
3042 * 1) CPU could have been running below the maximum TSC rate
3043 * 2) Broken TSC compensation resets the base at each VCPU
3044 * entry to avoid unknown leaps of TSC even when running
3045 * again on the same CPU. This may cause apparent elapsed
3046 * time to disappear, and the guest to stand still or run
3049 if (vcpu->tsc_catchup) {
3050 u64 tsc = compute_guest_tsc(v, kernel_ns);
3051 if (tsc > tsc_timestamp) {
3052 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3053 tsc_timestamp = tsc;
3057 local_irq_restore(flags);
3059 /* With all the info we got, fill in the values */
3061 if (kvm_has_tsc_control)
3062 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz,
3063 v->arch.l1_tsc_scaling_ratio);
3065 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3066 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3067 &vcpu->hv_clock.tsc_shift,
3068 &vcpu->hv_clock.tsc_to_system_mul);
3069 vcpu->hw_tsc_khz = tgt_tsc_khz;
3072 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3073 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3074 vcpu->last_guest_tsc = tsc_timestamp;
3076 /* If the host uses TSC clocksource, then it is stable */
3078 if (use_master_clock)
3079 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3081 vcpu->hv_clock.flags = pvclock_flags;
3083 if (vcpu->pv_time_enabled)
3084 kvm_setup_pvclock_page(v, &vcpu->pv_time, 0);
3085 if (vcpu->xen.vcpu_info_set)
3086 kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_info_cache,
3087 offsetof(struct compat_vcpu_info, time));
3088 if (vcpu->xen.vcpu_time_info_set)
3089 kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_time_info_cache, 0);
3091 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3096 * kvmclock updates which are isolated to a given vcpu, such as
3097 * vcpu->cpu migration, should not allow system_timestamp from
3098 * the rest of the vcpus to remain static. Otherwise ntp frequency
3099 * correction applies to one vcpu's system_timestamp but not
3102 * So in those cases, request a kvmclock update for all vcpus.
3103 * We need to rate-limit these requests though, as they can
3104 * considerably slow guests that have a large number of vcpus.
3105 * The time for a remote vcpu to update its kvmclock is bound
3106 * by the delay we use to rate-limit the updates.
3109 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3111 static void kvmclock_update_fn(struct work_struct *work)
3114 struct delayed_work *dwork = to_delayed_work(work);
3115 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3116 kvmclock_update_work);
3117 struct kvm *kvm = container_of(ka, struct kvm, arch);
3118 struct kvm_vcpu *vcpu;
3120 kvm_for_each_vcpu(i, vcpu, kvm) {
3121 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3122 kvm_vcpu_kick(vcpu);
3126 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3128 struct kvm *kvm = v->kvm;
3130 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3131 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3132 KVMCLOCK_UPDATE_DELAY);
3135 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3137 static void kvmclock_sync_fn(struct work_struct *work)
3139 struct delayed_work *dwork = to_delayed_work(work);
3140 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3141 kvmclock_sync_work);
3142 struct kvm *kvm = container_of(ka, struct kvm, arch);
3144 if (!kvmclock_periodic_sync)
3147 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3148 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3149 KVMCLOCK_SYNC_PERIOD);
3153 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3155 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3157 /* McStatusWrEn enabled? */
3158 if (guest_cpuid_is_amd_or_hygon(vcpu))
3159 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3164 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3166 u64 mcg_cap = vcpu->arch.mcg_cap;
3167 unsigned bank_num = mcg_cap & 0xff;
3168 u32 msr = msr_info->index;
3169 u64 data = msr_info->data;
3172 case MSR_IA32_MCG_STATUS:
3173 vcpu->arch.mcg_status = data;
3175 case MSR_IA32_MCG_CTL:
3176 if (!(mcg_cap & MCG_CTL_P) &&
3177 (data || !msr_info->host_initiated))
3179 if (data != 0 && data != ~(u64)0)
3181 vcpu->arch.mcg_ctl = data;
3184 if (msr >= MSR_IA32_MC0_CTL &&
3185 msr < MSR_IA32_MCx_CTL(bank_num)) {
3186 u32 offset = array_index_nospec(
3187 msr - MSR_IA32_MC0_CTL,
3188 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3190 /* only 0 or all 1s can be written to IA32_MCi_CTL
3191 * some Linux kernels though clear bit 10 in bank 4 to
3192 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
3193 * this to avoid an uncatched #GP in the guest
3195 if ((offset & 0x3) == 0 &&
3196 data != 0 && (data | (1 << 10)) != ~(u64)0)
3200 if (!msr_info->host_initiated &&
3201 (offset & 0x3) == 1 && data != 0) {
3202 if (!can_set_mci_status(vcpu))
3206 vcpu->arch.mce_banks[offset] = data;
3214 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3216 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3218 return (vcpu->arch.apf.msr_en_val & mask) == mask;
3221 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3223 gpa_t gpa = data & ~0x3f;
3225 /* Bits 4:5 are reserved, Should be zero */
3229 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3230 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3233 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3234 (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3237 if (!lapic_in_kernel(vcpu))
3238 return data ? 1 : 0;
3240 vcpu->arch.apf.msr_en_val = data;
3242 if (!kvm_pv_async_pf_enabled(vcpu)) {
3243 kvm_clear_async_pf_completion_queue(vcpu);
3244 kvm_async_pf_hash_reset(vcpu);
3248 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3252 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3253 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3255 kvm_async_pf_wakeup_all(vcpu);
3260 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3262 /* Bits 8-63 are reserved */
3266 if (!lapic_in_kernel(vcpu))
3269 vcpu->arch.apf.msr_int_val = data;
3271 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3276 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3278 vcpu->arch.pv_time_enabled = false;
3279 vcpu->arch.time = 0;
3282 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3284 ++vcpu->stat.tlb_flush;
3285 static_call(kvm_x86_tlb_flush_all)(vcpu);
3288 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3290 ++vcpu->stat.tlb_flush;
3294 * A TLB flush on behalf of the guest is equivalent to
3295 * INVPCID(all), toggling CR4.PGE, etc., which requires
3296 * a forced sync of the shadow page tables. Ensure all the
3297 * roots are synced and the guest TLB in hardware is clean.
3299 kvm_mmu_sync_roots(vcpu);
3300 kvm_mmu_sync_prev_roots(vcpu);
3303 static_call(kvm_x86_tlb_flush_guest)(vcpu);
3307 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3309 ++vcpu->stat.tlb_flush;
3310 static_call(kvm_x86_tlb_flush_current)(vcpu);
3314 * Service "local" TLB flush requests, which are specific to the current MMU
3315 * context. In addition to the generic event handling in vcpu_enter_guest(),
3316 * TLB flushes that are targeted at an MMU context also need to be serviced
3317 * prior before nested VM-Enter/VM-Exit.
3319 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3321 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3322 kvm_vcpu_flush_tlb_current(vcpu);
3324 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3325 kvm_vcpu_flush_tlb_guest(vcpu);
3327 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3329 static void record_steal_time(struct kvm_vcpu *vcpu)
3331 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3332 struct kvm_steal_time __user *st;
3333 struct kvm_memslots *slots;
3337 if (kvm_xen_msr_enabled(vcpu->kvm)) {
3338 kvm_xen_runstate_set_running(vcpu);
3342 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3345 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3348 slots = kvm_memslots(vcpu->kvm);
3350 if (unlikely(slots->generation != ghc->generation ||
3351 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3352 gfn_t gfn = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3354 /* We rely on the fact that it fits in a single page. */
3355 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3357 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gfn, sizeof(*st)) ||
3358 kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3362 st = (struct kvm_steal_time __user *)ghc->hva;
3364 * Doing a TLB flush here, on the guest's behalf, can avoid
3367 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3368 u8 st_preempted = 0;
3371 if (!user_access_begin(st, sizeof(*st)))
3374 asm volatile("1: xchgb %0, %2\n"
3377 _ASM_EXTABLE_UA(1b, 2b)
3378 : "+q" (st_preempted),
3380 "+m" (st->preempted));
3386 vcpu->arch.st.preempted = 0;
3388 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3389 st_preempted & KVM_VCPU_FLUSH_TLB);
3390 if (st_preempted & KVM_VCPU_FLUSH_TLB)
3391 kvm_vcpu_flush_tlb_guest(vcpu);
3393 if (!user_access_begin(st, sizeof(*st)))
3396 if (!user_access_begin(st, sizeof(*st)))
3399 unsafe_put_user(0, &st->preempted, out);
3400 vcpu->arch.st.preempted = 0;
3403 unsafe_get_user(version, &st->version, out);
3405 version += 1; /* first time write, random junk */
3408 unsafe_put_user(version, &st->version, out);
3412 unsafe_get_user(steal, &st->steal, out);
3413 steal += current->sched_info.run_delay -
3414 vcpu->arch.st.last_steal;
3415 vcpu->arch.st.last_steal = current->sched_info.run_delay;
3416 unsafe_put_user(steal, &st->steal, out);
3419 unsafe_put_user(version, &st->version, out);
3424 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3427 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3430 u32 msr = msr_info->index;
3431 u64 data = msr_info->data;
3433 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3434 return kvm_xen_write_hypercall_page(vcpu, data);
3437 case MSR_AMD64_NB_CFG:
3438 case MSR_IA32_UCODE_WRITE:
3439 case MSR_VM_HSAVE_PA:
3440 case MSR_AMD64_PATCH_LOADER:
3441 case MSR_AMD64_BU_CFG2:
3442 case MSR_AMD64_DC_CFG:
3443 case MSR_F15H_EX_CFG:
3446 case MSR_IA32_UCODE_REV:
3447 if (msr_info->host_initiated)
3448 vcpu->arch.microcode_version = data;
3450 case MSR_IA32_ARCH_CAPABILITIES:
3451 if (!msr_info->host_initiated)
3453 vcpu->arch.arch_capabilities = data;
3455 case MSR_IA32_PERF_CAPABILITIES: {
3456 struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3458 if (!msr_info->host_initiated)
3460 if (kvm_get_msr_feature(&msr_ent))
3462 if (data & ~msr_ent.data)
3465 vcpu->arch.perf_capabilities = data;
3470 return set_efer(vcpu, msr_info);
3472 data &= ~(u64)0x40; /* ignore flush filter disable */
3473 data &= ~(u64)0x100; /* ignore ignne emulation enable */
3474 data &= ~(u64)0x8; /* ignore TLB cache disable */
3476 /* Handle McStatusWrEn */
3477 if (data == BIT_ULL(18)) {
3478 vcpu->arch.msr_hwcr = data;
3479 } else if (data != 0) {
3480 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3485 case MSR_FAM10H_MMIO_CONF_BASE:
3487 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3492 case 0x200 ... 0x2ff:
3493 return kvm_mtrr_set_msr(vcpu, msr, data);
3494 case MSR_IA32_APICBASE:
3495 return kvm_set_apic_base(vcpu, msr_info);
3496 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3497 return kvm_x2apic_msr_write(vcpu, msr, data);
3498 case MSR_IA32_TSC_DEADLINE:
3499 kvm_set_lapic_tscdeadline_msr(vcpu, data);
3501 case MSR_IA32_TSC_ADJUST:
3502 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3503 if (!msr_info->host_initiated) {
3504 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3505 adjust_tsc_offset_guest(vcpu, adj);
3506 /* Before back to guest, tsc_timestamp must be adjusted
3507 * as well, otherwise guest's percpu pvclock time could jump.
3509 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3511 vcpu->arch.ia32_tsc_adjust_msr = data;
3514 case MSR_IA32_MISC_ENABLE:
3515 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3516 ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3517 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3519 vcpu->arch.ia32_misc_enable_msr = data;
3520 kvm_update_cpuid_runtime(vcpu);
3522 vcpu->arch.ia32_misc_enable_msr = data;
3525 case MSR_IA32_SMBASE:
3526 if (!msr_info->host_initiated)
3528 vcpu->arch.smbase = data;
3530 case MSR_IA32_POWER_CTL:
3531 vcpu->arch.msr_ia32_power_ctl = data;
3534 if (msr_info->host_initiated) {
3535 kvm_synchronize_tsc(vcpu, data);
3537 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3538 adjust_tsc_offset_guest(vcpu, adj);
3539 vcpu->arch.ia32_tsc_adjust_msr += adj;
3543 if (!msr_info->host_initiated &&
3544 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3547 * KVM supports exposing PT to the guest, but does not support
3548 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3549 * XSAVES/XRSTORS to save/restore PT MSRs.
3551 if (data & ~supported_xss)
3553 vcpu->arch.ia32_xss = data;
3554 kvm_update_cpuid_runtime(vcpu);
3557 if (!msr_info->host_initiated)
3559 vcpu->arch.smi_count = data;
3561 case MSR_KVM_WALL_CLOCK_NEW:
3562 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3565 vcpu->kvm->arch.wall_clock = data;
3566 kvm_write_wall_clock(vcpu->kvm, data, 0);
3568 case MSR_KVM_WALL_CLOCK:
3569 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3572 vcpu->kvm->arch.wall_clock = data;
3573 kvm_write_wall_clock(vcpu->kvm, data, 0);
3575 case MSR_KVM_SYSTEM_TIME_NEW:
3576 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3579 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3581 case MSR_KVM_SYSTEM_TIME:
3582 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3585 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated);
3587 case MSR_KVM_ASYNC_PF_EN:
3588 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3591 if (kvm_pv_enable_async_pf(vcpu, data))
3594 case MSR_KVM_ASYNC_PF_INT:
3595 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3598 if (kvm_pv_enable_async_pf_int(vcpu, data))
3601 case MSR_KVM_ASYNC_PF_ACK:
3602 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3605 vcpu->arch.apf.pageready_pending = false;
3606 kvm_check_async_pf_completion(vcpu);
3609 case MSR_KVM_STEAL_TIME:
3610 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3613 if (unlikely(!sched_info_on()))
3616 if (data & KVM_STEAL_RESERVED_MASK)
3619 vcpu->arch.st.msr_val = data;
3621 if (!(data & KVM_MSR_ENABLED))
3624 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3627 case MSR_KVM_PV_EOI_EN:
3628 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3631 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
3635 case MSR_KVM_POLL_CONTROL:
3636 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3639 /* only enable bit supported */
3640 if (data & (-1ULL << 1))
3643 vcpu->arch.msr_kvm_poll_control = data;
3646 case MSR_IA32_MCG_CTL:
3647 case MSR_IA32_MCG_STATUS:
3648 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3649 return set_msr_mce(vcpu, msr_info);
3651 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3652 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3655 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3656 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3657 if (kvm_pmu_is_valid_msr(vcpu, msr))
3658 return kvm_pmu_set_msr(vcpu, msr_info);
3660 if (pr || data != 0)
3661 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3662 "0x%x data 0x%llx\n", msr, data);
3664 case MSR_K7_CLK_CTL:
3666 * Ignore all writes to this no longer documented MSR.
3667 * Writes are only relevant for old K7 processors,
3668 * all pre-dating SVM, but a recommended workaround from
3669 * AMD for these chips. It is possible to specify the
3670 * affected processor models on the command line, hence
3671 * the need to ignore the workaround.
3674 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3675 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3676 case HV_X64_MSR_SYNDBG_OPTIONS:
3677 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3678 case HV_X64_MSR_CRASH_CTL:
3679 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3680 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3681 case HV_X64_MSR_TSC_EMULATION_CONTROL:
3682 case HV_X64_MSR_TSC_EMULATION_STATUS:
3683 return kvm_hv_set_msr_common(vcpu, msr, data,
3684 msr_info->host_initiated);
3685 case MSR_IA32_BBL_CR_CTL3:
3686 /* Drop writes to this legacy MSR -- see rdmsr
3687 * counterpart for further detail.
3689 if (report_ignored_msrs)
3690 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3693 case MSR_AMD64_OSVW_ID_LENGTH:
3694 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3696 vcpu->arch.osvw.length = data;
3698 case MSR_AMD64_OSVW_STATUS:
3699 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3701 vcpu->arch.osvw.status = data;
3703 case MSR_PLATFORM_INFO:
3704 if (!msr_info->host_initiated ||
3705 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3706 cpuid_fault_enabled(vcpu)))
3708 vcpu->arch.msr_platform_info = data;
3710 case MSR_MISC_FEATURES_ENABLES:
3711 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3712 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3713 !supports_cpuid_fault(vcpu)))
3715 vcpu->arch.msr_misc_features_enables = data;
3717 #ifdef CONFIG_X86_64
3719 if (!msr_info->host_initiated &&
3720 !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3723 if (data & ~kvm_guest_supported_xfd(vcpu))
3726 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
3728 case MSR_IA32_XFD_ERR:
3729 if (!msr_info->host_initiated &&
3730 !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3733 if (data & ~kvm_guest_supported_xfd(vcpu))
3736 vcpu->arch.guest_fpu.xfd_err = data;
3740 if (kvm_pmu_is_valid_msr(vcpu, msr))
3741 return kvm_pmu_set_msr(vcpu, msr_info);
3742 return KVM_MSR_RET_INVALID;
3746 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3748 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3751 u64 mcg_cap = vcpu->arch.mcg_cap;
3752 unsigned bank_num = mcg_cap & 0xff;
3755 case MSR_IA32_P5_MC_ADDR:
3756 case MSR_IA32_P5_MC_TYPE:
3759 case MSR_IA32_MCG_CAP:
3760 data = vcpu->arch.mcg_cap;
3762 case MSR_IA32_MCG_CTL:
3763 if (!(mcg_cap & MCG_CTL_P) && !host)
3765 data = vcpu->arch.mcg_ctl;
3767 case MSR_IA32_MCG_STATUS:
3768 data = vcpu->arch.mcg_status;
3771 if (msr >= MSR_IA32_MC0_CTL &&
3772 msr < MSR_IA32_MCx_CTL(bank_num)) {
3773 u32 offset = array_index_nospec(
3774 msr - MSR_IA32_MC0_CTL,
3775 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3777 data = vcpu->arch.mce_banks[offset];
3786 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3788 switch (msr_info->index) {
3789 case MSR_IA32_PLATFORM_ID:
3790 case MSR_IA32_EBL_CR_POWERON:
3791 case MSR_IA32_LASTBRANCHFROMIP:
3792 case MSR_IA32_LASTBRANCHTOIP:
3793 case MSR_IA32_LASTINTFROMIP:
3794 case MSR_IA32_LASTINTTOIP:
3795 case MSR_AMD64_SYSCFG:
3796 case MSR_K8_TSEG_ADDR:
3797 case MSR_K8_TSEG_MASK:
3798 case MSR_VM_HSAVE_PA:
3799 case MSR_K8_INT_PENDING_MSG:
3800 case MSR_AMD64_NB_CFG:
3801 case MSR_FAM10H_MMIO_CONF_BASE:
3802 case MSR_AMD64_BU_CFG2:
3803 case MSR_IA32_PERF_CTL:
3804 case MSR_AMD64_DC_CFG:
3805 case MSR_F15H_EX_CFG:
3807 * Intel Sandy Bridge CPUs must support the RAPL (running average power
3808 * limit) MSRs. Just return 0, as we do not want to expose the host
3809 * data here. Do not conditionalize this on CPUID, as KVM does not do
3810 * so for existing CPU-specific MSRs.
3812 case MSR_RAPL_POWER_UNIT:
3813 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */
3814 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */
3815 case MSR_PKG_ENERGY_STATUS: /* Total package */
3816 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */
3819 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3820 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3821 return kvm_pmu_get_msr(vcpu, msr_info);
3822 if (!msr_info->host_initiated)
3826 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3827 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3828 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3829 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3830 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3831 return kvm_pmu_get_msr(vcpu, msr_info);
3834 case MSR_IA32_UCODE_REV:
3835 msr_info->data = vcpu->arch.microcode_version;
3837 case MSR_IA32_ARCH_CAPABILITIES:
3838 if (!msr_info->host_initiated &&
3839 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3841 msr_info->data = vcpu->arch.arch_capabilities;
3843 case MSR_IA32_PERF_CAPABILITIES:
3844 if (!msr_info->host_initiated &&
3845 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3847 msr_info->data = vcpu->arch.perf_capabilities;
3849 case MSR_IA32_POWER_CTL:
3850 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3852 case MSR_IA32_TSC: {
3854 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3855 * even when not intercepted. AMD manual doesn't explicitly
3856 * state this but appears to behave the same.
3858 * On userspace reads and writes, however, we unconditionally
3859 * return L1's TSC value to ensure backwards-compatible
3860 * behavior for migration.
3864 if (msr_info->host_initiated) {
3865 offset = vcpu->arch.l1_tsc_offset;
3866 ratio = vcpu->arch.l1_tsc_scaling_ratio;
3868 offset = vcpu->arch.tsc_offset;
3869 ratio = vcpu->arch.tsc_scaling_ratio;
3872 msr_info->data = kvm_scale_tsc(vcpu, rdtsc(), ratio) + offset;
3876 case 0x200 ... 0x2ff:
3877 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3878 case 0xcd: /* fsb frequency */
3882 * MSR_EBC_FREQUENCY_ID
3883 * Conservative value valid for even the basic CPU models.
3884 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3885 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3886 * and 266MHz for model 3, or 4. Set Core Clock
3887 * Frequency to System Bus Frequency Ratio to 1 (bits
3888 * 31:24) even though these are only valid for CPU
3889 * models > 2, however guests may end up dividing or
3890 * multiplying by zero otherwise.
3892 case MSR_EBC_FREQUENCY_ID:
3893 msr_info->data = 1 << 24;
3895 case MSR_IA32_APICBASE:
3896 msr_info->data = kvm_get_apic_base(vcpu);
3898 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3899 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3900 case MSR_IA32_TSC_DEADLINE:
3901 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3903 case MSR_IA32_TSC_ADJUST:
3904 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3906 case MSR_IA32_MISC_ENABLE:
3907 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3909 case MSR_IA32_SMBASE:
3910 if (!msr_info->host_initiated)
3912 msr_info->data = vcpu->arch.smbase;
3915 msr_info->data = vcpu->arch.smi_count;
3917 case MSR_IA32_PERF_STATUS:
3918 /* TSC increment by tick */
3919 msr_info->data = 1000ULL;
3920 /* CPU multiplier */
3921 msr_info->data |= (((uint64_t)4ULL) << 40);
3924 msr_info->data = vcpu->arch.efer;
3926 case MSR_KVM_WALL_CLOCK:
3927 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3930 msr_info->data = vcpu->kvm->arch.wall_clock;
3932 case MSR_KVM_WALL_CLOCK_NEW:
3933 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3936 msr_info->data = vcpu->kvm->arch.wall_clock;
3938 case MSR_KVM_SYSTEM_TIME:
3939 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3942 msr_info->data = vcpu->arch.time;
3944 case MSR_KVM_SYSTEM_TIME_NEW:
3945 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3948 msr_info->data = vcpu->arch.time;
3950 case MSR_KVM_ASYNC_PF_EN:
3951 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3954 msr_info->data = vcpu->arch.apf.msr_en_val;
3956 case MSR_KVM_ASYNC_PF_INT:
3957 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3960 msr_info->data = vcpu->arch.apf.msr_int_val;
3962 case MSR_KVM_ASYNC_PF_ACK:
3963 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3968 case MSR_KVM_STEAL_TIME:
3969 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3972 msr_info->data = vcpu->arch.st.msr_val;
3974 case MSR_KVM_PV_EOI_EN:
3975 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3978 msr_info->data = vcpu->arch.pv_eoi.msr_val;
3980 case MSR_KVM_POLL_CONTROL:
3981 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3984 msr_info->data = vcpu->arch.msr_kvm_poll_control;
3986 case MSR_IA32_P5_MC_ADDR:
3987 case MSR_IA32_P5_MC_TYPE:
3988 case MSR_IA32_MCG_CAP:
3989 case MSR_IA32_MCG_CTL:
3990 case MSR_IA32_MCG_STATUS:
3991 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3992 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3993 msr_info->host_initiated);
3995 if (!msr_info->host_initiated &&
3996 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3998 msr_info->data = vcpu->arch.ia32_xss;
4000 case MSR_K7_CLK_CTL:
4002 * Provide expected ramp-up count for K7. All other
4003 * are set to zero, indicating minimum divisors for
4006 * This prevents guest kernels on AMD host with CPU
4007 * type 6, model 8 and higher from exploding due to
4008 * the rdmsr failing.
4010 msr_info->data = 0x20000000;
4012 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4013 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4014 case HV_X64_MSR_SYNDBG_OPTIONS:
4015 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4016 case HV_X64_MSR_CRASH_CTL:
4017 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4018 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4019 case HV_X64_MSR_TSC_EMULATION_CONTROL:
4020 case HV_X64_MSR_TSC_EMULATION_STATUS:
4021 return kvm_hv_get_msr_common(vcpu,
4022 msr_info->index, &msr_info->data,
4023 msr_info->host_initiated);
4024 case MSR_IA32_BBL_CR_CTL3:
4025 /* This legacy MSR exists but isn't fully documented in current
4026 * silicon. It is however accessed by winxp in very narrow
4027 * scenarios where it sets bit #19, itself documented as
4028 * a "reserved" bit. Best effort attempt to source coherent
4029 * read data here should the balance of the register be
4030 * interpreted by the guest:
4032 * L2 cache control register 3: 64GB range, 256KB size,
4033 * enabled, latency 0x1, configured
4035 msr_info->data = 0xbe702111;
4037 case MSR_AMD64_OSVW_ID_LENGTH:
4038 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4040 msr_info->data = vcpu->arch.osvw.length;
4042 case MSR_AMD64_OSVW_STATUS:
4043 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4045 msr_info->data = vcpu->arch.osvw.status;
4047 case MSR_PLATFORM_INFO:
4048 if (!msr_info->host_initiated &&
4049 !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4051 msr_info->data = vcpu->arch.msr_platform_info;
4053 case MSR_MISC_FEATURES_ENABLES:
4054 msr_info->data = vcpu->arch.msr_misc_features_enables;
4057 msr_info->data = vcpu->arch.msr_hwcr;
4059 #ifdef CONFIG_X86_64
4061 if (!msr_info->host_initiated &&
4062 !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4065 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4067 case MSR_IA32_XFD_ERR:
4068 if (!msr_info->host_initiated &&
4069 !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4072 msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4076 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4077 return kvm_pmu_get_msr(vcpu, msr_info);
4078 return KVM_MSR_RET_INVALID;
4082 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4085 * Read or write a bunch of msrs. All parameters are kernel addresses.
4087 * @return number of msrs set successfully.
4089 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4090 struct kvm_msr_entry *entries,
4091 int (*do_msr)(struct kvm_vcpu *vcpu,
4092 unsigned index, u64 *data))
4096 for (i = 0; i < msrs->nmsrs; ++i)
4097 if (do_msr(vcpu, entries[i].index, &entries[i].data))
4104 * Read or write a bunch of msrs. Parameters are user addresses.
4106 * @return number of msrs set successfully.
4108 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4109 int (*do_msr)(struct kvm_vcpu *vcpu,
4110 unsigned index, u64 *data),
4113 struct kvm_msrs msrs;
4114 struct kvm_msr_entry *entries;
4119 if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4123 if (msrs.nmsrs >= MAX_IO_MSRS)
4126 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4127 entries = memdup_user(user_msrs->entries, size);
4128 if (IS_ERR(entries)) {
4129 r = PTR_ERR(entries);
4133 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
4138 if (writeback && copy_to_user(user_msrs->entries, entries, size))
4149 static inline bool kvm_can_mwait_in_guest(void)
4151 return boot_cpu_has(X86_FEATURE_MWAIT) &&
4152 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
4153 boot_cpu_has(X86_FEATURE_ARAT);
4156 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4157 struct kvm_cpuid2 __user *cpuid_arg)
4159 struct kvm_cpuid2 cpuid;
4163 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4166 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4171 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4177 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4182 case KVM_CAP_IRQCHIP:
4184 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4185 case KVM_CAP_SET_TSS_ADDR:
4186 case KVM_CAP_EXT_CPUID:
4187 case KVM_CAP_EXT_EMUL_CPUID:
4188 case KVM_CAP_CLOCKSOURCE:
4190 case KVM_CAP_NOP_IO_DELAY:
4191 case KVM_CAP_MP_STATE:
4192 case KVM_CAP_SYNC_MMU:
4193 case KVM_CAP_USER_NMI:
4194 case KVM_CAP_REINJECT_CONTROL:
4195 case KVM_CAP_IRQ_INJECT_STATUS:
4196 case KVM_CAP_IOEVENTFD:
4197 case KVM_CAP_IOEVENTFD_NO_LENGTH:
4199 case KVM_CAP_PIT_STATE2:
4200 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4201 case KVM_CAP_VCPU_EVENTS:
4202 case KVM_CAP_HYPERV:
4203 case KVM_CAP_HYPERV_VAPIC:
4204 case KVM_CAP_HYPERV_SPIN:
4205 case KVM_CAP_HYPERV_SYNIC:
4206 case KVM_CAP_HYPERV_SYNIC2:
4207 case KVM_CAP_HYPERV_VP_INDEX:
4208 case KVM_CAP_HYPERV_EVENTFD:
4209 case KVM_CAP_HYPERV_TLBFLUSH:
4210 case KVM_CAP_HYPERV_SEND_IPI:
4211 case KVM_CAP_HYPERV_CPUID:
4212 case KVM_CAP_HYPERV_ENFORCE_CPUID:
4213 case KVM_CAP_SYS_HYPERV_CPUID:
4214 case KVM_CAP_PCI_SEGMENT:
4215 case KVM_CAP_DEBUGREGS:
4216 case KVM_CAP_X86_ROBUST_SINGLESTEP:
4218 case KVM_CAP_ASYNC_PF:
4219 case KVM_CAP_ASYNC_PF_INT:
4220 case KVM_CAP_GET_TSC_KHZ:
4221 case KVM_CAP_KVMCLOCK_CTRL:
4222 case KVM_CAP_READONLY_MEM:
4223 case KVM_CAP_HYPERV_TIME:
4224 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4225 case KVM_CAP_TSC_DEADLINE_TIMER:
4226 case KVM_CAP_DISABLE_QUIRKS:
4227 case KVM_CAP_SET_BOOT_CPU_ID:
4228 case KVM_CAP_SPLIT_IRQCHIP:
4229 case KVM_CAP_IMMEDIATE_EXIT:
4230 case KVM_CAP_PMU_EVENT_FILTER:
4231 case KVM_CAP_GET_MSR_FEATURES:
4232 case KVM_CAP_MSR_PLATFORM_INFO:
4233 case KVM_CAP_EXCEPTION_PAYLOAD:
4234 case KVM_CAP_SET_GUEST_DEBUG:
4235 case KVM_CAP_LAST_CPU:
4236 case KVM_CAP_X86_USER_SPACE_MSR:
4237 case KVM_CAP_X86_MSR_FILTER:
4238 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4239 #ifdef CONFIG_X86_SGX_KVM
4240 case KVM_CAP_SGX_ATTRIBUTE:
4242 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4243 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4244 case KVM_CAP_SREGS2:
4245 case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4246 case KVM_CAP_VCPU_ATTRIBUTES:
4247 case KVM_CAP_SYS_ATTRIBUTES:
4248 case KVM_CAP_ENABLE_CAP:
4251 case KVM_CAP_EXIT_HYPERCALL:
4252 r = KVM_EXIT_HYPERCALL_VALID_MASK;
4254 case KVM_CAP_SET_GUEST_DEBUG2:
4255 return KVM_GUESTDBG_VALID_MASK;
4256 #ifdef CONFIG_KVM_XEN
4257 case KVM_CAP_XEN_HVM:
4258 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4259 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4260 KVM_XEN_HVM_CONFIG_SHARED_INFO |
4261 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL;
4262 if (sched_info_on())
4263 r |= KVM_XEN_HVM_CONFIG_RUNSTATE;
4266 case KVM_CAP_SYNC_REGS:
4267 r = KVM_SYNC_X86_VALID_FIELDS;
4269 case KVM_CAP_ADJUST_CLOCK:
4270 r = KVM_CLOCK_VALID_FLAGS;
4272 case KVM_CAP_X86_DISABLE_EXITS:
4273 r |= KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
4274 KVM_X86_DISABLE_EXITS_CSTATE;
4275 if(kvm_can_mwait_in_guest())
4276 r |= KVM_X86_DISABLE_EXITS_MWAIT;
4278 case KVM_CAP_X86_SMM:
4279 /* SMBASE is usually relocated above 1M on modern chipsets,
4280 * and SMM handlers might indeed rely on 4G segment limits,
4281 * so do not report SMM to be available if real mode is
4282 * emulated via vm86 mode. Still, do not go to great lengths
4283 * to avoid userspace's usage of the feature, because it is a
4284 * fringe case that is not enabled except via specific settings
4285 * of the module parameters.
4287 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4290 r = !static_call(kvm_x86_cpu_has_accelerated_tpr)();
4292 case KVM_CAP_NR_VCPUS:
4293 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4295 case KVM_CAP_MAX_VCPUS:
4298 case KVM_CAP_MAX_VCPU_ID:
4299 r = KVM_MAX_VCPU_IDS;
4301 case KVM_CAP_PV_MMU: /* obsolete */
4305 r = KVM_MAX_MCE_BANKS;
4308 r = boot_cpu_has(X86_FEATURE_XSAVE);
4310 case KVM_CAP_TSC_CONTROL:
4311 r = kvm_has_tsc_control;
4313 case KVM_CAP_X2APIC_API:
4314 r = KVM_X2APIC_API_VALID_FLAGS;
4316 case KVM_CAP_NESTED_STATE:
4317 r = kvm_x86_ops.nested_ops->get_state ?
4318 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4320 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4321 r = kvm_x86_ops.enable_direct_tlbflush != NULL;
4323 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4324 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4326 case KVM_CAP_SMALLER_MAXPHYADDR:
4327 r = (int) allow_smaller_maxphyaddr;
4329 case KVM_CAP_STEAL_TIME:
4330 r = sched_info_on();
4332 case KVM_CAP_X86_BUS_LOCK_EXIT:
4333 if (kvm_has_bus_lock_exit)
4334 r = KVM_BUS_LOCK_DETECTION_OFF |
4335 KVM_BUS_LOCK_DETECTION_EXIT;
4339 case KVM_CAP_XSAVE2: {
4340 u64 guest_perm = xstate_get_guest_group_perm();
4342 r = xstate_required_size(supported_xcr0 & guest_perm, false);
4343 if (r < sizeof(struct kvm_xsave))
4344 r = sizeof(struct kvm_xsave);
4353 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr)
4355 void __user *uaddr = (void __user*)(unsigned long)attr->addr;
4357 if ((u64)(unsigned long)uaddr != attr->addr)
4358 return ERR_PTR_USR(-EFAULT);
4362 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4364 u64 __user *uaddr = kvm_get_attr_addr(attr);
4370 return PTR_ERR(uaddr);
4372 switch (attr->attr) {
4373 case KVM_X86_XCOMP_GUEST_SUPP:
4374 if (put_user(supported_xcr0, uaddr))
4383 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4388 switch (attr->attr) {
4389 case KVM_X86_XCOMP_GUEST_SUPP:
4396 long kvm_arch_dev_ioctl(struct file *filp,
4397 unsigned int ioctl, unsigned long arg)
4399 void __user *argp = (void __user *)arg;
4403 case KVM_GET_MSR_INDEX_LIST: {
4404 struct kvm_msr_list __user *user_msr_list = argp;
4405 struct kvm_msr_list msr_list;
4409 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4412 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4413 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4416 if (n < msr_list.nmsrs)
4419 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4420 num_msrs_to_save * sizeof(u32)))
4422 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4424 num_emulated_msrs * sizeof(u32)))
4429 case KVM_GET_SUPPORTED_CPUID:
4430 case KVM_GET_EMULATED_CPUID: {
4431 struct kvm_cpuid2 __user *cpuid_arg = argp;
4432 struct kvm_cpuid2 cpuid;
4435 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4438 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4444 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4449 case KVM_X86_GET_MCE_CAP_SUPPORTED:
4451 if (copy_to_user(argp, &kvm_mce_cap_supported,
4452 sizeof(kvm_mce_cap_supported)))
4456 case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4457 struct kvm_msr_list __user *user_msr_list = argp;
4458 struct kvm_msr_list msr_list;
4462 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4465 msr_list.nmsrs = num_msr_based_features;
4466 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4469 if (n < msr_list.nmsrs)
4472 if (copy_to_user(user_msr_list->indices, &msr_based_features,
4473 num_msr_based_features * sizeof(u32)))
4479 r = msr_io(NULL, argp, do_get_msr_feature, 1);
4481 case KVM_GET_SUPPORTED_HV_CPUID:
4482 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4484 case KVM_GET_DEVICE_ATTR: {
4485 struct kvm_device_attr attr;
4487 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4489 r = kvm_x86_dev_get_attr(&attr);
4492 case KVM_HAS_DEVICE_ATTR: {
4493 struct kvm_device_attr attr;
4495 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4497 r = kvm_x86_dev_has_attr(&attr);
4508 static void wbinvd_ipi(void *garbage)
4513 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4515 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4518 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4520 /* Address WBINVD may be executed by guest */
4521 if (need_emulate_wbinvd(vcpu)) {
4522 if (static_call(kvm_x86_has_wbinvd_exit)())
4523 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4524 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4525 smp_call_function_single(vcpu->cpu,
4526 wbinvd_ipi, NULL, 1);
4529 static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4531 /* Save host pkru register if supported */
4532 vcpu->arch.host_pkru = read_pkru();
4534 /* Apply any externally detected TSC adjustments (due to suspend) */
4535 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4536 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4537 vcpu->arch.tsc_offset_adjustment = 0;
4538 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4541 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4542 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4543 rdtsc() - vcpu->arch.last_host_tsc;
4545 mark_tsc_unstable("KVM discovered backwards TSC");
4547 if (kvm_check_tsc_unstable()) {
4548 u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4549 vcpu->arch.last_guest_tsc);
4550 kvm_vcpu_write_tsc_offset(vcpu, offset);
4551 vcpu->arch.tsc_catchup = 1;
4554 if (kvm_lapic_hv_timer_in_use(vcpu))
4555 kvm_lapic_restart_hv_timer(vcpu);
4558 * On a host with synchronized TSC, there is no need to update
4559 * kvmclock on vcpu->cpu migration
4561 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4562 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4563 if (vcpu->cpu != cpu)
4564 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4568 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4571 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4573 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
4574 struct kvm_steal_time __user *st;
4575 struct kvm_memslots *slots;
4576 static const u8 preempted = KVM_VCPU_PREEMPTED;
4578 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4581 if (vcpu->arch.st.preempted)
4584 /* This happens on process exit */
4585 if (unlikely(current->mm != vcpu->kvm->mm))
4588 slots = kvm_memslots(vcpu->kvm);
4590 if (unlikely(slots->generation != ghc->generation ||
4591 kvm_is_error_hva(ghc->hva) || !ghc->memslot))
4594 st = (struct kvm_steal_time __user *)ghc->hva;
4595 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
4597 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
4598 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4600 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
4603 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4607 if (vcpu->preempted && !vcpu->arch.guest_state_protected)
4608 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4611 * Take the srcu lock as memslots will be accessed to check the gfn
4612 * cache generation against the memslots generation.
4614 idx = srcu_read_lock(&vcpu->kvm->srcu);
4615 if (kvm_xen_msr_enabled(vcpu->kvm))
4616 kvm_xen_runstate_set_preempted(vcpu);
4618 kvm_steal_time_set_preempted(vcpu);
4619 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4621 static_call(kvm_x86_vcpu_put)(vcpu);
4622 vcpu->arch.last_host_tsc = rdtsc();
4625 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4626 struct kvm_lapic_state *s)
4628 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
4630 return kvm_apic_get_state(vcpu, s);
4633 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4634 struct kvm_lapic_state *s)
4638 r = kvm_apic_set_state(vcpu, s);
4641 update_cr8_intercept(vcpu);
4646 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4649 * We can accept userspace's request for interrupt injection
4650 * as long as we have a place to store the interrupt number.
4651 * The actual injection will happen when the CPU is able to
4652 * deliver the interrupt.
4654 if (kvm_cpu_has_extint(vcpu))
4657 /* Acknowledging ExtINT does not happen if LINT0 is masked. */
4658 return (!lapic_in_kernel(vcpu) ||
4659 kvm_apic_accept_pic_intr(vcpu));
4662 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4665 * Do not cause an interrupt window exit if an exception
4666 * is pending or an event needs reinjection; userspace
4667 * might want to inject the interrupt manually using KVM_SET_REGS
4668 * or KVM_SET_SREGS. For that to work, we must be at an
4669 * instruction boundary and with no events half-injected.
4671 return (kvm_arch_interrupt_allowed(vcpu) &&
4672 kvm_cpu_accept_dm_intr(vcpu) &&
4673 !kvm_event_needs_reinjection(vcpu) &&
4674 !vcpu->arch.exception.pending);
4677 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4678 struct kvm_interrupt *irq)
4680 if (irq->irq >= KVM_NR_INTERRUPTS)
4683 if (!irqchip_in_kernel(vcpu->kvm)) {
4684 kvm_queue_interrupt(vcpu, irq->irq, false);
4685 kvm_make_request(KVM_REQ_EVENT, vcpu);
4690 * With in-kernel LAPIC, we only use this to inject EXTINT, so
4691 * fail for in-kernel 8259.
4693 if (pic_in_kernel(vcpu->kvm))
4696 if (vcpu->arch.pending_external_vector != -1)
4699 vcpu->arch.pending_external_vector = irq->irq;
4700 kvm_make_request(KVM_REQ_EVENT, vcpu);
4704 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4706 kvm_inject_nmi(vcpu);
4711 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4713 kvm_make_request(KVM_REQ_SMI, vcpu);
4718 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4719 struct kvm_tpr_access_ctl *tac)
4723 vcpu->arch.tpr_access_reporting = !!tac->enabled;
4727 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4731 unsigned bank_num = mcg_cap & 0xff, bank;
4734 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4736 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
4739 vcpu->arch.mcg_cap = mcg_cap;
4740 /* Init IA32_MCG_CTL to all 1s */
4741 if (mcg_cap & MCG_CTL_P)
4742 vcpu->arch.mcg_ctl = ~(u64)0;
4743 /* Init IA32_MCi_CTL to all 1s */
4744 for (bank = 0; bank < bank_num; bank++)
4745 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4747 static_call(kvm_x86_setup_mce)(vcpu);
4752 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4753 struct kvm_x86_mce *mce)
4755 u64 mcg_cap = vcpu->arch.mcg_cap;
4756 unsigned bank_num = mcg_cap & 0xff;
4757 u64 *banks = vcpu->arch.mce_banks;
4759 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4762 * if IA32_MCG_CTL is not all 1s, the uncorrected error
4763 * reporting is disabled
4765 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
4766 vcpu->arch.mcg_ctl != ~(u64)0)
4768 banks += 4 * mce->bank;
4770 * if IA32_MCi_CTL is not all 1s, the uncorrected error
4771 * reporting is disabled for the bank
4773 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
4775 if (mce->status & MCI_STATUS_UC) {
4776 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
4777 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
4778 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4781 if (banks[1] & MCI_STATUS_VAL)
4782 mce->status |= MCI_STATUS_OVER;
4783 banks[2] = mce->addr;
4784 banks[3] = mce->misc;
4785 vcpu->arch.mcg_status = mce->mcg_status;
4786 banks[1] = mce->status;
4787 kvm_queue_exception(vcpu, MC_VECTOR);
4788 } else if (!(banks[1] & MCI_STATUS_VAL)
4789 || !(banks[1] & MCI_STATUS_UC)) {
4790 if (banks[1] & MCI_STATUS_VAL)
4791 mce->status |= MCI_STATUS_OVER;
4792 banks[2] = mce->addr;
4793 banks[3] = mce->misc;
4794 banks[1] = mce->status;
4796 banks[1] |= MCI_STATUS_OVER;
4800 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
4801 struct kvm_vcpu_events *events)
4805 if (kvm_check_request(KVM_REQ_SMI, vcpu))
4809 * In guest mode, payload delivery should be deferred,
4810 * so that the L1 hypervisor can intercept #PF before
4811 * CR2 is modified (or intercept #DB before DR6 is
4812 * modified under nVMX). Unless the per-VM capability,
4813 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
4814 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
4815 * opportunistically defer the exception payload, deliver it if the
4816 * capability hasn't been requested before processing a
4817 * KVM_GET_VCPU_EVENTS.
4819 if (!vcpu->kvm->arch.exception_payload_enabled &&
4820 vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
4821 kvm_deliver_exception_payload(vcpu);
4824 * The API doesn't provide the instruction length for software
4825 * exceptions, so don't report them. As long as the guest RIP
4826 * isn't advanced, we should expect to encounter the exception
4829 if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
4830 events->exception.injected = 0;
4831 events->exception.pending = 0;
4833 events->exception.injected = vcpu->arch.exception.injected;
4834 events->exception.pending = vcpu->arch.exception.pending;
4836 * For ABI compatibility, deliberately conflate
4837 * pending and injected exceptions when
4838 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
4840 if (!vcpu->kvm->arch.exception_payload_enabled)
4841 events->exception.injected |=
4842 vcpu->arch.exception.pending;
4844 events->exception.nr = vcpu->arch.exception.nr;
4845 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
4846 events->exception.error_code = vcpu->arch.exception.error_code;
4847 events->exception_has_payload = vcpu->arch.exception.has_payload;
4848 events->exception_payload = vcpu->arch.exception.payload;
4850 events->interrupt.injected =
4851 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
4852 events->interrupt.nr = vcpu->arch.interrupt.nr;
4853 events->interrupt.soft = 0;
4854 events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
4856 events->nmi.injected = vcpu->arch.nmi_injected;
4857 events->nmi.pending = vcpu->arch.nmi_pending != 0;
4858 events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
4859 events->nmi.pad = 0;
4861 events->sipi_vector = 0; /* never valid when reporting to user space */
4863 events->smi.smm = is_smm(vcpu);
4864 events->smi.pending = vcpu->arch.smi_pending;
4865 events->smi.smm_inside_nmi =
4866 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
4867 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
4869 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
4870 | KVM_VCPUEVENT_VALID_SHADOW
4871 | KVM_VCPUEVENT_VALID_SMM);
4872 if (vcpu->kvm->arch.exception_payload_enabled)
4873 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4875 memset(&events->reserved, 0, sizeof(events->reserved));
4878 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm);
4880 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
4881 struct kvm_vcpu_events *events)
4883 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4884 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4885 | KVM_VCPUEVENT_VALID_SHADOW
4886 | KVM_VCPUEVENT_VALID_SMM
4887 | KVM_VCPUEVENT_VALID_PAYLOAD))
4890 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4891 if (!vcpu->kvm->arch.exception_payload_enabled)
4893 if (events->exception.pending)
4894 events->exception.injected = 0;
4896 events->exception_has_payload = 0;
4898 events->exception.pending = 0;
4899 events->exception_has_payload = 0;
4902 if ((events->exception.injected || events->exception.pending) &&
4903 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
4906 /* INITs are latched while in SMM */
4907 if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4908 (events->smi.smm || events->smi.pending) &&
4909 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4913 vcpu->arch.exception.injected = events->exception.injected;
4914 vcpu->arch.exception.pending = events->exception.pending;
4915 vcpu->arch.exception.nr = events->exception.nr;
4916 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4917 vcpu->arch.exception.error_code = events->exception.error_code;
4918 vcpu->arch.exception.has_payload = events->exception_has_payload;
4919 vcpu->arch.exception.payload = events->exception_payload;
4921 vcpu->arch.interrupt.injected = events->interrupt.injected;
4922 vcpu->arch.interrupt.nr = events->interrupt.nr;
4923 vcpu->arch.interrupt.soft = events->interrupt.soft;
4924 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
4925 static_call(kvm_x86_set_interrupt_shadow)(vcpu,
4926 events->interrupt.shadow);
4928 vcpu->arch.nmi_injected = events->nmi.injected;
4929 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
4930 vcpu->arch.nmi_pending = events->nmi.pending;
4931 static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
4933 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
4934 lapic_in_kernel(vcpu))
4935 vcpu->arch.apic->sipi_vector = events->sipi_vector;
4937 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
4938 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
4939 kvm_x86_ops.nested_ops->leave_nested(vcpu);
4940 kvm_smm_changed(vcpu, events->smi.smm);
4943 vcpu->arch.smi_pending = events->smi.pending;
4945 if (events->smi.smm) {
4946 if (events->smi.smm_inside_nmi)
4947 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
4949 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
4952 if (lapic_in_kernel(vcpu)) {
4953 if (events->smi.latched_init)
4954 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4956 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4960 kvm_make_request(KVM_REQ_EVENT, vcpu);
4965 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
4966 struct kvm_debugregs *dbgregs)
4970 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
4971 kvm_get_dr(vcpu, 6, &val);
4973 dbgregs->dr7 = vcpu->arch.dr7;
4975 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
4978 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
4979 struct kvm_debugregs *dbgregs)
4984 if (!kvm_dr6_valid(dbgregs->dr6))
4986 if (!kvm_dr7_valid(dbgregs->dr7))
4989 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
4990 kvm_update_dr0123(vcpu);
4991 vcpu->arch.dr6 = dbgregs->dr6;
4992 vcpu->arch.dr7 = dbgregs->dr7;
4993 kvm_update_dr7(vcpu);
4998 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4999 struct kvm_xsave *guest_xsave)
5001 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5004 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5005 guest_xsave->region,
5006 sizeof(guest_xsave->region),
5010 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5011 u8 *state, unsigned int size)
5013 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5016 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5017 state, size, vcpu->arch.pkru);
5020 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5021 struct kvm_xsave *guest_xsave)
5023 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5026 return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5027 guest_xsave->region,
5028 supported_xcr0, &vcpu->arch.pkru);
5031 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5032 struct kvm_xcrs *guest_xcrs)
5034 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5035 guest_xcrs->nr_xcrs = 0;
5039 guest_xcrs->nr_xcrs = 1;
5040 guest_xcrs->flags = 0;
5041 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5042 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5045 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5046 struct kvm_xcrs *guest_xcrs)
5050 if (!boot_cpu_has(X86_FEATURE_XSAVE))
5053 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5056 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5057 /* Only support XCR0 currently */
5058 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5059 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5060 guest_xcrs->xcrs[i].value);
5069 * kvm_set_guest_paused() indicates to the guest kernel that it has been
5070 * stopped by the hypervisor. This function will be called from the host only.
5071 * EINVAL is returned when the host attempts to set the flag for a guest that
5072 * does not support pv clocks.
5074 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5076 if (!vcpu->arch.pv_time_enabled)
5078 vcpu->arch.pvclock_set_guest_stopped_request = true;
5079 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5083 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5084 struct kvm_device_attr *attr)
5088 switch (attr->attr) {
5089 case KVM_VCPU_TSC_OFFSET:
5099 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5100 struct kvm_device_attr *attr)
5102 u64 __user *uaddr = kvm_get_attr_addr(attr);
5106 return PTR_ERR(uaddr);
5108 switch (attr->attr) {
5109 case KVM_VCPU_TSC_OFFSET:
5111 if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5122 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5123 struct kvm_device_attr *attr)
5125 u64 __user *uaddr = kvm_get_attr_addr(attr);
5126 struct kvm *kvm = vcpu->kvm;
5130 return PTR_ERR(uaddr);
5132 switch (attr->attr) {
5133 case KVM_VCPU_TSC_OFFSET: {
5134 u64 offset, tsc, ns;
5135 unsigned long flags;
5139 if (get_user(offset, uaddr))
5142 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5144 matched = (vcpu->arch.virtual_tsc_khz &&
5145 kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5146 kvm->arch.last_tsc_offset == offset);
5148 tsc = kvm_scale_tsc(vcpu, rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5149 ns = get_kvmclock_base_ns();
5151 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5152 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5164 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5168 struct kvm_device_attr attr;
5171 if (copy_from_user(&attr, argp, sizeof(attr)))
5174 if (attr.group != KVM_VCPU_TSC_CTRL)
5178 case KVM_HAS_DEVICE_ATTR:
5179 r = kvm_arch_tsc_has_attr(vcpu, &attr);
5181 case KVM_GET_DEVICE_ATTR:
5182 r = kvm_arch_tsc_get_attr(vcpu, &attr);
5184 case KVM_SET_DEVICE_ATTR:
5185 r = kvm_arch_tsc_set_attr(vcpu, &attr);
5192 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5193 struct kvm_enable_cap *cap)
5196 uint16_t vmcs_version;
5197 void __user *user_ptr;
5203 case KVM_CAP_HYPERV_SYNIC2:
5208 case KVM_CAP_HYPERV_SYNIC:
5209 if (!irqchip_in_kernel(vcpu->kvm))
5211 return kvm_hv_activate_synic(vcpu, cap->cap ==
5212 KVM_CAP_HYPERV_SYNIC2);
5213 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5214 if (!kvm_x86_ops.nested_ops->enable_evmcs)
5216 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5218 user_ptr = (void __user *)(uintptr_t)cap->args[0];
5219 if (copy_to_user(user_ptr, &vmcs_version,
5220 sizeof(vmcs_version)))
5224 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5225 if (!kvm_x86_ops.enable_direct_tlbflush)
5228 return static_call(kvm_x86_enable_direct_tlbflush)(vcpu);
5230 case KVM_CAP_HYPERV_ENFORCE_CPUID:
5231 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5233 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5234 vcpu->arch.pv_cpuid.enforce = cap->args[0];
5235 if (vcpu->arch.pv_cpuid.enforce)
5236 kvm_update_pv_runtime(vcpu);
5244 long kvm_arch_vcpu_ioctl(struct file *filp,
5245 unsigned int ioctl, unsigned long arg)
5247 struct kvm_vcpu *vcpu = filp->private_data;
5248 void __user *argp = (void __user *)arg;
5251 struct kvm_sregs2 *sregs2;
5252 struct kvm_lapic_state *lapic;
5253 struct kvm_xsave *xsave;
5254 struct kvm_xcrs *xcrs;
5262 case KVM_GET_LAPIC: {
5264 if (!lapic_in_kernel(vcpu))
5266 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5267 GFP_KERNEL_ACCOUNT);
5272 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5276 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5281 case KVM_SET_LAPIC: {
5283 if (!lapic_in_kernel(vcpu))
5285 u.lapic = memdup_user(argp, sizeof(*u.lapic));
5286 if (IS_ERR(u.lapic)) {
5287 r = PTR_ERR(u.lapic);
5291 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5294 case KVM_INTERRUPT: {
5295 struct kvm_interrupt irq;
5298 if (copy_from_user(&irq, argp, sizeof(irq)))
5300 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5304 r = kvm_vcpu_ioctl_nmi(vcpu);
5308 r = kvm_vcpu_ioctl_smi(vcpu);
5311 case KVM_SET_CPUID: {
5312 struct kvm_cpuid __user *cpuid_arg = argp;
5313 struct kvm_cpuid cpuid;
5316 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5318 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5321 case KVM_SET_CPUID2: {
5322 struct kvm_cpuid2 __user *cpuid_arg = argp;
5323 struct kvm_cpuid2 cpuid;
5326 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5328 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5329 cpuid_arg->entries);
5332 case KVM_GET_CPUID2: {
5333 struct kvm_cpuid2 __user *cpuid_arg = argp;
5334 struct kvm_cpuid2 cpuid;
5337 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5339 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5340 cpuid_arg->entries);
5344 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5349 case KVM_GET_MSRS: {
5350 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5351 r = msr_io(vcpu, argp, do_get_msr, 1);
5352 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5355 case KVM_SET_MSRS: {
5356 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5357 r = msr_io(vcpu, argp, do_set_msr, 0);
5358 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5361 case KVM_TPR_ACCESS_REPORTING: {
5362 struct kvm_tpr_access_ctl tac;
5365 if (copy_from_user(&tac, argp, sizeof(tac)))
5367 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5371 if (copy_to_user(argp, &tac, sizeof(tac)))
5376 case KVM_SET_VAPIC_ADDR: {
5377 struct kvm_vapic_addr va;
5381 if (!lapic_in_kernel(vcpu))
5384 if (copy_from_user(&va, argp, sizeof(va)))
5386 idx = srcu_read_lock(&vcpu->kvm->srcu);
5387 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5388 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5391 case KVM_X86_SETUP_MCE: {
5395 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5397 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5400 case KVM_X86_SET_MCE: {
5401 struct kvm_x86_mce mce;
5404 if (copy_from_user(&mce, argp, sizeof(mce)))
5406 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5409 case KVM_GET_VCPU_EVENTS: {
5410 struct kvm_vcpu_events events;
5412 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5415 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5420 case KVM_SET_VCPU_EVENTS: {
5421 struct kvm_vcpu_events events;
5424 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5427 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5430 case KVM_GET_DEBUGREGS: {
5431 struct kvm_debugregs dbgregs;
5433 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5436 if (copy_to_user(argp, &dbgregs,
5437 sizeof(struct kvm_debugregs)))
5442 case KVM_SET_DEBUGREGS: {
5443 struct kvm_debugregs dbgregs;
5446 if (copy_from_user(&dbgregs, argp,
5447 sizeof(struct kvm_debugregs)))
5450 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5453 case KVM_GET_XSAVE: {
5455 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
5458 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5463 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5466 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5471 case KVM_SET_XSAVE: {
5472 int size = vcpu->arch.guest_fpu.uabi_size;
5474 u.xsave = memdup_user(argp, size);
5475 if (IS_ERR(u.xsave)) {
5476 r = PTR_ERR(u.xsave);
5480 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5484 case KVM_GET_XSAVE2: {
5485 int size = vcpu->arch.guest_fpu.uabi_size;
5487 u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT);
5492 kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
5495 if (copy_to_user(argp, u.xsave, size))
5502 case KVM_GET_XCRS: {
5503 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5508 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5511 if (copy_to_user(argp, u.xcrs,
5512 sizeof(struct kvm_xcrs)))
5517 case KVM_SET_XCRS: {
5518 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5519 if (IS_ERR(u.xcrs)) {
5520 r = PTR_ERR(u.xcrs);
5524 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5527 case KVM_SET_TSC_KHZ: {
5531 user_tsc_khz = (u32)arg;
5533 if (kvm_has_tsc_control &&
5534 user_tsc_khz >= kvm_max_guest_tsc_khz)
5537 if (user_tsc_khz == 0)
5538 user_tsc_khz = tsc_khz;
5540 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5545 case KVM_GET_TSC_KHZ: {
5546 r = vcpu->arch.virtual_tsc_khz;
5549 case KVM_KVMCLOCK_CTRL: {
5550 r = kvm_set_guest_paused(vcpu);
5553 case KVM_ENABLE_CAP: {
5554 struct kvm_enable_cap cap;
5557 if (copy_from_user(&cap, argp, sizeof(cap)))
5559 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5562 case KVM_GET_NESTED_STATE: {
5563 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5567 if (!kvm_x86_ops.nested_ops->get_state)
5570 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5572 if (get_user(user_data_size, &user_kvm_nested_state->size))
5575 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5580 if (r > user_data_size) {
5581 if (put_user(r, &user_kvm_nested_state->size))
5591 case KVM_SET_NESTED_STATE: {
5592 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5593 struct kvm_nested_state kvm_state;
5597 if (!kvm_x86_ops.nested_ops->set_state)
5601 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5605 if (kvm_state.size < sizeof(kvm_state))
5608 if (kvm_state.flags &
5609 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5610 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5611 | KVM_STATE_NESTED_GIF_SET))
5614 /* nested_run_pending implies guest_mode. */
5615 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5616 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5619 idx = srcu_read_lock(&vcpu->kvm->srcu);
5620 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5621 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5624 case KVM_GET_SUPPORTED_HV_CPUID:
5625 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5627 #ifdef CONFIG_KVM_XEN
5628 case KVM_XEN_VCPU_GET_ATTR: {
5629 struct kvm_xen_vcpu_attr xva;
5632 if (copy_from_user(&xva, argp, sizeof(xva)))
5634 r = kvm_xen_vcpu_get_attr(vcpu, &xva);
5635 if (!r && copy_to_user(argp, &xva, sizeof(xva)))
5639 case KVM_XEN_VCPU_SET_ATTR: {
5640 struct kvm_xen_vcpu_attr xva;
5643 if (copy_from_user(&xva, argp, sizeof(xva)))
5645 r = kvm_xen_vcpu_set_attr(vcpu, &xva);
5649 case KVM_GET_SREGS2: {
5650 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
5654 __get_sregs2(vcpu, u.sregs2);
5656 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
5661 case KVM_SET_SREGS2: {
5662 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
5663 if (IS_ERR(u.sregs2)) {
5664 r = PTR_ERR(u.sregs2);
5668 r = __set_sregs2(vcpu, u.sregs2);
5671 case KVM_HAS_DEVICE_ATTR:
5672 case KVM_GET_DEVICE_ATTR:
5673 case KVM_SET_DEVICE_ATTR:
5674 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
5686 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5688 return VM_FAULT_SIGBUS;
5691 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5695 if (addr > (unsigned int)(-3 * PAGE_SIZE))
5697 ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
5701 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5704 return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
5707 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5708 unsigned long kvm_nr_mmu_pages)
5710 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5713 mutex_lock(&kvm->slots_lock);
5715 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5716 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5718 mutex_unlock(&kvm->slots_lock);
5722 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5724 return kvm->arch.n_max_mmu_pages;
5727 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5729 struct kvm_pic *pic = kvm->arch.vpic;
5733 switch (chip->chip_id) {
5734 case KVM_IRQCHIP_PIC_MASTER:
5735 memcpy(&chip->chip.pic, &pic->pics[0],
5736 sizeof(struct kvm_pic_state));
5738 case KVM_IRQCHIP_PIC_SLAVE:
5739 memcpy(&chip->chip.pic, &pic->pics[1],
5740 sizeof(struct kvm_pic_state));
5742 case KVM_IRQCHIP_IOAPIC:
5743 kvm_get_ioapic(kvm, &chip->chip.ioapic);
5752 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5754 struct kvm_pic *pic = kvm->arch.vpic;
5758 switch (chip->chip_id) {
5759 case KVM_IRQCHIP_PIC_MASTER:
5760 spin_lock(&pic->lock);
5761 memcpy(&pic->pics[0], &chip->chip.pic,
5762 sizeof(struct kvm_pic_state));
5763 spin_unlock(&pic->lock);
5765 case KVM_IRQCHIP_PIC_SLAVE:
5766 spin_lock(&pic->lock);
5767 memcpy(&pic->pics[1], &chip->chip.pic,
5768 sizeof(struct kvm_pic_state));
5769 spin_unlock(&pic->lock);
5771 case KVM_IRQCHIP_IOAPIC:
5772 kvm_set_ioapic(kvm, &chip->chip.ioapic);
5778 kvm_pic_update_irq(pic);
5782 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5784 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
5786 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
5788 mutex_lock(&kps->lock);
5789 memcpy(ps, &kps->channels, sizeof(*ps));
5790 mutex_unlock(&kps->lock);
5794 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5797 struct kvm_pit *pit = kvm->arch.vpit;
5799 mutex_lock(&pit->pit_state.lock);
5800 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
5801 for (i = 0; i < 3; i++)
5802 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
5803 mutex_unlock(&pit->pit_state.lock);
5807 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5809 mutex_lock(&kvm->arch.vpit->pit_state.lock);
5810 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
5811 sizeof(ps->channels));
5812 ps->flags = kvm->arch.vpit->pit_state.flags;
5813 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
5814 memset(&ps->reserved, 0, sizeof(ps->reserved));
5818 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5822 u32 prev_legacy, cur_legacy;
5823 struct kvm_pit *pit = kvm->arch.vpit;
5825 mutex_lock(&pit->pit_state.lock);
5826 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
5827 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
5828 if (!prev_legacy && cur_legacy)
5830 memcpy(&pit->pit_state.channels, &ps->channels,
5831 sizeof(pit->pit_state.channels));
5832 pit->pit_state.flags = ps->flags;
5833 for (i = 0; i < 3; i++)
5834 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
5836 mutex_unlock(&pit->pit_state.lock);
5840 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
5841 struct kvm_reinject_control *control)
5843 struct kvm_pit *pit = kvm->arch.vpit;
5845 /* pit->pit_state.lock was overloaded to prevent userspace from getting
5846 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
5847 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
5849 mutex_lock(&pit->pit_state.lock);
5850 kvm_pit_set_reinject(pit, control->pit_reinject);
5851 mutex_unlock(&pit->pit_state.lock);
5856 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
5860 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called
5861 * before reporting dirty_bitmap to userspace. KVM flushes the buffers
5862 * on all VM-Exits, thus we only need to kick running vCPUs to force a
5865 struct kvm_vcpu *vcpu;
5868 kvm_for_each_vcpu(i, vcpu, kvm)
5869 kvm_vcpu_kick(vcpu);
5872 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
5875 if (!irqchip_in_kernel(kvm))
5878 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
5879 irq_event->irq, irq_event->level,
5884 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
5885 struct kvm_enable_cap *cap)
5893 case KVM_CAP_DISABLE_QUIRKS:
5894 kvm->arch.disabled_quirks = cap->args[0];
5897 case KVM_CAP_SPLIT_IRQCHIP: {
5898 mutex_lock(&kvm->lock);
5900 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
5901 goto split_irqchip_unlock;
5903 if (irqchip_in_kernel(kvm))
5904 goto split_irqchip_unlock;
5905 if (kvm->created_vcpus)
5906 goto split_irqchip_unlock;
5907 r = kvm_setup_empty_irq_routing(kvm);
5909 goto split_irqchip_unlock;
5910 /* Pairs with irqchip_in_kernel. */
5912 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
5913 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
5914 kvm_request_apicv_update(kvm, true, APICV_INHIBIT_REASON_ABSENT);
5916 split_irqchip_unlock:
5917 mutex_unlock(&kvm->lock);
5920 case KVM_CAP_X2APIC_API:
5922 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
5925 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
5926 kvm->arch.x2apic_format = true;
5927 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
5928 kvm->arch.x2apic_broadcast_quirk_disabled = true;
5932 case KVM_CAP_X86_DISABLE_EXITS:
5934 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
5937 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
5938 kvm_can_mwait_in_guest())
5939 kvm->arch.mwait_in_guest = true;
5940 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
5941 kvm->arch.hlt_in_guest = true;
5942 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
5943 kvm->arch.pause_in_guest = true;
5944 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
5945 kvm->arch.cstate_in_guest = true;
5948 case KVM_CAP_MSR_PLATFORM_INFO:
5949 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
5952 case KVM_CAP_EXCEPTION_PAYLOAD:
5953 kvm->arch.exception_payload_enabled = cap->args[0];
5956 case KVM_CAP_X86_USER_SPACE_MSR:
5957 kvm->arch.user_space_msr_mask = cap->args[0];
5960 case KVM_CAP_X86_BUS_LOCK_EXIT:
5962 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
5965 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
5966 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
5969 if (kvm_has_bus_lock_exit &&
5970 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
5971 kvm->arch.bus_lock_detection_enabled = true;
5974 #ifdef CONFIG_X86_SGX_KVM
5975 case KVM_CAP_SGX_ATTRIBUTE: {
5976 unsigned long allowed_attributes = 0;
5978 r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
5982 /* KVM only supports the PROVISIONKEY privileged attribute. */
5983 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
5984 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
5985 kvm->arch.sgx_provisioning_allowed = true;
5991 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
5993 if (kvm_x86_ops.vm_copy_enc_context_from)
5994 r = kvm_x86_ops.vm_copy_enc_context_from(kvm, cap->args[0]);
5996 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
5998 if (kvm_x86_ops.vm_move_enc_context_from)
5999 r = kvm_x86_ops.vm_move_enc_context_from(
6002 case KVM_CAP_EXIT_HYPERCALL:
6003 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6007 kvm->arch.hypercall_exit_enabled = cap->args[0];
6010 case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6012 if (cap->args[0] & ~1)
6014 kvm->arch.exit_on_emulation_error = cap->args[0];
6024 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6026 struct kvm_x86_msr_filter *msr_filter;
6028 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6032 msr_filter->default_allow = default_allow;
6036 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6043 for (i = 0; i < msr_filter->count; i++)
6044 kfree(msr_filter->ranges[i].bitmap);
6049 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6050 struct kvm_msr_filter_range *user_range)
6052 unsigned long *bitmap = NULL;
6055 if (!user_range->nmsrs)
6058 if (user_range->flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE))
6061 if (!user_range->flags)
6064 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6065 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6068 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6070 return PTR_ERR(bitmap);
6072 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6073 .flags = user_range->flags,
6074 .base = user_range->base,
6075 .nmsrs = user_range->nmsrs,
6079 msr_filter->count++;
6083 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp)
6085 struct kvm_msr_filter __user *user_msr_filter = argp;
6086 struct kvm_x86_msr_filter *new_filter, *old_filter;
6087 struct kvm_msr_filter filter;
6093 if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
6096 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++)
6097 empty &= !filter.ranges[i].nmsrs;
6099 default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY);
6100 if (empty && !default_allow)
6103 new_filter = kvm_alloc_msr_filter(default_allow);
6107 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6108 r = kvm_add_msr_filter(new_filter, &filter.ranges[i]);
6110 kvm_free_msr_filter(new_filter);
6115 mutex_lock(&kvm->lock);
6117 /* The per-VM filter is protected by kvm->lock... */
6118 old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1);
6120 rcu_assign_pointer(kvm->arch.msr_filter, new_filter);
6121 synchronize_srcu(&kvm->srcu);
6123 kvm_free_msr_filter(old_filter);
6125 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6126 mutex_unlock(&kvm->lock);
6131 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
6132 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6134 struct kvm_vcpu *vcpu;
6138 mutex_lock(&kvm->lock);
6139 kvm_for_each_vcpu(i, vcpu, kvm) {
6140 if (!vcpu->arch.pv_time_enabled)
6143 ret = kvm_set_guest_paused(vcpu);
6145 kvm_err("Failed to pause guest VCPU%d: %d\n",
6146 vcpu->vcpu_id, ret);
6150 mutex_unlock(&kvm->lock);
6152 return ret ? NOTIFY_BAD : NOTIFY_DONE;
6155 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6158 case PM_HIBERNATION_PREPARE:
6159 case PM_SUSPEND_PREPARE:
6160 return kvm_arch_suspend_notifier(kvm);
6165 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6167 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6169 struct kvm_clock_data data = { 0 };
6171 get_kvmclock(kvm, &data);
6172 if (copy_to_user(argp, &data, sizeof(data)))
6178 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6180 struct kvm_arch *ka = &kvm->arch;
6181 struct kvm_clock_data data;
6184 if (copy_from_user(&data, argp, sizeof(data)))
6188 * Only KVM_CLOCK_REALTIME is used, but allow passing the
6189 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6191 if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6194 kvm_hv_invalidate_tsc_page(kvm);
6195 kvm_start_pvclock_update(kvm);
6196 pvclock_update_vm_gtod_copy(kvm);
6199 * This pairs with kvm_guest_time_update(): when masterclock is
6200 * in use, we use master_kernel_ns + kvmclock_offset to set
6201 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6202 * is slightly ahead) here we risk going negative on unsigned
6203 * 'system_time' when 'data.clock' is very small.
6205 if (data.flags & KVM_CLOCK_REALTIME) {
6206 u64 now_real_ns = ktime_get_real_ns();
6209 * Avoid stepping the kvmclock backwards.
6211 if (now_real_ns > data.realtime)
6212 data.clock += now_real_ns - data.realtime;
6215 if (ka->use_master_clock)
6216 now_raw_ns = ka->master_kernel_ns;
6218 now_raw_ns = get_kvmclock_base_ns();
6219 ka->kvmclock_offset = data.clock - now_raw_ns;
6220 kvm_end_pvclock_update(kvm);
6224 long kvm_arch_vm_ioctl(struct file *filp,
6225 unsigned int ioctl, unsigned long arg)
6227 struct kvm *kvm = filp->private_data;
6228 void __user *argp = (void __user *)arg;
6231 * This union makes it completely explicit to gcc-3.x
6232 * that these two variables' stack usage should be
6233 * combined, not added together.
6236 struct kvm_pit_state ps;
6237 struct kvm_pit_state2 ps2;
6238 struct kvm_pit_config pit_config;
6242 case KVM_SET_TSS_ADDR:
6243 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
6245 case KVM_SET_IDENTITY_MAP_ADDR: {
6248 mutex_lock(&kvm->lock);
6250 if (kvm->created_vcpus)
6251 goto set_identity_unlock;
6253 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
6254 goto set_identity_unlock;
6255 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
6256 set_identity_unlock:
6257 mutex_unlock(&kvm->lock);
6260 case KVM_SET_NR_MMU_PAGES:
6261 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
6263 case KVM_GET_NR_MMU_PAGES:
6264 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
6266 case KVM_CREATE_IRQCHIP: {
6267 mutex_lock(&kvm->lock);
6270 if (irqchip_in_kernel(kvm))
6271 goto create_irqchip_unlock;
6274 if (kvm->created_vcpus)
6275 goto create_irqchip_unlock;
6277 r = kvm_pic_init(kvm);
6279 goto create_irqchip_unlock;
6281 r = kvm_ioapic_init(kvm);
6283 kvm_pic_destroy(kvm);
6284 goto create_irqchip_unlock;
6287 r = kvm_setup_default_irq_routing(kvm);
6289 kvm_ioapic_destroy(kvm);
6290 kvm_pic_destroy(kvm);
6291 goto create_irqchip_unlock;
6293 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
6295 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
6296 kvm_request_apicv_update(kvm, true, APICV_INHIBIT_REASON_ABSENT);
6297 create_irqchip_unlock:
6298 mutex_unlock(&kvm->lock);
6301 case KVM_CREATE_PIT:
6302 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
6304 case KVM_CREATE_PIT2:
6306 if (copy_from_user(&u.pit_config, argp,
6307 sizeof(struct kvm_pit_config)))
6310 mutex_lock(&kvm->lock);
6313 goto create_pit_unlock;
6315 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
6319 mutex_unlock(&kvm->lock);
6321 case KVM_GET_IRQCHIP: {
6322 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6323 struct kvm_irqchip *chip;
6325 chip = memdup_user(argp, sizeof(*chip));
6332 if (!irqchip_kernel(kvm))
6333 goto get_irqchip_out;
6334 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
6336 goto get_irqchip_out;
6338 if (copy_to_user(argp, chip, sizeof(*chip)))
6339 goto get_irqchip_out;
6345 case KVM_SET_IRQCHIP: {
6346 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6347 struct kvm_irqchip *chip;
6349 chip = memdup_user(argp, sizeof(*chip));
6356 if (!irqchip_kernel(kvm))
6357 goto set_irqchip_out;
6358 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
6365 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
6368 if (!kvm->arch.vpit)
6370 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
6374 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
6381 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
6383 mutex_lock(&kvm->lock);
6385 if (!kvm->arch.vpit)
6387 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
6389 mutex_unlock(&kvm->lock);
6392 case KVM_GET_PIT2: {
6394 if (!kvm->arch.vpit)
6396 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
6400 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
6405 case KVM_SET_PIT2: {
6407 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
6409 mutex_lock(&kvm->lock);
6411 if (!kvm->arch.vpit)
6413 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
6415 mutex_unlock(&kvm->lock);
6418 case KVM_REINJECT_CONTROL: {
6419 struct kvm_reinject_control control;
6421 if (copy_from_user(&control, argp, sizeof(control)))
6424 if (!kvm->arch.vpit)
6426 r = kvm_vm_ioctl_reinject(kvm, &control);
6429 case KVM_SET_BOOT_CPU_ID:
6431 mutex_lock(&kvm->lock);
6432 if (kvm->created_vcpus)
6435 kvm->arch.bsp_vcpu_id = arg;
6436 mutex_unlock(&kvm->lock);
6438 #ifdef CONFIG_KVM_XEN
6439 case KVM_XEN_HVM_CONFIG: {
6440 struct kvm_xen_hvm_config xhc;
6442 if (copy_from_user(&xhc, argp, sizeof(xhc)))
6444 r = kvm_xen_hvm_config(kvm, &xhc);
6447 case KVM_XEN_HVM_GET_ATTR: {
6448 struct kvm_xen_hvm_attr xha;
6451 if (copy_from_user(&xha, argp, sizeof(xha)))
6453 r = kvm_xen_hvm_get_attr(kvm, &xha);
6454 if (!r && copy_to_user(argp, &xha, sizeof(xha)))
6458 case KVM_XEN_HVM_SET_ATTR: {
6459 struct kvm_xen_hvm_attr xha;
6462 if (copy_from_user(&xha, argp, sizeof(xha)))
6464 r = kvm_xen_hvm_set_attr(kvm, &xha);
6469 r = kvm_vm_ioctl_set_clock(kvm, argp);
6472 r = kvm_vm_ioctl_get_clock(kvm, argp);
6474 case KVM_MEMORY_ENCRYPT_OP: {
6476 if (kvm_x86_ops.mem_enc_op)
6477 r = static_call(kvm_x86_mem_enc_op)(kvm, argp);
6480 case KVM_MEMORY_ENCRYPT_REG_REGION: {
6481 struct kvm_enc_region region;
6484 if (copy_from_user(®ion, argp, sizeof(region)))
6488 if (kvm_x86_ops.mem_enc_reg_region)
6489 r = static_call(kvm_x86_mem_enc_reg_region)(kvm, ®ion);
6492 case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
6493 struct kvm_enc_region region;
6496 if (copy_from_user(®ion, argp, sizeof(region)))
6500 if (kvm_x86_ops.mem_enc_unreg_region)
6501 r = static_call(kvm_x86_mem_enc_unreg_region)(kvm, ®ion);
6504 case KVM_HYPERV_EVENTFD: {
6505 struct kvm_hyperv_eventfd hvevfd;
6508 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
6510 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
6513 case KVM_SET_PMU_EVENT_FILTER:
6514 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
6516 case KVM_X86_SET_MSR_FILTER:
6517 r = kvm_vm_ioctl_set_msr_filter(kvm, argp);
6526 static void kvm_init_msr_list(void)
6528 struct x86_pmu_capability x86_pmu;
6532 BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3,
6533 "Please update the fixed PMCs in msrs_to_saved_all[]");
6535 perf_get_x86_pmu_capability(&x86_pmu);
6537 num_msrs_to_save = 0;
6538 num_emulated_msrs = 0;
6539 num_msr_based_features = 0;
6541 for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
6542 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
6546 * Even MSRs that are valid in the host may not be exposed
6547 * to the guests in some cases.
6549 switch (msrs_to_save_all[i]) {
6550 case MSR_IA32_BNDCFGS:
6551 if (!kvm_mpx_supported())
6555 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
6556 !kvm_cpu_cap_has(X86_FEATURE_RDPID))
6559 case MSR_IA32_UMWAIT_CONTROL:
6560 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
6563 case MSR_IA32_RTIT_CTL:
6564 case MSR_IA32_RTIT_STATUS:
6565 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
6568 case MSR_IA32_RTIT_CR3_MATCH:
6569 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6570 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
6573 case MSR_IA32_RTIT_OUTPUT_BASE:
6574 case MSR_IA32_RTIT_OUTPUT_MASK:
6575 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6576 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
6577 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
6580 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
6581 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6582 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
6583 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
6586 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
6587 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
6588 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6591 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
6592 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
6593 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6597 case MSR_IA32_XFD_ERR:
6598 if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
6605 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
6608 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
6609 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
6612 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
6615 for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
6616 struct kvm_msr_entry msr;
6618 msr.index = msr_based_features_all[i];
6619 if (kvm_get_msr_feature(&msr))
6622 msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
6626 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
6634 if (!(lapic_in_kernel(vcpu) &&
6635 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
6636 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
6647 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
6654 if (!(lapic_in_kernel(vcpu) &&
6655 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
6657 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
6659 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
6669 static void kvm_set_segment(struct kvm_vcpu *vcpu,
6670 struct kvm_segment *var, int seg)
6672 static_call(kvm_x86_set_segment)(vcpu, var, seg);
6675 void kvm_get_segment(struct kvm_vcpu *vcpu,
6676 struct kvm_segment *var, int seg)
6678 static_call(kvm_x86_get_segment)(vcpu, var, seg);
6681 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
6682 struct x86_exception *exception)
6684 struct kvm_mmu *mmu = vcpu->arch.mmu;
6687 BUG_ON(!mmu_is_nested(vcpu));
6689 /* NPT walks are always user-walks */
6690 access |= PFERR_USER_MASK;
6691 t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
6696 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
6697 struct x86_exception *exception)
6699 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6701 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6702 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
6704 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
6706 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
6707 struct x86_exception *exception)
6709 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6711 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6712 access |= PFERR_FETCH_MASK;
6713 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
6716 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
6717 struct x86_exception *exception)
6719 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6721 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6722 access |= PFERR_WRITE_MASK;
6723 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
6725 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
6727 /* uses this to access any guest's mapped memory without checking CPL */
6728 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
6729 struct x86_exception *exception)
6731 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6733 return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
6736 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6737 struct kvm_vcpu *vcpu, u32 access,
6738 struct x86_exception *exception)
6740 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6742 int r = X86EMUL_CONTINUE;
6745 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
6746 unsigned offset = addr & (PAGE_SIZE-1);
6747 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
6750 if (gpa == UNMAPPED_GVA)
6751 return X86EMUL_PROPAGATE_FAULT;
6752 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
6755 r = X86EMUL_IO_NEEDED;
6767 /* used for instruction fetching */
6768 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
6769 gva_t addr, void *val, unsigned int bytes,
6770 struct x86_exception *exception)
6772 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6773 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6774 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6778 /* Inline kvm_read_guest_virt_helper for speed. */
6779 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
6781 if (unlikely(gpa == UNMAPPED_GVA))
6782 return X86EMUL_PROPAGATE_FAULT;
6784 offset = addr & (PAGE_SIZE-1);
6785 if (WARN_ON(offset + bytes > PAGE_SIZE))
6786 bytes = (unsigned)PAGE_SIZE - offset;
6787 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
6789 if (unlikely(ret < 0))
6790 return X86EMUL_IO_NEEDED;
6792 return X86EMUL_CONTINUE;
6795 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
6796 gva_t addr, void *val, unsigned int bytes,
6797 struct x86_exception *exception)
6799 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6802 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
6803 * is returned, but our callers are not ready for that and they blindly
6804 * call kvm_inject_page_fault. Ensure that they at least do not leak
6805 * uninitialized kernel stack memory into cr2 and error code.
6807 memset(exception, 0, sizeof(*exception));
6808 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
6811 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
6813 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
6814 gva_t addr, void *val, unsigned int bytes,
6815 struct x86_exception *exception, bool system)
6817 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6820 if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6821 access |= PFERR_USER_MASK;
6823 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
6826 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
6827 unsigned long addr, void *val, unsigned int bytes)
6829 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6830 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
6832 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
6835 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6836 struct kvm_vcpu *vcpu, u32 access,
6837 struct x86_exception *exception)
6839 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6841 int r = X86EMUL_CONTINUE;
6844 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
6845 unsigned offset = addr & (PAGE_SIZE-1);
6846 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
6849 if (gpa == UNMAPPED_GVA)
6850 return X86EMUL_PROPAGATE_FAULT;
6851 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
6853 r = X86EMUL_IO_NEEDED;
6865 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
6866 unsigned int bytes, struct x86_exception *exception,
6869 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6870 u32 access = PFERR_WRITE_MASK;
6872 if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6873 access |= PFERR_USER_MASK;
6875 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6879 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
6880 unsigned int bytes, struct x86_exception *exception)
6882 /* kvm_write_guest_virt_system can pull in tons of pages. */
6883 vcpu->arch.l1tf_flush_l1d = true;
6885 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6886 PFERR_WRITE_MASK, exception);
6888 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
6890 static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
6891 void *insn, int insn_len)
6893 return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type,
6897 int handle_ud(struct kvm_vcpu *vcpu)
6899 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
6900 int emul_type = EMULTYPE_TRAP_UD;
6901 char sig[5]; /* ud2; .ascii "kvm" */
6902 struct x86_exception e;
6904 if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0)))
6907 if (force_emulation_prefix &&
6908 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
6909 sig, sizeof(sig), &e) == 0 &&
6910 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
6911 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
6912 emul_type = EMULTYPE_TRAP_UD_FORCED;
6915 return kvm_emulate_instruction(vcpu, emul_type);
6917 EXPORT_SYMBOL_GPL(handle_ud);
6919 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6920 gpa_t gpa, bool write)
6922 /* For APIC access vmexit */
6923 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6926 if (vcpu_match_mmio_gpa(vcpu, gpa)) {
6927 trace_vcpu_match_mmio(gva, gpa, write, true);
6934 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6935 gpa_t *gpa, struct x86_exception *exception,
6938 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6939 u32 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
6940 | (write ? PFERR_WRITE_MASK : 0);
6943 * currently PKRU is only applied to ept enabled guest so
6944 * there is no pkey in EPT page table for L1 guest or EPT
6945 * shadow page table for L2 guest.
6947 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
6948 !permission_fault(vcpu, vcpu->arch.walk_mmu,
6949 vcpu->arch.mmio_access, 0, access))) {
6950 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
6951 (gva & (PAGE_SIZE - 1));
6952 trace_vcpu_match_mmio(gva, *gpa, write, false);
6956 *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
6958 if (*gpa == UNMAPPED_GVA)
6961 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
6964 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
6965 const void *val, int bytes)
6969 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
6972 kvm_page_track_write(vcpu, gpa, val, bytes);
6976 struct read_write_emulator_ops {
6977 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
6979 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
6980 void *val, int bytes);
6981 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6982 int bytes, void *val);
6983 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6984 void *val, int bytes);
6988 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
6990 if (vcpu->mmio_read_completed) {
6991 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
6992 vcpu->mmio_fragments[0].gpa, val);
6993 vcpu->mmio_read_completed = 0;
7000 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7001 void *val, int bytes)
7003 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
7006 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7007 void *val, int bytes)
7009 return emulator_write_phys(vcpu, gpa, val, bytes);
7012 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7014 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7015 return vcpu_mmio_write(vcpu, gpa, bytes, val);
7018 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7019 void *val, int bytes)
7021 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7022 return X86EMUL_IO_NEEDED;
7025 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7026 void *val, int bytes)
7028 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7030 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7031 return X86EMUL_CONTINUE;
7034 static const struct read_write_emulator_ops read_emultor = {
7035 .read_write_prepare = read_prepare,
7036 .read_write_emulate = read_emulate,
7037 .read_write_mmio = vcpu_mmio_read,
7038 .read_write_exit_mmio = read_exit_mmio,
7041 static const struct read_write_emulator_ops write_emultor = {
7042 .read_write_emulate = write_emulate,
7043 .read_write_mmio = write_mmio,
7044 .read_write_exit_mmio = write_exit_mmio,
7048 static int emulator_read_write_onepage(unsigned long addr, void *val,
7050 struct x86_exception *exception,
7051 struct kvm_vcpu *vcpu,
7052 const struct read_write_emulator_ops *ops)
7056 bool write = ops->write;
7057 struct kvm_mmio_fragment *frag;
7058 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7061 * If the exit was due to a NPF we may already have a GPA.
7062 * If the GPA is present, use it to avoid the GVA to GPA table walk.
7063 * Note, this cannot be used on string operations since string
7064 * operation using rep will only have the initial GPA from the NPF
7067 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7068 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7069 gpa = ctxt->gpa_val;
7070 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7072 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7074 return X86EMUL_PROPAGATE_FAULT;
7077 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7078 return X86EMUL_CONTINUE;
7081 * Is this MMIO handled locally?
7083 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7084 if (handled == bytes)
7085 return X86EMUL_CONTINUE;
7091 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7092 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7096 return X86EMUL_CONTINUE;
7099 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7101 void *val, unsigned int bytes,
7102 struct x86_exception *exception,
7103 const struct read_write_emulator_ops *ops)
7105 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7109 if (ops->read_write_prepare &&
7110 ops->read_write_prepare(vcpu, val, bytes))
7111 return X86EMUL_CONTINUE;
7113 vcpu->mmio_nr_fragments = 0;
7115 /* Crossing a page boundary? */
7116 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7119 now = -addr & ~PAGE_MASK;
7120 rc = emulator_read_write_onepage(addr, val, now, exception,
7123 if (rc != X86EMUL_CONTINUE)
7126 if (ctxt->mode != X86EMUL_MODE_PROT64)
7132 rc = emulator_read_write_onepage(addr, val, bytes, exception,
7134 if (rc != X86EMUL_CONTINUE)
7137 if (!vcpu->mmio_nr_fragments)
7140 gpa = vcpu->mmio_fragments[0].gpa;
7142 vcpu->mmio_needed = 1;
7143 vcpu->mmio_cur_fragment = 0;
7145 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
7146 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
7147 vcpu->run->exit_reason = KVM_EXIT_MMIO;
7148 vcpu->run->mmio.phys_addr = gpa;
7150 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
7153 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
7157 struct x86_exception *exception)
7159 return emulator_read_write(ctxt, addr, val, bytes,
7160 exception, &read_emultor);
7163 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
7167 struct x86_exception *exception)
7169 return emulator_read_write(ctxt, addr, (void *)val, bytes,
7170 exception, &write_emultor);
7173 #define CMPXCHG_TYPE(t, ptr, old, new) \
7174 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
7176 #ifdef CONFIG_X86_64
7177 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
7179 # define CMPXCHG64(ptr, old, new) \
7180 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
7183 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
7188 struct x86_exception *exception)
7190 struct kvm_host_map map;
7191 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7197 /* guests cmpxchg8b have to be emulated atomically */
7198 if (bytes > 8 || (bytes & (bytes - 1)))
7201 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
7203 if (gpa == UNMAPPED_GVA ||
7204 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7208 * Emulate the atomic as a straight write to avoid #AC if SLD is
7209 * enabled in the host and the access splits a cache line.
7211 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
7212 page_line_mask = ~(cache_line_size() - 1);
7214 page_line_mask = PAGE_MASK;
7216 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
7219 if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
7222 kaddr = map.hva + offset_in_page(gpa);
7226 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
7229 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
7232 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
7235 exchanged = CMPXCHG64(kaddr, old, new);
7241 kvm_vcpu_unmap(vcpu, &map, true);
7244 return X86EMUL_CMPXCHG_FAILED;
7246 kvm_page_track_write(vcpu, gpa, new, bytes);
7248 return X86EMUL_CONTINUE;
7251 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
7253 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
7256 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
7260 for (i = 0; i < vcpu->arch.pio.count; i++) {
7261 if (vcpu->arch.pio.in)
7262 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
7263 vcpu->arch.pio.size, pd);
7265 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
7266 vcpu->arch.pio.port, vcpu->arch.pio.size,
7270 pd += vcpu->arch.pio.size;
7275 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
7276 unsigned short port,
7277 unsigned int count, bool in)
7279 vcpu->arch.pio.port = port;
7280 vcpu->arch.pio.in = in;
7281 vcpu->arch.pio.count = count;
7282 vcpu->arch.pio.size = size;
7284 if (!kernel_pio(vcpu, vcpu->arch.pio_data))
7287 vcpu->run->exit_reason = KVM_EXIT_IO;
7288 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
7289 vcpu->run->io.size = size;
7290 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
7291 vcpu->run->io.count = count;
7292 vcpu->run->io.port = port;
7297 static int __emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7298 unsigned short port, unsigned int count)
7300 WARN_ON(vcpu->arch.pio.count);
7301 memset(vcpu->arch.pio_data, 0, size * count);
7302 return emulator_pio_in_out(vcpu, size, port, count, true);
7305 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
7307 int size = vcpu->arch.pio.size;
7308 unsigned count = vcpu->arch.pio.count;
7309 memcpy(val, vcpu->arch.pio_data, size * count);
7310 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
7311 vcpu->arch.pio.count = 0;
7314 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7315 unsigned short port, void *val, unsigned int count)
7317 if (vcpu->arch.pio.count) {
7319 * Complete a previous iteration that required userspace I/O.
7320 * Note, @count isn't guaranteed to match pio.count as userspace
7321 * can modify ECX before rerunning the vCPU. Ignore any such
7322 * shenanigans as KVM doesn't support modifying the rep count,
7323 * and the emulator ensures @count doesn't overflow the buffer.
7326 int r = __emulator_pio_in(vcpu, size, port, count);
7330 /* Results already available, fall through. */
7333 complete_emulator_pio_in(vcpu, val);
7337 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
7338 int size, unsigned short port, void *val,
7341 return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
7345 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
7346 unsigned short port, const void *val,
7351 memcpy(vcpu->arch.pio_data, val, size * count);
7352 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
7353 ret = emulator_pio_in_out(vcpu, size, port, count, false);
7355 vcpu->arch.pio.count = 0;
7360 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
7361 int size, unsigned short port,
7362 const void *val, unsigned int count)
7364 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
7367 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
7369 return static_call(kvm_x86_get_segment_base)(vcpu, seg);
7372 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
7374 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
7377 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
7379 if (!need_emulate_wbinvd(vcpu))
7380 return X86EMUL_CONTINUE;
7382 if (static_call(kvm_x86_has_wbinvd_exit)()) {
7383 int cpu = get_cpu();
7385 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
7386 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
7387 wbinvd_ipi, NULL, 1);
7389 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
7392 return X86EMUL_CONTINUE;
7395 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
7397 kvm_emulate_wbinvd_noskip(vcpu);
7398 return kvm_skip_emulated_instruction(vcpu);
7400 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
7404 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
7406 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
7409 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
7410 unsigned long *dest)
7412 kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
7415 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
7416 unsigned long value)
7419 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
7422 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
7424 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
7427 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
7429 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7430 unsigned long value;
7434 value = kvm_read_cr0(vcpu);
7437 value = vcpu->arch.cr2;
7440 value = kvm_read_cr3(vcpu);
7443 value = kvm_read_cr4(vcpu);
7446 value = kvm_get_cr8(vcpu);
7449 kvm_err("%s: unexpected cr %u\n", __func__, cr);
7456 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
7458 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7463 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
7466 vcpu->arch.cr2 = val;
7469 res = kvm_set_cr3(vcpu, val);
7472 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
7475 res = kvm_set_cr8(vcpu, val);
7478 kvm_err("%s: unexpected cr %u\n", __func__, cr);
7485 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
7487 return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
7490 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7492 static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
7495 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7497 static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
7500 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7502 static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
7505 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7507 static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
7510 static unsigned long emulator_get_cached_segment_base(
7511 struct x86_emulate_ctxt *ctxt, int seg)
7513 return get_segment_base(emul_to_vcpu(ctxt), seg);
7516 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
7517 struct desc_struct *desc, u32 *base3,
7520 struct kvm_segment var;
7522 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
7523 *selector = var.selector;
7526 memset(desc, 0, sizeof(*desc));
7534 set_desc_limit(desc, var.limit);
7535 set_desc_base(desc, (unsigned long)var.base);
7536 #ifdef CONFIG_X86_64
7538 *base3 = var.base >> 32;
7540 desc->type = var.type;
7542 desc->dpl = var.dpl;
7543 desc->p = var.present;
7544 desc->avl = var.avl;
7552 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
7553 struct desc_struct *desc, u32 base3,
7556 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7557 struct kvm_segment var;
7559 var.selector = selector;
7560 var.base = get_desc_base(desc);
7561 #ifdef CONFIG_X86_64
7562 var.base |= ((u64)base3) << 32;
7564 var.limit = get_desc_limit(desc);
7566 var.limit = (var.limit << 12) | 0xfff;
7567 var.type = desc->type;
7568 var.dpl = desc->dpl;
7573 var.avl = desc->avl;
7574 var.present = desc->p;
7575 var.unusable = !var.present;
7578 kvm_set_segment(vcpu, &var, seg);
7582 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
7583 u32 msr_index, u64 *pdata)
7585 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7588 r = kvm_get_msr(vcpu, msr_index, pdata);
7590 if (r && kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
7591 complete_emulated_rdmsr, r)) {
7592 /* Bounce to user space */
7593 return X86EMUL_IO_NEEDED;
7599 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
7600 u32 msr_index, u64 data)
7602 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7605 r = kvm_set_msr(vcpu, msr_index, data);
7607 if (r && kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
7608 complete_emulated_msr_access, r)) {
7609 /* Bounce to user space */
7610 return X86EMUL_IO_NEEDED;
7616 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
7618 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7620 return vcpu->arch.smbase;
7623 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
7625 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7627 vcpu->arch.smbase = smbase;
7630 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
7633 if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc))
7638 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
7639 u32 pmc, u64 *pdata)
7641 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
7644 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
7646 emul_to_vcpu(ctxt)->arch.halt_request = 1;
7649 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
7650 struct x86_instruction_info *info,
7651 enum x86_intercept_stage stage)
7653 return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
7657 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
7658 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
7661 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
7664 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
7666 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
7669 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
7671 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
7674 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
7676 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
7679 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
7681 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
7684 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
7686 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
7689 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
7691 static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
7694 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
7696 return emul_to_vcpu(ctxt)->arch.hflags;
7699 static void emulator_exiting_smm(struct x86_emulate_ctxt *ctxt)
7701 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7703 kvm_smm_changed(vcpu, false);
7706 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt,
7707 const char *smstate)
7709 return static_call(kvm_x86_leave_smm)(emul_to_vcpu(ctxt), smstate);
7712 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
7714 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
7717 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
7719 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
7722 static const struct x86_emulate_ops emulate_ops = {
7723 .read_gpr = emulator_read_gpr,
7724 .write_gpr = emulator_write_gpr,
7725 .read_std = emulator_read_std,
7726 .write_std = emulator_write_std,
7727 .read_phys = kvm_read_guest_phys_system,
7728 .fetch = kvm_fetch_guest_virt,
7729 .read_emulated = emulator_read_emulated,
7730 .write_emulated = emulator_write_emulated,
7731 .cmpxchg_emulated = emulator_cmpxchg_emulated,
7732 .invlpg = emulator_invlpg,
7733 .pio_in_emulated = emulator_pio_in_emulated,
7734 .pio_out_emulated = emulator_pio_out_emulated,
7735 .get_segment = emulator_get_segment,
7736 .set_segment = emulator_set_segment,
7737 .get_cached_segment_base = emulator_get_cached_segment_base,
7738 .get_gdt = emulator_get_gdt,
7739 .get_idt = emulator_get_idt,
7740 .set_gdt = emulator_set_gdt,
7741 .set_idt = emulator_set_idt,
7742 .get_cr = emulator_get_cr,
7743 .set_cr = emulator_set_cr,
7744 .cpl = emulator_get_cpl,
7745 .get_dr = emulator_get_dr,
7746 .set_dr = emulator_set_dr,
7747 .get_smbase = emulator_get_smbase,
7748 .set_smbase = emulator_set_smbase,
7749 .set_msr = emulator_set_msr,
7750 .get_msr = emulator_get_msr,
7751 .check_pmc = emulator_check_pmc,
7752 .read_pmc = emulator_read_pmc,
7753 .halt = emulator_halt,
7754 .wbinvd = emulator_wbinvd,
7755 .fix_hypercall = emulator_fix_hypercall,
7756 .intercept = emulator_intercept,
7757 .get_cpuid = emulator_get_cpuid,
7758 .guest_has_long_mode = emulator_guest_has_long_mode,
7759 .guest_has_movbe = emulator_guest_has_movbe,
7760 .guest_has_fxsr = emulator_guest_has_fxsr,
7761 .set_nmi_mask = emulator_set_nmi_mask,
7762 .get_hflags = emulator_get_hflags,
7763 .exiting_smm = emulator_exiting_smm,
7764 .leave_smm = emulator_leave_smm,
7765 .triple_fault = emulator_triple_fault,
7766 .set_xcr = emulator_set_xcr,
7769 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
7771 u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
7773 * an sti; sti; sequence only disable interrupts for the first
7774 * instruction. So, if the last instruction, be it emulated or
7775 * not, left the system with the INT_STI flag enabled, it
7776 * means that the last instruction is an sti. We should not
7777 * leave the flag on in this case. The same goes for mov ss
7779 if (int_shadow & mask)
7781 if (unlikely(int_shadow || mask)) {
7782 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
7784 kvm_make_request(KVM_REQ_EVENT, vcpu);
7788 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
7790 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7791 if (ctxt->exception.vector == PF_VECTOR)
7792 return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
7794 if (ctxt->exception.error_code_valid)
7795 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
7796 ctxt->exception.error_code);
7798 kvm_queue_exception(vcpu, ctxt->exception.vector);
7802 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
7804 struct x86_emulate_ctxt *ctxt;
7806 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
7808 pr_err("kvm: failed to allocate vcpu's emulator\n");
7813 ctxt->ops = &emulate_ops;
7814 vcpu->arch.emulate_ctxt = ctxt;
7819 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
7821 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7824 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
7826 ctxt->gpa_available = false;
7827 ctxt->eflags = kvm_get_rflags(vcpu);
7828 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
7830 ctxt->eip = kvm_rip_read(vcpu);
7831 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
7832 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
7833 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
7834 cs_db ? X86EMUL_MODE_PROT32 :
7835 X86EMUL_MODE_PROT16;
7836 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
7837 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
7838 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
7840 ctxt->interruptibility = 0;
7841 ctxt->have_exception = false;
7842 ctxt->exception.vector = -1;
7843 ctxt->perm_ok = false;
7845 init_decode_cache(ctxt);
7846 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7849 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
7851 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7854 init_emulate_ctxt(vcpu);
7858 ctxt->_eip = ctxt->eip + inc_eip;
7859 ret = emulate_int_real(ctxt, irq);
7861 if (ret != X86EMUL_CONTINUE) {
7862 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7864 ctxt->eip = ctxt->_eip;
7865 kvm_rip_write(vcpu, ctxt->eip);
7866 kvm_set_rflags(vcpu, ctxt->eflags);
7869 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
7871 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
7872 u8 ndata, u8 *insn_bytes, u8 insn_size)
7874 struct kvm_run *run = vcpu->run;
7879 * Zero the whole array used to retrieve the exit info, as casting to
7880 * u32 for select entries will leave some chunks uninitialized.
7882 memset(&info, 0, sizeof(info));
7884 static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1],
7885 &info[2], (u32 *)&info[3],
7888 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7889 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
7892 * There's currently space for 13 entries, but 5 are used for the exit
7893 * reason and info. Restrict to 4 to reduce the maintenance burden
7894 * when expanding kvm_run.emulation_failure in the future.
7896 if (WARN_ON_ONCE(ndata > 4))
7899 /* Always include the flags as a 'data' entry. */
7901 run->emulation_failure.flags = 0;
7904 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
7905 sizeof(run->emulation_failure.insn_bytes) != 16));
7907 run->emulation_failure.flags |=
7908 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
7909 run->emulation_failure.insn_size = insn_size;
7910 memset(run->emulation_failure.insn_bytes, 0x90,
7911 sizeof(run->emulation_failure.insn_bytes));
7912 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
7915 memcpy(&run->internal.data[info_start], info, sizeof(info));
7916 memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
7917 ndata * sizeof(data[0]));
7919 run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
7922 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
7924 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7926 prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
7927 ctxt->fetch.end - ctxt->fetch.data);
7930 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
7933 prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
7935 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
7937 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
7939 __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
7941 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
7943 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
7945 struct kvm *kvm = vcpu->kvm;
7947 ++vcpu->stat.insn_emulation_fail;
7948 trace_kvm_emulate_insn_failed(vcpu);
7950 if (emulation_type & EMULTYPE_VMWARE_GP) {
7951 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7955 if (kvm->arch.exit_on_emulation_error ||
7956 (emulation_type & EMULTYPE_SKIP)) {
7957 prepare_emulation_ctxt_failure_exit(vcpu);
7961 kvm_queue_exception(vcpu, UD_VECTOR);
7963 if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
7964 prepare_emulation_ctxt_failure_exit(vcpu);
7971 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7972 bool write_fault_to_shadow_pgtable,
7975 gpa_t gpa = cr2_or_gpa;
7978 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7981 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7982 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7985 if (!vcpu->arch.mmu->direct_map) {
7987 * Write permission should be allowed since only
7988 * write access need to be emulated.
7990 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7993 * If the mapping is invalid in guest, let cpu retry
7994 * it to generate fault.
7996 if (gpa == UNMAPPED_GVA)
8001 * Do not retry the unhandleable instruction if it faults on the
8002 * readonly host memory, otherwise it will goto a infinite loop:
8003 * retry instruction -> write #PF -> emulation fail -> retry
8004 * instruction -> ...
8006 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
8009 * If the instruction failed on the error pfn, it can not be fixed,
8010 * report the error to userspace.
8012 if (is_error_noslot_pfn(pfn))
8015 kvm_release_pfn_clean(pfn);
8017 /* The instructions are well-emulated on direct mmu. */
8018 if (vcpu->arch.mmu->direct_map) {
8019 unsigned int indirect_shadow_pages;
8021 write_lock(&vcpu->kvm->mmu_lock);
8022 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
8023 write_unlock(&vcpu->kvm->mmu_lock);
8025 if (indirect_shadow_pages)
8026 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8032 * if emulation was due to access to shadowed page table
8033 * and it failed try to unshadow page and re-enter the
8034 * guest to let CPU execute the instruction.
8036 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8039 * If the access faults on its page table, it can not
8040 * be fixed by unprotecting shadow page and it should
8041 * be reported to userspace.
8043 return !write_fault_to_shadow_pgtable;
8046 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
8047 gpa_t cr2_or_gpa, int emulation_type)
8049 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8050 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
8052 last_retry_eip = vcpu->arch.last_retry_eip;
8053 last_retry_addr = vcpu->arch.last_retry_addr;
8056 * If the emulation is caused by #PF and it is non-page_table
8057 * writing instruction, it means the VM-EXIT is caused by shadow
8058 * page protected, we can zap the shadow page and retry this
8059 * instruction directly.
8061 * Note: if the guest uses a non-page-table modifying instruction
8062 * on the PDE that points to the instruction, then we will unmap
8063 * the instruction and go to an infinite loop. So, we cache the
8064 * last retried eip and the last fault address, if we meet the eip
8065 * and the address again, we can break out of the potential infinite
8068 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
8070 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8073 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8074 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8077 if (x86_page_table_writing_insn(ctxt))
8080 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
8083 vcpu->arch.last_retry_eip = ctxt->eip;
8084 vcpu->arch.last_retry_addr = cr2_or_gpa;
8086 if (!vcpu->arch.mmu->direct_map)
8087 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8089 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8094 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8095 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8097 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm)
8099 trace_kvm_smm_transition(vcpu->vcpu_id, vcpu->arch.smbase, entering_smm);
8102 vcpu->arch.hflags |= HF_SMM_MASK;
8104 vcpu->arch.hflags &= ~(HF_SMM_MASK | HF_SMM_INSIDE_NMI_MASK);
8106 /* Process a latched INIT or SMI, if any. */
8107 kvm_make_request(KVM_REQ_EVENT, vcpu);
8110 * Even if KVM_SET_SREGS2 loaded PDPTRs out of band,
8111 * on SMM exit we still need to reload them from
8114 vcpu->arch.pdptrs_from_userspace = false;
8117 kvm_mmu_reset_context(vcpu);
8120 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8129 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8130 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8135 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8137 struct kvm_run *kvm_run = vcpu->run;
8139 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8140 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8141 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8142 kvm_run->debug.arch.exception = DB_VECTOR;
8143 kvm_run->exit_reason = KVM_EXIT_DEBUG;
8146 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8150 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8152 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8155 r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
8159 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8162 * rflags is the old, "raw" value of the flags. The new value has
8163 * not been saved yet.
8165 * This is correct even for TF set by the guest, because "the
8166 * processor will not generate this exception after the instruction
8167 * that sets the TF flag".
8169 if (unlikely(rflags & X86_EFLAGS_TF))
8170 r = kvm_vcpu_do_singlestep(vcpu);
8173 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8175 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
8177 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
8178 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
8179 struct kvm_run *kvm_run = vcpu->run;
8180 unsigned long eip = kvm_get_linear_rip(vcpu);
8181 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8182 vcpu->arch.guest_debug_dr7,
8186 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
8187 kvm_run->debug.arch.pc = eip;
8188 kvm_run->debug.arch.exception = DB_VECTOR;
8189 kvm_run->exit_reason = KVM_EXIT_DEBUG;
8195 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
8196 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
8197 unsigned long eip = kvm_get_linear_rip(vcpu);
8198 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8203 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
8212 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
8214 switch (ctxt->opcode_len) {
8221 case 0xe6: /* OUT */
8225 case 0x6c: /* INS */
8227 case 0x6e: /* OUTS */
8234 case 0x33: /* RDPMC */
8244 * Decode to be emulated instruction. Return EMULATION_OK if success.
8246 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
8247 void *insn, int insn_len)
8249 int r = EMULATION_OK;
8250 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8252 init_emulate_ctxt(vcpu);
8255 * We will reenter on the same instruction since we do not set
8256 * complete_userspace_io. This does not handle watchpoints yet,
8257 * those would be handled in the emulate_ops.
8259 if (!(emulation_type & EMULTYPE_SKIP) &&
8260 kvm_vcpu_check_breakpoint(vcpu, &r))
8263 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
8265 trace_kvm_emulate_insn_start(vcpu);
8266 ++vcpu->stat.insn_emulation;
8270 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
8272 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8273 int emulation_type, void *insn, int insn_len)
8276 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8277 bool writeback = true;
8278 bool write_fault_to_spt;
8280 if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len)))
8283 vcpu->arch.l1tf_flush_l1d = true;
8286 * Clear write_fault_to_shadow_pgtable here to ensure it is
8289 write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
8290 vcpu->arch.write_fault_to_shadow_pgtable = false;
8292 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
8293 kvm_clear_exception_queue(vcpu);
8295 r = x86_decode_emulated_instruction(vcpu, emulation_type,
8297 if (r != EMULATION_OK) {
8298 if ((emulation_type & EMULTYPE_TRAP_UD) ||
8299 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
8300 kvm_queue_exception(vcpu, UD_VECTOR);
8303 if (reexecute_instruction(vcpu, cr2_or_gpa,
8307 if (ctxt->have_exception) {
8309 * #UD should result in just EMULATION_FAILED, and trap-like
8310 * exception should not be encountered during decode.
8312 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
8313 exception_type(ctxt->exception.vector) == EXCPT_TRAP);
8314 inject_emulated_exception(vcpu);
8317 return handle_emulation_failure(vcpu, emulation_type);
8321 if ((emulation_type & EMULTYPE_VMWARE_GP) &&
8322 !is_vmware_backdoor_opcode(ctxt)) {
8323 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8328 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
8329 * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
8330 * The caller is responsible for updating interruptibility state and
8331 * injecting single-step #DBs.
8333 if (emulation_type & EMULTYPE_SKIP) {
8334 if (ctxt->mode != X86EMUL_MODE_PROT64)
8335 ctxt->eip = (u32)ctxt->_eip;
8337 ctxt->eip = ctxt->_eip;
8339 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
8344 kvm_rip_write(vcpu, ctxt->eip);
8345 if (ctxt->eflags & X86_EFLAGS_RF)
8346 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
8350 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
8353 /* this is needed for vmware backdoor interface to work since it
8354 changes registers values during IO operation */
8355 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
8356 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8357 emulator_invalidate_register_cache(ctxt);
8361 if (emulation_type & EMULTYPE_PF) {
8362 /* Save the faulting GPA (cr2) in the address field */
8363 ctxt->exception.address = cr2_or_gpa;
8365 /* With shadow page tables, cr2 contains a GVA or nGPA. */
8366 if (vcpu->arch.mmu->direct_map) {
8367 ctxt->gpa_available = true;
8368 ctxt->gpa_val = cr2_or_gpa;
8371 /* Sanitize the address out of an abundance of paranoia. */
8372 ctxt->exception.address = 0;
8375 r = x86_emulate_insn(ctxt);
8377 if (r == EMULATION_INTERCEPTED)
8380 if (r == EMULATION_FAILED) {
8381 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
8385 return handle_emulation_failure(vcpu, emulation_type);
8388 if (ctxt->have_exception) {
8390 if (inject_emulated_exception(vcpu))
8392 } else if (vcpu->arch.pio.count) {
8393 if (!vcpu->arch.pio.in) {
8394 /* FIXME: return into emulator if single-stepping. */
8395 vcpu->arch.pio.count = 0;
8398 vcpu->arch.complete_userspace_io = complete_emulated_pio;
8401 } else if (vcpu->mmio_needed) {
8402 ++vcpu->stat.mmio_exits;
8404 if (!vcpu->mmio_is_write)
8407 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8408 } else if (vcpu->arch.complete_userspace_io) {
8411 } else if (r == EMULATION_RESTART)
8418 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8419 toggle_interruptibility(vcpu, ctxt->interruptibility);
8420 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8421 if (!ctxt->have_exception ||
8422 exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
8423 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8424 if (ctxt->is_branch)
8425 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
8426 kvm_rip_write(vcpu, ctxt->eip);
8427 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
8428 r = kvm_vcpu_do_singlestep(vcpu);
8429 if (kvm_x86_ops.update_emulated_instruction)
8430 static_call(kvm_x86_update_emulated_instruction)(vcpu);
8431 __kvm_set_rflags(vcpu, ctxt->eflags);
8435 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
8436 * do nothing, and it will be requested again as soon as
8437 * the shadow expires. But we still need to check here,
8438 * because POPF has no interrupt shadow.
8440 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
8441 kvm_make_request(KVM_REQ_EVENT, vcpu);
8443 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
8448 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
8450 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
8452 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
8454 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
8455 void *insn, int insn_len)
8457 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
8459 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
8461 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
8463 vcpu->arch.pio.count = 0;
8467 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
8469 vcpu->arch.pio.count = 0;
8471 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
8474 return kvm_skip_emulated_instruction(vcpu);
8477 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
8478 unsigned short port)
8480 unsigned long val = kvm_rax_read(vcpu);
8481 int ret = emulator_pio_out(vcpu, size, port, &val, 1);
8487 * Workaround userspace that relies on old KVM behavior of %rip being
8488 * incremented prior to exiting to userspace to handle "OUT 0x7e".
8491 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
8492 vcpu->arch.complete_userspace_io =
8493 complete_fast_pio_out_port_0x7e;
8494 kvm_skip_emulated_instruction(vcpu);
8496 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8497 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
8502 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
8506 /* We should only ever be called with arch.pio.count equal to 1 */
8507 BUG_ON(vcpu->arch.pio.count != 1);
8509 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
8510 vcpu->arch.pio.count = 0;
8514 /* For size less than 4 we merge, else we zero extend */
8515 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
8518 * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
8519 * the copy and tracing
8521 emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
8522 kvm_rax_write(vcpu, val);
8524 return kvm_skip_emulated_instruction(vcpu);
8527 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
8528 unsigned short port)
8533 /* For size less than 4 we merge, else we zero extend */
8534 val = (size < 4) ? kvm_rax_read(vcpu) : 0;
8536 ret = emulator_pio_in(vcpu, size, port, &val, 1);
8538 kvm_rax_write(vcpu, val);
8542 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8543 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
8548 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
8553 ret = kvm_fast_pio_in(vcpu, size, port);
8555 ret = kvm_fast_pio_out(vcpu, size, port);
8556 return ret && kvm_skip_emulated_instruction(vcpu);
8558 EXPORT_SYMBOL_GPL(kvm_fast_pio);
8560 static int kvmclock_cpu_down_prep(unsigned int cpu)
8562 __this_cpu_write(cpu_tsc_khz, 0);
8566 static void tsc_khz_changed(void *data)
8568 struct cpufreq_freqs *freq = data;
8569 unsigned long khz = 0;
8573 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8574 khz = cpufreq_quick_get(raw_smp_processor_id());
8577 __this_cpu_write(cpu_tsc_khz, khz);
8580 #ifdef CONFIG_X86_64
8581 static void kvm_hyperv_tsc_notifier(void)
8586 mutex_lock(&kvm_lock);
8587 list_for_each_entry(kvm, &vm_list, vm_list)
8588 kvm_make_mclock_inprogress_request(kvm);
8590 /* no guest entries from this point */
8591 hyperv_stop_tsc_emulation();
8593 /* TSC frequency always matches when on Hyper-V */
8594 for_each_present_cpu(cpu)
8595 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
8596 kvm_max_guest_tsc_khz = tsc_khz;
8598 list_for_each_entry(kvm, &vm_list, vm_list) {
8599 __kvm_start_pvclock_update(kvm);
8600 pvclock_update_vm_gtod_copy(kvm);
8601 kvm_end_pvclock_update(kvm);
8604 mutex_unlock(&kvm_lock);
8608 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
8611 struct kvm_vcpu *vcpu;
8616 * We allow guests to temporarily run on slowing clocks,
8617 * provided we notify them after, or to run on accelerating
8618 * clocks, provided we notify them before. Thus time never
8621 * However, we have a problem. We can't atomically update
8622 * the frequency of a given CPU from this function; it is
8623 * merely a notifier, which can be called from any CPU.
8624 * Changing the TSC frequency at arbitrary points in time
8625 * requires a recomputation of local variables related to
8626 * the TSC for each VCPU. We must flag these local variables
8627 * to be updated and be sure the update takes place with the
8628 * new frequency before any guests proceed.
8630 * Unfortunately, the combination of hotplug CPU and frequency
8631 * change creates an intractable locking scenario; the order
8632 * of when these callouts happen is undefined with respect to
8633 * CPU hotplug, and they can race with each other. As such,
8634 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
8635 * undefined; you can actually have a CPU frequency change take
8636 * place in between the computation of X and the setting of the
8637 * variable. To protect against this problem, all updates of
8638 * the per_cpu tsc_khz variable are done in an interrupt
8639 * protected IPI, and all callers wishing to update the value
8640 * must wait for a synchronous IPI to complete (which is trivial
8641 * if the caller is on the CPU already). This establishes the
8642 * necessary total order on variable updates.
8644 * Note that because a guest time update may take place
8645 * anytime after the setting of the VCPU's request bit, the
8646 * correct TSC value must be set before the request. However,
8647 * to ensure the update actually makes it to any guest which
8648 * starts running in hardware virtualization between the set
8649 * and the acquisition of the spinlock, we must also ping the
8650 * CPU after setting the request bit.
8654 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8656 mutex_lock(&kvm_lock);
8657 list_for_each_entry(kvm, &vm_list, vm_list) {
8658 kvm_for_each_vcpu(i, vcpu, kvm) {
8659 if (vcpu->cpu != cpu)
8661 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8662 if (vcpu->cpu != raw_smp_processor_id())
8666 mutex_unlock(&kvm_lock);
8668 if (freq->old < freq->new && send_ipi) {
8670 * We upscale the frequency. Must make the guest
8671 * doesn't see old kvmclock values while running with
8672 * the new frequency, otherwise we risk the guest sees
8673 * time go backwards.
8675 * In case we update the frequency for another cpu
8676 * (which might be in guest context) send an interrupt
8677 * to kick the cpu out of guest context. Next time
8678 * guest context is entered kvmclock will be updated,
8679 * so the guest will not see stale values.
8681 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8685 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
8688 struct cpufreq_freqs *freq = data;
8691 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
8693 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
8696 for_each_cpu(cpu, freq->policy->cpus)
8697 __kvmclock_cpufreq_notifier(freq, cpu);
8702 static struct notifier_block kvmclock_cpufreq_notifier_block = {
8703 .notifier_call = kvmclock_cpufreq_notifier
8706 static int kvmclock_cpu_online(unsigned int cpu)
8708 tsc_khz_changed(NULL);
8712 static void kvm_timer_init(void)
8714 max_tsc_khz = tsc_khz;
8716 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
8717 #ifdef CONFIG_CPU_FREQ
8718 struct cpufreq_policy *policy;
8722 policy = cpufreq_cpu_get(cpu);
8724 if (policy->cpuinfo.max_freq)
8725 max_tsc_khz = policy->cpuinfo.max_freq;
8726 cpufreq_cpu_put(policy);
8730 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
8731 CPUFREQ_TRANSITION_NOTIFIER);
8734 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
8735 kvmclock_cpu_online, kvmclock_cpu_down_prep);
8738 #ifdef CONFIG_X86_64
8739 static void pvclock_gtod_update_fn(struct work_struct *work)
8742 struct kvm_vcpu *vcpu;
8745 mutex_lock(&kvm_lock);
8746 list_for_each_entry(kvm, &vm_list, vm_list)
8747 kvm_for_each_vcpu(i, vcpu, kvm)
8748 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8749 atomic_set(&kvm_guest_has_master_clock, 0);
8750 mutex_unlock(&kvm_lock);
8753 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
8756 * Indirection to move queue_work() out of the tk_core.seq write held
8757 * region to prevent possible deadlocks against time accessors which
8758 * are invoked with work related locks held.
8760 static void pvclock_irq_work_fn(struct irq_work *w)
8762 queue_work(system_long_wq, &pvclock_gtod_work);
8765 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
8768 * Notification about pvclock gtod data update.
8770 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
8773 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
8774 struct timekeeper *tk = priv;
8776 update_pvclock_gtod(tk);
8779 * Disable master clock if host does not trust, or does not use,
8780 * TSC based clocksource. Delegate queue_work() to irq_work as
8781 * this is invoked with tk_core.seq write held.
8783 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
8784 atomic_read(&kvm_guest_has_master_clock) != 0)
8785 irq_work_queue(&pvclock_irq_work);
8789 static struct notifier_block pvclock_gtod_notifier = {
8790 .notifier_call = pvclock_gtod_notify,
8794 int kvm_arch_init(void *opaque)
8796 struct kvm_x86_init_ops *ops = opaque;
8799 if (kvm_x86_ops.hardware_enable) {
8800 pr_err("kvm: already loaded vendor module '%s'\n", kvm_x86_ops.name);
8805 if (!ops->cpu_has_kvm_support()) {
8806 pr_err_ratelimited("kvm: no hardware support for '%s'\n",
8807 ops->runtime_ops->name);
8811 if (ops->disabled_by_bios()) {
8812 pr_err_ratelimited("kvm: support for '%s' disabled by bios\n",
8813 ops->runtime_ops->name);
8819 * KVM explicitly assumes that the guest has an FPU and
8820 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
8821 * vCPU's FPU state as a fxregs_state struct.
8823 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
8824 printk(KERN_ERR "kvm: inadequate fpu\n");
8831 x86_emulator_cache = kvm_alloc_emulator_cache();
8832 if (!x86_emulator_cache) {
8833 pr_err("kvm: failed to allocate cache for x86 emulator\n");
8837 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
8838 if (!user_return_msrs) {
8839 printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
8840 goto out_free_x86_emulator_cache;
8842 kvm_nr_uret_msrs = 0;
8844 r = kvm_mmu_module_init();
8846 goto out_free_percpu;
8850 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
8851 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
8852 supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
8855 if (pi_inject_timer == -1)
8856 pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
8857 #ifdef CONFIG_X86_64
8858 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
8860 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8861 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
8867 free_percpu(user_return_msrs);
8868 out_free_x86_emulator_cache:
8869 kmem_cache_destroy(x86_emulator_cache);
8874 void kvm_arch_exit(void)
8876 #ifdef CONFIG_X86_64
8877 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8878 clear_hv_tscchange_cb();
8882 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8883 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
8884 CPUFREQ_TRANSITION_NOTIFIER);
8885 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
8886 #ifdef CONFIG_X86_64
8887 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
8888 irq_work_sync(&pvclock_irq_work);
8889 cancel_work_sync(&pvclock_gtod_work);
8891 kvm_x86_ops.hardware_enable = NULL;
8892 kvm_mmu_module_exit();
8893 free_percpu(user_return_msrs);
8894 kmem_cache_destroy(x86_emulator_cache);
8895 #ifdef CONFIG_KVM_XEN
8896 static_key_deferred_flush(&kvm_xen_enabled);
8897 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
8901 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
8904 * The vCPU has halted, e.g. executed HLT. Update the run state if the
8905 * local APIC is in-kernel, the run loop will detect the non-runnable
8906 * state and halt the vCPU. Exit to userspace if the local APIC is
8907 * managed by userspace, in which case userspace is responsible for
8908 * handling wake events.
8910 ++vcpu->stat.halt_exits;
8911 if (lapic_in_kernel(vcpu)) {
8912 vcpu->arch.mp_state = state;
8915 vcpu->run->exit_reason = reason;
8920 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
8922 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
8924 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
8926 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
8928 int ret = kvm_skip_emulated_instruction(vcpu);
8930 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
8931 * KVM_EXIT_DEBUG here.
8933 return kvm_emulate_halt_noskip(vcpu) && ret;
8935 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
8937 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
8939 int ret = kvm_skip_emulated_instruction(vcpu);
8941 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
8942 KVM_EXIT_AP_RESET_HOLD) && ret;
8944 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
8946 #ifdef CONFIG_X86_64
8947 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
8948 unsigned long clock_type)
8950 struct kvm_clock_pairing clock_pairing;
8951 struct timespec64 ts;
8955 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
8956 return -KVM_EOPNOTSUPP;
8959 * When tsc is in permanent catchup mode guests won't be able to use
8960 * pvclock_read_retry loop to get consistent view of pvclock
8962 if (vcpu->arch.tsc_always_catchup)
8963 return -KVM_EOPNOTSUPP;
8965 if (!kvm_get_walltime_and_clockread(&ts, &cycle))
8966 return -KVM_EOPNOTSUPP;
8968 clock_pairing.sec = ts.tv_sec;
8969 clock_pairing.nsec = ts.tv_nsec;
8970 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
8971 clock_pairing.flags = 0;
8972 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
8975 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
8976 sizeof(struct kvm_clock_pairing)))
8984 * kvm_pv_kick_cpu_op: Kick a vcpu.
8986 * @apicid - apicid of vcpu to be kicked.
8988 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
8990 struct kvm_lapic_irq lapic_irq;
8992 lapic_irq.shorthand = APIC_DEST_NOSHORT;
8993 lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
8994 lapic_irq.level = 0;
8995 lapic_irq.dest_id = apicid;
8996 lapic_irq.msi_redir_hint = false;
8998 lapic_irq.delivery_mode = APIC_DM_REMRD;
8999 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
9002 bool kvm_apicv_activated(struct kvm *kvm)
9004 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
9006 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
9008 static void kvm_apicv_init(struct kvm *kvm)
9010 init_rwsem(&kvm->arch.apicv_update_lock);
9012 set_bit(APICV_INHIBIT_REASON_ABSENT,
9013 &kvm->arch.apicv_inhibit_reasons);
9015 set_bit(APICV_INHIBIT_REASON_DISABLE,
9016 &kvm->arch.apicv_inhibit_reasons);
9019 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
9021 struct kvm_vcpu *target = NULL;
9022 struct kvm_apic_map *map;
9024 vcpu->stat.directed_yield_attempted++;
9026 if (single_task_running())
9030 map = rcu_dereference(vcpu->kvm->arch.apic_map);
9032 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
9033 target = map->phys_map[dest_id]->vcpu;
9037 if (!target || !READ_ONCE(target->ready))
9040 /* Ignore requests to yield to self */
9044 if (kvm_vcpu_yield_to(target) <= 0)
9047 vcpu->stat.directed_yield_successful++;
9053 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
9055 u64 ret = vcpu->run->hypercall.ret;
9057 if (!is_64_bit_mode(vcpu))
9059 kvm_rax_write(vcpu, ret);
9060 ++vcpu->stat.hypercalls;
9061 return kvm_skip_emulated_instruction(vcpu);
9064 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
9066 unsigned long nr, a0, a1, a2, a3, ret;
9069 if (kvm_xen_hypercall_enabled(vcpu->kvm))
9070 return kvm_xen_hypercall(vcpu);
9072 if (kvm_hv_hypercall_enabled(vcpu))
9073 return kvm_hv_hypercall(vcpu);
9075 nr = kvm_rax_read(vcpu);
9076 a0 = kvm_rbx_read(vcpu);
9077 a1 = kvm_rcx_read(vcpu);
9078 a2 = kvm_rdx_read(vcpu);
9079 a3 = kvm_rsi_read(vcpu);
9081 trace_kvm_hypercall(nr, a0, a1, a2, a3);
9083 op_64_bit = is_64_bit_hypercall(vcpu);
9092 if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
9100 case KVM_HC_VAPIC_POLL_IRQ:
9103 case KVM_HC_KICK_CPU:
9104 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
9107 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
9108 kvm_sched_yield(vcpu, a1);
9111 #ifdef CONFIG_X86_64
9112 case KVM_HC_CLOCK_PAIRING:
9113 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
9116 case KVM_HC_SEND_IPI:
9117 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
9120 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
9122 case KVM_HC_SCHED_YIELD:
9123 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
9126 kvm_sched_yield(vcpu, a0);
9129 case KVM_HC_MAP_GPA_RANGE: {
9130 u64 gpa = a0, npages = a1, attrs = a2;
9133 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
9136 if (!PAGE_ALIGNED(gpa) || !npages ||
9137 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
9142 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL;
9143 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE;
9144 vcpu->run->hypercall.args[0] = gpa;
9145 vcpu->run->hypercall.args[1] = npages;
9146 vcpu->run->hypercall.args[2] = attrs;
9147 vcpu->run->hypercall.longmode = op_64_bit;
9148 vcpu->arch.complete_userspace_io = complete_hypercall_exit;
9158 kvm_rax_write(vcpu, ret);
9160 ++vcpu->stat.hypercalls;
9161 return kvm_skip_emulated_instruction(vcpu);
9163 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
9165 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
9167 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
9168 char instruction[3];
9169 unsigned long rip = kvm_rip_read(vcpu);
9171 static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
9173 return emulator_write_emulated(ctxt, rip, instruction, 3,
9177 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
9179 return vcpu->run->request_interrupt_window &&
9180 likely(!pic_in_kernel(vcpu->kvm));
9183 /* Called within kvm->srcu read side. */
9184 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
9186 struct kvm_run *kvm_run = vcpu->run;
9188 kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu);
9189 kvm_run->cr8 = kvm_get_cr8(vcpu);
9190 kvm_run->apic_base = kvm_get_apic_base(vcpu);
9192 kvm_run->ready_for_interrupt_injection =
9193 pic_in_kernel(vcpu->kvm) ||
9194 kvm_vcpu_ready_for_interrupt_injection(vcpu);
9197 kvm_run->flags |= KVM_RUN_X86_SMM;
9200 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
9204 if (!kvm_x86_ops.update_cr8_intercept)
9207 if (!lapic_in_kernel(vcpu))
9210 if (vcpu->arch.apicv_active)
9213 if (!vcpu->arch.apic->vapic_addr)
9214 max_irr = kvm_lapic_find_highest_irr(vcpu);
9221 tpr = kvm_lapic_get_cr8(vcpu);
9223 static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
9227 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
9229 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9230 kvm_x86_ops.nested_ops->triple_fault(vcpu);
9234 return kvm_x86_ops.nested_ops->check_events(vcpu);
9237 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
9239 if (vcpu->arch.exception.error_code && !is_protmode(vcpu))
9240 vcpu->arch.exception.error_code = false;
9241 static_call(kvm_x86_queue_exception)(vcpu);
9244 static int inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
9247 bool can_inject = true;
9249 /* try to reinject previous events if any */
9251 if (vcpu->arch.exception.injected) {
9252 kvm_inject_exception(vcpu);
9256 * Do not inject an NMI or interrupt if there is a pending
9257 * exception. Exceptions and interrupts are recognized at
9258 * instruction boundaries, i.e. the start of an instruction.
9259 * Trap-like exceptions, e.g. #DB, have higher priority than
9260 * NMIs and interrupts, i.e. traps are recognized before an
9261 * NMI/interrupt that's pending on the same instruction.
9262 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
9263 * priority, but are only generated (pended) during instruction
9264 * execution, i.e. a pending fault-like exception means the
9265 * fault occurred on the *previous* instruction and must be
9266 * serviced prior to recognizing any new events in order to
9267 * fully complete the previous instruction.
9269 else if (!vcpu->arch.exception.pending) {
9270 if (vcpu->arch.nmi_injected) {
9271 static_call(kvm_x86_set_nmi)(vcpu);
9273 } else if (vcpu->arch.interrupt.injected) {
9274 static_call(kvm_x86_set_irq)(vcpu);
9279 WARN_ON_ONCE(vcpu->arch.exception.injected &&
9280 vcpu->arch.exception.pending);
9283 * Call check_nested_events() even if we reinjected a previous event
9284 * in order for caller to determine if it should require immediate-exit
9285 * from L2 to L1 due to pending L1 events which require exit
9288 if (is_guest_mode(vcpu)) {
9289 r = kvm_check_nested_events(vcpu);
9294 /* try to inject new event if pending */
9295 if (vcpu->arch.exception.pending) {
9296 trace_kvm_inj_exception(vcpu->arch.exception.nr,
9297 vcpu->arch.exception.has_error_code,
9298 vcpu->arch.exception.error_code);
9300 vcpu->arch.exception.pending = false;
9301 vcpu->arch.exception.injected = true;
9303 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
9304 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
9307 if (vcpu->arch.exception.nr == DB_VECTOR) {
9308 kvm_deliver_exception_payload(vcpu);
9309 if (vcpu->arch.dr7 & DR7_GD) {
9310 vcpu->arch.dr7 &= ~DR7_GD;
9311 kvm_update_dr7(vcpu);
9315 kvm_inject_exception(vcpu);
9319 /* Don't inject interrupts if the user asked to avoid doing so */
9320 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
9324 * Finally, inject interrupt events. If an event cannot be injected
9325 * due to architectural conditions (e.g. IF=0) a window-open exit
9326 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending
9327 * and can architecturally be injected, but we cannot do it right now:
9328 * an interrupt could have arrived just now and we have to inject it
9329 * as a vmexit, or there could already an event in the queue, which is
9330 * indicated by can_inject. In that case we request an immediate exit
9331 * in order to make progress and get back here for another iteration.
9332 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
9334 if (vcpu->arch.smi_pending) {
9335 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
9339 vcpu->arch.smi_pending = false;
9340 ++vcpu->arch.smi_count;
9344 static_call(kvm_x86_enable_smi_window)(vcpu);
9347 if (vcpu->arch.nmi_pending) {
9348 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
9352 --vcpu->arch.nmi_pending;
9353 vcpu->arch.nmi_injected = true;
9354 static_call(kvm_x86_set_nmi)(vcpu);
9356 WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
9358 if (vcpu->arch.nmi_pending)
9359 static_call(kvm_x86_enable_nmi_window)(vcpu);
9362 if (kvm_cpu_has_injectable_intr(vcpu)) {
9363 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
9367 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
9368 static_call(kvm_x86_set_irq)(vcpu);
9369 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
9371 if (kvm_cpu_has_injectable_intr(vcpu))
9372 static_call(kvm_x86_enable_irq_window)(vcpu);
9375 if (is_guest_mode(vcpu) &&
9376 kvm_x86_ops.nested_ops->hv_timer_pending &&
9377 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
9378 *req_immediate_exit = true;
9380 WARN_ON(vcpu->arch.exception.pending);
9385 *req_immediate_exit = true;
9391 static void process_nmi(struct kvm_vcpu *vcpu)
9396 * x86 is limited to one NMI running, and one NMI pending after it.
9397 * If an NMI is already in progress, limit further NMIs to just one.
9398 * Otherwise, allow two (and we'll inject the first one immediately).
9400 if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
9403 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
9404 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
9405 kvm_make_request(KVM_REQ_EVENT, vcpu);
9408 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
9411 flags |= seg->g << 23;
9412 flags |= seg->db << 22;
9413 flags |= seg->l << 21;
9414 flags |= seg->avl << 20;
9415 flags |= seg->present << 15;
9416 flags |= seg->dpl << 13;
9417 flags |= seg->s << 12;
9418 flags |= seg->type << 8;
9422 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
9424 struct kvm_segment seg;
9427 kvm_get_segment(vcpu, &seg, n);
9428 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
9431 offset = 0x7f84 + n * 12;
9433 offset = 0x7f2c + (n - 3) * 12;
9435 put_smstate(u32, buf, offset + 8, seg.base);
9436 put_smstate(u32, buf, offset + 4, seg.limit);
9437 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
9440 #ifdef CONFIG_X86_64
9441 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
9443 struct kvm_segment seg;
9447 kvm_get_segment(vcpu, &seg, n);
9448 offset = 0x7e00 + n * 16;
9450 flags = enter_smm_get_segment_flags(&seg) >> 8;
9451 put_smstate(u16, buf, offset, seg.selector);
9452 put_smstate(u16, buf, offset + 2, flags);
9453 put_smstate(u32, buf, offset + 4, seg.limit);
9454 put_smstate(u64, buf, offset + 8, seg.base);
9458 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
9461 struct kvm_segment seg;
9465 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
9466 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
9467 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
9468 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
9470 for (i = 0; i < 8; i++)
9471 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read_raw(vcpu, i));
9473 kvm_get_dr(vcpu, 6, &val);
9474 put_smstate(u32, buf, 0x7fcc, (u32)val);
9475 kvm_get_dr(vcpu, 7, &val);
9476 put_smstate(u32, buf, 0x7fc8, (u32)val);
9478 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9479 put_smstate(u32, buf, 0x7fc4, seg.selector);
9480 put_smstate(u32, buf, 0x7f64, seg.base);
9481 put_smstate(u32, buf, 0x7f60, seg.limit);
9482 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
9484 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9485 put_smstate(u32, buf, 0x7fc0, seg.selector);
9486 put_smstate(u32, buf, 0x7f80, seg.base);
9487 put_smstate(u32, buf, 0x7f7c, seg.limit);
9488 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
9490 static_call(kvm_x86_get_gdt)(vcpu, &dt);
9491 put_smstate(u32, buf, 0x7f74, dt.address);
9492 put_smstate(u32, buf, 0x7f70, dt.size);
9494 static_call(kvm_x86_get_idt)(vcpu, &dt);
9495 put_smstate(u32, buf, 0x7f58, dt.address);
9496 put_smstate(u32, buf, 0x7f54, dt.size);
9498 for (i = 0; i < 6; i++)
9499 enter_smm_save_seg_32(vcpu, buf, i);
9501 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
9504 put_smstate(u32, buf, 0x7efc, 0x00020000);
9505 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
9508 #ifdef CONFIG_X86_64
9509 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
9512 struct kvm_segment seg;
9516 for (i = 0; i < 16; i++)
9517 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read_raw(vcpu, i));
9519 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
9520 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
9522 kvm_get_dr(vcpu, 6, &val);
9523 put_smstate(u64, buf, 0x7f68, val);
9524 kvm_get_dr(vcpu, 7, &val);
9525 put_smstate(u64, buf, 0x7f60, val);
9527 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
9528 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
9529 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
9531 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
9534 put_smstate(u32, buf, 0x7efc, 0x00020064);
9536 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
9538 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9539 put_smstate(u16, buf, 0x7e90, seg.selector);
9540 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
9541 put_smstate(u32, buf, 0x7e94, seg.limit);
9542 put_smstate(u64, buf, 0x7e98, seg.base);
9544 static_call(kvm_x86_get_idt)(vcpu, &dt);
9545 put_smstate(u32, buf, 0x7e84, dt.size);
9546 put_smstate(u64, buf, 0x7e88, dt.address);
9548 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9549 put_smstate(u16, buf, 0x7e70, seg.selector);
9550 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
9551 put_smstate(u32, buf, 0x7e74, seg.limit);
9552 put_smstate(u64, buf, 0x7e78, seg.base);
9554 static_call(kvm_x86_get_gdt)(vcpu, &dt);
9555 put_smstate(u32, buf, 0x7e64, dt.size);
9556 put_smstate(u64, buf, 0x7e68, dt.address);
9558 for (i = 0; i < 6; i++)
9559 enter_smm_save_seg_64(vcpu, buf, i);
9563 static void enter_smm(struct kvm_vcpu *vcpu)
9565 struct kvm_segment cs, ds;
9570 memset(buf, 0, 512);
9571 #ifdef CONFIG_X86_64
9572 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9573 enter_smm_save_state_64(vcpu, buf);
9576 enter_smm_save_state_32(vcpu, buf);
9579 * Give enter_smm() a chance to make ISA-specific changes to the vCPU
9580 * state (e.g. leave guest mode) after we've saved the state into the
9581 * SMM state-save area.
9583 static_call(kvm_x86_enter_smm)(vcpu, buf);
9585 kvm_smm_changed(vcpu, true);
9586 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
9588 if (static_call(kvm_x86_get_nmi_mask)(vcpu))
9589 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
9591 static_call(kvm_x86_set_nmi_mask)(vcpu, true);
9593 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
9594 kvm_rip_write(vcpu, 0x8000);
9596 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
9597 static_call(kvm_x86_set_cr0)(vcpu, cr0);
9598 vcpu->arch.cr0 = cr0;
9600 static_call(kvm_x86_set_cr4)(vcpu, 0);
9602 /* Undocumented: IDT limit is set to zero on entry to SMM. */
9603 dt.address = dt.size = 0;
9604 static_call(kvm_x86_set_idt)(vcpu, &dt);
9606 kvm_set_dr(vcpu, 7, DR7_FIXED_1);
9608 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
9609 cs.base = vcpu->arch.smbase;
9614 cs.limit = ds.limit = 0xffffffff;
9615 cs.type = ds.type = 0x3;
9616 cs.dpl = ds.dpl = 0;
9621 cs.avl = ds.avl = 0;
9622 cs.present = ds.present = 1;
9623 cs.unusable = ds.unusable = 0;
9624 cs.padding = ds.padding = 0;
9626 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
9627 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
9628 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
9629 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
9630 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
9631 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
9633 #ifdef CONFIG_X86_64
9634 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9635 static_call(kvm_x86_set_efer)(vcpu, 0);
9638 kvm_update_cpuid_runtime(vcpu);
9639 kvm_mmu_reset_context(vcpu);
9642 static void process_smi(struct kvm_vcpu *vcpu)
9644 vcpu->arch.smi_pending = true;
9645 kvm_make_request(KVM_REQ_EVENT, vcpu);
9648 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
9649 unsigned long *vcpu_bitmap)
9651 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
9654 void kvm_make_scan_ioapic_request(struct kvm *kvm)
9656 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
9659 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
9663 if (!lapic_in_kernel(vcpu))
9666 down_read(&vcpu->kvm->arch.apicv_update_lock);
9668 activate = kvm_apicv_activated(vcpu->kvm);
9669 if (vcpu->arch.apicv_active == activate)
9672 vcpu->arch.apicv_active = activate;
9673 kvm_apic_update_apicv(vcpu);
9674 static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
9677 * When APICv gets disabled, we may still have injected interrupts
9678 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
9679 * still active when the interrupt got accepted. Make sure
9680 * inject_pending_event() is called to check for that.
9682 if (!vcpu->arch.apicv_active)
9683 kvm_make_request(KVM_REQ_EVENT, vcpu);
9686 up_read(&vcpu->kvm->arch.apicv_update_lock);
9688 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
9690 void __kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
9692 unsigned long old, new;
9694 lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
9696 if (!kvm_x86_ops.check_apicv_inhibit_reasons ||
9697 !static_call(kvm_x86_check_apicv_inhibit_reasons)(bit))
9700 old = new = kvm->arch.apicv_inhibit_reasons;
9703 __clear_bit(bit, &new);
9705 __set_bit(bit, &new);
9707 if (!!old != !!new) {
9708 trace_kvm_apicv_update_request(activate, bit);
9710 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
9711 * false positives in the sanity check WARN in svm_vcpu_run().
9712 * This task will wait for all vCPUs to ack the kick IRQ before
9713 * updating apicv_inhibit_reasons, and all other vCPUs will
9714 * block on acquiring apicv_update_lock so that vCPUs can't
9715 * redo svm_vcpu_run() without seeing the new inhibit state.
9717 * Note, holding apicv_update_lock and taking it in the read
9718 * side (handling the request) also prevents other vCPUs from
9719 * servicing the request with a stale apicv_inhibit_reasons.
9721 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
9722 kvm->arch.apicv_inhibit_reasons = new;
9724 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
9725 kvm_zap_gfn_range(kvm, gfn, gfn+1);
9728 kvm->arch.apicv_inhibit_reasons = new;
9730 EXPORT_SYMBOL_GPL(__kvm_request_apicv_update);
9732 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
9734 down_write(&kvm->arch.apicv_update_lock);
9735 __kvm_request_apicv_update(kvm, activate, bit);
9736 up_write(&kvm->arch.apicv_update_lock);
9738 EXPORT_SYMBOL_GPL(kvm_request_apicv_update);
9740 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
9742 if (!kvm_apic_present(vcpu))
9745 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
9747 if (irqchip_split(vcpu->kvm))
9748 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
9750 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
9751 if (ioapic_in_kernel(vcpu->kvm))
9752 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
9755 if (is_guest_mode(vcpu))
9756 vcpu->arch.load_eoi_exitmap_pending = true;
9758 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
9761 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
9763 u64 eoi_exit_bitmap[4];
9765 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
9768 if (to_hv_vcpu(vcpu)) {
9769 bitmap_or((ulong *)eoi_exit_bitmap,
9770 vcpu->arch.ioapic_handled_vectors,
9771 to_hv_synic(vcpu)->vec_bitmap, 256);
9772 static_call(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
9776 static_call(kvm_x86_load_eoi_exitmap)(
9777 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
9780 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
9781 unsigned long start, unsigned long end)
9783 unsigned long apic_address;
9786 * The physical address of apic access page is stored in the VMCS.
9787 * Update it when it becomes invalid.
9789 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
9790 if (start <= apic_address && apic_address < end)
9791 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
9794 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
9796 if (!lapic_in_kernel(vcpu))
9799 if (!kvm_x86_ops.set_apic_access_page_addr)
9802 static_call(kvm_x86_set_apic_access_page_addr)(vcpu);
9805 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
9807 smp_send_reschedule(vcpu->cpu);
9809 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
9812 * Called within kvm->srcu read side.
9813 * Returns 1 to let vcpu_run() continue the guest execution loop without
9814 * exiting to the userspace. Otherwise, the value will be returned to the
9817 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
9821 dm_request_for_irq_injection(vcpu) &&
9822 kvm_cpu_accept_dm_intr(vcpu);
9823 fastpath_t exit_fastpath;
9825 bool req_immediate_exit = false;
9827 /* Forbid vmenter if vcpu dirty ring is soft-full */
9828 if (unlikely(vcpu->kvm->dirty_ring_size &&
9829 kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) {
9830 vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL;
9831 trace_kvm_dirty_ring_exit(vcpu);
9836 if (kvm_request_pending(vcpu)) {
9837 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
9841 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
9842 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
9847 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
9848 kvm_mmu_unload(vcpu);
9849 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
9850 __kvm_migrate_timers(vcpu);
9851 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
9852 kvm_update_masterclock(vcpu->kvm);
9853 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
9854 kvm_gen_kvmclock_update(vcpu);
9855 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
9856 r = kvm_guest_time_update(vcpu);
9860 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
9861 kvm_mmu_sync_roots(vcpu);
9862 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
9863 kvm_mmu_load_pgd(vcpu);
9864 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
9865 kvm_vcpu_flush_tlb_all(vcpu);
9867 /* Flushing all ASIDs flushes the current ASID... */
9868 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
9870 kvm_service_local_tlb_flush_requests(vcpu);
9872 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
9873 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
9877 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9878 if (is_guest_mode(vcpu)) {
9879 kvm_x86_ops.nested_ops->triple_fault(vcpu);
9881 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
9882 vcpu->mmio_needed = 0;
9887 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
9888 /* Page is swapped out. Do synthetic halt */
9889 vcpu->arch.apf.halted = true;
9893 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
9894 record_steal_time(vcpu);
9895 if (kvm_check_request(KVM_REQ_SMI, vcpu))
9897 if (kvm_check_request(KVM_REQ_NMI, vcpu))
9899 if (kvm_check_request(KVM_REQ_PMU, vcpu))
9900 kvm_pmu_handle_event(vcpu);
9901 if (kvm_check_request(KVM_REQ_PMI, vcpu))
9902 kvm_pmu_deliver_pmi(vcpu);
9903 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
9904 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
9905 if (test_bit(vcpu->arch.pending_ioapic_eoi,
9906 vcpu->arch.ioapic_handled_vectors)) {
9907 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
9908 vcpu->run->eoi.vector =
9909 vcpu->arch.pending_ioapic_eoi;
9914 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
9915 vcpu_scan_ioapic(vcpu);
9916 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
9917 vcpu_load_eoi_exitmap(vcpu);
9918 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
9919 kvm_vcpu_reload_apic_access_page(vcpu);
9920 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
9921 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9922 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
9926 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
9927 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9928 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
9932 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
9933 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
9935 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
9936 vcpu->run->hyperv = hv_vcpu->exit;
9942 * KVM_REQ_HV_STIMER has to be processed after
9943 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
9944 * depend on the guest clock being up-to-date
9946 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
9947 kvm_hv_process_stimers(vcpu);
9948 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
9949 kvm_vcpu_update_apicv(vcpu);
9950 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
9951 kvm_check_async_pf_completion(vcpu);
9952 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
9953 static_call(kvm_x86_msr_filter_changed)(vcpu);
9955 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
9956 static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
9959 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
9960 kvm_xen_has_interrupt(vcpu)) {
9961 ++vcpu->stat.req_event;
9962 r = kvm_apic_accept_events(vcpu);
9967 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
9972 r = inject_pending_event(vcpu, &req_immediate_exit);
9978 static_call(kvm_x86_enable_irq_window)(vcpu);
9980 if (kvm_lapic_enabled(vcpu)) {
9981 update_cr8_intercept(vcpu);
9982 kvm_lapic_sync_to_vapic(vcpu);
9986 r = kvm_mmu_reload(vcpu);
9988 goto cancel_injection;
9993 static_call(kvm_x86_prepare_guest_switch)(vcpu);
9996 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
9997 * IPI are then delayed after guest entry, which ensures that they
9998 * result in virtual interrupt delivery.
10000 local_irq_disable();
10002 /* Store vcpu->apicv_active before vcpu->mode. */
10003 smp_store_release(&vcpu->mode, IN_GUEST_MODE);
10005 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
10008 * 1) We should set ->mode before checking ->requests. Please see
10009 * the comment in kvm_vcpu_exiting_guest_mode().
10011 * 2) For APICv, we should set ->mode before checking PID.ON. This
10012 * pairs with the memory barrier implicit in pi_test_and_set_on
10013 * (see vmx_deliver_posted_interrupt).
10015 * 3) This also orders the write to mode from any reads to the page
10016 * tables done while the VCPU is running. Please see the comment
10017 * in kvm_flush_remote_tlbs.
10019 smp_mb__after_srcu_read_unlock();
10022 * Process pending posted interrupts to handle the case where the
10023 * notification IRQ arrived in the host, or was never sent (because the
10024 * target vCPU wasn't running). Do this regardless of the vCPU's APICv
10025 * status, KVM doesn't update assigned devices when APICv is inhibited,
10026 * i.e. they can post interrupts even if APICv is temporarily disabled.
10028 if (kvm_lapic_enabled(vcpu))
10029 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10031 if (kvm_vcpu_exit_request(vcpu)) {
10032 vcpu->mode = OUTSIDE_GUEST_MODE;
10034 local_irq_enable();
10036 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
10038 goto cancel_injection;
10041 if (req_immediate_exit) {
10042 kvm_make_request(KVM_REQ_EVENT, vcpu);
10043 static_call(kvm_x86_request_immediate_exit)(vcpu);
10046 fpregs_assert_state_consistent();
10047 if (test_thread_flag(TIF_NEED_FPU_LOAD))
10048 switch_fpu_return();
10050 if (vcpu->arch.guest_fpu.xfd_err)
10051 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
10053 if (unlikely(vcpu->arch.switch_db_regs)) {
10054 set_debugreg(0, 7);
10055 set_debugreg(vcpu->arch.eff_db[0], 0);
10056 set_debugreg(vcpu->arch.eff_db[1], 1);
10057 set_debugreg(vcpu->arch.eff_db[2], 2);
10058 set_debugreg(vcpu->arch.eff_db[3], 3);
10059 } else if (unlikely(hw_breakpoint_active())) {
10060 set_debugreg(0, 7);
10063 guest_timing_enter_irqoff();
10067 * Assert that vCPU vs. VM APICv state is consistent. An APICv
10068 * update must kick and wait for all vCPUs before toggling the
10069 * per-VM state, and responsing vCPUs must wait for the update
10070 * to complete before servicing KVM_REQ_APICV_UPDATE.
10072 WARN_ON_ONCE(kvm_apicv_activated(vcpu->kvm) != kvm_vcpu_apicv_active(vcpu));
10074 exit_fastpath = static_call(kvm_x86_run)(vcpu);
10075 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
10078 if (kvm_lapic_enabled(vcpu))
10079 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10081 if (unlikely(kvm_vcpu_exit_request(vcpu))) {
10082 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
10088 * Do this here before restoring debug registers on the host. And
10089 * since we do this before handling the vmexit, a DR access vmexit
10090 * can (a) read the correct value of the debug registers, (b) set
10091 * KVM_DEBUGREG_WONT_EXIT again.
10093 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
10094 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
10095 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
10096 kvm_update_dr0123(vcpu);
10097 kvm_update_dr7(vcpu);
10101 * If the guest has used debug registers, at least dr7
10102 * will be disabled while returning to the host.
10103 * If we don't have active breakpoints in the host, we don't
10104 * care about the messed up debug address registers. But if
10105 * we have some of them active, restore the old state.
10107 if (hw_breakpoint_active())
10108 hw_breakpoint_restore();
10110 vcpu->arch.last_vmentry_cpu = vcpu->cpu;
10111 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
10113 vcpu->mode = OUTSIDE_GUEST_MODE;
10117 * Sync xfd before calling handle_exit_irqoff() which may
10118 * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
10119 * in #NM irqoff handler).
10121 if (vcpu->arch.xfd_no_write_intercept)
10122 fpu_sync_guest_vmexit_xfd_state();
10124 static_call(kvm_x86_handle_exit_irqoff)(vcpu);
10126 if (vcpu->arch.guest_fpu.xfd_err)
10127 wrmsrl(MSR_IA32_XFD_ERR, 0);
10130 * Consume any pending interrupts, including the possible source of
10131 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
10132 * An instruction is required after local_irq_enable() to fully unblock
10133 * interrupts on processors that implement an interrupt shadow, the
10134 * stat.exits increment will do nicely.
10136 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
10137 local_irq_enable();
10138 ++vcpu->stat.exits;
10139 local_irq_disable();
10140 kvm_after_interrupt(vcpu);
10143 * Wait until after servicing IRQs to account guest time so that any
10144 * ticks that occurred while running the guest are properly accounted
10145 * to the guest. Waiting until IRQs are enabled degrades the accuracy
10146 * of accounting via context tracking, but the loss of accuracy is
10147 * acceptable for all known use cases.
10149 guest_timing_exit_irqoff();
10151 if (lapic_in_kernel(vcpu)) {
10152 s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
10153 if (delta != S64_MIN) {
10154 trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
10155 vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
10159 local_irq_enable();
10162 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
10165 * Profile KVM exit RIPs:
10167 if (unlikely(prof_on == KVM_PROFILING)) {
10168 unsigned long rip = kvm_rip_read(vcpu);
10169 profile_hit(KVM_PROFILING, (void *)rip);
10172 if (unlikely(vcpu->arch.tsc_always_catchup))
10173 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10175 if (vcpu->arch.apic_attention)
10176 kvm_lapic_sync_from_vapic(vcpu);
10178 r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
10182 if (req_immediate_exit)
10183 kvm_make_request(KVM_REQ_EVENT, vcpu);
10184 static_call(kvm_x86_cancel_injection)(vcpu);
10185 if (unlikely(vcpu->arch.apic_attention))
10186 kvm_lapic_sync_from_vapic(vcpu);
10191 /* Called within kvm->srcu read side. */
10192 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
10196 if (!kvm_arch_vcpu_runnable(vcpu)) {
10198 * Switch to the software timer before halt-polling/blocking as
10199 * the guest's timer may be a break event for the vCPU, and the
10200 * hypervisor timer runs only when the CPU is in guest mode.
10201 * Switch before halt-polling so that KVM recognizes an expired
10202 * timer before blocking.
10204 hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
10206 kvm_lapic_switch_to_sw_timer(vcpu);
10208 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
10209 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10210 kvm_vcpu_halt(vcpu);
10212 kvm_vcpu_block(vcpu);
10213 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
10216 kvm_lapic_switch_to_hv_timer(vcpu);
10218 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
10222 if (kvm_apic_accept_events(vcpu) < 0)
10224 switch(vcpu->arch.mp_state) {
10225 case KVM_MP_STATE_HALTED:
10226 case KVM_MP_STATE_AP_RESET_HOLD:
10227 vcpu->arch.pv.pv_unhalted = false;
10228 vcpu->arch.mp_state =
10229 KVM_MP_STATE_RUNNABLE;
10231 case KVM_MP_STATE_RUNNABLE:
10232 vcpu->arch.apf.halted = false;
10234 case KVM_MP_STATE_INIT_RECEIVED:
10242 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
10244 if (is_guest_mode(vcpu))
10245 kvm_check_nested_events(vcpu);
10247 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
10248 !vcpu->arch.apf.halted);
10251 /* Called within kvm->srcu read side. */
10252 static int vcpu_run(struct kvm_vcpu *vcpu)
10255 struct kvm *kvm = vcpu->kvm;
10257 vcpu->arch.l1tf_flush_l1d = true;
10260 if (kvm_vcpu_running(vcpu)) {
10261 r = vcpu_enter_guest(vcpu);
10263 r = vcpu_block(kvm, vcpu);
10269 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
10270 if (kvm_cpu_has_pending_timer(vcpu))
10271 kvm_inject_pending_timer_irqs(vcpu);
10273 if (dm_request_for_irq_injection(vcpu) &&
10274 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
10276 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
10277 ++vcpu->stat.request_irq_exits;
10281 if (__xfer_to_guest_mode_work_pending()) {
10282 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
10283 r = xfer_to_guest_mode_handle_work(vcpu);
10284 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
10293 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
10297 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
10298 r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
10299 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
10303 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
10305 BUG_ON(!vcpu->arch.pio.count);
10307 return complete_emulated_io(vcpu);
10311 * Implements the following, as a state machine:
10314 * for each fragment
10315 * for each mmio piece in the fragment
10322 * for each fragment
10323 * for each mmio piece in the fragment
10328 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
10330 struct kvm_run *run = vcpu->run;
10331 struct kvm_mmio_fragment *frag;
10334 BUG_ON(!vcpu->mmio_needed);
10336 /* Complete previous fragment */
10337 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
10338 len = min(8u, frag->len);
10339 if (!vcpu->mmio_is_write)
10340 memcpy(frag->data, run->mmio.data, len);
10342 if (frag->len <= 8) {
10343 /* Switch to the next fragment. */
10345 vcpu->mmio_cur_fragment++;
10347 /* Go forward to the next mmio piece. */
10353 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
10354 vcpu->mmio_needed = 0;
10356 /* FIXME: return into emulator if single-stepping. */
10357 if (vcpu->mmio_is_write)
10359 vcpu->mmio_read_completed = 1;
10360 return complete_emulated_io(vcpu);
10363 run->exit_reason = KVM_EXIT_MMIO;
10364 run->mmio.phys_addr = frag->gpa;
10365 if (vcpu->mmio_is_write)
10366 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
10367 run->mmio.len = min(8u, frag->len);
10368 run->mmio.is_write = vcpu->mmio_is_write;
10369 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
10373 /* Swap (qemu) user FPU context for the guest FPU context. */
10374 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
10377 * Exclude PKRU from restore as restored separately in
10378 * kvm_x86_ops.run().
10380 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
10384 /* When vcpu_run ends, restore user space FPU context. */
10385 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
10387 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
10388 ++vcpu->stat.fpu_reload;
10392 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
10394 struct kvm_run *kvm_run = vcpu->run;
10395 struct kvm *kvm = vcpu->kvm;
10399 kvm_sigset_activate(vcpu);
10400 kvm_run->flags = 0;
10401 kvm_load_guest_fpu(vcpu);
10403 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
10404 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
10405 if (kvm_run->immediate_exit) {
10410 * It should be impossible for the hypervisor timer to be in
10411 * use before KVM has ever run the vCPU.
10413 WARN_ON_ONCE(kvm_lapic_hv_timer_in_use(vcpu));
10415 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
10416 kvm_vcpu_block(vcpu);
10417 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
10419 if (kvm_apic_accept_events(vcpu) < 0) {
10423 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
10425 if (signal_pending(current)) {
10427 kvm_run->exit_reason = KVM_EXIT_INTR;
10428 ++vcpu->stat.signal_exits;
10433 if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
10434 (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
10439 if (kvm_run->kvm_dirty_regs) {
10440 r = sync_regs(vcpu);
10445 /* re-sync apic's tpr */
10446 if (!lapic_in_kernel(vcpu)) {
10447 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
10453 if (unlikely(vcpu->arch.complete_userspace_io)) {
10454 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
10455 vcpu->arch.complete_userspace_io = NULL;
10460 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
10462 if (kvm_run->immediate_exit) {
10467 r = static_call(kvm_x86_vcpu_pre_run)(vcpu);
10471 r = vcpu_run(vcpu);
10474 kvm_put_guest_fpu(vcpu);
10475 if (kvm_run->kvm_valid_regs)
10477 post_kvm_run_save(vcpu);
10478 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
10480 kvm_sigset_deactivate(vcpu);
10485 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10487 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
10489 * We are here if userspace calls get_regs() in the middle of
10490 * instruction emulation. Registers state needs to be copied
10491 * back from emulation context to vcpu. Userspace shouldn't do
10492 * that usually, but some bad designed PV devices (vmware
10493 * backdoor interface) need this to work
10495 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
10496 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10498 regs->rax = kvm_rax_read(vcpu);
10499 regs->rbx = kvm_rbx_read(vcpu);
10500 regs->rcx = kvm_rcx_read(vcpu);
10501 regs->rdx = kvm_rdx_read(vcpu);
10502 regs->rsi = kvm_rsi_read(vcpu);
10503 regs->rdi = kvm_rdi_read(vcpu);
10504 regs->rsp = kvm_rsp_read(vcpu);
10505 regs->rbp = kvm_rbp_read(vcpu);
10506 #ifdef CONFIG_X86_64
10507 regs->r8 = kvm_r8_read(vcpu);
10508 regs->r9 = kvm_r9_read(vcpu);
10509 regs->r10 = kvm_r10_read(vcpu);
10510 regs->r11 = kvm_r11_read(vcpu);
10511 regs->r12 = kvm_r12_read(vcpu);
10512 regs->r13 = kvm_r13_read(vcpu);
10513 regs->r14 = kvm_r14_read(vcpu);
10514 regs->r15 = kvm_r15_read(vcpu);
10517 regs->rip = kvm_rip_read(vcpu);
10518 regs->rflags = kvm_get_rflags(vcpu);
10521 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10524 __get_regs(vcpu, regs);
10529 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10531 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
10532 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10534 kvm_rax_write(vcpu, regs->rax);
10535 kvm_rbx_write(vcpu, regs->rbx);
10536 kvm_rcx_write(vcpu, regs->rcx);
10537 kvm_rdx_write(vcpu, regs->rdx);
10538 kvm_rsi_write(vcpu, regs->rsi);
10539 kvm_rdi_write(vcpu, regs->rdi);
10540 kvm_rsp_write(vcpu, regs->rsp);
10541 kvm_rbp_write(vcpu, regs->rbp);
10542 #ifdef CONFIG_X86_64
10543 kvm_r8_write(vcpu, regs->r8);
10544 kvm_r9_write(vcpu, regs->r9);
10545 kvm_r10_write(vcpu, regs->r10);
10546 kvm_r11_write(vcpu, regs->r11);
10547 kvm_r12_write(vcpu, regs->r12);
10548 kvm_r13_write(vcpu, regs->r13);
10549 kvm_r14_write(vcpu, regs->r14);
10550 kvm_r15_write(vcpu, regs->r15);
10553 kvm_rip_write(vcpu, regs->rip);
10554 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
10556 vcpu->arch.exception.pending = false;
10558 kvm_make_request(KVM_REQ_EVENT, vcpu);
10561 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10564 __set_regs(vcpu, regs);
10569 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
10571 struct kvm_segment cs;
10573 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
10577 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
10579 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10581 struct desc_ptr dt;
10583 if (vcpu->arch.guest_state_protected)
10584 goto skip_protected_regs;
10586 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10587 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10588 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10589 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10590 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10591 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10593 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10594 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10596 static_call(kvm_x86_get_idt)(vcpu, &dt);
10597 sregs->idt.limit = dt.size;
10598 sregs->idt.base = dt.address;
10599 static_call(kvm_x86_get_gdt)(vcpu, &dt);
10600 sregs->gdt.limit = dt.size;
10601 sregs->gdt.base = dt.address;
10603 sregs->cr2 = vcpu->arch.cr2;
10604 sregs->cr3 = kvm_read_cr3(vcpu);
10606 skip_protected_regs:
10607 sregs->cr0 = kvm_read_cr0(vcpu);
10608 sregs->cr4 = kvm_read_cr4(vcpu);
10609 sregs->cr8 = kvm_get_cr8(vcpu);
10610 sregs->efer = vcpu->arch.efer;
10611 sregs->apic_base = kvm_get_apic_base(vcpu);
10614 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10616 __get_sregs_common(vcpu, sregs);
10618 if (vcpu->arch.guest_state_protected)
10621 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
10622 set_bit(vcpu->arch.interrupt.nr,
10623 (unsigned long *)sregs->interrupt_bitmap);
10626 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
10630 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
10632 if (vcpu->arch.guest_state_protected)
10635 if (is_pae_paging(vcpu)) {
10636 for (i = 0 ; i < 4 ; i++)
10637 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
10638 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
10642 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
10643 struct kvm_sregs *sregs)
10646 __get_sregs(vcpu, sregs);
10651 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
10652 struct kvm_mp_state *mp_state)
10657 if (kvm_mpx_supported())
10658 kvm_load_guest_fpu(vcpu);
10660 r = kvm_apic_accept_events(vcpu);
10665 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
10666 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
10667 vcpu->arch.pv.pv_unhalted)
10668 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
10670 mp_state->mp_state = vcpu->arch.mp_state;
10673 if (kvm_mpx_supported())
10674 kvm_put_guest_fpu(vcpu);
10679 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
10680 struct kvm_mp_state *mp_state)
10686 if (!lapic_in_kernel(vcpu) &&
10687 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
10691 * KVM_MP_STATE_INIT_RECEIVED means the processor is in
10692 * INIT state; latched init should be reported using
10693 * KVM_SET_VCPU_EVENTS, so reject it here.
10695 if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
10696 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
10697 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
10700 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
10701 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
10702 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
10704 vcpu->arch.mp_state = mp_state->mp_state;
10705 kvm_make_request(KVM_REQ_EVENT, vcpu);
10713 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
10714 int reason, bool has_error_code, u32 error_code)
10716 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
10719 init_emulate_ctxt(vcpu);
10721 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
10722 has_error_code, error_code);
10724 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
10725 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
10726 vcpu->run->internal.ndata = 0;
10730 kvm_rip_write(vcpu, ctxt->eip);
10731 kvm_set_rflags(vcpu, ctxt->eflags);
10734 EXPORT_SYMBOL_GPL(kvm_task_switch);
10736 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10738 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
10740 * When EFER.LME and CR0.PG are set, the processor is in
10741 * 64-bit mode (though maybe in a 32-bit code segment).
10742 * CR4.PAE and EFER.LMA must be set.
10744 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
10746 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
10750 * Not in 64-bit mode: EFER.LMA is clear and the code
10751 * segment cannot be 64-bit.
10753 if (sregs->efer & EFER_LMA || sregs->cs.l)
10757 return kvm_is_valid_cr4(vcpu, sregs->cr4);
10760 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
10761 int *mmu_reset_needed, bool update_pdptrs)
10763 struct msr_data apic_base_msr;
10765 struct desc_ptr dt;
10767 if (!kvm_is_valid_sregs(vcpu, sregs))
10770 apic_base_msr.data = sregs->apic_base;
10771 apic_base_msr.host_initiated = true;
10772 if (kvm_set_apic_base(vcpu, &apic_base_msr))
10775 if (vcpu->arch.guest_state_protected)
10778 dt.size = sregs->idt.limit;
10779 dt.address = sregs->idt.base;
10780 static_call(kvm_x86_set_idt)(vcpu, &dt);
10781 dt.size = sregs->gdt.limit;
10782 dt.address = sregs->gdt.base;
10783 static_call(kvm_x86_set_gdt)(vcpu, &dt);
10785 vcpu->arch.cr2 = sregs->cr2;
10786 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
10787 vcpu->arch.cr3 = sregs->cr3;
10788 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
10789 static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3);
10791 kvm_set_cr8(vcpu, sregs->cr8);
10793 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
10794 static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
10796 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
10797 static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
10798 vcpu->arch.cr0 = sregs->cr0;
10800 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
10801 static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
10803 if (update_pdptrs) {
10804 idx = srcu_read_lock(&vcpu->kvm->srcu);
10805 if (is_pae_paging(vcpu)) {
10806 load_pdptrs(vcpu, kvm_read_cr3(vcpu));
10807 *mmu_reset_needed = 1;
10809 srcu_read_unlock(&vcpu->kvm->srcu, idx);
10812 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10813 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10814 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10815 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10816 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10817 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10819 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10820 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10822 update_cr8_intercept(vcpu);
10824 /* Older userspace won't unhalt the vcpu on reset. */
10825 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
10826 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
10827 !is_protmode(vcpu))
10828 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10833 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10835 int pending_vec, max_bits;
10836 int mmu_reset_needed = 0;
10837 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
10842 if (mmu_reset_needed)
10843 kvm_mmu_reset_context(vcpu);
10845 max_bits = KVM_NR_INTERRUPTS;
10846 pending_vec = find_first_bit(
10847 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
10849 if (pending_vec < max_bits) {
10850 kvm_queue_interrupt(vcpu, pending_vec, false);
10851 pr_debug("Set back pending irq %d\n", pending_vec);
10852 kvm_make_request(KVM_REQ_EVENT, vcpu);
10857 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
10859 int mmu_reset_needed = 0;
10860 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
10861 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
10862 !(sregs2->efer & EFER_LMA);
10865 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
10868 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
10871 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
10872 &mmu_reset_needed, !valid_pdptrs);
10876 if (valid_pdptrs) {
10877 for (i = 0; i < 4 ; i++)
10878 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
10880 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
10881 mmu_reset_needed = 1;
10882 vcpu->arch.pdptrs_from_userspace = true;
10884 if (mmu_reset_needed)
10885 kvm_mmu_reset_context(vcpu);
10889 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
10890 struct kvm_sregs *sregs)
10895 ret = __set_sregs(vcpu, sregs);
10900 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
10902 bool inhibit = false;
10903 struct kvm_vcpu *vcpu;
10906 down_write(&kvm->arch.apicv_update_lock);
10908 kvm_for_each_vcpu(i, vcpu, kvm) {
10909 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
10914 __kvm_request_apicv_update(kvm, !inhibit, APICV_INHIBIT_REASON_BLOCKIRQ);
10915 up_write(&kvm->arch.apicv_update_lock);
10918 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
10919 struct kvm_guest_debug *dbg)
10921 unsigned long rflags;
10924 if (vcpu->arch.guest_state_protected)
10929 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
10931 if (vcpu->arch.exception.pending)
10933 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
10934 kvm_queue_exception(vcpu, DB_VECTOR);
10936 kvm_queue_exception(vcpu, BP_VECTOR);
10940 * Read rflags as long as potentially injected trace flags are still
10943 rflags = kvm_get_rflags(vcpu);
10945 vcpu->guest_debug = dbg->control;
10946 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
10947 vcpu->guest_debug = 0;
10949 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
10950 for (i = 0; i < KVM_NR_DB_REGS; ++i)
10951 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
10952 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
10954 for (i = 0; i < KVM_NR_DB_REGS; i++)
10955 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
10957 kvm_update_dr7(vcpu);
10959 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
10960 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
10963 * Trigger an rflags update that will inject or remove the trace
10966 kvm_set_rflags(vcpu, rflags);
10968 static_call(kvm_x86_update_exception_bitmap)(vcpu);
10970 kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
10980 * Translate a guest virtual address to a guest physical address.
10982 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
10983 struct kvm_translation *tr)
10985 unsigned long vaddr = tr->linear_address;
10991 idx = srcu_read_lock(&vcpu->kvm->srcu);
10992 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
10993 srcu_read_unlock(&vcpu->kvm->srcu, idx);
10994 tr->physical_address = gpa;
10995 tr->valid = gpa != UNMAPPED_GVA;
11003 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11005 struct fxregs_state *fxsave;
11007 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11012 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11013 memcpy(fpu->fpr, fxsave->st_space, 128);
11014 fpu->fcw = fxsave->cwd;
11015 fpu->fsw = fxsave->swd;
11016 fpu->ftwx = fxsave->twd;
11017 fpu->last_opcode = fxsave->fop;
11018 fpu->last_ip = fxsave->rip;
11019 fpu->last_dp = fxsave->rdp;
11020 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
11026 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11028 struct fxregs_state *fxsave;
11030 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11035 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11037 memcpy(fxsave->st_space, fpu->fpr, 128);
11038 fxsave->cwd = fpu->fcw;
11039 fxsave->swd = fpu->fsw;
11040 fxsave->twd = fpu->ftwx;
11041 fxsave->fop = fpu->last_opcode;
11042 fxsave->rip = fpu->last_ip;
11043 fxsave->rdp = fpu->last_dp;
11044 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
11050 static void store_regs(struct kvm_vcpu *vcpu)
11052 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
11054 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
11055 __get_regs(vcpu, &vcpu->run->s.regs.regs);
11057 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
11058 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
11060 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
11061 kvm_vcpu_ioctl_x86_get_vcpu_events(
11062 vcpu, &vcpu->run->s.regs.events);
11065 static int sync_regs(struct kvm_vcpu *vcpu)
11067 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
11068 __set_regs(vcpu, &vcpu->run->s.regs.regs);
11069 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
11071 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
11072 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
11074 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
11076 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
11077 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
11078 vcpu, &vcpu->run->s.regs.events))
11080 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
11086 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
11088 if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
11089 pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
11090 "guest TSC will not be reliable\n");
11095 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
11100 vcpu->arch.last_vmentry_cpu = -1;
11101 vcpu->arch.regs_avail = ~0;
11102 vcpu->arch.regs_dirty = ~0;
11104 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
11105 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11107 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
11109 r = kvm_mmu_create(vcpu);
11113 if (irqchip_in_kernel(vcpu->kvm)) {
11114 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
11116 goto fail_mmu_destroy;
11117 if (kvm_apicv_activated(vcpu->kvm))
11118 vcpu->arch.apicv_active = true;
11120 static_branch_inc(&kvm_has_noapic_vcpu);
11124 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
11126 goto fail_free_lapic;
11127 vcpu->arch.pio_data = page_address(page);
11129 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
11130 GFP_KERNEL_ACCOUNT);
11131 if (!vcpu->arch.mce_banks)
11132 goto fail_free_pio_data;
11133 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
11135 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
11136 GFP_KERNEL_ACCOUNT))
11137 goto fail_free_mce_banks;
11139 if (!alloc_emulate_ctxt(vcpu))
11140 goto free_wbinvd_dirty_mask;
11142 if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
11143 pr_err("kvm: failed to allocate vcpu's fpu\n");
11144 goto free_emulate_ctxt;
11147 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
11148 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
11150 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
11152 kvm_async_pf_hash_reset(vcpu);
11153 kvm_pmu_init(vcpu);
11155 vcpu->arch.pending_external_vector = -1;
11156 vcpu->arch.preempted_in_kernel = false;
11158 #if IS_ENABLED(CONFIG_HYPERV)
11159 vcpu->arch.hv_root_tdp = INVALID_PAGE;
11162 r = static_call(kvm_x86_vcpu_create)(vcpu);
11164 goto free_guest_fpu;
11166 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
11167 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
11168 kvm_vcpu_mtrr_init(vcpu);
11170 kvm_set_tsc_khz(vcpu, max_tsc_khz);
11171 kvm_vcpu_reset(vcpu, false);
11172 kvm_init_mmu(vcpu);
11177 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11179 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11180 free_wbinvd_dirty_mask:
11181 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11182 fail_free_mce_banks:
11183 kfree(vcpu->arch.mce_banks);
11184 fail_free_pio_data:
11185 free_page((unsigned long)vcpu->arch.pio_data);
11187 kvm_free_lapic(vcpu);
11189 kvm_mmu_destroy(vcpu);
11193 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
11195 struct kvm *kvm = vcpu->kvm;
11197 if (mutex_lock_killable(&vcpu->mutex))
11200 kvm_synchronize_tsc(vcpu, 0);
11203 /* poll control enabled by default */
11204 vcpu->arch.msr_kvm_poll_control = 1;
11206 mutex_unlock(&vcpu->mutex);
11208 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
11209 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
11210 KVMCLOCK_SYNC_PERIOD);
11213 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
11217 kvmclock_reset(vcpu);
11219 static_call(kvm_x86_vcpu_free)(vcpu);
11221 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11222 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11223 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11225 kvm_hv_vcpu_uninit(vcpu);
11226 kvm_pmu_destroy(vcpu);
11227 kfree(vcpu->arch.mce_banks);
11228 kvm_free_lapic(vcpu);
11229 idx = srcu_read_lock(&vcpu->kvm->srcu);
11230 kvm_mmu_destroy(vcpu);
11231 srcu_read_unlock(&vcpu->kvm->srcu, idx);
11232 free_page((unsigned long)vcpu->arch.pio_data);
11233 kvfree(vcpu->arch.cpuid_entries);
11234 if (!lapic_in_kernel(vcpu))
11235 static_branch_dec(&kvm_has_noapic_vcpu);
11238 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
11240 struct kvm_cpuid_entry2 *cpuid_0x1;
11241 unsigned long old_cr0 = kvm_read_cr0(vcpu);
11242 unsigned long new_cr0;
11245 * Several of the "set" flows, e.g. ->set_cr0(), read other registers
11246 * to handle side effects. RESET emulation hits those flows and relies
11247 * on emulated/virtualized registers, including those that are loaded
11248 * into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel
11249 * to detect improper or missing initialization.
11251 WARN_ON_ONCE(!init_event &&
11252 (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
11254 kvm_lapic_reset(vcpu, init_event);
11256 vcpu->arch.hflags = 0;
11258 vcpu->arch.smi_pending = 0;
11259 vcpu->arch.smi_count = 0;
11260 atomic_set(&vcpu->arch.nmi_queued, 0);
11261 vcpu->arch.nmi_pending = 0;
11262 vcpu->arch.nmi_injected = false;
11263 kvm_clear_interrupt_queue(vcpu);
11264 kvm_clear_exception_queue(vcpu);
11266 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
11267 kvm_update_dr0123(vcpu);
11268 vcpu->arch.dr6 = DR6_ACTIVE_LOW;
11269 vcpu->arch.dr7 = DR7_FIXED_1;
11270 kvm_update_dr7(vcpu);
11272 vcpu->arch.cr2 = 0;
11274 kvm_make_request(KVM_REQ_EVENT, vcpu);
11275 vcpu->arch.apf.msr_en_val = 0;
11276 vcpu->arch.apf.msr_int_val = 0;
11277 vcpu->arch.st.msr_val = 0;
11279 kvmclock_reset(vcpu);
11281 kvm_clear_async_pf_completion_queue(vcpu);
11282 kvm_async_pf_hash_reset(vcpu);
11283 vcpu->arch.apf.halted = false;
11285 if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
11286 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
11289 * To avoid have the INIT path from kvm_apic_has_events() that be
11290 * called with loaded FPU and does not let userspace fix the state.
11293 kvm_put_guest_fpu(vcpu);
11295 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
11296 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
11299 kvm_load_guest_fpu(vcpu);
11303 kvm_pmu_reset(vcpu);
11304 vcpu->arch.smbase = 0x30000;
11306 vcpu->arch.msr_misc_features_enables = 0;
11308 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
11309 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
11312 /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
11313 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
11314 kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
11317 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
11318 * if no CPUID match is found. Note, it's impossible to get a match at
11319 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
11320 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
11321 * on RESET. But, go through the motions in case that's ever remedied.
11323 cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1, 0);
11324 kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
11326 static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
11328 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
11329 kvm_rip_write(vcpu, 0xfff0);
11331 vcpu->arch.cr3 = 0;
11332 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11335 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions
11336 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
11337 * (or qualify) that with a footnote stating that CD/NW are preserved.
11339 new_cr0 = X86_CR0_ET;
11341 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
11343 new_cr0 |= X86_CR0_NW | X86_CR0_CD;
11345 static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
11346 static_call(kvm_x86_set_cr4)(vcpu, 0);
11347 static_call(kvm_x86_set_efer)(vcpu, 0);
11348 static_call(kvm_x86_update_exception_bitmap)(vcpu);
11351 * Reset the MMU context if paging was enabled prior to INIT (which is
11352 * implied if CR0.PG=1 as CR0 will be '0' prior to RESET). Unlike the
11353 * standard CR0/CR4/EFER modification paths, only CR0.PG needs to be
11354 * checked because it is unconditionally cleared on INIT and all other
11355 * paging related bits are ignored if paging is disabled, i.e. CR0.WP,
11356 * CR4, and EFER changes are all irrelevant if CR0.PG was '0'.
11358 if (old_cr0 & X86_CR0_PG)
11359 kvm_mmu_reset_context(vcpu);
11362 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's
11363 * APM states the TLBs are untouched by INIT, but it also states that
11364 * the TLBs are flushed on "External initialization of the processor."
11365 * Flush the guest TLB regardless of vendor, there is no meaningful
11366 * benefit in relying on the guest to flush the TLB immediately after
11367 * INIT. A spurious TLB flush is benign and likely negligible from a
11368 * performance perspective.
11371 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11373 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
11375 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
11377 struct kvm_segment cs;
11379 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
11380 cs.selector = vector << 8;
11381 cs.base = vector << 12;
11382 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
11383 kvm_rip_write(vcpu, 0);
11385 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
11387 int kvm_arch_hardware_enable(void)
11390 struct kvm_vcpu *vcpu;
11395 bool stable, backwards_tsc = false;
11397 kvm_user_return_msr_cpu_online();
11398 ret = static_call(kvm_x86_hardware_enable)();
11402 local_tsc = rdtsc();
11403 stable = !kvm_check_tsc_unstable();
11404 list_for_each_entry(kvm, &vm_list, vm_list) {
11405 kvm_for_each_vcpu(i, vcpu, kvm) {
11406 if (!stable && vcpu->cpu == smp_processor_id())
11407 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
11408 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
11409 backwards_tsc = true;
11410 if (vcpu->arch.last_host_tsc > max_tsc)
11411 max_tsc = vcpu->arch.last_host_tsc;
11417 * Sometimes, even reliable TSCs go backwards. This happens on
11418 * platforms that reset TSC during suspend or hibernate actions, but
11419 * maintain synchronization. We must compensate. Fortunately, we can
11420 * detect that condition here, which happens early in CPU bringup,
11421 * before any KVM threads can be running. Unfortunately, we can't
11422 * bring the TSCs fully up to date with real time, as we aren't yet far
11423 * enough into CPU bringup that we know how much real time has actually
11424 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
11425 * variables that haven't been updated yet.
11427 * So we simply find the maximum observed TSC above, then record the
11428 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
11429 * the adjustment will be applied. Note that we accumulate
11430 * adjustments, in case multiple suspend cycles happen before some VCPU
11431 * gets a chance to run again. In the event that no KVM threads get a
11432 * chance to run, we will miss the entire elapsed period, as we'll have
11433 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
11434 * loose cycle time. This isn't too big a deal, since the loss will be
11435 * uniform across all VCPUs (not to mention the scenario is extremely
11436 * unlikely). It is possible that a second hibernate recovery happens
11437 * much faster than a first, causing the observed TSC here to be
11438 * smaller; this would require additional padding adjustment, which is
11439 * why we set last_host_tsc to the local tsc observed here.
11441 * N.B. - this code below runs only on platforms with reliable TSC,
11442 * as that is the only way backwards_tsc is set above. Also note
11443 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
11444 * have the same delta_cyc adjustment applied if backwards_tsc
11445 * is detected. Note further, this adjustment is only done once,
11446 * as we reset last_host_tsc on all VCPUs to stop this from being
11447 * called multiple times (one for each physical CPU bringup).
11449 * Platforms with unreliable TSCs don't have to deal with this, they
11450 * will be compensated by the logic in vcpu_load, which sets the TSC to
11451 * catchup mode. This will catchup all VCPUs to real time, but cannot
11452 * guarantee that they stay in perfect synchronization.
11454 if (backwards_tsc) {
11455 u64 delta_cyc = max_tsc - local_tsc;
11456 list_for_each_entry(kvm, &vm_list, vm_list) {
11457 kvm->arch.backwards_tsc_observed = true;
11458 kvm_for_each_vcpu(i, vcpu, kvm) {
11459 vcpu->arch.tsc_offset_adjustment += delta_cyc;
11460 vcpu->arch.last_host_tsc = local_tsc;
11461 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
11465 * We have to disable TSC offset matching.. if you were
11466 * booting a VM while issuing an S4 host suspend....
11467 * you may have some problem. Solving this issue is
11468 * left as an exercise to the reader.
11470 kvm->arch.last_tsc_nsec = 0;
11471 kvm->arch.last_tsc_write = 0;
11478 void kvm_arch_hardware_disable(void)
11480 static_call(kvm_x86_hardware_disable)();
11481 drop_user_return_notifiers();
11484 int kvm_arch_hardware_setup(void *opaque)
11486 struct kvm_x86_init_ops *ops = opaque;
11489 rdmsrl_safe(MSR_EFER, &host_efer);
11491 if (boot_cpu_has(X86_FEATURE_XSAVES))
11492 rdmsrl(MSR_IA32_XSS, host_xss);
11494 r = ops->hardware_setup();
11498 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
11499 kvm_ops_static_call_update();
11501 kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
11503 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
11506 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
11507 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
11508 #undef __kvm_cpu_cap_has
11510 if (kvm_has_tsc_control) {
11512 * Make sure the user can only configure tsc_khz values that
11513 * fit into a signed integer.
11514 * A min value is not calculated because it will always
11515 * be 1 on all machines.
11517 u64 max = min(0x7fffffffULL,
11518 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
11519 kvm_max_guest_tsc_khz = max;
11521 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
11524 kvm_init_msr_list();
11528 void kvm_arch_hardware_unsetup(void)
11530 kvm_unregister_perf_callbacks();
11532 static_call(kvm_x86_hardware_unsetup)();
11535 int kvm_arch_check_processor_compat(void *opaque)
11537 struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
11538 struct kvm_x86_init_ops *ops = opaque;
11540 WARN_ON(!irqs_disabled());
11542 if (__cr4_reserved_bits(cpu_has, c) !=
11543 __cr4_reserved_bits(cpu_has, &boot_cpu_data))
11546 return ops->check_processor_compatibility();
11549 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
11551 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
11553 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
11555 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
11557 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
11560 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
11561 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
11563 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
11565 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
11567 vcpu->arch.l1tf_flush_l1d = true;
11568 if (pmu->version && unlikely(pmu->event_count)) {
11569 pmu->need_cleanup = true;
11570 kvm_make_request(KVM_REQ_PMU, vcpu);
11572 static_call(kvm_x86_sched_in)(vcpu, cpu);
11575 void kvm_arch_free_vm(struct kvm *kvm)
11577 kfree(to_kvm_hv(kvm)->hv_pa_pg);
11578 __kvm_arch_free_vm(kvm);
11582 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
11585 unsigned long flags;
11590 ret = kvm_page_track_init(kvm);
11594 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
11595 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
11596 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
11597 INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
11598 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
11599 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
11601 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
11602 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
11603 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
11604 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
11605 &kvm->arch.irq_sources_bitmap);
11607 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
11608 mutex_init(&kvm->arch.apic_map_lock);
11609 seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
11610 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
11612 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
11613 pvclock_update_vm_gtod_copy(kvm);
11614 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
11616 kvm->arch.guest_can_read_msr_platform_info = true;
11618 #if IS_ENABLED(CONFIG_HYPERV)
11619 spin_lock_init(&kvm->arch.hv_root_tdp_lock);
11620 kvm->arch.hv_root_tdp = INVALID_PAGE;
11623 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
11624 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
11626 kvm_apicv_init(kvm);
11627 kvm_hv_init_vm(kvm);
11628 kvm_mmu_init_vm(kvm);
11629 kvm_xen_init_vm(kvm);
11631 return static_call(kvm_x86_vm_init)(kvm);
11634 int kvm_arch_post_init_vm(struct kvm *kvm)
11636 return kvm_mmu_post_init_vm(kvm);
11639 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
11642 kvm_mmu_unload(vcpu);
11646 static void kvm_free_vcpus(struct kvm *kvm)
11649 struct kvm_vcpu *vcpu;
11652 * Unpin any mmu pages first.
11654 kvm_for_each_vcpu(i, vcpu, kvm) {
11655 kvm_clear_async_pf_completion_queue(vcpu);
11656 kvm_unload_vcpu_mmu(vcpu);
11659 kvm_destroy_vcpus(kvm);
11662 void kvm_arch_sync_events(struct kvm *kvm)
11664 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
11665 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
11670 * __x86_set_memory_region: Setup KVM internal memory slot
11672 * @kvm: the kvm pointer to the VM.
11673 * @id: the slot ID to setup.
11674 * @gpa: the GPA to install the slot (unused when @size == 0).
11675 * @size: the size of the slot. Set to zero to uninstall a slot.
11677 * This function helps to setup a KVM internal memory slot. Specify
11678 * @size > 0 to install a new slot, while @size == 0 to uninstall a
11679 * slot. The return code can be one of the following:
11681 * HVA: on success (uninstall will return a bogus HVA)
11684 * The caller should always use IS_ERR() to check the return value
11685 * before use. Note, the KVM internal memory slots are guaranteed to
11686 * remain valid and unchanged until the VM is destroyed, i.e., the
11687 * GPA->HVA translation will not change. However, the HVA is a user
11688 * address, i.e. its accessibility is not guaranteed, and must be
11689 * accessed via __copy_{to,from}_user().
11691 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
11695 unsigned long hva, old_npages;
11696 struct kvm_memslots *slots = kvm_memslots(kvm);
11697 struct kvm_memory_slot *slot;
11699 /* Called with kvm->slots_lock held. */
11700 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
11701 return ERR_PTR_USR(-EINVAL);
11703 slot = id_to_memslot(slots, id);
11705 if (slot && slot->npages)
11706 return ERR_PTR_USR(-EEXIST);
11709 * MAP_SHARED to prevent internal slot pages from being moved
11712 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
11713 MAP_SHARED | MAP_ANONYMOUS, 0);
11714 if (IS_ERR((void *)hva))
11715 return (void __user *)hva;
11717 if (!slot || !slot->npages)
11720 old_npages = slot->npages;
11721 hva = slot->userspace_addr;
11724 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
11725 struct kvm_userspace_memory_region m;
11727 m.slot = id | (i << 16);
11729 m.guest_phys_addr = gpa;
11730 m.userspace_addr = hva;
11731 m.memory_size = size;
11732 r = __kvm_set_memory_region(kvm, &m);
11734 return ERR_PTR_USR(r);
11738 vm_munmap(hva, old_npages * PAGE_SIZE);
11740 return (void __user *)hva;
11742 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
11744 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
11746 kvm_mmu_pre_destroy_vm(kvm);
11749 void kvm_arch_destroy_vm(struct kvm *kvm)
11751 if (current->mm == kvm->mm) {
11753 * Free memory regions allocated on behalf of userspace,
11754 * unless the the memory map has changed due to process exit
11757 mutex_lock(&kvm->slots_lock);
11758 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
11760 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
11762 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
11763 mutex_unlock(&kvm->slots_lock);
11765 static_call_cond(kvm_x86_vm_destroy)(kvm);
11766 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
11767 kvm_pic_destroy(kvm);
11768 kvm_ioapic_destroy(kvm);
11769 kvm_free_vcpus(kvm);
11770 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
11771 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
11772 kvm_mmu_uninit_vm(kvm);
11773 kvm_page_track_cleanup(kvm);
11774 kvm_xen_destroy_vm(kvm);
11775 kvm_hv_destroy_vm(kvm);
11778 static void memslot_rmap_free(struct kvm_memory_slot *slot)
11782 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
11783 kvfree(slot->arch.rmap[i]);
11784 slot->arch.rmap[i] = NULL;
11788 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
11792 memslot_rmap_free(slot);
11794 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11795 kvfree(slot->arch.lpage_info[i - 1]);
11796 slot->arch.lpage_info[i - 1] = NULL;
11799 kvm_page_track_free_memslot(slot);
11802 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
11804 const int sz = sizeof(*slot->arch.rmap[0]);
11807 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
11809 int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
11811 if (slot->arch.rmap[i])
11814 slot->arch.rmap[i] = kvcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
11815 if (!slot->arch.rmap[i]) {
11816 memslot_rmap_free(slot);
11824 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
11825 struct kvm_memory_slot *slot)
11827 unsigned long npages = slot->npages;
11831 * Clear out the previous array pointers for the KVM_MR_MOVE case. The
11832 * old arrays will be freed by __kvm_set_memory_region() if installing
11833 * the new memslot is successful.
11835 memset(&slot->arch, 0, sizeof(slot->arch));
11837 if (kvm_memslots_have_rmaps(kvm)) {
11838 r = memslot_rmap_alloc(slot, npages);
11843 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11844 struct kvm_lpage_info *linfo;
11845 unsigned long ugfn;
11849 lpages = __kvm_mmu_slot_lpages(slot, npages, level);
11851 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
11855 slot->arch.lpage_info[i - 1] = linfo;
11857 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
11858 linfo[0].disallow_lpage = 1;
11859 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
11860 linfo[lpages - 1].disallow_lpage = 1;
11861 ugfn = slot->userspace_addr >> PAGE_SHIFT;
11863 * If the gfn and userspace address are not aligned wrt each
11864 * other, disable large page support for this slot.
11866 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
11869 for (j = 0; j < lpages; ++j)
11870 linfo[j].disallow_lpage = 1;
11874 if (kvm_page_track_create_memslot(kvm, slot, npages))
11880 memslot_rmap_free(slot);
11882 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11883 kvfree(slot->arch.lpage_info[i - 1]);
11884 slot->arch.lpage_info[i - 1] = NULL;
11889 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
11891 struct kvm_vcpu *vcpu;
11895 * memslots->generation has been incremented.
11896 * mmio generation may have reached its maximum value.
11898 kvm_mmu_invalidate_mmio_sptes(kvm, gen);
11900 /* Force re-initialization of steal_time cache */
11901 kvm_for_each_vcpu(i, vcpu, kvm)
11902 kvm_vcpu_kick(vcpu);
11905 int kvm_arch_prepare_memory_region(struct kvm *kvm,
11906 const struct kvm_memory_slot *old,
11907 struct kvm_memory_slot *new,
11908 enum kvm_mr_change change)
11910 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE)
11911 return kvm_alloc_memslot_metadata(kvm, new);
11913 if (change == KVM_MR_FLAGS_ONLY)
11914 memcpy(&new->arch, &old->arch, sizeof(old->arch));
11915 else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
11922 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
11924 struct kvm_arch *ka = &kvm->arch;
11926 if (!kvm_x86_ops.cpu_dirty_log_size)
11929 if ((enable && ++ka->cpu_dirty_logging_count == 1) ||
11930 (!enable && --ka->cpu_dirty_logging_count == 0))
11931 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
11933 WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0);
11936 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
11937 struct kvm_memory_slot *old,
11938 const struct kvm_memory_slot *new,
11939 enum kvm_mr_change change)
11941 u32 old_flags = old ? old->flags : 0;
11942 u32 new_flags = new ? new->flags : 0;
11943 bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
11946 * Update CPU dirty logging if dirty logging is being toggled. This
11947 * applies to all operations.
11949 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
11950 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
11953 * Nothing more to do for RO slots (which can't be dirtied and can't be
11954 * made writable) or CREATE/MOVE/DELETE of a slot.
11956 * For a memslot with dirty logging disabled:
11957 * CREATE: No dirty mappings will already exist.
11958 * MOVE/DELETE: The old mappings will already have been cleaned up by
11959 * kvm_arch_flush_shadow_memslot()
11961 * For a memslot with dirty logging enabled:
11962 * CREATE: No shadow pages exist, thus nothing to write-protect
11963 * and no dirty bits to clear.
11964 * MOVE/DELETE: The old mappings will already have been cleaned up by
11965 * kvm_arch_flush_shadow_memslot().
11967 if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
11971 * READONLY and non-flags changes were filtered out above, and the only
11972 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
11973 * logging isn't being toggled on or off.
11975 if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
11978 if (!log_dirty_pages) {
11980 * Dirty logging tracks sptes in 4k granularity, meaning that
11981 * large sptes have to be split. If live migration succeeds,
11982 * the guest in the source machine will be destroyed and large
11983 * sptes will be created in the destination. However, if the
11984 * guest continues to run in the source machine (for example if
11985 * live migration fails), small sptes will remain around and
11986 * cause bad performance.
11988 * Scan sptes if dirty logging has been stopped, dropping those
11989 * which can be collapsed into a single large-page spte. Later
11990 * page faults will create the large-page sptes.
11992 kvm_mmu_zap_collapsible_sptes(kvm, new);
11995 * Initially-all-set does not require write protecting any page,
11996 * because they're all assumed to be dirty.
11998 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
12001 if (kvm_x86_ops.cpu_dirty_log_size) {
12002 kvm_mmu_slot_leaf_clear_dirty(kvm, new);
12003 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
12005 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
12010 void kvm_arch_commit_memory_region(struct kvm *kvm,
12011 struct kvm_memory_slot *old,
12012 const struct kvm_memory_slot *new,
12013 enum kvm_mr_change change)
12015 if (!kvm->arch.n_requested_mmu_pages &&
12016 (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
12017 unsigned long nr_mmu_pages;
12019 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
12020 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
12021 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
12024 kvm_mmu_slot_apply_flags(kvm, old, new, change);
12026 /* Free the arrays associated with the old memslot. */
12027 if (change == KVM_MR_MOVE)
12028 kvm_arch_free_memslot(kvm, old);
12031 void kvm_arch_flush_shadow_all(struct kvm *kvm)
12033 kvm_mmu_zap_all(kvm);
12036 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
12037 struct kvm_memory_slot *slot)
12039 kvm_page_track_flush_slot(kvm, slot);
12042 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
12044 return (is_guest_mode(vcpu) &&
12045 kvm_x86_ops.guest_apic_has_interrupt &&
12046 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
12049 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
12051 if (!list_empty_careful(&vcpu->async_pf.done))
12054 if (kvm_apic_has_events(vcpu))
12057 if (vcpu->arch.pv.pv_unhalted)
12060 if (vcpu->arch.exception.pending)
12063 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12064 (vcpu->arch.nmi_pending &&
12065 static_call(kvm_x86_nmi_allowed)(vcpu, false)))
12068 if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
12069 (vcpu->arch.smi_pending &&
12070 static_call(kvm_x86_smi_allowed)(vcpu, false)))
12073 if (kvm_arch_interrupt_allowed(vcpu) &&
12074 (kvm_cpu_has_interrupt(vcpu) ||
12075 kvm_guest_apic_has_interrupt(vcpu)))
12078 if (kvm_hv_has_stimer_pending(vcpu))
12081 if (is_guest_mode(vcpu) &&
12082 kvm_x86_ops.nested_ops->hv_timer_pending &&
12083 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
12089 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
12091 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
12094 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
12096 if (vcpu->arch.apicv_active && static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
12102 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
12104 if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
12107 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12108 kvm_test_request(KVM_REQ_SMI, vcpu) ||
12109 kvm_test_request(KVM_REQ_EVENT, vcpu))
12112 return kvm_arch_dy_has_pending_interrupt(vcpu);
12115 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
12117 if (vcpu->arch.guest_state_protected)
12120 return vcpu->arch.preempted_in_kernel;
12123 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
12125 return kvm_rip_read(vcpu);
12128 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
12130 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
12133 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
12135 return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
12138 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
12140 /* Can't read the RIP when guest state is protected, just return 0 */
12141 if (vcpu->arch.guest_state_protected)
12144 if (is_64_bit_mode(vcpu))
12145 return kvm_rip_read(vcpu);
12146 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
12147 kvm_rip_read(vcpu));
12149 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
12151 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
12153 return kvm_get_linear_rip(vcpu) == linear_rip;
12155 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
12157 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
12159 unsigned long rflags;
12161 rflags = static_call(kvm_x86_get_rflags)(vcpu);
12162 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
12163 rflags &= ~X86_EFLAGS_TF;
12166 EXPORT_SYMBOL_GPL(kvm_get_rflags);
12168 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12170 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
12171 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
12172 rflags |= X86_EFLAGS_TF;
12173 static_call(kvm_x86_set_rflags)(vcpu, rflags);
12176 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12178 __kvm_set_rflags(vcpu, rflags);
12179 kvm_make_request(KVM_REQ_EVENT, vcpu);
12181 EXPORT_SYMBOL_GPL(kvm_set_rflags);
12183 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
12187 if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
12191 r = kvm_mmu_reload(vcpu);
12195 if (!vcpu->arch.mmu->direct_map &&
12196 work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
12199 kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
12202 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
12204 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
12206 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
12209 static inline u32 kvm_async_pf_next_probe(u32 key)
12211 return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
12214 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12216 u32 key = kvm_async_pf_hash_fn(gfn);
12218 while (vcpu->arch.apf.gfns[key] != ~0)
12219 key = kvm_async_pf_next_probe(key);
12221 vcpu->arch.apf.gfns[key] = gfn;
12224 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
12227 u32 key = kvm_async_pf_hash_fn(gfn);
12229 for (i = 0; i < ASYNC_PF_PER_VCPU &&
12230 (vcpu->arch.apf.gfns[key] != gfn &&
12231 vcpu->arch.apf.gfns[key] != ~0); i++)
12232 key = kvm_async_pf_next_probe(key);
12237 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12239 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
12242 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12246 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
12248 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
12252 vcpu->arch.apf.gfns[i] = ~0;
12254 j = kvm_async_pf_next_probe(j);
12255 if (vcpu->arch.apf.gfns[j] == ~0)
12257 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
12259 * k lies cyclically in ]i,j]
12261 * |....j i.k.| or |.k..j i...|
12263 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
12264 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
12269 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
12271 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
12273 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
12277 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
12279 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12281 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12282 &token, offset, sizeof(token));
12285 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
12287 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12290 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12291 &val, offset, sizeof(val)))
12297 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
12299 if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
12302 if (!kvm_pv_async_pf_enabled(vcpu) ||
12303 (vcpu->arch.apf.send_user_only && static_call(kvm_x86_get_cpl)(vcpu) == 0))
12309 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
12311 if (unlikely(!lapic_in_kernel(vcpu) ||
12312 kvm_event_needs_reinjection(vcpu) ||
12313 vcpu->arch.exception.pending))
12316 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
12320 * If interrupts are off we cannot even use an artificial
12323 return kvm_arch_interrupt_allowed(vcpu);
12326 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
12327 struct kvm_async_pf *work)
12329 struct x86_exception fault;
12331 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
12332 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
12334 if (kvm_can_deliver_async_pf(vcpu) &&
12335 !apf_put_user_notpresent(vcpu)) {
12336 fault.vector = PF_VECTOR;
12337 fault.error_code_valid = true;
12338 fault.error_code = 0;
12339 fault.nested_page_fault = false;
12340 fault.address = work->arch.token;
12341 fault.async_page_fault = true;
12342 kvm_inject_page_fault(vcpu, &fault);
12346 * It is not possible to deliver a paravirtualized asynchronous
12347 * page fault, but putting the guest in an artificial halt state
12348 * can be beneficial nevertheless: if an interrupt arrives, we
12349 * can deliver it timely and perhaps the guest will schedule
12350 * another process. When the instruction that triggered a page
12351 * fault is retried, hopefully the page will be ready in the host.
12353 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
12358 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
12359 struct kvm_async_pf *work)
12361 struct kvm_lapic_irq irq = {
12362 .delivery_mode = APIC_DM_FIXED,
12363 .vector = vcpu->arch.apf.vec
12366 if (work->wakeup_all)
12367 work->arch.token = ~0; /* broadcast wakeup */
12369 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
12370 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
12372 if ((work->wakeup_all || work->notpresent_injected) &&
12373 kvm_pv_async_pf_enabled(vcpu) &&
12374 !apf_put_user_ready(vcpu, work->arch.token)) {
12375 vcpu->arch.apf.pageready_pending = true;
12376 kvm_apic_set_irq(vcpu, &irq, NULL);
12379 vcpu->arch.apf.halted = false;
12380 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
12383 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
12385 kvm_make_request(KVM_REQ_APF_READY, vcpu);
12386 if (!vcpu->arch.apf.pageready_pending)
12387 kvm_vcpu_kick(vcpu);
12390 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
12392 if (!kvm_pv_async_pf_enabled(vcpu))
12395 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
12398 void kvm_arch_start_assignment(struct kvm *kvm)
12400 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
12401 static_call_cond(kvm_x86_start_assignment)(kvm);
12403 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
12405 void kvm_arch_end_assignment(struct kvm *kvm)
12407 atomic_dec(&kvm->arch.assigned_device_count);
12409 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
12411 bool kvm_arch_has_assigned_device(struct kvm *kvm)
12413 return atomic_read(&kvm->arch.assigned_device_count);
12415 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
12417 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
12419 atomic_inc(&kvm->arch.noncoherent_dma_count);
12421 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
12423 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
12425 atomic_dec(&kvm->arch.noncoherent_dma_count);
12427 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
12429 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
12431 return atomic_read(&kvm->arch.noncoherent_dma_count);
12433 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
12435 bool kvm_arch_has_irq_bypass(void)
12440 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
12441 struct irq_bypass_producer *prod)
12443 struct kvm_kernel_irqfd *irqfd =
12444 container_of(cons, struct kvm_kernel_irqfd, consumer);
12447 irqfd->producer = prod;
12448 kvm_arch_start_assignment(irqfd->kvm);
12449 ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm,
12450 prod->irq, irqfd->gsi, 1);
12453 kvm_arch_end_assignment(irqfd->kvm);
12458 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
12459 struct irq_bypass_producer *prod)
12462 struct kvm_kernel_irqfd *irqfd =
12463 container_of(cons, struct kvm_kernel_irqfd, consumer);
12465 WARN_ON(irqfd->producer != prod);
12466 irqfd->producer = NULL;
12469 * When producer of consumer is unregistered, we change back to
12470 * remapped mode, so we can re-use the current implementation
12471 * when the irq is masked/disabled or the consumer side (KVM
12472 * int this case doesn't want to receive the interrupts.
12474 ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
12476 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
12477 " fails: %d\n", irqfd->consumer.token, ret);
12479 kvm_arch_end_assignment(irqfd->kvm);
12482 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
12483 uint32_t guest_irq, bool set)
12485 return static_call(kvm_x86_update_pi_irte)(kvm, host_irq, guest_irq, set);
12488 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
12489 struct kvm_kernel_irq_routing_entry *new)
12491 if (new->type != KVM_IRQ_ROUTING_MSI)
12494 return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
12497 bool kvm_vector_hashing_enabled(void)
12499 return vector_hashing;
12502 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
12504 return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
12506 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
12509 int kvm_spec_ctrl_test_value(u64 value)
12512 * test that setting IA32_SPEC_CTRL to given value
12513 * is allowed by the host processor
12517 unsigned long flags;
12520 local_irq_save(flags);
12522 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
12524 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
12527 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
12529 local_irq_restore(flags);
12533 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
12535 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
12537 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
12538 struct x86_exception fault;
12539 u32 access = error_code &
12540 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
12542 if (!(error_code & PFERR_PRESENT_MASK) ||
12543 mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != UNMAPPED_GVA) {
12545 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
12546 * tables probably do not match the TLB. Just proceed
12547 * with the error code that the processor gave.
12549 fault.vector = PF_VECTOR;
12550 fault.error_code_valid = true;
12551 fault.error_code = error_code;
12552 fault.nested_page_fault = false;
12553 fault.address = gva;
12555 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
12557 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
12560 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
12561 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
12562 * indicates whether exit to userspace is needed.
12564 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
12565 struct x86_exception *e)
12567 if (r == X86EMUL_PROPAGATE_FAULT) {
12568 kvm_inject_emulated_page_fault(vcpu, e);
12573 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
12574 * while handling a VMX instruction KVM could've handled the request
12575 * correctly by exiting to userspace and performing I/O but there
12576 * doesn't seem to be a real use-case behind such requests, just return
12577 * KVM_EXIT_INTERNAL_ERROR for now.
12579 kvm_prepare_emulation_failure_exit(vcpu);
12583 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
12585 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
12588 struct x86_exception e;
12595 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
12596 if (r != X86EMUL_CONTINUE)
12597 return kvm_handle_memory_failure(vcpu, r, &e);
12599 if (operand.pcid >> 12 != 0) {
12600 kvm_inject_gp(vcpu, 0);
12604 pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
12607 case INVPCID_TYPE_INDIV_ADDR:
12608 if ((!pcid_enabled && (operand.pcid != 0)) ||
12609 is_noncanonical_address(operand.gla, vcpu)) {
12610 kvm_inject_gp(vcpu, 0);
12613 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
12614 return kvm_skip_emulated_instruction(vcpu);
12616 case INVPCID_TYPE_SINGLE_CTXT:
12617 if (!pcid_enabled && (operand.pcid != 0)) {
12618 kvm_inject_gp(vcpu, 0);
12622 kvm_invalidate_pcid(vcpu, operand.pcid);
12623 return kvm_skip_emulated_instruction(vcpu);
12625 case INVPCID_TYPE_ALL_NON_GLOBAL:
12627 * Currently, KVM doesn't mark global entries in the shadow
12628 * page tables, so a non-global flush just degenerates to a
12629 * global flush. If needed, we could optimize this later by
12630 * keeping track of global entries in shadow page tables.
12634 case INVPCID_TYPE_ALL_INCL_GLOBAL:
12635 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12636 return kvm_skip_emulated_instruction(vcpu);
12639 kvm_inject_gp(vcpu, 0);
12643 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
12645 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
12647 struct kvm_run *run = vcpu->run;
12648 struct kvm_mmio_fragment *frag;
12651 BUG_ON(!vcpu->mmio_needed);
12653 /* Complete previous fragment */
12654 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
12655 len = min(8u, frag->len);
12656 if (!vcpu->mmio_is_write)
12657 memcpy(frag->data, run->mmio.data, len);
12659 if (frag->len <= 8) {
12660 /* Switch to the next fragment. */
12662 vcpu->mmio_cur_fragment++;
12664 /* Go forward to the next mmio piece. */
12670 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
12671 vcpu->mmio_needed = 0;
12673 // VMG change, at this point, we're always done
12674 // RIP has already been advanced
12678 // More MMIO is needed
12679 run->mmio.phys_addr = frag->gpa;
12680 run->mmio.len = min(8u, frag->len);
12681 run->mmio.is_write = vcpu->mmio_is_write;
12682 if (run->mmio.is_write)
12683 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
12684 run->exit_reason = KVM_EXIT_MMIO;
12686 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12691 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12695 struct kvm_mmio_fragment *frag;
12700 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12701 if (handled == bytes)
12708 /*TODO: Check if need to increment number of frags */
12709 frag = vcpu->mmio_fragments;
12710 vcpu->mmio_nr_fragments = 1;
12715 vcpu->mmio_needed = 1;
12716 vcpu->mmio_cur_fragment = 0;
12718 vcpu->run->mmio.phys_addr = gpa;
12719 vcpu->run->mmio.len = min(8u, frag->len);
12720 vcpu->run->mmio.is_write = 1;
12721 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
12722 vcpu->run->exit_reason = KVM_EXIT_MMIO;
12724 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12728 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
12730 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12734 struct kvm_mmio_fragment *frag;
12739 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12740 if (handled == bytes)
12747 /*TODO: Check if need to increment number of frags */
12748 frag = vcpu->mmio_fragments;
12749 vcpu->mmio_nr_fragments = 1;
12754 vcpu->mmio_needed = 1;
12755 vcpu->mmio_cur_fragment = 0;
12757 vcpu->run->mmio.phys_addr = gpa;
12758 vcpu->run->mmio.len = min(8u, frag->len);
12759 vcpu->run->mmio.is_write = 0;
12760 vcpu->run->exit_reason = KVM_EXIT_MMIO;
12762 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12766 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
12768 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
12769 unsigned int port);
12771 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
12773 int size = vcpu->arch.pio.size;
12774 int port = vcpu->arch.pio.port;
12776 vcpu->arch.pio.count = 0;
12777 if (vcpu->arch.sev_pio_count)
12778 return kvm_sev_es_outs(vcpu, size, port);
12782 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
12786 unsigned int count =
12787 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
12788 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
12790 /* memcpy done already by emulator_pio_out. */
12791 vcpu->arch.sev_pio_count -= count;
12792 vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size;
12796 /* Emulation done by the kernel. */
12797 if (!vcpu->arch.sev_pio_count)
12801 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
12805 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
12806 unsigned int port);
12808 static void advance_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
12810 unsigned count = vcpu->arch.pio.count;
12811 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
12812 vcpu->arch.sev_pio_count -= count;
12813 vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size;
12816 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
12818 int size = vcpu->arch.pio.size;
12819 int port = vcpu->arch.pio.port;
12821 advance_sev_es_emulated_ins(vcpu);
12822 if (vcpu->arch.sev_pio_count)
12823 return kvm_sev_es_ins(vcpu, size, port);
12827 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
12831 unsigned int count =
12832 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
12833 if (!__emulator_pio_in(vcpu, size, port, count))
12836 /* Emulation done by the kernel. */
12837 advance_sev_es_emulated_ins(vcpu);
12838 if (!vcpu->arch.sev_pio_count)
12842 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
12846 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
12847 unsigned int port, void *data, unsigned int count,
12850 vcpu->arch.sev_pio_data = data;
12851 vcpu->arch.sev_pio_count = count;
12852 return in ? kvm_sev_es_ins(vcpu, size, port)
12853 : kvm_sev_es_outs(vcpu, size, port);
12855 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
12857 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
12858 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
12859 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
12860 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
12861 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
12862 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
12863 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
12864 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
12865 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
12866 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
12867 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
12868 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
12869 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
12870 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
12871 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
12872 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
12873 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
12874 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
12875 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
12876 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
12877 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
12878 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
12879 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request);
12880 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
12881 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
12882 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
12883 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
12884 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);