e7e57de50a3c0820c0149cecf4956245c56c220f
[platform/kernel/linux-starfive.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "pmu.h"
31 #include "hyperv.h"
32
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/mem_encrypt.h>
58
59 #include <trace/events/kvm.h>
60
61 #include <asm/debugreg.h>
62 #include <asm/msr.h>
63 #include <asm/desc.h>
64 #include <asm/mce.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70 #include <asm/mshyperv.h>
71 #include <asm/hypervisor.h>
72 #include <asm/intel_pt.h>
73
74 #define CREATE_TRACE_POINTS
75 #include "trace.h"
76
77 #define MAX_IO_MSRS 256
78 #define KVM_MAX_MCE_BANKS 32
79 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
80 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
81
82 #define emul_to_vcpu(ctxt) \
83         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
84
85 /* EFER defaults:
86  * - enable syscall per default because its emulated by KVM
87  * - enable LME and LMA per default on 64 bit KVM
88  */
89 #ifdef CONFIG_X86_64
90 static
91 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
92 #else
93 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
94 #endif
95
96 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
97 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
98
99 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
100                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
101
102 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
103 static void process_nmi(struct kvm_vcpu *vcpu);
104 static void enter_smm(struct kvm_vcpu *vcpu);
105 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
106 static void store_regs(struct kvm_vcpu *vcpu);
107 static int sync_regs(struct kvm_vcpu *vcpu);
108
109 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
110 EXPORT_SYMBOL_GPL(kvm_x86_ops);
111
112 static bool __read_mostly ignore_msrs = 0;
113 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
114
115 static bool __read_mostly report_ignored_msrs = true;
116 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
117
118 unsigned int min_timer_period_us = 200;
119 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
120
121 static bool __read_mostly kvmclock_periodic_sync = true;
122 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
123
124 bool __read_mostly kvm_has_tsc_control;
125 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
126 u32  __read_mostly kvm_max_guest_tsc_khz;
127 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
128 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
129 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
130 u64  __read_mostly kvm_max_tsc_scaling_ratio;
131 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
132 u64 __read_mostly kvm_default_tsc_scaling_ratio;
133 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
134
135 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
136 static u32 __read_mostly tsc_tolerance_ppm = 250;
137 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
138
139 /*
140  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
141  * adaptive tuning starting from default advancment of 1000ns.  '0' disables
142  * advancement entirely.  Any other value is used as-is and disables adaptive
143  * tuning, i.e. allows priveleged userspace to set an exact advancement time.
144  */
145 static int __read_mostly lapic_timer_advance_ns = -1;
146 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
147
148 static bool __read_mostly vector_hashing = true;
149 module_param(vector_hashing, bool, S_IRUGO);
150
151 bool __read_mostly enable_vmware_backdoor = false;
152 module_param(enable_vmware_backdoor, bool, S_IRUGO);
153 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
154
155 static bool __read_mostly force_emulation_prefix = false;
156 module_param(force_emulation_prefix, bool, S_IRUGO);
157
158 #define KVM_NR_SHARED_MSRS 16
159
160 struct kvm_shared_msrs_global {
161         int nr;
162         u32 msrs[KVM_NR_SHARED_MSRS];
163 };
164
165 struct kvm_shared_msrs {
166         struct user_return_notifier urn;
167         bool registered;
168         struct kvm_shared_msr_values {
169                 u64 host;
170                 u64 curr;
171         } values[KVM_NR_SHARED_MSRS];
172 };
173
174 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
175 static struct kvm_shared_msrs __percpu *shared_msrs;
176
177 struct kvm_stats_debugfs_item debugfs_entries[] = {
178         { "pf_fixed", VCPU_STAT(pf_fixed) },
179         { "pf_guest", VCPU_STAT(pf_guest) },
180         { "tlb_flush", VCPU_STAT(tlb_flush) },
181         { "invlpg", VCPU_STAT(invlpg) },
182         { "exits", VCPU_STAT(exits) },
183         { "io_exits", VCPU_STAT(io_exits) },
184         { "mmio_exits", VCPU_STAT(mmio_exits) },
185         { "signal_exits", VCPU_STAT(signal_exits) },
186         { "irq_window", VCPU_STAT(irq_window_exits) },
187         { "nmi_window", VCPU_STAT(nmi_window_exits) },
188         { "halt_exits", VCPU_STAT(halt_exits) },
189         { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
190         { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
191         { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
192         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
193         { "hypercalls", VCPU_STAT(hypercalls) },
194         { "request_irq", VCPU_STAT(request_irq_exits) },
195         { "irq_exits", VCPU_STAT(irq_exits) },
196         { "host_state_reload", VCPU_STAT(host_state_reload) },
197         { "fpu_reload", VCPU_STAT(fpu_reload) },
198         { "insn_emulation", VCPU_STAT(insn_emulation) },
199         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
200         { "irq_injections", VCPU_STAT(irq_injections) },
201         { "nmi_injections", VCPU_STAT(nmi_injections) },
202         { "req_event", VCPU_STAT(req_event) },
203         { "l1d_flush", VCPU_STAT(l1d_flush) },
204         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
205         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
206         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
207         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
208         { "mmu_flooded", VM_STAT(mmu_flooded) },
209         { "mmu_recycled", VM_STAT(mmu_recycled) },
210         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
211         { "mmu_unsync", VM_STAT(mmu_unsync) },
212         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
213         { "largepages", VM_STAT(lpages) },
214         { "max_mmu_page_hash_collisions",
215                 VM_STAT(max_mmu_page_hash_collisions) },
216         { NULL }
217 };
218
219 u64 __read_mostly host_xcr0;
220
221 struct kmem_cache *x86_fpu_cache;
222 EXPORT_SYMBOL_GPL(x86_fpu_cache);
223
224 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
225
226 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
227 {
228         int i;
229         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
230                 vcpu->arch.apf.gfns[i] = ~0;
231 }
232
233 static void kvm_on_user_return(struct user_return_notifier *urn)
234 {
235         unsigned slot;
236         struct kvm_shared_msrs *locals
237                 = container_of(urn, struct kvm_shared_msrs, urn);
238         struct kvm_shared_msr_values *values;
239         unsigned long flags;
240
241         /*
242          * Disabling irqs at this point since the following code could be
243          * interrupted and executed through kvm_arch_hardware_disable()
244          */
245         local_irq_save(flags);
246         if (locals->registered) {
247                 locals->registered = false;
248                 user_return_notifier_unregister(urn);
249         }
250         local_irq_restore(flags);
251         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
252                 values = &locals->values[slot];
253                 if (values->host != values->curr) {
254                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
255                         values->curr = values->host;
256                 }
257         }
258 }
259
260 static void shared_msr_update(unsigned slot, u32 msr)
261 {
262         u64 value;
263         unsigned int cpu = smp_processor_id();
264         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
265
266         /* only read, and nobody should modify it at this time,
267          * so don't need lock */
268         if (slot >= shared_msrs_global.nr) {
269                 printk(KERN_ERR "kvm: invalid MSR slot!");
270                 return;
271         }
272         rdmsrl_safe(msr, &value);
273         smsr->values[slot].host = value;
274         smsr->values[slot].curr = value;
275 }
276
277 void kvm_define_shared_msr(unsigned slot, u32 msr)
278 {
279         BUG_ON(slot >= KVM_NR_SHARED_MSRS);
280         shared_msrs_global.msrs[slot] = msr;
281         if (slot >= shared_msrs_global.nr)
282                 shared_msrs_global.nr = slot + 1;
283 }
284 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
285
286 static void kvm_shared_msr_cpu_online(void)
287 {
288         unsigned i;
289
290         for (i = 0; i < shared_msrs_global.nr; ++i)
291                 shared_msr_update(i, shared_msrs_global.msrs[i]);
292 }
293
294 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
295 {
296         unsigned int cpu = smp_processor_id();
297         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
298         int err;
299
300         if (((value ^ smsr->values[slot].curr) & mask) == 0)
301                 return 0;
302         smsr->values[slot].curr = value;
303         err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
304         if (err)
305                 return 1;
306
307         if (!smsr->registered) {
308                 smsr->urn.on_user_return = kvm_on_user_return;
309                 user_return_notifier_register(&smsr->urn);
310                 smsr->registered = true;
311         }
312         return 0;
313 }
314 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
315
316 static void drop_user_return_notifiers(void)
317 {
318         unsigned int cpu = smp_processor_id();
319         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
320
321         if (smsr->registered)
322                 kvm_on_user_return(&smsr->urn);
323 }
324
325 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
326 {
327         return vcpu->arch.apic_base;
328 }
329 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
330
331 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
332 {
333         return kvm_apic_mode(kvm_get_apic_base(vcpu));
334 }
335 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
336
337 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
338 {
339         enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
340         enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
341         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
342                 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
343
344         if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
345                 return 1;
346         if (!msr_info->host_initiated) {
347                 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
348                         return 1;
349                 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
350                         return 1;
351         }
352
353         kvm_lapic_set_base(vcpu, msr_info->data);
354         return 0;
355 }
356 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
357
358 asmlinkage __visible void kvm_spurious_fault(void)
359 {
360         /* Fault while not rebooting.  We want the trace. */
361         BUG();
362 }
363 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
364
365 #define EXCPT_BENIGN            0
366 #define EXCPT_CONTRIBUTORY      1
367 #define EXCPT_PF                2
368
369 static int exception_class(int vector)
370 {
371         switch (vector) {
372         case PF_VECTOR:
373                 return EXCPT_PF;
374         case DE_VECTOR:
375         case TS_VECTOR:
376         case NP_VECTOR:
377         case SS_VECTOR:
378         case GP_VECTOR:
379                 return EXCPT_CONTRIBUTORY;
380         default:
381                 break;
382         }
383         return EXCPT_BENIGN;
384 }
385
386 #define EXCPT_FAULT             0
387 #define EXCPT_TRAP              1
388 #define EXCPT_ABORT             2
389 #define EXCPT_INTERRUPT         3
390
391 static int exception_type(int vector)
392 {
393         unsigned int mask;
394
395         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
396                 return EXCPT_INTERRUPT;
397
398         mask = 1 << vector;
399
400         /* #DB is trap, as instruction watchpoints are handled elsewhere */
401         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
402                 return EXCPT_TRAP;
403
404         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
405                 return EXCPT_ABORT;
406
407         /* Reserved exceptions will result in fault */
408         return EXCPT_FAULT;
409 }
410
411 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
412 {
413         unsigned nr = vcpu->arch.exception.nr;
414         bool has_payload = vcpu->arch.exception.has_payload;
415         unsigned long payload = vcpu->arch.exception.payload;
416
417         if (!has_payload)
418                 return;
419
420         switch (nr) {
421         case DB_VECTOR:
422                 /*
423                  * "Certain debug exceptions may clear bit 0-3.  The
424                  * remaining contents of the DR6 register are never
425                  * cleared by the processor".
426                  */
427                 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
428                 /*
429                  * DR6.RTM is set by all #DB exceptions that don't clear it.
430                  */
431                 vcpu->arch.dr6 |= DR6_RTM;
432                 vcpu->arch.dr6 |= payload;
433                 /*
434                  * Bit 16 should be set in the payload whenever the #DB
435                  * exception should clear DR6.RTM. This makes the payload
436                  * compatible with the pending debug exceptions under VMX.
437                  * Though not currently documented in the SDM, this also
438                  * makes the payload compatible with the exit qualification
439                  * for #DB exceptions under VMX.
440                  */
441                 vcpu->arch.dr6 ^= payload & DR6_RTM;
442                 break;
443         case PF_VECTOR:
444                 vcpu->arch.cr2 = payload;
445                 break;
446         }
447
448         vcpu->arch.exception.has_payload = false;
449         vcpu->arch.exception.payload = 0;
450 }
451 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
452
453 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
454                 unsigned nr, bool has_error, u32 error_code,
455                 bool has_payload, unsigned long payload, bool reinject)
456 {
457         u32 prev_nr;
458         int class1, class2;
459
460         kvm_make_request(KVM_REQ_EVENT, vcpu);
461
462         if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
463         queue:
464                 if (has_error && !is_protmode(vcpu))
465                         has_error = false;
466                 if (reinject) {
467                         /*
468                          * On vmentry, vcpu->arch.exception.pending is only
469                          * true if an event injection was blocked by
470                          * nested_run_pending.  In that case, however,
471                          * vcpu_enter_guest requests an immediate exit,
472                          * and the guest shouldn't proceed far enough to
473                          * need reinjection.
474                          */
475                         WARN_ON_ONCE(vcpu->arch.exception.pending);
476                         vcpu->arch.exception.injected = true;
477                         if (WARN_ON_ONCE(has_payload)) {
478                                 /*
479                                  * A reinjected event has already
480                                  * delivered its payload.
481                                  */
482                                 has_payload = false;
483                                 payload = 0;
484                         }
485                 } else {
486                         vcpu->arch.exception.pending = true;
487                         vcpu->arch.exception.injected = false;
488                 }
489                 vcpu->arch.exception.has_error_code = has_error;
490                 vcpu->arch.exception.nr = nr;
491                 vcpu->arch.exception.error_code = error_code;
492                 vcpu->arch.exception.has_payload = has_payload;
493                 vcpu->arch.exception.payload = payload;
494                 /*
495                  * In guest mode, payload delivery should be deferred,
496                  * so that the L1 hypervisor can intercept #PF before
497                  * CR2 is modified (or intercept #DB before DR6 is
498                  * modified under nVMX).  However, for ABI
499                  * compatibility with KVM_GET_VCPU_EVENTS and
500                  * KVM_SET_VCPU_EVENTS, we can't delay payload
501                  * delivery unless userspace has enabled this
502                  * functionality via the per-VM capability,
503                  * KVM_CAP_EXCEPTION_PAYLOAD.
504                  */
505                 if (!vcpu->kvm->arch.exception_payload_enabled ||
506                     !is_guest_mode(vcpu))
507                         kvm_deliver_exception_payload(vcpu);
508                 return;
509         }
510
511         /* to check exception */
512         prev_nr = vcpu->arch.exception.nr;
513         if (prev_nr == DF_VECTOR) {
514                 /* triple fault -> shutdown */
515                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
516                 return;
517         }
518         class1 = exception_class(prev_nr);
519         class2 = exception_class(nr);
520         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
521                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
522                 /*
523                  * Generate double fault per SDM Table 5-5.  Set
524                  * exception.pending = true so that the double fault
525                  * can trigger a nested vmexit.
526                  */
527                 vcpu->arch.exception.pending = true;
528                 vcpu->arch.exception.injected = false;
529                 vcpu->arch.exception.has_error_code = true;
530                 vcpu->arch.exception.nr = DF_VECTOR;
531                 vcpu->arch.exception.error_code = 0;
532                 vcpu->arch.exception.has_payload = false;
533                 vcpu->arch.exception.payload = 0;
534         } else
535                 /* replace previous exception with a new one in a hope
536                    that instruction re-execution will regenerate lost
537                    exception */
538                 goto queue;
539 }
540
541 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
542 {
543         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
544 }
545 EXPORT_SYMBOL_GPL(kvm_queue_exception);
546
547 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
548 {
549         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
550 }
551 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
552
553 static void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
554                                   unsigned long payload)
555 {
556         kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
557 }
558
559 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
560                                     u32 error_code, unsigned long payload)
561 {
562         kvm_multiple_exception(vcpu, nr, true, error_code,
563                                true, payload, false);
564 }
565
566 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
567 {
568         if (err)
569                 kvm_inject_gp(vcpu, 0);
570         else
571                 return kvm_skip_emulated_instruction(vcpu);
572
573         return 1;
574 }
575 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
576
577 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
578 {
579         ++vcpu->stat.pf_guest;
580         vcpu->arch.exception.nested_apf =
581                 is_guest_mode(vcpu) && fault->async_page_fault;
582         if (vcpu->arch.exception.nested_apf) {
583                 vcpu->arch.apf.nested_apf_token = fault->address;
584                 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
585         } else {
586                 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
587                                         fault->address);
588         }
589 }
590 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
591
592 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
593 {
594         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
595                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
596         else
597                 vcpu->arch.mmu->inject_page_fault(vcpu, fault);
598
599         return fault->nested_page_fault;
600 }
601
602 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
603 {
604         atomic_inc(&vcpu->arch.nmi_queued);
605         kvm_make_request(KVM_REQ_NMI, vcpu);
606 }
607 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
608
609 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
610 {
611         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
612 }
613 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
614
615 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
616 {
617         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
618 }
619 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
620
621 /*
622  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
623  * a #GP and return false.
624  */
625 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
626 {
627         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
628                 return true;
629         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
630         return false;
631 }
632 EXPORT_SYMBOL_GPL(kvm_require_cpl);
633
634 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
635 {
636         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
637                 return true;
638
639         kvm_queue_exception(vcpu, UD_VECTOR);
640         return false;
641 }
642 EXPORT_SYMBOL_GPL(kvm_require_dr);
643
644 /*
645  * This function will be used to read from the physical memory of the currently
646  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
647  * can read from guest physical or from the guest's guest physical memory.
648  */
649 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
650                             gfn_t ngfn, void *data, int offset, int len,
651                             u32 access)
652 {
653         struct x86_exception exception;
654         gfn_t real_gfn;
655         gpa_t ngpa;
656
657         ngpa     = gfn_to_gpa(ngfn);
658         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
659         if (real_gfn == UNMAPPED_GVA)
660                 return -EFAULT;
661
662         real_gfn = gpa_to_gfn(real_gfn);
663
664         return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
665 }
666 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
667
668 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
669                                void *data, int offset, int len, u32 access)
670 {
671         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
672                                        data, offset, len, access);
673 }
674
675 /*
676  * Load the pae pdptrs.  Return true is they are all valid.
677  */
678 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
679 {
680         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
681         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
682         int i;
683         int ret;
684         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
685
686         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
687                                       offset * sizeof(u64), sizeof(pdpte),
688                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
689         if (ret < 0) {
690                 ret = 0;
691                 goto out;
692         }
693         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
694                 if ((pdpte[i] & PT_PRESENT_MASK) &&
695                     (pdpte[i] &
696                      vcpu->arch.mmu->guest_rsvd_check.rsvd_bits_mask[0][2])) {
697                         ret = 0;
698                         goto out;
699                 }
700         }
701         ret = 1;
702
703         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
704         __set_bit(VCPU_EXREG_PDPTR,
705                   (unsigned long *)&vcpu->arch.regs_avail);
706         __set_bit(VCPU_EXREG_PDPTR,
707                   (unsigned long *)&vcpu->arch.regs_dirty);
708 out:
709
710         return ret;
711 }
712 EXPORT_SYMBOL_GPL(load_pdptrs);
713
714 bool pdptrs_changed(struct kvm_vcpu *vcpu)
715 {
716         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
717         bool changed = true;
718         int offset;
719         gfn_t gfn;
720         int r;
721
722         if (is_long_mode(vcpu) || !is_pae(vcpu) || !is_paging(vcpu))
723                 return false;
724
725         if (!test_bit(VCPU_EXREG_PDPTR,
726                       (unsigned long *)&vcpu->arch.regs_avail))
727                 return true;
728
729         gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
730         offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
731         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
732                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
733         if (r < 0)
734                 goto out;
735         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
736 out:
737
738         return changed;
739 }
740 EXPORT_SYMBOL_GPL(pdptrs_changed);
741
742 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
743 {
744         unsigned long old_cr0 = kvm_read_cr0(vcpu);
745         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
746
747         cr0 |= X86_CR0_ET;
748
749 #ifdef CONFIG_X86_64
750         if (cr0 & 0xffffffff00000000UL)
751                 return 1;
752 #endif
753
754         cr0 &= ~CR0_RESERVED_BITS;
755
756         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
757                 return 1;
758
759         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
760                 return 1;
761
762         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
763 #ifdef CONFIG_X86_64
764                 if ((vcpu->arch.efer & EFER_LME)) {
765                         int cs_db, cs_l;
766
767                         if (!is_pae(vcpu))
768                                 return 1;
769                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
770                         if (cs_l)
771                                 return 1;
772                 } else
773 #endif
774                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
775                                                  kvm_read_cr3(vcpu)))
776                         return 1;
777         }
778
779         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
780                 return 1;
781
782         kvm_x86_ops->set_cr0(vcpu, cr0);
783
784         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
785                 kvm_clear_async_pf_completion_queue(vcpu);
786                 kvm_async_pf_hash_reset(vcpu);
787         }
788
789         if ((cr0 ^ old_cr0) & update_bits)
790                 kvm_mmu_reset_context(vcpu);
791
792         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
793             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
794             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
795                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
796
797         return 0;
798 }
799 EXPORT_SYMBOL_GPL(kvm_set_cr0);
800
801 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
802 {
803         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
804 }
805 EXPORT_SYMBOL_GPL(kvm_lmsw);
806
807 void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
808 {
809         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
810                         !vcpu->guest_xcr0_loaded) {
811                 /* kvm_set_xcr() also depends on this */
812                 if (vcpu->arch.xcr0 != host_xcr0)
813                         xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
814                 vcpu->guest_xcr0_loaded = 1;
815         }
816 }
817 EXPORT_SYMBOL_GPL(kvm_load_guest_xcr0);
818
819 void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
820 {
821         if (vcpu->guest_xcr0_loaded) {
822                 if (vcpu->arch.xcr0 != host_xcr0)
823                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
824                 vcpu->guest_xcr0_loaded = 0;
825         }
826 }
827 EXPORT_SYMBOL_GPL(kvm_put_guest_xcr0);
828
829 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
830 {
831         u64 xcr0 = xcr;
832         u64 old_xcr0 = vcpu->arch.xcr0;
833         u64 valid_bits;
834
835         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
836         if (index != XCR_XFEATURE_ENABLED_MASK)
837                 return 1;
838         if (!(xcr0 & XFEATURE_MASK_FP))
839                 return 1;
840         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
841                 return 1;
842
843         /*
844          * Do not allow the guest to set bits that we do not support
845          * saving.  However, xcr0 bit 0 is always set, even if the
846          * emulated CPU does not support XSAVE (see fx_init).
847          */
848         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
849         if (xcr0 & ~valid_bits)
850                 return 1;
851
852         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
853             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
854                 return 1;
855
856         if (xcr0 & XFEATURE_MASK_AVX512) {
857                 if (!(xcr0 & XFEATURE_MASK_YMM))
858                         return 1;
859                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
860                         return 1;
861         }
862         vcpu->arch.xcr0 = xcr0;
863
864         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
865                 kvm_update_cpuid(vcpu);
866         return 0;
867 }
868
869 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
870 {
871         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
872             __kvm_set_xcr(vcpu, index, xcr)) {
873                 kvm_inject_gp(vcpu, 0);
874                 return 1;
875         }
876         return 0;
877 }
878 EXPORT_SYMBOL_GPL(kvm_set_xcr);
879
880 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
881 {
882         unsigned long old_cr4 = kvm_read_cr4(vcpu);
883         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
884                                    X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
885
886         if (cr4 & CR4_RESERVED_BITS)
887                 return 1;
888
889         if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE))
890                 return 1;
891
892         if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP))
893                 return 1;
894
895         if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP))
896                 return 1;
897
898         if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE))
899                 return 1;
900
901         if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE))
902                 return 1;
903
904         if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57))
905                 return 1;
906
907         if (!guest_cpuid_has(vcpu, X86_FEATURE_UMIP) && (cr4 & X86_CR4_UMIP))
908                 return 1;
909
910         if (is_long_mode(vcpu)) {
911                 if (!(cr4 & X86_CR4_PAE))
912                         return 1;
913         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
914                    && ((cr4 ^ old_cr4) & pdptr_bits)
915                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
916                                    kvm_read_cr3(vcpu)))
917                 return 1;
918
919         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
920                 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
921                         return 1;
922
923                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
924                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
925                         return 1;
926         }
927
928         if (kvm_x86_ops->set_cr4(vcpu, cr4))
929                 return 1;
930
931         if (((cr4 ^ old_cr4) & pdptr_bits) ||
932             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
933                 kvm_mmu_reset_context(vcpu);
934
935         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
936                 kvm_update_cpuid(vcpu);
937
938         return 0;
939 }
940 EXPORT_SYMBOL_GPL(kvm_set_cr4);
941
942 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
943 {
944         bool skip_tlb_flush = false;
945 #ifdef CONFIG_X86_64
946         bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
947
948         if (pcid_enabled) {
949                 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
950                 cr3 &= ~X86_CR3_PCID_NOFLUSH;
951         }
952 #endif
953
954         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
955                 if (!skip_tlb_flush) {
956                         kvm_mmu_sync_roots(vcpu);
957                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
958                 }
959                 return 0;
960         }
961
962         if (is_long_mode(vcpu) &&
963             (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63)))
964                 return 1;
965         else if (is_pae(vcpu) && is_paging(vcpu) &&
966                    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
967                 return 1;
968
969         kvm_mmu_new_cr3(vcpu, cr3, skip_tlb_flush);
970         vcpu->arch.cr3 = cr3;
971         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
972
973         return 0;
974 }
975 EXPORT_SYMBOL_GPL(kvm_set_cr3);
976
977 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
978 {
979         if (cr8 & CR8_RESERVED_BITS)
980                 return 1;
981         if (lapic_in_kernel(vcpu))
982                 kvm_lapic_set_tpr(vcpu, cr8);
983         else
984                 vcpu->arch.cr8 = cr8;
985         return 0;
986 }
987 EXPORT_SYMBOL_GPL(kvm_set_cr8);
988
989 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
990 {
991         if (lapic_in_kernel(vcpu))
992                 return kvm_lapic_get_cr8(vcpu);
993         else
994                 return vcpu->arch.cr8;
995 }
996 EXPORT_SYMBOL_GPL(kvm_get_cr8);
997
998 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
999 {
1000         int i;
1001
1002         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1003                 for (i = 0; i < KVM_NR_DB_REGS; i++)
1004                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1005                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
1006         }
1007 }
1008
1009 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
1010 {
1011         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1012                 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
1013 }
1014
1015 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
1016 {
1017         unsigned long dr7;
1018
1019         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1020                 dr7 = vcpu->arch.guest_debug_dr7;
1021         else
1022                 dr7 = vcpu->arch.dr7;
1023         kvm_x86_ops->set_dr7(vcpu, dr7);
1024         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1025         if (dr7 & DR7_BP_EN_MASK)
1026                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1027 }
1028
1029 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1030 {
1031         u64 fixed = DR6_FIXED_1;
1032
1033         if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1034                 fixed |= DR6_RTM;
1035         return fixed;
1036 }
1037
1038 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1039 {
1040         switch (dr) {
1041         case 0 ... 3:
1042                 vcpu->arch.db[dr] = val;
1043                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1044                         vcpu->arch.eff_db[dr] = val;
1045                 break;
1046         case 4:
1047                 /* fall through */
1048         case 6:
1049                 if (val & 0xffffffff00000000ULL)
1050                         return -1; /* #GP */
1051                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1052                 kvm_update_dr6(vcpu);
1053                 break;
1054         case 5:
1055                 /* fall through */
1056         default: /* 7 */
1057                 if (val & 0xffffffff00000000ULL)
1058                         return -1; /* #GP */
1059                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1060                 kvm_update_dr7(vcpu);
1061                 break;
1062         }
1063
1064         return 0;
1065 }
1066
1067 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1068 {
1069         if (__kvm_set_dr(vcpu, dr, val)) {
1070                 kvm_inject_gp(vcpu, 0);
1071                 return 1;
1072         }
1073         return 0;
1074 }
1075 EXPORT_SYMBOL_GPL(kvm_set_dr);
1076
1077 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1078 {
1079         switch (dr) {
1080         case 0 ... 3:
1081                 *val = vcpu->arch.db[dr];
1082                 break;
1083         case 4:
1084                 /* fall through */
1085         case 6:
1086                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1087                         *val = vcpu->arch.dr6;
1088                 else
1089                         *val = kvm_x86_ops->get_dr6(vcpu);
1090                 break;
1091         case 5:
1092                 /* fall through */
1093         default: /* 7 */
1094                 *val = vcpu->arch.dr7;
1095                 break;
1096         }
1097         return 0;
1098 }
1099 EXPORT_SYMBOL_GPL(kvm_get_dr);
1100
1101 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1102 {
1103         u32 ecx = kvm_rcx_read(vcpu);
1104         u64 data;
1105         int err;
1106
1107         err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1108         if (err)
1109                 return err;
1110         kvm_rax_write(vcpu, (u32)data);
1111         kvm_rdx_write(vcpu, data >> 32);
1112         return err;
1113 }
1114 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1115
1116 /*
1117  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1118  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1119  *
1120  * This list is modified at module load time to reflect the
1121  * capabilities of the host cpu. This capabilities test skips MSRs that are
1122  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
1123  * may depend on host virtualization features rather than host cpu features.
1124  */
1125
1126 static u32 msrs_to_save[] = {
1127         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1128         MSR_STAR,
1129 #ifdef CONFIG_X86_64
1130         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1131 #endif
1132         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1133         MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1134         MSR_IA32_SPEC_CTRL,
1135         MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1136         MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1137         MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1138         MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1139         MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1140         MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1141 };
1142
1143 static unsigned num_msrs_to_save;
1144
1145 static u32 emulated_msrs[] = {
1146         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1147         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1148         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1149         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1150         HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1151         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1152         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1153         HV_X64_MSR_RESET,
1154         HV_X64_MSR_VP_INDEX,
1155         HV_X64_MSR_VP_RUNTIME,
1156         HV_X64_MSR_SCONTROL,
1157         HV_X64_MSR_STIMER0_CONFIG,
1158         HV_X64_MSR_VP_ASSIST_PAGE,
1159         HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1160         HV_X64_MSR_TSC_EMULATION_STATUS,
1161
1162         MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1163         MSR_KVM_PV_EOI_EN,
1164
1165         MSR_IA32_TSC_ADJUST,
1166         MSR_IA32_TSCDEADLINE,
1167         MSR_IA32_ARCH_CAPABILITIES,
1168         MSR_IA32_MISC_ENABLE,
1169         MSR_IA32_MCG_STATUS,
1170         MSR_IA32_MCG_CTL,
1171         MSR_IA32_MCG_EXT_CTL,
1172         MSR_IA32_SMBASE,
1173         MSR_SMI_COUNT,
1174         MSR_PLATFORM_INFO,
1175         MSR_MISC_FEATURES_ENABLES,
1176         MSR_AMD64_VIRT_SPEC_CTRL,
1177         MSR_IA32_POWER_CTL,
1178
1179         MSR_K7_HWCR,
1180 };
1181
1182 static unsigned num_emulated_msrs;
1183
1184 /*
1185  * List of msr numbers which are used to expose MSR-based features that
1186  * can be used by a hypervisor to validate requested CPU features.
1187  */
1188 static u32 msr_based_features[] = {
1189         MSR_IA32_VMX_BASIC,
1190         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1191         MSR_IA32_VMX_PINBASED_CTLS,
1192         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1193         MSR_IA32_VMX_PROCBASED_CTLS,
1194         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1195         MSR_IA32_VMX_EXIT_CTLS,
1196         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1197         MSR_IA32_VMX_ENTRY_CTLS,
1198         MSR_IA32_VMX_MISC,
1199         MSR_IA32_VMX_CR0_FIXED0,
1200         MSR_IA32_VMX_CR0_FIXED1,
1201         MSR_IA32_VMX_CR4_FIXED0,
1202         MSR_IA32_VMX_CR4_FIXED1,
1203         MSR_IA32_VMX_VMCS_ENUM,
1204         MSR_IA32_VMX_PROCBASED_CTLS2,
1205         MSR_IA32_VMX_EPT_VPID_CAP,
1206         MSR_IA32_VMX_VMFUNC,
1207
1208         MSR_F10H_DECFG,
1209         MSR_IA32_UCODE_REV,
1210         MSR_IA32_ARCH_CAPABILITIES,
1211 };
1212
1213 static unsigned int num_msr_based_features;
1214
1215 u64 kvm_get_arch_capabilities(void)
1216 {
1217         u64 data;
1218
1219         rdmsrl_safe(MSR_IA32_ARCH_CAPABILITIES, &data);
1220
1221         /*
1222          * If we're doing cache flushes (either "always" or "cond")
1223          * we will do one whenever the guest does a vmlaunch/vmresume.
1224          * If an outer hypervisor is doing the cache flush for us
1225          * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1226          * capability to the guest too, and if EPT is disabled we're not
1227          * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1228          * require a nested hypervisor to do a flush of its own.
1229          */
1230         if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1231                 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1232
1233         return data;
1234 }
1235 EXPORT_SYMBOL_GPL(kvm_get_arch_capabilities);
1236
1237 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1238 {
1239         switch (msr->index) {
1240         case MSR_IA32_ARCH_CAPABILITIES:
1241                 msr->data = kvm_get_arch_capabilities();
1242                 break;
1243         case MSR_IA32_UCODE_REV:
1244                 rdmsrl_safe(msr->index, &msr->data);
1245                 break;
1246         default:
1247                 if (kvm_x86_ops->get_msr_feature(msr))
1248                         return 1;
1249         }
1250         return 0;
1251 }
1252
1253 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1254 {
1255         struct kvm_msr_entry msr;
1256         int r;
1257
1258         msr.index = index;
1259         r = kvm_get_msr_feature(&msr);
1260         if (r)
1261                 return r;
1262
1263         *data = msr.data;
1264
1265         return 0;
1266 }
1267
1268 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1269 {
1270         if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1271                 return false;
1272
1273         if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1274                 return false;
1275
1276         if (efer & (EFER_LME | EFER_LMA) &&
1277             !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1278                 return false;
1279
1280         if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1281                 return false;
1282
1283         return true;
1284
1285 }
1286 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1287 {
1288         if (efer & efer_reserved_bits)
1289                 return false;
1290
1291         return __kvm_valid_efer(vcpu, efer);
1292 }
1293 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1294
1295 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1296 {
1297         u64 old_efer = vcpu->arch.efer;
1298         u64 efer = msr_info->data;
1299
1300         if (efer & efer_reserved_bits)
1301                 return false;
1302
1303         if (!msr_info->host_initiated) {
1304                 if (!__kvm_valid_efer(vcpu, efer))
1305                         return 1;
1306
1307                 if (is_paging(vcpu) &&
1308                     (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1309                         return 1;
1310         }
1311
1312         efer &= ~EFER_LMA;
1313         efer |= vcpu->arch.efer & EFER_LMA;
1314
1315         kvm_x86_ops->set_efer(vcpu, efer);
1316
1317         /* Update reserved bits */
1318         if ((efer ^ old_efer) & EFER_NX)
1319                 kvm_mmu_reset_context(vcpu);
1320
1321         return 0;
1322 }
1323
1324 void kvm_enable_efer_bits(u64 mask)
1325 {
1326        efer_reserved_bits &= ~mask;
1327 }
1328 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1329
1330 /*
1331  * Writes msr value into into the appropriate "register".
1332  * Returns 0 on success, non-0 otherwise.
1333  * Assumes vcpu_load() was already called.
1334  */
1335 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1336 {
1337         switch (msr->index) {
1338         case MSR_FS_BASE:
1339         case MSR_GS_BASE:
1340         case MSR_KERNEL_GS_BASE:
1341         case MSR_CSTAR:
1342         case MSR_LSTAR:
1343                 if (is_noncanonical_address(msr->data, vcpu))
1344                         return 1;
1345                 break;
1346         case MSR_IA32_SYSENTER_EIP:
1347         case MSR_IA32_SYSENTER_ESP:
1348                 /*
1349                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1350                  * non-canonical address is written on Intel but not on
1351                  * AMD (which ignores the top 32-bits, because it does
1352                  * not implement 64-bit SYSENTER).
1353                  *
1354                  * 64-bit code should hence be able to write a non-canonical
1355                  * value on AMD.  Making the address canonical ensures that
1356                  * vmentry does not fail on Intel after writing a non-canonical
1357                  * value, and that something deterministic happens if the guest
1358                  * invokes 64-bit SYSENTER.
1359                  */
1360                 msr->data = get_canonical(msr->data, vcpu_virt_addr_bits(vcpu));
1361         }
1362         return kvm_x86_ops->set_msr(vcpu, msr);
1363 }
1364 EXPORT_SYMBOL_GPL(kvm_set_msr);
1365
1366 /*
1367  * Adapt set_msr() to msr_io()'s calling convention
1368  */
1369 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1370 {
1371         struct msr_data msr;
1372         int r;
1373
1374         msr.index = index;
1375         msr.host_initiated = true;
1376         r = kvm_get_msr(vcpu, &msr);
1377         if (r)
1378                 return r;
1379
1380         *data = msr.data;
1381         return 0;
1382 }
1383
1384 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1385 {
1386         struct msr_data msr;
1387
1388         msr.data = *data;
1389         msr.index = index;
1390         msr.host_initiated = true;
1391         return kvm_set_msr(vcpu, &msr);
1392 }
1393
1394 #ifdef CONFIG_X86_64
1395 struct pvclock_gtod_data {
1396         seqcount_t      seq;
1397
1398         struct { /* extract of a clocksource struct */
1399                 int vclock_mode;
1400                 u64     cycle_last;
1401                 u64     mask;
1402                 u32     mult;
1403                 u32     shift;
1404         } clock;
1405
1406         u64             boot_ns;
1407         u64             nsec_base;
1408         u64             wall_time_sec;
1409 };
1410
1411 static struct pvclock_gtod_data pvclock_gtod_data;
1412
1413 static void update_pvclock_gtod(struct timekeeper *tk)
1414 {
1415         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1416         u64 boot_ns;
1417
1418         boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1419
1420         write_seqcount_begin(&vdata->seq);
1421
1422         /* copy pvclock gtod data */
1423         vdata->clock.vclock_mode        = tk->tkr_mono.clock->archdata.vclock_mode;
1424         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1425         vdata->clock.mask               = tk->tkr_mono.mask;
1426         vdata->clock.mult               = tk->tkr_mono.mult;
1427         vdata->clock.shift              = tk->tkr_mono.shift;
1428
1429         vdata->boot_ns                  = boot_ns;
1430         vdata->nsec_base                = tk->tkr_mono.xtime_nsec;
1431
1432         vdata->wall_time_sec            = tk->xtime_sec;
1433
1434         write_seqcount_end(&vdata->seq);
1435 }
1436 #endif
1437
1438 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1439 {
1440         /*
1441          * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1442          * vcpu_enter_guest.  This function is only called from
1443          * the physical CPU that is running vcpu.
1444          */
1445         kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1446 }
1447
1448 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1449 {
1450         int version;
1451         int r;
1452         struct pvclock_wall_clock wc;
1453         struct timespec64 boot;
1454
1455         if (!wall_clock)
1456                 return;
1457
1458         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1459         if (r)
1460                 return;
1461
1462         if (version & 1)
1463                 ++version;  /* first time write, random junk */
1464
1465         ++version;
1466
1467         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1468                 return;
1469
1470         /*
1471          * The guest calculates current wall clock time by adding
1472          * system time (updated by kvm_guest_time_update below) to the
1473          * wall clock specified here.  guest system time equals host
1474          * system time for us, thus we must fill in host boot time here.
1475          */
1476         getboottime64(&boot);
1477
1478         if (kvm->arch.kvmclock_offset) {
1479                 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1480                 boot = timespec64_sub(boot, ts);
1481         }
1482         wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1483         wc.nsec = boot.tv_nsec;
1484         wc.version = version;
1485
1486         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1487
1488         version++;
1489         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1490 }
1491
1492 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1493 {
1494         do_shl32_div32(dividend, divisor);
1495         return dividend;
1496 }
1497
1498 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1499                                s8 *pshift, u32 *pmultiplier)
1500 {
1501         uint64_t scaled64;
1502         int32_t  shift = 0;
1503         uint64_t tps64;
1504         uint32_t tps32;
1505
1506         tps64 = base_hz;
1507         scaled64 = scaled_hz;
1508         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1509                 tps64 >>= 1;
1510                 shift--;
1511         }
1512
1513         tps32 = (uint32_t)tps64;
1514         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1515                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1516                         scaled64 >>= 1;
1517                 else
1518                         tps32 <<= 1;
1519                 shift++;
1520         }
1521
1522         *pshift = shift;
1523         *pmultiplier = div_frac(scaled64, tps32);
1524
1525         pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1526                  __func__, base_hz, scaled_hz, shift, *pmultiplier);
1527 }
1528
1529 #ifdef CONFIG_X86_64
1530 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1531 #endif
1532
1533 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1534 static unsigned long max_tsc_khz;
1535
1536 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1537 {
1538         u64 v = (u64)khz * (1000000 + ppm);
1539         do_div(v, 1000000);
1540         return v;
1541 }
1542
1543 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1544 {
1545         u64 ratio;
1546
1547         /* Guest TSC same frequency as host TSC? */
1548         if (!scale) {
1549                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1550                 return 0;
1551         }
1552
1553         /* TSC scaling supported? */
1554         if (!kvm_has_tsc_control) {
1555                 if (user_tsc_khz > tsc_khz) {
1556                         vcpu->arch.tsc_catchup = 1;
1557                         vcpu->arch.tsc_always_catchup = 1;
1558                         return 0;
1559                 } else {
1560                         WARN(1, "user requested TSC rate below hardware speed\n");
1561                         return -1;
1562                 }
1563         }
1564
1565         /* TSC scaling required  - calculate ratio */
1566         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1567                                 user_tsc_khz, tsc_khz);
1568
1569         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1570                 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1571                           user_tsc_khz);
1572                 return -1;
1573         }
1574
1575         vcpu->arch.tsc_scaling_ratio = ratio;
1576         return 0;
1577 }
1578
1579 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1580 {
1581         u32 thresh_lo, thresh_hi;
1582         int use_scaling = 0;
1583
1584         /* tsc_khz can be zero if TSC calibration fails */
1585         if (user_tsc_khz == 0) {
1586                 /* set tsc_scaling_ratio to a safe value */
1587                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1588                 return -1;
1589         }
1590
1591         /* Compute a scale to convert nanoseconds in TSC cycles */
1592         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1593                            &vcpu->arch.virtual_tsc_shift,
1594                            &vcpu->arch.virtual_tsc_mult);
1595         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1596
1597         /*
1598          * Compute the variation in TSC rate which is acceptable
1599          * within the range of tolerance and decide if the
1600          * rate being applied is within that bounds of the hardware
1601          * rate.  If so, no scaling or compensation need be done.
1602          */
1603         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1604         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1605         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1606                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1607                 use_scaling = 1;
1608         }
1609         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1610 }
1611
1612 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1613 {
1614         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1615                                       vcpu->arch.virtual_tsc_mult,
1616                                       vcpu->arch.virtual_tsc_shift);
1617         tsc += vcpu->arch.this_tsc_write;
1618         return tsc;
1619 }
1620
1621 static inline int gtod_is_based_on_tsc(int mode)
1622 {
1623         return mode == VCLOCK_TSC || mode == VCLOCK_HVCLOCK;
1624 }
1625
1626 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1627 {
1628 #ifdef CONFIG_X86_64
1629         bool vcpus_matched;
1630         struct kvm_arch *ka = &vcpu->kvm->arch;
1631         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1632
1633         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1634                          atomic_read(&vcpu->kvm->online_vcpus));
1635
1636         /*
1637          * Once the masterclock is enabled, always perform request in
1638          * order to update it.
1639          *
1640          * In order to enable masterclock, the host clocksource must be TSC
1641          * and the vcpus need to have matched TSCs.  When that happens,
1642          * perform request to enable masterclock.
1643          */
1644         if (ka->use_master_clock ||
1645             (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
1646                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1647
1648         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1649                             atomic_read(&vcpu->kvm->online_vcpus),
1650                             ka->use_master_clock, gtod->clock.vclock_mode);
1651 #endif
1652 }
1653
1654 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1655 {
1656         u64 curr_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1657         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1658 }
1659
1660 /*
1661  * Multiply tsc by a fixed point number represented by ratio.
1662  *
1663  * The most significant 64-N bits (mult) of ratio represent the
1664  * integral part of the fixed point number; the remaining N bits
1665  * (frac) represent the fractional part, ie. ratio represents a fixed
1666  * point number (mult + frac * 2^(-N)).
1667  *
1668  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1669  */
1670 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1671 {
1672         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1673 }
1674
1675 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1676 {
1677         u64 _tsc = tsc;
1678         u64 ratio = vcpu->arch.tsc_scaling_ratio;
1679
1680         if (ratio != kvm_default_tsc_scaling_ratio)
1681                 _tsc = __scale_tsc(ratio, tsc);
1682
1683         return _tsc;
1684 }
1685 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1686
1687 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1688 {
1689         u64 tsc;
1690
1691         tsc = kvm_scale_tsc(vcpu, rdtsc());
1692
1693         return target_tsc - tsc;
1694 }
1695
1696 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1697 {
1698         u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1699
1700         return tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1701 }
1702 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1703
1704 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1705 {
1706         vcpu->arch.tsc_offset = kvm_x86_ops->write_l1_tsc_offset(vcpu, offset);
1707 }
1708
1709 static inline bool kvm_check_tsc_unstable(void)
1710 {
1711 #ifdef CONFIG_X86_64
1712         /*
1713          * TSC is marked unstable when we're running on Hyper-V,
1714          * 'TSC page' clocksource is good.
1715          */
1716         if (pvclock_gtod_data.clock.vclock_mode == VCLOCK_HVCLOCK)
1717                 return false;
1718 #endif
1719         return check_tsc_unstable();
1720 }
1721
1722 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1723 {
1724         struct kvm *kvm = vcpu->kvm;
1725         u64 offset, ns, elapsed;
1726         unsigned long flags;
1727         bool matched;
1728         bool already_matched;
1729         u64 data = msr->data;
1730         bool synchronizing = false;
1731
1732         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1733         offset = kvm_compute_tsc_offset(vcpu, data);
1734         ns = ktime_get_boot_ns();
1735         elapsed = ns - kvm->arch.last_tsc_nsec;
1736
1737         if (vcpu->arch.virtual_tsc_khz) {
1738                 if (data == 0 && msr->host_initiated) {
1739                         /*
1740                          * detection of vcpu initialization -- need to sync
1741                          * with other vCPUs. This particularly helps to keep
1742                          * kvm_clock stable after CPU hotplug
1743                          */
1744                         synchronizing = true;
1745                 } else {
1746                         u64 tsc_exp = kvm->arch.last_tsc_write +
1747                                                 nsec_to_cycles(vcpu, elapsed);
1748                         u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1749                         /*
1750                          * Special case: TSC write with a small delta (1 second)
1751                          * of virtual cycle time against real time is
1752                          * interpreted as an attempt to synchronize the CPU.
1753                          */
1754                         synchronizing = data < tsc_exp + tsc_hz &&
1755                                         data + tsc_hz > tsc_exp;
1756                 }
1757         }
1758
1759         /*
1760          * For a reliable TSC, we can match TSC offsets, and for an unstable
1761          * TSC, we add elapsed time in this computation.  We could let the
1762          * compensation code attempt to catch up if we fall behind, but
1763          * it's better to try to match offsets from the beginning.
1764          */
1765         if (synchronizing &&
1766             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1767                 if (!kvm_check_tsc_unstable()) {
1768                         offset = kvm->arch.cur_tsc_offset;
1769                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1770                 } else {
1771                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1772                         data += delta;
1773                         offset = kvm_compute_tsc_offset(vcpu, data);
1774                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1775                 }
1776                 matched = true;
1777                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1778         } else {
1779                 /*
1780                  * We split periods of matched TSC writes into generations.
1781                  * For each generation, we track the original measured
1782                  * nanosecond time, offset, and write, so if TSCs are in
1783                  * sync, we can match exact offset, and if not, we can match
1784                  * exact software computation in compute_guest_tsc()
1785                  *
1786                  * These values are tracked in kvm->arch.cur_xxx variables.
1787                  */
1788                 kvm->arch.cur_tsc_generation++;
1789                 kvm->arch.cur_tsc_nsec = ns;
1790                 kvm->arch.cur_tsc_write = data;
1791                 kvm->arch.cur_tsc_offset = offset;
1792                 matched = false;
1793                 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1794                          kvm->arch.cur_tsc_generation, data);
1795         }
1796
1797         /*
1798          * We also track th most recent recorded KHZ, write and time to
1799          * allow the matching interval to be extended at each write.
1800          */
1801         kvm->arch.last_tsc_nsec = ns;
1802         kvm->arch.last_tsc_write = data;
1803         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1804
1805         vcpu->arch.last_guest_tsc = data;
1806
1807         /* Keep track of which generation this VCPU has synchronized to */
1808         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1809         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1810         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1811
1812         if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
1813                 update_ia32_tsc_adjust_msr(vcpu, offset);
1814
1815         kvm_vcpu_write_tsc_offset(vcpu, offset);
1816         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1817
1818         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1819         if (!matched) {
1820                 kvm->arch.nr_vcpus_matched_tsc = 0;
1821         } else if (!already_matched) {
1822                 kvm->arch.nr_vcpus_matched_tsc++;
1823         }
1824
1825         kvm_track_tsc_matching(vcpu);
1826         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1827 }
1828
1829 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1830
1831 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1832                                            s64 adjustment)
1833 {
1834         u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1835         kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
1836 }
1837
1838 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1839 {
1840         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1841                 WARN_ON(adjustment < 0);
1842         adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1843         adjust_tsc_offset_guest(vcpu, adjustment);
1844 }
1845
1846 #ifdef CONFIG_X86_64
1847
1848 static u64 read_tsc(void)
1849 {
1850         u64 ret = (u64)rdtsc_ordered();
1851         u64 last = pvclock_gtod_data.clock.cycle_last;
1852
1853         if (likely(ret >= last))
1854                 return ret;
1855
1856         /*
1857          * GCC likes to generate cmov here, but this branch is extremely
1858          * predictable (it's just a function of time and the likely is
1859          * very likely) and there's a data dependence, so force GCC
1860          * to generate a branch instead.  I don't barrier() because
1861          * we don't actually need a barrier, and if this function
1862          * ever gets inlined it will generate worse code.
1863          */
1864         asm volatile ("");
1865         return last;
1866 }
1867
1868 static inline u64 vgettsc(u64 *tsc_timestamp, int *mode)
1869 {
1870         long v;
1871         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1872         u64 tsc_pg_val;
1873
1874         switch (gtod->clock.vclock_mode) {
1875         case VCLOCK_HVCLOCK:
1876                 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
1877                                                   tsc_timestamp);
1878                 if (tsc_pg_val != U64_MAX) {
1879                         /* TSC page valid */
1880                         *mode = VCLOCK_HVCLOCK;
1881                         v = (tsc_pg_val - gtod->clock.cycle_last) &
1882                                 gtod->clock.mask;
1883                 } else {
1884                         /* TSC page invalid */
1885                         *mode = VCLOCK_NONE;
1886                 }
1887                 break;
1888         case VCLOCK_TSC:
1889                 *mode = VCLOCK_TSC;
1890                 *tsc_timestamp = read_tsc();
1891                 v = (*tsc_timestamp - gtod->clock.cycle_last) &
1892                         gtod->clock.mask;
1893                 break;
1894         default:
1895                 *mode = VCLOCK_NONE;
1896         }
1897
1898         if (*mode == VCLOCK_NONE)
1899                 *tsc_timestamp = v = 0;
1900
1901         return v * gtod->clock.mult;
1902 }
1903
1904 static int do_monotonic_boot(s64 *t, u64 *tsc_timestamp)
1905 {
1906         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1907         unsigned long seq;
1908         int mode;
1909         u64 ns;
1910
1911         do {
1912                 seq = read_seqcount_begin(&gtod->seq);
1913                 ns = gtod->nsec_base;
1914                 ns += vgettsc(tsc_timestamp, &mode);
1915                 ns >>= gtod->clock.shift;
1916                 ns += gtod->boot_ns;
1917         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1918         *t = ns;
1919
1920         return mode;
1921 }
1922
1923 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
1924 {
1925         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1926         unsigned long seq;
1927         int mode;
1928         u64 ns;
1929
1930         do {
1931                 seq = read_seqcount_begin(&gtod->seq);
1932                 ts->tv_sec = gtod->wall_time_sec;
1933                 ns = gtod->nsec_base;
1934                 ns += vgettsc(tsc_timestamp, &mode);
1935                 ns >>= gtod->clock.shift;
1936         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1937
1938         ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1939         ts->tv_nsec = ns;
1940
1941         return mode;
1942 }
1943
1944 /* returns true if host is using TSC based clocksource */
1945 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
1946 {
1947         /* checked again under seqlock below */
1948         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1949                 return false;
1950
1951         return gtod_is_based_on_tsc(do_monotonic_boot(kernel_ns,
1952                                                       tsc_timestamp));
1953 }
1954
1955 /* returns true if host is using TSC based clocksource */
1956 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
1957                                            u64 *tsc_timestamp)
1958 {
1959         /* checked again under seqlock below */
1960         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1961                 return false;
1962
1963         return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
1964 }
1965 #endif
1966
1967 /*
1968  *
1969  * Assuming a stable TSC across physical CPUS, and a stable TSC
1970  * across virtual CPUs, the following condition is possible.
1971  * Each numbered line represents an event visible to both
1972  * CPUs at the next numbered event.
1973  *
1974  * "timespecX" represents host monotonic time. "tscX" represents
1975  * RDTSC value.
1976  *
1977  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1978  *
1979  * 1.  read timespec0,tsc0
1980  * 2.                                   | timespec1 = timespec0 + N
1981  *                                      | tsc1 = tsc0 + M
1982  * 3. transition to guest               | transition to guest
1983  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1984  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1985  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1986  *
1987  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1988  *
1989  *      - ret0 < ret1
1990  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1991  *              ...
1992  *      - 0 < N - M => M < N
1993  *
1994  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1995  * always the case (the difference between two distinct xtime instances
1996  * might be smaller then the difference between corresponding TSC reads,
1997  * when updating guest vcpus pvclock areas).
1998  *
1999  * To avoid that problem, do not allow visibility of distinct
2000  * system_timestamp/tsc_timestamp values simultaneously: use a master
2001  * copy of host monotonic time values. Update that master copy
2002  * in lockstep.
2003  *
2004  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2005  *
2006  */
2007
2008 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2009 {
2010 #ifdef CONFIG_X86_64
2011         struct kvm_arch *ka = &kvm->arch;
2012         int vclock_mode;
2013         bool host_tsc_clocksource, vcpus_matched;
2014
2015         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2016                         atomic_read(&kvm->online_vcpus));
2017
2018         /*
2019          * If the host uses TSC clock, then passthrough TSC as stable
2020          * to the guest.
2021          */
2022         host_tsc_clocksource = kvm_get_time_and_clockread(
2023                                         &ka->master_kernel_ns,
2024                                         &ka->master_cycle_now);
2025
2026         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2027                                 && !ka->backwards_tsc_observed
2028                                 && !ka->boot_vcpu_runs_old_kvmclock;
2029
2030         if (ka->use_master_clock)
2031                 atomic_set(&kvm_guest_has_master_clock, 1);
2032
2033         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2034         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2035                                         vcpus_matched);
2036 #endif
2037 }
2038
2039 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2040 {
2041         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2042 }
2043
2044 static void kvm_gen_update_masterclock(struct kvm *kvm)
2045 {
2046 #ifdef CONFIG_X86_64
2047         int i;
2048         struct kvm_vcpu *vcpu;
2049         struct kvm_arch *ka = &kvm->arch;
2050
2051         spin_lock(&ka->pvclock_gtod_sync_lock);
2052         kvm_make_mclock_inprogress_request(kvm);
2053         /* no guest entries from this point */
2054         pvclock_update_vm_gtod_copy(kvm);
2055
2056         kvm_for_each_vcpu(i, vcpu, kvm)
2057                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2058
2059         /* guest entries allowed */
2060         kvm_for_each_vcpu(i, vcpu, kvm)
2061                 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2062
2063         spin_unlock(&ka->pvclock_gtod_sync_lock);
2064 #endif
2065 }
2066
2067 u64 get_kvmclock_ns(struct kvm *kvm)
2068 {
2069         struct kvm_arch *ka = &kvm->arch;
2070         struct pvclock_vcpu_time_info hv_clock;
2071         u64 ret;
2072
2073         spin_lock(&ka->pvclock_gtod_sync_lock);
2074         if (!ka->use_master_clock) {
2075                 spin_unlock(&ka->pvclock_gtod_sync_lock);
2076                 return ktime_get_boot_ns() + ka->kvmclock_offset;
2077         }
2078
2079         hv_clock.tsc_timestamp = ka->master_cycle_now;
2080         hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2081         spin_unlock(&ka->pvclock_gtod_sync_lock);
2082
2083         /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2084         get_cpu();
2085
2086         if (__this_cpu_read(cpu_tsc_khz)) {
2087                 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2088                                    &hv_clock.tsc_shift,
2089                                    &hv_clock.tsc_to_system_mul);
2090                 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2091         } else
2092                 ret = ktime_get_boot_ns() + ka->kvmclock_offset;
2093
2094         put_cpu();
2095
2096         return ret;
2097 }
2098
2099 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
2100 {
2101         struct kvm_vcpu_arch *vcpu = &v->arch;
2102         struct pvclock_vcpu_time_info guest_hv_clock;
2103
2104         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
2105                 &guest_hv_clock, sizeof(guest_hv_clock))))
2106                 return;
2107
2108         /* This VCPU is paused, but it's legal for a guest to read another
2109          * VCPU's kvmclock, so we really have to follow the specification where
2110          * it says that version is odd if data is being modified, and even after
2111          * it is consistent.
2112          *
2113          * Version field updates must be kept separate.  This is because
2114          * kvm_write_guest_cached might use a "rep movs" instruction, and
2115          * writes within a string instruction are weakly ordered.  So there
2116          * are three writes overall.
2117          *
2118          * As a small optimization, only write the version field in the first
2119          * and third write.  The vcpu->pv_time cache is still valid, because the
2120          * version field is the first in the struct.
2121          */
2122         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2123
2124         if (guest_hv_clock.version & 1)
2125                 ++guest_hv_clock.version;  /* first time write, random junk */
2126
2127         vcpu->hv_clock.version = guest_hv_clock.version + 1;
2128         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2129                                 &vcpu->hv_clock,
2130                                 sizeof(vcpu->hv_clock.version));
2131
2132         smp_wmb();
2133
2134         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2135         vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2136
2137         if (vcpu->pvclock_set_guest_stopped_request) {
2138                 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2139                 vcpu->pvclock_set_guest_stopped_request = false;
2140         }
2141
2142         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2143
2144         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2145                                 &vcpu->hv_clock,
2146                                 sizeof(vcpu->hv_clock));
2147
2148         smp_wmb();
2149
2150         vcpu->hv_clock.version++;
2151         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2152                                 &vcpu->hv_clock,
2153                                 sizeof(vcpu->hv_clock.version));
2154 }
2155
2156 static int kvm_guest_time_update(struct kvm_vcpu *v)
2157 {
2158         unsigned long flags, tgt_tsc_khz;
2159         struct kvm_vcpu_arch *vcpu = &v->arch;
2160         struct kvm_arch *ka = &v->kvm->arch;
2161         s64 kernel_ns;
2162         u64 tsc_timestamp, host_tsc;
2163         u8 pvclock_flags;
2164         bool use_master_clock;
2165
2166         kernel_ns = 0;
2167         host_tsc = 0;
2168
2169         /*
2170          * If the host uses TSC clock, then passthrough TSC as stable
2171          * to the guest.
2172          */
2173         spin_lock(&ka->pvclock_gtod_sync_lock);
2174         use_master_clock = ka->use_master_clock;
2175         if (use_master_clock) {
2176                 host_tsc = ka->master_cycle_now;
2177                 kernel_ns = ka->master_kernel_ns;
2178         }
2179         spin_unlock(&ka->pvclock_gtod_sync_lock);
2180
2181         /* Keep irq disabled to prevent changes to the clock */
2182         local_irq_save(flags);
2183         tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2184         if (unlikely(tgt_tsc_khz == 0)) {
2185                 local_irq_restore(flags);
2186                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2187                 return 1;
2188         }
2189         if (!use_master_clock) {
2190                 host_tsc = rdtsc();
2191                 kernel_ns = ktime_get_boot_ns();
2192         }
2193
2194         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2195
2196         /*
2197          * We may have to catch up the TSC to match elapsed wall clock
2198          * time for two reasons, even if kvmclock is used.
2199          *   1) CPU could have been running below the maximum TSC rate
2200          *   2) Broken TSC compensation resets the base at each VCPU
2201          *      entry to avoid unknown leaps of TSC even when running
2202          *      again on the same CPU.  This may cause apparent elapsed
2203          *      time to disappear, and the guest to stand still or run
2204          *      very slowly.
2205          */
2206         if (vcpu->tsc_catchup) {
2207                 u64 tsc = compute_guest_tsc(v, kernel_ns);
2208                 if (tsc > tsc_timestamp) {
2209                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2210                         tsc_timestamp = tsc;
2211                 }
2212         }
2213
2214         local_irq_restore(flags);
2215
2216         /* With all the info we got, fill in the values */
2217
2218         if (kvm_has_tsc_control)
2219                 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2220
2221         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2222                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2223                                    &vcpu->hv_clock.tsc_shift,
2224                                    &vcpu->hv_clock.tsc_to_system_mul);
2225                 vcpu->hw_tsc_khz = tgt_tsc_khz;
2226         }
2227
2228         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2229         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2230         vcpu->last_guest_tsc = tsc_timestamp;
2231
2232         /* If the host uses TSC clocksource, then it is stable */
2233         pvclock_flags = 0;
2234         if (use_master_clock)
2235                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2236
2237         vcpu->hv_clock.flags = pvclock_flags;
2238
2239         if (vcpu->pv_time_enabled)
2240                 kvm_setup_pvclock_page(v);
2241         if (v == kvm_get_vcpu(v->kvm, 0))
2242                 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2243         return 0;
2244 }
2245
2246 /*
2247  * kvmclock updates which are isolated to a given vcpu, such as
2248  * vcpu->cpu migration, should not allow system_timestamp from
2249  * the rest of the vcpus to remain static. Otherwise ntp frequency
2250  * correction applies to one vcpu's system_timestamp but not
2251  * the others.
2252  *
2253  * So in those cases, request a kvmclock update for all vcpus.
2254  * We need to rate-limit these requests though, as they can
2255  * considerably slow guests that have a large number of vcpus.
2256  * The time for a remote vcpu to update its kvmclock is bound
2257  * by the delay we use to rate-limit the updates.
2258  */
2259
2260 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2261
2262 static void kvmclock_update_fn(struct work_struct *work)
2263 {
2264         int i;
2265         struct delayed_work *dwork = to_delayed_work(work);
2266         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2267                                            kvmclock_update_work);
2268         struct kvm *kvm = container_of(ka, struct kvm, arch);
2269         struct kvm_vcpu *vcpu;
2270
2271         kvm_for_each_vcpu(i, vcpu, kvm) {
2272                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2273                 kvm_vcpu_kick(vcpu);
2274         }
2275 }
2276
2277 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2278 {
2279         struct kvm *kvm = v->kvm;
2280
2281         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2282         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2283                                         KVMCLOCK_UPDATE_DELAY);
2284 }
2285
2286 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2287
2288 static void kvmclock_sync_fn(struct work_struct *work)
2289 {
2290         struct delayed_work *dwork = to_delayed_work(work);
2291         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2292                                            kvmclock_sync_work);
2293         struct kvm *kvm = container_of(ka, struct kvm, arch);
2294
2295         if (!kvmclock_periodic_sync)
2296                 return;
2297
2298         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2299         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2300                                         KVMCLOCK_SYNC_PERIOD);
2301 }
2302
2303 /*
2304  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
2305  */
2306 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
2307 {
2308         /* McStatusWrEn enabled? */
2309         if (guest_cpuid_is_amd(vcpu))
2310                 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
2311
2312         return false;
2313 }
2314
2315 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2316 {
2317         u64 mcg_cap = vcpu->arch.mcg_cap;
2318         unsigned bank_num = mcg_cap & 0xff;
2319         u32 msr = msr_info->index;
2320         u64 data = msr_info->data;
2321
2322         switch (msr) {
2323         case MSR_IA32_MCG_STATUS:
2324                 vcpu->arch.mcg_status = data;
2325                 break;
2326         case MSR_IA32_MCG_CTL:
2327                 if (!(mcg_cap & MCG_CTL_P) &&
2328                     (data || !msr_info->host_initiated))
2329                         return 1;
2330                 if (data != 0 && data != ~(u64)0)
2331                         return 1;
2332                 vcpu->arch.mcg_ctl = data;
2333                 break;
2334         default:
2335                 if (msr >= MSR_IA32_MC0_CTL &&
2336                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2337                         u32 offset = msr - MSR_IA32_MC0_CTL;
2338                         /* only 0 or all 1s can be written to IA32_MCi_CTL
2339                          * some Linux kernels though clear bit 10 in bank 4 to
2340                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2341                          * this to avoid an uncatched #GP in the guest
2342                          */
2343                         if ((offset & 0x3) == 0 &&
2344                             data != 0 && (data | (1 << 10)) != ~(u64)0)
2345                                 return -1;
2346
2347                         /* MCi_STATUS */
2348                         if (!msr_info->host_initiated &&
2349                             (offset & 0x3) == 1 && data != 0) {
2350                                 if (!can_set_mci_status(vcpu))
2351                                         return -1;
2352                         }
2353
2354                         vcpu->arch.mce_banks[offset] = data;
2355                         break;
2356                 }
2357                 return 1;
2358         }
2359         return 0;
2360 }
2361
2362 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2363 {
2364         struct kvm *kvm = vcpu->kvm;
2365         int lm = is_long_mode(vcpu);
2366         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2367                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2368         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2369                 : kvm->arch.xen_hvm_config.blob_size_32;
2370         u32 page_num = data & ~PAGE_MASK;
2371         u64 page_addr = data & PAGE_MASK;
2372         u8 *page;
2373         int r;
2374
2375         r = -E2BIG;
2376         if (page_num >= blob_size)
2377                 goto out;
2378         r = -ENOMEM;
2379         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2380         if (IS_ERR(page)) {
2381                 r = PTR_ERR(page);
2382                 goto out;
2383         }
2384         if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2385                 goto out_free;
2386         r = 0;
2387 out_free:
2388         kfree(page);
2389 out:
2390         return r;
2391 }
2392
2393 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2394 {
2395         gpa_t gpa = data & ~0x3f;
2396
2397         /* Bits 3:5 are reserved, Should be zero */
2398         if (data & 0x38)
2399                 return 1;
2400
2401         vcpu->arch.apf.msr_val = data;
2402
2403         if (!(data & KVM_ASYNC_PF_ENABLED)) {
2404                 kvm_clear_async_pf_completion_queue(vcpu);
2405                 kvm_async_pf_hash_reset(vcpu);
2406                 return 0;
2407         }
2408
2409         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2410                                         sizeof(u32)))
2411                 return 1;
2412
2413         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2414         vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2415         kvm_async_pf_wakeup_all(vcpu);
2416         return 0;
2417 }
2418
2419 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2420 {
2421         vcpu->arch.pv_time_enabled = false;
2422 }
2423
2424 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
2425 {
2426         ++vcpu->stat.tlb_flush;
2427         kvm_x86_ops->tlb_flush(vcpu, invalidate_gpa);
2428 }
2429
2430 static void record_steal_time(struct kvm_vcpu *vcpu)
2431 {
2432         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2433                 return;
2434
2435         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2436                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2437                 return;
2438
2439         /*
2440          * Doing a TLB flush here, on the guest's behalf, can avoid
2441          * expensive IPIs.
2442          */
2443         if (xchg(&vcpu->arch.st.steal.preempted, 0) & KVM_VCPU_FLUSH_TLB)
2444                 kvm_vcpu_flush_tlb(vcpu, false);
2445
2446         if (vcpu->arch.st.steal.version & 1)
2447                 vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2448
2449         vcpu->arch.st.steal.version += 1;
2450
2451         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2452                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2453
2454         smp_wmb();
2455
2456         vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2457                 vcpu->arch.st.last_steal;
2458         vcpu->arch.st.last_steal = current->sched_info.run_delay;
2459
2460         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2461                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2462
2463         smp_wmb();
2464
2465         vcpu->arch.st.steal.version += 1;
2466
2467         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2468                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2469 }
2470
2471 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2472 {
2473         bool pr = false;
2474         u32 msr = msr_info->index;
2475         u64 data = msr_info->data;
2476
2477         switch (msr) {
2478         case MSR_AMD64_NB_CFG:
2479         case MSR_IA32_UCODE_WRITE:
2480         case MSR_VM_HSAVE_PA:
2481         case MSR_AMD64_PATCH_LOADER:
2482         case MSR_AMD64_BU_CFG2:
2483         case MSR_AMD64_DC_CFG:
2484         case MSR_F15H_EX_CFG:
2485                 break;
2486
2487         case MSR_IA32_UCODE_REV:
2488                 if (msr_info->host_initiated)
2489                         vcpu->arch.microcode_version = data;
2490                 break;
2491         case MSR_IA32_ARCH_CAPABILITIES:
2492                 if (!msr_info->host_initiated)
2493                         return 1;
2494                 vcpu->arch.arch_capabilities = data;
2495                 break;
2496         case MSR_EFER:
2497                 return set_efer(vcpu, msr_info);
2498         case MSR_K7_HWCR:
2499                 data &= ~(u64)0x40;     /* ignore flush filter disable */
2500                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2501                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
2502
2503                 /* Handle McStatusWrEn */
2504                 if (data == BIT_ULL(18)) {
2505                         vcpu->arch.msr_hwcr = data;
2506                 } else if (data != 0) {
2507                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2508                                     data);
2509                         return 1;
2510                 }
2511                 break;
2512         case MSR_FAM10H_MMIO_CONF_BASE:
2513                 if (data != 0) {
2514                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2515                                     "0x%llx\n", data);
2516                         return 1;
2517                 }
2518                 break;
2519         case MSR_IA32_DEBUGCTLMSR:
2520                 if (!data) {
2521                         /* We support the non-activated case already */
2522                         break;
2523                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2524                         /* Values other than LBR and BTF are vendor-specific,
2525                            thus reserved and should throw a #GP */
2526                         return 1;
2527                 }
2528                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2529                             __func__, data);
2530                 break;
2531         case 0x200 ... 0x2ff:
2532                 return kvm_mtrr_set_msr(vcpu, msr, data);
2533         case MSR_IA32_APICBASE:
2534                 return kvm_set_apic_base(vcpu, msr_info);
2535         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2536                 return kvm_x2apic_msr_write(vcpu, msr, data);
2537         case MSR_IA32_TSCDEADLINE:
2538                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2539                 break;
2540         case MSR_IA32_TSC_ADJUST:
2541                 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2542                         if (!msr_info->host_initiated) {
2543                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2544                                 adjust_tsc_offset_guest(vcpu, adj);
2545                         }
2546                         vcpu->arch.ia32_tsc_adjust_msr = data;
2547                 }
2548                 break;
2549         case MSR_IA32_MISC_ENABLE:
2550                 vcpu->arch.ia32_misc_enable_msr = data;
2551                 break;
2552         case MSR_IA32_SMBASE:
2553                 if (!msr_info->host_initiated)
2554                         return 1;
2555                 vcpu->arch.smbase = data;
2556                 break;
2557         case MSR_IA32_TSC:
2558                 kvm_write_tsc(vcpu, msr_info);
2559                 break;
2560         case MSR_SMI_COUNT:
2561                 if (!msr_info->host_initiated)
2562                         return 1;
2563                 vcpu->arch.smi_count = data;
2564                 break;
2565         case MSR_KVM_WALL_CLOCK_NEW:
2566         case MSR_KVM_WALL_CLOCK:
2567                 vcpu->kvm->arch.wall_clock = data;
2568                 kvm_write_wall_clock(vcpu->kvm, data);
2569                 break;
2570         case MSR_KVM_SYSTEM_TIME_NEW:
2571         case MSR_KVM_SYSTEM_TIME: {
2572                 struct kvm_arch *ka = &vcpu->kvm->arch;
2573
2574                 kvmclock_reset(vcpu);
2575
2576                 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2577                         bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2578
2579                         if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2580                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2581
2582                         ka->boot_vcpu_runs_old_kvmclock = tmp;
2583                 }
2584
2585                 vcpu->arch.time = data;
2586                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2587
2588                 /* we verify if the enable bit is set... */
2589                 if (!(data & 1))
2590                         break;
2591
2592                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2593                      &vcpu->arch.pv_time, data & ~1ULL,
2594                      sizeof(struct pvclock_vcpu_time_info)))
2595                         vcpu->arch.pv_time_enabled = false;
2596                 else
2597                         vcpu->arch.pv_time_enabled = true;
2598
2599                 break;
2600         }
2601         case MSR_KVM_ASYNC_PF_EN:
2602                 if (kvm_pv_enable_async_pf(vcpu, data))
2603                         return 1;
2604                 break;
2605         case MSR_KVM_STEAL_TIME:
2606
2607                 if (unlikely(!sched_info_on()))
2608                         return 1;
2609
2610                 if (data & KVM_STEAL_RESERVED_MASK)
2611                         return 1;
2612
2613                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2614                                                 data & KVM_STEAL_VALID_BITS,
2615                                                 sizeof(struct kvm_steal_time)))
2616                         return 1;
2617
2618                 vcpu->arch.st.msr_val = data;
2619
2620                 if (!(data & KVM_MSR_ENABLED))
2621                         break;
2622
2623                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2624
2625                 break;
2626         case MSR_KVM_PV_EOI_EN:
2627                 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
2628                         return 1;
2629                 break;
2630
2631         case MSR_IA32_MCG_CTL:
2632         case MSR_IA32_MCG_STATUS:
2633         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2634                 return set_msr_mce(vcpu, msr_info);
2635
2636         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2637         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2638                 pr = true; /* fall through */
2639         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2640         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2641                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2642                         return kvm_pmu_set_msr(vcpu, msr_info);
2643
2644                 if (pr || data != 0)
2645                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2646                                     "0x%x data 0x%llx\n", msr, data);
2647                 break;
2648         case MSR_K7_CLK_CTL:
2649                 /*
2650                  * Ignore all writes to this no longer documented MSR.
2651                  * Writes are only relevant for old K7 processors,
2652                  * all pre-dating SVM, but a recommended workaround from
2653                  * AMD for these chips. It is possible to specify the
2654                  * affected processor models on the command line, hence
2655                  * the need to ignore the workaround.
2656                  */
2657                 break;
2658         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2659         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2660         case HV_X64_MSR_CRASH_CTL:
2661         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2662         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2663         case HV_X64_MSR_TSC_EMULATION_CONTROL:
2664         case HV_X64_MSR_TSC_EMULATION_STATUS:
2665                 return kvm_hv_set_msr_common(vcpu, msr, data,
2666                                              msr_info->host_initiated);
2667         case MSR_IA32_BBL_CR_CTL3:
2668                 /* Drop writes to this legacy MSR -- see rdmsr
2669                  * counterpart for further detail.
2670                  */
2671                 if (report_ignored_msrs)
2672                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2673                                 msr, data);
2674                 break;
2675         case MSR_AMD64_OSVW_ID_LENGTH:
2676                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2677                         return 1;
2678                 vcpu->arch.osvw.length = data;
2679                 break;
2680         case MSR_AMD64_OSVW_STATUS:
2681                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2682                         return 1;
2683                 vcpu->arch.osvw.status = data;
2684                 break;
2685         case MSR_PLATFORM_INFO:
2686                 if (!msr_info->host_initiated ||
2687                     (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2688                      cpuid_fault_enabled(vcpu)))
2689                         return 1;
2690                 vcpu->arch.msr_platform_info = data;
2691                 break;
2692         case MSR_MISC_FEATURES_ENABLES:
2693                 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2694                     (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2695                      !supports_cpuid_fault(vcpu)))
2696                         return 1;
2697                 vcpu->arch.msr_misc_features_enables = data;
2698                 break;
2699         default:
2700                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2701                         return xen_hvm_config(vcpu, data);
2702                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2703                         return kvm_pmu_set_msr(vcpu, msr_info);
2704                 if (!ignore_msrs) {
2705                         vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2706                                     msr, data);
2707                         return 1;
2708                 } else {
2709                         if (report_ignored_msrs)
2710                                 vcpu_unimpl(vcpu,
2711                                         "ignored wrmsr: 0x%x data 0x%llx\n",
2712                                         msr, data);
2713                         break;
2714                 }
2715         }
2716         return 0;
2717 }
2718 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2719
2720
2721 /*
2722  * Reads an msr value (of 'msr_index') into 'pdata'.
2723  * Returns 0 on success, non-0 otherwise.
2724  * Assumes vcpu_load() was already called.
2725  */
2726 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2727 {
2728         return kvm_x86_ops->get_msr(vcpu, msr);
2729 }
2730 EXPORT_SYMBOL_GPL(kvm_get_msr);
2731
2732 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
2733 {
2734         u64 data;
2735         u64 mcg_cap = vcpu->arch.mcg_cap;
2736         unsigned bank_num = mcg_cap & 0xff;
2737
2738         switch (msr) {
2739         case MSR_IA32_P5_MC_ADDR:
2740         case MSR_IA32_P5_MC_TYPE:
2741                 data = 0;
2742                 break;
2743         case MSR_IA32_MCG_CAP:
2744                 data = vcpu->arch.mcg_cap;
2745                 break;
2746         case MSR_IA32_MCG_CTL:
2747                 if (!(mcg_cap & MCG_CTL_P) && !host)
2748                         return 1;
2749                 data = vcpu->arch.mcg_ctl;
2750                 break;
2751         case MSR_IA32_MCG_STATUS:
2752                 data = vcpu->arch.mcg_status;
2753                 break;
2754         default:
2755                 if (msr >= MSR_IA32_MC0_CTL &&
2756                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2757                         u32 offset = msr - MSR_IA32_MC0_CTL;
2758                         data = vcpu->arch.mce_banks[offset];
2759                         break;
2760                 }
2761                 return 1;
2762         }
2763         *pdata = data;
2764         return 0;
2765 }
2766
2767 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2768 {
2769         switch (msr_info->index) {
2770         case MSR_IA32_PLATFORM_ID:
2771         case MSR_IA32_EBL_CR_POWERON:
2772         case MSR_IA32_DEBUGCTLMSR:
2773         case MSR_IA32_LASTBRANCHFROMIP:
2774         case MSR_IA32_LASTBRANCHTOIP:
2775         case MSR_IA32_LASTINTFROMIP:
2776         case MSR_IA32_LASTINTTOIP:
2777         case MSR_K8_SYSCFG:
2778         case MSR_K8_TSEG_ADDR:
2779         case MSR_K8_TSEG_MASK:
2780         case MSR_VM_HSAVE_PA:
2781         case MSR_K8_INT_PENDING_MSG:
2782         case MSR_AMD64_NB_CFG:
2783         case MSR_FAM10H_MMIO_CONF_BASE:
2784         case MSR_AMD64_BU_CFG2:
2785         case MSR_IA32_PERF_CTL:
2786         case MSR_AMD64_DC_CFG:
2787         case MSR_F15H_EX_CFG:
2788                 msr_info->data = 0;
2789                 break;
2790         case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
2791         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2792         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2793         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2794         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2795                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2796                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2797                 msr_info->data = 0;
2798                 break;
2799         case MSR_IA32_UCODE_REV:
2800                 msr_info->data = vcpu->arch.microcode_version;
2801                 break;
2802         case MSR_IA32_ARCH_CAPABILITIES:
2803                 if (!msr_info->host_initiated &&
2804                     !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
2805                         return 1;
2806                 msr_info->data = vcpu->arch.arch_capabilities;
2807                 break;
2808         case MSR_IA32_TSC:
2809                 msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset;
2810                 break;
2811         case MSR_MTRRcap:
2812         case 0x200 ... 0x2ff:
2813                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2814         case 0xcd: /* fsb frequency */
2815                 msr_info->data = 3;
2816                 break;
2817                 /*
2818                  * MSR_EBC_FREQUENCY_ID
2819                  * Conservative value valid for even the basic CPU models.
2820                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2821                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2822                  * and 266MHz for model 3, or 4. Set Core Clock
2823                  * Frequency to System Bus Frequency Ratio to 1 (bits
2824                  * 31:24) even though these are only valid for CPU
2825                  * models > 2, however guests may end up dividing or
2826                  * multiplying by zero otherwise.
2827                  */
2828         case MSR_EBC_FREQUENCY_ID:
2829                 msr_info->data = 1 << 24;
2830                 break;
2831         case MSR_IA32_APICBASE:
2832                 msr_info->data = kvm_get_apic_base(vcpu);
2833                 break;
2834         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2835                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2836                 break;
2837         case MSR_IA32_TSCDEADLINE:
2838                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2839                 break;
2840         case MSR_IA32_TSC_ADJUST:
2841                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2842                 break;
2843         case MSR_IA32_MISC_ENABLE:
2844                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2845                 break;
2846         case MSR_IA32_SMBASE:
2847                 if (!msr_info->host_initiated)
2848                         return 1;
2849                 msr_info->data = vcpu->arch.smbase;
2850                 break;
2851         case MSR_SMI_COUNT:
2852                 msr_info->data = vcpu->arch.smi_count;
2853                 break;
2854         case MSR_IA32_PERF_STATUS:
2855                 /* TSC increment by tick */
2856                 msr_info->data = 1000ULL;
2857                 /* CPU multiplier */
2858                 msr_info->data |= (((uint64_t)4ULL) << 40);
2859                 break;
2860         case MSR_EFER:
2861                 msr_info->data = vcpu->arch.efer;
2862                 break;
2863         case MSR_KVM_WALL_CLOCK:
2864         case MSR_KVM_WALL_CLOCK_NEW:
2865                 msr_info->data = vcpu->kvm->arch.wall_clock;
2866                 break;
2867         case MSR_KVM_SYSTEM_TIME:
2868         case MSR_KVM_SYSTEM_TIME_NEW:
2869                 msr_info->data = vcpu->arch.time;
2870                 break;
2871         case MSR_KVM_ASYNC_PF_EN:
2872                 msr_info->data = vcpu->arch.apf.msr_val;
2873                 break;
2874         case MSR_KVM_STEAL_TIME:
2875                 msr_info->data = vcpu->arch.st.msr_val;
2876                 break;
2877         case MSR_KVM_PV_EOI_EN:
2878                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2879                 break;
2880         case MSR_IA32_P5_MC_ADDR:
2881         case MSR_IA32_P5_MC_TYPE:
2882         case MSR_IA32_MCG_CAP:
2883         case MSR_IA32_MCG_CTL:
2884         case MSR_IA32_MCG_STATUS:
2885         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2886                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
2887                                    msr_info->host_initiated);
2888         case MSR_K7_CLK_CTL:
2889                 /*
2890                  * Provide expected ramp-up count for K7. All other
2891                  * are set to zero, indicating minimum divisors for
2892                  * every field.
2893                  *
2894                  * This prevents guest kernels on AMD host with CPU
2895                  * type 6, model 8 and higher from exploding due to
2896                  * the rdmsr failing.
2897                  */
2898                 msr_info->data = 0x20000000;
2899                 break;
2900         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2901         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2902         case HV_X64_MSR_CRASH_CTL:
2903         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2904         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2905         case HV_X64_MSR_TSC_EMULATION_CONTROL:
2906         case HV_X64_MSR_TSC_EMULATION_STATUS:
2907                 return kvm_hv_get_msr_common(vcpu,
2908                                              msr_info->index, &msr_info->data,
2909                                              msr_info->host_initiated);
2910                 break;
2911         case MSR_IA32_BBL_CR_CTL3:
2912                 /* This legacy MSR exists but isn't fully documented in current
2913                  * silicon.  It is however accessed by winxp in very narrow
2914                  * scenarios where it sets bit #19, itself documented as
2915                  * a "reserved" bit.  Best effort attempt to source coherent
2916                  * read data here should the balance of the register be
2917                  * interpreted by the guest:
2918                  *
2919                  * L2 cache control register 3: 64GB range, 256KB size,
2920                  * enabled, latency 0x1, configured
2921                  */
2922                 msr_info->data = 0xbe702111;
2923                 break;
2924         case MSR_AMD64_OSVW_ID_LENGTH:
2925                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2926                         return 1;
2927                 msr_info->data = vcpu->arch.osvw.length;
2928                 break;
2929         case MSR_AMD64_OSVW_STATUS:
2930                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2931                         return 1;
2932                 msr_info->data = vcpu->arch.osvw.status;
2933                 break;
2934         case MSR_PLATFORM_INFO:
2935                 if (!msr_info->host_initiated &&
2936                     !vcpu->kvm->arch.guest_can_read_msr_platform_info)
2937                         return 1;
2938                 msr_info->data = vcpu->arch.msr_platform_info;
2939                 break;
2940         case MSR_MISC_FEATURES_ENABLES:
2941                 msr_info->data = vcpu->arch.msr_misc_features_enables;
2942                 break;
2943         case MSR_K7_HWCR:
2944                 msr_info->data = vcpu->arch.msr_hwcr;
2945                 break;
2946         default:
2947                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2948                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2949                 if (!ignore_msrs) {
2950                         vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2951                                                msr_info->index);
2952                         return 1;
2953                 } else {
2954                         if (report_ignored_msrs)
2955                                 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n",
2956                                         msr_info->index);
2957                         msr_info->data = 0;
2958                 }
2959                 break;
2960         }
2961         return 0;
2962 }
2963 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2964
2965 /*
2966  * Read or write a bunch of msrs. All parameters are kernel addresses.
2967  *
2968  * @return number of msrs set successfully.
2969  */
2970 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2971                     struct kvm_msr_entry *entries,
2972                     int (*do_msr)(struct kvm_vcpu *vcpu,
2973                                   unsigned index, u64 *data))
2974 {
2975         int i;
2976
2977         for (i = 0; i < msrs->nmsrs; ++i)
2978                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2979                         break;
2980
2981         return i;
2982 }
2983
2984 /*
2985  * Read or write a bunch of msrs. Parameters are user addresses.
2986  *
2987  * @return number of msrs set successfully.
2988  */
2989 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2990                   int (*do_msr)(struct kvm_vcpu *vcpu,
2991                                 unsigned index, u64 *data),
2992                   int writeback)
2993 {
2994         struct kvm_msrs msrs;
2995         struct kvm_msr_entry *entries;
2996         int r, n;
2997         unsigned size;
2998
2999         r = -EFAULT;
3000         if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3001                 goto out;
3002
3003         r = -E2BIG;
3004         if (msrs.nmsrs >= MAX_IO_MSRS)
3005                 goto out;
3006
3007         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3008         entries = memdup_user(user_msrs->entries, size);
3009         if (IS_ERR(entries)) {
3010                 r = PTR_ERR(entries);
3011                 goto out;
3012         }
3013
3014         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3015         if (r < 0)
3016                 goto out_free;
3017
3018         r = -EFAULT;
3019         if (writeback && copy_to_user(user_msrs->entries, entries, size))
3020                 goto out_free;
3021
3022         r = n;
3023
3024 out_free:
3025         kfree(entries);
3026 out:
3027         return r;
3028 }
3029
3030 static inline bool kvm_can_mwait_in_guest(void)
3031 {
3032         return boot_cpu_has(X86_FEATURE_MWAIT) &&
3033                 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
3034                 boot_cpu_has(X86_FEATURE_ARAT);
3035 }
3036
3037 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
3038 {
3039         int r = 0;
3040
3041         switch (ext) {
3042         case KVM_CAP_IRQCHIP:
3043         case KVM_CAP_HLT:
3044         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3045         case KVM_CAP_SET_TSS_ADDR:
3046         case KVM_CAP_EXT_CPUID:
3047         case KVM_CAP_EXT_EMUL_CPUID:
3048         case KVM_CAP_CLOCKSOURCE:
3049         case KVM_CAP_PIT:
3050         case KVM_CAP_NOP_IO_DELAY:
3051         case KVM_CAP_MP_STATE:
3052         case KVM_CAP_SYNC_MMU:
3053         case KVM_CAP_USER_NMI:
3054         case KVM_CAP_REINJECT_CONTROL:
3055         case KVM_CAP_IRQ_INJECT_STATUS:
3056         case KVM_CAP_IOEVENTFD:
3057         case KVM_CAP_IOEVENTFD_NO_LENGTH:
3058         case KVM_CAP_PIT2:
3059         case KVM_CAP_PIT_STATE2:
3060         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3061         case KVM_CAP_XEN_HVM:
3062         case KVM_CAP_VCPU_EVENTS:
3063         case KVM_CAP_HYPERV:
3064         case KVM_CAP_HYPERV_VAPIC:
3065         case KVM_CAP_HYPERV_SPIN:
3066         case KVM_CAP_HYPERV_SYNIC:
3067         case KVM_CAP_HYPERV_SYNIC2:
3068         case KVM_CAP_HYPERV_VP_INDEX:
3069         case KVM_CAP_HYPERV_EVENTFD:
3070         case KVM_CAP_HYPERV_TLBFLUSH:
3071         case KVM_CAP_HYPERV_SEND_IPI:
3072         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3073         case KVM_CAP_HYPERV_CPUID:
3074         case KVM_CAP_PCI_SEGMENT:
3075         case KVM_CAP_DEBUGREGS:
3076         case KVM_CAP_X86_ROBUST_SINGLESTEP:
3077         case KVM_CAP_XSAVE:
3078         case KVM_CAP_ASYNC_PF:
3079         case KVM_CAP_GET_TSC_KHZ:
3080         case KVM_CAP_KVMCLOCK_CTRL:
3081         case KVM_CAP_READONLY_MEM:
3082         case KVM_CAP_HYPERV_TIME:
3083         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3084         case KVM_CAP_TSC_DEADLINE_TIMER:
3085         case KVM_CAP_DISABLE_QUIRKS:
3086         case KVM_CAP_SET_BOOT_CPU_ID:
3087         case KVM_CAP_SPLIT_IRQCHIP:
3088         case KVM_CAP_IMMEDIATE_EXIT:
3089         case KVM_CAP_GET_MSR_FEATURES:
3090         case KVM_CAP_MSR_PLATFORM_INFO:
3091         case KVM_CAP_EXCEPTION_PAYLOAD:
3092                 r = 1;
3093                 break;
3094         case KVM_CAP_SYNC_REGS:
3095                 r = KVM_SYNC_X86_VALID_FIELDS;
3096                 break;
3097         case KVM_CAP_ADJUST_CLOCK:
3098                 r = KVM_CLOCK_TSC_STABLE;
3099                 break;
3100         case KVM_CAP_X86_DISABLE_EXITS:
3101                 r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE;
3102                 if(kvm_can_mwait_in_guest())
3103                         r |= KVM_X86_DISABLE_EXITS_MWAIT;
3104                 break;
3105         case KVM_CAP_X86_SMM:
3106                 /* SMBASE is usually relocated above 1M on modern chipsets,
3107                  * and SMM handlers might indeed rely on 4G segment limits,
3108                  * so do not report SMM to be available if real mode is
3109                  * emulated via vm86 mode.  Still, do not go to great lengths
3110                  * to avoid userspace's usage of the feature, because it is a
3111                  * fringe case that is not enabled except via specific settings
3112                  * of the module parameters.
3113                  */
3114                 r = kvm_x86_ops->has_emulated_msr(MSR_IA32_SMBASE);
3115                 break;
3116         case KVM_CAP_VAPIC:
3117                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
3118                 break;
3119         case KVM_CAP_NR_VCPUS:
3120                 r = KVM_SOFT_MAX_VCPUS;
3121                 break;
3122         case KVM_CAP_MAX_VCPUS:
3123                 r = KVM_MAX_VCPUS;
3124                 break;
3125         case KVM_CAP_PV_MMU:    /* obsolete */
3126                 r = 0;
3127                 break;
3128         case KVM_CAP_MCE:
3129                 r = KVM_MAX_MCE_BANKS;
3130                 break;
3131         case KVM_CAP_XCRS:
3132                 r = boot_cpu_has(X86_FEATURE_XSAVE);
3133                 break;
3134         case KVM_CAP_TSC_CONTROL:
3135                 r = kvm_has_tsc_control;
3136                 break;
3137         case KVM_CAP_X2APIC_API:
3138                 r = KVM_X2APIC_API_VALID_FLAGS;
3139                 break;
3140         case KVM_CAP_NESTED_STATE:
3141                 r = kvm_x86_ops->get_nested_state ?
3142                         kvm_x86_ops->get_nested_state(NULL, NULL, 0) : 0;
3143                 break;
3144         default:
3145                 break;
3146         }
3147         return r;
3148
3149 }
3150
3151 long kvm_arch_dev_ioctl(struct file *filp,
3152                         unsigned int ioctl, unsigned long arg)
3153 {
3154         void __user *argp = (void __user *)arg;
3155         long r;
3156
3157         switch (ioctl) {
3158         case KVM_GET_MSR_INDEX_LIST: {
3159                 struct kvm_msr_list __user *user_msr_list = argp;
3160                 struct kvm_msr_list msr_list;
3161                 unsigned n;
3162
3163                 r = -EFAULT;
3164                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3165                         goto out;
3166                 n = msr_list.nmsrs;
3167                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3168                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3169                         goto out;
3170                 r = -E2BIG;
3171                 if (n < msr_list.nmsrs)
3172                         goto out;
3173                 r = -EFAULT;
3174                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3175                                  num_msrs_to_save * sizeof(u32)))
3176                         goto out;
3177                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3178                                  &emulated_msrs,
3179                                  num_emulated_msrs * sizeof(u32)))
3180                         goto out;
3181                 r = 0;
3182                 break;
3183         }
3184         case KVM_GET_SUPPORTED_CPUID:
3185         case KVM_GET_EMULATED_CPUID: {
3186                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3187                 struct kvm_cpuid2 cpuid;
3188
3189                 r = -EFAULT;
3190                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3191                         goto out;
3192
3193                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3194                                             ioctl);
3195                 if (r)
3196                         goto out;
3197
3198                 r = -EFAULT;
3199                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3200                         goto out;
3201                 r = 0;
3202                 break;
3203         }
3204         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
3205                 r = -EFAULT;
3206                 if (copy_to_user(argp, &kvm_mce_cap_supported,
3207                                  sizeof(kvm_mce_cap_supported)))
3208                         goto out;
3209                 r = 0;
3210                 break;
3211         case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3212                 struct kvm_msr_list __user *user_msr_list = argp;
3213                 struct kvm_msr_list msr_list;
3214                 unsigned int n;
3215
3216                 r = -EFAULT;
3217                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3218                         goto out;
3219                 n = msr_list.nmsrs;
3220                 msr_list.nmsrs = num_msr_based_features;
3221                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3222                         goto out;
3223                 r = -E2BIG;
3224                 if (n < msr_list.nmsrs)
3225                         goto out;
3226                 r = -EFAULT;
3227                 if (copy_to_user(user_msr_list->indices, &msr_based_features,
3228                                  num_msr_based_features * sizeof(u32)))
3229                         goto out;
3230                 r = 0;
3231                 break;
3232         }
3233         case KVM_GET_MSRS:
3234                 r = msr_io(NULL, argp, do_get_msr_feature, 1);
3235                 break;
3236         }
3237         default:
3238                 r = -EINVAL;
3239         }
3240 out:
3241         return r;
3242 }
3243
3244 static void wbinvd_ipi(void *garbage)
3245 {
3246         wbinvd();
3247 }
3248
3249 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3250 {
3251         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3252 }
3253
3254 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3255 {
3256         /* Address WBINVD may be executed by guest */
3257         if (need_emulate_wbinvd(vcpu)) {
3258                 if (kvm_x86_ops->has_wbinvd_exit())
3259                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3260                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3261                         smp_call_function_single(vcpu->cpu,
3262                                         wbinvd_ipi, NULL, 1);
3263         }
3264
3265         kvm_x86_ops->vcpu_load(vcpu, cpu);
3266
3267         /* Apply any externally detected TSC adjustments (due to suspend) */
3268         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3269                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3270                 vcpu->arch.tsc_offset_adjustment = 0;
3271                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3272         }
3273
3274         if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3275                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3276                                 rdtsc() - vcpu->arch.last_host_tsc;
3277                 if (tsc_delta < 0)
3278                         mark_tsc_unstable("KVM discovered backwards TSC");
3279
3280                 if (kvm_check_tsc_unstable()) {
3281                         u64 offset = kvm_compute_tsc_offset(vcpu,
3282                                                 vcpu->arch.last_guest_tsc);
3283                         kvm_vcpu_write_tsc_offset(vcpu, offset);
3284                         vcpu->arch.tsc_catchup = 1;
3285                 }
3286
3287                 if (kvm_lapic_hv_timer_in_use(vcpu))
3288                         kvm_lapic_restart_hv_timer(vcpu);
3289
3290                 /*
3291                  * On a host with synchronized TSC, there is no need to update
3292                  * kvmclock on vcpu->cpu migration
3293                  */
3294                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3295                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3296                 if (vcpu->cpu != cpu)
3297                         kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3298                 vcpu->cpu = cpu;
3299         }
3300
3301         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3302 }
3303
3304 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3305 {
3306         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3307                 return;
3308
3309         vcpu->arch.st.steal.preempted = KVM_VCPU_PREEMPTED;
3310
3311         kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
3312                         &vcpu->arch.st.steal.preempted,
3313                         offsetof(struct kvm_steal_time, preempted),
3314                         sizeof(vcpu->arch.st.steal.preempted));
3315 }
3316
3317 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3318 {
3319         int idx;
3320
3321         if (vcpu->preempted)
3322                 vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu);
3323
3324         /*
3325          * Disable page faults because we're in atomic context here.
3326          * kvm_write_guest_offset_cached() would call might_fault()
3327          * that relies on pagefault_disable() to tell if there's a
3328          * bug. NOTE: the write to guest memory may not go through if
3329          * during postcopy live migration or if there's heavy guest
3330          * paging.
3331          */
3332         pagefault_disable();
3333         /*
3334          * kvm_memslots() will be called by
3335          * kvm_write_guest_offset_cached() so take the srcu lock.
3336          */
3337         idx = srcu_read_lock(&vcpu->kvm->srcu);
3338         kvm_steal_time_set_preempted(vcpu);
3339         srcu_read_unlock(&vcpu->kvm->srcu, idx);
3340         pagefault_enable();
3341         kvm_x86_ops->vcpu_put(vcpu);
3342         vcpu->arch.last_host_tsc = rdtsc();
3343         /*
3344          * If userspace has set any breakpoints or watchpoints, dr6 is restored
3345          * on every vmexit, but if not, we might have a stale dr6 from the
3346          * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3347          */
3348         set_debugreg(0, 6);
3349 }
3350
3351 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3352                                     struct kvm_lapic_state *s)
3353 {
3354         if (vcpu->arch.apicv_active)
3355                 kvm_x86_ops->sync_pir_to_irr(vcpu);
3356
3357         return kvm_apic_get_state(vcpu, s);
3358 }
3359
3360 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3361                                     struct kvm_lapic_state *s)
3362 {
3363         int r;
3364
3365         r = kvm_apic_set_state(vcpu, s);
3366         if (r)
3367                 return r;
3368         update_cr8_intercept(vcpu);
3369
3370         return 0;
3371 }
3372
3373 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
3374 {
3375         return (!lapic_in_kernel(vcpu) ||
3376                 kvm_apic_accept_pic_intr(vcpu));
3377 }
3378
3379 /*
3380  * if userspace requested an interrupt window, check that the
3381  * interrupt window is open.
3382  *
3383  * No need to exit to userspace if we already have an interrupt queued.
3384  */
3385 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
3386 {
3387         return kvm_arch_interrupt_allowed(vcpu) &&
3388                 !kvm_cpu_has_interrupt(vcpu) &&
3389                 !kvm_event_needs_reinjection(vcpu) &&
3390                 kvm_cpu_accept_dm_intr(vcpu);
3391 }
3392
3393 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3394                                     struct kvm_interrupt *irq)
3395 {
3396         if (irq->irq >= KVM_NR_INTERRUPTS)
3397                 return -EINVAL;
3398
3399         if (!irqchip_in_kernel(vcpu->kvm)) {
3400                 kvm_queue_interrupt(vcpu, irq->irq, false);
3401                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3402                 return 0;
3403         }
3404
3405         /*
3406          * With in-kernel LAPIC, we only use this to inject EXTINT, so
3407          * fail for in-kernel 8259.
3408          */
3409         if (pic_in_kernel(vcpu->kvm))
3410                 return -ENXIO;
3411
3412         if (vcpu->arch.pending_external_vector != -1)
3413                 return -EEXIST;
3414
3415         vcpu->arch.pending_external_vector = irq->irq;
3416         kvm_make_request(KVM_REQ_EVENT, vcpu);
3417         return 0;
3418 }
3419
3420 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3421 {
3422         kvm_inject_nmi(vcpu);
3423
3424         return 0;
3425 }
3426
3427 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3428 {
3429         kvm_make_request(KVM_REQ_SMI, vcpu);
3430
3431         return 0;
3432 }
3433
3434 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3435                                            struct kvm_tpr_access_ctl *tac)
3436 {
3437         if (tac->flags)
3438                 return -EINVAL;
3439         vcpu->arch.tpr_access_reporting = !!tac->enabled;
3440         return 0;
3441 }
3442
3443 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3444                                         u64 mcg_cap)
3445 {
3446         int r;
3447         unsigned bank_num = mcg_cap & 0xff, bank;
3448
3449         r = -EINVAL;
3450         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3451                 goto out;
3452         if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3453                 goto out;
3454         r = 0;
3455         vcpu->arch.mcg_cap = mcg_cap;
3456         /* Init IA32_MCG_CTL to all 1s */
3457         if (mcg_cap & MCG_CTL_P)
3458                 vcpu->arch.mcg_ctl = ~(u64)0;
3459         /* Init IA32_MCi_CTL to all 1s */
3460         for (bank = 0; bank < bank_num; bank++)
3461                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3462
3463         if (kvm_x86_ops->setup_mce)
3464                 kvm_x86_ops->setup_mce(vcpu);
3465 out:
3466         return r;
3467 }
3468
3469 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3470                                       struct kvm_x86_mce *mce)
3471 {
3472         u64 mcg_cap = vcpu->arch.mcg_cap;
3473         unsigned bank_num = mcg_cap & 0xff;
3474         u64 *banks = vcpu->arch.mce_banks;
3475
3476         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3477                 return -EINVAL;
3478         /*
3479          * if IA32_MCG_CTL is not all 1s, the uncorrected error
3480          * reporting is disabled
3481          */
3482         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3483             vcpu->arch.mcg_ctl != ~(u64)0)
3484                 return 0;
3485         banks += 4 * mce->bank;
3486         /*
3487          * if IA32_MCi_CTL is not all 1s, the uncorrected error
3488          * reporting is disabled for the bank
3489          */
3490         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3491                 return 0;
3492         if (mce->status & MCI_STATUS_UC) {
3493                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3494                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3495                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3496                         return 0;
3497                 }
3498                 if (banks[1] & MCI_STATUS_VAL)
3499                         mce->status |= MCI_STATUS_OVER;
3500                 banks[2] = mce->addr;
3501                 banks[3] = mce->misc;
3502                 vcpu->arch.mcg_status = mce->mcg_status;
3503                 banks[1] = mce->status;
3504                 kvm_queue_exception(vcpu, MC_VECTOR);
3505         } else if (!(banks[1] & MCI_STATUS_VAL)
3506                    || !(banks[1] & MCI_STATUS_UC)) {
3507                 if (banks[1] & MCI_STATUS_VAL)
3508                         mce->status |= MCI_STATUS_OVER;
3509                 banks[2] = mce->addr;
3510                 banks[3] = mce->misc;
3511                 banks[1] = mce->status;
3512         } else
3513                 banks[1] |= MCI_STATUS_OVER;
3514         return 0;
3515 }
3516
3517 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3518                                                struct kvm_vcpu_events *events)
3519 {
3520         process_nmi(vcpu);
3521
3522         /*
3523          * The API doesn't provide the instruction length for software
3524          * exceptions, so don't report them. As long as the guest RIP
3525          * isn't advanced, we should expect to encounter the exception
3526          * again.
3527          */
3528         if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
3529                 events->exception.injected = 0;
3530                 events->exception.pending = 0;
3531         } else {
3532                 events->exception.injected = vcpu->arch.exception.injected;
3533                 events->exception.pending = vcpu->arch.exception.pending;
3534                 /*
3535                  * For ABI compatibility, deliberately conflate
3536                  * pending and injected exceptions when
3537                  * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
3538                  */
3539                 if (!vcpu->kvm->arch.exception_payload_enabled)
3540                         events->exception.injected |=
3541                                 vcpu->arch.exception.pending;
3542         }
3543         events->exception.nr = vcpu->arch.exception.nr;
3544         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3545         events->exception.error_code = vcpu->arch.exception.error_code;
3546         events->exception_has_payload = vcpu->arch.exception.has_payload;
3547         events->exception_payload = vcpu->arch.exception.payload;
3548
3549         events->interrupt.injected =
3550                 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
3551         events->interrupt.nr = vcpu->arch.interrupt.nr;
3552         events->interrupt.soft = 0;
3553         events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3554
3555         events->nmi.injected = vcpu->arch.nmi_injected;
3556         events->nmi.pending = vcpu->arch.nmi_pending != 0;
3557         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3558         events->nmi.pad = 0;
3559
3560         events->sipi_vector = 0; /* never valid when reporting to user space */
3561
3562         events->smi.smm = is_smm(vcpu);
3563         events->smi.pending = vcpu->arch.smi_pending;
3564         events->smi.smm_inside_nmi =
3565                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3566         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3567
3568         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3569                          | KVM_VCPUEVENT_VALID_SHADOW
3570                          | KVM_VCPUEVENT_VALID_SMM);
3571         if (vcpu->kvm->arch.exception_payload_enabled)
3572                 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
3573
3574         memset(&events->reserved, 0, sizeof(events->reserved));
3575 }
3576
3577 static void kvm_smm_changed(struct kvm_vcpu *vcpu);
3578
3579 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3580                                               struct kvm_vcpu_events *events)
3581 {
3582         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3583                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3584                               | KVM_VCPUEVENT_VALID_SHADOW
3585                               | KVM_VCPUEVENT_VALID_SMM
3586                               | KVM_VCPUEVENT_VALID_PAYLOAD))
3587                 return -EINVAL;
3588
3589         if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
3590                 if (!vcpu->kvm->arch.exception_payload_enabled)
3591                         return -EINVAL;
3592                 if (events->exception.pending)
3593                         events->exception.injected = 0;
3594                 else
3595                         events->exception_has_payload = 0;
3596         } else {
3597                 events->exception.pending = 0;
3598                 events->exception_has_payload = 0;
3599         }
3600
3601         if ((events->exception.injected || events->exception.pending) &&
3602             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
3603                 return -EINVAL;
3604
3605         /* INITs are latched while in SMM */
3606         if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3607             (events->smi.smm || events->smi.pending) &&
3608             vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3609                 return -EINVAL;
3610
3611         process_nmi(vcpu);
3612         vcpu->arch.exception.injected = events->exception.injected;
3613         vcpu->arch.exception.pending = events->exception.pending;
3614         vcpu->arch.exception.nr = events->exception.nr;
3615         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3616         vcpu->arch.exception.error_code = events->exception.error_code;
3617         vcpu->arch.exception.has_payload = events->exception_has_payload;
3618         vcpu->arch.exception.payload = events->exception_payload;
3619
3620         vcpu->arch.interrupt.injected = events->interrupt.injected;
3621         vcpu->arch.interrupt.nr = events->interrupt.nr;
3622         vcpu->arch.interrupt.soft = events->interrupt.soft;
3623         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3624                 kvm_x86_ops->set_interrupt_shadow(vcpu,
3625                                                   events->interrupt.shadow);
3626
3627         vcpu->arch.nmi_injected = events->nmi.injected;
3628         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3629                 vcpu->arch.nmi_pending = events->nmi.pending;
3630         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3631
3632         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3633             lapic_in_kernel(vcpu))
3634                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3635
3636         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3637                 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
3638                         if (events->smi.smm)
3639                                 vcpu->arch.hflags |= HF_SMM_MASK;
3640                         else
3641                                 vcpu->arch.hflags &= ~HF_SMM_MASK;
3642                         kvm_smm_changed(vcpu);
3643                 }
3644
3645                 vcpu->arch.smi_pending = events->smi.pending;
3646
3647                 if (events->smi.smm) {
3648                         if (events->smi.smm_inside_nmi)
3649                                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3650                         else
3651                                 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3652                         if (lapic_in_kernel(vcpu)) {
3653                                 if (events->smi.latched_init)
3654                                         set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3655                                 else
3656                                         clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3657                         }
3658                 }
3659         }
3660
3661         kvm_make_request(KVM_REQ_EVENT, vcpu);
3662
3663         return 0;
3664 }
3665
3666 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3667                                              struct kvm_debugregs *dbgregs)
3668 {
3669         unsigned long val;
3670
3671         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3672         kvm_get_dr(vcpu, 6, &val);
3673         dbgregs->dr6 = val;
3674         dbgregs->dr7 = vcpu->arch.dr7;
3675         dbgregs->flags = 0;
3676         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3677 }
3678
3679 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3680                                             struct kvm_debugregs *dbgregs)
3681 {
3682         if (dbgregs->flags)
3683                 return -EINVAL;
3684
3685         if (dbgregs->dr6 & ~0xffffffffull)
3686                 return -EINVAL;
3687         if (dbgregs->dr7 & ~0xffffffffull)
3688                 return -EINVAL;
3689
3690         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3691         kvm_update_dr0123(vcpu);
3692         vcpu->arch.dr6 = dbgregs->dr6;
3693         kvm_update_dr6(vcpu);
3694         vcpu->arch.dr7 = dbgregs->dr7;
3695         kvm_update_dr7(vcpu);
3696
3697         return 0;
3698 }
3699
3700 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3701
3702 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3703 {
3704         struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
3705         u64 xstate_bv = xsave->header.xfeatures;
3706         u64 valid;
3707
3708         /*
3709          * Copy legacy XSAVE area, to avoid complications with CPUID
3710          * leaves 0 and 1 in the loop below.
3711          */
3712         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3713
3714         /* Set XSTATE_BV */
3715         xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3716         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3717
3718         /*
3719          * Copy each region from the possibly compacted offset to the
3720          * non-compacted offset.
3721          */
3722         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3723         while (valid) {
3724                 u64 xfeature_mask = valid & -valid;
3725                 int xfeature_nr = fls64(xfeature_mask) - 1;
3726                 void *src = get_xsave_addr(xsave, xfeature_nr);
3727
3728                 if (src) {
3729                         u32 size, offset, ecx, edx;
3730                         cpuid_count(XSTATE_CPUID, xfeature_nr,
3731                                     &size, &offset, &ecx, &edx);
3732                         if (xfeature_nr == XFEATURE_PKRU)
3733                                 memcpy(dest + offset, &vcpu->arch.pkru,
3734                                        sizeof(vcpu->arch.pkru));
3735                         else
3736                                 memcpy(dest + offset, src, size);
3737
3738                 }
3739
3740                 valid -= xfeature_mask;
3741         }
3742 }
3743
3744 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3745 {
3746         struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
3747         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3748         u64 valid;
3749
3750         /*
3751          * Copy legacy XSAVE area, to avoid complications with CPUID
3752          * leaves 0 and 1 in the loop below.
3753          */
3754         memcpy(xsave, src, XSAVE_HDR_OFFSET);
3755
3756         /* Set XSTATE_BV and possibly XCOMP_BV.  */
3757         xsave->header.xfeatures = xstate_bv;
3758         if (boot_cpu_has(X86_FEATURE_XSAVES))
3759                 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3760
3761         /*
3762          * Copy each region from the non-compacted offset to the
3763          * possibly compacted offset.
3764          */
3765         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3766         while (valid) {
3767                 u64 xfeature_mask = valid & -valid;
3768                 int xfeature_nr = fls64(xfeature_mask) - 1;
3769                 void *dest = get_xsave_addr(xsave, xfeature_nr);
3770
3771                 if (dest) {
3772                         u32 size, offset, ecx, edx;
3773                         cpuid_count(XSTATE_CPUID, xfeature_nr,
3774                                     &size, &offset, &ecx, &edx);
3775                         if (xfeature_nr == XFEATURE_PKRU)
3776                                 memcpy(&vcpu->arch.pkru, src + offset,
3777                                        sizeof(vcpu->arch.pkru));
3778                         else
3779                                 memcpy(dest, src + offset, size);
3780                 }
3781
3782                 valid -= xfeature_mask;
3783         }
3784 }
3785
3786 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3787                                          struct kvm_xsave *guest_xsave)
3788 {
3789         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3790                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3791                 fill_xsave((u8 *) guest_xsave->region, vcpu);
3792         } else {
3793                 memcpy(guest_xsave->region,
3794                         &vcpu->arch.guest_fpu->state.fxsave,
3795                         sizeof(struct fxregs_state));
3796                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3797                         XFEATURE_MASK_FPSSE;
3798         }
3799 }
3800
3801 #define XSAVE_MXCSR_OFFSET 24
3802
3803 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3804                                         struct kvm_xsave *guest_xsave)
3805 {
3806         u64 xstate_bv =
3807                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3808         u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3809
3810         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3811                 /*
3812                  * Here we allow setting states that are not present in
3813                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3814                  * with old userspace.
3815                  */
3816                 if (xstate_bv & ~kvm_supported_xcr0() ||
3817                         mxcsr & ~mxcsr_feature_mask)
3818                         return -EINVAL;
3819                 load_xsave(vcpu, (u8 *)guest_xsave->region);
3820         } else {
3821                 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
3822                         mxcsr & ~mxcsr_feature_mask)
3823                         return -EINVAL;
3824                 memcpy(&vcpu->arch.guest_fpu->state.fxsave,
3825                         guest_xsave->region, sizeof(struct fxregs_state));
3826         }
3827         return 0;
3828 }
3829
3830 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3831                                         struct kvm_xcrs *guest_xcrs)
3832 {
3833         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3834                 guest_xcrs->nr_xcrs = 0;
3835                 return;
3836         }
3837
3838         guest_xcrs->nr_xcrs = 1;
3839         guest_xcrs->flags = 0;
3840         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3841         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3842 }
3843
3844 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3845                                        struct kvm_xcrs *guest_xcrs)
3846 {
3847         int i, r = 0;
3848
3849         if (!boot_cpu_has(X86_FEATURE_XSAVE))
3850                 return -EINVAL;
3851
3852         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3853                 return -EINVAL;
3854
3855         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3856                 /* Only support XCR0 currently */
3857                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3858                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3859                                 guest_xcrs->xcrs[i].value);
3860                         break;
3861                 }
3862         if (r)
3863                 r = -EINVAL;
3864         return r;
3865 }
3866
3867 /*
3868  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3869  * stopped by the hypervisor.  This function will be called from the host only.
3870  * EINVAL is returned when the host attempts to set the flag for a guest that
3871  * does not support pv clocks.
3872  */
3873 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3874 {
3875         if (!vcpu->arch.pv_time_enabled)
3876                 return -EINVAL;
3877         vcpu->arch.pvclock_set_guest_stopped_request = true;
3878         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3879         return 0;
3880 }
3881
3882 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3883                                      struct kvm_enable_cap *cap)
3884 {
3885         int r;
3886         uint16_t vmcs_version;
3887         void __user *user_ptr;
3888
3889         if (cap->flags)
3890                 return -EINVAL;
3891
3892         switch (cap->cap) {
3893         case KVM_CAP_HYPERV_SYNIC2:
3894                 if (cap->args[0])
3895                         return -EINVAL;
3896                 /* fall through */
3897
3898         case KVM_CAP_HYPERV_SYNIC:
3899                 if (!irqchip_in_kernel(vcpu->kvm))
3900                         return -EINVAL;
3901                 return kvm_hv_activate_synic(vcpu, cap->cap ==
3902                                              KVM_CAP_HYPERV_SYNIC2);
3903         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3904                 if (!kvm_x86_ops->nested_enable_evmcs)
3905                         return -ENOTTY;
3906                 r = kvm_x86_ops->nested_enable_evmcs(vcpu, &vmcs_version);
3907                 if (!r) {
3908                         user_ptr = (void __user *)(uintptr_t)cap->args[0];
3909                         if (copy_to_user(user_ptr, &vmcs_version,
3910                                          sizeof(vmcs_version)))
3911                                 r = -EFAULT;
3912                 }
3913                 return r;
3914
3915         default:
3916                 return -EINVAL;
3917         }
3918 }
3919
3920 long kvm_arch_vcpu_ioctl(struct file *filp,
3921                          unsigned int ioctl, unsigned long arg)
3922 {
3923         struct kvm_vcpu *vcpu = filp->private_data;
3924         void __user *argp = (void __user *)arg;
3925         int r;
3926         union {
3927                 struct kvm_lapic_state *lapic;
3928                 struct kvm_xsave *xsave;
3929                 struct kvm_xcrs *xcrs;
3930                 void *buffer;
3931         } u;
3932
3933         vcpu_load(vcpu);
3934
3935         u.buffer = NULL;
3936         switch (ioctl) {
3937         case KVM_GET_LAPIC: {
3938                 r = -EINVAL;
3939                 if (!lapic_in_kernel(vcpu))
3940                         goto out;
3941                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
3942                                 GFP_KERNEL_ACCOUNT);
3943
3944                 r = -ENOMEM;
3945                 if (!u.lapic)
3946                         goto out;
3947                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3948                 if (r)
3949                         goto out;
3950                 r = -EFAULT;
3951                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3952                         goto out;
3953                 r = 0;
3954                 break;
3955         }
3956         case KVM_SET_LAPIC: {
3957                 r = -EINVAL;
3958                 if (!lapic_in_kernel(vcpu))
3959                         goto out;
3960                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3961                 if (IS_ERR(u.lapic)) {
3962                         r = PTR_ERR(u.lapic);
3963                         goto out_nofree;
3964                 }
3965
3966                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3967                 break;
3968         }
3969         case KVM_INTERRUPT: {
3970                 struct kvm_interrupt irq;
3971
3972                 r = -EFAULT;
3973                 if (copy_from_user(&irq, argp, sizeof(irq)))
3974                         goto out;
3975                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3976                 break;
3977         }
3978         case KVM_NMI: {
3979                 r = kvm_vcpu_ioctl_nmi(vcpu);
3980                 break;
3981         }
3982         case KVM_SMI: {
3983                 r = kvm_vcpu_ioctl_smi(vcpu);
3984                 break;
3985         }
3986         case KVM_SET_CPUID: {
3987                 struct kvm_cpuid __user *cpuid_arg = argp;
3988                 struct kvm_cpuid cpuid;
3989
3990                 r = -EFAULT;
3991                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3992                         goto out;
3993                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3994                 break;
3995         }
3996         case KVM_SET_CPUID2: {
3997                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3998                 struct kvm_cpuid2 cpuid;
3999
4000                 r = -EFAULT;
4001                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4002                         goto out;
4003                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
4004                                               cpuid_arg->entries);
4005                 break;
4006         }
4007         case KVM_GET_CPUID2: {
4008                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4009                 struct kvm_cpuid2 cpuid;
4010
4011                 r = -EFAULT;
4012                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4013                         goto out;
4014                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
4015                                               cpuid_arg->entries);
4016                 if (r)
4017                         goto out;
4018                 r = -EFAULT;
4019                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4020                         goto out;
4021                 r = 0;
4022                 break;
4023         }
4024         case KVM_GET_MSRS: {
4025                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
4026                 r = msr_io(vcpu, argp, do_get_msr, 1);
4027                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4028                 break;
4029         }
4030         case KVM_SET_MSRS: {
4031                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
4032                 r = msr_io(vcpu, argp, do_set_msr, 0);
4033                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4034                 break;
4035         }
4036         case KVM_TPR_ACCESS_REPORTING: {
4037                 struct kvm_tpr_access_ctl tac;
4038
4039                 r = -EFAULT;
4040                 if (copy_from_user(&tac, argp, sizeof(tac)))
4041                         goto out;
4042                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
4043                 if (r)
4044                         goto out;
4045                 r = -EFAULT;
4046                 if (copy_to_user(argp, &tac, sizeof(tac)))
4047                         goto out;
4048                 r = 0;
4049                 break;
4050         };
4051         case KVM_SET_VAPIC_ADDR: {
4052                 struct kvm_vapic_addr va;
4053                 int idx;
4054
4055                 r = -EINVAL;
4056                 if (!lapic_in_kernel(vcpu))
4057                         goto out;
4058                 r = -EFAULT;
4059                 if (copy_from_user(&va, argp, sizeof(va)))
4060                         goto out;
4061                 idx = srcu_read_lock(&vcpu->kvm->srcu);
4062                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
4063                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4064                 break;
4065         }
4066         case KVM_X86_SETUP_MCE: {
4067                 u64 mcg_cap;
4068
4069                 r = -EFAULT;
4070                 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
4071                         goto out;
4072                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
4073                 break;
4074         }
4075         case KVM_X86_SET_MCE: {
4076                 struct kvm_x86_mce mce;
4077
4078                 r = -EFAULT;
4079                 if (copy_from_user(&mce, argp, sizeof(mce)))
4080                         goto out;
4081                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4082                 break;
4083         }
4084         case KVM_GET_VCPU_EVENTS: {
4085                 struct kvm_vcpu_events events;
4086
4087                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4088
4089                 r = -EFAULT;
4090                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4091                         break;
4092                 r = 0;
4093                 break;
4094         }
4095         case KVM_SET_VCPU_EVENTS: {
4096                 struct kvm_vcpu_events events;
4097
4098                 r = -EFAULT;
4099                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
4100                         break;
4101
4102                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4103                 break;
4104         }
4105         case KVM_GET_DEBUGREGS: {
4106                 struct kvm_debugregs dbgregs;
4107
4108                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4109
4110                 r = -EFAULT;
4111                 if (copy_to_user(argp, &dbgregs,
4112                                  sizeof(struct kvm_debugregs)))
4113                         break;
4114                 r = 0;
4115                 break;
4116         }
4117         case KVM_SET_DEBUGREGS: {
4118                 struct kvm_debugregs dbgregs;
4119
4120                 r = -EFAULT;
4121                 if (copy_from_user(&dbgregs, argp,
4122                                    sizeof(struct kvm_debugregs)))
4123                         break;
4124
4125                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
4126                 break;
4127         }
4128         case KVM_GET_XSAVE: {
4129                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
4130                 r = -ENOMEM;
4131                 if (!u.xsave)
4132                         break;
4133
4134                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
4135
4136                 r = -EFAULT;
4137                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
4138                         break;
4139                 r = 0;
4140                 break;
4141         }
4142         case KVM_SET_XSAVE: {
4143                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
4144                 if (IS_ERR(u.xsave)) {
4145                         r = PTR_ERR(u.xsave);
4146                         goto out_nofree;
4147                 }
4148
4149                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
4150                 break;
4151         }
4152         case KVM_GET_XCRS: {
4153                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
4154                 r = -ENOMEM;
4155                 if (!u.xcrs)
4156                         break;
4157
4158                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
4159
4160                 r = -EFAULT;
4161                 if (copy_to_user(argp, u.xcrs,
4162                                  sizeof(struct kvm_xcrs)))
4163                         break;
4164                 r = 0;
4165                 break;
4166         }
4167         case KVM_SET_XCRS: {
4168                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
4169                 if (IS_ERR(u.xcrs)) {
4170                         r = PTR_ERR(u.xcrs);
4171                         goto out_nofree;
4172                 }
4173
4174                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
4175                 break;
4176         }
4177         case KVM_SET_TSC_KHZ: {
4178                 u32 user_tsc_khz;
4179
4180                 r = -EINVAL;
4181                 user_tsc_khz = (u32)arg;
4182
4183                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
4184                         goto out;
4185
4186                 if (user_tsc_khz == 0)
4187                         user_tsc_khz = tsc_khz;
4188
4189                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
4190                         r = 0;
4191
4192                 goto out;
4193         }
4194         case KVM_GET_TSC_KHZ: {
4195                 r = vcpu->arch.virtual_tsc_khz;
4196                 goto out;
4197         }
4198         case KVM_KVMCLOCK_CTRL: {
4199                 r = kvm_set_guest_paused(vcpu);
4200                 goto out;
4201         }
4202         case KVM_ENABLE_CAP: {
4203                 struct kvm_enable_cap cap;
4204
4205                 r = -EFAULT;
4206                 if (copy_from_user(&cap, argp, sizeof(cap)))
4207                         goto out;
4208                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
4209                 break;
4210         }
4211         case KVM_GET_NESTED_STATE: {
4212                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4213                 u32 user_data_size;
4214
4215                 r = -EINVAL;
4216                 if (!kvm_x86_ops->get_nested_state)
4217                         break;
4218
4219                 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
4220                 r = -EFAULT;
4221                 if (get_user(user_data_size, &user_kvm_nested_state->size))
4222                         break;
4223
4224                 r = kvm_x86_ops->get_nested_state(vcpu, user_kvm_nested_state,
4225                                                   user_data_size);
4226                 if (r < 0)
4227                         break;
4228
4229                 if (r > user_data_size) {
4230                         if (put_user(r, &user_kvm_nested_state->size))
4231                                 r = -EFAULT;
4232                         else
4233                                 r = -E2BIG;
4234                         break;
4235                 }
4236
4237                 r = 0;
4238                 break;
4239         }
4240         case KVM_SET_NESTED_STATE: {
4241                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4242                 struct kvm_nested_state kvm_state;
4243
4244                 r = -EINVAL;
4245                 if (!kvm_x86_ops->set_nested_state)
4246                         break;
4247
4248                 r = -EFAULT;
4249                 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
4250                         break;
4251
4252                 r = -EINVAL;
4253                 if (kvm_state.size < sizeof(kvm_state))
4254                         break;
4255
4256                 if (kvm_state.flags &
4257                     ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
4258                       | KVM_STATE_NESTED_EVMCS))
4259                         break;
4260
4261                 /* nested_run_pending implies guest_mode.  */
4262                 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
4263                     && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
4264                         break;
4265
4266                 r = kvm_x86_ops->set_nested_state(vcpu, user_kvm_nested_state, &kvm_state);
4267                 break;
4268         }
4269         case KVM_GET_SUPPORTED_HV_CPUID: {
4270                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4271                 struct kvm_cpuid2 cpuid;
4272
4273                 r = -EFAULT;
4274                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4275                         goto out;
4276
4277                 r = kvm_vcpu_ioctl_get_hv_cpuid(vcpu, &cpuid,
4278                                                 cpuid_arg->entries);
4279                 if (r)
4280                         goto out;
4281
4282                 r = -EFAULT;
4283                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4284                         goto out;
4285                 r = 0;
4286                 break;
4287         }
4288         default:
4289                 r = -EINVAL;
4290         }
4291 out:
4292         kfree(u.buffer);
4293 out_nofree:
4294         vcpu_put(vcpu);
4295         return r;
4296 }
4297
4298 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
4299 {
4300         return VM_FAULT_SIGBUS;
4301 }
4302
4303 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
4304 {
4305         int ret;
4306
4307         if (addr > (unsigned int)(-3 * PAGE_SIZE))
4308                 return -EINVAL;
4309         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
4310         return ret;
4311 }
4312
4313 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
4314                                               u64 ident_addr)
4315 {
4316         return kvm_x86_ops->set_identity_map_addr(kvm, ident_addr);
4317 }
4318
4319 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
4320                                          unsigned long kvm_nr_mmu_pages)
4321 {
4322         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
4323                 return -EINVAL;
4324
4325         mutex_lock(&kvm->slots_lock);
4326
4327         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
4328         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
4329
4330         mutex_unlock(&kvm->slots_lock);
4331         return 0;
4332 }
4333
4334 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
4335 {
4336         return kvm->arch.n_max_mmu_pages;
4337 }
4338
4339 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4340 {
4341         struct kvm_pic *pic = kvm->arch.vpic;
4342         int r;
4343
4344         r = 0;
4345         switch (chip->chip_id) {
4346         case KVM_IRQCHIP_PIC_MASTER:
4347                 memcpy(&chip->chip.pic, &pic->pics[0],
4348                         sizeof(struct kvm_pic_state));
4349                 break;
4350         case KVM_IRQCHIP_PIC_SLAVE:
4351                 memcpy(&chip->chip.pic, &pic->pics[1],
4352                         sizeof(struct kvm_pic_state));
4353                 break;
4354         case KVM_IRQCHIP_IOAPIC:
4355                 kvm_get_ioapic(kvm, &chip->chip.ioapic);
4356                 break;
4357         default:
4358                 r = -EINVAL;
4359                 break;
4360         }
4361         return r;
4362 }
4363
4364 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4365 {
4366         struct kvm_pic *pic = kvm->arch.vpic;
4367         int r;
4368
4369         r = 0;
4370         switch (chip->chip_id) {
4371         case KVM_IRQCHIP_PIC_MASTER:
4372                 spin_lock(&pic->lock);
4373                 memcpy(&pic->pics[0], &chip->chip.pic,
4374                         sizeof(struct kvm_pic_state));
4375                 spin_unlock(&pic->lock);
4376                 break;
4377         case KVM_IRQCHIP_PIC_SLAVE:
4378                 spin_lock(&pic->lock);
4379                 memcpy(&pic->pics[1], &chip->chip.pic,
4380                         sizeof(struct kvm_pic_state));
4381                 spin_unlock(&pic->lock);
4382                 break;
4383         case KVM_IRQCHIP_IOAPIC:
4384                 kvm_set_ioapic(kvm, &chip->chip.ioapic);
4385                 break;
4386         default:
4387                 r = -EINVAL;
4388                 break;
4389         }
4390         kvm_pic_update_irq(pic);
4391         return r;
4392 }
4393
4394 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4395 {
4396         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
4397
4398         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
4399
4400         mutex_lock(&kps->lock);
4401         memcpy(ps, &kps->channels, sizeof(*ps));
4402         mutex_unlock(&kps->lock);
4403         return 0;
4404 }
4405
4406 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4407 {
4408         int i;
4409         struct kvm_pit *pit = kvm->arch.vpit;
4410
4411         mutex_lock(&pit->pit_state.lock);
4412         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
4413         for (i = 0; i < 3; i++)
4414                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
4415         mutex_unlock(&pit->pit_state.lock);
4416         return 0;
4417 }
4418
4419 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4420 {
4421         mutex_lock(&kvm->arch.vpit->pit_state.lock);
4422         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
4423                 sizeof(ps->channels));
4424         ps->flags = kvm->arch.vpit->pit_state.flags;
4425         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
4426         memset(&ps->reserved, 0, sizeof(ps->reserved));
4427         return 0;
4428 }
4429
4430 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4431 {
4432         int start = 0;
4433         int i;
4434         u32 prev_legacy, cur_legacy;
4435         struct kvm_pit *pit = kvm->arch.vpit;
4436
4437         mutex_lock(&pit->pit_state.lock);
4438         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
4439         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
4440         if (!prev_legacy && cur_legacy)
4441                 start = 1;
4442         memcpy(&pit->pit_state.channels, &ps->channels,
4443                sizeof(pit->pit_state.channels));
4444         pit->pit_state.flags = ps->flags;
4445         for (i = 0; i < 3; i++)
4446                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
4447                                    start && i == 0);
4448         mutex_unlock(&pit->pit_state.lock);
4449         return 0;
4450 }
4451
4452 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
4453                                  struct kvm_reinject_control *control)
4454 {
4455         struct kvm_pit *pit = kvm->arch.vpit;
4456
4457         if (!pit)
4458                 return -ENXIO;
4459
4460         /* pit->pit_state.lock was overloaded to prevent userspace from getting
4461          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
4462          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
4463          */
4464         mutex_lock(&pit->pit_state.lock);
4465         kvm_pit_set_reinject(pit, control->pit_reinject);
4466         mutex_unlock(&pit->pit_state.lock);
4467
4468         return 0;
4469 }
4470
4471 /**
4472  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
4473  * @kvm: kvm instance
4474  * @log: slot id and address to which we copy the log
4475  *
4476  * Steps 1-4 below provide general overview of dirty page logging. See
4477  * kvm_get_dirty_log_protect() function description for additional details.
4478  *
4479  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
4480  * always flush the TLB (step 4) even if previous step failed  and the dirty
4481  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
4482  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
4483  * writes will be marked dirty for next log read.
4484  *
4485  *   1. Take a snapshot of the bit and clear it if needed.
4486  *   2. Write protect the corresponding page.
4487  *   3. Copy the snapshot to the userspace.
4488  *   4. Flush TLB's if needed.
4489  */
4490 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
4491 {
4492         bool flush = false;
4493         int r;
4494
4495         mutex_lock(&kvm->slots_lock);
4496
4497         /*
4498          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4499          */
4500         if (kvm_x86_ops->flush_log_dirty)
4501                 kvm_x86_ops->flush_log_dirty(kvm);
4502
4503         r = kvm_get_dirty_log_protect(kvm, log, &flush);
4504
4505         /*
4506          * All the TLBs can be flushed out of mmu lock, see the comments in
4507          * kvm_mmu_slot_remove_write_access().
4508          */
4509         lockdep_assert_held(&kvm->slots_lock);
4510         if (flush)
4511                 kvm_flush_remote_tlbs(kvm);
4512
4513         mutex_unlock(&kvm->slots_lock);
4514         return r;
4515 }
4516
4517 int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, struct kvm_clear_dirty_log *log)
4518 {
4519         bool flush = false;
4520         int r;
4521
4522         mutex_lock(&kvm->slots_lock);
4523
4524         /*
4525          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4526          */
4527         if (kvm_x86_ops->flush_log_dirty)
4528                 kvm_x86_ops->flush_log_dirty(kvm);
4529
4530         r = kvm_clear_dirty_log_protect(kvm, log, &flush);
4531
4532         /*
4533          * All the TLBs can be flushed out of mmu lock, see the comments in
4534          * kvm_mmu_slot_remove_write_access().
4535          */
4536         lockdep_assert_held(&kvm->slots_lock);
4537         if (flush)
4538                 kvm_flush_remote_tlbs(kvm);
4539
4540         mutex_unlock(&kvm->slots_lock);
4541         return r;
4542 }
4543
4544 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
4545                         bool line_status)
4546 {
4547         if (!irqchip_in_kernel(kvm))
4548                 return -ENXIO;
4549
4550         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
4551                                         irq_event->irq, irq_event->level,
4552                                         line_status);
4553         return 0;
4554 }
4555
4556 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4557                             struct kvm_enable_cap *cap)
4558 {
4559         int r;
4560
4561         if (cap->flags)
4562                 return -EINVAL;
4563
4564         switch (cap->cap) {
4565         case KVM_CAP_DISABLE_QUIRKS:
4566                 kvm->arch.disabled_quirks = cap->args[0];
4567                 r = 0;
4568                 break;
4569         case KVM_CAP_SPLIT_IRQCHIP: {
4570                 mutex_lock(&kvm->lock);
4571                 r = -EINVAL;
4572                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
4573                         goto split_irqchip_unlock;
4574                 r = -EEXIST;
4575                 if (irqchip_in_kernel(kvm))
4576                         goto split_irqchip_unlock;
4577                 if (kvm->created_vcpus)
4578                         goto split_irqchip_unlock;
4579                 r = kvm_setup_empty_irq_routing(kvm);
4580                 if (r)
4581                         goto split_irqchip_unlock;
4582                 /* Pairs with irqchip_in_kernel. */
4583                 smp_wmb();
4584                 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4585                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4586                 r = 0;
4587 split_irqchip_unlock:
4588                 mutex_unlock(&kvm->lock);
4589                 break;
4590         }
4591         case KVM_CAP_X2APIC_API:
4592                 r = -EINVAL;
4593                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4594                         break;
4595
4596                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4597                         kvm->arch.x2apic_format = true;
4598                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4599                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
4600
4601                 r = 0;
4602                 break;
4603         case KVM_CAP_X86_DISABLE_EXITS:
4604                 r = -EINVAL;
4605                 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
4606                         break;
4607
4608                 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
4609                         kvm_can_mwait_in_guest())
4610                         kvm->arch.mwait_in_guest = true;
4611                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
4612                         kvm->arch.hlt_in_guest = true;
4613                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
4614                         kvm->arch.pause_in_guest = true;
4615                 r = 0;
4616                 break;
4617         case KVM_CAP_MSR_PLATFORM_INFO:
4618                 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
4619                 r = 0;
4620                 break;
4621         case KVM_CAP_EXCEPTION_PAYLOAD:
4622                 kvm->arch.exception_payload_enabled = cap->args[0];
4623                 r = 0;
4624                 break;
4625         default:
4626                 r = -EINVAL;
4627                 break;
4628         }
4629         return r;
4630 }
4631
4632 long kvm_arch_vm_ioctl(struct file *filp,
4633                        unsigned int ioctl, unsigned long arg)
4634 {
4635         struct kvm *kvm = filp->private_data;
4636         void __user *argp = (void __user *)arg;
4637         int r = -ENOTTY;
4638         /*
4639          * This union makes it completely explicit to gcc-3.x
4640          * that these two variables' stack usage should be
4641          * combined, not added together.
4642          */
4643         union {
4644                 struct kvm_pit_state ps;
4645                 struct kvm_pit_state2 ps2;
4646                 struct kvm_pit_config pit_config;
4647         } u;
4648
4649         switch (ioctl) {
4650         case KVM_SET_TSS_ADDR:
4651                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4652                 break;
4653         case KVM_SET_IDENTITY_MAP_ADDR: {
4654                 u64 ident_addr;
4655
4656                 mutex_lock(&kvm->lock);
4657                 r = -EINVAL;
4658                 if (kvm->created_vcpus)
4659                         goto set_identity_unlock;
4660                 r = -EFAULT;
4661                 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
4662                         goto set_identity_unlock;
4663                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4664 set_identity_unlock:
4665                 mutex_unlock(&kvm->lock);
4666                 break;
4667         }
4668         case KVM_SET_NR_MMU_PAGES:
4669                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4670                 break;
4671         case KVM_GET_NR_MMU_PAGES:
4672                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4673                 break;
4674         case KVM_CREATE_IRQCHIP: {
4675                 mutex_lock(&kvm->lock);
4676
4677                 r = -EEXIST;
4678                 if (irqchip_in_kernel(kvm))
4679                         goto create_irqchip_unlock;
4680
4681                 r = -EINVAL;
4682                 if (kvm->created_vcpus)
4683                         goto create_irqchip_unlock;
4684
4685                 r = kvm_pic_init(kvm);
4686                 if (r)
4687                         goto create_irqchip_unlock;
4688
4689                 r = kvm_ioapic_init(kvm);
4690                 if (r) {
4691                         kvm_pic_destroy(kvm);
4692                         goto create_irqchip_unlock;
4693                 }
4694
4695                 r = kvm_setup_default_irq_routing(kvm);
4696                 if (r) {
4697                         kvm_ioapic_destroy(kvm);
4698                         kvm_pic_destroy(kvm);
4699                         goto create_irqchip_unlock;
4700                 }
4701                 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4702                 smp_wmb();
4703                 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4704         create_irqchip_unlock:
4705                 mutex_unlock(&kvm->lock);
4706                 break;
4707         }
4708         case KVM_CREATE_PIT:
4709                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4710                 goto create_pit;
4711         case KVM_CREATE_PIT2:
4712                 r = -EFAULT;
4713                 if (copy_from_user(&u.pit_config, argp,
4714                                    sizeof(struct kvm_pit_config)))
4715                         goto out;
4716         create_pit:
4717                 mutex_lock(&kvm->lock);
4718                 r = -EEXIST;
4719                 if (kvm->arch.vpit)
4720                         goto create_pit_unlock;
4721                 r = -ENOMEM;
4722                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4723                 if (kvm->arch.vpit)
4724                         r = 0;
4725         create_pit_unlock:
4726                 mutex_unlock(&kvm->lock);
4727                 break;
4728         case KVM_GET_IRQCHIP: {
4729                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4730                 struct kvm_irqchip *chip;
4731
4732                 chip = memdup_user(argp, sizeof(*chip));
4733                 if (IS_ERR(chip)) {
4734                         r = PTR_ERR(chip);
4735                         goto out;
4736                 }
4737
4738                 r = -ENXIO;
4739                 if (!irqchip_kernel(kvm))
4740                         goto get_irqchip_out;
4741                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4742                 if (r)
4743                         goto get_irqchip_out;
4744                 r = -EFAULT;
4745                 if (copy_to_user(argp, chip, sizeof(*chip)))
4746                         goto get_irqchip_out;
4747                 r = 0;
4748         get_irqchip_out:
4749                 kfree(chip);
4750                 break;
4751         }
4752         case KVM_SET_IRQCHIP: {
4753                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4754                 struct kvm_irqchip *chip;
4755
4756                 chip = memdup_user(argp, sizeof(*chip));
4757                 if (IS_ERR(chip)) {
4758                         r = PTR_ERR(chip);
4759                         goto out;
4760                 }
4761
4762                 r = -ENXIO;
4763                 if (!irqchip_kernel(kvm))
4764                         goto set_irqchip_out;
4765                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4766                 if (r)
4767                         goto set_irqchip_out;
4768                 r = 0;
4769         set_irqchip_out:
4770                 kfree(chip);
4771                 break;
4772         }
4773         case KVM_GET_PIT: {
4774                 r = -EFAULT;
4775                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4776                         goto out;
4777                 r = -ENXIO;
4778                 if (!kvm->arch.vpit)
4779                         goto out;
4780                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4781                 if (r)
4782                         goto out;
4783                 r = -EFAULT;
4784                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4785                         goto out;
4786                 r = 0;
4787                 break;
4788         }
4789         case KVM_SET_PIT: {
4790                 r = -EFAULT;
4791                 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
4792                         goto out;
4793                 r = -ENXIO;
4794                 if (!kvm->arch.vpit)
4795                         goto out;
4796                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4797                 break;
4798         }
4799         case KVM_GET_PIT2: {
4800                 r = -ENXIO;
4801                 if (!kvm->arch.vpit)
4802                         goto out;
4803                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4804                 if (r)
4805                         goto out;
4806                 r = -EFAULT;
4807                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4808                         goto out;
4809                 r = 0;
4810                 break;
4811         }
4812         case KVM_SET_PIT2: {
4813                 r = -EFAULT;
4814                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4815                         goto out;
4816                 r = -ENXIO;
4817                 if (!kvm->arch.vpit)
4818                         goto out;
4819                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4820                 break;
4821         }
4822         case KVM_REINJECT_CONTROL: {
4823                 struct kvm_reinject_control control;
4824                 r =  -EFAULT;
4825                 if (copy_from_user(&control, argp, sizeof(control)))
4826                         goto out;
4827                 r = kvm_vm_ioctl_reinject(kvm, &control);
4828                 break;
4829         }
4830         case KVM_SET_BOOT_CPU_ID:
4831                 r = 0;
4832                 mutex_lock(&kvm->lock);
4833                 if (kvm->created_vcpus)
4834                         r = -EBUSY;
4835                 else
4836                         kvm->arch.bsp_vcpu_id = arg;
4837                 mutex_unlock(&kvm->lock);
4838                 break;
4839         case KVM_XEN_HVM_CONFIG: {
4840                 struct kvm_xen_hvm_config xhc;
4841                 r = -EFAULT;
4842                 if (copy_from_user(&xhc, argp, sizeof(xhc)))
4843                         goto out;
4844                 r = -EINVAL;
4845                 if (xhc.flags)
4846                         goto out;
4847                 memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
4848                 r = 0;
4849                 break;
4850         }
4851         case KVM_SET_CLOCK: {
4852                 struct kvm_clock_data user_ns;
4853                 u64 now_ns;
4854
4855                 r = -EFAULT;
4856                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4857                         goto out;
4858
4859                 r = -EINVAL;
4860                 if (user_ns.flags)
4861                         goto out;
4862
4863                 r = 0;
4864                 /*
4865                  * TODO: userspace has to take care of races with VCPU_RUN, so
4866                  * kvm_gen_update_masterclock() can be cut down to locked
4867                  * pvclock_update_vm_gtod_copy().
4868                  */
4869                 kvm_gen_update_masterclock(kvm);
4870                 now_ns = get_kvmclock_ns(kvm);
4871                 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4872                 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
4873                 break;
4874         }
4875         case KVM_GET_CLOCK: {
4876                 struct kvm_clock_data user_ns;
4877                 u64 now_ns;
4878
4879                 now_ns = get_kvmclock_ns(kvm);
4880                 user_ns.clock = now_ns;
4881                 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4882                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4883
4884                 r = -EFAULT;
4885                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4886                         goto out;
4887                 r = 0;
4888                 break;
4889         }
4890         case KVM_MEMORY_ENCRYPT_OP: {
4891                 r = -ENOTTY;
4892                 if (kvm_x86_ops->mem_enc_op)
4893                         r = kvm_x86_ops->mem_enc_op(kvm, argp);
4894                 break;
4895         }
4896         case KVM_MEMORY_ENCRYPT_REG_REGION: {
4897                 struct kvm_enc_region region;
4898
4899                 r = -EFAULT;
4900                 if (copy_from_user(&region, argp, sizeof(region)))
4901                         goto out;
4902
4903                 r = -ENOTTY;
4904                 if (kvm_x86_ops->mem_enc_reg_region)
4905                         r = kvm_x86_ops->mem_enc_reg_region(kvm, &region);
4906                 break;
4907         }
4908         case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
4909                 struct kvm_enc_region region;
4910
4911                 r = -EFAULT;
4912                 if (copy_from_user(&region, argp, sizeof(region)))
4913                         goto out;
4914
4915                 r = -ENOTTY;
4916                 if (kvm_x86_ops->mem_enc_unreg_region)
4917                         r = kvm_x86_ops->mem_enc_unreg_region(kvm, &region);
4918                 break;
4919         }
4920         case KVM_HYPERV_EVENTFD: {
4921                 struct kvm_hyperv_eventfd hvevfd;
4922
4923                 r = -EFAULT;
4924                 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
4925                         goto out;
4926                 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
4927                 break;
4928         }
4929         default:
4930                 r = -ENOTTY;
4931         }
4932 out:
4933         return r;
4934 }
4935
4936 static void kvm_init_msr_list(void)
4937 {
4938         u32 dummy[2];
4939         unsigned i, j;
4940
4941         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4942                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4943                         continue;
4944
4945                 /*
4946                  * Even MSRs that are valid in the host may not be exposed
4947                  * to the guests in some cases.
4948                  */
4949                 switch (msrs_to_save[i]) {
4950                 case MSR_IA32_BNDCFGS:
4951                         if (!kvm_mpx_supported())
4952                                 continue;
4953                         break;
4954                 case MSR_TSC_AUX:
4955                         if (!kvm_x86_ops->rdtscp_supported())
4956                                 continue;
4957                         break;
4958                 case MSR_IA32_RTIT_CTL:
4959                 case MSR_IA32_RTIT_STATUS:
4960                         if (!kvm_x86_ops->pt_supported())
4961                                 continue;
4962                         break;
4963                 case MSR_IA32_RTIT_CR3_MATCH:
4964                         if (!kvm_x86_ops->pt_supported() ||
4965                             !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
4966                                 continue;
4967                         break;
4968                 case MSR_IA32_RTIT_OUTPUT_BASE:
4969                 case MSR_IA32_RTIT_OUTPUT_MASK:
4970                         if (!kvm_x86_ops->pt_supported() ||
4971                                 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
4972                                  !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
4973                                 continue;
4974                         break;
4975                 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: {
4976                         if (!kvm_x86_ops->pt_supported() ||
4977                                 msrs_to_save[i] - MSR_IA32_RTIT_ADDR0_A >=
4978                                 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
4979                                 continue;
4980                         break;
4981                 }
4982                 default:
4983                         break;
4984                 }
4985
4986                 if (j < i)
4987                         msrs_to_save[j] = msrs_to_save[i];
4988                 j++;
4989         }
4990         num_msrs_to_save = j;
4991
4992         for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4993                 if (!kvm_x86_ops->has_emulated_msr(emulated_msrs[i]))
4994                         continue;
4995
4996                 if (j < i)
4997                         emulated_msrs[j] = emulated_msrs[i];
4998                 j++;
4999         }
5000         num_emulated_msrs = j;
5001
5002         for (i = j = 0; i < ARRAY_SIZE(msr_based_features); i++) {
5003                 struct kvm_msr_entry msr;
5004
5005                 msr.index = msr_based_features[i];
5006                 if (kvm_get_msr_feature(&msr))
5007                         continue;
5008
5009                 if (j < i)
5010                         msr_based_features[j] = msr_based_features[i];
5011                 j++;
5012         }
5013         num_msr_based_features = j;
5014 }
5015
5016 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
5017                            const void *v)
5018 {
5019         int handled = 0;
5020         int n;
5021
5022         do {
5023                 n = min(len, 8);
5024                 if (!(lapic_in_kernel(vcpu) &&
5025                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
5026                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
5027                         break;
5028                 handled += n;
5029                 addr += n;
5030                 len -= n;
5031                 v += n;
5032         } while (len);
5033
5034         return handled;
5035 }
5036
5037 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
5038 {
5039         int handled = 0;
5040         int n;
5041
5042         do {
5043                 n = min(len, 8);
5044                 if (!(lapic_in_kernel(vcpu) &&
5045                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
5046                                          addr, n, v))
5047                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
5048                         break;
5049                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
5050                 handled += n;
5051                 addr += n;
5052                 len -= n;
5053                 v += n;
5054         } while (len);
5055
5056         return handled;
5057 }
5058
5059 static void kvm_set_segment(struct kvm_vcpu *vcpu,
5060                         struct kvm_segment *var, int seg)
5061 {
5062         kvm_x86_ops->set_segment(vcpu, var, seg);
5063 }
5064
5065 void kvm_get_segment(struct kvm_vcpu *vcpu,
5066                      struct kvm_segment *var, int seg)
5067 {
5068         kvm_x86_ops->get_segment(vcpu, var, seg);
5069 }
5070
5071 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
5072                            struct x86_exception *exception)
5073 {
5074         gpa_t t_gpa;
5075
5076         BUG_ON(!mmu_is_nested(vcpu));
5077
5078         /* NPT walks are always user-walks */
5079         access |= PFERR_USER_MASK;
5080         t_gpa  = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
5081
5082         return t_gpa;
5083 }
5084
5085 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
5086                               struct x86_exception *exception)
5087 {
5088         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5089         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5090 }
5091
5092  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
5093                                 struct x86_exception *exception)
5094 {
5095         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5096         access |= PFERR_FETCH_MASK;
5097         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5098 }
5099
5100 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
5101                                struct x86_exception *exception)
5102 {
5103         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5104         access |= PFERR_WRITE_MASK;
5105         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5106 }
5107
5108 /* uses this to access any guest's mapped memory without checking CPL */
5109 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
5110                                 struct x86_exception *exception)
5111 {
5112         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
5113 }
5114
5115 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5116                                       struct kvm_vcpu *vcpu, u32 access,
5117                                       struct x86_exception *exception)
5118 {
5119         void *data = val;
5120         int r = X86EMUL_CONTINUE;
5121
5122         while (bytes) {
5123                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
5124                                                             exception);
5125                 unsigned offset = addr & (PAGE_SIZE-1);
5126                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
5127                 int ret;
5128
5129                 if (gpa == UNMAPPED_GVA)
5130                         return X86EMUL_PROPAGATE_FAULT;
5131                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
5132                                                offset, toread);
5133                 if (ret < 0) {
5134                         r = X86EMUL_IO_NEEDED;
5135                         goto out;
5136                 }
5137
5138                 bytes -= toread;
5139                 data += toread;
5140                 addr += toread;
5141         }
5142 out:
5143         return r;
5144 }
5145
5146 /* used for instruction fetching */
5147 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
5148                                 gva_t addr, void *val, unsigned int bytes,
5149                                 struct x86_exception *exception)
5150 {
5151         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5152         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5153         unsigned offset;
5154         int ret;
5155
5156         /* Inline kvm_read_guest_virt_helper for speed.  */
5157         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
5158                                                     exception);
5159         if (unlikely(gpa == UNMAPPED_GVA))
5160                 return X86EMUL_PROPAGATE_FAULT;
5161
5162         offset = addr & (PAGE_SIZE-1);
5163         if (WARN_ON(offset + bytes > PAGE_SIZE))
5164                 bytes = (unsigned)PAGE_SIZE - offset;
5165         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
5166                                        offset, bytes);
5167         if (unlikely(ret < 0))
5168                 return X86EMUL_IO_NEEDED;
5169
5170         return X86EMUL_CONTINUE;
5171 }
5172
5173 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
5174                                gva_t addr, void *val, unsigned int bytes,
5175                                struct x86_exception *exception)
5176 {
5177         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5178
5179         /*
5180          * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5181          * is returned, but our callers are not ready for that and they blindly
5182          * call kvm_inject_page_fault.  Ensure that they at least do not leak
5183          * uninitialized kernel stack memory into cr2 and error code.
5184          */
5185         memset(exception, 0, sizeof(*exception));
5186         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
5187                                           exception);
5188 }
5189 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
5190
5191 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
5192                              gva_t addr, void *val, unsigned int bytes,
5193                              struct x86_exception *exception, bool system)
5194 {
5195         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5196         u32 access = 0;
5197
5198         if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
5199                 access |= PFERR_USER_MASK;
5200
5201         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
5202 }
5203
5204 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
5205                 unsigned long addr, void *val, unsigned int bytes)
5206 {
5207         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5208         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
5209
5210         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
5211 }
5212
5213 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5214                                       struct kvm_vcpu *vcpu, u32 access,
5215                                       struct x86_exception *exception)
5216 {
5217         void *data = val;
5218         int r = X86EMUL_CONTINUE;
5219
5220         while (bytes) {
5221                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
5222                                                              access,
5223                                                              exception);
5224                 unsigned offset = addr & (PAGE_SIZE-1);
5225                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
5226                 int ret;
5227
5228                 if (gpa == UNMAPPED_GVA)
5229                         return X86EMUL_PROPAGATE_FAULT;
5230                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
5231                 if (ret < 0) {
5232                         r = X86EMUL_IO_NEEDED;
5233                         goto out;
5234                 }
5235
5236                 bytes -= towrite;
5237                 data += towrite;
5238                 addr += towrite;
5239         }
5240 out:
5241         return r;
5242 }
5243
5244 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
5245                               unsigned int bytes, struct x86_exception *exception,
5246                               bool system)
5247 {
5248         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5249         u32 access = PFERR_WRITE_MASK;
5250
5251         if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
5252                 access |= PFERR_USER_MASK;
5253
5254         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5255                                            access, exception);
5256 }
5257
5258 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
5259                                 unsigned int bytes, struct x86_exception *exception)
5260 {
5261         /* kvm_write_guest_virt_system can pull in tons of pages. */
5262         vcpu->arch.l1tf_flush_l1d = true;
5263
5264         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5265                                            PFERR_WRITE_MASK, exception);
5266 }
5267 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
5268
5269 int handle_ud(struct kvm_vcpu *vcpu)
5270 {
5271         int emul_type = EMULTYPE_TRAP_UD;
5272         enum emulation_result er;
5273         char sig[5]; /* ud2; .ascii "kvm" */
5274         struct x86_exception e;
5275
5276         if (force_emulation_prefix &&
5277             kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
5278                                 sig, sizeof(sig), &e) == 0 &&
5279             memcmp(sig, "\xf\xbkvm", sizeof(sig)) == 0) {
5280                 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
5281                 emul_type = 0;
5282         }
5283
5284         er = kvm_emulate_instruction(vcpu, emul_type);
5285         if (er == EMULATE_USER_EXIT)
5286                 return 0;
5287         if (er != EMULATE_DONE)
5288                 kvm_queue_exception(vcpu, UD_VECTOR);
5289         return 1;
5290 }
5291 EXPORT_SYMBOL_GPL(handle_ud);
5292
5293 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5294                             gpa_t gpa, bool write)
5295 {
5296         /* For APIC access vmexit */
5297         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5298                 return 1;
5299
5300         if (vcpu_match_mmio_gpa(vcpu, gpa)) {
5301                 trace_vcpu_match_mmio(gva, gpa, write, true);
5302                 return 1;
5303         }
5304
5305         return 0;
5306 }
5307
5308 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5309                                 gpa_t *gpa, struct x86_exception *exception,
5310                                 bool write)
5311 {
5312         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
5313                 | (write ? PFERR_WRITE_MASK : 0);
5314
5315         /*
5316          * currently PKRU is only applied to ept enabled guest so
5317          * there is no pkey in EPT page table for L1 guest or EPT
5318          * shadow page table for L2 guest.
5319          */
5320         if (vcpu_match_mmio_gva(vcpu, gva)
5321             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
5322                                  vcpu->arch.access, 0, access)) {
5323                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
5324                                         (gva & (PAGE_SIZE - 1));
5325                 trace_vcpu_match_mmio(gva, *gpa, write, false);
5326                 return 1;
5327         }
5328
5329         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5330
5331         if (*gpa == UNMAPPED_GVA)
5332                 return -1;
5333
5334         return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
5335 }
5336
5337 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
5338                         const void *val, int bytes)
5339 {
5340         int ret;
5341
5342         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
5343         if (ret < 0)
5344                 return 0;
5345         kvm_page_track_write(vcpu, gpa, val, bytes);
5346         return 1;
5347 }
5348
5349 struct read_write_emulator_ops {
5350         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
5351                                   int bytes);
5352         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
5353                                   void *val, int bytes);
5354         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5355                                int bytes, void *val);
5356         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5357                                     void *val, int bytes);
5358         bool write;
5359 };
5360
5361 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
5362 {
5363         if (vcpu->mmio_read_completed) {
5364                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
5365                                vcpu->mmio_fragments[0].gpa, val);
5366                 vcpu->mmio_read_completed = 0;
5367                 return 1;
5368         }
5369
5370         return 0;
5371 }
5372
5373 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5374                         void *val, int bytes)
5375 {
5376         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
5377 }
5378
5379 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5380                          void *val, int bytes)
5381 {
5382         return emulator_write_phys(vcpu, gpa, val, bytes);
5383 }
5384
5385 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
5386 {
5387         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
5388         return vcpu_mmio_write(vcpu, gpa, bytes, val);
5389 }
5390
5391 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5392                           void *val, int bytes)
5393 {
5394         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
5395         return X86EMUL_IO_NEEDED;
5396 }
5397
5398 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5399                            void *val, int bytes)
5400 {
5401         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
5402
5403         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
5404         return X86EMUL_CONTINUE;
5405 }
5406
5407 static const struct read_write_emulator_ops read_emultor = {
5408         .read_write_prepare = read_prepare,
5409         .read_write_emulate = read_emulate,
5410         .read_write_mmio = vcpu_mmio_read,
5411         .read_write_exit_mmio = read_exit_mmio,
5412 };
5413
5414 static const struct read_write_emulator_ops write_emultor = {
5415         .read_write_emulate = write_emulate,
5416         .read_write_mmio = write_mmio,
5417         .read_write_exit_mmio = write_exit_mmio,
5418         .write = true,
5419 };
5420
5421 static int emulator_read_write_onepage(unsigned long addr, void *val,
5422                                        unsigned int bytes,
5423                                        struct x86_exception *exception,
5424                                        struct kvm_vcpu *vcpu,
5425                                        const struct read_write_emulator_ops *ops)
5426 {
5427         gpa_t gpa;
5428         int handled, ret;
5429         bool write = ops->write;
5430         struct kvm_mmio_fragment *frag;
5431         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5432
5433         /*
5434          * If the exit was due to a NPF we may already have a GPA.
5435          * If the GPA is present, use it to avoid the GVA to GPA table walk.
5436          * Note, this cannot be used on string operations since string
5437          * operation using rep will only have the initial GPA from the NPF
5438          * occurred.
5439          */
5440         if (vcpu->arch.gpa_available &&
5441             emulator_can_use_gpa(ctxt) &&
5442             (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) {
5443                 gpa = vcpu->arch.gpa_val;
5444                 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
5445         } else {
5446                 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
5447                 if (ret < 0)
5448                         return X86EMUL_PROPAGATE_FAULT;
5449         }
5450
5451         if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
5452                 return X86EMUL_CONTINUE;
5453
5454         /*
5455          * Is this MMIO handled locally?
5456          */
5457         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
5458         if (handled == bytes)
5459                 return X86EMUL_CONTINUE;
5460
5461         gpa += handled;
5462         bytes -= handled;
5463         val += handled;
5464
5465         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
5466         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
5467         frag->gpa = gpa;
5468         frag->data = val;
5469         frag->len = bytes;
5470         return X86EMUL_CONTINUE;
5471 }
5472
5473 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
5474                         unsigned long addr,
5475                         void *val, unsigned int bytes,
5476                         struct x86_exception *exception,
5477                         const struct read_write_emulator_ops *ops)
5478 {
5479         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5480         gpa_t gpa;
5481         int rc;
5482
5483         if (ops->read_write_prepare &&
5484                   ops->read_write_prepare(vcpu, val, bytes))
5485                 return X86EMUL_CONTINUE;
5486
5487         vcpu->mmio_nr_fragments = 0;
5488
5489         /* Crossing a page boundary? */
5490         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
5491                 int now;
5492
5493                 now = -addr & ~PAGE_MASK;
5494                 rc = emulator_read_write_onepage(addr, val, now, exception,
5495                                                  vcpu, ops);
5496
5497                 if (rc != X86EMUL_CONTINUE)
5498                         return rc;
5499                 addr += now;
5500                 if (ctxt->mode != X86EMUL_MODE_PROT64)
5501                         addr = (u32)addr;
5502                 val += now;
5503                 bytes -= now;
5504         }
5505
5506         rc = emulator_read_write_onepage(addr, val, bytes, exception,
5507                                          vcpu, ops);
5508         if (rc != X86EMUL_CONTINUE)
5509                 return rc;
5510
5511         if (!vcpu->mmio_nr_fragments)
5512                 return rc;
5513
5514         gpa = vcpu->mmio_fragments[0].gpa;
5515
5516         vcpu->mmio_needed = 1;
5517         vcpu->mmio_cur_fragment = 0;
5518
5519         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
5520         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
5521         vcpu->run->exit_reason = KVM_EXIT_MMIO;
5522         vcpu->run->mmio.phys_addr = gpa;
5523
5524         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
5525 }
5526
5527 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
5528                                   unsigned long addr,
5529                                   void *val,
5530                                   unsigned int bytes,
5531                                   struct x86_exception *exception)
5532 {
5533         return emulator_read_write(ctxt, addr, val, bytes,
5534                                    exception, &read_emultor);
5535 }
5536
5537 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
5538                             unsigned long addr,
5539                             const void *val,
5540                             unsigned int bytes,
5541                             struct x86_exception *exception)
5542 {
5543         return emulator_read_write(ctxt, addr, (void *)val, bytes,
5544                                    exception, &write_emultor);
5545 }
5546
5547 #define CMPXCHG_TYPE(t, ptr, old, new) \
5548         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
5549
5550 #ifdef CONFIG_X86_64
5551 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
5552 #else
5553 #  define CMPXCHG64(ptr, old, new) \
5554         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
5555 #endif
5556
5557 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
5558                                      unsigned long addr,
5559                                      const void *old,
5560                                      const void *new,
5561                                      unsigned int bytes,
5562                                      struct x86_exception *exception)
5563 {
5564         struct kvm_host_map map;
5565         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5566         gpa_t gpa;
5567         char *kaddr;
5568         bool exchanged;
5569
5570         /* guests cmpxchg8b have to be emulated atomically */
5571         if (bytes > 8 || (bytes & (bytes - 1)))
5572                 goto emul_write;
5573
5574         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
5575
5576         if (gpa == UNMAPPED_GVA ||
5577             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5578                 goto emul_write;
5579
5580         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
5581                 goto emul_write;
5582
5583         if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
5584                 goto emul_write;
5585
5586         kaddr = map.hva + offset_in_page(gpa);
5587
5588         switch (bytes) {
5589         case 1:
5590                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
5591                 break;
5592         case 2:
5593                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
5594                 break;
5595         case 4:
5596                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
5597                 break;
5598         case 8:
5599                 exchanged = CMPXCHG64(kaddr, old, new);
5600                 break;
5601         default:
5602                 BUG();
5603         }
5604
5605         kvm_vcpu_unmap(vcpu, &map, true);
5606
5607         if (!exchanged)
5608                 return X86EMUL_CMPXCHG_FAILED;
5609
5610         kvm_page_track_write(vcpu, gpa, new, bytes);
5611
5612         return X86EMUL_CONTINUE;
5613
5614 emul_write:
5615         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
5616
5617         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
5618 }
5619
5620 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
5621 {
5622         int r = 0, i;
5623
5624         for (i = 0; i < vcpu->arch.pio.count; i++) {
5625                 if (vcpu->arch.pio.in)
5626                         r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
5627                                             vcpu->arch.pio.size, pd);
5628                 else
5629                         r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
5630                                              vcpu->arch.pio.port, vcpu->arch.pio.size,
5631                                              pd);
5632                 if (r)
5633                         break;
5634                 pd += vcpu->arch.pio.size;
5635         }
5636         return r;
5637 }
5638
5639 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
5640                                unsigned short port, void *val,
5641                                unsigned int count, bool in)
5642 {
5643         vcpu->arch.pio.port = port;
5644         vcpu->arch.pio.in = in;
5645         vcpu->arch.pio.count  = count;
5646         vcpu->arch.pio.size = size;
5647
5648         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
5649                 vcpu->arch.pio.count = 0;
5650                 return 1;
5651         }
5652
5653         vcpu->run->exit_reason = KVM_EXIT_IO;
5654         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
5655         vcpu->run->io.size = size;
5656         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
5657         vcpu->run->io.count = count;
5658         vcpu->run->io.port = port;
5659
5660         return 0;
5661 }
5662
5663 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
5664                                     int size, unsigned short port, void *val,
5665                                     unsigned int count)
5666 {
5667         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5668         int ret;
5669
5670         if (vcpu->arch.pio.count)
5671                 goto data_avail;
5672
5673         memset(vcpu->arch.pio_data, 0, size * count);
5674
5675         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
5676         if (ret) {
5677 data_avail:
5678                 memcpy(val, vcpu->arch.pio_data, size * count);
5679                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
5680                 vcpu->arch.pio.count = 0;
5681                 return 1;
5682         }
5683
5684         return 0;
5685 }
5686
5687 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
5688                                      int size, unsigned short port,
5689                                      const void *val, unsigned int count)
5690 {
5691         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5692
5693         memcpy(vcpu->arch.pio_data, val, size * count);
5694         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
5695         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
5696 }
5697
5698 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
5699 {
5700         return kvm_x86_ops->get_segment_base(vcpu, seg);
5701 }
5702
5703 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
5704 {
5705         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
5706 }
5707
5708 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
5709 {
5710         if (!need_emulate_wbinvd(vcpu))
5711                 return X86EMUL_CONTINUE;
5712
5713         if (kvm_x86_ops->has_wbinvd_exit()) {
5714                 int cpu = get_cpu();
5715
5716                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
5717                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
5718                                 wbinvd_ipi, NULL, 1);
5719                 put_cpu();
5720                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
5721         } else
5722                 wbinvd();
5723         return X86EMUL_CONTINUE;
5724 }
5725
5726 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
5727 {
5728         kvm_emulate_wbinvd_noskip(vcpu);
5729         return kvm_skip_emulated_instruction(vcpu);
5730 }
5731 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
5732
5733
5734
5735 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
5736 {
5737         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
5738 }
5739
5740 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
5741                            unsigned long *dest)
5742 {
5743         return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
5744 }
5745
5746 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
5747                            unsigned long value)
5748 {
5749
5750         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
5751 }
5752
5753 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
5754 {
5755         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
5756 }
5757
5758 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
5759 {
5760         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5761         unsigned long value;
5762
5763         switch (cr) {
5764         case 0:
5765                 value = kvm_read_cr0(vcpu);
5766                 break;
5767         case 2:
5768                 value = vcpu->arch.cr2;
5769                 break;
5770         case 3:
5771                 value = kvm_read_cr3(vcpu);
5772                 break;
5773         case 4:
5774                 value = kvm_read_cr4(vcpu);
5775                 break;
5776         case 8:
5777                 value = kvm_get_cr8(vcpu);
5778                 break;
5779         default:
5780                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5781                 return 0;
5782         }
5783
5784         return value;
5785 }
5786
5787 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5788 {
5789         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5790         int res = 0;
5791
5792         switch (cr) {
5793         case 0:
5794                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5795                 break;
5796         case 2:
5797                 vcpu->arch.cr2 = val;
5798                 break;
5799         case 3:
5800                 res = kvm_set_cr3(vcpu, val);
5801                 break;
5802         case 4:
5803                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5804                 break;
5805         case 8:
5806                 res = kvm_set_cr8(vcpu, val);
5807                 break;
5808         default:
5809                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5810                 res = -1;
5811         }
5812
5813         return res;
5814 }
5815
5816 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5817 {
5818         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5819 }
5820
5821 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5822 {
5823         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5824 }
5825
5826 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5827 {
5828         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5829 }
5830
5831 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5832 {
5833         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5834 }
5835
5836 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5837 {
5838         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5839 }
5840
5841 static unsigned long emulator_get_cached_segment_base(
5842         struct x86_emulate_ctxt *ctxt, int seg)
5843 {
5844         return get_segment_base(emul_to_vcpu(ctxt), seg);
5845 }
5846
5847 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5848                                  struct desc_struct *desc, u32 *base3,
5849                                  int seg)
5850 {
5851         struct kvm_segment var;
5852
5853         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5854         *selector = var.selector;
5855
5856         if (var.unusable) {
5857                 memset(desc, 0, sizeof(*desc));
5858                 if (base3)
5859                         *base3 = 0;
5860                 return false;
5861         }
5862
5863         if (var.g)
5864                 var.limit >>= 12;
5865         set_desc_limit(desc, var.limit);
5866         set_desc_base(desc, (unsigned long)var.base);
5867 #ifdef CONFIG_X86_64
5868         if (base3)
5869                 *base3 = var.base >> 32;
5870 #endif
5871         desc->type = var.type;
5872         desc->s = var.s;
5873         desc->dpl = var.dpl;
5874         desc->p = var.present;
5875         desc->avl = var.avl;
5876         desc->l = var.l;
5877         desc->d = var.db;
5878         desc->g = var.g;
5879
5880         return true;
5881 }
5882
5883 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5884                                  struct desc_struct *desc, u32 base3,
5885                                  int seg)
5886 {
5887         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5888         struct kvm_segment var;
5889
5890         var.selector = selector;
5891         var.base = get_desc_base(desc);
5892 #ifdef CONFIG_X86_64
5893         var.base |= ((u64)base3) << 32;
5894 #endif
5895         var.limit = get_desc_limit(desc);
5896         if (desc->g)
5897                 var.limit = (var.limit << 12) | 0xfff;
5898         var.type = desc->type;
5899         var.dpl = desc->dpl;
5900         var.db = desc->d;
5901         var.s = desc->s;
5902         var.l = desc->l;
5903         var.g = desc->g;
5904         var.avl = desc->avl;
5905         var.present = desc->p;
5906         var.unusable = !var.present;
5907         var.padding = 0;
5908
5909         kvm_set_segment(vcpu, &var, seg);
5910         return;
5911 }
5912
5913 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5914                             u32 msr_index, u64 *pdata)
5915 {
5916         struct msr_data msr;
5917         int r;
5918
5919         msr.index = msr_index;
5920         msr.host_initiated = false;
5921         r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5922         if (r)
5923                 return r;
5924
5925         *pdata = msr.data;
5926         return 0;
5927 }
5928
5929 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5930                             u32 msr_index, u64 data)
5931 {
5932         struct msr_data msr;
5933
5934         msr.data = data;
5935         msr.index = msr_index;
5936         msr.host_initiated = false;
5937         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5938 }
5939
5940 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5941 {
5942         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5943
5944         return vcpu->arch.smbase;
5945 }
5946
5947 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5948 {
5949         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5950
5951         vcpu->arch.smbase = smbase;
5952 }
5953
5954 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5955                               u32 pmc)
5956 {
5957         return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5958 }
5959
5960 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5961                              u32 pmc, u64 *pdata)
5962 {
5963         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5964 }
5965
5966 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5967 {
5968         emul_to_vcpu(ctxt)->arch.halt_request = 1;
5969 }
5970
5971 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5972                               struct x86_instruction_info *info,
5973                               enum x86_intercept_stage stage)
5974 {
5975         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5976 }
5977
5978 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5979                         u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit)
5980 {
5981         return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit);
5982 }
5983
5984 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5985 {
5986         return kvm_register_read(emul_to_vcpu(ctxt), reg);
5987 }
5988
5989 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5990 {
5991         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5992 }
5993
5994 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5995 {
5996         kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5997 }
5998
5999 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
6000 {
6001         return emul_to_vcpu(ctxt)->arch.hflags;
6002 }
6003
6004 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
6005 {
6006         emul_to_vcpu(ctxt)->arch.hflags = emul_flags;
6007 }
6008
6009 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt,
6010                                   const char *smstate)
6011 {
6012         return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smstate);
6013 }
6014
6015 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt)
6016 {
6017         kvm_smm_changed(emul_to_vcpu(ctxt));
6018 }
6019
6020 static const struct x86_emulate_ops emulate_ops = {
6021         .read_gpr            = emulator_read_gpr,
6022         .write_gpr           = emulator_write_gpr,
6023         .read_std            = emulator_read_std,
6024         .write_std           = emulator_write_std,
6025         .read_phys           = kvm_read_guest_phys_system,
6026         .fetch               = kvm_fetch_guest_virt,
6027         .read_emulated       = emulator_read_emulated,
6028         .write_emulated      = emulator_write_emulated,
6029         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
6030         .invlpg              = emulator_invlpg,
6031         .pio_in_emulated     = emulator_pio_in_emulated,
6032         .pio_out_emulated    = emulator_pio_out_emulated,
6033         .get_segment         = emulator_get_segment,
6034         .set_segment         = emulator_set_segment,
6035         .get_cached_segment_base = emulator_get_cached_segment_base,
6036         .get_gdt             = emulator_get_gdt,
6037         .get_idt             = emulator_get_idt,
6038         .set_gdt             = emulator_set_gdt,
6039         .set_idt             = emulator_set_idt,
6040         .get_cr              = emulator_get_cr,
6041         .set_cr              = emulator_set_cr,
6042         .cpl                 = emulator_get_cpl,
6043         .get_dr              = emulator_get_dr,
6044         .set_dr              = emulator_set_dr,
6045         .get_smbase          = emulator_get_smbase,
6046         .set_smbase          = emulator_set_smbase,
6047         .set_msr             = emulator_set_msr,
6048         .get_msr             = emulator_get_msr,
6049         .check_pmc           = emulator_check_pmc,
6050         .read_pmc            = emulator_read_pmc,
6051         .halt                = emulator_halt,
6052         .wbinvd              = emulator_wbinvd,
6053         .fix_hypercall       = emulator_fix_hypercall,
6054         .intercept           = emulator_intercept,
6055         .get_cpuid           = emulator_get_cpuid,
6056         .set_nmi_mask        = emulator_set_nmi_mask,
6057         .get_hflags          = emulator_get_hflags,
6058         .set_hflags          = emulator_set_hflags,
6059         .pre_leave_smm       = emulator_pre_leave_smm,
6060         .post_leave_smm      = emulator_post_leave_smm,
6061 };
6062
6063 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
6064 {
6065         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
6066         /*
6067          * an sti; sti; sequence only disable interrupts for the first
6068          * instruction. So, if the last instruction, be it emulated or
6069          * not, left the system with the INT_STI flag enabled, it
6070          * means that the last instruction is an sti. We should not
6071          * leave the flag on in this case. The same goes for mov ss
6072          */
6073         if (int_shadow & mask)
6074                 mask = 0;
6075         if (unlikely(int_shadow || mask)) {
6076                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
6077                 if (!mask)
6078                         kvm_make_request(KVM_REQ_EVENT, vcpu);
6079         }
6080 }
6081
6082 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
6083 {
6084         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6085         if (ctxt->exception.vector == PF_VECTOR)
6086                 return kvm_propagate_fault(vcpu, &ctxt->exception);
6087
6088         if (ctxt->exception.error_code_valid)
6089                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
6090                                       ctxt->exception.error_code);
6091         else
6092                 kvm_queue_exception(vcpu, ctxt->exception.vector);
6093         return false;
6094 }
6095
6096 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
6097 {
6098         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6099         int cs_db, cs_l;
6100
6101         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
6102
6103         ctxt->eflags = kvm_get_rflags(vcpu);
6104         ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
6105
6106         ctxt->eip = kvm_rip_read(vcpu);
6107         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
6108                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
6109                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
6110                      cs_db                              ? X86EMUL_MODE_PROT32 :
6111                                                           X86EMUL_MODE_PROT16;
6112         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
6113         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
6114         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
6115
6116         init_decode_cache(ctxt);
6117         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6118 }
6119
6120 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
6121 {
6122         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6123         int ret;
6124
6125         init_emulate_ctxt(vcpu);
6126
6127         ctxt->op_bytes = 2;
6128         ctxt->ad_bytes = 2;
6129         ctxt->_eip = ctxt->eip + inc_eip;
6130         ret = emulate_int_real(ctxt, irq);
6131
6132         if (ret != X86EMUL_CONTINUE)
6133                 return EMULATE_FAIL;
6134
6135         ctxt->eip = ctxt->_eip;
6136         kvm_rip_write(vcpu, ctxt->eip);
6137         kvm_set_rflags(vcpu, ctxt->eflags);
6138
6139         return EMULATE_DONE;
6140 }
6141 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
6142
6143 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
6144 {
6145         int r = EMULATE_DONE;
6146
6147         ++vcpu->stat.insn_emulation_fail;
6148         trace_kvm_emulate_insn_failed(vcpu);
6149
6150         if (emulation_type & EMULTYPE_NO_UD_ON_FAIL)
6151                 return EMULATE_FAIL;
6152
6153         if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
6154                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6155                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6156                 vcpu->run->internal.ndata = 0;
6157                 r = EMULATE_USER_EXIT;
6158         }
6159
6160         kvm_queue_exception(vcpu, UD_VECTOR);
6161
6162         return r;
6163 }
6164
6165 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
6166                                   bool write_fault_to_shadow_pgtable,
6167                                   int emulation_type)
6168 {
6169         gpa_t gpa = cr2;
6170         kvm_pfn_t pfn;
6171
6172         if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
6173                 return false;
6174
6175         if (WARN_ON_ONCE(is_guest_mode(vcpu)))
6176                 return false;
6177
6178         if (!vcpu->arch.mmu->direct_map) {
6179                 /*
6180                  * Write permission should be allowed since only
6181                  * write access need to be emulated.
6182                  */
6183                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
6184
6185                 /*
6186                  * If the mapping is invalid in guest, let cpu retry
6187                  * it to generate fault.
6188                  */
6189                 if (gpa == UNMAPPED_GVA)
6190                         return true;
6191         }
6192
6193         /*
6194          * Do not retry the unhandleable instruction if it faults on the
6195          * readonly host memory, otherwise it will goto a infinite loop:
6196          * retry instruction -> write #PF -> emulation fail -> retry
6197          * instruction -> ...
6198          */
6199         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
6200
6201         /*
6202          * If the instruction failed on the error pfn, it can not be fixed,
6203          * report the error to userspace.
6204          */
6205         if (is_error_noslot_pfn(pfn))
6206                 return false;
6207
6208         kvm_release_pfn_clean(pfn);
6209
6210         /* The instructions are well-emulated on direct mmu. */
6211         if (vcpu->arch.mmu->direct_map) {
6212                 unsigned int indirect_shadow_pages;
6213
6214                 spin_lock(&vcpu->kvm->mmu_lock);
6215                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
6216                 spin_unlock(&vcpu->kvm->mmu_lock);
6217
6218                 if (indirect_shadow_pages)
6219                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6220
6221                 return true;
6222         }
6223
6224         /*
6225          * if emulation was due to access to shadowed page table
6226          * and it failed try to unshadow page and re-enter the
6227          * guest to let CPU execute the instruction.
6228          */
6229         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6230
6231         /*
6232          * If the access faults on its page table, it can not
6233          * be fixed by unprotecting shadow page and it should
6234          * be reported to userspace.
6235          */
6236         return !write_fault_to_shadow_pgtable;
6237 }
6238
6239 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
6240                               unsigned long cr2,  int emulation_type)
6241 {
6242         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6243         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
6244
6245         last_retry_eip = vcpu->arch.last_retry_eip;
6246         last_retry_addr = vcpu->arch.last_retry_addr;
6247
6248         /*
6249          * If the emulation is caused by #PF and it is non-page_table
6250          * writing instruction, it means the VM-EXIT is caused by shadow
6251          * page protected, we can zap the shadow page and retry this
6252          * instruction directly.
6253          *
6254          * Note: if the guest uses a non-page-table modifying instruction
6255          * on the PDE that points to the instruction, then we will unmap
6256          * the instruction and go to an infinite loop. So, we cache the
6257          * last retried eip and the last fault address, if we meet the eip
6258          * and the address again, we can break out of the potential infinite
6259          * loop.
6260          */
6261         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
6262
6263         if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
6264                 return false;
6265
6266         if (WARN_ON_ONCE(is_guest_mode(vcpu)))
6267                 return false;
6268
6269         if (x86_page_table_writing_insn(ctxt))
6270                 return false;
6271
6272         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
6273                 return false;
6274
6275         vcpu->arch.last_retry_eip = ctxt->eip;
6276         vcpu->arch.last_retry_addr = cr2;
6277
6278         if (!vcpu->arch.mmu->direct_map)
6279                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
6280
6281         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6282
6283         return true;
6284 }
6285
6286 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
6287 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
6288
6289 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
6290 {
6291         if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
6292                 /* This is a good place to trace that we are exiting SMM.  */
6293                 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
6294
6295                 /* Process a latched INIT or SMI, if any.  */
6296                 kvm_make_request(KVM_REQ_EVENT, vcpu);
6297         }
6298
6299         kvm_mmu_reset_context(vcpu);
6300 }
6301
6302 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
6303                                 unsigned long *db)
6304 {
6305         u32 dr6 = 0;
6306         int i;
6307         u32 enable, rwlen;
6308
6309         enable = dr7;
6310         rwlen = dr7 >> 16;
6311         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
6312                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
6313                         dr6 |= (1 << i);
6314         return dr6;
6315 }
6316
6317 static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r)
6318 {
6319         struct kvm_run *kvm_run = vcpu->run;
6320
6321         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
6322                 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
6323                 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
6324                 kvm_run->debug.arch.exception = DB_VECTOR;
6325                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
6326                 *r = EMULATE_USER_EXIT;
6327         } else {
6328                 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
6329         }
6330 }
6331
6332 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
6333 {
6334         unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6335         int r = EMULATE_DONE;
6336
6337         kvm_x86_ops->skip_emulated_instruction(vcpu);
6338
6339         /*
6340          * rflags is the old, "raw" value of the flags.  The new value has
6341          * not been saved yet.
6342          *
6343          * This is correct even for TF set by the guest, because "the
6344          * processor will not generate this exception after the instruction
6345          * that sets the TF flag".
6346          */
6347         if (unlikely(rflags & X86_EFLAGS_TF))
6348                 kvm_vcpu_do_singlestep(vcpu, &r);
6349         return r == EMULATE_DONE;
6350 }
6351 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
6352
6353 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
6354 {
6355         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
6356             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
6357                 struct kvm_run *kvm_run = vcpu->run;
6358                 unsigned long eip = kvm_get_linear_rip(vcpu);
6359                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6360                                            vcpu->arch.guest_debug_dr7,
6361                                            vcpu->arch.eff_db);
6362
6363                 if (dr6 != 0) {
6364                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
6365                         kvm_run->debug.arch.pc = eip;
6366                         kvm_run->debug.arch.exception = DB_VECTOR;
6367                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
6368                         *r = EMULATE_USER_EXIT;
6369                         return true;
6370                 }
6371         }
6372
6373         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
6374             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
6375                 unsigned long eip = kvm_get_linear_rip(vcpu);
6376                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6377                                            vcpu->arch.dr7,
6378                                            vcpu->arch.db);
6379
6380                 if (dr6 != 0) {
6381                         vcpu->arch.dr6 &= ~15;
6382                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
6383                         kvm_queue_exception(vcpu, DB_VECTOR);
6384                         *r = EMULATE_DONE;
6385                         return true;
6386                 }
6387         }
6388
6389         return false;
6390 }
6391
6392 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
6393 {
6394         switch (ctxt->opcode_len) {
6395         case 1:
6396                 switch (ctxt->b) {
6397                 case 0xe4:      /* IN */
6398                 case 0xe5:
6399                 case 0xec:
6400                 case 0xed:
6401                 case 0xe6:      /* OUT */
6402                 case 0xe7:
6403                 case 0xee:
6404                 case 0xef:
6405                 case 0x6c:      /* INS */
6406                 case 0x6d:
6407                 case 0x6e:      /* OUTS */
6408                 case 0x6f:
6409                         return true;
6410                 }
6411                 break;
6412         case 2:
6413                 switch (ctxt->b) {
6414                 case 0x33:      /* RDPMC */
6415                         return true;
6416                 }
6417                 break;
6418         }
6419
6420         return false;
6421 }
6422
6423 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
6424                             unsigned long cr2,
6425                             int emulation_type,
6426                             void *insn,
6427                             int insn_len)
6428 {
6429         int r;
6430         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6431         bool writeback = true;
6432         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
6433
6434         vcpu->arch.l1tf_flush_l1d = true;
6435
6436         /*
6437          * Clear write_fault_to_shadow_pgtable here to ensure it is
6438          * never reused.
6439          */
6440         vcpu->arch.write_fault_to_shadow_pgtable = false;
6441         kvm_clear_exception_queue(vcpu);
6442
6443         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
6444                 init_emulate_ctxt(vcpu);
6445
6446                 /*
6447                  * We will reenter on the same instruction since
6448                  * we do not set complete_userspace_io.  This does not
6449                  * handle watchpoints yet, those would be handled in
6450                  * the emulate_ops.
6451                  */
6452                 if (!(emulation_type & EMULTYPE_SKIP) &&
6453                     kvm_vcpu_check_breakpoint(vcpu, &r))
6454                         return r;
6455
6456                 ctxt->interruptibility = 0;
6457                 ctxt->have_exception = false;
6458                 ctxt->exception.vector = -1;
6459                 ctxt->perm_ok = false;
6460
6461                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
6462
6463                 r = x86_decode_insn(ctxt, insn, insn_len);
6464
6465                 trace_kvm_emulate_insn_start(vcpu);
6466                 ++vcpu->stat.insn_emulation;
6467                 if (r != EMULATION_OK)  {
6468                         if (emulation_type & EMULTYPE_TRAP_UD)
6469                                 return EMULATE_FAIL;
6470                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6471                                                 emulation_type))
6472                                 return EMULATE_DONE;
6473                         if (ctxt->have_exception && inject_emulated_exception(vcpu))
6474                                 return EMULATE_DONE;
6475                         if (emulation_type & EMULTYPE_SKIP)
6476                                 return EMULATE_FAIL;
6477                         return handle_emulation_failure(vcpu, emulation_type);
6478                 }
6479         }
6480
6481         if ((emulation_type & EMULTYPE_VMWARE) &&
6482             !is_vmware_backdoor_opcode(ctxt))
6483                 return EMULATE_FAIL;
6484
6485         if (emulation_type & EMULTYPE_SKIP) {
6486                 kvm_rip_write(vcpu, ctxt->_eip);
6487                 if (ctxt->eflags & X86_EFLAGS_RF)
6488                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
6489                 return EMULATE_DONE;
6490         }
6491
6492         if (retry_instruction(ctxt, cr2, emulation_type))
6493                 return EMULATE_DONE;
6494
6495         /* this is needed for vmware backdoor interface to work since it
6496            changes registers values  during IO operation */
6497         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
6498                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6499                 emulator_invalidate_register_cache(ctxt);
6500         }
6501
6502 restart:
6503         /* Save the faulting GPA (cr2) in the address field */
6504         ctxt->exception.address = cr2;
6505
6506         r = x86_emulate_insn(ctxt);
6507
6508         if (r == EMULATION_INTERCEPTED)
6509                 return EMULATE_DONE;
6510
6511         if (r == EMULATION_FAILED) {
6512                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6513                                         emulation_type))
6514                         return EMULATE_DONE;
6515
6516                 return handle_emulation_failure(vcpu, emulation_type);
6517         }
6518
6519         if (ctxt->have_exception) {
6520                 r = EMULATE_DONE;
6521                 if (inject_emulated_exception(vcpu))
6522                         return r;
6523         } else if (vcpu->arch.pio.count) {
6524                 if (!vcpu->arch.pio.in) {
6525                         /* FIXME: return into emulator if single-stepping.  */
6526                         vcpu->arch.pio.count = 0;
6527                 } else {
6528                         writeback = false;
6529                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
6530                 }
6531                 r = EMULATE_USER_EXIT;
6532         } else if (vcpu->mmio_needed) {
6533                 if (!vcpu->mmio_is_write)
6534                         writeback = false;
6535                 r = EMULATE_USER_EXIT;
6536                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6537         } else if (r == EMULATION_RESTART)
6538                 goto restart;
6539         else
6540                 r = EMULATE_DONE;
6541
6542         if (writeback) {
6543                 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6544                 toggle_interruptibility(vcpu, ctxt->interruptibility);
6545                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6546                 kvm_rip_write(vcpu, ctxt->eip);
6547                 if (r == EMULATE_DONE && ctxt->tf)
6548                         kvm_vcpu_do_singlestep(vcpu, &r);
6549                 if (!ctxt->have_exception ||
6550                     exception_type(ctxt->exception.vector) == EXCPT_TRAP)
6551                         __kvm_set_rflags(vcpu, ctxt->eflags);
6552
6553                 /*
6554                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
6555                  * do nothing, and it will be requested again as soon as
6556                  * the shadow expires.  But we still need to check here,
6557                  * because POPF has no interrupt shadow.
6558                  */
6559                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
6560                         kvm_make_request(KVM_REQ_EVENT, vcpu);
6561         } else
6562                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
6563
6564         return r;
6565 }
6566
6567 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
6568 {
6569         return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
6570 }
6571 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
6572
6573 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
6574                                         void *insn, int insn_len)
6575 {
6576         return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
6577 }
6578 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
6579
6580 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
6581 {
6582         vcpu->arch.pio.count = 0;
6583         return 1;
6584 }
6585
6586 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
6587 {
6588         vcpu->arch.pio.count = 0;
6589
6590         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
6591                 return 1;
6592
6593         return kvm_skip_emulated_instruction(vcpu);
6594 }
6595
6596 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
6597                             unsigned short port)
6598 {
6599         unsigned long val = kvm_rax_read(vcpu);
6600         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
6601                                             size, port, &val, 1);
6602         if (ret)
6603                 return ret;
6604
6605         /*
6606          * Workaround userspace that relies on old KVM behavior of %rip being
6607          * incremented prior to exiting to userspace to handle "OUT 0x7e".
6608          */
6609         if (port == 0x7e &&
6610             kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
6611                 vcpu->arch.complete_userspace_io =
6612                         complete_fast_pio_out_port_0x7e;
6613                 kvm_skip_emulated_instruction(vcpu);
6614         } else {
6615                 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
6616                 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
6617         }
6618         return 0;
6619 }
6620
6621 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
6622 {
6623         unsigned long val;
6624
6625         /* We should only ever be called with arch.pio.count equal to 1 */
6626         BUG_ON(vcpu->arch.pio.count != 1);
6627
6628         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
6629                 vcpu->arch.pio.count = 0;
6630                 return 1;
6631         }
6632
6633         /* For size less than 4 we merge, else we zero extend */
6634         val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
6635
6636         /*
6637          * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
6638          * the copy and tracing
6639          */
6640         emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
6641                                  vcpu->arch.pio.port, &val, 1);
6642         kvm_rax_write(vcpu, val);
6643
6644         return kvm_skip_emulated_instruction(vcpu);
6645 }
6646
6647 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
6648                            unsigned short port)
6649 {
6650         unsigned long val;
6651         int ret;
6652
6653         /* For size less than 4 we merge, else we zero extend */
6654         val = (size < 4) ? kvm_rax_read(vcpu) : 0;
6655
6656         ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
6657                                        &val, 1);
6658         if (ret) {
6659                 kvm_rax_write(vcpu, val);
6660                 return ret;
6661         }
6662
6663         vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
6664         vcpu->arch.complete_userspace_io = complete_fast_pio_in;
6665
6666         return 0;
6667 }
6668
6669 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
6670 {
6671         int ret;
6672
6673         if (in)
6674                 ret = kvm_fast_pio_in(vcpu, size, port);
6675         else
6676                 ret = kvm_fast_pio_out(vcpu, size, port);
6677         return ret && kvm_skip_emulated_instruction(vcpu);
6678 }
6679 EXPORT_SYMBOL_GPL(kvm_fast_pio);
6680
6681 static int kvmclock_cpu_down_prep(unsigned int cpu)
6682 {
6683         __this_cpu_write(cpu_tsc_khz, 0);
6684         return 0;
6685 }
6686
6687 static void tsc_khz_changed(void *data)
6688 {
6689         struct cpufreq_freqs *freq = data;
6690         unsigned long khz = 0;
6691
6692         if (data)
6693                 khz = freq->new;
6694         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6695                 khz = cpufreq_quick_get(raw_smp_processor_id());
6696         if (!khz)
6697                 khz = tsc_khz;
6698         __this_cpu_write(cpu_tsc_khz, khz);
6699 }
6700
6701 #ifdef CONFIG_X86_64
6702 static void kvm_hyperv_tsc_notifier(void)
6703 {
6704         struct kvm *kvm;
6705         struct kvm_vcpu *vcpu;
6706         int cpu;
6707
6708         spin_lock(&kvm_lock);
6709         list_for_each_entry(kvm, &vm_list, vm_list)
6710                 kvm_make_mclock_inprogress_request(kvm);
6711
6712         hyperv_stop_tsc_emulation();
6713
6714         /* TSC frequency always matches when on Hyper-V */
6715         for_each_present_cpu(cpu)
6716                 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
6717         kvm_max_guest_tsc_khz = tsc_khz;
6718
6719         list_for_each_entry(kvm, &vm_list, vm_list) {
6720                 struct kvm_arch *ka = &kvm->arch;
6721
6722                 spin_lock(&ka->pvclock_gtod_sync_lock);
6723
6724                 pvclock_update_vm_gtod_copy(kvm);
6725
6726                 kvm_for_each_vcpu(cpu, vcpu, kvm)
6727                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6728
6729                 kvm_for_each_vcpu(cpu, vcpu, kvm)
6730                         kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
6731
6732                 spin_unlock(&ka->pvclock_gtod_sync_lock);
6733         }
6734         spin_unlock(&kvm_lock);
6735 }
6736 #endif
6737
6738 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
6739 {
6740         struct kvm *kvm;
6741         struct kvm_vcpu *vcpu;
6742         int i, send_ipi = 0;
6743
6744         /*
6745          * We allow guests to temporarily run on slowing clocks,
6746          * provided we notify them after, or to run on accelerating
6747          * clocks, provided we notify them before.  Thus time never
6748          * goes backwards.
6749          *
6750          * However, we have a problem.  We can't atomically update
6751          * the frequency of a given CPU from this function; it is
6752          * merely a notifier, which can be called from any CPU.
6753          * Changing the TSC frequency at arbitrary points in time
6754          * requires a recomputation of local variables related to
6755          * the TSC for each VCPU.  We must flag these local variables
6756          * to be updated and be sure the update takes place with the
6757          * new frequency before any guests proceed.
6758          *
6759          * Unfortunately, the combination of hotplug CPU and frequency
6760          * change creates an intractable locking scenario; the order
6761          * of when these callouts happen is undefined with respect to
6762          * CPU hotplug, and they can race with each other.  As such,
6763          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
6764          * undefined; you can actually have a CPU frequency change take
6765          * place in between the computation of X and the setting of the
6766          * variable.  To protect against this problem, all updates of
6767          * the per_cpu tsc_khz variable are done in an interrupt
6768          * protected IPI, and all callers wishing to update the value
6769          * must wait for a synchronous IPI to complete (which is trivial
6770          * if the caller is on the CPU already).  This establishes the
6771          * necessary total order on variable updates.
6772          *
6773          * Note that because a guest time update may take place
6774          * anytime after the setting of the VCPU's request bit, the
6775          * correct TSC value must be set before the request.  However,
6776          * to ensure the update actually makes it to any guest which
6777          * starts running in hardware virtualization between the set
6778          * and the acquisition of the spinlock, we must also ping the
6779          * CPU after setting the request bit.
6780          *
6781          */
6782
6783         smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
6784
6785         spin_lock(&kvm_lock);
6786         list_for_each_entry(kvm, &vm_list, vm_list) {
6787                 kvm_for_each_vcpu(i, vcpu, kvm) {
6788                         if (vcpu->cpu != cpu)
6789                                 continue;
6790                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6791                         if (vcpu->cpu != smp_processor_id())
6792                                 send_ipi = 1;
6793                 }
6794         }
6795         spin_unlock(&kvm_lock);
6796
6797         if (freq->old < freq->new && send_ipi) {
6798                 /*
6799                  * We upscale the frequency.  Must make the guest
6800                  * doesn't see old kvmclock values while running with
6801                  * the new frequency, otherwise we risk the guest sees
6802                  * time go backwards.
6803                  *
6804                  * In case we update the frequency for another cpu
6805                  * (which might be in guest context) send an interrupt
6806                  * to kick the cpu out of guest context.  Next time
6807                  * guest context is entered kvmclock will be updated,
6808                  * so the guest will not see stale values.
6809                  */
6810                 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
6811         }
6812 }
6813
6814 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
6815                                      void *data)
6816 {
6817         struct cpufreq_freqs *freq = data;
6818         int cpu;
6819
6820         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
6821                 return 0;
6822         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
6823                 return 0;
6824
6825         for_each_cpu(cpu, freq->policy->cpus)
6826                 __kvmclock_cpufreq_notifier(freq, cpu);
6827
6828         return 0;
6829 }
6830
6831 static struct notifier_block kvmclock_cpufreq_notifier_block = {
6832         .notifier_call  = kvmclock_cpufreq_notifier
6833 };
6834
6835 static int kvmclock_cpu_online(unsigned int cpu)
6836 {
6837         tsc_khz_changed(NULL);
6838         return 0;
6839 }
6840
6841 static void kvm_timer_init(void)
6842 {
6843         max_tsc_khz = tsc_khz;
6844
6845         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
6846 #ifdef CONFIG_CPU_FREQ
6847                 struct cpufreq_policy policy;
6848                 int cpu;
6849
6850                 memset(&policy, 0, sizeof(policy));
6851                 cpu = get_cpu();
6852                 cpufreq_get_policy(&policy, cpu);
6853                 if (policy.cpuinfo.max_freq)
6854                         max_tsc_khz = policy.cpuinfo.max_freq;
6855                 put_cpu();
6856 #endif
6857                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
6858                                           CPUFREQ_TRANSITION_NOTIFIER);
6859         }
6860         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
6861
6862         cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
6863                           kvmclock_cpu_online, kvmclock_cpu_down_prep);
6864 }
6865
6866 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
6867 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
6868
6869 int kvm_is_in_guest(void)
6870 {
6871         return __this_cpu_read(current_vcpu) != NULL;
6872 }
6873
6874 static int kvm_is_user_mode(void)
6875 {
6876         int user_mode = 3;
6877
6878         if (__this_cpu_read(current_vcpu))
6879                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
6880
6881         return user_mode != 0;
6882 }
6883
6884 static unsigned long kvm_get_guest_ip(void)
6885 {
6886         unsigned long ip = 0;
6887
6888         if (__this_cpu_read(current_vcpu))
6889                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
6890
6891         return ip;
6892 }
6893
6894 static void kvm_handle_intel_pt_intr(void)
6895 {
6896         struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
6897
6898         kvm_make_request(KVM_REQ_PMI, vcpu);
6899         __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
6900                         (unsigned long *)&vcpu->arch.pmu.global_status);
6901 }
6902
6903 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6904         .is_in_guest            = kvm_is_in_guest,
6905         .is_user_mode           = kvm_is_user_mode,
6906         .get_guest_ip           = kvm_get_guest_ip,
6907         .handle_intel_pt_intr   = kvm_handle_intel_pt_intr,
6908 };
6909
6910 static void kvm_set_mmio_spte_mask(void)
6911 {
6912         u64 mask;
6913         int maxphyaddr = boot_cpu_data.x86_phys_bits;
6914
6915         /*
6916          * Set the reserved bits and the present bit of an paging-structure
6917          * entry to generate page fault with PFER.RSV = 1.
6918          */
6919
6920         /*
6921          * Mask the uppermost physical address bit, which would be reserved as
6922          * long as the supported physical address width is less than 52.
6923          */
6924         mask = 1ull << 51;
6925
6926         /* Set the present bit. */
6927         mask |= 1ull;
6928
6929         /*
6930          * If reserved bit is not supported, clear the present bit to disable
6931          * mmio page fault.
6932          */
6933         if (IS_ENABLED(CONFIG_X86_64) && maxphyaddr == 52)
6934                 mask &= ~1ull;
6935
6936         kvm_mmu_set_mmio_spte_mask(mask, mask);
6937 }
6938
6939 #ifdef CONFIG_X86_64
6940 static void pvclock_gtod_update_fn(struct work_struct *work)
6941 {
6942         struct kvm *kvm;
6943
6944         struct kvm_vcpu *vcpu;
6945         int i;
6946
6947         spin_lock(&kvm_lock);
6948         list_for_each_entry(kvm, &vm_list, vm_list)
6949                 kvm_for_each_vcpu(i, vcpu, kvm)
6950                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6951         atomic_set(&kvm_guest_has_master_clock, 0);
6952         spin_unlock(&kvm_lock);
6953 }
6954
6955 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6956
6957 /*
6958  * Notification about pvclock gtod data update.
6959  */
6960 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6961                                void *priv)
6962 {
6963         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6964         struct timekeeper *tk = priv;
6965
6966         update_pvclock_gtod(tk);
6967
6968         /* disable master clock if host does not trust, or does not
6969          * use, TSC based clocksource.
6970          */
6971         if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
6972             atomic_read(&kvm_guest_has_master_clock) != 0)
6973                 queue_work(system_long_wq, &pvclock_gtod_work);
6974
6975         return 0;
6976 }
6977
6978 static struct notifier_block pvclock_gtod_notifier = {
6979         .notifier_call = pvclock_gtod_notify,
6980 };
6981 #endif
6982
6983 int kvm_arch_init(void *opaque)
6984 {
6985         int r;
6986         struct kvm_x86_ops *ops = opaque;
6987
6988         if (kvm_x86_ops) {
6989                 printk(KERN_ERR "kvm: already loaded the other module\n");
6990                 r = -EEXIST;
6991                 goto out;
6992         }
6993
6994         if (!ops->cpu_has_kvm_support()) {
6995                 printk(KERN_ERR "kvm: no hardware support\n");
6996                 r = -EOPNOTSUPP;
6997                 goto out;
6998         }
6999         if (ops->disabled_by_bios()) {
7000                 printk(KERN_ERR "kvm: disabled by bios\n");
7001                 r = -EOPNOTSUPP;
7002                 goto out;
7003         }
7004
7005         /*
7006          * KVM explicitly assumes that the guest has an FPU and
7007          * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
7008          * vCPU's FPU state as a fxregs_state struct.
7009          */
7010         if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
7011                 printk(KERN_ERR "kvm: inadequate fpu\n");
7012                 r = -EOPNOTSUPP;
7013                 goto out;
7014         }
7015
7016         r = -ENOMEM;
7017         x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
7018                                           __alignof__(struct fpu), SLAB_ACCOUNT,
7019                                           NULL);
7020         if (!x86_fpu_cache) {
7021                 printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
7022                 goto out;
7023         }
7024
7025         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
7026         if (!shared_msrs) {
7027                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
7028                 goto out_free_x86_fpu_cache;
7029         }
7030
7031         r = kvm_mmu_module_init();
7032         if (r)
7033                 goto out_free_percpu;
7034
7035         kvm_set_mmio_spte_mask();
7036
7037         kvm_x86_ops = ops;
7038
7039         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
7040                         PT_DIRTY_MASK, PT64_NX_MASK, 0,
7041                         PT_PRESENT_MASK, 0, sme_me_mask);
7042         kvm_timer_init();
7043
7044         perf_register_guest_info_callbacks(&kvm_guest_cbs);
7045
7046         if (boot_cpu_has(X86_FEATURE_XSAVE))
7047                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
7048
7049         kvm_lapic_init();
7050 #ifdef CONFIG_X86_64
7051         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
7052
7053         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7054                 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
7055 #endif
7056
7057         return 0;
7058
7059 out_free_percpu:
7060         free_percpu(shared_msrs);
7061 out_free_x86_fpu_cache:
7062         kmem_cache_destroy(x86_fpu_cache);
7063 out:
7064         return r;
7065 }
7066
7067 void kvm_arch_exit(void)
7068 {
7069 #ifdef CONFIG_X86_64
7070         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7071                 clear_hv_tscchange_cb();
7072 #endif
7073         kvm_lapic_exit();
7074         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
7075
7076         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7077                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
7078                                             CPUFREQ_TRANSITION_NOTIFIER);
7079         cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
7080 #ifdef CONFIG_X86_64
7081         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
7082 #endif
7083         kvm_x86_ops = NULL;
7084         kvm_mmu_module_exit();
7085         free_percpu(shared_msrs);
7086         kmem_cache_destroy(x86_fpu_cache);
7087 }
7088
7089 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
7090 {
7091         ++vcpu->stat.halt_exits;
7092         if (lapic_in_kernel(vcpu)) {
7093                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
7094                 return 1;
7095         } else {
7096                 vcpu->run->exit_reason = KVM_EXIT_HLT;
7097                 return 0;
7098         }
7099 }
7100 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
7101
7102 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
7103 {
7104         int ret = kvm_skip_emulated_instruction(vcpu);
7105         /*
7106          * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
7107          * KVM_EXIT_DEBUG here.
7108          */
7109         return kvm_vcpu_halt(vcpu) && ret;
7110 }
7111 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
7112
7113 #ifdef CONFIG_X86_64
7114 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
7115                                 unsigned long clock_type)
7116 {
7117         struct kvm_clock_pairing clock_pairing;
7118         struct timespec64 ts;
7119         u64 cycle;
7120         int ret;
7121
7122         if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
7123                 return -KVM_EOPNOTSUPP;
7124
7125         if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
7126                 return -KVM_EOPNOTSUPP;
7127
7128         clock_pairing.sec = ts.tv_sec;
7129         clock_pairing.nsec = ts.tv_nsec;
7130         clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
7131         clock_pairing.flags = 0;
7132         memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
7133
7134         ret = 0;
7135         if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
7136                             sizeof(struct kvm_clock_pairing)))
7137                 ret = -KVM_EFAULT;
7138
7139         return ret;
7140 }
7141 #endif
7142
7143 /*
7144  * kvm_pv_kick_cpu_op:  Kick a vcpu.
7145  *
7146  * @apicid - apicid of vcpu to be kicked.
7147  */
7148 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
7149 {
7150         struct kvm_lapic_irq lapic_irq;
7151
7152         lapic_irq.shorthand = 0;
7153         lapic_irq.dest_mode = 0;
7154         lapic_irq.level = 0;
7155         lapic_irq.dest_id = apicid;
7156         lapic_irq.msi_redir_hint = false;
7157
7158         lapic_irq.delivery_mode = APIC_DM_REMRD;
7159         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
7160 }
7161
7162 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
7163 {
7164         if (!lapic_in_kernel(vcpu)) {
7165                 WARN_ON_ONCE(vcpu->arch.apicv_active);
7166                 return;
7167         }
7168         if (!vcpu->arch.apicv_active)
7169                 return;
7170
7171         vcpu->arch.apicv_active = false;
7172         kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
7173 }
7174
7175 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
7176 {
7177         unsigned long nr, a0, a1, a2, a3, ret;
7178         int op_64_bit;
7179
7180         if (kvm_hv_hypercall_enabled(vcpu->kvm))
7181                 return kvm_hv_hypercall(vcpu);
7182
7183         nr = kvm_rax_read(vcpu);
7184         a0 = kvm_rbx_read(vcpu);
7185         a1 = kvm_rcx_read(vcpu);
7186         a2 = kvm_rdx_read(vcpu);
7187         a3 = kvm_rsi_read(vcpu);
7188
7189         trace_kvm_hypercall(nr, a0, a1, a2, a3);
7190
7191         op_64_bit = is_64_bit_mode(vcpu);
7192         if (!op_64_bit) {
7193                 nr &= 0xFFFFFFFF;
7194                 a0 &= 0xFFFFFFFF;
7195                 a1 &= 0xFFFFFFFF;
7196                 a2 &= 0xFFFFFFFF;
7197                 a3 &= 0xFFFFFFFF;
7198         }
7199
7200         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
7201                 ret = -KVM_EPERM;
7202                 goto out;
7203         }
7204
7205         switch (nr) {
7206         case KVM_HC_VAPIC_POLL_IRQ:
7207                 ret = 0;
7208                 break;
7209         case KVM_HC_KICK_CPU:
7210                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
7211                 ret = 0;
7212                 break;
7213 #ifdef CONFIG_X86_64
7214         case KVM_HC_CLOCK_PAIRING:
7215                 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
7216                 break;
7217 #endif
7218         case KVM_HC_SEND_IPI:
7219                 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
7220                 break;
7221         default:
7222                 ret = -KVM_ENOSYS;
7223                 break;
7224         }
7225 out:
7226         if (!op_64_bit)
7227                 ret = (u32)ret;
7228         kvm_rax_write(vcpu, ret);
7229
7230         ++vcpu->stat.hypercalls;
7231         return kvm_skip_emulated_instruction(vcpu);
7232 }
7233 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
7234
7235 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
7236 {
7237         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7238         char instruction[3];
7239         unsigned long rip = kvm_rip_read(vcpu);
7240
7241         kvm_x86_ops->patch_hypercall(vcpu, instruction);
7242
7243         return emulator_write_emulated(ctxt, rip, instruction, 3,
7244                 &ctxt->exception);
7245 }
7246
7247 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
7248 {
7249         return vcpu->run->request_interrupt_window &&
7250                 likely(!pic_in_kernel(vcpu->kvm));
7251 }
7252
7253 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
7254 {
7255         struct kvm_run *kvm_run = vcpu->run;
7256
7257         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
7258         kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
7259         kvm_run->cr8 = kvm_get_cr8(vcpu);
7260         kvm_run->apic_base = kvm_get_apic_base(vcpu);
7261         kvm_run->ready_for_interrupt_injection =
7262                 pic_in_kernel(vcpu->kvm) ||
7263                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
7264 }
7265
7266 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
7267 {
7268         int max_irr, tpr;
7269
7270         if (!kvm_x86_ops->update_cr8_intercept)
7271                 return;
7272
7273         if (!lapic_in_kernel(vcpu))
7274                 return;
7275
7276         if (vcpu->arch.apicv_active)
7277                 return;
7278
7279         if (!vcpu->arch.apic->vapic_addr)
7280                 max_irr = kvm_lapic_find_highest_irr(vcpu);
7281         else
7282                 max_irr = -1;
7283
7284         if (max_irr != -1)
7285                 max_irr >>= 4;
7286
7287         tpr = kvm_lapic_get_cr8(vcpu);
7288
7289         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
7290 }
7291
7292 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
7293 {
7294         int r;
7295
7296         /* try to reinject previous events if any */
7297
7298         if (vcpu->arch.exception.injected)
7299                 kvm_x86_ops->queue_exception(vcpu);
7300         /*
7301          * Do not inject an NMI or interrupt if there is a pending
7302          * exception.  Exceptions and interrupts are recognized at
7303          * instruction boundaries, i.e. the start of an instruction.
7304          * Trap-like exceptions, e.g. #DB, have higher priority than
7305          * NMIs and interrupts, i.e. traps are recognized before an
7306          * NMI/interrupt that's pending on the same instruction.
7307          * Fault-like exceptions, e.g. #GP and #PF, are the lowest
7308          * priority, but are only generated (pended) during instruction
7309          * execution, i.e. a pending fault-like exception means the
7310          * fault occurred on the *previous* instruction and must be
7311          * serviced prior to recognizing any new events in order to
7312          * fully complete the previous instruction.
7313          */
7314         else if (!vcpu->arch.exception.pending) {
7315                 if (vcpu->arch.nmi_injected)
7316                         kvm_x86_ops->set_nmi(vcpu);
7317                 else if (vcpu->arch.interrupt.injected)
7318                         kvm_x86_ops->set_irq(vcpu);
7319         }
7320
7321         /*
7322          * Call check_nested_events() even if we reinjected a previous event
7323          * in order for caller to determine if it should require immediate-exit
7324          * from L2 to L1 due to pending L1 events which require exit
7325          * from L2 to L1.
7326          */
7327         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7328                 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
7329                 if (r != 0)
7330                         return r;
7331         }
7332
7333         /* try to inject new event if pending */
7334         if (vcpu->arch.exception.pending) {
7335                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
7336                                         vcpu->arch.exception.has_error_code,
7337                                         vcpu->arch.exception.error_code);
7338
7339                 WARN_ON_ONCE(vcpu->arch.exception.injected);
7340                 vcpu->arch.exception.pending = false;
7341                 vcpu->arch.exception.injected = true;
7342
7343                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
7344                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
7345                                              X86_EFLAGS_RF);
7346
7347                 if (vcpu->arch.exception.nr == DB_VECTOR) {
7348                         /*
7349                          * This code assumes that nSVM doesn't use
7350                          * check_nested_events(). If it does, the
7351                          * DR6/DR7 changes should happen before L1
7352                          * gets a #VMEXIT for an intercepted #DB in
7353                          * L2.  (Under VMX, on the other hand, the
7354                          * DR6/DR7 changes should not happen in the
7355                          * event of a VM-exit to L1 for an intercepted
7356                          * #DB in L2.)
7357                          */
7358                         kvm_deliver_exception_payload(vcpu);
7359                         if (vcpu->arch.dr7 & DR7_GD) {
7360                                 vcpu->arch.dr7 &= ~DR7_GD;
7361                                 kvm_update_dr7(vcpu);
7362                         }
7363                 }
7364
7365                 kvm_x86_ops->queue_exception(vcpu);
7366         }
7367
7368         /* Don't consider new event if we re-injected an event */
7369         if (kvm_event_needs_reinjection(vcpu))
7370                 return 0;
7371
7372         if (vcpu->arch.smi_pending && !is_smm(vcpu) &&
7373             kvm_x86_ops->smi_allowed(vcpu)) {
7374                 vcpu->arch.smi_pending = false;
7375                 ++vcpu->arch.smi_count;
7376                 enter_smm(vcpu);
7377         } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
7378                 --vcpu->arch.nmi_pending;
7379                 vcpu->arch.nmi_injected = true;
7380                 kvm_x86_ops->set_nmi(vcpu);
7381         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
7382                 /*
7383                  * Because interrupts can be injected asynchronously, we are
7384                  * calling check_nested_events again here to avoid a race condition.
7385                  * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
7386                  * proposal and current concerns.  Perhaps we should be setting
7387                  * KVM_REQ_EVENT only on certain events and not unconditionally?
7388                  */
7389                 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7390                         r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
7391                         if (r != 0)
7392                                 return r;
7393                 }
7394                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
7395                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
7396                                             false);
7397                         kvm_x86_ops->set_irq(vcpu);
7398                 }
7399         }
7400
7401         return 0;
7402 }
7403
7404 static void process_nmi(struct kvm_vcpu *vcpu)
7405 {
7406         unsigned limit = 2;
7407
7408         /*
7409          * x86 is limited to one NMI running, and one NMI pending after it.
7410          * If an NMI is already in progress, limit further NMIs to just one.
7411          * Otherwise, allow two (and we'll inject the first one immediately).
7412          */
7413         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
7414                 limit = 1;
7415
7416         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
7417         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
7418         kvm_make_request(KVM_REQ_EVENT, vcpu);
7419 }
7420
7421 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
7422 {
7423         u32 flags = 0;
7424         flags |= seg->g       << 23;
7425         flags |= seg->db      << 22;
7426         flags |= seg->l       << 21;
7427         flags |= seg->avl     << 20;
7428         flags |= seg->present << 15;
7429         flags |= seg->dpl     << 13;
7430         flags |= seg->s       << 12;
7431         flags |= seg->type    << 8;
7432         return flags;
7433 }
7434
7435 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
7436 {
7437         struct kvm_segment seg;
7438         int offset;
7439
7440         kvm_get_segment(vcpu, &seg, n);
7441         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
7442
7443         if (n < 3)
7444                 offset = 0x7f84 + n * 12;
7445         else
7446                 offset = 0x7f2c + (n - 3) * 12;
7447
7448         put_smstate(u32, buf, offset + 8, seg.base);
7449         put_smstate(u32, buf, offset + 4, seg.limit);
7450         put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
7451 }
7452
7453 #ifdef CONFIG_X86_64
7454 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
7455 {
7456         struct kvm_segment seg;
7457         int offset;
7458         u16 flags;
7459
7460         kvm_get_segment(vcpu, &seg, n);
7461         offset = 0x7e00 + n * 16;
7462
7463         flags = enter_smm_get_segment_flags(&seg) >> 8;
7464         put_smstate(u16, buf, offset, seg.selector);
7465         put_smstate(u16, buf, offset + 2, flags);
7466         put_smstate(u32, buf, offset + 4, seg.limit);
7467         put_smstate(u64, buf, offset + 8, seg.base);
7468 }
7469 #endif
7470
7471 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
7472 {
7473         struct desc_ptr dt;
7474         struct kvm_segment seg;
7475         unsigned long val;
7476         int i;
7477
7478         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
7479         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
7480         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
7481         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
7482
7483         for (i = 0; i < 8; i++)
7484                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
7485
7486         kvm_get_dr(vcpu, 6, &val);
7487         put_smstate(u32, buf, 0x7fcc, (u32)val);
7488         kvm_get_dr(vcpu, 7, &val);
7489         put_smstate(u32, buf, 0x7fc8, (u32)val);
7490
7491         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7492         put_smstate(u32, buf, 0x7fc4, seg.selector);
7493         put_smstate(u32, buf, 0x7f64, seg.base);
7494         put_smstate(u32, buf, 0x7f60, seg.limit);
7495         put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
7496
7497         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7498         put_smstate(u32, buf, 0x7fc0, seg.selector);
7499         put_smstate(u32, buf, 0x7f80, seg.base);
7500         put_smstate(u32, buf, 0x7f7c, seg.limit);
7501         put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
7502
7503         kvm_x86_ops->get_gdt(vcpu, &dt);
7504         put_smstate(u32, buf, 0x7f74, dt.address);
7505         put_smstate(u32, buf, 0x7f70, dt.size);
7506
7507         kvm_x86_ops->get_idt(vcpu, &dt);
7508         put_smstate(u32, buf, 0x7f58, dt.address);
7509         put_smstate(u32, buf, 0x7f54, dt.size);
7510
7511         for (i = 0; i < 6; i++)
7512                 enter_smm_save_seg_32(vcpu, buf, i);
7513
7514         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
7515
7516         /* revision id */
7517         put_smstate(u32, buf, 0x7efc, 0x00020000);
7518         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
7519 }
7520
7521 #ifdef CONFIG_X86_64
7522 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
7523 {
7524         struct desc_ptr dt;
7525         struct kvm_segment seg;
7526         unsigned long val;
7527         int i;
7528
7529         for (i = 0; i < 16; i++)
7530                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
7531
7532         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
7533         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
7534
7535         kvm_get_dr(vcpu, 6, &val);
7536         put_smstate(u64, buf, 0x7f68, val);
7537         kvm_get_dr(vcpu, 7, &val);
7538         put_smstate(u64, buf, 0x7f60, val);
7539
7540         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
7541         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
7542         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
7543
7544         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
7545
7546         /* revision id */
7547         put_smstate(u32, buf, 0x7efc, 0x00020064);
7548
7549         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
7550
7551         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7552         put_smstate(u16, buf, 0x7e90, seg.selector);
7553         put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
7554         put_smstate(u32, buf, 0x7e94, seg.limit);
7555         put_smstate(u64, buf, 0x7e98, seg.base);
7556
7557         kvm_x86_ops->get_idt(vcpu, &dt);
7558         put_smstate(u32, buf, 0x7e84, dt.size);
7559         put_smstate(u64, buf, 0x7e88, dt.address);
7560
7561         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7562         put_smstate(u16, buf, 0x7e70, seg.selector);
7563         put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
7564         put_smstate(u32, buf, 0x7e74, seg.limit);
7565         put_smstate(u64, buf, 0x7e78, seg.base);
7566
7567         kvm_x86_ops->get_gdt(vcpu, &dt);
7568         put_smstate(u32, buf, 0x7e64, dt.size);
7569         put_smstate(u64, buf, 0x7e68, dt.address);
7570
7571         for (i = 0; i < 6; i++)
7572                 enter_smm_save_seg_64(vcpu, buf, i);
7573 }
7574 #endif
7575
7576 static void enter_smm(struct kvm_vcpu *vcpu)
7577 {
7578         struct kvm_segment cs, ds;
7579         struct desc_ptr dt;
7580         char buf[512];
7581         u32 cr0;
7582
7583         trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
7584         memset(buf, 0, 512);
7585 #ifdef CONFIG_X86_64
7586         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7587                 enter_smm_save_state_64(vcpu, buf);
7588         else
7589 #endif
7590                 enter_smm_save_state_32(vcpu, buf);
7591
7592         /*
7593          * Give pre_enter_smm() a chance to make ISA-specific changes to the
7594          * vCPU state (e.g. leave guest mode) after we've saved the state into
7595          * the SMM state-save area.
7596          */
7597         kvm_x86_ops->pre_enter_smm(vcpu, buf);
7598
7599         vcpu->arch.hflags |= HF_SMM_MASK;
7600         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
7601
7602         if (kvm_x86_ops->get_nmi_mask(vcpu))
7603                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
7604         else
7605                 kvm_x86_ops->set_nmi_mask(vcpu, true);
7606
7607         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
7608         kvm_rip_write(vcpu, 0x8000);
7609
7610         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
7611         kvm_x86_ops->set_cr0(vcpu, cr0);
7612         vcpu->arch.cr0 = cr0;
7613
7614         kvm_x86_ops->set_cr4(vcpu, 0);
7615
7616         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
7617         dt.address = dt.size = 0;
7618         kvm_x86_ops->set_idt(vcpu, &dt);
7619
7620         __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
7621
7622         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
7623         cs.base = vcpu->arch.smbase;
7624
7625         ds.selector = 0;
7626         ds.base = 0;
7627
7628         cs.limit    = ds.limit = 0xffffffff;
7629         cs.type     = ds.type = 0x3;
7630         cs.dpl      = ds.dpl = 0;
7631         cs.db       = ds.db = 0;
7632         cs.s        = ds.s = 1;
7633         cs.l        = ds.l = 0;
7634         cs.g        = ds.g = 1;
7635         cs.avl      = ds.avl = 0;
7636         cs.present  = ds.present = 1;
7637         cs.unusable = ds.unusable = 0;
7638         cs.padding  = ds.padding = 0;
7639
7640         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7641         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
7642         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
7643         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
7644         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
7645         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
7646
7647 #ifdef CONFIG_X86_64
7648         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7649                 kvm_x86_ops->set_efer(vcpu, 0);
7650 #endif
7651
7652         kvm_update_cpuid(vcpu);
7653         kvm_mmu_reset_context(vcpu);
7654 }
7655
7656 static void process_smi(struct kvm_vcpu *vcpu)
7657 {
7658         vcpu->arch.smi_pending = true;
7659         kvm_make_request(KVM_REQ_EVENT, vcpu);
7660 }
7661
7662 void kvm_make_scan_ioapic_request(struct kvm *kvm)
7663 {
7664         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
7665 }
7666
7667 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
7668 {
7669         if (!kvm_apic_present(vcpu))
7670                 return;
7671
7672         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
7673
7674         if (irqchip_split(vcpu->kvm))
7675                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
7676         else {
7677                 if (vcpu->arch.apicv_active)
7678                         kvm_x86_ops->sync_pir_to_irr(vcpu);
7679                 if (ioapic_in_kernel(vcpu->kvm))
7680                         kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
7681         }
7682
7683         if (is_guest_mode(vcpu))
7684                 vcpu->arch.load_eoi_exitmap_pending = true;
7685         else
7686                 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
7687 }
7688
7689 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
7690 {
7691         u64 eoi_exit_bitmap[4];
7692
7693         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
7694                 return;
7695
7696         bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
7697                   vcpu_to_synic(vcpu)->vec_bitmap, 256);
7698         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
7699 }
7700
7701 int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
7702                 unsigned long start, unsigned long end,
7703                 bool blockable)
7704 {
7705         unsigned long apic_address;
7706
7707         /*
7708          * The physical address of apic access page is stored in the VMCS.
7709          * Update it when it becomes invalid.
7710          */
7711         apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7712         if (start <= apic_address && apic_address < end)
7713                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
7714
7715         return 0;
7716 }
7717
7718 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
7719 {
7720         struct page *page = NULL;
7721
7722         if (!lapic_in_kernel(vcpu))
7723                 return;
7724
7725         if (!kvm_x86_ops->set_apic_access_page_addr)
7726                 return;
7727
7728         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7729         if (is_error_page(page))
7730                 return;
7731         kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
7732
7733         /*
7734          * Do not pin apic access page in memory, the MMU notifier
7735          * will call us again if it is migrated or swapped out.
7736          */
7737         put_page(page);
7738 }
7739 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
7740
7741 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
7742 {
7743         smp_send_reschedule(vcpu->cpu);
7744 }
7745 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
7746
7747 /*
7748  * Returns 1 to let vcpu_run() continue the guest execution loop without
7749  * exiting to the userspace.  Otherwise, the value will be returned to the
7750  * userspace.
7751  */
7752 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
7753 {
7754         int r;
7755         bool req_int_win =
7756                 dm_request_for_irq_injection(vcpu) &&
7757                 kvm_cpu_accept_dm_intr(vcpu);
7758
7759         bool req_immediate_exit = false;
7760
7761         if (kvm_request_pending(vcpu)) {
7762                 if (kvm_check_request(KVM_REQ_GET_VMCS12_PAGES, vcpu))
7763                         kvm_x86_ops->get_vmcs12_pages(vcpu);
7764                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
7765                         kvm_mmu_unload(vcpu);
7766                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
7767                         __kvm_migrate_timers(vcpu);
7768                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
7769                         kvm_gen_update_masterclock(vcpu->kvm);
7770                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
7771                         kvm_gen_kvmclock_update(vcpu);
7772                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
7773                         r = kvm_guest_time_update(vcpu);
7774                         if (unlikely(r))
7775                                 goto out;
7776                 }
7777                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
7778                         kvm_mmu_sync_roots(vcpu);
7779                 if (kvm_check_request(KVM_REQ_LOAD_CR3, vcpu))
7780                         kvm_mmu_load_cr3(vcpu);
7781                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
7782                         kvm_vcpu_flush_tlb(vcpu, true);
7783                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
7784                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
7785                         r = 0;
7786                         goto out;
7787                 }
7788                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
7789                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
7790                         vcpu->mmio_needed = 0;
7791                         r = 0;
7792                         goto out;
7793                 }
7794                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
7795                         /* Page is swapped out. Do synthetic halt */
7796                         vcpu->arch.apf.halted = true;
7797                         r = 1;
7798                         goto out;
7799                 }
7800                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
7801                         record_steal_time(vcpu);
7802                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
7803                         process_smi(vcpu);
7804                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
7805                         process_nmi(vcpu);
7806                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
7807                         kvm_pmu_handle_event(vcpu);
7808                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
7809                         kvm_pmu_deliver_pmi(vcpu);
7810                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
7811                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
7812                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
7813                                      vcpu->arch.ioapic_handled_vectors)) {
7814                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
7815                                 vcpu->run->eoi.vector =
7816                                                 vcpu->arch.pending_ioapic_eoi;
7817                                 r = 0;
7818                                 goto out;
7819                         }
7820                 }
7821                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
7822                         vcpu_scan_ioapic(vcpu);
7823                 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
7824                         vcpu_load_eoi_exitmap(vcpu);
7825                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
7826                         kvm_vcpu_reload_apic_access_page(vcpu);
7827                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
7828                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7829                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
7830                         r = 0;
7831                         goto out;
7832                 }
7833                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
7834                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7835                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
7836                         r = 0;
7837                         goto out;
7838                 }
7839                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
7840                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
7841                         vcpu->run->hyperv = vcpu->arch.hyperv.exit;
7842                         r = 0;
7843                         goto out;
7844                 }
7845
7846                 /*
7847                  * KVM_REQ_HV_STIMER has to be processed after
7848                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
7849                  * depend on the guest clock being up-to-date
7850                  */
7851                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
7852                         kvm_hv_process_stimers(vcpu);
7853         }
7854
7855         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
7856                 ++vcpu->stat.req_event;
7857                 kvm_apic_accept_events(vcpu);
7858                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
7859                         r = 1;
7860                         goto out;
7861                 }
7862
7863                 if (inject_pending_event(vcpu, req_int_win) != 0)
7864                         req_immediate_exit = true;
7865                 else {
7866                         /* Enable SMI/NMI/IRQ window open exits if needed.
7867                          *
7868                          * SMIs have three cases:
7869                          * 1) They can be nested, and then there is nothing to
7870                          *    do here because RSM will cause a vmexit anyway.
7871                          * 2) There is an ISA-specific reason why SMI cannot be
7872                          *    injected, and the moment when this changes can be
7873                          *    intercepted.
7874                          * 3) Or the SMI can be pending because
7875                          *    inject_pending_event has completed the injection
7876                          *    of an IRQ or NMI from the previous vmexit, and
7877                          *    then we request an immediate exit to inject the
7878                          *    SMI.
7879                          */
7880                         if (vcpu->arch.smi_pending && !is_smm(vcpu))
7881                                 if (!kvm_x86_ops->enable_smi_window(vcpu))
7882                                         req_immediate_exit = true;
7883                         if (vcpu->arch.nmi_pending)
7884                                 kvm_x86_ops->enable_nmi_window(vcpu);
7885                         if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
7886                                 kvm_x86_ops->enable_irq_window(vcpu);
7887                         WARN_ON(vcpu->arch.exception.pending);
7888                 }
7889
7890                 if (kvm_lapic_enabled(vcpu)) {
7891                         update_cr8_intercept(vcpu);
7892                         kvm_lapic_sync_to_vapic(vcpu);
7893                 }
7894         }
7895
7896         r = kvm_mmu_reload(vcpu);
7897         if (unlikely(r)) {
7898                 goto cancel_injection;
7899         }
7900
7901         preempt_disable();
7902
7903         kvm_x86_ops->prepare_guest_switch(vcpu);
7904
7905         /*
7906          * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
7907          * IPI are then delayed after guest entry, which ensures that they
7908          * result in virtual interrupt delivery.
7909          */
7910         local_irq_disable();
7911         vcpu->mode = IN_GUEST_MODE;
7912
7913         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7914
7915         /*
7916          * 1) We should set ->mode before checking ->requests.  Please see
7917          * the comment in kvm_vcpu_exiting_guest_mode().
7918          *
7919          * 2) For APICv, we should set ->mode before checking PID.ON. This
7920          * pairs with the memory barrier implicit in pi_test_and_set_on
7921          * (see vmx_deliver_posted_interrupt).
7922          *
7923          * 3) This also orders the write to mode from any reads to the page
7924          * tables done while the VCPU is running.  Please see the comment
7925          * in kvm_flush_remote_tlbs.
7926          */
7927         smp_mb__after_srcu_read_unlock();
7928
7929         /*
7930          * This handles the case where a posted interrupt was
7931          * notified with kvm_vcpu_kick.
7932          */
7933         if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
7934                 kvm_x86_ops->sync_pir_to_irr(vcpu);
7935
7936         if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
7937             || need_resched() || signal_pending(current)) {
7938                 vcpu->mode = OUTSIDE_GUEST_MODE;
7939                 smp_wmb();
7940                 local_irq_enable();
7941                 preempt_enable();
7942                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7943                 r = 1;
7944                 goto cancel_injection;
7945         }
7946
7947         if (req_immediate_exit) {
7948                 kvm_make_request(KVM_REQ_EVENT, vcpu);
7949                 kvm_x86_ops->request_immediate_exit(vcpu);
7950         }
7951
7952         trace_kvm_entry(vcpu->vcpu_id);
7953         if (lapic_in_kernel(vcpu) &&
7954             vcpu->arch.apic->lapic_timer.timer_advance_ns)
7955                 wait_lapic_expire(vcpu);
7956         guest_enter_irqoff();
7957
7958         fpregs_assert_state_consistent();
7959         if (test_thread_flag(TIF_NEED_FPU_LOAD))
7960                 switch_fpu_return();
7961
7962         if (unlikely(vcpu->arch.switch_db_regs)) {
7963                 set_debugreg(0, 7);
7964                 set_debugreg(vcpu->arch.eff_db[0], 0);
7965                 set_debugreg(vcpu->arch.eff_db[1], 1);
7966                 set_debugreg(vcpu->arch.eff_db[2], 2);
7967                 set_debugreg(vcpu->arch.eff_db[3], 3);
7968                 set_debugreg(vcpu->arch.dr6, 6);
7969                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7970         }
7971
7972         kvm_x86_ops->run(vcpu);
7973
7974         /*
7975          * Do this here before restoring debug registers on the host.  And
7976          * since we do this before handling the vmexit, a DR access vmexit
7977          * can (a) read the correct value of the debug registers, (b) set
7978          * KVM_DEBUGREG_WONT_EXIT again.
7979          */
7980         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
7981                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
7982                 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
7983                 kvm_update_dr0123(vcpu);
7984                 kvm_update_dr6(vcpu);
7985                 kvm_update_dr7(vcpu);
7986                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7987         }
7988
7989         /*
7990          * If the guest has used debug registers, at least dr7
7991          * will be disabled while returning to the host.
7992          * If we don't have active breakpoints in the host, we don't
7993          * care about the messed up debug address registers. But if
7994          * we have some of them active, restore the old state.
7995          */
7996         if (hw_breakpoint_active())
7997                 hw_breakpoint_restore();
7998
7999         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
8000
8001         vcpu->mode = OUTSIDE_GUEST_MODE;
8002         smp_wmb();
8003
8004         kvm_before_interrupt(vcpu);
8005         kvm_x86_ops->handle_external_intr(vcpu);
8006         kvm_after_interrupt(vcpu);
8007
8008         ++vcpu->stat.exits;
8009
8010         guest_exit_irqoff();
8011
8012         local_irq_enable();
8013         preempt_enable();
8014
8015         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8016
8017         /*
8018          * Profile KVM exit RIPs:
8019          */
8020         if (unlikely(prof_on == KVM_PROFILING)) {
8021                 unsigned long rip = kvm_rip_read(vcpu);
8022                 profile_hit(KVM_PROFILING, (void *)rip);
8023         }
8024
8025         if (unlikely(vcpu->arch.tsc_always_catchup))
8026                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8027
8028         if (vcpu->arch.apic_attention)
8029                 kvm_lapic_sync_from_vapic(vcpu);
8030
8031         vcpu->arch.gpa_available = false;
8032         r = kvm_x86_ops->handle_exit(vcpu);
8033         return r;
8034
8035 cancel_injection:
8036         kvm_x86_ops->cancel_injection(vcpu);
8037         if (unlikely(vcpu->arch.apic_attention))
8038                 kvm_lapic_sync_from_vapic(vcpu);
8039 out:
8040         return r;
8041 }
8042
8043 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
8044 {
8045         if (!kvm_arch_vcpu_runnable(vcpu) &&
8046             (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
8047                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8048                 kvm_vcpu_block(vcpu);
8049                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8050
8051                 if (kvm_x86_ops->post_block)
8052                         kvm_x86_ops->post_block(vcpu);
8053
8054                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
8055                         return 1;
8056         }
8057
8058         kvm_apic_accept_events(vcpu);
8059         switch(vcpu->arch.mp_state) {
8060         case KVM_MP_STATE_HALTED:
8061                 vcpu->arch.pv.pv_unhalted = false;
8062                 vcpu->arch.mp_state =
8063                         KVM_MP_STATE_RUNNABLE;
8064                 /* fall through */
8065         case KVM_MP_STATE_RUNNABLE:
8066                 vcpu->arch.apf.halted = false;
8067                 break;
8068         case KVM_MP_STATE_INIT_RECEIVED:
8069                 break;
8070         default:
8071                 return -EINTR;
8072                 break;
8073         }
8074         return 1;
8075 }
8076
8077 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
8078 {
8079         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
8080                 kvm_x86_ops->check_nested_events(vcpu, false);
8081
8082         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
8083                 !vcpu->arch.apf.halted);
8084 }
8085
8086 static int vcpu_run(struct kvm_vcpu *vcpu)
8087 {
8088         int r;
8089         struct kvm *kvm = vcpu->kvm;
8090
8091         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8092         vcpu->arch.l1tf_flush_l1d = true;
8093
8094         for (;;) {
8095                 if (kvm_vcpu_running(vcpu)) {
8096                         r = vcpu_enter_guest(vcpu);
8097                 } else {
8098                         r = vcpu_block(kvm, vcpu);
8099                 }
8100
8101                 if (r <= 0)
8102                         break;
8103
8104                 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
8105                 if (kvm_cpu_has_pending_timer(vcpu))
8106                         kvm_inject_pending_timer_irqs(vcpu);
8107
8108                 if (dm_request_for_irq_injection(vcpu) &&
8109                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
8110                         r = 0;
8111                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
8112                         ++vcpu->stat.request_irq_exits;
8113                         break;
8114                 }
8115
8116                 kvm_check_async_pf_completion(vcpu);
8117
8118                 if (signal_pending(current)) {
8119                         r = -EINTR;
8120                         vcpu->run->exit_reason = KVM_EXIT_INTR;
8121                         ++vcpu->stat.signal_exits;
8122                         break;
8123                 }
8124                 if (need_resched()) {
8125                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8126                         cond_resched();
8127                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8128                 }
8129         }
8130
8131         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8132
8133         return r;
8134 }
8135
8136 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
8137 {
8138         int r;
8139         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8140         r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
8141         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8142         if (r != EMULATE_DONE)
8143                 return 0;
8144         return 1;
8145 }
8146
8147 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
8148 {
8149         BUG_ON(!vcpu->arch.pio.count);
8150
8151         return complete_emulated_io(vcpu);
8152 }
8153
8154 /*
8155  * Implements the following, as a state machine:
8156  *
8157  * read:
8158  *   for each fragment
8159  *     for each mmio piece in the fragment
8160  *       write gpa, len
8161  *       exit
8162  *       copy data
8163  *   execute insn
8164  *
8165  * write:
8166  *   for each fragment
8167  *     for each mmio piece in the fragment
8168  *       write gpa, len
8169  *       copy data
8170  *       exit
8171  */
8172 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
8173 {
8174         struct kvm_run *run = vcpu->run;
8175         struct kvm_mmio_fragment *frag;
8176         unsigned len;
8177
8178         BUG_ON(!vcpu->mmio_needed);
8179
8180         /* Complete previous fragment */
8181         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
8182         len = min(8u, frag->len);
8183         if (!vcpu->mmio_is_write)
8184                 memcpy(frag->data, run->mmio.data, len);
8185
8186         if (frag->len <= 8) {
8187                 /* Switch to the next fragment. */
8188                 frag++;
8189                 vcpu->mmio_cur_fragment++;
8190         } else {
8191                 /* Go forward to the next mmio piece. */
8192                 frag->data += len;
8193                 frag->gpa += len;
8194                 frag->len -= len;
8195         }
8196
8197         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
8198                 vcpu->mmio_needed = 0;
8199
8200                 /* FIXME: return into emulator if single-stepping.  */
8201                 if (vcpu->mmio_is_write)
8202                         return 1;
8203                 vcpu->mmio_read_completed = 1;
8204                 return complete_emulated_io(vcpu);
8205         }
8206
8207         run->exit_reason = KVM_EXIT_MMIO;
8208         run->mmio.phys_addr = frag->gpa;
8209         if (vcpu->mmio_is_write)
8210                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
8211         run->mmio.len = min(8u, frag->len);
8212         run->mmio.is_write = vcpu->mmio_is_write;
8213         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8214         return 0;
8215 }
8216
8217 /* Swap (qemu) user FPU context for the guest FPU context. */
8218 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
8219 {
8220         fpregs_lock();
8221
8222         copy_fpregs_to_fpstate(&current->thread.fpu);
8223         /* PKRU is separately restored in kvm_x86_ops->run.  */
8224         __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state,
8225                                 ~XFEATURE_MASK_PKRU);
8226
8227         fpregs_mark_activate();
8228         fpregs_unlock();
8229
8230         trace_kvm_fpu(1);
8231 }
8232
8233 /* When vcpu_run ends, restore user space FPU context. */
8234 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
8235 {
8236         fpregs_lock();
8237
8238         copy_fpregs_to_fpstate(vcpu->arch.guest_fpu);
8239         copy_kernel_to_fpregs(&current->thread.fpu.state);
8240
8241         fpregs_mark_activate();
8242         fpregs_unlock();
8243
8244         ++vcpu->stat.fpu_reload;
8245         trace_kvm_fpu(0);
8246 }
8247
8248 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
8249 {
8250         int r;
8251
8252         vcpu_load(vcpu);
8253         kvm_sigset_activate(vcpu);
8254         kvm_load_guest_fpu(vcpu);
8255
8256         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
8257                 if (kvm_run->immediate_exit) {
8258                         r = -EINTR;
8259                         goto out;
8260                 }
8261                 kvm_vcpu_block(vcpu);
8262                 kvm_apic_accept_events(vcpu);
8263                 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
8264                 r = -EAGAIN;
8265                 if (signal_pending(current)) {
8266                         r = -EINTR;
8267                         vcpu->run->exit_reason = KVM_EXIT_INTR;
8268                         ++vcpu->stat.signal_exits;
8269                 }
8270                 goto out;
8271         }
8272
8273         if (vcpu->run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
8274                 r = -EINVAL;
8275                 goto out;
8276         }
8277
8278         if (vcpu->run->kvm_dirty_regs) {
8279                 r = sync_regs(vcpu);
8280                 if (r != 0)
8281                         goto out;
8282         }
8283
8284         /* re-sync apic's tpr */
8285         if (!lapic_in_kernel(vcpu)) {
8286                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
8287                         r = -EINVAL;
8288                         goto out;
8289                 }
8290         }
8291
8292         if (unlikely(vcpu->arch.complete_userspace_io)) {
8293                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
8294                 vcpu->arch.complete_userspace_io = NULL;
8295                 r = cui(vcpu);
8296                 if (r <= 0)
8297                         goto out;
8298         } else
8299                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
8300
8301         if (kvm_run->immediate_exit)
8302                 r = -EINTR;
8303         else
8304                 r = vcpu_run(vcpu);
8305
8306 out:
8307         kvm_put_guest_fpu(vcpu);
8308         if (vcpu->run->kvm_valid_regs)
8309                 store_regs(vcpu);
8310         post_kvm_run_save(vcpu);
8311         kvm_sigset_deactivate(vcpu);
8312
8313         vcpu_put(vcpu);
8314         return r;
8315 }
8316
8317 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8318 {
8319         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
8320                 /*
8321                  * We are here if userspace calls get_regs() in the middle of
8322                  * instruction emulation. Registers state needs to be copied
8323                  * back from emulation context to vcpu. Userspace shouldn't do
8324                  * that usually, but some bad designed PV devices (vmware
8325                  * backdoor interface) need this to work
8326                  */
8327                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
8328                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8329         }
8330         regs->rax = kvm_rax_read(vcpu);
8331         regs->rbx = kvm_rbx_read(vcpu);
8332         regs->rcx = kvm_rcx_read(vcpu);
8333         regs->rdx = kvm_rdx_read(vcpu);
8334         regs->rsi = kvm_rsi_read(vcpu);
8335         regs->rdi = kvm_rdi_read(vcpu);
8336         regs->rsp = kvm_rsp_read(vcpu);
8337         regs->rbp = kvm_rbp_read(vcpu);
8338 #ifdef CONFIG_X86_64
8339         regs->r8 = kvm_r8_read(vcpu);
8340         regs->r9 = kvm_r9_read(vcpu);
8341         regs->r10 = kvm_r10_read(vcpu);
8342         regs->r11 = kvm_r11_read(vcpu);
8343         regs->r12 = kvm_r12_read(vcpu);
8344         regs->r13 = kvm_r13_read(vcpu);
8345         regs->r14 = kvm_r14_read(vcpu);
8346         regs->r15 = kvm_r15_read(vcpu);
8347 #endif
8348
8349         regs->rip = kvm_rip_read(vcpu);
8350         regs->rflags = kvm_get_rflags(vcpu);
8351 }
8352
8353 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8354 {
8355         vcpu_load(vcpu);
8356         __get_regs(vcpu, regs);
8357         vcpu_put(vcpu);
8358         return 0;
8359 }
8360
8361 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8362 {
8363         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
8364         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8365
8366         kvm_rax_write(vcpu, regs->rax);
8367         kvm_rbx_write(vcpu, regs->rbx);
8368         kvm_rcx_write(vcpu, regs->rcx);
8369         kvm_rdx_write(vcpu, regs->rdx);
8370         kvm_rsi_write(vcpu, regs->rsi);
8371         kvm_rdi_write(vcpu, regs->rdi);
8372         kvm_rsp_write(vcpu, regs->rsp);
8373         kvm_rbp_write(vcpu, regs->rbp);
8374 #ifdef CONFIG_X86_64
8375         kvm_r8_write(vcpu, regs->r8);
8376         kvm_r9_write(vcpu, regs->r9);
8377         kvm_r10_write(vcpu, regs->r10);
8378         kvm_r11_write(vcpu, regs->r11);
8379         kvm_r12_write(vcpu, regs->r12);
8380         kvm_r13_write(vcpu, regs->r13);
8381         kvm_r14_write(vcpu, regs->r14);
8382         kvm_r15_write(vcpu, regs->r15);
8383 #endif
8384
8385         kvm_rip_write(vcpu, regs->rip);
8386         kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
8387
8388         vcpu->arch.exception.pending = false;
8389
8390         kvm_make_request(KVM_REQ_EVENT, vcpu);
8391 }
8392
8393 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8394 {
8395         vcpu_load(vcpu);
8396         __set_regs(vcpu, regs);
8397         vcpu_put(vcpu);
8398         return 0;
8399 }
8400
8401 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
8402 {
8403         struct kvm_segment cs;
8404
8405         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8406         *db = cs.db;
8407         *l = cs.l;
8408 }
8409 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
8410
8411 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8412 {
8413         struct desc_ptr dt;
8414
8415         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8416         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8417         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8418         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8419         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8420         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8421
8422         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8423         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8424
8425         kvm_x86_ops->get_idt(vcpu, &dt);
8426         sregs->idt.limit = dt.size;
8427         sregs->idt.base = dt.address;
8428         kvm_x86_ops->get_gdt(vcpu, &dt);
8429         sregs->gdt.limit = dt.size;
8430         sregs->gdt.base = dt.address;
8431
8432         sregs->cr0 = kvm_read_cr0(vcpu);
8433         sregs->cr2 = vcpu->arch.cr2;
8434         sregs->cr3 = kvm_read_cr3(vcpu);
8435         sregs->cr4 = kvm_read_cr4(vcpu);
8436         sregs->cr8 = kvm_get_cr8(vcpu);
8437         sregs->efer = vcpu->arch.efer;
8438         sregs->apic_base = kvm_get_apic_base(vcpu);
8439
8440         memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
8441
8442         if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
8443                 set_bit(vcpu->arch.interrupt.nr,
8444                         (unsigned long *)sregs->interrupt_bitmap);
8445 }
8446
8447 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
8448                                   struct kvm_sregs *sregs)
8449 {
8450         vcpu_load(vcpu);
8451         __get_sregs(vcpu, sregs);
8452         vcpu_put(vcpu);
8453         return 0;
8454 }
8455
8456 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
8457                                     struct kvm_mp_state *mp_state)
8458 {
8459         vcpu_load(vcpu);
8460
8461         kvm_apic_accept_events(vcpu);
8462         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
8463                                         vcpu->arch.pv.pv_unhalted)
8464                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
8465         else
8466                 mp_state->mp_state = vcpu->arch.mp_state;
8467
8468         vcpu_put(vcpu);
8469         return 0;
8470 }
8471
8472 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
8473                                     struct kvm_mp_state *mp_state)
8474 {
8475         int ret = -EINVAL;
8476
8477         vcpu_load(vcpu);
8478
8479         if (!lapic_in_kernel(vcpu) &&
8480             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
8481                 goto out;
8482
8483         /* INITs are latched while in SMM */
8484         if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
8485             (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
8486              mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
8487                 goto out;
8488
8489         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
8490                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
8491                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
8492         } else
8493                 vcpu->arch.mp_state = mp_state->mp_state;
8494         kvm_make_request(KVM_REQ_EVENT, vcpu);
8495
8496         ret = 0;
8497 out:
8498         vcpu_put(vcpu);
8499         return ret;
8500 }
8501
8502 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
8503                     int reason, bool has_error_code, u32 error_code)
8504 {
8505         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
8506         int ret;
8507
8508         init_emulate_ctxt(vcpu);
8509
8510         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
8511                                    has_error_code, error_code);
8512
8513         if (ret)
8514                 return EMULATE_FAIL;
8515
8516         kvm_rip_write(vcpu, ctxt->eip);
8517         kvm_set_rflags(vcpu, ctxt->eflags);
8518         kvm_make_request(KVM_REQ_EVENT, vcpu);
8519         return EMULATE_DONE;
8520 }
8521 EXPORT_SYMBOL_GPL(kvm_task_switch);
8522
8523 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8524 {
8525         if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
8526                         (sregs->cr4 & X86_CR4_OSXSAVE))
8527                 return  -EINVAL;
8528
8529         if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
8530                 /*
8531                  * When EFER.LME and CR0.PG are set, the processor is in
8532                  * 64-bit mode (though maybe in a 32-bit code segment).
8533                  * CR4.PAE and EFER.LMA must be set.
8534                  */
8535                 if (!(sregs->cr4 & X86_CR4_PAE)
8536                     || !(sregs->efer & EFER_LMA))
8537                         return -EINVAL;
8538         } else {
8539                 /*
8540                  * Not in 64-bit mode: EFER.LMA is clear and the code
8541                  * segment cannot be 64-bit.
8542                  */
8543                 if (sregs->efer & EFER_LMA || sregs->cs.l)
8544                         return -EINVAL;
8545         }
8546
8547         return 0;
8548 }
8549
8550 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8551 {
8552         struct msr_data apic_base_msr;
8553         int mmu_reset_needed = 0;
8554         int cpuid_update_needed = 0;
8555         int pending_vec, max_bits, idx;
8556         struct desc_ptr dt;
8557         int ret = -EINVAL;
8558
8559         if (kvm_valid_sregs(vcpu, sregs))
8560                 goto out;
8561
8562         apic_base_msr.data = sregs->apic_base;
8563         apic_base_msr.host_initiated = true;
8564         if (kvm_set_apic_base(vcpu, &apic_base_msr))
8565                 goto out;
8566
8567         dt.size = sregs->idt.limit;
8568         dt.address = sregs->idt.base;
8569         kvm_x86_ops->set_idt(vcpu, &dt);
8570         dt.size = sregs->gdt.limit;
8571         dt.address = sregs->gdt.base;
8572         kvm_x86_ops->set_gdt(vcpu, &dt);
8573
8574         vcpu->arch.cr2 = sregs->cr2;
8575         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
8576         vcpu->arch.cr3 = sregs->cr3;
8577         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
8578
8579         kvm_set_cr8(vcpu, sregs->cr8);
8580
8581         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
8582         kvm_x86_ops->set_efer(vcpu, sregs->efer);
8583
8584         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
8585         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
8586         vcpu->arch.cr0 = sregs->cr0;
8587
8588         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
8589         cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
8590                                 (X86_CR4_OSXSAVE | X86_CR4_PKE));
8591         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
8592         if (cpuid_update_needed)
8593                 kvm_update_cpuid(vcpu);
8594
8595         idx = srcu_read_lock(&vcpu->kvm->srcu);
8596         if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu)) {
8597                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
8598                 mmu_reset_needed = 1;
8599         }
8600         srcu_read_unlock(&vcpu->kvm->srcu, idx);
8601
8602         if (mmu_reset_needed)
8603                 kvm_mmu_reset_context(vcpu);
8604
8605         max_bits = KVM_NR_INTERRUPTS;
8606         pending_vec = find_first_bit(
8607                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
8608         if (pending_vec < max_bits) {
8609                 kvm_queue_interrupt(vcpu, pending_vec, false);
8610                 pr_debug("Set back pending irq %d\n", pending_vec);
8611         }
8612
8613         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8614         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8615         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8616         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8617         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8618         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8619
8620         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8621         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8622
8623         update_cr8_intercept(vcpu);
8624
8625         /* Older userspace won't unhalt the vcpu on reset. */
8626         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
8627             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
8628             !is_protmode(vcpu))
8629                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8630
8631         kvm_make_request(KVM_REQ_EVENT, vcpu);
8632
8633         ret = 0;
8634 out:
8635         return ret;
8636 }
8637
8638 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
8639                                   struct kvm_sregs *sregs)
8640 {
8641         int ret;
8642
8643         vcpu_load(vcpu);
8644         ret = __set_sregs(vcpu, sregs);
8645         vcpu_put(vcpu);
8646         return ret;
8647 }
8648
8649 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
8650                                         struct kvm_guest_debug *dbg)
8651 {
8652         unsigned long rflags;
8653         int i, r;
8654
8655         vcpu_load(vcpu);
8656
8657         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
8658                 r = -EBUSY;
8659                 if (vcpu->arch.exception.pending)
8660                         goto out;
8661                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
8662                         kvm_queue_exception(vcpu, DB_VECTOR);
8663                 else
8664                         kvm_queue_exception(vcpu, BP_VECTOR);
8665         }
8666
8667         /*
8668          * Read rflags as long as potentially injected trace flags are still
8669          * filtered out.
8670          */
8671         rflags = kvm_get_rflags(vcpu);
8672
8673         vcpu->guest_debug = dbg->control;
8674         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
8675                 vcpu->guest_debug = 0;
8676
8677         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
8678                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
8679                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
8680                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
8681         } else {
8682                 for (i = 0; i < KVM_NR_DB_REGS; i++)
8683                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
8684         }
8685         kvm_update_dr7(vcpu);
8686
8687         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8688                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
8689                         get_segment_base(vcpu, VCPU_SREG_CS);
8690
8691         /*
8692          * Trigger an rflags update that will inject or remove the trace
8693          * flags.
8694          */
8695         kvm_set_rflags(vcpu, rflags);
8696
8697         kvm_x86_ops->update_bp_intercept(vcpu);
8698
8699         r = 0;
8700
8701 out:
8702         vcpu_put(vcpu);
8703         return r;
8704 }
8705
8706 /*
8707  * Translate a guest virtual address to a guest physical address.
8708  */
8709 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
8710                                     struct kvm_translation *tr)
8711 {
8712         unsigned long vaddr = tr->linear_address;
8713         gpa_t gpa;
8714         int idx;
8715
8716         vcpu_load(vcpu);
8717
8718         idx = srcu_read_lock(&vcpu->kvm->srcu);
8719         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
8720         srcu_read_unlock(&vcpu->kvm->srcu, idx);
8721         tr->physical_address = gpa;
8722         tr->valid = gpa != UNMAPPED_GVA;
8723         tr->writeable = 1;
8724         tr->usermode = 0;
8725
8726         vcpu_put(vcpu);
8727         return 0;
8728 }
8729
8730 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8731 {
8732         struct fxregs_state *fxsave;
8733
8734         vcpu_load(vcpu);
8735
8736         fxsave = &vcpu->arch.guest_fpu->state.fxsave;
8737         memcpy(fpu->fpr, fxsave->st_space, 128);
8738         fpu->fcw = fxsave->cwd;
8739         fpu->fsw = fxsave->swd;
8740         fpu->ftwx = fxsave->twd;
8741         fpu->last_opcode = fxsave->fop;
8742         fpu->last_ip = fxsave->rip;
8743         fpu->last_dp = fxsave->rdp;
8744         memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
8745
8746         vcpu_put(vcpu);
8747         return 0;
8748 }
8749
8750 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8751 {
8752         struct fxregs_state *fxsave;
8753
8754         vcpu_load(vcpu);
8755
8756         fxsave = &vcpu->arch.guest_fpu->state.fxsave;
8757
8758         memcpy(fxsave->st_space, fpu->fpr, 128);
8759         fxsave->cwd = fpu->fcw;
8760         fxsave->swd = fpu->fsw;
8761         fxsave->twd = fpu->ftwx;
8762         fxsave->fop = fpu->last_opcode;
8763         fxsave->rip = fpu->last_ip;
8764         fxsave->rdp = fpu->last_dp;
8765         memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
8766
8767         vcpu_put(vcpu);
8768         return 0;
8769 }
8770
8771 static void store_regs(struct kvm_vcpu *vcpu)
8772 {
8773         BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
8774
8775         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
8776                 __get_regs(vcpu, &vcpu->run->s.regs.regs);
8777
8778         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
8779                 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
8780
8781         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
8782                 kvm_vcpu_ioctl_x86_get_vcpu_events(
8783                                 vcpu, &vcpu->run->s.regs.events);
8784 }
8785
8786 static int sync_regs(struct kvm_vcpu *vcpu)
8787 {
8788         if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
8789                 return -EINVAL;
8790
8791         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
8792                 __set_regs(vcpu, &vcpu->run->s.regs.regs);
8793                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
8794         }
8795         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
8796                 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
8797                         return -EINVAL;
8798                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
8799         }
8800         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
8801                 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
8802                                 vcpu, &vcpu->run->s.regs.events))
8803                         return -EINVAL;
8804                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
8805         }
8806
8807         return 0;
8808 }
8809
8810 static void fx_init(struct kvm_vcpu *vcpu)
8811 {
8812         fpstate_init(&vcpu->arch.guest_fpu->state);
8813         if (boot_cpu_has(X86_FEATURE_XSAVES))
8814                 vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
8815                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
8816
8817         /*
8818          * Ensure guest xcr0 is valid for loading
8819          */
8820         vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8821
8822         vcpu->arch.cr0 |= X86_CR0_ET;
8823 }
8824
8825 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
8826 {
8827         void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
8828
8829         kvmclock_reset(vcpu);
8830
8831         kvm_x86_ops->vcpu_free(vcpu);
8832         free_cpumask_var(wbinvd_dirty_mask);
8833 }
8834
8835 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
8836                                                 unsigned int id)
8837 {
8838         struct kvm_vcpu *vcpu;
8839
8840         if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
8841                 printk_once(KERN_WARNING
8842                 "kvm: SMP vm created on host with unstable TSC; "
8843                 "guest TSC will not be reliable\n");
8844
8845         vcpu = kvm_x86_ops->vcpu_create(kvm, id);
8846
8847         return vcpu;
8848 }
8849
8850 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
8851 {
8852         vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
8853         vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
8854         kvm_vcpu_mtrr_init(vcpu);
8855         vcpu_load(vcpu);
8856         kvm_vcpu_reset(vcpu, false);
8857         kvm_init_mmu(vcpu, false);
8858         vcpu_put(vcpu);
8859         return 0;
8860 }
8861
8862 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
8863 {
8864         struct msr_data msr;
8865         struct kvm *kvm = vcpu->kvm;
8866
8867         kvm_hv_vcpu_postcreate(vcpu);
8868
8869         if (mutex_lock_killable(&vcpu->mutex))
8870                 return;
8871         vcpu_load(vcpu);
8872         msr.data = 0x0;
8873         msr.index = MSR_IA32_TSC;
8874         msr.host_initiated = true;
8875         kvm_write_tsc(vcpu, &msr);
8876         vcpu_put(vcpu);
8877         mutex_unlock(&vcpu->mutex);
8878
8879         if (!kvmclock_periodic_sync)
8880                 return;
8881
8882         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
8883                                         KVMCLOCK_SYNC_PERIOD);
8884 }
8885
8886 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
8887 {
8888         vcpu->arch.apf.msr_val = 0;
8889
8890         vcpu_load(vcpu);
8891         kvm_mmu_unload(vcpu);
8892         vcpu_put(vcpu);
8893
8894         kvm_x86_ops->vcpu_free(vcpu);
8895 }
8896
8897 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
8898 {
8899         kvm_lapic_reset(vcpu, init_event);
8900
8901         vcpu->arch.hflags = 0;
8902
8903         vcpu->arch.smi_pending = 0;
8904         vcpu->arch.smi_count = 0;
8905         atomic_set(&vcpu->arch.nmi_queued, 0);
8906         vcpu->arch.nmi_pending = 0;
8907         vcpu->arch.nmi_injected = false;
8908         kvm_clear_interrupt_queue(vcpu);
8909         kvm_clear_exception_queue(vcpu);
8910         vcpu->arch.exception.pending = false;
8911
8912         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
8913         kvm_update_dr0123(vcpu);
8914         vcpu->arch.dr6 = DR6_INIT;
8915         kvm_update_dr6(vcpu);
8916         vcpu->arch.dr7 = DR7_FIXED_1;
8917         kvm_update_dr7(vcpu);
8918
8919         vcpu->arch.cr2 = 0;
8920
8921         kvm_make_request(KVM_REQ_EVENT, vcpu);
8922         vcpu->arch.apf.msr_val = 0;
8923         vcpu->arch.st.msr_val = 0;
8924
8925         kvmclock_reset(vcpu);
8926
8927         kvm_clear_async_pf_completion_queue(vcpu);
8928         kvm_async_pf_hash_reset(vcpu);
8929         vcpu->arch.apf.halted = false;
8930
8931         if (kvm_mpx_supported()) {
8932                 void *mpx_state_buffer;
8933
8934                 /*
8935                  * To avoid have the INIT path from kvm_apic_has_events() that be
8936                  * called with loaded FPU and does not let userspace fix the state.
8937                  */
8938                 if (init_event)
8939                         kvm_put_guest_fpu(vcpu);
8940                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
8941                                         XFEATURE_BNDREGS);
8942                 if (mpx_state_buffer)
8943                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
8944                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
8945                                         XFEATURE_BNDCSR);
8946                 if (mpx_state_buffer)
8947                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
8948                 if (init_event)
8949                         kvm_load_guest_fpu(vcpu);
8950         }
8951
8952         if (!init_event) {
8953                 kvm_pmu_reset(vcpu);
8954                 vcpu->arch.smbase = 0x30000;
8955
8956                 vcpu->arch.msr_misc_features_enables = 0;
8957
8958                 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8959         }
8960
8961         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
8962         vcpu->arch.regs_avail = ~0;
8963         vcpu->arch.regs_dirty = ~0;
8964
8965         vcpu->arch.ia32_xss = 0;
8966
8967         kvm_x86_ops->vcpu_reset(vcpu, init_event);
8968 }
8969
8970 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
8971 {
8972         struct kvm_segment cs;
8973
8974         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8975         cs.selector = vector << 8;
8976         cs.base = vector << 12;
8977         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8978         kvm_rip_write(vcpu, 0);
8979 }
8980
8981 int kvm_arch_hardware_enable(void)
8982 {
8983         struct kvm *kvm;
8984         struct kvm_vcpu *vcpu;
8985         int i;
8986         int ret;
8987         u64 local_tsc;
8988         u64 max_tsc = 0;
8989         bool stable, backwards_tsc = false;
8990
8991         kvm_shared_msr_cpu_online();
8992         ret = kvm_x86_ops->hardware_enable();
8993         if (ret != 0)
8994                 return ret;
8995
8996         local_tsc = rdtsc();
8997         stable = !kvm_check_tsc_unstable();
8998         list_for_each_entry(kvm, &vm_list, vm_list) {
8999                 kvm_for_each_vcpu(i, vcpu, kvm) {
9000                         if (!stable && vcpu->cpu == smp_processor_id())
9001                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9002                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
9003                                 backwards_tsc = true;
9004                                 if (vcpu->arch.last_host_tsc > max_tsc)
9005                                         max_tsc = vcpu->arch.last_host_tsc;
9006                         }
9007                 }
9008         }
9009
9010         /*
9011          * Sometimes, even reliable TSCs go backwards.  This happens on
9012          * platforms that reset TSC during suspend or hibernate actions, but
9013          * maintain synchronization.  We must compensate.  Fortunately, we can
9014          * detect that condition here, which happens early in CPU bringup,
9015          * before any KVM threads can be running.  Unfortunately, we can't
9016          * bring the TSCs fully up to date with real time, as we aren't yet far
9017          * enough into CPU bringup that we know how much real time has actually
9018          * elapsed; our helper function, ktime_get_boot_ns() will be using boot
9019          * variables that haven't been updated yet.
9020          *
9021          * So we simply find the maximum observed TSC above, then record the
9022          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
9023          * the adjustment will be applied.  Note that we accumulate
9024          * adjustments, in case multiple suspend cycles happen before some VCPU
9025          * gets a chance to run again.  In the event that no KVM threads get a
9026          * chance to run, we will miss the entire elapsed period, as we'll have
9027          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
9028          * loose cycle time.  This isn't too big a deal, since the loss will be
9029          * uniform across all VCPUs (not to mention the scenario is extremely
9030          * unlikely). It is possible that a second hibernate recovery happens
9031          * much faster than a first, causing the observed TSC here to be
9032          * smaller; this would require additional padding adjustment, which is
9033          * why we set last_host_tsc to the local tsc observed here.
9034          *
9035          * N.B. - this code below runs only on platforms with reliable TSC,
9036          * as that is the only way backwards_tsc is set above.  Also note
9037          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
9038          * have the same delta_cyc adjustment applied if backwards_tsc
9039          * is detected.  Note further, this adjustment is only done once,
9040          * as we reset last_host_tsc on all VCPUs to stop this from being
9041          * called multiple times (one for each physical CPU bringup).
9042          *
9043          * Platforms with unreliable TSCs don't have to deal with this, they
9044          * will be compensated by the logic in vcpu_load, which sets the TSC to
9045          * catchup mode.  This will catchup all VCPUs to real time, but cannot
9046          * guarantee that they stay in perfect synchronization.
9047          */
9048         if (backwards_tsc) {
9049                 u64 delta_cyc = max_tsc - local_tsc;
9050                 list_for_each_entry(kvm, &vm_list, vm_list) {
9051                         kvm->arch.backwards_tsc_observed = true;
9052                         kvm_for_each_vcpu(i, vcpu, kvm) {
9053                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
9054                                 vcpu->arch.last_host_tsc = local_tsc;
9055                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9056                         }
9057
9058                         /*
9059                          * We have to disable TSC offset matching.. if you were
9060                          * booting a VM while issuing an S4 host suspend....
9061                          * you may have some problem.  Solving this issue is
9062                          * left as an exercise to the reader.
9063                          */
9064                         kvm->arch.last_tsc_nsec = 0;
9065                         kvm->arch.last_tsc_write = 0;
9066                 }
9067
9068         }
9069         return 0;
9070 }
9071
9072 void kvm_arch_hardware_disable(void)
9073 {
9074         kvm_x86_ops->hardware_disable();
9075         drop_user_return_notifiers();
9076 }
9077
9078 int kvm_arch_hardware_setup(void)
9079 {
9080         int r;
9081
9082         r = kvm_x86_ops->hardware_setup();
9083         if (r != 0)
9084                 return r;
9085
9086         if (kvm_has_tsc_control) {
9087                 /*
9088                  * Make sure the user can only configure tsc_khz values that
9089                  * fit into a signed integer.
9090                  * A min value is not calculated because it will always
9091                  * be 1 on all machines.
9092                  */
9093                 u64 max = min(0x7fffffffULL,
9094                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
9095                 kvm_max_guest_tsc_khz = max;
9096
9097                 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
9098         }
9099
9100         kvm_init_msr_list();
9101         return 0;
9102 }
9103
9104 void kvm_arch_hardware_unsetup(void)
9105 {
9106         kvm_x86_ops->hardware_unsetup();
9107 }
9108
9109 void kvm_arch_check_processor_compat(void *rtn)
9110 {
9111         kvm_x86_ops->check_processor_compatibility(rtn);
9112 }
9113
9114 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
9115 {
9116         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
9117 }
9118 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
9119
9120 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
9121 {
9122         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
9123 }
9124
9125 struct static_key kvm_no_apic_vcpu __read_mostly;
9126 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
9127
9128 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
9129 {
9130         struct page *page;
9131         int r;
9132
9133         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
9134         if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
9135                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9136         else
9137                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
9138
9139         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
9140         if (!page) {
9141                 r = -ENOMEM;
9142                 goto fail;
9143         }
9144         vcpu->arch.pio_data = page_address(page);
9145
9146         kvm_set_tsc_khz(vcpu, max_tsc_khz);
9147
9148         r = kvm_mmu_create(vcpu);
9149         if (r < 0)
9150                 goto fail_free_pio_data;
9151
9152         if (irqchip_in_kernel(vcpu->kvm)) {
9153                 vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu);
9154                 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
9155                 if (r < 0)
9156                         goto fail_mmu_destroy;
9157         } else
9158                 static_key_slow_inc(&kvm_no_apic_vcpu);
9159
9160         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
9161                                        GFP_KERNEL_ACCOUNT);
9162         if (!vcpu->arch.mce_banks) {
9163                 r = -ENOMEM;
9164                 goto fail_free_lapic;
9165         }
9166         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
9167
9168         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
9169                                 GFP_KERNEL_ACCOUNT)) {
9170                 r = -ENOMEM;
9171                 goto fail_free_mce_banks;
9172         }
9173
9174         fx_init(vcpu);
9175
9176         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
9177
9178         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
9179
9180         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
9181
9182         kvm_async_pf_hash_reset(vcpu);
9183         kvm_pmu_init(vcpu);
9184
9185         vcpu->arch.pending_external_vector = -1;
9186         vcpu->arch.preempted_in_kernel = false;
9187
9188         kvm_hv_vcpu_init(vcpu);
9189
9190         return 0;
9191
9192 fail_free_mce_banks:
9193         kfree(vcpu->arch.mce_banks);
9194 fail_free_lapic:
9195         kvm_free_lapic(vcpu);
9196 fail_mmu_destroy:
9197         kvm_mmu_destroy(vcpu);
9198 fail_free_pio_data:
9199         free_page((unsigned long)vcpu->arch.pio_data);
9200 fail:
9201         return r;
9202 }
9203
9204 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
9205 {
9206         int idx;
9207
9208         kvm_hv_vcpu_uninit(vcpu);
9209         kvm_pmu_destroy(vcpu);
9210         kfree(vcpu->arch.mce_banks);
9211         kvm_free_lapic(vcpu);
9212         idx = srcu_read_lock(&vcpu->kvm->srcu);
9213         kvm_mmu_destroy(vcpu);
9214         srcu_read_unlock(&vcpu->kvm->srcu, idx);
9215         free_page((unsigned long)vcpu->arch.pio_data);
9216         if (!lapic_in_kernel(vcpu))
9217                 static_key_slow_dec(&kvm_no_apic_vcpu);
9218 }
9219
9220 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
9221 {
9222         vcpu->arch.l1tf_flush_l1d = true;
9223         kvm_x86_ops->sched_in(vcpu, cpu);
9224 }
9225
9226 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
9227 {
9228         if (type)
9229                 return -EINVAL;
9230
9231         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
9232         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
9233         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
9234         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
9235
9236         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
9237         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
9238         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
9239         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
9240                 &kvm->arch.irq_sources_bitmap);
9241
9242         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
9243         mutex_init(&kvm->arch.apic_map_lock);
9244         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
9245
9246         kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
9247         pvclock_update_vm_gtod_copy(kvm);
9248
9249         kvm->arch.guest_can_read_msr_platform_info = true;
9250
9251         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
9252         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
9253
9254         kvm_hv_init_vm(kvm);
9255         kvm_page_track_init(kvm);
9256         kvm_mmu_init_vm(kvm);
9257
9258         if (kvm_x86_ops->vm_init)
9259                 return kvm_x86_ops->vm_init(kvm);
9260
9261         return 0;
9262 }
9263
9264 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
9265 {
9266         vcpu_load(vcpu);
9267         kvm_mmu_unload(vcpu);
9268         vcpu_put(vcpu);
9269 }
9270
9271 static void kvm_free_vcpus(struct kvm *kvm)
9272 {
9273         unsigned int i;
9274         struct kvm_vcpu *vcpu;
9275
9276         /*
9277          * Unpin any mmu pages first.
9278          */
9279         kvm_for_each_vcpu(i, vcpu, kvm) {
9280                 kvm_clear_async_pf_completion_queue(vcpu);
9281                 kvm_unload_vcpu_mmu(vcpu);
9282         }
9283         kvm_for_each_vcpu(i, vcpu, kvm)
9284                 kvm_arch_vcpu_free(vcpu);
9285
9286         mutex_lock(&kvm->lock);
9287         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
9288                 kvm->vcpus[i] = NULL;
9289
9290         atomic_set(&kvm->online_vcpus, 0);
9291         mutex_unlock(&kvm->lock);
9292 }
9293
9294 void kvm_arch_sync_events(struct kvm *kvm)
9295 {
9296         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
9297         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
9298         kvm_free_pit(kvm);
9299 }
9300
9301 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9302 {
9303         int i, r;
9304         unsigned long hva;
9305         struct kvm_memslots *slots = kvm_memslots(kvm);
9306         struct kvm_memory_slot *slot, old;
9307
9308         /* Called with kvm->slots_lock held.  */
9309         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
9310                 return -EINVAL;
9311
9312         slot = id_to_memslot(slots, id);
9313         if (size) {
9314                 if (slot->npages)
9315                         return -EEXIST;
9316
9317                 /*
9318                  * MAP_SHARED to prevent internal slot pages from being moved
9319                  * by fork()/COW.
9320                  */
9321                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
9322                               MAP_SHARED | MAP_ANONYMOUS, 0);
9323                 if (IS_ERR((void *)hva))
9324                         return PTR_ERR((void *)hva);
9325         } else {
9326                 if (!slot->npages)
9327                         return 0;
9328
9329                 hva = 0;
9330         }
9331
9332         old = *slot;
9333         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
9334                 struct kvm_userspace_memory_region m;
9335
9336                 m.slot = id | (i << 16);
9337                 m.flags = 0;
9338                 m.guest_phys_addr = gpa;
9339                 m.userspace_addr = hva;
9340                 m.memory_size = size;
9341                 r = __kvm_set_memory_region(kvm, &m);
9342                 if (r < 0)
9343                         return r;
9344         }
9345
9346         if (!size)
9347                 vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
9348
9349         return 0;
9350 }
9351 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
9352
9353 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9354 {
9355         int r;
9356
9357         mutex_lock(&kvm->slots_lock);
9358         r = __x86_set_memory_region(kvm, id, gpa, size);
9359         mutex_unlock(&kvm->slots_lock);
9360
9361         return r;
9362 }
9363 EXPORT_SYMBOL_GPL(x86_set_memory_region);
9364
9365 void kvm_arch_destroy_vm(struct kvm *kvm)
9366 {
9367         if (current->mm == kvm->mm) {
9368                 /*
9369                  * Free memory regions allocated on behalf of userspace,
9370                  * unless the the memory map has changed due to process exit
9371                  * or fd copying.
9372                  */
9373                 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
9374                 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
9375                 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
9376         }
9377         if (kvm_x86_ops->vm_destroy)
9378                 kvm_x86_ops->vm_destroy(kvm);
9379         kvm_pic_destroy(kvm);
9380         kvm_ioapic_destroy(kvm);
9381         kvm_free_vcpus(kvm);
9382         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
9383         kvm_mmu_uninit_vm(kvm);
9384         kvm_page_track_cleanup(kvm);
9385         kvm_hv_destroy_vm(kvm);
9386 }
9387
9388 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
9389                            struct kvm_memory_slot *dont)
9390 {
9391         int i;
9392
9393         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9394                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
9395                         kvfree(free->arch.rmap[i]);
9396                         free->arch.rmap[i] = NULL;
9397                 }
9398                 if (i == 0)
9399                         continue;
9400
9401                 if (!dont || free->arch.lpage_info[i - 1] !=
9402                              dont->arch.lpage_info[i - 1]) {
9403                         kvfree(free->arch.lpage_info[i - 1]);
9404                         free->arch.lpage_info[i - 1] = NULL;
9405                 }
9406         }
9407
9408         kvm_page_track_free_memslot(free, dont);
9409 }
9410
9411 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
9412                             unsigned long npages)
9413 {
9414         int i;
9415
9416         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9417                 struct kvm_lpage_info *linfo;
9418                 unsigned long ugfn;
9419                 int lpages;
9420                 int level = i + 1;
9421
9422                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
9423                                       slot->base_gfn, level) + 1;
9424
9425                 slot->arch.rmap[i] =
9426                         kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
9427                                  GFP_KERNEL_ACCOUNT);
9428                 if (!slot->arch.rmap[i])
9429                         goto out_free;
9430                 if (i == 0)
9431                         continue;
9432
9433                 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
9434                 if (!linfo)
9435                         goto out_free;
9436
9437                 slot->arch.lpage_info[i - 1] = linfo;
9438
9439                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
9440                         linfo[0].disallow_lpage = 1;
9441                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
9442                         linfo[lpages - 1].disallow_lpage = 1;
9443                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
9444                 /*
9445                  * If the gfn and userspace address are not aligned wrt each
9446                  * other, or if explicitly asked to, disable large page
9447                  * support for this slot
9448                  */
9449                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
9450                     !kvm_largepages_enabled()) {
9451                         unsigned long j;
9452
9453                         for (j = 0; j < lpages; ++j)
9454                                 linfo[j].disallow_lpage = 1;
9455                 }
9456         }
9457
9458         if (kvm_page_track_create_memslot(slot, npages))
9459                 goto out_free;
9460
9461         return 0;
9462
9463 out_free:
9464         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9465                 kvfree(slot->arch.rmap[i]);
9466                 slot->arch.rmap[i] = NULL;
9467                 if (i == 0)
9468                         continue;
9469
9470                 kvfree(slot->arch.lpage_info[i - 1]);
9471                 slot->arch.lpage_info[i - 1] = NULL;
9472         }
9473         return -ENOMEM;
9474 }
9475
9476 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
9477 {
9478         /*
9479          * memslots->generation has been incremented.
9480          * mmio generation may have reached its maximum value.
9481          */
9482         kvm_mmu_invalidate_mmio_sptes(kvm, gen);
9483 }
9484
9485 int kvm_arch_prepare_memory_region(struct kvm *kvm,
9486                                 struct kvm_memory_slot *memslot,
9487                                 const struct kvm_userspace_memory_region *mem,
9488                                 enum kvm_mr_change change)
9489 {
9490         return 0;
9491 }
9492
9493 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
9494                                      struct kvm_memory_slot *new)
9495 {
9496         /* Still write protect RO slot */
9497         if (new->flags & KVM_MEM_READONLY) {
9498                 kvm_mmu_slot_remove_write_access(kvm, new);
9499                 return;
9500         }
9501
9502         /*
9503          * Call kvm_x86_ops dirty logging hooks when they are valid.
9504          *
9505          * kvm_x86_ops->slot_disable_log_dirty is called when:
9506          *
9507          *  - KVM_MR_CREATE with dirty logging is disabled
9508          *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
9509          *
9510          * The reason is, in case of PML, we need to set D-bit for any slots
9511          * with dirty logging disabled in order to eliminate unnecessary GPA
9512          * logging in PML buffer (and potential PML buffer full VMEXT). This
9513          * guarantees leaving PML enabled during guest's lifetime won't have
9514          * any additional overhead from PML when guest is running with dirty
9515          * logging disabled for memory slots.
9516          *
9517          * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
9518          * to dirty logging mode.
9519          *
9520          * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
9521          *
9522          * In case of write protect:
9523          *
9524          * Write protect all pages for dirty logging.
9525          *
9526          * All the sptes including the large sptes which point to this
9527          * slot are set to readonly. We can not create any new large
9528          * spte on this slot until the end of the logging.
9529          *
9530          * See the comments in fast_page_fault().
9531          */
9532         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
9533                 if (kvm_x86_ops->slot_enable_log_dirty)
9534                         kvm_x86_ops->slot_enable_log_dirty(kvm, new);
9535                 else
9536                         kvm_mmu_slot_remove_write_access(kvm, new);
9537         } else {
9538                 if (kvm_x86_ops->slot_disable_log_dirty)
9539                         kvm_x86_ops->slot_disable_log_dirty(kvm, new);
9540         }
9541 }
9542
9543 void kvm_arch_commit_memory_region(struct kvm *kvm,
9544                                 const struct kvm_userspace_memory_region *mem,
9545                                 const struct kvm_memory_slot *old,
9546                                 const struct kvm_memory_slot *new,
9547                                 enum kvm_mr_change change)
9548 {
9549         if (!kvm->arch.n_requested_mmu_pages)
9550                 kvm_mmu_change_mmu_pages(kvm,
9551                                 kvm_mmu_calculate_default_mmu_pages(kvm));
9552
9553         /*
9554          * Dirty logging tracks sptes in 4k granularity, meaning that large
9555          * sptes have to be split.  If live migration is successful, the guest
9556          * in the source machine will be destroyed and large sptes will be
9557          * created in the destination. However, if the guest continues to run
9558          * in the source machine (for example if live migration fails), small
9559          * sptes will remain around and cause bad performance.
9560          *
9561          * Scan sptes if dirty logging has been stopped, dropping those
9562          * which can be collapsed into a single large-page spte.  Later
9563          * page faults will create the large-page sptes.
9564          */
9565         if ((change != KVM_MR_DELETE) &&
9566                 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
9567                 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
9568                 kvm_mmu_zap_collapsible_sptes(kvm, new);
9569
9570         /*
9571          * Set up write protection and/or dirty logging for the new slot.
9572          *
9573          * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
9574          * been zapped so no dirty logging staff is needed for old slot. For
9575          * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
9576          * new and it's also covered when dealing with the new slot.
9577          *
9578          * FIXME: const-ify all uses of struct kvm_memory_slot.
9579          */
9580         if (change != KVM_MR_DELETE)
9581                 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
9582 }
9583
9584 void kvm_arch_flush_shadow_all(struct kvm *kvm)
9585 {
9586         kvm_mmu_zap_all(kvm);
9587 }
9588
9589 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
9590                                    struct kvm_memory_slot *slot)
9591 {
9592         kvm_page_track_flush_slot(kvm, slot);
9593 }
9594
9595 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
9596 {
9597         return (is_guest_mode(vcpu) &&
9598                         kvm_x86_ops->guest_apic_has_interrupt &&
9599                         kvm_x86_ops->guest_apic_has_interrupt(vcpu));
9600 }
9601
9602 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
9603 {
9604         if (!list_empty_careful(&vcpu->async_pf.done))
9605                 return true;
9606
9607         if (kvm_apic_has_events(vcpu))
9608                 return true;
9609
9610         if (vcpu->arch.pv.pv_unhalted)
9611                 return true;
9612
9613         if (vcpu->arch.exception.pending)
9614                 return true;
9615
9616         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
9617             (vcpu->arch.nmi_pending &&
9618              kvm_x86_ops->nmi_allowed(vcpu)))
9619                 return true;
9620
9621         if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
9622             (vcpu->arch.smi_pending && !is_smm(vcpu)))
9623                 return true;
9624
9625         if (kvm_arch_interrupt_allowed(vcpu) &&
9626             (kvm_cpu_has_interrupt(vcpu) ||
9627             kvm_guest_apic_has_interrupt(vcpu)))
9628                 return true;
9629
9630         if (kvm_hv_has_stimer_pending(vcpu))
9631                 return true;
9632
9633         return false;
9634 }
9635
9636 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
9637 {
9638         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
9639 }
9640
9641 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
9642 {
9643         return vcpu->arch.preempted_in_kernel;
9644 }
9645
9646 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
9647 {
9648         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
9649 }
9650
9651 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
9652 {
9653         return kvm_x86_ops->interrupt_allowed(vcpu);
9654 }
9655
9656 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
9657 {
9658         if (is_64_bit_mode(vcpu))
9659                 return kvm_rip_read(vcpu);
9660         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
9661                      kvm_rip_read(vcpu));
9662 }
9663 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
9664
9665 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
9666 {
9667         return kvm_get_linear_rip(vcpu) == linear_rip;
9668 }
9669 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
9670
9671 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
9672 {
9673         unsigned long rflags;
9674
9675         rflags = kvm_x86_ops->get_rflags(vcpu);
9676         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9677                 rflags &= ~X86_EFLAGS_TF;
9678         return rflags;
9679 }
9680 EXPORT_SYMBOL_GPL(kvm_get_rflags);
9681
9682 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9683 {
9684         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
9685             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
9686                 rflags |= X86_EFLAGS_TF;
9687         kvm_x86_ops->set_rflags(vcpu, rflags);
9688 }
9689
9690 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9691 {
9692         __kvm_set_rflags(vcpu, rflags);
9693         kvm_make_request(KVM_REQ_EVENT, vcpu);
9694 }
9695 EXPORT_SYMBOL_GPL(kvm_set_rflags);
9696
9697 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
9698 {
9699         int r;
9700
9701         if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
9702               work->wakeup_all)
9703                 return;
9704
9705         r = kvm_mmu_reload(vcpu);
9706         if (unlikely(r))
9707                 return;
9708
9709         if (!vcpu->arch.mmu->direct_map &&
9710               work->arch.cr3 != vcpu->arch.mmu->get_cr3(vcpu))
9711                 return;
9712
9713         vcpu->arch.mmu->page_fault(vcpu, work->gva, 0, true);
9714 }
9715
9716 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
9717 {
9718         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
9719 }
9720
9721 static inline u32 kvm_async_pf_next_probe(u32 key)
9722 {
9723         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
9724 }
9725
9726 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9727 {
9728         u32 key = kvm_async_pf_hash_fn(gfn);
9729
9730         while (vcpu->arch.apf.gfns[key] != ~0)
9731                 key = kvm_async_pf_next_probe(key);
9732
9733         vcpu->arch.apf.gfns[key] = gfn;
9734 }
9735
9736 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
9737 {
9738         int i;
9739         u32 key = kvm_async_pf_hash_fn(gfn);
9740
9741         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
9742                      (vcpu->arch.apf.gfns[key] != gfn &&
9743                       vcpu->arch.apf.gfns[key] != ~0); i++)
9744                 key = kvm_async_pf_next_probe(key);
9745
9746         return key;
9747 }
9748
9749 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9750 {
9751         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
9752 }
9753
9754 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9755 {
9756         u32 i, j, k;
9757
9758         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
9759         while (true) {
9760                 vcpu->arch.apf.gfns[i] = ~0;
9761                 do {
9762                         j = kvm_async_pf_next_probe(j);
9763                         if (vcpu->arch.apf.gfns[j] == ~0)
9764                                 return;
9765                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
9766                         /*
9767                          * k lies cyclically in ]i,j]
9768                          * |    i.k.j |
9769                          * |....j i.k.| or  |.k..j i...|
9770                          */
9771                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
9772                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
9773                 i = j;
9774         }
9775 }
9776
9777 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
9778 {
9779
9780         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
9781                                       sizeof(val));
9782 }
9783
9784 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
9785 {
9786
9787         return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
9788                                       sizeof(u32));
9789 }
9790
9791 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
9792                                      struct kvm_async_pf *work)
9793 {
9794         struct x86_exception fault;
9795
9796         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
9797         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
9798
9799         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
9800             (vcpu->arch.apf.send_user_only &&
9801              kvm_x86_ops->get_cpl(vcpu) == 0))
9802                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
9803         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
9804                 fault.vector = PF_VECTOR;
9805                 fault.error_code_valid = true;
9806                 fault.error_code = 0;
9807                 fault.nested_page_fault = false;
9808                 fault.address = work->arch.token;
9809                 fault.async_page_fault = true;
9810                 kvm_inject_page_fault(vcpu, &fault);
9811         }
9812 }
9813
9814 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
9815                                  struct kvm_async_pf *work)
9816 {
9817         struct x86_exception fault;
9818         u32 val;
9819
9820         if (work->wakeup_all)
9821                 work->arch.token = ~0; /* broadcast wakeup */
9822         else
9823                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
9824         trace_kvm_async_pf_ready(work->arch.token, work->gva);
9825
9826         if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
9827             !apf_get_user(vcpu, &val)) {
9828                 if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
9829                     vcpu->arch.exception.pending &&
9830                     vcpu->arch.exception.nr == PF_VECTOR &&
9831                     !apf_put_user(vcpu, 0)) {
9832                         vcpu->arch.exception.injected = false;
9833                         vcpu->arch.exception.pending = false;
9834                         vcpu->arch.exception.nr = 0;
9835                         vcpu->arch.exception.has_error_code = false;
9836                         vcpu->arch.exception.error_code = 0;
9837                         vcpu->arch.exception.has_payload = false;
9838                         vcpu->arch.exception.payload = 0;
9839                 } else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
9840                         fault.vector = PF_VECTOR;
9841                         fault.error_code_valid = true;
9842                         fault.error_code = 0;
9843                         fault.nested_page_fault = false;
9844                         fault.address = work->arch.token;
9845                         fault.async_page_fault = true;
9846                         kvm_inject_page_fault(vcpu, &fault);
9847                 }
9848         }
9849         vcpu->arch.apf.halted = false;
9850         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9851 }
9852
9853 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
9854 {
9855         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
9856                 return true;
9857         else
9858                 return kvm_can_do_async_pf(vcpu);
9859 }
9860
9861 void kvm_arch_start_assignment(struct kvm *kvm)
9862 {
9863         atomic_inc(&kvm->arch.assigned_device_count);
9864 }
9865 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
9866
9867 void kvm_arch_end_assignment(struct kvm *kvm)
9868 {
9869         atomic_dec(&kvm->arch.assigned_device_count);
9870 }
9871 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
9872
9873 bool kvm_arch_has_assigned_device(struct kvm *kvm)
9874 {
9875         return atomic_read(&kvm->arch.assigned_device_count);
9876 }
9877 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
9878
9879 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
9880 {
9881         atomic_inc(&kvm->arch.noncoherent_dma_count);
9882 }
9883 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
9884
9885 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
9886 {
9887         atomic_dec(&kvm->arch.noncoherent_dma_count);
9888 }
9889 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
9890
9891 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
9892 {
9893         return atomic_read(&kvm->arch.noncoherent_dma_count);
9894 }
9895 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
9896
9897 bool kvm_arch_has_irq_bypass(void)
9898 {
9899         return kvm_x86_ops->update_pi_irte != NULL;
9900 }
9901
9902 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
9903                                       struct irq_bypass_producer *prod)
9904 {
9905         struct kvm_kernel_irqfd *irqfd =
9906                 container_of(cons, struct kvm_kernel_irqfd, consumer);
9907
9908         irqfd->producer = prod;
9909
9910         return kvm_x86_ops->update_pi_irte(irqfd->kvm,
9911                                            prod->irq, irqfd->gsi, 1);
9912 }
9913
9914 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
9915                                       struct irq_bypass_producer *prod)
9916 {
9917         int ret;
9918         struct kvm_kernel_irqfd *irqfd =
9919                 container_of(cons, struct kvm_kernel_irqfd, consumer);
9920
9921         WARN_ON(irqfd->producer != prod);
9922         irqfd->producer = NULL;
9923
9924         /*
9925          * When producer of consumer is unregistered, we change back to
9926          * remapped mode, so we can re-use the current implementation
9927          * when the irq is masked/disabled or the consumer side (KVM
9928          * int this case doesn't want to receive the interrupts.
9929         */
9930         ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
9931         if (ret)
9932                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
9933                        " fails: %d\n", irqfd->consumer.token, ret);
9934 }
9935
9936 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
9937                                    uint32_t guest_irq, bool set)
9938 {
9939         if (!kvm_x86_ops->update_pi_irte)
9940                 return -EINVAL;
9941
9942         return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
9943 }
9944
9945 bool kvm_vector_hashing_enabled(void)
9946 {
9947         return vector_hashing;
9948 }
9949 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
9950
9951 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
9952 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
9953 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
9954 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
9955 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
9956 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
9957 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
9958 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
9959 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
9960 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
9961 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
9962 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
9963 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
9964 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
9965 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
9966 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
9967 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
9968 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
9969 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);