KVM: VMX: add MSR_IA32_TSX_CTRL into msrs_to_save
[platform/kernel/linux-starfive.git] / arch / x86 / kvm / x86.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/kvm_host.h>
21 #include "irq.h"
22 #include "ioapic.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "kvm_emulate.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "pmu.h"
31 #include "hyperv.h"
32 #include "lapic.h"
33 #include "xen.h"
34 #include "smm.h"
35
36 #include <linux/clocksource.h>
37 #include <linux/interrupt.h>
38 #include <linux/kvm.h>
39 #include <linux/fs.h>
40 #include <linux/vmalloc.h>
41 #include <linux/export.h>
42 #include <linux/moduleparam.h>
43 #include <linux/mman.h>
44 #include <linux/highmem.h>
45 #include <linux/iommu.h>
46 #include <linux/cpufreq.h>
47 #include <linux/user-return-notifier.h>
48 #include <linux/srcu.h>
49 #include <linux/slab.h>
50 #include <linux/perf_event.h>
51 #include <linux/uaccess.h>
52 #include <linux/hash.h>
53 #include <linux/pci.h>
54 #include <linux/timekeeper_internal.h>
55 #include <linux/pvclock_gtod.h>
56 #include <linux/kvm_irqfd.h>
57 #include <linux/irqbypass.h>
58 #include <linux/sched/stat.h>
59 #include <linux/sched/isolation.h>
60 #include <linux/mem_encrypt.h>
61 #include <linux/entry-kvm.h>
62 #include <linux/suspend.h>
63 #include <linux/smp.h>
64
65 #include <trace/events/ipi.h>
66 #include <trace/events/kvm.h>
67
68 #include <asm/debugreg.h>
69 #include <asm/msr.h>
70 #include <asm/desc.h>
71 #include <asm/mce.h>
72 #include <asm/pkru.h>
73 #include <linux/kernel_stat.h>
74 #include <asm/fpu/api.h>
75 #include <asm/fpu/xcr.h>
76 #include <asm/fpu/xstate.h>
77 #include <asm/pvclock.h>
78 #include <asm/div64.h>
79 #include <asm/irq_remapping.h>
80 #include <asm/mshyperv.h>
81 #include <asm/hypervisor.h>
82 #include <asm/tlbflush.h>
83 #include <asm/intel_pt.h>
84 #include <asm/emulate_prefix.h>
85 #include <asm/sgx.h>
86 #include <clocksource/hyperv_timer.h>
87
88 #define CREATE_TRACE_POINTS
89 #include "trace.h"
90
91 #define MAX_IO_MSRS 256
92 #define KVM_MAX_MCE_BANKS 32
93
94 struct kvm_caps kvm_caps __read_mostly = {
95         .supported_mce_cap = MCG_CTL_P | MCG_SER_P,
96 };
97 EXPORT_SYMBOL_GPL(kvm_caps);
98
99 #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
100
101 #define emul_to_vcpu(ctxt) \
102         ((struct kvm_vcpu *)(ctxt)->vcpu)
103
104 /* EFER defaults:
105  * - enable syscall per default because its emulated by KVM
106  * - enable LME and LMA per default on 64 bit KVM
107  */
108 #ifdef CONFIG_X86_64
109 static
110 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
111 #else
112 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
113 #endif
114
115 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
116
117 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
118
119 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
120
121 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
122                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
123
124 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
125 static void process_nmi(struct kvm_vcpu *vcpu);
126 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
127 static void store_regs(struct kvm_vcpu *vcpu);
128 static int sync_regs(struct kvm_vcpu *vcpu);
129 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
130
131 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
132 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
133
134 static DEFINE_MUTEX(vendor_module_lock);
135 struct kvm_x86_ops kvm_x86_ops __read_mostly;
136
137 #define KVM_X86_OP(func)                                             \
138         DEFINE_STATIC_CALL_NULL(kvm_x86_##func,                      \
139                                 *(((struct kvm_x86_ops *)0)->func));
140 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
141 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
142 #include <asm/kvm-x86-ops.h>
143 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
144 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
145
146 static bool __read_mostly ignore_msrs = 0;
147 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
148
149 bool __read_mostly report_ignored_msrs = true;
150 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
151 EXPORT_SYMBOL_GPL(report_ignored_msrs);
152
153 unsigned int min_timer_period_us = 200;
154 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
155
156 static bool __read_mostly kvmclock_periodic_sync = true;
157 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
158
159 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
160 static u32 __read_mostly tsc_tolerance_ppm = 250;
161 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
162
163 /*
164  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
165  * adaptive tuning starting from default advancement of 1000ns.  '0' disables
166  * advancement entirely.  Any other value is used as-is and disables adaptive
167  * tuning, i.e. allows privileged userspace to set an exact advancement time.
168  */
169 static int __read_mostly lapic_timer_advance_ns = -1;
170 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
171
172 static bool __read_mostly vector_hashing = true;
173 module_param(vector_hashing, bool, S_IRUGO);
174
175 bool __read_mostly enable_vmware_backdoor = false;
176 module_param(enable_vmware_backdoor, bool, S_IRUGO);
177 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
178
179 /*
180  * Flags to manipulate forced emulation behavior (any non-zero value will
181  * enable forced emulation).
182  */
183 #define KVM_FEP_CLEAR_RFLAGS_RF BIT(1)
184 static int __read_mostly force_emulation_prefix;
185 module_param(force_emulation_prefix, int, 0644);
186
187 int __read_mostly pi_inject_timer = -1;
188 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
189
190 /* Enable/disable PMU virtualization */
191 bool __read_mostly enable_pmu = true;
192 EXPORT_SYMBOL_GPL(enable_pmu);
193 module_param(enable_pmu, bool, 0444);
194
195 bool __read_mostly eager_page_split = true;
196 module_param(eager_page_split, bool, 0644);
197
198 /* Enable/disable SMT_RSB bug mitigation */
199 static bool __read_mostly mitigate_smt_rsb;
200 module_param(mitigate_smt_rsb, bool, 0444);
201
202 /*
203  * Restoring the host value for MSRs that are only consumed when running in
204  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
205  * returns to userspace, i.e. the kernel can run with the guest's value.
206  */
207 #define KVM_MAX_NR_USER_RETURN_MSRS 16
208
209 struct kvm_user_return_msrs {
210         struct user_return_notifier urn;
211         bool registered;
212         struct kvm_user_return_msr_values {
213                 u64 host;
214                 u64 curr;
215         } values[KVM_MAX_NR_USER_RETURN_MSRS];
216 };
217
218 u32 __read_mostly kvm_nr_uret_msrs;
219 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
220 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
221 static struct kvm_user_return_msrs __percpu *user_return_msrs;
222
223 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
224                                 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
225                                 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
226                                 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
227
228 u64 __read_mostly host_efer;
229 EXPORT_SYMBOL_GPL(host_efer);
230
231 bool __read_mostly allow_smaller_maxphyaddr = 0;
232 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
233
234 bool __read_mostly enable_apicv = true;
235 EXPORT_SYMBOL_GPL(enable_apicv);
236
237 u64 __read_mostly host_xss;
238 EXPORT_SYMBOL_GPL(host_xss);
239
240 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
241         KVM_GENERIC_VM_STATS(),
242         STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
243         STATS_DESC_COUNTER(VM, mmu_pte_write),
244         STATS_DESC_COUNTER(VM, mmu_pde_zapped),
245         STATS_DESC_COUNTER(VM, mmu_flooded),
246         STATS_DESC_COUNTER(VM, mmu_recycled),
247         STATS_DESC_COUNTER(VM, mmu_cache_miss),
248         STATS_DESC_ICOUNTER(VM, mmu_unsync),
249         STATS_DESC_ICOUNTER(VM, pages_4k),
250         STATS_DESC_ICOUNTER(VM, pages_2m),
251         STATS_DESC_ICOUNTER(VM, pages_1g),
252         STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
253         STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
254         STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
255 };
256
257 const struct kvm_stats_header kvm_vm_stats_header = {
258         .name_size = KVM_STATS_NAME_SIZE,
259         .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
260         .id_offset = sizeof(struct kvm_stats_header),
261         .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
262         .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
263                        sizeof(kvm_vm_stats_desc),
264 };
265
266 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
267         KVM_GENERIC_VCPU_STATS(),
268         STATS_DESC_COUNTER(VCPU, pf_taken),
269         STATS_DESC_COUNTER(VCPU, pf_fixed),
270         STATS_DESC_COUNTER(VCPU, pf_emulate),
271         STATS_DESC_COUNTER(VCPU, pf_spurious),
272         STATS_DESC_COUNTER(VCPU, pf_fast),
273         STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created),
274         STATS_DESC_COUNTER(VCPU, pf_guest),
275         STATS_DESC_COUNTER(VCPU, tlb_flush),
276         STATS_DESC_COUNTER(VCPU, invlpg),
277         STATS_DESC_COUNTER(VCPU, exits),
278         STATS_DESC_COUNTER(VCPU, io_exits),
279         STATS_DESC_COUNTER(VCPU, mmio_exits),
280         STATS_DESC_COUNTER(VCPU, signal_exits),
281         STATS_DESC_COUNTER(VCPU, irq_window_exits),
282         STATS_DESC_COUNTER(VCPU, nmi_window_exits),
283         STATS_DESC_COUNTER(VCPU, l1d_flush),
284         STATS_DESC_COUNTER(VCPU, halt_exits),
285         STATS_DESC_COUNTER(VCPU, request_irq_exits),
286         STATS_DESC_COUNTER(VCPU, irq_exits),
287         STATS_DESC_COUNTER(VCPU, host_state_reload),
288         STATS_DESC_COUNTER(VCPU, fpu_reload),
289         STATS_DESC_COUNTER(VCPU, insn_emulation),
290         STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
291         STATS_DESC_COUNTER(VCPU, hypercalls),
292         STATS_DESC_COUNTER(VCPU, irq_injections),
293         STATS_DESC_COUNTER(VCPU, nmi_injections),
294         STATS_DESC_COUNTER(VCPU, req_event),
295         STATS_DESC_COUNTER(VCPU, nested_run),
296         STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
297         STATS_DESC_COUNTER(VCPU, directed_yield_successful),
298         STATS_DESC_COUNTER(VCPU, preemption_reported),
299         STATS_DESC_COUNTER(VCPU, preemption_other),
300         STATS_DESC_IBOOLEAN(VCPU, guest_mode),
301         STATS_DESC_COUNTER(VCPU, notify_window_exits),
302 };
303
304 const struct kvm_stats_header kvm_vcpu_stats_header = {
305         .name_size = KVM_STATS_NAME_SIZE,
306         .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
307         .id_offset = sizeof(struct kvm_stats_header),
308         .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
309         .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
310                        sizeof(kvm_vcpu_stats_desc),
311 };
312
313 u64 __read_mostly host_xcr0;
314
315 static struct kmem_cache *x86_emulator_cache;
316
317 /*
318  * When called, it means the previous get/set msr reached an invalid msr.
319  * Return true if we want to ignore/silent this failed msr access.
320  */
321 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
322 {
323         const char *op = write ? "wrmsr" : "rdmsr";
324
325         if (ignore_msrs) {
326                 if (report_ignored_msrs)
327                         kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
328                                       op, msr, data);
329                 /* Mask the error */
330                 return true;
331         } else {
332                 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
333                                       op, msr, data);
334                 return false;
335         }
336 }
337
338 static struct kmem_cache *kvm_alloc_emulator_cache(void)
339 {
340         unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
341         unsigned int size = sizeof(struct x86_emulate_ctxt);
342
343         return kmem_cache_create_usercopy("x86_emulator", size,
344                                           __alignof__(struct x86_emulate_ctxt),
345                                           SLAB_ACCOUNT, useroffset,
346                                           size - useroffset, NULL);
347 }
348
349 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
350
351 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
352 {
353         int i;
354         for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
355                 vcpu->arch.apf.gfns[i] = ~0;
356 }
357
358 static void kvm_on_user_return(struct user_return_notifier *urn)
359 {
360         unsigned slot;
361         struct kvm_user_return_msrs *msrs
362                 = container_of(urn, struct kvm_user_return_msrs, urn);
363         struct kvm_user_return_msr_values *values;
364         unsigned long flags;
365
366         /*
367          * Disabling irqs at this point since the following code could be
368          * interrupted and executed through kvm_arch_hardware_disable()
369          */
370         local_irq_save(flags);
371         if (msrs->registered) {
372                 msrs->registered = false;
373                 user_return_notifier_unregister(urn);
374         }
375         local_irq_restore(flags);
376         for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
377                 values = &msrs->values[slot];
378                 if (values->host != values->curr) {
379                         wrmsrl(kvm_uret_msrs_list[slot], values->host);
380                         values->curr = values->host;
381                 }
382         }
383 }
384
385 static int kvm_probe_user_return_msr(u32 msr)
386 {
387         u64 val;
388         int ret;
389
390         preempt_disable();
391         ret = rdmsrl_safe(msr, &val);
392         if (ret)
393                 goto out;
394         ret = wrmsrl_safe(msr, val);
395 out:
396         preempt_enable();
397         return ret;
398 }
399
400 int kvm_add_user_return_msr(u32 msr)
401 {
402         BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
403
404         if (kvm_probe_user_return_msr(msr))
405                 return -1;
406
407         kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
408         return kvm_nr_uret_msrs++;
409 }
410 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
411
412 int kvm_find_user_return_msr(u32 msr)
413 {
414         int i;
415
416         for (i = 0; i < kvm_nr_uret_msrs; ++i) {
417                 if (kvm_uret_msrs_list[i] == msr)
418                         return i;
419         }
420         return -1;
421 }
422 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
423
424 static void kvm_user_return_msr_cpu_online(void)
425 {
426         unsigned int cpu = smp_processor_id();
427         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
428         u64 value;
429         int i;
430
431         for (i = 0; i < kvm_nr_uret_msrs; ++i) {
432                 rdmsrl_safe(kvm_uret_msrs_list[i], &value);
433                 msrs->values[i].host = value;
434                 msrs->values[i].curr = value;
435         }
436 }
437
438 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
439 {
440         unsigned int cpu = smp_processor_id();
441         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
442         int err;
443
444         value = (value & mask) | (msrs->values[slot].host & ~mask);
445         if (value == msrs->values[slot].curr)
446                 return 0;
447         err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
448         if (err)
449                 return 1;
450
451         msrs->values[slot].curr = value;
452         if (!msrs->registered) {
453                 msrs->urn.on_user_return = kvm_on_user_return;
454                 user_return_notifier_register(&msrs->urn);
455                 msrs->registered = true;
456         }
457         return 0;
458 }
459 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
460
461 static void drop_user_return_notifiers(void)
462 {
463         unsigned int cpu = smp_processor_id();
464         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
465
466         if (msrs->registered)
467                 kvm_on_user_return(&msrs->urn);
468 }
469
470 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
471 {
472         return vcpu->arch.apic_base;
473 }
474
475 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
476 {
477         return kvm_apic_mode(kvm_get_apic_base(vcpu));
478 }
479 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
480
481 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
482 {
483         enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
484         enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
485         u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
486                 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
487
488         if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
489                 return 1;
490         if (!msr_info->host_initiated) {
491                 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
492                         return 1;
493                 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
494                         return 1;
495         }
496
497         kvm_lapic_set_base(vcpu, msr_info->data);
498         kvm_recalculate_apic_map(vcpu->kvm);
499         return 0;
500 }
501
502 /*
503  * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
504  *
505  * Hardware virtualization extension instructions may fault if a reboot turns
506  * off virtualization while processes are running.  Usually after catching the
507  * fault we just panic; during reboot instead the instruction is ignored.
508  */
509 noinstr void kvm_spurious_fault(void)
510 {
511         /* Fault while not rebooting.  We want the trace. */
512         BUG_ON(!kvm_rebooting);
513 }
514 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
515
516 #define EXCPT_BENIGN            0
517 #define EXCPT_CONTRIBUTORY      1
518 #define EXCPT_PF                2
519
520 static int exception_class(int vector)
521 {
522         switch (vector) {
523         case PF_VECTOR:
524                 return EXCPT_PF;
525         case DE_VECTOR:
526         case TS_VECTOR:
527         case NP_VECTOR:
528         case SS_VECTOR:
529         case GP_VECTOR:
530                 return EXCPT_CONTRIBUTORY;
531         default:
532                 break;
533         }
534         return EXCPT_BENIGN;
535 }
536
537 #define EXCPT_FAULT             0
538 #define EXCPT_TRAP              1
539 #define EXCPT_ABORT             2
540 #define EXCPT_INTERRUPT         3
541 #define EXCPT_DB                4
542
543 static int exception_type(int vector)
544 {
545         unsigned int mask;
546
547         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
548                 return EXCPT_INTERRUPT;
549
550         mask = 1 << vector;
551
552         /*
553          * #DBs can be trap-like or fault-like, the caller must check other CPU
554          * state, e.g. DR6, to determine whether a #DB is a trap or fault.
555          */
556         if (mask & (1 << DB_VECTOR))
557                 return EXCPT_DB;
558
559         if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR)))
560                 return EXCPT_TRAP;
561
562         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
563                 return EXCPT_ABORT;
564
565         /* Reserved exceptions will result in fault */
566         return EXCPT_FAULT;
567 }
568
569 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu,
570                                    struct kvm_queued_exception *ex)
571 {
572         if (!ex->has_payload)
573                 return;
574
575         switch (ex->vector) {
576         case DB_VECTOR:
577                 /*
578                  * "Certain debug exceptions may clear bit 0-3.  The
579                  * remaining contents of the DR6 register are never
580                  * cleared by the processor".
581                  */
582                 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
583                 /*
584                  * In order to reflect the #DB exception payload in guest
585                  * dr6, three components need to be considered: active low
586                  * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
587                  * DR6_BS and DR6_BT)
588                  * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
589                  * In the target guest dr6:
590                  * FIXED_1 bits should always be set.
591                  * Active low bits should be cleared if 1-setting in payload.
592                  * Active high bits should be set if 1-setting in payload.
593                  *
594                  * Note, the payload is compatible with the pending debug
595                  * exceptions/exit qualification under VMX, that active_low bits
596                  * are active high in payload.
597                  * So they need to be flipped for DR6.
598                  */
599                 vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
600                 vcpu->arch.dr6 |= ex->payload;
601                 vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW;
602
603                 /*
604                  * The #DB payload is defined as compatible with the 'pending
605                  * debug exceptions' field under VMX, not DR6. While bit 12 is
606                  * defined in the 'pending debug exceptions' field (enabled
607                  * breakpoint), it is reserved and must be zero in DR6.
608                  */
609                 vcpu->arch.dr6 &= ~BIT(12);
610                 break;
611         case PF_VECTOR:
612                 vcpu->arch.cr2 = ex->payload;
613                 break;
614         }
615
616         ex->has_payload = false;
617         ex->payload = 0;
618 }
619 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
620
621 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector,
622                                        bool has_error_code, u32 error_code,
623                                        bool has_payload, unsigned long payload)
624 {
625         struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
626
627         ex->vector = vector;
628         ex->injected = false;
629         ex->pending = true;
630         ex->has_error_code = has_error_code;
631         ex->error_code = error_code;
632         ex->has_payload = has_payload;
633         ex->payload = payload;
634 }
635
636 /* Forcibly leave the nested mode in cases like a vCPU reset */
637 static void kvm_leave_nested(struct kvm_vcpu *vcpu)
638 {
639         kvm_x86_ops.nested_ops->leave_nested(vcpu);
640 }
641
642 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
643                 unsigned nr, bool has_error, u32 error_code,
644                 bool has_payload, unsigned long payload, bool reinject)
645 {
646         u32 prev_nr;
647         int class1, class2;
648
649         kvm_make_request(KVM_REQ_EVENT, vcpu);
650
651         /*
652          * If the exception is destined for L2 and isn't being reinjected,
653          * morph it to a VM-Exit if L1 wants to intercept the exception.  A
654          * previously injected exception is not checked because it was checked
655          * when it was original queued, and re-checking is incorrect if _L1_
656          * injected the exception, in which case it's exempt from interception.
657          */
658         if (!reinject && is_guest_mode(vcpu) &&
659             kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) {
660                 kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code,
661                                            has_payload, payload);
662                 return;
663         }
664
665         if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
666         queue:
667                 if (reinject) {
668                         /*
669                          * On VM-Entry, an exception can be pending if and only
670                          * if event injection was blocked by nested_run_pending.
671                          * In that case, however, vcpu_enter_guest() requests an
672                          * immediate exit, and the guest shouldn't proceed far
673                          * enough to need reinjection.
674                          */
675                         WARN_ON_ONCE(kvm_is_exception_pending(vcpu));
676                         vcpu->arch.exception.injected = true;
677                         if (WARN_ON_ONCE(has_payload)) {
678                                 /*
679                                  * A reinjected event has already
680                                  * delivered its payload.
681                                  */
682                                 has_payload = false;
683                                 payload = 0;
684                         }
685                 } else {
686                         vcpu->arch.exception.pending = true;
687                         vcpu->arch.exception.injected = false;
688                 }
689                 vcpu->arch.exception.has_error_code = has_error;
690                 vcpu->arch.exception.vector = nr;
691                 vcpu->arch.exception.error_code = error_code;
692                 vcpu->arch.exception.has_payload = has_payload;
693                 vcpu->arch.exception.payload = payload;
694                 if (!is_guest_mode(vcpu))
695                         kvm_deliver_exception_payload(vcpu,
696                                                       &vcpu->arch.exception);
697                 return;
698         }
699
700         /* to check exception */
701         prev_nr = vcpu->arch.exception.vector;
702         if (prev_nr == DF_VECTOR) {
703                 /* triple fault -> shutdown */
704                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
705                 return;
706         }
707         class1 = exception_class(prev_nr);
708         class2 = exception_class(nr);
709         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) ||
710             (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
711                 /*
712                  * Synthesize #DF.  Clear the previously injected or pending
713                  * exception so as not to incorrectly trigger shutdown.
714                  */
715                 vcpu->arch.exception.injected = false;
716                 vcpu->arch.exception.pending = false;
717
718                 kvm_queue_exception_e(vcpu, DF_VECTOR, 0);
719         } else {
720                 /* replace previous exception with a new one in a hope
721                    that instruction re-execution will regenerate lost
722                    exception */
723                 goto queue;
724         }
725 }
726
727 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
728 {
729         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
730 }
731 EXPORT_SYMBOL_GPL(kvm_queue_exception);
732
733 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
734 {
735         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
736 }
737 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
738
739 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
740                            unsigned long payload)
741 {
742         kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
743 }
744 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
745
746 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
747                                     u32 error_code, unsigned long payload)
748 {
749         kvm_multiple_exception(vcpu, nr, true, error_code,
750                                true, payload, false);
751 }
752
753 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
754 {
755         if (err)
756                 kvm_inject_gp(vcpu, 0);
757         else
758                 return kvm_skip_emulated_instruction(vcpu);
759
760         return 1;
761 }
762 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
763
764 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
765 {
766         if (err) {
767                 kvm_inject_gp(vcpu, 0);
768                 return 1;
769         }
770
771         return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
772                                        EMULTYPE_COMPLETE_USER_EXIT);
773 }
774
775 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
776 {
777         ++vcpu->stat.pf_guest;
778
779         /*
780          * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of
781          * whether or not L1 wants to intercept "regular" #PF.
782          */
783         if (is_guest_mode(vcpu) && fault->async_page_fault)
784                 kvm_queue_exception_vmexit(vcpu, PF_VECTOR,
785                                            true, fault->error_code,
786                                            true, fault->address);
787         else
788                 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
789                                         fault->address);
790 }
791
792 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
793                                     struct x86_exception *fault)
794 {
795         struct kvm_mmu *fault_mmu;
796         WARN_ON_ONCE(fault->vector != PF_VECTOR);
797
798         fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
799                                                vcpu->arch.walk_mmu;
800
801         /*
802          * Invalidate the TLB entry for the faulting address, if it exists,
803          * else the access will fault indefinitely (and to emulate hardware).
804          */
805         if ((fault->error_code & PFERR_PRESENT_MASK) &&
806             !(fault->error_code & PFERR_RSVD_MASK))
807                 kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address,
808                                         KVM_MMU_ROOT_CURRENT);
809
810         fault_mmu->inject_page_fault(vcpu, fault);
811 }
812 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
813
814 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
815 {
816         atomic_inc(&vcpu->arch.nmi_queued);
817         kvm_make_request(KVM_REQ_NMI, vcpu);
818 }
819
820 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
821 {
822         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
823 }
824 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
825
826 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
827 {
828         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
829 }
830 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
831
832 /*
833  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
834  * a #GP and return false.
835  */
836 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
837 {
838         if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
839                 return true;
840         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
841         return false;
842 }
843
844 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
845 {
846         if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE))
847                 return true;
848
849         kvm_queue_exception(vcpu, UD_VECTOR);
850         return false;
851 }
852 EXPORT_SYMBOL_GPL(kvm_require_dr);
853
854 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
855 {
856         return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
857 }
858
859 /*
860  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
861  */
862 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
863 {
864         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
865         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
866         gpa_t real_gpa;
867         int i;
868         int ret;
869         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
870
871         /*
872          * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
873          * to an L1 GPA.
874          */
875         real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
876                                      PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
877         if (real_gpa == INVALID_GPA)
878                 return 0;
879
880         /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
881         ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
882                                        cr3 & GENMASK(11, 5), sizeof(pdpte));
883         if (ret < 0)
884                 return 0;
885
886         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
887                 if ((pdpte[i] & PT_PRESENT_MASK) &&
888                     (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
889                         return 0;
890                 }
891         }
892
893         /*
894          * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
895          * Shadow page roots need to be reconstructed instead.
896          */
897         if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
898                 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
899
900         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
901         kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
902         kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
903         vcpu->arch.pdptrs_from_userspace = false;
904
905         return 1;
906 }
907 EXPORT_SYMBOL_GPL(load_pdptrs);
908
909 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
910 {
911         /*
912          * CR0.WP is incorporated into the MMU role, but only for non-nested,
913          * indirect shadow MMUs.  If paging is disabled, no updates are needed
914          * as there are no permission bits to emulate.  If TDP is enabled, the
915          * MMU's metadata needs to be updated, e.g. so that emulating guest
916          * translations does the right thing, but there's no need to unload the
917          * root as CR0.WP doesn't affect SPTEs.
918          */
919         if ((cr0 ^ old_cr0) == X86_CR0_WP) {
920                 if (!(cr0 & X86_CR0_PG))
921                         return;
922
923                 if (tdp_enabled) {
924                         kvm_init_mmu(vcpu);
925                         return;
926                 }
927         }
928
929         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
930                 kvm_clear_async_pf_completion_queue(vcpu);
931                 kvm_async_pf_hash_reset(vcpu);
932
933                 /*
934                  * Clearing CR0.PG is defined to flush the TLB from the guest's
935                  * perspective.
936                  */
937                 if (!(cr0 & X86_CR0_PG))
938                         kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
939         }
940
941         if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
942                 kvm_mmu_reset_context(vcpu);
943
944         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
945             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
946             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
947                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
948 }
949 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
950
951 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
952 {
953         unsigned long old_cr0 = kvm_read_cr0(vcpu);
954
955         cr0 |= X86_CR0_ET;
956
957 #ifdef CONFIG_X86_64
958         if (cr0 & 0xffffffff00000000UL)
959                 return 1;
960 #endif
961
962         cr0 &= ~CR0_RESERVED_BITS;
963
964         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
965                 return 1;
966
967         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
968                 return 1;
969
970 #ifdef CONFIG_X86_64
971         if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
972             (cr0 & X86_CR0_PG)) {
973                 int cs_db, cs_l;
974
975                 if (!is_pae(vcpu))
976                         return 1;
977                 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
978                 if (cs_l)
979                         return 1;
980         }
981 #endif
982         if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
983             is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
984             !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
985                 return 1;
986
987         if (!(cr0 & X86_CR0_PG) &&
988             (is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)))
989                 return 1;
990
991         static_call(kvm_x86_set_cr0)(vcpu, cr0);
992
993         kvm_post_set_cr0(vcpu, old_cr0, cr0);
994
995         return 0;
996 }
997 EXPORT_SYMBOL_GPL(kvm_set_cr0);
998
999 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
1000 {
1001         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
1002 }
1003 EXPORT_SYMBOL_GPL(kvm_lmsw);
1004
1005 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
1006 {
1007         if (vcpu->arch.guest_state_protected)
1008                 return;
1009
1010         if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1011
1012                 if (vcpu->arch.xcr0 != host_xcr0)
1013                         xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
1014
1015                 if (vcpu->arch.xsaves_enabled &&
1016                     vcpu->arch.ia32_xss != host_xss)
1017                         wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
1018         }
1019
1020 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
1021         if (static_cpu_has(X86_FEATURE_PKU) &&
1022             vcpu->arch.pkru != vcpu->arch.host_pkru &&
1023             ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1024              kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE)))
1025                 write_pkru(vcpu->arch.pkru);
1026 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */
1027 }
1028 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
1029
1030 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
1031 {
1032         if (vcpu->arch.guest_state_protected)
1033                 return;
1034
1035 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
1036         if (static_cpu_has(X86_FEATURE_PKU) &&
1037             ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1038              kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) {
1039                 vcpu->arch.pkru = rdpkru();
1040                 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
1041                         write_pkru(vcpu->arch.host_pkru);
1042         }
1043 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */
1044
1045         if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1046
1047                 if (vcpu->arch.xcr0 != host_xcr0)
1048                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
1049
1050                 if (vcpu->arch.xsaves_enabled &&
1051                     vcpu->arch.ia32_xss != host_xss)
1052                         wrmsrl(MSR_IA32_XSS, host_xss);
1053         }
1054
1055 }
1056 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
1057
1058 #ifdef CONFIG_X86_64
1059 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1060 {
1061         return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC;
1062 }
1063 #endif
1064
1065 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1066 {
1067         u64 xcr0 = xcr;
1068         u64 old_xcr0 = vcpu->arch.xcr0;
1069         u64 valid_bits;
1070
1071         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
1072         if (index != XCR_XFEATURE_ENABLED_MASK)
1073                 return 1;
1074         if (!(xcr0 & XFEATURE_MASK_FP))
1075                 return 1;
1076         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1077                 return 1;
1078
1079         /*
1080          * Do not allow the guest to set bits that we do not support
1081          * saving.  However, xcr0 bit 0 is always set, even if the
1082          * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1083          */
1084         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
1085         if (xcr0 & ~valid_bits)
1086                 return 1;
1087
1088         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1089             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1090                 return 1;
1091
1092         if (xcr0 & XFEATURE_MASK_AVX512) {
1093                 if (!(xcr0 & XFEATURE_MASK_YMM))
1094                         return 1;
1095                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1096                         return 1;
1097         }
1098
1099         if ((xcr0 & XFEATURE_MASK_XTILE) &&
1100             ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1101                 return 1;
1102
1103         vcpu->arch.xcr0 = xcr0;
1104
1105         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1106                 kvm_update_cpuid_runtime(vcpu);
1107         return 0;
1108 }
1109
1110 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1111 {
1112         /* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */
1113         if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1114             __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1115                 kvm_inject_gp(vcpu, 0);
1116                 return 1;
1117         }
1118
1119         return kvm_skip_emulated_instruction(vcpu);
1120 }
1121 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1122
1123 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1124 {
1125         if (cr4 & cr4_reserved_bits)
1126                 return false;
1127
1128         if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1129                 return false;
1130
1131         return true;
1132 }
1133 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4);
1134
1135 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1136 {
1137         return __kvm_is_valid_cr4(vcpu, cr4) &&
1138                static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1139 }
1140
1141 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1142 {
1143         if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1144                 kvm_mmu_reset_context(vcpu);
1145
1146         /*
1147          * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1148          * according to the SDM; however, stale prev_roots could be reused
1149          * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1150          * free them all.  This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1151          * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1152          * so fall through.
1153          */
1154         if (!tdp_enabled &&
1155             (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1156                 kvm_mmu_unload(vcpu);
1157
1158         /*
1159          * The TLB has to be flushed for all PCIDs if any of the following
1160          * (architecturally required) changes happen:
1161          * - CR4.PCIDE is changed from 1 to 0
1162          * - CR4.PGE is toggled
1163          *
1164          * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1165          */
1166         if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1167             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1168                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1169
1170         /*
1171          * The TLB has to be flushed for the current PCID if any of the
1172          * following (architecturally required) changes happen:
1173          * - CR4.SMEP is changed from 0 to 1
1174          * - CR4.PAE is toggled
1175          */
1176         else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1177                  ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1178                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1179
1180 }
1181 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1182
1183 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1184 {
1185         unsigned long old_cr4 = kvm_read_cr4(vcpu);
1186
1187         if (!kvm_is_valid_cr4(vcpu, cr4))
1188                 return 1;
1189
1190         if (is_long_mode(vcpu)) {
1191                 if (!(cr4 & X86_CR4_PAE))
1192                         return 1;
1193                 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1194                         return 1;
1195         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1196                    && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1197                    && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1198                 return 1;
1199
1200         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1201                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1202                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1203                         return 1;
1204         }
1205
1206         static_call(kvm_x86_set_cr4)(vcpu, cr4);
1207
1208         kvm_post_set_cr4(vcpu, old_cr4, cr4);
1209
1210         return 0;
1211 }
1212 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1213
1214 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1215 {
1216         struct kvm_mmu *mmu = vcpu->arch.mmu;
1217         unsigned long roots_to_free = 0;
1218         int i;
1219
1220         /*
1221          * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1222          * this is reachable when running EPT=1 and unrestricted_guest=0,  and
1223          * also via the emulator.  KVM's TDP page tables are not in the scope of
1224          * the invalidation, but the guest's TLB entries need to be flushed as
1225          * the CPU may have cached entries in its TLB for the target PCID.
1226          */
1227         if (unlikely(tdp_enabled)) {
1228                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1229                 return;
1230         }
1231
1232         /*
1233          * If neither the current CR3 nor any of the prev_roots use the given
1234          * PCID, then nothing needs to be done here because a resync will
1235          * happen anyway before switching to any other CR3.
1236          */
1237         if (kvm_get_active_pcid(vcpu) == pcid) {
1238                 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1239                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1240         }
1241
1242         /*
1243          * If PCID is disabled, there is no need to free prev_roots even if the
1244          * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1245          * with PCIDE=0.
1246          */
1247         if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))
1248                 return;
1249
1250         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1251                 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1252                         roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1253
1254         kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1255 }
1256
1257 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1258 {
1259         bool skip_tlb_flush = false;
1260         unsigned long pcid = 0;
1261 #ifdef CONFIG_X86_64
1262         if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) {
1263                 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1264                 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1265                 pcid = cr3 & X86_CR3_PCID_MASK;
1266         }
1267 #endif
1268
1269         /* PDPTRs are always reloaded for PAE paging. */
1270         if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1271                 goto handle_tlb_flush;
1272
1273         /*
1274          * Do not condition the GPA check on long mode, this helper is used to
1275          * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1276          * the current vCPU mode is accurate.
1277          */
1278         if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1279                 return 1;
1280
1281         if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1282                 return 1;
1283
1284         if (cr3 != kvm_read_cr3(vcpu))
1285                 kvm_mmu_new_pgd(vcpu, cr3);
1286
1287         vcpu->arch.cr3 = cr3;
1288         kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1289         /* Do not call post_set_cr3, we do not get here for confidential guests.  */
1290
1291 handle_tlb_flush:
1292         /*
1293          * A load of CR3 that flushes the TLB flushes only the current PCID,
1294          * even if PCID is disabled, in which case PCID=0 is flushed.  It's a
1295          * moot point in the end because _disabling_ PCID will flush all PCIDs,
1296          * and it's impossible to use a non-zero PCID when PCID is disabled,
1297          * i.e. only PCID=0 can be relevant.
1298          */
1299         if (!skip_tlb_flush)
1300                 kvm_invalidate_pcid(vcpu, pcid);
1301
1302         return 0;
1303 }
1304 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1305
1306 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1307 {
1308         if (cr8 & CR8_RESERVED_BITS)
1309                 return 1;
1310         if (lapic_in_kernel(vcpu))
1311                 kvm_lapic_set_tpr(vcpu, cr8);
1312         else
1313                 vcpu->arch.cr8 = cr8;
1314         return 0;
1315 }
1316 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1317
1318 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1319 {
1320         if (lapic_in_kernel(vcpu))
1321                 return kvm_lapic_get_cr8(vcpu);
1322         else
1323                 return vcpu->arch.cr8;
1324 }
1325 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1326
1327 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1328 {
1329         int i;
1330
1331         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1332                 for (i = 0; i < KVM_NR_DB_REGS; i++)
1333                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1334         }
1335 }
1336
1337 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1338 {
1339         unsigned long dr7;
1340
1341         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1342                 dr7 = vcpu->arch.guest_debug_dr7;
1343         else
1344                 dr7 = vcpu->arch.dr7;
1345         static_call(kvm_x86_set_dr7)(vcpu, dr7);
1346         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1347         if (dr7 & DR7_BP_EN_MASK)
1348                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1349 }
1350 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1351
1352 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1353 {
1354         u64 fixed = DR6_FIXED_1;
1355
1356         if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1357                 fixed |= DR6_RTM;
1358
1359         if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1360                 fixed |= DR6_BUS_LOCK;
1361         return fixed;
1362 }
1363
1364 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1365 {
1366         size_t size = ARRAY_SIZE(vcpu->arch.db);
1367
1368         switch (dr) {
1369         case 0 ... 3:
1370                 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1371                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1372                         vcpu->arch.eff_db[dr] = val;
1373                 break;
1374         case 4:
1375         case 6:
1376                 if (!kvm_dr6_valid(val))
1377                         return 1; /* #GP */
1378                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1379                 break;
1380         case 5:
1381         default: /* 7 */
1382                 if (!kvm_dr7_valid(val))
1383                         return 1; /* #GP */
1384                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1385                 kvm_update_dr7(vcpu);
1386                 break;
1387         }
1388
1389         return 0;
1390 }
1391 EXPORT_SYMBOL_GPL(kvm_set_dr);
1392
1393 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1394 {
1395         size_t size = ARRAY_SIZE(vcpu->arch.db);
1396
1397         switch (dr) {
1398         case 0 ... 3:
1399                 *val = vcpu->arch.db[array_index_nospec(dr, size)];
1400                 break;
1401         case 4:
1402         case 6:
1403                 *val = vcpu->arch.dr6;
1404                 break;
1405         case 5:
1406         default: /* 7 */
1407                 *val = vcpu->arch.dr7;
1408                 break;
1409         }
1410 }
1411 EXPORT_SYMBOL_GPL(kvm_get_dr);
1412
1413 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1414 {
1415         u32 ecx = kvm_rcx_read(vcpu);
1416         u64 data;
1417
1418         if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1419                 kvm_inject_gp(vcpu, 0);
1420                 return 1;
1421         }
1422
1423         kvm_rax_write(vcpu, (u32)data);
1424         kvm_rdx_write(vcpu, data >> 32);
1425         return kvm_skip_emulated_instruction(vcpu);
1426 }
1427 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1428
1429 /*
1430  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1431  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1432  *
1433  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1434  * extract the supported MSRs from the related const lists.
1435  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1436  * capabilities of the host cpu. This capabilities test skips MSRs that are
1437  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1438  * may depend on host virtualization features rather than host cpu features.
1439  */
1440
1441 static const u32 msrs_to_save_base[] = {
1442         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1443         MSR_STAR,
1444 #ifdef CONFIG_X86_64
1445         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1446 #endif
1447         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1448         MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1449         MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL,
1450         MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1451         MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1452         MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1453         MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1454         MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1455         MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1456         MSR_IA32_UMWAIT_CONTROL,
1457
1458         MSR_IA32_XFD, MSR_IA32_XFD_ERR,
1459 };
1460
1461 static const u32 msrs_to_save_pmu[] = {
1462         MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1463         MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1464         MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1465         MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1466         MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG,
1467
1468         /* This part of MSRs should match KVM_INTEL_PMC_MAX_GENERIC. */
1469         MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1470         MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1471         MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1472         MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1473         MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1474         MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1475         MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1476         MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1477
1478         MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1479         MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1480
1481         /* This part of MSRs should match KVM_AMD_PMC_MAX_GENERIC. */
1482         MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1483         MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1484         MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1485         MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1486 };
1487
1488 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) +
1489                         ARRAY_SIZE(msrs_to_save_pmu)];
1490 static unsigned num_msrs_to_save;
1491
1492 static const u32 emulated_msrs_all[] = {
1493         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1494         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1495         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1496         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1497         HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1498         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1499         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1500         HV_X64_MSR_RESET,
1501         HV_X64_MSR_VP_INDEX,
1502         HV_X64_MSR_VP_RUNTIME,
1503         HV_X64_MSR_SCONTROL,
1504         HV_X64_MSR_STIMER0_CONFIG,
1505         HV_X64_MSR_VP_ASSIST_PAGE,
1506         HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1507         HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL,
1508         HV_X64_MSR_SYNDBG_OPTIONS,
1509         HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1510         HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1511         HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1512
1513         MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1514         MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1515
1516         MSR_IA32_TSC_ADJUST,
1517         MSR_IA32_TSC_DEADLINE,
1518         MSR_IA32_ARCH_CAPABILITIES,
1519         MSR_IA32_PERF_CAPABILITIES,
1520         MSR_IA32_MISC_ENABLE,
1521         MSR_IA32_MCG_STATUS,
1522         MSR_IA32_MCG_CTL,
1523         MSR_IA32_MCG_EXT_CTL,
1524         MSR_IA32_SMBASE,
1525         MSR_SMI_COUNT,
1526         MSR_PLATFORM_INFO,
1527         MSR_MISC_FEATURES_ENABLES,
1528         MSR_AMD64_VIRT_SPEC_CTRL,
1529         MSR_AMD64_TSC_RATIO,
1530         MSR_IA32_POWER_CTL,
1531         MSR_IA32_UCODE_REV,
1532
1533         /*
1534          * The following list leaves out MSRs whose values are determined
1535          * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1536          * We always support the "true" VMX control MSRs, even if the host
1537          * processor does not, so I am putting these registers here rather
1538          * than in msrs_to_save_all.
1539          */
1540         MSR_IA32_VMX_BASIC,
1541         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1542         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1543         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1544         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1545         MSR_IA32_VMX_MISC,
1546         MSR_IA32_VMX_CR0_FIXED0,
1547         MSR_IA32_VMX_CR4_FIXED0,
1548         MSR_IA32_VMX_VMCS_ENUM,
1549         MSR_IA32_VMX_PROCBASED_CTLS2,
1550         MSR_IA32_VMX_EPT_VPID_CAP,
1551         MSR_IA32_VMX_VMFUNC,
1552
1553         MSR_K7_HWCR,
1554         MSR_KVM_POLL_CONTROL,
1555 };
1556
1557 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1558 static unsigned num_emulated_msrs;
1559
1560 /*
1561  * List of MSRs that control the existence of MSR-based features, i.e. MSRs
1562  * that are effectively CPUID leafs.  VMX MSRs are also included in the set of
1563  * feature MSRs, but are handled separately to allow expedited lookups.
1564  */
1565 static const u32 msr_based_features_all_except_vmx[] = {
1566         MSR_AMD64_DE_CFG,
1567         MSR_IA32_UCODE_REV,
1568         MSR_IA32_ARCH_CAPABILITIES,
1569         MSR_IA32_PERF_CAPABILITIES,
1570 };
1571
1572 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) +
1573                               (KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)];
1574 static unsigned int num_msr_based_features;
1575
1576 /*
1577  * All feature MSRs except uCode revID, which tracks the currently loaded uCode
1578  * patch, are immutable once the vCPU model is defined.
1579  */
1580 static bool kvm_is_immutable_feature_msr(u32 msr)
1581 {
1582         int i;
1583
1584         if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR)
1585                 return true;
1586
1587         for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) {
1588                 if (msr == msr_based_features_all_except_vmx[i])
1589                         return msr != MSR_IA32_UCODE_REV;
1590         }
1591
1592         return false;
1593 }
1594
1595 /*
1596  * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM
1597  * does not yet virtualize. These include:
1598  *   10 - MISC_PACKAGE_CTRLS
1599  *   11 - ENERGY_FILTERING_CTL
1600  *   12 - DOITM
1601  *   18 - FB_CLEAR_CTRL
1602  *   21 - XAPIC_DISABLE_STATUS
1603  *   23 - OVERCLOCKING_STATUS
1604  */
1605
1606 #define KVM_SUPPORTED_ARCH_CAP \
1607         (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \
1608          ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \
1609          ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \
1610          ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \
1611          ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO)
1612
1613 static u64 kvm_get_arch_capabilities(void)
1614 {
1615         u64 data = 0;
1616
1617         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
1618                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1619                 data &= KVM_SUPPORTED_ARCH_CAP;
1620         }
1621
1622         /*
1623          * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1624          * the nested hypervisor runs with NX huge pages.  If it is not,
1625          * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1626          * L1 guests, so it need not worry about its own (L2) guests.
1627          */
1628         data |= ARCH_CAP_PSCHANGE_MC_NO;
1629
1630         /*
1631          * If we're doing cache flushes (either "always" or "cond")
1632          * we will do one whenever the guest does a vmlaunch/vmresume.
1633          * If an outer hypervisor is doing the cache flush for us
1634          * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1635          * capability to the guest too, and if EPT is disabled we're not
1636          * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1637          * require a nested hypervisor to do a flush of its own.
1638          */
1639         if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1640                 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1641
1642         if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1643                 data |= ARCH_CAP_RDCL_NO;
1644         if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1645                 data |= ARCH_CAP_SSB_NO;
1646         if (!boot_cpu_has_bug(X86_BUG_MDS))
1647                 data |= ARCH_CAP_MDS_NO;
1648
1649         if (!boot_cpu_has(X86_FEATURE_RTM)) {
1650                 /*
1651                  * If RTM=0 because the kernel has disabled TSX, the host might
1652                  * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1653                  * and therefore knows that there cannot be TAA) but keep
1654                  * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1655                  * and we want to allow migrating those guests to tsx=off hosts.
1656                  */
1657                 data &= ~ARCH_CAP_TAA_NO;
1658         } else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1659                 data |= ARCH_CAP_TAA_NO;
1660         } else {
1661                 /*
1662                  * Nothing to do here; we emulate TSX_CTRL if present on the
1663                  * host so the guest can choose between disabling TSX or
1664                  * using VERW to clear CPU buffers.
1665                  */
1666         }
1667
1668         return data;
1669 }
1670
1671 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1672 {
1673         switch (msr->index) {
1674         case MSR_IA32_ARCH_CAPABILITIES:
1675                 msr->data = kvm_get_arch_capabilities();
1676                 break;
1677         case MSR_IA32_PERF_CAPABILITIES:
1678                 msr->data = kvm_caps.supported_perf_cap;
1679                 break;
1680         case MSR_IA32_UCODE_REV:
1681                 rdmsrl_safe(msr->index, &msr->data);
1682                 break;
1683         default:
1684                 return static_call(kvm_x86_get_msr_feature)(msr);
1685         }
1686         return 0;
1687 }
1688
1689 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1690 {
1691         struct kvm_msr_entry msr;
1692         int r;
1693
1694         msr.index = index;
1695         r = kvm_get_msr_feature(&msr);
1696
1697         if (r == KVM_MSR_RET_INVALID) {
1698                 /* Unconditionally clear the output for simplicity */
1699                 *data = 0;
1700                 if (kvm_msr_ignored_check(index, 0, false))
1701                         r = 0;
1702         }
1703
1704         if (r)
1705                 return r;
1706
1707         *data = msr.data;
1708
1709         return 0;
1710 }
1711
1712 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1713 {
1714         if (efer & EFER_AUTOIBRS && !guest_cpuid_has(vcpu, X86_FEATURE_AUTOIBRS))
1715                 return false;
1716
1717         if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1718                 return false;
1719
1720         if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1721                 return false;
1722
1723         if (efer & (EFER_LME | EFER_LMA) &&
1724             !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1725                 return false;
1726
1727         if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1728                 return false;
1729
1730         return true;
1731
1732 }
1733 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1734 {
1735         if (efer & efer_reserved_bits)
1736                 return false;
1737
1738         return __kvm_valid_efer(vcpu, efer);
1739 }
1740 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1741
1742 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1743 {
1744         u64 old_efer = vcpu->arch.efer;
1745         u64 efer = msr_info->data;
1746         int r;
1747
1748         if (efer & efer_reserved_bits)
1749                 return 1;
1750
1751         if (!msr_info->host_initiated) {
1752                 if (!__kvm_valid_efer(vcpu, efer))
1753                         return 1;
1754
1755                 if (is_paging(vcpu) &&
1756                     (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1757                         return 1;
1758         }
1759
1760         efer &= ~EFER_LMA;
1761         efer |= vcpu->arch.efer & EFER_LMA;
1762
1763         r = static_call(kvm_x86_set_efer)(vcpu, efer);
1764         if (r) {
1765                 WARN_ON(r > 0);
1766                 return r;
1767         }
1768
1769         if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1770                 kvm_mmu_reset_context(vcpu);
1771
1772         return 0;
1773 }
1774
1775 void kvm_enable_efer_bits(u64 mask)
1776 {
1777        efer_reserved_bits &= ~mask;
1778 }
1779 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1780
1781 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1782 {
1783         struct kvm_x86_msr_filter *msr_filter;
1784         struct msr_bitmap_range *ranges;
1785         struct kvm *kvm = vcpu->kvm;
1786         bool allowed;
1787         int idx;
1788         u32 i;
1789
1790         /* x2APIC MSRs do not support filtering. */
1791         if (index >= 0x800 && index <= 0x8ff)
1792                 return true;
1793
1794         idx = srcu_read_lock(&kvm->srcu);
1795
1796         msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1797         if (!msr_filter) {
1798                 allowed = true;
1799                 goto out;
1800         }
1801
1802         allowed = msr_filter->default_allow;
1803         ranges = msr_filter->ranges;
1804
1805         for (i = 0; i < msr_filter->count; i++) {
1806                 u32 start = ranges[i].base;
1807                 u32 end = start + ranges[i].nmsrs;
1808                 u32 flags = ranges[i].flags;
1809                 unsigned long *bitmap = ranges[i].bitmap;
1810
1811                 if ((index >= start) && (index < end) && (flags & type)) {
1812                         allowed = !!test_bit(index - start, bitmap);
1813                         break;
1814                 }
1815         }
1816
1817 out:
1818         srcu_read_unlock(&kvm->srcu, idx);
1819
1820         return allowed;
1821 }
1822 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1823
1824 /*
1825  * Write @data into the MSR specified by @index.  Select MSR specific fault
1826  * checks are bypassed if @host_initiated is %true.
1827  * Returns 0 on success, non-0 otherwise.
1828  * Assumes vcpu_load() was already called.
1829  */
1830 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1831                          bool host_initiated)
1832 {
1833         struct msr_data msr;
1834
1835         switch (index) {
1836         case MSR_FS_BASE:
1837         case MSR_GS_BASE:
1838         case MSR_KERNEL_GS_BASE:
1839         case MSR_CSTAR:
1840         case MSR_LSTAR:
1841                 if (is_noncanonical_address(data, vcpu))
1842                         return 1;
1843                 break;
1844         case MSR_IA32_SYSENTER_EIP:
1845         case MSR_IA32_SYSENTER_ESP:
1846                 /*
1847                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1848                  * non-canonical address is written on Intel but not on
1849                  * AMD (which ignores the top 32-bits, because it does
1850                  * not implement 64-bit SYSENTER).
1851                  *
1852                  * 64-bit code should hence be able to write a non-canonical
1853                  * value on AMD.  Making the address canonical ensures that
1854                  * vmentry does not fail on Intel after writing a non-canonical
1855                  * value, and that something deterministic happens if the guest
1856                  * invokes 64-bit SYSENTER.
1857                  */
1858                 data = __canonical_address(data, vcpu_virt_addr_bits(vcpu));
1859                 break;
1860         case MSR_TSC_AUX:
1861                 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1862                         return 1;
1863
1864                 if (!host_initiated &&
1865                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1866                     !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1867                         return 1;
1868
1869                 /*
1870                  * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1871                  * incomplete and conflicting architectural behavior.  Current
1872                  * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1873                  * reserved and always read as zeros.  Enforce Intel's reserved
1874                  * bits check if and only if the guest CPU is Intel, and clear
1875                  * the bits in all other cases.  This ensures cross-vendor
1876                  * migration will provide consistent behavior for the guest.
1877                  */
1878                 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1879                         return 1;
1880
1881                 data = (u32)data;
1882                 break;
1883         }
1884
1885         msr.data = data;
1886         msr.index = index;
1887         msr.host_initiated = host_initiated;
1888
1889         return static_call(kvm_x86_set_msr)(vcpu, &msr);
1890 }
1891
1892 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1893                                      u32 index, u64 data, bool host_initiated)
1894 {
1895         int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1896
1897         if (ret == KVM_MSR_RET_INVALID)
1898                 if (kvm_msr_ignored_check(index, data, true))
1899                         ret = 0;
1900
1901         return ret;
1902 }
1903
1904 /*
1905  * Read the MSR specified by @index into @data.  Select MSR specific fault
1906  * checks are bypassed if @host_initiated is %true.
1907  * Returns 0 on success, non-0 otherwise.
1908  * Assumes vcpu_load() was already called.
1909  */
1910 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1911                   bool host_initiated)
1912 {
1913         struct msr_data msr;
1914         int ret;
1915
1916         switch (index) {
1917         case MSR_TSC_AUX:
1918                 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1919                         return 1;
1920
1921                 if (!host_initiated &&
1922                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1923                     !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1924                         return 1;
1925                 break;
1926         }
1927
1928         msr.index = index;
1929         msr.host_initiated = host_initiated;
1930
1931         ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1932         if (!ret)
1933                 *data = msr.data;
1934         return ret;
1935 }
1936
1937 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1938                                      u32 index, u64 *data, bool host_initiated)
1939 {
1940         int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1941
1942         if (ret == KVM_MSR_RET_INVALID) {
1943                 /* Unconditionally clear *data for simplicity */
1944                 *data = 0;
1945                 if (kvm_msr_ignored_check(index, 0, false))
1946                         ret = 0;
1947         }
1948
1949         return ret;
1950 }
1951
1952 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1953 {
1954         if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1955                 return KVM_MSR_RET_FILTERED;
1956         return kvm_get_msr_ignored_check(vcpu, index, data, false);
1957 }
1958
1959 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data)
1960 {
1961         if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1962                 return KVM_MSR_RET_FILTERED;
1963         return kvm_set_msr_ignored_check(vcpu, index, data, false);
1964 }
1965
1966 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1967 {
1968         return kvm_get_msr_ignored_check(vcpu, index, data, false);
1969 }
1970 EXPORT_SYMBOL_GPL(kvm_get_msr);
1971
1972 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1973 {
1974         return kvm_set_msr_ignored_check(vcpu, index, data, false);
1975 }
1976 EXPORT_SYMBOL_GPL(kvm_set_msr);
1977
1978 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1979 {
1980         if (!vcpu->run->msr.error) {
1981                 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1982                 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1983         }
1984 }
1985
1986 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
1987 {
1988         return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
1989 }
1990
1991 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1992 {
1993         complete_userspace_rdmsr(vcpu);
1994         return complete_emulated_msr_access(vcpu);
1995 }
1996
1997 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
1998 {
1999         return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
2000 }
2001
2002 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
2003 {
2004         complete_userspace_rdmsr(vcpu);
2005         return complete_fast_msr_access(vcpu);
2006 }
2007
2008 static u64 kvm_msr_reason(int r)
2009 {
2010         switch (r) {
2011         case KVM_MSR_RET_INVALID:
2012                 return KVM_MSR_EXIT_REASON_UNKNOWN;
2013         case KVM_MSR_RET_FILTERED:
2014                 return KVM_MSR_EXIT_REASON_FILTER;
2015         default:
2016                 return KVM_MSR_EXIT_REASON_INVAL;
2017         }
2018 }
2019
2020 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
2021                               u32 exit_reason, u64 data,
2022                               int (*completion)(struct kvm_vcpu *vcpu),
2023                               int r)
2024 {
2025         u64 msr_reason = kvm_msr_reason(r);
2026
2027         /* Check if the user wanted to know about this MSR fault */
2028         if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
2029                 return 0;
2030
2031         vcpu->run->exit_reason = exit_reason;
2032         vcpu->run->msr.error = 0;
2033         memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
2034         vcpu->run->msr.reason = msr_reason;
2035         vcpu->run->msr.index = index;
2036         vcpu->run->msr.data = data;
2037         vcpu->arch.complete_userspace_io = completion;
2038
2039         return 1;
2040 }
2041
2042 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
2043 {
2044         u32 ecx = kvm_rcx_read(vcpu);
2045         u64 data;
2046         int r;
2047
2048         r = kvm_get_msr_with_filter(vcpu, ecx, &data);
2049
2050         if (!r) {
2051                 trace_kvm_msr_read(ecx, data);
2052
2053                 kvm_rax_write(vcpu, data & -1u);
2054                 kvm_rdx_write(vcpu, (data >> 32) & -1u);
2055         } else {
2056                 /* MSR read failed? See if we should ask user space */
2057                 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
2058                                        complete_fast_rdmsr, r))
2059                         return 0;
2060                 trace_kvm_msr_read_ex(ecx);
2061         }
2062
2063         return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2064 }
2065 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
2066
2067 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
2068 {
2069         u32 ecx = kvm_rcx_read(vcpu);
2070         u64 data = kvm_read_edx_eax(vcpu);
2071         int r;
2072
2073         r = kvm_set_msr_with_filter(vcpu, ecx, data);
2074
2075         if (!r) {
2076                 trace_kvm_msr_write(ecx, data);
2077         } else {
2078                 /* MSR write failed? See if we should ask user space */
2079                 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
2080                                        complete_fast_msr_access, r))
2081                         return 0;
2082                 /* Signal all other negative errors to userspace */
2083                 if (r < 0)
2084                         return r;
2085                 trace_kvm_msr_write_ex(ecx, data);
2086         }
2087
2088         return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2089 }
2090 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
2091
2092 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2093 {
2094         return kvm_skip_emulated_instruction(vcpu);
2095 }
2096
2097 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2098 {
2099         /* Treat an INVD instruction as a NOP and just skip it. */
2100         return kvm_emulate_as_nop(vcpu);
2101 }
2102 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
2103
2104 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2105 {
2106         kvm_queue_exception(vcpu, UD_VECTOR);
2107         return 1;
2108 }
2109 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
2110
2111
2112 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn)
2113 {
2114         if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) &&
2115             !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT))
2116                 return kvm_handle_invalid_op(vcpu);
2117
2118         pr_warn_once("%s instruction emulated as NOP!\n", insn);
2119         return kvm_emulate_as_nop(vcpu);
2120 }
2121 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2122 {
2123         return kvm_emulate_monitor_mwait(vcpu, "MWAIT");
2124 }
2125 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
2126
2127 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2128 {
2129         return kvm_emulate_monitor_mwait(vcpu, "MONITOR");
2130 }
2131 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2132
2133 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2134 {
2135         xfer_to_guest_mode_prepare();
2136         return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
2137                 xfer_to_guest_mode_work_pending();
2138 }
2139
2140 /*
2141  * The fast path for frequent and performance sensitive wrmsr emulation,
2142  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2143  * the latency of virtual IPI by avoiding the expensive bits of transitioning
2144  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2145  * other cases which must be called after interrupts are enabled on the host.
2146  */
2147 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2148 {
2149         if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2150                 return 1;
2151
2152         if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2153             ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2154             ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2155             ((u32)(data >> 32) != X2APIC_BROADCAST))
2156                 return kvm_x2apic_icr_write(vcpu->arch.apic, data);
2157
2158         return 1;
2159 }
2160
2161 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2162 {
2163         if (!kvm_can_use_hv_timer(vcpu))
2164                 return 1;
2165
2166         kvm_set_lapic_tscdeadline_msr(vcpu, data);
2167         return 0;
2168 }
2169
2170 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2171 {
2172         u32 msr = kvm_rcx_read(vcpu);
2173         u64 data;
2174         fastpath_t ret = EXIT_FASTPATH_NONE;
2175
2176         switch (msr) {
2177         case APIC_BASE_MSR + (APIC_ICR >> 4):
2178                 data = kvm_read_edx_eax(vcpu);
2179                 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2180                         kvm_skip_emulated_instruction(vcpu);
2181                         ret = EXIT_FASTPATH_EXIT_HANDLED;
2182                 }
2183                 break;
2184         case MSR_IA32_TSC_DEADLINE:
2185                 data = kvm_read_edx_eax(vcpu);
2186                 if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2187                         kvm_skip_emulated_instruction(vcpu);
2188                         ret = EXIT_FASTPATH_REENTER_GUEST;
2189                 }
2190                 break;
2191         default:
2192                 break;
2193         }
2194
2195         if (ret != EXIT_FASTPATH_NONE)
2196                 trace_kvm_msr_write(msr, data);
2197
2198         return ret;
2199 }
2200 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2201
2202 /*
2203  * Adapt set_msr() to msr_io()'s calling convention
2204  */
2205 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2206 {
2207         return kvm_get_msr_ignored_check(vcpu, index, data, true);
2208 }
2209
2210 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2211 {
2212         u64 val;
2213
2214         /*
2215          * Disallow writes to immutable feature MSRs after KVM_RUN.  KVM does
2216          * not support modifying the guest vCPU model on the fly, e.g. changing
2217          * the nVMX capabilities while L2 is running is nonsensical.  Ignore
2218          * writes of the same value, e.g. to allow userspace to blindly stuff
2219          * all MSRs when emulating RESET.
2220          */
2221         if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index)) {
2222                 if (do_get_msr(vcpu, index, &val) || *data != val)
2223                         return -EINVAL;
2224
2225                 return 0;
2226         }
2227
2228         return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2229 }
2230
2231 #ifdef CONFIG_X86_64
2232 struct pvclock_clock {
2233         int vclock_mode;
2234         u64 cycle_last;
2235         u64 mask;
2236         u32 mult;
2237         u32 shift;
2238         u64 base_cycles;
2239         u64 offset;
2240 };
2241
2242 struct pvclock_gtod_data {
2243         seqcount_t      seq;
2244
2245         struct pvclock_clock clock; /* extract of a clocksource struct */
2246         struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2247
2248         ktime_t         offs_boot;
2249         u64             wall_time_sec;
2250 };
2251
2252 static struct pvclock_gtod_data pvclock_gtod_data;
2253
2254 static void update_pvclock_gtod(struct timekeeper *tk)
2255 {
2256         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2257
2258         write_seqcount_begin(&vdata->seq);
2259
2260         /* copy pvclock gtod data */
2261         vdata->clock.vclock_mode        = tk->tkr_mono.clock->vdso_clock_mode;
2262         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
2263         vdata->clock.mask               = tk->tkr_mono.mask;
2264         vdata->clock.mult               = tk->tkr_mono.mult;
2265         vdata->clock.shift              = tk->tkr_mono.shift;
2266         vdata->clock.base_cycles        = tk->tkr_mono.xtime_nsec;
2267         vdata->clock.offset             = tk->tkr_mono.base;
2268
2269         vdata->raw_clock.vclock_mode    = tk->tkr_raw.clock->vdso_clock_mode;
2270         vdata->raw_clock.cycle_last     = tk->tkr_raw.cycle_last;
2271         vdata->raw_clock.mask           = tk->tkr_raw.mask;
2272         vdata->raw_clock.mult           = tk->tkr_raw.mult;
2273         vdata->raw_clock.shift          = tk->tkr_raw.shift;
2274         vdata->raw_clock.base_cycles    = tk->tkr_raw.xtime_nsec;
2275         vdata->raw_clock.offset         = tk->tkr_raw.base;
2276
2277         vdata->wall_time_sec            = tk->xtime_sec;
2278
2279         vdata->offs_boot                = tk->offs_boot;
2280
2281         write_seqcount_end(&vdata->seq);
2282 }
2283
2284 static s64 get_kvmclock_base_ns(void)
2285 {
2286         /* Count up from boot time, but with the frequency of the raw clock.  */
2287         return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2288 }
2289 #else
2290 static s64 get_kvmclock_base_ns(void)
2291 {
2292         /* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
2293         return ktime_get_boottime_ns();
2294 }
2295 #endif
2296
2297 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2298 {
2299         int version;
2300         int r;
2301         struct pvclock_wall_clock wc;
2302         u32 wc_sec_hi;
2303         u64 wall_nsec;
2304
2305         if (!wall_clock)
2306                 return;
2307
2308         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2309         if (r)
2310                 return;
2311
2312         if (version & 1)
2313                 ++version;  /* first time write, random junk */
2314
2315         ++version;
2316
2317         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2318                 return;
2319
2320         /*
2321          * The guest calculates current wall clock time by adding
2322          * system time (updated by kvm_guest_time_update below) to the
2323          * wall clock specified here.  We do the reverse here.
2324          */
2325         wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2326
2327         wc.nsec = do_div(wall_nsec, 1000000000);
2328         wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2329         wc.version = version;
2330
2331         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2332
2333         if (sec_hi_ofs) {
2334                 wc_sec_hi = wall_nsec >> 32;
2335                 kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2336                                 &wc_sec_hi, sizeof(wc_sec_hi));
2337         }
2338
2339         version++;
2340         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2341 }
2342
2343 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2344                                   bool old_msr, bool host_initiated)
2345 {
2346         struct kvm_arch *ka = &vcpu->kvm->arch;
2347
2348         if (vcpu->vcpu_id == 0 && !host_initiated) {
2349                 if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2350                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2351
2352                 ka->boot_vcpu_runs_old_kvmclock = old_msr;
2353         }
2354
2355         vcpu->arch.time = system_time;
2356         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2357
2358         /* we verify if the enable bit is set... */
2359         if (system_time & 1)
2360                 kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL,
2361                                  sizeof(struct pvclock_vcpu_time_info));
2362         else
2363                 kvm_gpc_deactivate(&vcpu->arch.pv_time);
2364
2365         return;
2366 }
2367
2368 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2369 {
2370         do_shl32_div32(dividend, divisor);
2371         return dividend;
2372 }
2373
2374 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2375                                s8 *pshift, u32 *pmultiplier)
2376 {
2377         uint64_t scaled64;
2378         int32_t  shift = 0;
2379         uint64_t tps64;
2380         uint32_t tps32;
2381
2382         tps64 = base_hz;
2383         scaled64 = scaled_hz;
2384         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2385                 tps64 >>= 1;
2386                 shift--;
2387         }
2388
2389         tps32 = (uint32_t)tps64;
2390         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2391                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2392                         scaled64 >>= 1;
2393                 else
2394                         tps32 <<= 1;
2395                 shift++;
2396         }
2397
2398         *pshift = shift;
2399         *pmultiplier = div_frac(scaled64, tps32);
2400 }
2401
2402 #ifdef CONFIG_X86_64
2403 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2404 #endif
2405
2406 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2407 static unsigned long max_tsc_khz;
2408
2409 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2410 {
2411         u64 v = (u64)khz * (1000000 + ppm);
2412         do_div(v, 1000000);
2413         return v;
2414 }
2415
2416 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2417
2418 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2419 {
2420         u64 ratio;
2421
2422         /* Guest TSC same frequency as host TSC? */
2423         if (!scale) {
2424                 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2425                 return 0;
2426         }
2427
2428         /* TSC scaling supported? */
2429         if (!kvm_caps.has_tsc_control) {
2430                 if (user_tsc_khz > tsc_khz) {
2431                         vcpu->arch.tsc_catchup = 1;
2432                         vcpu->arch.tsc_always_catchup = 1;
2433                         return 0;
2434                 } else {
2435                         pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2436                         return -1;
2437                 }
2438         }
2439
2440         /* TSC scaling required  - calculate ratio */
2441         ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits,
2442                                 user_tsc_khz, tsc_khz);
2443
2444         if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) {
2445                 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2446                                     user_tsc_khz);
2447                 return -1;
2448         }
2449
2450         kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2451         return 0;
2452 }
2453
2454 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2455 {
2456         u32 thresh_lo, thresh_hi;
2457         int use_scaling = 0;
2458
2459         /* tsc_khz can be zero if TSC calibration fails */
2460         if (user_tsc_khz == 0) {
2461                 /* set tsc_scaling_ratio to a safe value */
2462                 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2463                 return -1;
2464         }
2465
2466         /* Compute a scale to convert nanoseconds in TSC cycles */
2467         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2468                            &vcpu->arch.virtual_tsc_shift,
2469                            &vcpu->arch.virtual_tsc_mult);
2470         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2471
2472         /*
2473          * Compute the variation in TSC rate which is acceptable
2474          * within the range of tolerance and decide if the
2475          * rate being applied is within that bounds of the hardware
2476          * rate.  If so, no scaling or compensation need be done.
2477          */
2478         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2479         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2480         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2481                 pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n",
2482                          user_tsc_khz, thresh_lo, thresh_hi);
2483                 use_scaling = 1;
2484         }
2485         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2486 }
2487
2488 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2489 {
2490         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2491                                       vcpu->arch.virtual_tsc_mult,
2492                                       vcpu->arch.virtual_tsc_shift);
2493         tsc += vcpu->arch.this_tsc_write;
2494         return tsc;
2495 }
2496
2497 #ifdef CONFIG_X86_64
2498 static inline int gtod_is_based_on_tsc(int mode)
2499 {
2500         return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2501 }
2502 #endif
2503
2504 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2505 {
2506 #ifdef CONFIG_X86_64
2507         bool vcpus_matched;
2508         struct kvm_arch *ka = &vcpu->kvm->arch;
2509         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2510
2511         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2512                          atomic_read(&vcpu->kvm->online_vcpus));
2513
2514         /*
2515          * Once the masterclock is enabled, always perform request in
2516          * order to update it.
2517          *
2518          * In order to enable masterclock, the host clocksource must be TSC
2519          * and the vcpus need to have matched TSCs.  When that happens,
2520          * perform request to enable masterclock.
2521          */
2522         if (ka->use_master_clock ||
2523             (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2524                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2525
2526         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2527                             atomic_read(&vcpu->kvm->online_vcpus),
2528                             ka->use_master_clock, gtod->clock.vclock_mode);
2529 #endif
2530 }
2531
2532 /*
2533  * Multiply tsc by a fixed point number represented by ratio.
2534  *
2535  * The most significant 64-N bits (mult) of ratio represent the
2536  * integral part of the fixed point number; the remaining N bits
2537  * (frac) represent the fractional part, ie. ratio represents a fixed
2538  * point number (mult + frac * 2^(-N)).
2539  *
2540  * N equals to kvm_caps.tsc_scaling_ratio_frac_bits.
2541  */
2542 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2543 {
2544         return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits);
2545 }
2546
2547 u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2548 {
2549         u64 _tsc = tsc;
2550
2551         if (ratio != kvm_caps.default_tsc_scaling_ratio)
2552                 _tsc = __scale_tsc(ratio, tsc);
2553
2554         return _tsc;
2555 }
2556
2557 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2558 {
2559         u64 tsc;
2560
2561         tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2562
2563         return target_tsc - tsc;
2564 }
2565
2566 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2567 {
2568         return vcpu->arch.l1_tsc_offset +
2569                 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2570 }
2571 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2572
2573 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2574 {
2575         u64 nested_offset;
2576
2577         if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio)
2578                 nested_offset = l1_offset;
2579         else
2580                 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2581                                                 kvm_caps.tsc_scaling_ratio_frac_bits);
2582
2583         nested_offset += l2_offset;
2584         return nested_offset;
2585 }
2586 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2587
2588 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2589 {
2590         if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio)
2591                 return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2592                                        kvm_caps.tsc_scaling_ratio_frac_bits);
2593
2594         return l1_multiplier;
2595 }
2596 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2597
2598 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2599 {
2600         trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2601                                    vcpu->arch.l1_tsc_offset,
2602                                    l1_offset);
2603
2604         vcpu->arch.l1_tsc_offset = l1_offset;
2605
2606         /*
2607          * If we are here because L1 chose not to trap WRMSR to TSC then
2608          * according to the spec this should set L1's TSC (as opposed to
2609          * setting L1's offset for L2).
2610          */
2611         if (is_guest_mode(vcpu))
2612                 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2613                         l1_offset,
2614                         static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2615                         static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2616         else
2617                 vcpu->arch.tsc_offset = l1_offset;
2618
2619         static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset);
2620 }
2621
2622 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2623 {
2624         vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2625
2626         /* Userspace is changing the multiplier while L2 is active */
2627         if (is_guest_mode(vcpu))
2628                 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2629                         l1_multiplier,
2630                         static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2631         else
2632                 vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2633
2634         if (kvm_caps.has_tsc_control)
2635                 static_call(kvm_x86_write_tsc_multiplier)(
2636                         vcpu, vcpu->arch.tsc_scaling_ratio);
2637 }
2638
2639 static inline bool kvm_check_tsc_unstable(void)
2640 {
2641 #ifdef CONFIG_X86_64
2642         /*
2643          * TSC is marked unstable when we're running on Hyper-V,
2644          * 'TSC page' clocksource is good.
2645          */
2646         if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2647                 return false;
2648 #endif
2649         return check_tsc_unstable();
2650 }
2651
2652 /*
2653  * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2654  * offset for the vcpu and tracks the TSC matching generation that the vcpu
2655  * participates in.
2656  */
2657 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2658                                   u64 ns, bool matched)
2659 {
2660         struct kvm *kvm = vcpu->kvm;
2661
2662         lockdep_assert_held(&kvm->arch.tsc_write_lock);
2663
2664         /*
2665          * We also track th most recent recorded KHZ, write and time to
2666          * allow the matching interval to be extended at each write.
2667          */
2668         kvm->arch.last_tsc_nsec = ns;
2669         kvm->arch.last_tsc_write = tsc;
2670         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2671         kvm->arch.last_tsc_offset = offset;
2672
2673         vcpu->arch.last_guest_tsc = tsc;
2674
2675         kvm_vcpu_write_tsc_offset(vcpu, offset);
2676
2677         if (!matched) {
2678                 /*
2679                  * We split periods of matched TSC writes into generations.
2680                  * For each generation, we track the original measured
2681                  * nanosecond time, offset, and write, so if TSCs are in
2682                  * sync, we can match exact offset, and if not, we can match
2683                  * exact software computation in compute_guest_tsc()
2684                  *
2685                  * These values are tracked in kvm->arch.cur_xxx variables.
2686                  */
2687                 kvm->arch.cur_tsc_generation++;
2688                 kvm->arch.cur_tsc_nsec = ns;
2689                 kvm->arch.cur_tsc_write = tsc;
2690                 kvm->arch.cur_tsc_offset = offset;
2691                 kvm->arch.nr_vcpus_matched_tsc = 0;
2692         } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2693                 kvm->arch.nr_vcpus_matched_tsc++;
2694         }
2695
2696         /* Keep track of which generation this VCPU has synchronized to */
2697         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2698         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2699         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2700
2701         kvm_track_tsc_matching(vcpu);
2702 }
2703
2704 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2705 {
2706         struct kvm *kvm = vcpu->kvm;
2707         u64 offset, ns, elapsed;
2708         unsigned long flags;
2709         bool matched = false;
2710         bool synchronizing = false;
2711
2712         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2713         offset = kvm_compute_l1_tsc_offset(vcpu, data);
2714         ns = get_kvmclock_base_ns();
2715         elapsed = ns - kvm->arch.last_tsc_nsec;
2716
2717         if (vcpu->arch.virtual_tsc_khz) {
2718                 if (data == 0) {
2719                         /*
2720                          * detection of vcpu initialization -- need to sync
2721                          * with other vCPUs. This particularly helps to keep
2722                          * kvm_clock stable after CPU hotplug
2723                          */
2724                         synchronizing = true;
2725                 } else {
2726                         u64 tsc_exp = kvm->arch.last_tsc_write +
2727                                                 nsec_to_cycles(vcpu, elapsed);
2728                         u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2729                         /*
2730                          * Special case: TSC write with a small delta (1 second)
2731                          * of virtual cycle time against real time is
2732                          * interpreted as an attempt to synchronize the CPU.
2733                          */
2734                         synchronizing = data < tsc_exp + tsc_hz &&
2735                                         data + tsc_hz > tsc_exp;
2736                 }
2737         }
2738
2739         /*
2740          * For a reliable TSC, we can match TSC offsets, and for an unstable
2741          * TSC, we add elapsed time in this computation.  We could let the
2742          * compensation code attempt to catch up if we fall behind, but
2743          * it's better to try to match offsets from the beginning.
2744          */
2745         if (synchronizing &&
2746             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2747                 if (!kvm_check_tsc_unstable()) {
2748                         offset = kvm->arch.cur_tsc_offset;
2749                 } else {
2750                         u64 delta = nsec_to_cycles(vcpu, elapsed);
2751                         data += delta;
2752                         offset = kvm_compute_l1_tsc_offset(vcpu, data);
2753                 }
2754                 matched = true;
2755         }
2756
2757         __kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2758         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2759 }
2760
2761 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2762                                            s64 adjustment)
2763 {
2764         u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2765         kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2766 }
2767
2768 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2769 {
2770         if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio)
2771                 WARN_ON(adjustment < 0);
2772         adjustment = kvm_scale_tsc((u64) adjustment,
2773                                    vcpu->arch.l1_tsc_scaling_ratio);
2774         adjust_tsc_offset_guest(vcpu, adjustment);
2775 }
2776
2777 #ifdef CONFIG_X86_64
2778
2779 static u64 read_tsc(void)
2780 {
2781         u64 ret = (u64)rdtsc_ordered();
2782         u64 last = pvclock_gtod_data.clock.cycle_last;
2783
2784         if (likely(ret >= last))
2785                 return ret;
2786
2787         /*
2788          * GCC likes to generate cmov here, but this branch is extremely
2789          * predictable (it's just a function of time and the likely is
2790          * very likely) and there's a data dependence, so force GCC
2791          * to generate a branch instead.  I don't barrier() because
2792          * we don't actually need a barrier, and if this function
2793          * ever gets inlined it will generate worse code.
2794          */
2795         asm volatile ("");
2796         return last;
2797 }
2798
2799 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2800                           int *mode)
2801 {
2802         long v;
2803         u64 tsc_pg_val;
2804
2805         switch (clock->vclock_mode) {
2806         case VDSO_CLOCKMODE_HVCLOCK:
2807                 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2808                                                   tsc_timestamp);
2809                 if (tsc_pg_val != U64_MAX) {
2810                         /* TSC page valid */
2811                         *mode = VDSO_CLOCKMODE_HVCLOCK;
2812                         v = (tsc_pg_val - clock->cycle_last) &
2813                                 clock->mask;
2814                 } else {
2815                         /* TSC page invalid */
2816                         *mode = VDSO_CLOCKMODE_NONE;
2817                 }
2818                 break;
2819         case VDSO_CLOCKMODE_TSC:
2820                 *mode = VDSO_CLOCKMODE_TSC;
2821                 *tsc_timestamp = read_tsc();
2822                 v = (*tsc_timestamp - clock->cycle_last) &
2823                         clock->mask;
2824                 break;
2825         default:
2826                 *mode = VDSO_CLOCKMODE_NONE;
2827         }
2828
2829         if (*mode == VDSO_CLOCKMODE_NONE)
2830                 *tsc_timestamp = v = 0;
2831
2832         return v * clock->mult;
2833 }
2834
2835 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2836 {
2837         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2838         unsigned long seq;
2839         int mode;
2840         u64 ns;
2841
2842         do {
2843                 seq = read_seqcount_begin(&gtod->seq);
2844                 ns = gtod->raw_clock.base_cycles;
2845                 ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2846                 ns >>= gtod->raw_clock.shift;
2847                 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2848         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2849         *t = ns;
2850
2851         return mode;
2852 }
2853
2854 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2855 {
2856         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2857         unsigned long seq;
2858         int mode;
2859         u64 ns;
2860
2861         do {
2862                 seq = read_seqcount_begin(&gtod->seq);
2863                 ts->tv_sec = gtod->wall_time_sec;
2864                 ns = gtod->clock.base_cycles;
2865                 ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2866                 ns >>= gtod->clock.shift;
2867         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2868
2869         ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2870         ts->tv_nsec = ns;
2871
2872         return mode;
2873 }
2874
2875 /* returns true if host is using TSC based clocksource */
2876 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2877 {
2878         /* checked again under seqlock below */
2879         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2880                 return false;
2881
2882         return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2883                                                       tsc_timestamp));
2884 }
2885
2886 /* returns true if host is using TSC based clocksource */
2887 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2888                                            u64 *tsc_timestamp)
2889 {
2890         /* checked again under seqlock below */
2891         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2892                 return false;
2893
2894         return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2895 }
2896 #endif
2897
2898 /*
2899  *
2900  * Assuming a stable TSC across physical CPUS, and a stable TSC
2901  * across virtual CPUs, the following condition is possible.
2902  * Each numbered line represents an event visible to both
2903  * CPUs at the next numbered event.
2904  *
2905  * "timespecX" represents host monotonic time. "tscX" represents
2906  * RDTSC value.
2907  *
2908  *              VCPU0 on CPU0           |       VCPU1 on CPU1
2909  *
2910  * 1.  read timespec0,tsc0
2911  * 2.                                   | timespec1 = timespec0 + N
2912  *                                      | tsc1 = tsc0 + M
2913  * 3. transition to guest               | transition to guest
2914  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2915  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
2916  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2917  *
2918  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2919  *
2920  *      - ret0 < ret1
2921  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2922  *              ...
2923  *      - 0 < N - M => M < N
2924  *
2925  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2926  * always the case (the difference between two distinct xtime instances
2927  * might be smaller then the difference between corresponding TSC reads,
2928  * when updating guest vcpus pvclock areas).
2929  *
2930  * To avoid that problem, do not allow visibility of distinct
2931  * system_timestamp/tsc_timestamp values simultaneously: use a master
2932  * copy of host monotonic time values. Update that master copy
2933  * in lockstep.
2934  *
2935  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2936  *
2937  */
2938
2939 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2940 {
2941 #ifdef CONFIG_X86_64
2942         struct kvm_arch *ka = &kvm->arch;
2943         int vclock_mode;
2944         bool host_tsc_clocksource, vcpus_matched;
2945
2946         lockdep_assert_held(&kvm->arch.tsc_write_lock);
2947         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2948                         atomic_read(&kvm->online_vcpus));
2949
2950         /*
2951          * If the host uses TSC clock, then passthrough TSC as stable
2952          * to the guest.
2953          */
2954         host_tsc_clocksource = kvm_get_time_and_clockread(
2955                                         &ka->master_kernel_ns,
2956                                         &ka->master_cycle_now);
2957
2958         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2959                                 && !ka->backwards_tsc_observed
2960                                 && !ka->boot_vcpu_runs_old_kvmclock;
2961
2962         if (ka->use_master_clock)
2963                 atomic_set(&kvm_guest_has_master_clock, 1);
2964
2965         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2966         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2967                                         vcpus_matched);
2968 #endif
2969 }
2970
2971 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2972 {
2973         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2974 }
2975
2976 static void __kvm_start_pvclock_update(struct kvm *kvm)
2977 {
2978         raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
2979         write_seqcount_begin(&kvm->arch.pvclock_sc);
2980 }
2981
2982 static void kvm_start_pvclock_update(struct kvm *kvm)
2983 {
2984         kvm_make_mclock_inprogress_request(kvm);
2985
2986         /* no guest entries from this point */
2987         __kvm_start_pvclock_update(kvm);
2988 }
2989
2990 static void kvm_end_pvclock_update(struct kvm *kvm)
2991 {
2992         struct kvm_arch *ka = &kvm->arch;
2993         struct kvm_vcpu *vcpu;
2994         unsigned long i;
2995
2996         write_seqcount_end(&ka->pvclock_sc);
2997         raw_spin_unlock_irq(&ka->tsc_write_lock);
2998         kvm_for_each_vcpu(i, vcpu, kvm)
2999                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3000
3001         /* guest entries allowed */
3002         kvm_for_each_vcpu(i, vcpu, kvm)
3003                 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
3004 }
3005
3006 static void kvm_update_masterclock(struct kvm *kvm)
3007 {
3008         kvm_hv_request_tsc_page_update(kvm);
3009         kvm_start_pvclock_update(kvm);
3010         pvclock_update_vm_gtod_copy(kvm);
3011         kvm_end_pvclock_update(kvm);
3012 }
3013
3014 /*
3015  * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's
3016  * per-CPU value (which may be zero if a CPU is going offline).  Note, tsc_khz
3017  * can change during boot even if the TSC is constant, as it's possible for KVM
3018  * to be loaded before TSC calibration completes.  Ideally, KVM would get a
3019  * notification when calibration completes, but practically speaking calibration
3020  * will complete before userspace is alive enough to create VMs.
3021  */
3022 static unsigned long get_cpu_tsc_khz(void)
3023 {
3024         if (static_cpu_has(X86_FEATURE_CONSTANT_TSC))
3025                 return tsc_khz;
3026         else
3027                 return __this_cpu_read(cpu_tsc_khz);
3028 }
3029
3030 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc.  */
3031 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3032 {
3033         struct kvm_arch *ka = &kvm->arch;
3034         struct pvclock_vcpu_time_info hv_clock;
3035
3036         /* both __this_cpu_read() and rdtsc() should be on the same cpu */
3037         get_cpu();
3038
3039         data->flags = 0;
3040         if (ka->use_master_clock &&
3041             (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) {
3042 #ifdef CONFIG_X86_64
3043                 struct timespec64 ts;
3044
3045                 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
3046                         data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
3047                         data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
3048                 } else
3049 #endif
3050                 data->host_tsc = rdtsc();
3051
3052                 data->flags |= KVM_CLOCK_TSC_STABLE;
3053                 hv_clock.tsc_timestamp = ka->master_cycle_now;
3054                 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3055                 kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL,
3056                                    &hv_clock.tsc_shift,
3057                                    &hv_clock.tsc_to_system_mul);
3058                 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
3059         } else {
3060                 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
3061         }
3062
3063         put_cpu();
3064 }
3065
3066 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3067 {
3068         struct kvm_arch *ka = &kvm->arch;
3069         unsigned seq;
3070
3071         do {
3072                 seq = read_seqcount_begin(&ka->pvclock_sc);
3073                 __get_kvmclock(kvm, data);
3074         } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3075 }
3076
3077 u64 get_kvmclock_ns(struct kvm *kvm)
3078 {
3079         struct kvm_clock_data data;
3080
3081         get_kvmclock(kvm, &data);
3082         return data.clock;
3083 }
3084
3085 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v,
3086                                     struct gfn_to_pfn_cache *gpc,
3087                                     unsigned int offset)
3088 {
3089         struct kvm_vcpu_arch *vcpu = &v->arch;
3090         struct pvclock_vcpu_time_info *guest_hv_clock;
3091         unsigned long flags;
3092
3093         read_lock_irqsave(&gpc->lock, flags);
3094         while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) {
3095                 read_unlock_irqrestore(&gpc->lock, flags);
3096
3097                 if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock)))
3098                         return;
3099
3100                 read_lock_irqsave(&gpc->lock, flags);
3101         }
3102
3103         guest_hv_clock = (void *)(gpc->khva + offset);
3104
3105         /*
3106          * This VCPU is paused, but it's legal for a guest to read another
3107          * VCPU's kvmclock, so we really have to follow the specification where
3108          * it says that version is odd if data is being modified, and even after
3109          * it is consistent.
3110          */
3111
3112         guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1;
3113         smp_wmb();
3114
3115         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3116         vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
3117
3118         if (vcpu->pvclock_set_guest_stopped_request) {
3119                 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3120                 vcpu->pvclock_set_guest_stopped_request = false;
3121         }
3122
3123         memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock));
3124         smp_wmb();
3125
3126         guest_hv_clock->version = ++vcpu->hv_clock.version;
3127
3128         mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT);
3129         read_unlock_irqrestore(&gpc->lock, flags);
3130
3131         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
3132 }
3133
3134 static int kvm_guest_time_update(struct kvm_vcpu *v)
3135 {
3136         unsigned long flags, tgt_tsc_khz;
3137         unsigned seq;
3138         struct kvm_vcpu_arch *vcpu = &v->arch;
3139         struct kvm_arch *ka = &v->kvm->arch;
3140         s64 kernel_ns;
3141         u64 tsc_timestamp, host_tsc;
3142         u8 pvclock_flags;
3143         bool use_master_clock;
3144
3145         kernel_ns = 0;
3146         host_tsc = 0;
3147
3148         /*
3149          * If the host uses TSC clock, then passthrough TSC as stable
3150          * to the guest.
3151          */
3152         do {
3153                 seq = read_seqcount_begin(&ka->pvclock_sc);
3154                 use_master_clock = ka->use_master_clock;
3155                 if (use_master_clock) {
3156                         host_tsc = ka->master_cycle_now;
3157                         kernel_ns = ka->master_kernel_ns;
3158                 }
3159         } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3160
3161         /* Keep irq disabled to prevent changes to the clock */
3162         local_irq_save(flags);
3163         tgt_tsc_khz = get_cpu_tsc_khz();
3164         if (unlikely(tgt_tsc_khz == 0)) {
3165                 local_irq_restore(flags);
3166                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3167                 return 1;
3168         }
3169         if (!use_master_clock) {
3170                 host_tsc = rdtsc();
3171                 kernel_ns = get_kvmclock_base_ns();
3172         }
3173
3174         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3175
3176         /*
3177          * We may have to catch up the TSC to match elapsed wall clock
3178          * time for two reasons, even if kvmclock is used.
3179          *   1) CPU could have been running below the maximum TSC rate
3180          *   2) Broken TSC compensation resets the base at each VCPU
3181          *      entry to avoid unknown leaps of TSC even when running
3182          *      again on the same CPU.  This may cause apparent elapsed
3183          *      time to disappear, and the guest to stand still or run
3184          *      very slowly.
3185          */
3186         if (vcpu->tsc_catchup) {
3187                 u64 tsc = compute_guest_tsc(v, kernel_ns);
3188                 if (tsc > tsc_timestamp) {
3189                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3190                         tsc_timestamp = tsc;
3191                 }
3192         }
3193
3194         local_irq_restore(flags);
3195
3196         /* With all the info we got, fill in the values */
3197
3198         if (kvm_caps.has_tsc_control)
3199                 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3200                                             v->arch.l1_tsc_scaling_ratio);
3201
3202         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3203                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3204                                    &vcpu->hv_clock.tsc_shift,
3205                                    &vcpu->hv_clock.tsc_to_system_mul);
3206                 vcpu->hw_tsc_khz = tgt_tsc_khz;
3207                 kvm_xen_update_tsc_info(v);
3208         }
3209
3210         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3211         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3212         vcpu->last_guest_tsc = tsc_timestamp;
3213
3214         /* If the host uses TSC clocksource, then it is stable */
3215         pvclock_flags = 0;
3216         if (use_master_clock)
3217                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3218
3219         vcpu->hv_clock.flags = pvclock_flags;
3220
3221         if (vcpu->pv_time.active)
3222                 kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0);
3223         if (vcpu->xen.vcpu_info_cache.active)
3224                 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache,
3225                                         offsetof(struct compat_vcpu_info, time));
3226         if (vcpu->xen.vcpu_time_info_cache.active)
3227                 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0);
3228         kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3229         return 0;
3230 }
3231
3232 /*
3233  * kvmclock updates which are isolated to a given vcpu, such as
3234  * vcpu->cpu migration, should not allow system_timestamp from
3235  * the rest of the vcpus to remain static. Otherwise ntp frequency
3236  * correction applies to one vcpu's system_timestamp but not
3237  * the others.
3238  *
3239  * So in those cases, request a kvmclock update for all vcpus.
3240  * We need to rate-limit these requests though, as they can
3241  * considerably slow guests that have a large number of vcpus.
3242  * The time for a remote vcpu to update its kvmclock is bound
3243  * by the delay we use to rate-limit the updates.
3244  */
3245
3246 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3247
3248 static void kvmclock_update_fn(struct work_struct *work)
3249 {
3250         unsigned long i;
3251         struct delayed_work *dwork = to_delayed_work(work);
3252         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3253                                            kvmclock_update_work);
3254         struct kvm *kvm = container_of(ka, struct kvm, arch);
3255         struct kvm_vcpu *vcpu;
3256
3257         kvm_for_each_vcpu(i, vcpu, kvm) {
3258                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3259                 kvm_vcpu_kick(vcpu);
3260         }
3261 }
3262
3263 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3264 {
3265         struct kvm *kvm = v->kvm;
3266
3267         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3268         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3269                                         KVMCLOCK_UPDATE_DELAY);
3270 }
3271
3272 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3273
3274 static void kvmclock_sync_fn(struct work_struct *work)
3275 {
3276         struct delayed_work *dwork = to_delayed_work(work);
3277         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3278                                            kvmclock_sync_work);
3279         struct kvm *kvm = container_of(ka, struct kvm, arch);
3280
3281         if (!kvmclock_periodic_sync)
3282                 return;
3283
3284         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3285         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3286                                         KVMCLOCK_SYNC_PERIOD);
3287 }
3288
3289 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */
3290 static bool is_mci_control_msr(u32 msr)
3291 {
3292         return (msr & 3) == 0;
3293 }
3294 static bool is_mci_status_msr(u32 msr)
3295 {
3296         return (msr & 3) == 1;
3297 }
3298
3299 /*
3300  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3301  */
3302 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3303 {
3304         /* McStatusWrEn enabled? */
3305         if (guest_cpuid_is_amd_or_hygon(vcpu))
3306                 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3307
3308         return false;
3309 }
3310
3311 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3312 {
3313         u64 mcg_cap = vcpu->arch.mcg_cap;
3314         unsigned bank_num = mcg_cap & 0xff;
3315         u32 msr = msr_info->index;
3316         u64 data = msr_info->data;
3317         u32 offset, last_msr;
3318
3319         switch (msr) {
3320         case MSR_IA32_MCG_STATUS:
3321                 vcpu->arch.mcg_status = data;
3322                 break;
3323         case MSR_IA32_MCG_CTL:
3324                 if (!(mcg_cap & MCG_CTL_P) &&
3325                     (data || !msr_info->host_initiated))
3326                         return 1;
3327                 if (data != 0 && data != ~(u64)0)
3328                         return 1;
3329                 vcpu->arch.mcg_ctl = data;
3330                 break;
3331         case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3332                 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3333                 if (msr > last_msr)
3334                         return 1;
3335
3336                 if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated))
3337                         return 1;
3338                 /* An attempt to write a 1 to a reserved bit raises #GP */
3339                 if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK))
3340                         return 1;
3341                 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3342                                             last_msr + 1 - MSR_IA32_MC0_CTL2);
3343                 vcpu->arch.mci_ctl2_banks[offset] = data;
3344                 break;
3345         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3346                 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3347                 if (msr > last_msr)
3348                         return 1;
3349
3350                 /*
3351                  * Only 0 or all 1s can be written to IA32_MCi_CTL, all other
3352                  * values are architecturally undefined.  But, some Linux
3353                  * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB
3354                  * issue on AMD K8s, allow bit 10 to be clear when setting all
3355                  * other bits in order to avoid an uncaught #GP in the guest.
3356                  *
3357                  * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable,
3358                  * single-bit ECC data errors.
3359                  */
3360                 if (is_mci_control_msr(msr) &&
3361                     data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
3362                         return 1;
3363
3364                 /*
3365                  * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR.
3366                  * AMD-based CPUs allow non-zero values, but if and only if
3367                  * HWCR[McStatusWrEn] is set.
3368                  */
3369                 if (!msr_info->host_initiated && is_mci_status_msr(msr) &&
3370                     data != 0 && !can_set_mci_status(vcpu))
3371                         return 1;
3372
3373                 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3374                                             last_msr + 1 - MSR_IA32_MC0_CTL);
3375                 vcpu->arch.mce_banks[offset] = data;
3376                 break;
3377         default:
3378                 return 1;
3379         }
3380         return 0;
3381 }
3382
3383 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3384 {
3385         u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3386
3387         return (vcpu->arch.apf.msr_en_val & mask) == mask;
3388 }
3389
3390 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3391 {
3392         gpa_t gpa = data & ~0x3f;
3393
3394         /* Bits 4:5 are reserved, Should be zero */
3395         if (data & 0x30)
3396                 return 1;
3397
3398         if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3399             (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3400                 return 1;
3401
3402         if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3403             (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3404                 return 1;
3405
3406         if (!lapic_in_kernel(vcpu))
3407                 return data ? 1 : 0;
3408
3409         vcpu->arch.apf.msr_en_val = data;
3410
3411         if (!kvm_pv_async_pf_enabled(vcpu)) {
3412                 kvm_clear_async_pf_completion_queue(vcpu);
3413                 kvm_async_pf_hash_reset(vcpu);
3414                 return 0;
3415         }
3416
3417         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3418                                         sizeof(u64)))
3419                 return 1;
3420
3421         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3422         vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3423
3424         kvm_async_pf_wakeup_all(vcpu);
3425
3426         return 0;
3427 }
3428
3429 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3430 {
3431         /* Bits 8-63 are reserved */
3432         if (data >> 8)
3433                 return 1;
3434
3435         if (!lapic_in_kernel(vcpu))
3436                 return 1;
3437
3438         vcpu->arch.apf.msr_int_val = data;
3439
3440         vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3441
3442         return 0;
3443 }
3444
3445 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3446 {
3447         kvm_gpc_deactivate(&vcpu->arch.pv_time);
3448         vcpu->arch.time = 0;
3449 }
3450
3451 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3452 {
3453         ++vcpu->stat.tlb_flush;
3454         static_call(kvm_x86_flush_tlb_all)(vcpu);
3455
3456         /* Flushing all ASIDs flushes the current ASID... */
3457         kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3458 }
3459
3460 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3461 {
3462         ++vcpu->stat.tlb_flush;
3463
3464         if (!tdp_enabled) {
3465                 /*
3466                  * A TLB flush on behalf of the guest is equivalent to
3467                  * INVPCID(all), toggling CR4.PGE, etc., which requires
3468                  * a forced sync of the shadow page tables.  Ensure all the
3469                  * roots are synced and the guest TLB in hardware is clean.
3470                  */
3471                 kvm_mmu_sync_roots(vcpu);
3472                 kvm_mmu_sync_prev_roots(vcpu);
3473         }
3474
3475         static_call(kvm_x86_flush_tlb_guest)(vcpu);
3476
3477         /*
3478          * Flushing all "guest" TLB is always a superset of Hyper-V's fine
3479          * grained flushing.
3480          */
3481         kvm_hv_vcpu_purge_flush_tlb(vcpu);
3482 }
3483
3484
3485 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3486 {
3487         ++vcpu->stat.tlb_flush;
3488         static_call(kvm_x86_flush_tlb_current)(vcpu);
3489 }
3490
3491 /*
3492  * Service "local" TLB flush requests, which are specific to the current MMU
3493  * context.  In addition to the generic event handling in vcpu_enter_guest(),
3494  * TLB flushes that are targeted at an MMU context also need to be serviced
3495  * prior before nested VM-Enter/VM-Exit.
3496  */
3497 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3498 {
3499         if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3500                 kvm_vcpu_flush_tlb_current(vcpu);
3501
3502         if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3503                 kvm_vcpu_flush_tlb_guest(vcpu);
3504 }
3505 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3506
3507 static void record_steal_time(struct kvm_vcpu *vcpu)
3508 {
3509         struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3510         struct kvm_steal_time __user *st;
3511         struct kvm_memslots *slots;
3512         gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3513         u64 steal;
3514         u32 version;
3515
3516         if (kvm_xen_msr_enabled(vcpu->kvm)) {
3517                 kvm_xen_runstate_set_running(vcpu);
3518                 return;
3519         }
3520
3521         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3522                 return;
3523
3524         if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3525                 return;
3526
3527         slots = kvm_memslots(vcpu->kvm);
3528
3529         if (unlikely(slots->generation != ghc->generation ||
3530                      gpa != ghc->gpa ||
3531                      kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3532                 /* We rely on the fact that it fits in a single page. */
3533                 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3534
3535                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) ||
3536                     kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3537                         return;
3538         }
3539
3540         st = (struct kvm_steal_time __user *)ghc->hva;
3541         /*
3542          * Doing a TLB flush here, on the guest's behalf, can avoid
3543          * expensive IPIs.
3544          */
3545         if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3546                 u8 st_preempted = 0;
3547                 int err = -EFAULT;
3548
3549                 if (!user_access_begin(st, sizeof(*st)))
3550                         return;
3551
3552                 asm volatile("1: xchgb %0, %2\n"
3553                              "xor %1, %1\n"
3554                              "2:\n"
3555                              _ASM_EXTABLE_UA(1b, 2b)
3556                              : "+q" (st_preempted),
3557                                "+&r" (err),
3558                                "+m" (st->preempted));
3559                 if (err)
3560                         goto out;
3561
3562                 user_access_end();
3563
3564                 vcpu->arch.st.preempted = 0;
3565
3566                 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3567                                        st_preempted & KVM_VCPU_FLUSH_TLB);
3568                 if (st_preempted & KVM_VCPU_FLUSH_TLB)
3569                         kvm_vcpu_flush_tlb_guest(vcpu);
3570
3571                 if (!user_access_begin(st, sizeof(*st)))
3572                         goto dirty;
3573         } else {
3574                 if (!user_access_begin(st, sizeof(*st)))
3575                         return;
3576
3577                 unsafe_put_user(0, &st->preempted, out);
3578                 vcpu->arch.st.preempted = 0;
3579         }
3580
3581         unsafe_get_user(version, &st->version, out);
3582         if (version & 1)
3583                 version += 1;  /* first time write, random junk */
3584
3585         version += 1;
3586         unsafe_put_user(version, &st->version, out);
3587
3588         smp_wmb();
3589
3590         unsafe_get_user(steal, &st->steal, out);
3591         steal += current->sched_info.run_delay -
3592                 vcpu->arch.st.last_steal;
3593         vcpu->arch.st.last_steal = current->sched_info.run_delay;
3594         unsafe_put_user(steal, &st->steal, out);
3595
3596         version += 1;
3597         unsafe_put_user(version, &st->version, out);
3598
3599  out:
3600         user_access_end();
3601  dirty:
3602         mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3603 }
3604
3605 static bool kvm_is_msr_to_save(u32 msr_index)
3606 {
3607         unsigned int i;
3608
3609         for (i = 0; i < num_msrs_to_save; i++) {
3610                 if (msrs_to_save[i] == msr_index)
3611                         return true;
3612         }
3613
3614         return false;
3615 }
3616
3617 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3618 {
3619         u32 msr = msr_info->index;
3620         u64 data = msr_info->data;
3621
3622         if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3623                 return kvm_xen_write_hypercall_page(vcpu, data);
3624
3625         switch (msr) {
3626         case MSR_AMD64_NB_CFG:
3627         case MSR_IA32_UCODE_WRITE:
3628         case MSR_VM_HSAVE_PA:
3629         case MSR_AMD64_PATCH_LOADER:
3630         case MSR_AMD64_BU_CFG2:
3631         case MSR_AMD64_DC_CFG:
3632         case MSR_F15H_EX_CFG:
3633                 break;
3634
3635         case MSR_IA32_UCODE_REV:
3636                 if (msr_info->host_initiated)
3637                         vcpu->arch.microcode_version = data;
3638                 break;
3639         case MSR_IA32_ARCH_CAPABILITIES:
3640                 if (!msr_info->host_initiated)
3641                         return 1;
3642                 vcpu->arch.arch_capabilities = data;
3643                 break;
3644         case MSR_IA32_PERF_CAPABILITIES:
3645                 if (!msr_info->host_initiated)
3646                         return 1;
3647                 if (data & ~kvm_caps.supported_perf_cap)
3648                         return 1;
3649
3650                 /*
3651                  * Note, this is not just a performance optimization!  KVM
3652                  * disallows changing feature MSRs after the vCPU has run; PMU
3653                  * refresh will bug the VM if called after the vCPU has run.
3654                  */
3655                 if (vcpu->arch.perf_capabilities == data)
3656                         break;
3657
3658                 vcpu->arch.perf_capabilities = data;
3659                 kvm_pmu_refresh(vcpu);
3660                 break;
3661         case MSR_IA32_PRED_CMD:
3662                 if (!msr_info->host_initiated && !guest_has_pred_cmd_msr(vcpu))
3663                         return 1;
3664
3665                 if (!boot_cpu_has(X86_FEATURE_IBPB) || (data & ~PRED_CMD_IBPB))
3666                         return 1;
3667                 if (!data)
3668                         break;
3669
3670                 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
3671                 break;
3672         case MSR_IA32_FLUSH_CMD:
3673                 if (!msr_info->host_initiated &&
3674                     !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D))
3675                         return 1;
3676
3677                 if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH))
3678                         return 1;
3679                 if (!data)
3680                         break;
3681
3682                 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
3683                 break;
3684         case MSR_EFER:
3685                 return set_efer(vcpu, msr_info);
3686         case MSR_K7_HWCR:
3687                 data &= ~(u64)0x40;     /* ignore flush filter disable */
3688                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
3689                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
3690
3691                 /* Handle McStatusWrEn */
3692                 if (data == BIT_ULL(18)) {
3693                         vcpu->arch.msr_hwcr = data;
3694                 } else if (data != 0) {
3695                         kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3696                         return 1;
3697                 }
3698                 break;
3699         case MSR_FAM10H_MMIO_CONF_BASE:
3700                 if (data != 0) {
3701                         kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3702                         return 1;
3703                 }
3704                 break;
3705         case 0x200 ... MSR_IA32_MC0_CTL2 - 1:
3706         case MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) ... 0x2ff:
3707                 return kvm_mtrr_set_msr(vcpu, msr, data);
3708         case MSR_IA32_APICBASE:
3709                 return kvm_set_apic_base(vcpu, msr_info);
3710         case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3711                 return kvm_x2apic_msr_write(vcpu, msr, data);
3712         case MSR_IA32_TSC_DEADLINE:
3713                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
3714                 break;
3715         case MSR_IA32_TSC_ADJUST:
3716                 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3717                         if (!msr_info->host_initiated) {
3718                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3719                                 adjust_tsc_offset_guest(vcpu, adj);
3720                                 /* Before back to guest, tsc_timestamp must be adjusted
3721                                  * as well, otherwise guest's percpu pvclock time could jump.
3722                                  */
3723                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3724                         }
3725                         vcpu->arch.ia32_tsc_adjust_msr = data;
3726                 }
3727                 break;
3728         case MSR_IA32_MISC_ENABLE: {
3729                 u64 old_val = vcpu->arch.ia32_misc_enable_msr;
3730
3731                 if (!msr_info->host_initiated) {
3732                         /* RO bits */
3733                         if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK)
3734                                 return 1;
3735
3736                         /* R bits, i.e. writes are ignored, but don't fault. */
3737                         data = data & ~MSR_IA32_MISC_ENABLE_EMON;
3738                         data |= old_val & MSR_IA32_MISC_ENABLE_EMON;
3739                 }
3740
3741                 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3742                     ((old_val ^ data)  & MSR_IA32_MISC_ENABLE_MWAIT)) {
3743                         if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3744                                 return 1;
3745                         vcpu->arch.ia32_misc_enable_msr = data;
3746                         kvm_update_cpuid_runtime(vcpu);
3747                 } else {
3748                         vcpu->arch.ia32_misc_enable_msr = data;
3749                 }
3750                 break;
3751         }
3752         case MSR_IA32_SMBASE:
3753                 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
3754                         return 1;
3755                 vcpu->arch.smbase = data;
3756                 break;
3757         case MSR_IA32_POWER_CTL:
3758                 vcpu->arch.msr_ia32_power_ctl = data;
3759                 break;
3760         case MSR_IA32_TSC:
3761                 if (msr_info->host_initiated) {
3762                         kvm_synchronize_tsc(vcpu, data);
3763                 } else {
3764                         u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3765                         adjust_tsc_offset_guest(vcpu, adj);
3766                         vcpu->arch.ia32_tsc_adjust_msr += adj;
3767                 }
3768                 break;
3769         case MSR_IA32_XSS:
3770                 if (!msr_info->host_initiated &&
3771                     !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3772                         return 1;
3773                 /*
3774                  * KVM supports exposing PT to the guest, but does not support
3775                  * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3776                  * XSAVES/XRSTORS to save/restore PT MSRs.
3777                  */
3778                 if (data & ~kvm_caps.supported_xss)
3779                         return 1;
3780                 vcpu->arch.ia32_xss = data;
3781                 kvm_update_cpuid_runtime(vcpu);
3782                 break;
3783         case MSR_SMI_COUNT:
3784                 if (!msr_info->host_initiated)
3785                         return 1;
3786                 vcpu->arch.smi_count = data;
3787                 break;
3788         case MSR_KVM_WALL_CLOCK_NEW:
3789                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3790                         return 1;
3791
3792                 vcpu->kvm->arch.wall_clock = data;
3793                 kvm_write_wall_clock(vcpu->kvm, data, 0);
3794                 break;
3795         case MSR_KVM_WALL_CLOCK:
3796                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3797                         return 1;
3798
3799                 vcpu->kvm->arch.wall_clock = data;
3800                 kvm_write_wall_clock(vcpu->kvm, data, 0);
3801                 break;
3802         case MSR_KVM_SYSTEM_TIME_NEW:
3803                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3804                         return 1;
3805
3806                 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3807                 break;
3808         case MSR_KVM_SYSTEM_TIME:
3809                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3810                         return 1;
3811
3812                 kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3813                 break;
3814         case MSR_KVM_ASYNC_PF_EN:
3815                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3816                         return 1;
3817
3818                 if (kvm_pv_enable_async_pf(vcpu, data))
3819                         return 1;
3820                 break;
3821         case MSR_KVM_ASYNC_PF_INT:
3822                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3823                         return 1;
3824
3825                 if (kvm_pv_enable_async_pf_int(vcpu, data))
3826                         return 1;
3827                 break;
3828         case MSR_KVM_ASYNC_PF_ACK:
3829                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3830                         return 1;
3831                 if (data & 0x1) {
3832                         vcpu->arch.apf.pageready_pending = false;
3833                         kvm_check_async_pf_completion(vcpu);
3834                 }
3835                 break;
3836         case MSR_KVM_STEAL_TIME:
3837                 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3838                         return 1;
3839
3840                 if (unlikely(!sched_info_on()))
3841                         return 1;
3842
3843                 if (data & KVM_STEAL_RESERVED_MASK)
3844                         return 1;
3845
3846                 vcpu->arch.st.msr_val = data;
3847
3848                 if (!(data & KVM_MSR_ENABLED))
3849                         break;
3850
3851                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3852
3853                 break;
3854         case MSR_KVM_PV_EOI_EN:
3855                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3856                         return 1;
3857
3858                 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
3859                         return 1;
3860                 break;
3861
3862         case MSR_KVM_POLL_CONTROL:
3863                 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3864                         return 1;
3865
3866                 /* only enable bit supported */
3867                 if (data & (-1ULL << 1))
3868                         return 1;
3869
3870                 vcpu->arch.msr_kvm_poll_control = data;
3871                 break;
3872
3873         case MSR_IA32_MCG_CTL:
3874         case MSR_IA32_MCG_STATUS:
3875         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3876         case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3877                 return set_msr_mce(vcpu, msr_info);
3878
3879         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3880         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3881         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3882         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3883                 if (kvm_pmu_is_valid_msr(vcpu, msr))
3884                         return kvm_pmu_set_msr(vcpu, msr_info);
3885
3886                 if (data)
3887                         kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3888                 break;
3889         case MSR_K7_CLK_CTL:
3890                 /*
3891                  * Ignore all writes to this no longer documented MSR.
3892                  * Writes are only relevant for old K7 processors,
3893                  * all pre-dating SVM, but a recommended workaround from
3894                  * AMD for these chips. It is possible to specify the
3895                  * affected processor models on the command line, hence
3896                  * the need to ignore the workaround.
3897                  */
3898                 break;
3899         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3900         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3901         case HV_X64_MSR_SYNDBG_OPTIONS:
3902         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3903         case HV_X64_MSR_CRASH_CTL:
3904         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3905         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3906         case HV_X64_MSR_TSC_EMULATION_CONTROL:
3907         case HV_X64_MSR_TSC_EMULATION_STATUS:
3908         case HV_X64_MSR_TSC_INVARIANT_CONTROL:
3909                 return kvm_hv_set_msr_common(vcpu, msr, data,
3910                                              msr_info->host_initiated);
3911         case MSR_IA32_BBL_CR_CTL3:
3912                 /* Drop writes to this legacy MSR -- see rdmsr
3913                  * counterpart for further detail.
3914                  */
3915                 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3916                 break;
3917         case MSR_AMD64_OSVW_ID_LENGTH:
3918                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3919                         return 1;
3920                 vcpu->arch.osvw.length = data;
3921                 break;
3922         case MSR_AMD64_OSVW_STATUS:
3923                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3924                         return 1;
3925                 vcpu->arch.osvw.status = data;
3926                 break;
3927         case MSR_PLATFORM_INFO:
3928                 if (!msr_info->host_initiated ||
3929                     (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3930                      cpuid_fault_enabled(vcpu)))
3931                         return 1;
3932                 vcpu->arch.msr_platform_info = data;
3933                 break;
3934         case MSR_MISC_FEATURES_ENABLES:
3935                 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3936                     (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3937                      !supports_cpuid_fault(vcpu)))
3938                         return 1;
3939                 vcpu->arch.msr_misc_features_enables = data;
3940                 break;
3941 #ifdef CONFIG_X86_64
3942         case MSR_IA32_XFD:
3943                 if (!msr_info->host_initiated &&
3944                     !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3945                         return 1;
3946
3947                 if (data & ~kvm_guest_supported_xfd(vcpu))
3948                         return 1;
3949
3950                 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
3951                 break;
3952         case MSR_IA32_XFD_ERR:
3953                 if (!msr_info->host_initiated &&
3954                     !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3955                         return 1;
3956
3957                 if (data & ~kvm_guest_supported_xfd(vcpu))
3958                         return 1;
3959
3960                 vcpu->arch.guest_fpu.xfd_err = data;
3961                 break;
3962 #endif
3963         default:
3964                 if (kvm_pmu_is_valid_msr(vcpu, msr))
3965                         return kvm_pmu_set_msr(vcpu, msr_info);
3966
3967                 /*
3968                  * Userspace is allowed to write '0' to MSRs that KVM reports
3969                  * as to-be-saved, even if an MSRs isn't fully supported.
3970                  */
3971                 if (msr_info->host_initiated && !data &&
3972                     kvm_is_msr_to_save(msr))
3973                         break;
3974
3975                 return KVM_MSR_RET_INVALID;
3976         }
3977         return 0;
3978 }
3979 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3980
3981 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3982 {
3983         u64 data;
3984         u64 mcg_cap = vcpu->arch.mcg_cap;
3985         unsigned bank_num = mcg_cap & 0xff;
3986         u32 offset, last_msr;
3987
3988         switch (msr) {
3989         case MSR_IA32_P5_MC_ADDR:
3990         case MSR_IA32_P5_MC_TYPE:
3991                 data = 0;
3992                 break;
3993         case MSR_IA32_MCG_CAP:
3994                 data = vcpu->arch.mcg_cap;
3995                 break;
3996         case MSR_IA32_MCG_CTL:
3997                 if (!(mcg_cap & MCG_CTL_P) && !host)
3998                         return 1;
3999                 data = vcpu->arch.mcg_ctl;
4000                 break;
4001         case MSR_IA32_MCG_STATUS:
4002                 data = vcpu->arch.mcg_status;
4003                 break;
4004         case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4005                 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
4006                 if (msr > last_msr)
4007                         return 1;
4008
4009                 if (!(mcg_cap & MCG_CMCI_P) && !host)
4010                         return 1;
4011                 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
4012                                             last_msr + 1 - MSR_IA32_MC0_CTL2);
4013                 data = vcpu->arch.mci_ctl2_banks[offset];
4014                 break;
4015         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4016                 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
4017                 if (msr > last_msr)
4018                         return 1;
4019
4020                 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
4021                                             last_msr + 1 - MSR_IA32_MC0_CTL);
4022                 data = vcpu->arch.mce_banks[offset];
4023                 break;
4024         default:
4025                 return 1;
4026         }
4027         *pdata = data;
4028         return 0;
4029 }
4030
4031 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4032 {
4033         switch (msr_info->index) {
4034         case MSR_IA32_PLATFORM_ID:
4035         case MSR_IA32_EBL_CR_POWERON:
4036         case MSR_IA32_LASTBRANCHFROMIP:
4037         case MSR_IA32_LASTBRANCHTOIP:
4038         case MSR_IA32_LASTINTFROMIP:
4039         case MSR_IA32_LASTINTTOIP:
4040         case MSR_AMD64_SYSCFG:
4041         case MSR_K8_TSEG_ADDR:
4042         case MSR_K8_TSEG_MASK:
4043         case MSR_VM_HSAVE_PA:
4044         case MSR_K8_INT_PENDING_MSG:
4045         case MSR_AMD64_NB_CFG:
4046         case MSR_FAM10H_MMIO_CONF_BASE:
4047         case MSR_AMD64_BU_CFG2:
4048         case MSR_IA32_PERF_CTL:
4049         case MSR_AMD64_DC_CFG:
4050         case MSR_F15H_EX_CFG:
4051         /*
4052          * Intel Sandy Bridge CPUs must support the RAPL (running average power
4053          * limit) MSRs. Just return 0, as we do not want to expose the host
4054          * data here. Do not conditionalize this on CPUID, as KVM does not do
4055          * so for existing CPU-specific MSRs.
4056          */
4057         case MSR_RAPL_POWER_UNIT:
4058         case MSR_PP0_ENERGY_STATUS:     /* Power plane 0 (core) */
4059         case MSR_PP1_ENERGY_STATUS:     /* Power plane 1 (graphics uncore) */
4060         case MSR_PKG_ENERGY_STATUS:     /* Total package */
4061         case MSR_DRAM_ENERGY_STATUS:    /* DRAM controller */
4062                 msr_info->data = 0;
4063                 break;
4064         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4065         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4066         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4067         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4068                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4069                         return kvm_pmu_get_msr(vcpu, msr_info);
4070                 msr_info->data = 0;
4071                 break;
4072         case MSR_IA32_UCODE_REV:
4073                 msr_info->data = vcpu->arch.microcode_version;
4074                 break;
4075         case MSR_IA32_ARCH_CAPABILITIES:
4076                 if (!msr_info->host_initiated &&
4077                     !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
4078                         return 1;
4079                 msr_info->data = vcpu->arch.arch_capabilities;
4080                 break;
4081         case MSR_IA32_PERF_CAPABILITIES:
4082                 if (!msr_info->host_initiated &&
4083                     !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
4084                         return 1;
4085                 msr_info->data = vcpu->arch.perf_capabilities;
4086                 break;
4087         case MSR_IA32_POWER_CTL:
4088                 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
4089                 break;
4090         case MSR_IA32_TSC: {
4091                 /*
4092                  * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
4093                  * even when not intercepted. AMD manual doesn't explicitly
4094                  * state this but appears to behave the same.
4095                  *
4096                  * On userspace reads and writes, however, we unconditionally
4097                  * return L1's TSC value to ensure backwards-compatible
4098                  * behavior for migration.
4099                  */
4100                 u64 offset, ratio;
4101
4102                 if (msr_info->host_initiated) {
4103                         offset = vcpu->arch.l1_tsc_offset;
4104                         ratio = vcpu->arch.l1_tsc_scaling_ratio;
4105                 } else {
4106                         offset = vcpu->arch.tsc_offset;
4107                         ratio = vcpu->arch.tsc_scaling_ratio;
4108                 }
4109
4110                 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
4111                 break;
4112         }
4113         case MSR_MTRRcap:
4114         case 0x200 ... MSR_IA32_MC0_CTL2 - 1:
4115         case MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) ... 0x2ff:
4116                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
4117         case 0xcd: /* fsb frequency */
4118                 msr_info->data = 3;
4119                 break;
4120                 /*
4121                  * MSR_EBC_FREQUENCY_ID
4122                  * Conservative value valid for even the basic CPU models.
4123                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
4124                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
4125                  * and 266MHz for model 3, or 4. Set Core Clock
4126                  * Frequency to System Bus Frequency Ratio to 1 (bits
4127                  * 31:24) even though these are only valid for CPU
4128                  * models > 2, however guests may end up dividing or
4129                  * multiplying by zero otherwise.
4130                  */
4131         case MSR_EBC_FREQUENCY_ID:
4132                 msr_info->data = 1 << 24;
4133                 break;
4134         case MSR_IA32_APICBASE:
4135                 msr_info->data = kvm_get_apic_base(vcpu);
4136                 break;
4137         case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
4138                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
4139         case MSR_IA32_TSC_DEADLINE:
4140                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
4141                 break;
4142         case MSR_IA32_TSC_ADJUST:
4143                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
4144                 break;
4145         case MSR_IA32_MISC_ENABLE:
4146                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
4147                 break;
4148         case MSR_IA32_SMBASE:
4149                 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
4150                         return 1;
4151                 msr_info->data = vcpu->arch.smbase;
4152                 break;
4153         case MSR_SMI_COUNT:
4154                 msr_info->data = vcpu->arch.smi_count;
4155                 break;
4156         case MSR_IA32_PERF_STATUS:
4157                 /* TSC increment by tick */
4158                 msr_info->data = 1000ULL;
4159                 /* CPU multiplier */
4160                 msr_info->data |= (((uint64_t)4ULL) << 40);
4161                 break;
4162         case MSR_EFER:
4163                 msr_info->data = vcpu->arch.efer;
4164                 break;
4165         case MSR_KVM_WALL_CLOCK:
4166                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4167                         return 1;
4168
4169                 msr_info->data = vcpu->kvm->arch.wall_clock;
4170                 break;
4171         case MSR_KVM_WALL_CLOCK_NEW:
4172                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4173                         return 1;
4174
4175                 msr_info->data = vcpu->kvm->arch.wall_clock;
4176                 break;
4177         case MSR_KVM_SYSTEM_TIME:
4178                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4179                         return 1;
4180
4181                 msr_info->data = vcpu->arch.time;
4182                 break;
4183         case MSR_KVM_SYSTEM_TIME_NEW:
4184                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4185                         return 1;
4186
4187                 msr_info->data = vcpu->arch.time;
4188                 break;
4189         case MSR_KVM_ASYNC_PF_EN:
4190                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4191                         return 1;
4192
4193                 msr_info->data = vcpu->arch.apf.msr_en_val;
4194                 break;
4195         case MSR_KVM_ASYNC_PF_INT:
4196                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4197                         return 1;
4198
4199                 msr_info->data = vcpu->arch.apf.msr_int_val;
4200                 break;
4201         case MSR_KVM_ASYNC_PF_ACK:
4202                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4203                         return 1;
4204
4205                 msr_info->data = 0;
4206                 break;
4207         case MSR_KVM_STEAL_TIME:
4208                 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4209                         return 1;
4210
4211                 msr_info->data = vcpu->arch.st.msr_val;
4212                 break;
4213         case MSR_KVM_PV_EOI_EN:
4214                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4215                         return 1;
4216
4217                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
4218                 break;
4219         case MSR_KVM_POLL_CONTROL:
4220                 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4221                         return 1;
4222
4223                 msr_info->data = vcpu->arch.msr_kvm_poll_control;
4224                 break;
4225         case MSR_IA32_P5_MC_ADDR:
4226         case MSR_IA32_P5_MC_TYPE:
4227         case MSR_IA32_MCG_CAP:
4228         case MSR_IA32_MCG_CTL:
4229         case MSR_IA32_MCG_STATUS:
4230         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4231         case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4232                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4233                                    msr_info->host_initiated);
4234         case MSR_IA32_XSS:
4235                 if (!msr_info->host_initiated &&
4236                     !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4237                         return 1;
4238                 msr_info->data = vcpu->arch.ia32_xss;
4239                 break;
4240         case MSR_K7_CLK_CTL:
4241                 /*
4242                  * Provide expected ramp-up count for K7. All other
4243                  * are set to zero, indicating minimum divisors for
4244                  * every field.
4245                  *
4246                  * This prevents guest kernels on AMD host with CPU
4247                  * type 6, model 8 and higher from exploding due to
4248                  * the rdmsr failing.
4249                  */
4250                 msr_info->data = 0x20000000;
4251                 break;
4252         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4253         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4254         case HV_X64_MSR_SYNDBG_OPTIONS:
4255         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4256         case HV_X64_MSR_CRASH_CTL:
4257         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4258         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4259         case HV_X64_MSR_TSC_EMULATION_CONTROL:
4260         case HV_X64_MSR_TSC_EMULATION_STATUS:
4261         case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4262                 return kvm_hv_get_msr_common(vcpu,
4263                                              msr_info->index, &msr_info->data,
4264                                              msr_info->host_initiated);
4265         case MSR_IA32_BBL_CR_CTL3:
4266                 /* This legacy MSR exists but isn't fully documented in current
4267                  * silicon.  It is however accessed by winxp in very narrow
4268                  * scenarios where it sets bit #19, itself documented as
4269                  * a "reserved" bit.  Best effort attempt to source coherent
4270                  * read data here should the balance of the register be
4271                  * interpreted by the guest:
4272                  *
4273                  * L2 cache control register 3: 64GB range, 256KB size,
4274                  * enabled, latency 0x1, configured
4275                  */
4276                 msr_info->data = 0xbe702111;
4277                 break;
4278         case MSR_AMD64_OSVW_ID_LENGTH:
4279                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4280                         return 1;
4281                 msr_info->data = vcpu->arch.osvw.length;
4282                 break;
4283         case MSR_AMD64_OSVW_STATUS:
4284                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4285                         return 1;
4286                 msr_info->data = vcpu->arch.osvw.status;
4287                 break;
4288         case MSR_PLATFORM_INFO:
4289                 if (!msr_info->host_initiated &&
4290                     !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4291                         return 1;
4292                 msr_info->data = vcpu->arch.msr_platform_info;
4293                 break;
4294         case MSR_MISC_FEATURES_ENABLES:
4295                 msr_info->data = vcpu->arch.msr_misc_features_enables;
4296                 break;
4297         case MSR_K7_HWCR:
4298                 msr_info->data = vcpu->arch.msr_hwcr;
4299                 break;
4300 #ifdef CONFIG_X86_64
4301         case MSR_IA32_XFD:
4302                 if (!msr_info->host_initiated &&
4303                     !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4304                         return 1;
4305
4306                 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4307                 break;
4308         case MSR_IA32_XFD_ERR:
4309                 if (!msr_info->host_initiated &&
4310                     !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4311                         return 1;
4312
4313                 msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4314                 break;
4315 #endif
4316         default:
4317                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4318                         return kvm_pmu_get_msr(vcpu, msr_info);
4319
4320                 /*
4321                  * Userspace is allowed to read MSRs that KVM reports as
4322                  * to-be-saved, even if an MSR isn't fully supported.
4323                  */
4324                 if (msr_info->host_initiated &&
4325                     kvm_is_msr_to_save(msr_info->index)) {
4326                         msr_info->data = 0;
4327                         break;
4328                 }
4329
4330                 return KVM_MSR_RET_INVALID;
4331         }
4332         return 0;
4333 }
4334 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4335
4336 /*
4337  * Read or write a bunch of msrs. All parameters are kernel addresses.
4338  *
4339  * @return number of msrs set successfully.
4340  */
4341 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4342                     struct kvm_msr_entry *entries,
4343                     int (*do_msr)(struct kvm_vcpu *vcpu,
4344                                   unsigned index, u64 *data))
4345 {
4346         int i;
4347
4348         for (i = 0; i < msrs->nmsrs; ++i)
4349                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
4350                         break;
4351
4352         return i;
4353 }
4354
4355 /*
4356  * Read or write a bunch of msrs. Parameters are user addresses.
4357  *
4358  * @return number of msrs set successfully.
4359  */
4360 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4361                   int (*do_msr)(struct kvm_vcpu *vcpu,
4362                                 unsigned index, u64 *data),
4363                   int writeback)
4364 {
4365         struct kvm_msrs msrs;
4366         struct kvm_msr_entry *entries;
4367         unsigned size;
4368         int r;
4369
4370         r = -EFAULT;
4371         if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4372                 goto out;
4373
4374         r = -E2BIG;
4375         if (msrs.nmsrs >= MAX_IO_MSRS)
4376                 goto out;
4377
4378         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4379         entries = memdup_user(user_msrs->entries, size);
4380         if (IS_ERR(entries)) {
4381                 r = PTR_ERR(entries);
4382                 goto out;
4383         }
4384
4385         r = __msr_io(vcpu, &msrs, entries, do_msr);
4386
4387         if (writeback && copy_to_user(user_msrs->entries, entries, size))
4388                 r = -EFAULT;
4389
4390         kfree(entries);
4391 out:
4392         return r;
4393 }
4394
4395 static inline bool kvm_can_mwait_in_guest(void)
4396 {
4397         return boot_cpu_has(X86_FEATURE_MWAIT) &&
4398                 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
4399                 boot_cpu_has(X86_FEATURE_ARAT);
4400 }
4401
4402 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4403                                             struct kvm_cpuid2 __user *cpuid_arg)
4404 {
4405         struct kvm_cpuid2 cpuid;
4406         int r;
4407
4408         r = -EFAULT;
4409         if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4410                 return r;
4411
4412         r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4413         if (r)
4414                 return r;
4415
4416         r = -EFAULT;
4417         if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4418                 return r;
4419
4420         return 0;
4421 }
4422
4423 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4424 {
4425         int r = 0;
4426
4427         switch (ext) {
4428         case KVM_CAP_IRQCHIP:
4429         case KVM_CAP_HLT:
4430         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4431         case KVM_CAP_SET_TSS_ADDR:
4432         case KVM_CAP_EXT_CPUID:
4433         case KVM_CAP_EXT_EMUL_CPUID:
4434         case KVM_CAP_CLOCKSOURCE:
4435         case KVM_CAP_PIT:
4436         case KVM_CAP_NOP_IO_DELAY:
4437         case KVM_CAP_MP_STATE:
4438         case KVM_CAP_SYNC_MMU:
4439         case KVM_CAP_USER_NMI:
4440         case KVM_CAP_REINJECT_CONTROL:
4441         case KVM_CAP_IRQ_INJECT_STATUS:
4442         case KVM_CAP_IOEVENTFD:
4443         case KVM_CAP_IOEVENTFD_NO_LENGTH:
4444         case KVM_CAP_PIT2:
4445         case KVM_CAP_PIT_STATE2:
4446         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4447         case KVM_CAP_VCPU_EVENTS:
4448         case KVM_CAP_HYPERV:
4449         case KVM_CAP_HYPERV_VAPIC:
4450         case KVM_CAP_HYPERV_SPIN:
4451         case KVM_CAP_HYPERV_SYNIC:
4452         case KVM_CAP_HYPERV_SYNIC2:
4453         case KVM_CAP_HYPERV_VP_INDEX:
4454         case KVM_CAP_HYPERV_EVENTFD:
4455         case KVM_CAP_HYPERV_TLBFLUSH:
4456         case KVM_CAP_HYPERV_SEND_IPI:
4457         case KVM_CAP_HYPERV_CPUID:
4458         case KVM_CAP_HYPERV_ENFORCE_CPUID:
4459         case KVM_CAP_SYS_HYPERV_CPUID:
4460         case KVM_CAP_PCI_SEGMENT:
4461         case KVM_CAP_DEBUGREGS:
4462         case KVM_CAP_X86_ROBUST_SINGLESTEP:
4463         case KVM_CAP_XSAVE:
4464         case KVM_CAP_ASYNC_PF:
4465         case KVM_CAP_ASYNC_PF_INT:
4466         case KVM_CAP_GET_TSC_KHZ:
4467         case KVM_CAP_KVMCLOCK_CTRL:
4468         case KVM_CAP_READONLY_MEM:
4469         case KVM_CAP_HYPERV_TIME:
4470         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4471         case KVM_CAP_TSC_DEADLINE_TIMER:
4472         case KVM_CAP_DISABLE_QUIRKS:
4473         case KVM_CAP_SET_BOOT_CPU_ID:
4474         case KVM_CAP_SPLIT_IRQCHIP:
4475         case KVM_CAP_IMMEDIATE_EXIT:
4476         case KVM_CAP_PMU_EVENT_FILTER:
4477         case KVM_CAP_PMU_EVENT_MASKED_EVENTS:
4478         case KVM_CAP_GET_MSR_FEATURES:
4479         case KVM_CAP_MSR_PLATFORM_INFO:
4480         case KVM_CAP_EXCEPTION_PAYLOAD:
4481         case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
4482         case KVM_CAP_SET_GUEST_DEBUG:
4483         case KVM_CAP_LAST_CPU:
4484         case KVM_CAP_X86_USER_SPACE_MSR:
4485         case KVM_CAP_X86_MSR_FILTER:
4486         case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4487 #ifdef CONFIG_X86_SGX_KVM
4488         case KVM_CAP_SGX_ATTRIBUTE:
4489 #endif
4490         case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4491         case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4492         case KVM_CAP_SREGS2:
4493         case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4494         case KVM_CAP_VCPU_ATTRIBUTES:
4495         case KVM_CAP_SYS_ATTRIBUTES:
4496         case KVM_CAP_VAPIC:
4497         case KVM_CAP_ENABLE_CAP:
4498         case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
4499         case KVM_CAP_IRQFD_RESAMPLE:
4500                 r = 1;
4501                 break;
4502         case KVM_CAP_EXIT_HYPERCALL:
4503                 r = KVM_EXIT_HYPERCALL_VALID_MASK;
4504                 break;
4505         case KVM_CAP_SET_GUEST_DEBUG2:
4506                 return KVM_GUESTDBG_VALID_MASK;
4507 #ifdef CONFIG_KVM_XEN
4508         case KVM_CAP_XEN_HVM:
4509                 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4510                     KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4511                     KVM_XEN_HVM_CONFIG_SHARED_INFO |
4512                     KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL |
4513                     KVM_XEN_HVM_CONFIG_EVTCHN_SEND;
4514                 if (sched_info_on())
4515                         r |= KVM_XEN_HVM_CONFIG_RUNSTATE |
4516                              KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG;
4517                 break;
4518 #endif
4519         case KVM_CAP_SYNC_REGS:
4520                 r = KVM_SYNC_X86_VALID_FIELDS;
4521                 break;
4522         case KVM_CAP_ADJUST_CLOCK:
4523                 r = KVM_CLOCK_VALID_FLAGS;
4524                 break;
4525         case KVM_CAP_X86_DISABLE_EXITS:
4526                 r = KVM_X86_DISABLE_EXITS_PAUSE;
4527
4528                 if (!mitigate_smt_rsb) {
4529                         r |= KVM_X86_DISABLE_EXITS_HLT |
4530                              KVM_X86_DISABLE_EXITS_CSTATE;
4531
4532                         if (kvm_can_mwait_in_guest())
4533                                 r |= KVM_X86_DISABLE_EXITS_MWAIT;
4534                 }
4535                 break;
4536         case KVM_CAP_X86_SMM:
4537                 if (!IS_ENABLED(CONFIG_KVM_SMM))
4538                         break;
4539
4540                 /* SMBASE is usually relocated above 1M on modern chipsets,
4541                  * and SMM handlers might indeed rely on 4G segment limits,
4542                  * so do not report SMM to be available if real mode is
4543                  * emulated via vm86 mode.  Still, do not go to great lengths
4544                  * to avoid userspace's usage of the feature, because it is a
4545                  * fringe case that is not enabled except via specific settings
4546                  * of the module parameters.
4547                  */
4548                 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4549                 break;
4550         case KVM_CAP_NR_VCPUS:
4551                 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4552                 break;
4553         case KVM_CAP_MAX_VCPUS:
4554                 r = KVM_MAX_VCPUS;
4555                 break;
4556         case KVM_CAP_MAX_VCPU_ID:
4557                 r = KVM_MAX_VCPU_IDS;
4558                 break;
4559         case KVM_CAP_PV_MMU:    /* obsolete */
4560                 r = 0;
4561                 break;
4562         case KVM_CAP_MCE:
4563                 r = KVM_MAX_MCE_BANKS;
4564                 break;
4565         case KVM_CAP_XCRS:
4566                 r = boot_cpu_has(X86_FEATURE_XSAVE);
4567                 break;
4568         case KVM_CAP_TSC_CONTROL:
4569         case KVM_CAP_VM_TSC_CONTROL:
4570                 r = kvm_caps.has_tsc_control;
4571                 break;
4572         case KVM_CAP_X2APIC_API:
4573                 r = KVM_X2APIC_API_VALID_FLAGS;
4574                 break;
4575         case KVM_CAP_NESTED_STATE:
4576                 r = kvm_x86_ops.nested_ops->get_state ?
4577                         kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4578                 break;
4579         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4580                 r = kvm_x86_ops.enable_l2_tlb_flush != NULL;
4581                 break;
4582         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4583                 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4584                 break;
4585         case KVM_CAP_SMALLER_MAXPHYADDR:
4586                 r = (int) allow_smaller_maxphyaddr;
4587                 break;
4588         case KVM_CAP_STEAL_TIME:
4589                 r = sched_info_on();
4590                 break;
4591         case KVM_CAP_X86_BUS_LOCK_EXIT:
4592                 if (kvm_caps.has_bus_lock_exit)
4593                         r = KVM_BUS_LOCK_DETECTION_OFF |
4594                             KVM_BUS_LOCK_DETECTION_EXIT;
4595                 else
4596                         r = 0;
4597                 break;
4598         case KVM_CAP_XSAVE2: {
4599                 r = xstate_required_size(kvm_get_filtered_xcr0(), false);
4600                 if (r < sizeof(struct kvm_xsave))
4601                         r = sizeof(struct kvm_xsave);
4602                 break;
4603         }
4604         case KVM_CAP_PMU_CAPABILITY:
4605                 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4606                 break;
4607         case KVM_CAP_DISABLE_QUIRKS2:
4608                 r = KVM_X86_VALID_QUIRKS;
4609                 break;
4610         case KVM_CAP_X86_NOTIFY_VMEXIT:
4611                 r = kvm_caps.has_notify_vmexit;
4612                 break;
4613         default:
4614                 break;
4615         }
4616         return r;
4617 }
4618
4619 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr)
4620 {
4621         void __user *uaddr = (void __user*)(unsigned long)attr->addr;
4622
4623         if ((u64)(unsigned long)uaddr != attr->addr)
4624                 return ERR_PTR_USR(-EFAULT);
4625         return uaddr;
4626 }
4627
4628 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4629 {
4630         u64 __user *uaddr = kvm_get_attr_addr(attr);
4631
4632         if (attr->group)
4633                 return -ENXIO;
4634
4635         if (IS_ERR(uaddr))
4636                 return PTR_ERR(uaddr);
4637
4638         switch (attr->attr) {
4639         case KVM_X86_XCOMP_GUEST_SUPP:
4640                 if (put_user(kvm_caps.supported_xcr0, uaddr))
4641                         return -EFAULT;
4642                 return 0;
4643         default:
4644                 return -ENXIO;
4645                 break;
4646         }
4647 }
4648
4649 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4650 {
4651         if (attr->group)
4652                 return -ENXIO;
4653
4654         switch (attr->attr) {
4655         case KVM_X86_XCOMP_GUEST_SUPP:
4656                 return 0;
4657         default:
4658                 return -ENXIO;
4659         }
4660 }
4661
4662 long kvm_arch_dev_ioctl(struct file *filp,
4663                         unsigned int ioctl, unsigned long arg)
4664 {
4665         void __user *argp = (void __user *)arg;
4666         long r;
4667
4668         switch (ioctl) {
4669         case KVM_GET_MSR_INDEX_LIST: {
4670                 struct kvm_msr_list __user *user_msr_list = argp;
4671                 struct kvm_msr_list msr_list;
4672                 unsigned n;
4673
4674                 r = -EFAULT;
4675                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4676                         goto out;
4677                 n = msr_list.nmsrs;
4678                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4679                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4680                         goto out;
4681                 r = -E2BIG;
4682                 if (n < msr_list.nmsrs)
4683                         goto out;
4684                 r = -EFAULT;
4685                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4686                                  num_msrs_to_save * sizeof(u32)))
4687                         goto out;
4688                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4689                                  &emulated_msrs,
4690                                  num_emulated_msrs * sizeof(u32)))
4691                         goto out;
4692                 r = 0;
4693                 break;
4694         }
4695         case KVM_GET_SUPPORTED_CPUID:
4696         case KVM_GET_EMULATED_CPUID: {
4697                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4698                 struct kvm_cpuid2 cpuid;
4699
4700                 r = -EFAULT;
4701                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4702                         goto out;
4703
4704                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4705                                             ioctl);
4706                 if (r)
4707                         goto out;
4708
4709                 r = -EFAULT;
4710                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4711                         goto out;
4712                 r = 0;
4713                 break;
4714         }
4715         case KVM_X86_GET_MCE_CAP_SUPPORTED:
4716                 r = -EFAULT;
4717                 if (copy_to_user(argp, &kvm_caps.supported_mce_cap,
4718                                  sizeof(kvm_caps.supported_mce_cap)))
4719                         goto out;
4720                 r = 0;
4721                 break;
4722         case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4723                 struct kvm_msr_list __user *user_msr_list = argp;
4724                 struct kvm_msr_list msr_list;
4725                 unsigned int n;
4726
4727                 r = -EFAULT;
4728                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4729                         goto out;
4730                 n = msr_list.nmsrs;
4731                 msr_list.nmsrs = num_msr_based_features;
4732                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4733                         goto out;
4734                 r = -E2BIG;
4735                 if (n < msr_list.nmsrs)
4736                         goto out;
4737                 r = -EFAULT;
4738                 if (copy_to_user(user_msr_list->indices, &msr_based_features,
4739                                  num_msr_based_features * sizeof(u32)))
4740                         goto out;
4741                 r = 0;
4742                 break;
4743         }
4744         case KVM_GET_MSRS:
4745                 r = msr_io(NULL, argp, do_get_msr_feature, 1);
4746                 break;
4747         case KVM_GET_SUPPORTED_HV_CPUID:
4748                 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4749                 break;
4750         case KVM_GET_DEVICE_ATTR: {
4751                 struct kvm_device_attr attr;
4752                 r = -EFAULT;
4753                 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4754                         break;
4755                 r = kvm_x86_dev_get_attr(&attr);
4756                 break;
4757         }
4758         case KVM_HAS_DEVICE_ATTR: {
4759                 struct kvm_device_attr attr;
4760                 r = -EFAULT;
4761                 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4762                         break;
4763                 r = kvm_x86_dev_has_attr(&attr);
4764                 break;
4765         }
4766         default:
4767                 r = -EINVAL;
4768                 break;
4769         }
4770 out:
4771         return r;
4772 }
4773
4774 static void wbinvd_ipi(void *garbage)
4775 {
4776         wbinvd();
4777 }
4778
4779 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4780 {
4781         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4782 }
4783
4784 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4785 {
4786         /* Address WBINVD may be executed by guest */
4787         if (need_emulate_wbinvd(vcpu)) {
4788                 if (static_call(kvm_x86_has_wbinvd_exit)())
4789                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4790                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4791                         smp_call_function_single(vcpu->cpu,
4792                                         wbinvd_ipi, NULL, 1);
4793         }
4794
4795         static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4796
4797         /* Save host pkru register if supported */
4798         vcpu->arch.host_pkru = read_pkru();
4799
4800         /* Apply any externally detected TSC adjustments (due to suspend) */
4801         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4802                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4803                 vcpu->arch.tsc_offset_adjustment = 0;
4804                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4805         }
4806
4807         if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4808                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4809                                 rdtsc() - vcpu->arch.last_host_tsc;
4810                 if (tsc_delta < 0)
4811                         mark_tsc_unstable("KVM discovered backwards TSC");
4812
4813                 if (kvm_check_tsc_unstable()) {
4814                         u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4815                                                 vcpu->arch.last_guest_tsc);
4816                         kvm_vcpu_write_tsc_offset(vcpu, offset);
4817                         vcpu->arch.tsc_catchup = 1;
4818                 }
4819
4820                 if (kvm_lapic_hv_timer_in_use(vcpu))
4821                         kvm_lapic_restart_hv_timer(vcpu);
4822
4823                 /*
4824                  * On a host with synchronized TSC, there is no need to update
4825                  * kvmclock on vcpu->cpu migration
4826                  */
4827                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4828                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4829                 if (vcpu->cpu != cpu)
4830                         kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4831                 vcpu->cpu = cpu;
4832         }
4833
4834         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4835 }
4836
4837 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4838 {
4839         struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
4840         struct kvm_steal_time __user *st;
4841         struct kvm_memslots *slots;
4842         static const u8 preempted = KVM_VCPU_PREEMPTED;
4843         gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
4844
4845         /*
4846          * The vCPU can be marked preempted if and only if the VM-Exit was on
4847          * an instruction boundary and will not trigger guest emulation of any
4848          * kind (see vcpu_run).  Vendor specific code controls (conservatively)
4849          * when this is true, for example allowing the vCPU to be marked
4850          * preempted if and only if the VM-Exit was due to a host interrupt.
4851          */
4852         if (!vcpu->arch.at_instruction_boundary) {
4853                 vcpu->stat.preemption_other++;
4854                 return;
4855         }
4856
4857         vcpu->stat.preemption_reported++;
4858         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4859                 return;
4860
4861         if (vcpu->arch.st.preempted)
4862                 return;
4863
4864         /* This happens on process exit */
4865         if (unlikely(current->mm != vcpu->kvm->mm))
4866                 return;
4867
4868         slots = kvm_memslots(vcpu->kvm);
4869
4870         if (unlikely(slots->generation != ghc->generation ||
4871                      gpa != ghc->gpa ||
4872                      kvm_is_error_hva(ghc->hva) || !ghc->memslot))
4873                 return;
4874
4875         st = (struct kvm_steal_time __user *)ghc->hva;
4876         BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
4877
4878         if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
4879                 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4880
4881         mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
4882 }
4883
4884 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4885 {
4886         int idx;
4887
4888         if (vcpu->preempted) {
4889                 if (!vcpu->arch.guest_state_protected)
4890                         vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4891
4892                 /*
4893                  * Take the srcu lock as memslots will be accessed to check the gfn
4894                  * cache generation against the memslots generation.
4895                  */
4896                 idx = srcu_read_lock(&vcpu->kvm->srcu);
4897                 if (kvm_xen_msr_enabled(vcpu->kvm))
4898                         kvm_xen_runstate_set_preempted(vcpu);
4899                 else
4900                         kvm_steal_time_set_preempted(vcpu);
4901                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4902         }
4903
4904         static_call(kvm_x86_vcpu_put)(vcpu);
4905         vcpu->arch.last_host_tsc = rdtsc();
4906 }
4907
4908 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4909                                     struct kvm_lapic_state *s)
4910 {
4911         static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
4912
4913         return kvm_apic_get_state(vcpu, s);
4914 }
4915
4916 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4917                                     struct kvm_lapic_state *s)
4918 {
4919         int r;
4920
4921         r = kvm_apic_set_state(vcpu, s);
4922         if (r)
4923                 return r;
4924         update_cr8_intercept(vcpu);
4925
4926         return 0;
4927 }
4928
4929 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4930 {
4931         /*
4932          * We can accept userspace's request for interrupt injection
4933          * as long as we have a place to store the interrupt number.
4934          * The actual injection will happen when the CPU is able to
4935          * deliver the interrupt.
4936          */
4937         if (kvm_cpu_has_extint(vcpu))
4938                 return false;
4939
4940         /* Acknowledging ExtINT does not happen if LINT0 is masked.  */
4941         return (!lapic_in_kernel(vcpu) ||
4942                 kvm_apic_accept_pic_intr(vcpu));
4943 }
4944
4945 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4946 {
4947         /*
4948          * Do not cause an interrupt window exit if an exception
4949          * is pending or an event needs reinjection; userspace
4950          * might want to inject the interrupt manually using KVM_SET_REGS
4951          * or KVM_SET_SREGS.  For that to work, we must be at an
4952          * instruction boundary and with no events half-injected.
4953          */
4954         return (kvm_arch_interrupt_allowed(vcpu) &&
4955                 kvm_cpu_accept_dm_intr(vcpu) &&
4956                 !kvm_event_needs_reinjection(vcpu) &&
4957                 !kvm_is_exception_pending(vcpu));
4958 }
4959
4960 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4961                                     struct kvm_interrupt *irq)
4962 {
4963         if (irq->irq >= KVM_NR_INTERRUPTS)
4964                 return -EINVAL;
4965
4966         if (!irqchip_in_kernel(vcpu->kvm)) {
4967                 kvm_queue_interrupt(vcpu, irq->irq, false);
4968                 kvm_make_request(KVM_REQ_EVENT, vcpu);
4969                 return 0;
4970         }
4971
4972         /*
4973          * With in-kernel LAPIC, we only use this to inject EXTINT, so
4974          * fail for in-kernel 8259.
4975          */
4976         if (pic_in_kernel(vcpu->kvm))
4977                 return -ENXIO;
4978
4979         if (vcpu->arch.pending_external_vector != -1)
4980                 return -EEXIST;
4981
4982         vcpu->arch.pending_external_vector = irq->irq;
4983         kvm_make_request(KVM_REQ_EVENT, vcpu);
4984         return 0;
4985 }
4986
4987 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4988 {
4989         kvm_inject_nmi(vcpu);
4990
4991         return 0;
4992 }
4993
4994 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4995                                            struct kvm_tpr_access_ctl *tac)
4996 {
4997         if (tac->flags)
4998                 return -EINVAL;
4999         vcpu->arch.tpr_access_reporting = !!tac->enabled;
5000         return 0;
5001 }
5002
5003 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
5004                                         u64 mcg_cap)
5005 {
5006         int r;
5007         unsigned bank_num = mcg_cap & 0xff, bank;
5008
5009         r = -EINVAL;
5010         if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
5011                 goto out;
5012         if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000))
5013                 goto out;
5014         r = 0;
5015         vcpu->arch.mcg_cap = mcg_cap;
5016         /* Init IA32_MCG_CTL to all 1s */
5017         if (mcg_cap & MCG_CTL_P)
5018                 vcpu->arch.mcg_ctl = ~(u64)0;
5019         /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */
5020         for (bank = 0; bank < bank_num; bank++) {
5021                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
5022                 if (mcg_cap & MCG_CMCI_P)
5023                         vcpu->arch.mci_ctl2_banks[bank] = 0;
5024         }
5025
5026         kvm_apic_after_set_mcg_cap(vcpu);
5027
5028         static_call(kvm_x86_setup_mce)(vcpu);
5029 out:
5030         return r;
5031 }
5032
5033 /*
5034  * Validate this is an UCNA (uncorrectable no action) error by checking the
5035  * MCG_STATUS and MCi_STATUS registers:
5036  * - none of the bits for Machine Check Exceptions are set
5037  * - both the VAL (valid) and UC (uncorrectable) bits are set
5038  * MCI_STATUS_PCC - Processor Context Corrupted
5039  * MCI_STATUS_S - Signaled as a Machine Check Exception
5040  * MCI_STATUS_AR - Software recoverable Action Required
5041  */
5042 static bool is_ucna(struct kvm_x86_mce *mce)
5043 {
5044         return  !mce->mcg_status &&
5045                 !(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) &&
5046                 (mce->status & MCI_STATUS_VAL) &&
5047                 (mce->status & MCI_STATUS_UC);
5048 }
5049
5050 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks)
5051 {
5052         u64 mcg_cap = vcpu->arch.mcg_cap;
5053
5054         banks[1] = mce->status;
5055         banks[2] = mce->addr;
5056         banks[3] = mce->misc;
5057         vcpu->arch.mcg_status = mce->mcg_status;
5058
5059         if (!(mcg_cap & MCG_CMCI_P) ||
5060             !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN))
5061                 return 0;
5062
5063         if (lapic_in_kernel(vcpu))
5064                 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI);
5065
5066         return 0;
5067 }
5068
5069 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
5070                                       struct kvm_x86_mce *mce)
5071 {
5072         u64 mcg_cap = vcpu->arch.mcg_cap;
5073         unsigned bank_num = mcg_cap & 0xff;
5074         u64 *banks = vcpu->arch.mce_banks;
5075
5076         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
5077                 return -EINVAL;
5078
5079         banks += array_index_nospec(4 * mce->bank, 4 * bank_num);
5080
5081         if (is_ucna(mce))
5082                 return kvm_vcpu_x86_set_ucna(vcpu, mce, banks);
5083
5084         /*
5085          * if IA32_MCG_CTL is not all 1s, the uncorrected error
5086          * reporting is disabled
5087          */
5088         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
5089             vcpu->arch.mcg_ctl != ~(u64)0)
5090                 return 0;
5091         /*
5092          * if IA32_MCi_CTL is not all 1s, the uncorrected error
5093          * reporting is disabled for the bank
5094          */
5095         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
5096                 return 0;
5097         if (mce->status & MCI_STATUS_UC) {
5098                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
5099                     !kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) {
5100                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5101                         return 0;
5102                 }
5103                 if (banks[1] & MCI_STATUS_VAL)
5104                         mce->status |= MCI_STATUS_OVER;
5105                 banks[2] = mce->addr;
5106                 banks[3] = mce->misc;
5107                 vcpu->arch.mcg_status = mce->mcg_status;
5108                 banks[1] = mce->status;
5109                 kvm_queue_exception(vcpu, MC_VECTOR);
5110         } else if (!(banks[1] & MCI_STATUS_VAL)
5111                    || !(banks[1] & MCI_STATUS_UC)) {
5112                 if (banks[1] & MCI_STATUS_VAL)
5113                         mce->status |= MCI_STATUS_OVER;
5114                 banks[2] = mce->addr;
5115                 banks[3] = mce->misc;
5116                 banks[1] = mce->status;
5117         } else
5118                 banks[1] |= MCI_STATUS_OVER;
5119         return 0;
5120 }
5121
5122 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
5123                                                struct kvm_vcpu_events *events)
5124 {
5125         struct kvm_queued_exception *ex;
5126
5127         process_nmi(vcpu);
5128
5129 #ifdef CONFIG_KVM_SMM
5130         if (kvm_check_request(KVM_REQ_SMI, vcpu))
5131                 process_smi(vcpu);
5132 #endif
5133
5134         /*
5135          * KVM's ABI only allows for one exception to be migrated.  Luckily,
5136          * the only time there can be two queued exceptions is if there's a
5137          * non-exiting _injected_ exception, and a pending exiting exception.
5138          * In that case, ignore the VM-Exiting exception as it's an extension
5139          * of the injected exception.
5140          */
5141         if (vcpu->arch.exception_vmexit.pending &&
5142             !vcpu->arch.exception.pending &&
5143             !vcpu->arch.exception.injected)
5144                 ex = &vcpu->arch.exception_vmexit;
5145         else
5146                 ex = &vcpu->arch.exception;
5147
5148         /*
5149          * In guest mode, payload delivery should be deferred if the exception
5150          * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1
5151          * intercepts #PF, ditto for DR6 and #DBs.  If the per-VM capability,
5152          * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not
5153          * propagate the payload and so it cannot be safely deferred.  Deliver
5154          * the payload if the capability hasn't been requested.
5155          */
5156         if (!vcpu->kvm->arch.exception_payload_enabled &&
5157             ex->pending && ex->has_payload)
5158                 kvm_deliver_exception_payload(vcpu, ex);
5159
5160         memset(events, 0, sizeof(*events));
5161
5162         /*
5163          * The API doesn't provide the instruction length for software
5164          * exceptions, so don't report them. As long as the guest RIP
5165          * isn't advanced, we should expect to encounter the exception
5166          * again.
5167          */
5168         if (!kvm_exception_is_soft(ex->vector)) {
5169                 events->exception.injected = ex->injected;
5170                 events->exception.pending = ex->pending;
5171                 /*
5172                  * For ABI compatibility, deliberately conflate
5173                  * pending and injected exceptions when
5174                  * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
5175                  */
5176                 if (!vcpu->kvm->arch.exception_payload_enabled)
5177                         events->exception.injected |= ex->pending;
5178         }
5179         events->exception.nr = ex->vector;
5180         events->exception.has_error_code = ex->has_error_code;
5181         events->exception.error_code = ex->error_code;
5182         events->exception_has_payload = ex->has_payload;
5183         events->exception_payload = ex->payload;
5184
5185         events->interrupt.injected =
5186                 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
5187         events->interrupt.nr = vcpu->arch.interrupt.nr;
5188         events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
5189
5190         events->nmi.injected = vcpu->arch.nmi_injected;
5191         events->nmi.pending = kvm_get_nr_pending_nmis(vcpu);
5192         events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
5193
5194         /* events->sipi_vector is never valid when reporting to user space */
5195
5196 #ifdef CONFIG_KVM_SMM
5197         events->smi.smm = is_smm(vcpu);
5198         events->smi.pending = vcpu->arch.smi_pending;
5199         events->smi.smm_inside_nmi =
5200                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
5201 #endif
5202         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
5203
5204         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
5205                          | KVM_VCPUEVENT_VALID_SHADOW
5206                          | KVM_VCPUEVENT_VALID_SMM);
5207         if (vcpu->kvm->arch.exception_payload_enabled)
5208                 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
5209         if (vcpu->kvm->arch.triple_fault_event) {
5210                 events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5211                 events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
5212         }
5213 }
5214
5215 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
5216                                               struct kvm_vcpu_events *events)
5217 {
5218         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
5219                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
5220                               | KVM_VCPUEVENT_VALID_SHADOW
5221                               | KVM_VCPUEVENT_VALID_SMM
5222                               | KVM_VCPUEVENT_VALID_PAYLOAD
5223                               | KVM_VCPUEVENT_VALID_TRIPLE_FAULT))
5224                 return -EINVAL;
5225
5226         if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
5227                 if (!vcpu->kvm->arch.exception_payload_enabled)
5228                         return -EINVAL;
5229                 if (events->exception.pending)
5230                         events->exception.injected = 0;
5231                 else
5232                         events->exception_has_payload = 0;
5233         } else {
5234                 events->exception.pending = 0;
5235                 events->exception_has_payload = 0;
5236         }
5237
5238         if ((events->exception.injected || events->exception.pending) &&
5239             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
5240                 return -EINVAL;
5241
5242         /* INITs are latched while in SMM */
5243         if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
5244             (events->smi.smm || events->smi.pending) &&
5245             vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
5246                 return -EINVAL;
5247
5248         process_nmi(vcpu);
5249
5250         /*
5251          * Flag that userspace is stuffing an exception, the next KVM_RUN will
5252          * morph the exception to a VM-Exit if appropriate.  Do this only for
5253          * pending exceptions, already-injected exceptions are not subject to
5254          * intercpetion.  Note, userspace that conflates pending and injected
5255          * is hosed, and will incorrectly convert an injected exception into a
5256          * pending exception, which in turn may cause a spurious VM-Exit.
5257          */
5258         vcpu->arch.exception_from_userspace = events->exception.pending;
5259
5260         vcpu->arch.exception_vmexit.pending = false;
5261
5262         vcpu->arch.exception.injected = events->exception.injected;
5263         vcpu->arch.exception.pending = events->exception.pending;
5264         vcpu->arch.exception.vector = events->exception.nr;
5265         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
5266         vcpu->arch.exception.error_code = events->exception.error_code;
5267         vcpu->arch.exception.has_payload = events->exception_has_payload;
5268         vcpu->arch.exception.payload = events->exception_payload;
5269
5270         vcpu->arch.interrupt.injected = events->interrupt.injected;
5271         vcpu->arch.interrupt.nr = events->interrupt.nr;
5272         vcpu->arch.interrupt.soft = events->interrupt.soft;
5273         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
5274                 static_call(kvm_x86_set_interrupt_shadow)(vcpu,
5275                                                 events->interrupt.shadow);
5276
5277         vcpu->arch.nmi_injected = events->nmi.injected;
5278         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) {
5279                 vcpu->arch.nmi_pending = 0;
5280                 atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending);
5281                 kvm_make_request(KVM_REQ_NMI, vcpu);
5282         }
5283         static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
5284
5285         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
5286             lapic_in_kernel(vcpu))
5287                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
5288
5289         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
5290 #ifdef CONFIG_KVM_SMM
5291                 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
5292                         kvm_leave_nested(vcpu);
5293                         kvm_smm_changed(vcpu, events->smi.smm);
5294                 }
5295
5296                 vcpu->arch.smi_pending = events->smi.pending;
5297
5298                 if (events->smi.smm) {
5299                         if (events->smi.smm_inside_nmi)
5300                                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
5301                         else
5302                                 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
5303                 }
5304
5305 #else
5306                 if (events->smi.smm || events->smi.pending ||
5307                     events->smi.smm_inside_nmi)
5308                         return -EINVAL;
5309 #endif
5310
5311                 if (lapic_in_kernel(vcpu)) {
5312                         if (events->smi.latched_init)
5313                                 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5314                         else
5315                                 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5316                 }
5317         }
5318
5319         if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
5320                 if (!vcpu->kvm->arch.triple_fault_event)
5321                         return -EINVAL;
5322                 if (events->triple_fault.pending)
5323                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5324                 else
5325                         kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5326         }
5327
5328         kvm_make_request(KVM_REQ_EVENT, vcpu);
5329
5330         return 0;
5331 }
5332
5333 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
5334                                              struct kvm_debugregs *dbgregs)
5335 {
5336         unsigned long val;
5337
5338         memset(dbgregs, 0, sizeof(*dbgregs));
5339         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
5340         kvm_get_dr(vcpu, 6, &val);
5341         dbgregs->dr6 = val;
5342         dbgregs->dr7 = vcpu->arch.dr7;
5343 }
5344
5345 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5346                                             struct kvm_debugregs *dbgregs)
5347 {
5348         if (dbgregs->flags)
5349                 return -EINVAL;
5350
5351         if (!kvm_dr6_valid(dbgregs->dr6))
5352                 return -EINVAL;
5353         if (!kvm_dr7_valid(dbgregs->dr7))
5354                 return -EINVAL;
5355
5356         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
5357         kvm_update_dr0123(vcpu);
5358         vcpu->arch.dr6 = dbgregs->dr6;
5359         vcpu->arch.dr7 = dbgregs->dr7;
5360         kvm_update_dr7(vcpu);
5361
5362         return 0;
5363 }
5364
5365 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5366                                          struct kvm_xsave *guest_xsave)
5367 {
5368         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5369                 return;
5370
5371         fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5372                                        guest_xsave->region,
5373                                        sizeof(guest_xsave->region),
5374                                        vcpu->arch.pkru);
5375 }
5376
5377 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5378                                           u8 *state, unsigned int size)
5379 {
5380         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5381                 return;
5382
5383         fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5384                                        state, size, vcpu->arch.pkru);
5385 }
5386
5387 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5388                                         struct kvm_xsave *guest_xsave)
5389 {
5390         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5391                 return 0;
5392
5393         return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5394                                               guest_xsave->region,
5395                                               kvm_caps.supported_xcr0,
5396                                               &vcpu->arch.pkru);
5397 }
5398
5399 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5400                                         struct kvm_xcrs *guest_xcrs)
5401 {
5402         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5403                 guest_xcrs->nr_xcrs = 0;
5404                 return;
5405         }
5406
5407         guest_xcrs->nr_xcrs = 1;
5408         guest_xcrs->flags = 0;
5409         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5410         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5411 }
5412
5413 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5414                                        struct kvm_xcrs *guest_xcrs)
5415 {
5416         int i, r = 0;
5417
5418         if (!boot_cpu_has(X86_FEATURE_XSAVE))
5419                 return -EINVAL;
5420
5421         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5422                 return -EINVAL;
5423
5424         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5425                 /* Only support XCR0 currently */
5426                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5427                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5428                                 guest_xcrs->xcrs[i].value);
5429                         break;
5430                 }
5431         if (r)
5432                 r = -EINVAL;
5433         return r;
5434 }
5435
5436 /*
5437  * kvm_set_guest_paused() indicates to the guest kernel that it has been
5438  * stopped by the hypervisor.  This function will be called from the host only.
5439  * EINVAL is returned when the host attempts to set the flag for a guest that
5440  * does not support pv clocks.
5441  */
5442 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5443 {
5444         if (!vcpu->arch.pv_time.active)
5445                 return -EINVAL;
5446         vcpu->arch.pvclock_set_guest_stopped_request = true;
5447         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5448         return 0;
5449 }
5450
5451 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5452                                  struct kvm_device_attr *attr)
5453 {
5454         int r;
5455
5456         switch (attr->attr) {
5457         case KVM_VCPU_TSC_OFFSET:
5458                 r = 0;
5459                 break;
5460         default:
5461                 r = -ENXIO;
5462         }
5463
5464         return r;
5465 }
5466
5467 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5468                                  struct kvm_device_attr *attr)
5469 {
5470         u64 __user *uaddr = kvm_get_attr_addr(attr);
5471         int r;
5472
5473         if (IS_ERR(uaddr))
5474                 return PTR_ERR(uaddr);
5475
5476         switch (attr->attr) {
5477         case KVM_VCPU_TSC_OFFSET:
5478                 r = -EFAULT;
5479                 if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5480                         break;
5481                 r = 0;
5482                 break;
5483         default:
5484                 r = -ENXIO;
5485         }
5486
5487         return r;
5488 }
5489
5490 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5491                                  struct kvm_device_attr *attr)
5492 {
5493         u64 __user *uaddr = kvm_get_attr_addr(attr);
5494         struct kvm *kvm = vcpu->kvm;
5495         int r;
5496
5497         if (IS_ERR(uaddr))
5498                 return PTR_ERR(uaddr);
5499
5500         switch (attr->attr) {
5501         case KVM_VCPU_TSC_OFFSET: {
5502                 u64 offset, tsc, ns;
5503                 unsigned long flags;
5504                 bool matched;
5505
5506                 r = -EFAULT;
5507                 if (get_user(offset, uaddr))
5508                         break;
5509
5510                 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5511
5512                 matched = (vcpu->arch.virtual_tsc_khz &&
5513                            kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5514                            kvm->arch.last_tsc_offset == offset);
5515
5516                 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5517                 ns = get_kvmclock_base_ns();
5518
5519                 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5520                 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5521
5522                 r = 0;
5523                 break;
5524         }
5525         default:
5526                 r = -ENXIO;
5527         }
5528
5529         return r;
5530 }
5531
5532 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5533                                       unsigned int ioctl,
5534                                       void __user *argp)
5535 {
5536         struct kvm_device_attr attr;
5537         int r;
5538
5539         if (copy_from_user(&attr, argp, sizeof(attr)))
5540                 return -EFAULT;
5541
5542         if (attr.group != KVM_VCPU_TSC_CTRL)
5543                 return -ENXIO;
5544
5545         switch (ioctl) {
5546         case KVM_HAS_DEVICE_ATTR:
5547                 r = kvm_arch_tsc_has_attr(vcpu, &attr);
5548                 break;
5549         case KVM_GET_DEVICE_ATTR:
5550                 r = kvm_arch_tsc_get_attr(vcpu, &attr);
5551                 break;
5552         case KVM_SET_DEVICE_ATTR:
5553                 r = kvm_arch_tsc_set_attr(vcpu, &attr);
5554                 break;
5555         }
5556
5557         return r;
5558 }
5559
5560 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5561                                      struct kvm_enable_cap *cap)
5562 {
5563         int r;
5564         uint16_t vmcs_version;
5565         void __user *user_ptr;
5566
5567         if (cap->flags)
5568                 return -EINVAL;
5569
5570         switch (cap->cap) {
5571         case KVM_CAP_HYPERV_SYNIC2:
5572                 if (cap->args[0])
5573                         return -EINVAL;
5574                 fallthrough;
5575
5576         case KVM_CAP_HYPERV_SYNIC:
5577                 if (!irqchip_in_kernel(vcpu->kvm))
5578                         return -EINVAL;
5579                 return kvm_hv_activate_synic(vcpu, cap->cap ==
5580                                              KVM_CAP_HYPERV_SYNIC2);
5581         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5582                 if (!kvm_x86_ops.nested_ops->enable_evmcs)
5583                         return -ENOTTY;
5584                 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5585                 if (!r) {
5586                         user_ptr = (void __user *)(uintptr_t)cap->args[0];
5587                         if (copy_to_user(user_ptr, &vmcs_version,
5588                                          sizeof(vmcs_version)))
5589                                 r = -EFAULT;
5590                 }
5591                 return r;
5592         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5593                 if (!kvm_x86_ops.enable_l2_tlb_flush)
5594                         return -ENOTTY;
5595
5596                 return static_call(kvm_x86_enable_l2_tlb_flush)(vcpu);
5597
5598         case KVM_CAP_HYPERV_ENFORCE_CPUID:
5599                 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5600
5601         case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5602                 vcpu->arch.pv_cpuid.enforce = cap->args[0];
5603                 if (vcpu->arch.pv_cpuid.enforce)
5604                         kvm_update_pv_runtime(vcpu);
5605
5606                 return 0;
5607         default:
5608                 return -EINVAL;
5609         }
5610 }
5611
5612 long kvm_arch_vcpu_ioctl(struct file *filp,
5613                          unsigned int ioctl, unsigned long arg)
5614 {
5615         struct kvm_vcpu *vcpu = filp->private_data;
5616         void __user *argp = (void __user *)arg;
5617         int r;
5618         union {
5619                 struct kvm_sregs2 *sregs2;
5620                 struct kvm_lapic_state *lapic;
5621                 struct kvm_xsave *xsave;
5622                 struct kvm_xcrs *xcrs;
5623                 void *buffer;
5624         } u;
5625
5626         vcpu_load(vcpu);
5627
5628         u.buffer = NULL;
5629         switch (ioctl) {
5630         case KVM_GET_LAPIC: {
5631                 r = -EINVAL;
5632                 if (!lapic_in_kernel(vcpu))
5633                         goto out;
5634                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5635                                 GFP_KERNEL_ACCOUNT);
5636
5637                 r = -ENOMEM;
5638                 if (!u.lapic)
5639                         goto out;
5640                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5641                 if (r)
5642                         goto out;
5643                 r = -EFAULT;
5644                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5645                         goto out;
5646                 r = 0;
5647                 break;
5648         }
5649         case KVM_SET_LAPIC: {
5650                 r = -EINVAL;
5651                 if (!lapic_in_kernel(vcpu))
5652                         goto out;
5653                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
5654                 if (IS_ERR(u.lapic)) {
5655                         r = PTR_ERR(u.lapic);
5656                         goto out_nofree;
5657                 }
5658
5659                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5660                 break;
5661         }
5662         case KVM_INTERRUPT: {
5663                 struct kvm_interrupt irq;
5664
5665                 r = -EFAULT;
5666                 if (copy_from_user(&irq, argp, sizeof(irq)))
5667                         goto out;
5668                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5669                 break;
5670         }
5671         case KVM_NMI: {
5672                 r = kvm_vcpu_ioctl_nmi(vcpu);
5673                 break;
5674         }
5675         case KVM_SMI: {
5676                 r = kvm_inject_smi(vcpu);
5677                 break;
5678         }
5679         case KVM_SET_CPUID: {
5680                 struct kvm_cpuid __user *cpuid_arg = argp;
5681                 struct kvm_cpuid cpuid;
5682
5683                 r = -EFAULT;
5684                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5685                         goto out;
5686                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5687                 break;
5688         }
5689         case KVM_SET_CPUID2: {
5690                 struct kvm_cpuid2 __user *cpuid_arg = argp;
5691                 struct kvm_cpuid2 cpuid;
5692
5693                 r = -EFAULT;
5694                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5695                         goto out;
5696                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5697                                               cpuid_arg->entries);
5698                 break;
5699         }
5700         case KVM_GET_CPUID2: {
5701                 struct kvm_cpuid2 __user *cpuid_arg = argp;
5702                 struct kvm_cpuid2 cpuid;
5703
5704                 r = -EFAULT;
5705                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5706                         goto out;
5707                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5708                                               cpuid_arg->entries);
5709                 if (r)
5710                         goto out;
5711                 r = -EFAULT;
5712                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5713                         goto out;
5714                 r = 0;
5715                 break;
5716         }
5717         case KVM_GET_MSRS: {
5718                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5719                 r = msr_io(vcpu, argp, do_get_msr, 1);
5720                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5721                 break;
5722         }
5723         case KVM_SET_MSRS: {
5724                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5725                 r = msr_io(vcpu, argp, do_set_msr, 0);
5726                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5727                 break;
5728         }
5729         case KVM_TPR_ACCESS_REPORTING: {
5730                 struct kvm_tpr_access_ctl tac;
5731
5732                 r = -EFAULT;
5733                 if (copy_from_user(&tac, argp, sizeof(tac)))
5734                         goto out;
5735                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5736                 if (r)
5737                         goto out;
5738                 r = -EFAULT;
5739                 if (copy_to_user(argp, &tac, sizeof(tac)))
5740                         goto out;
5741                 r = 0;
5742                 break;
5743         };
5744         case KVM_SET_VAPIC_ADDR: {
5745                 struct kvm_vapic_addr va;
5746                 int idx;
5747
5748                 r = -EINVAL;
5749                 if (!lapic_in_kernel(vcpu))
5750                         goto out;
5751                 r = -EFAULT;
5752                 if (copy_from_user(&va, argp, sizeof(va)))
5753                         goto out;
5754                 idx = srcu_read_lock(&vcpu->kvm->srcu);
5755                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5756                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5757                 break;
5758         }
5759         case KVM_X86_SETUP_MCE: {
5760                 u64 mcg_cap;
5761
5762                 r = -EFAULT;
5763                 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5764                         goto out;
5765                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5766                 break;
5767         }
5768         case KVM_X86_SET_MCE: {
5769                 struct kvm_x86_mce mce;
5770
5771                 r = -EFAULT;
5772                 if (copy_from_user(&mce, argp, sizeof(mce)))
5773                         goto out;
5774                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5775                 break;
5776         }
5777         case KVM_GET_VCPU_EVENTS: {
5778                 struct kvm_vcpu_events events;
5779
5780                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5781
5782                 r = -EFAULT;
5783                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5784                         break;
5785                 r = 0;
5786                 break;
5787         }
5788         case KVM_SET_VCPU_EVENTS: {
5789                 struct kvm_vcpu_events events;
5790
5791                 r = -EFAULT;
5792                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5793                         break;
5794
5795                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5796                 break;
5797         }
5798         case KVM_GET_DEBUGREGS: {
5799                 struct kvm_debugregs dbgregs;
5800
5801                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5802
5803                 r = -EFAULT;
5804                 if (copy_to_user(argp, &dbgregs,
5805                                  sizeof(struct kvm_debugregs)))
5806                         break;
5807                 r = 0;
5808                 break;
5809         }
5810         case KVM_SET_DEBUGREGS: {
5811                 struct kvm_debugregs dbgregs;
5812
5813                 r = -EFAULT;
5814                 if (copy_from_user(&dbgregs, argp,
5815                                    sizeof(struct kvm_debugregs)))
5816                         break;
5817
5818                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5819                 break;
5820         }
5821         case KVM_GET_XSAVE: {
5822                 r = -EINVAL;
5823                 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
5824                         break;
5825
5826                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5827                 r = -ENOMEM;
5828                 if (!u.xsave)
5829                         break;
5830
5831                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5832
5833                 r = -EFAULT;
5834                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5835                         break;
5836                 r = 0;
5837                 break;
5838         }
5839         case KVM_SET_XSAVE: {
5840                 int size = vcpu->arch.guest_fpu.uabi_size;
5841
5842                 u.xsave = memdup_user(argp, size);
5843                 if (IS_ERR(u.xsave)) {
5844                         r = PTR_ERR(u.xsave);
5845                         goto out_nofree;
5846                 }
5847
5848                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5849                 break;
5850         }
5851
5852         case KVM_GET_XSAVE2: {
5853                 int size = vcpu->arch.guest_fpu.uabi_size;
5854
5855                 u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT);
5856                 r = -ENOMEM;
5857                 if (!u.xsave)
5858                         break;
5859
5860                 kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
5861
5862                 r = -EFAULT;
5863                 if (copy_to_user(argp, u.xsave, size))
5864                         break;
5865
5866                 r = 0;
5867                 break;
5868         }
5869
5870         case KVM_GET_XCRS: {
5871                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5872                 r = -ENOMEM;
5873                 if (!u.xcrs)
5874                         break;
5875
5876                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5877
5878                 r = -EFAULT;
5879                 if (copy_to_user(argp, u.xcrs,
5880                                  sizeof(struct kvm_xcrs)))
5881                         break;
5882                 r = 0;
5883                 break;
5884         }
5885         case KVM_SET_XCRS: {
5886                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5887                 if (IS_ERR(u.xcrs)) {
5888                         r = PTR_ERR(u.xcrs);
5889                         goto out_nofree;
5890                 }
5891
5892                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5893                 break;
5894         }
5895         case KVM_SET_TSC_KHZ: {
5896                 u32 user_tsc_khz;
5897
5898                 r = -EINVAL;
5899                 user_tsc_khz = (u32)arg;
5900
5901                 if (kvm_caps.has_tsc_control &&
5902                     user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
5903                         goto out;
5904
5905                 if (user_tsc_khz == 0)
5906                         user_tsc_khz = tsc_khz;
5907
5908                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5909                         r = 0;
5910
5911                 goto out;
5912         }
5913         case KVM_GET_TSC_KHZ: {
5914                 r = vcpu->arch.virtual_tsc_khz;
5915                 goto out;
5916         }
5917         case KVM_KVMCLOCK_CTRL: {
5918                 r = kvm_set_guest_paused(vcpu);
5919                 goto out;
5920         }
5921         case KVM_ENABLE_CAP: {
5922                 struct kvm_enable_cap cap;
5923
5924                 r = -EFAULT;
5925                 if (copy_from_user(&cap, argp, sizeof(cap)))
5926                         goto out;
5927                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5928                 break;
5929         }
5930         case KVM_GET_NESTED_STATE: {
5931                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5932                 u32 user_data_size;
5933
5934                 r = -EINVAL;
5935                 if (!kvm_x86_ops.nested_ops->get_state)
5936                         break;
5937
5938                 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5939                 r = -EFAULT;
5940                 if (get_user(user_data_size, &user_kvm_nested_state->size))
5941                         break;
5942
5943                 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5944                                                      user_data_size);
5945                 if (r < 0)
5946                         break;
5947
5948                 if (r > user_data_size) {
5949                         if (put_user(r, &user_kvm_nested_state->size))
5950                                 r = -EFAULT;
5951                         else
5952                                 r = -E2BIG;
5953                         break;
5954                 }
5955
5956                 r = 0;
5957                 break;
5958         }
5959         case KVM_SET_NESTED_STATE: {
5960                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5961                 struct kvm_nested_state kvm_state;
5962                 int idx;
5963
5964                 r = -EINVAL;
5965                 if (!kvm_x86_ops.nested_ops->set_state)
5966                         break;
5967
5968                 r = -EFAULT;
5969                 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5970                         break;
5971
5972                 r = -EINVAL;
5973                 if (kvm_state.size < sizeof(kvm_state))
5974                         break;
5975
5976                 if (kvm_state.flags &
5977                     ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5978                       | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5979                       | KVM_STATE_NESTED_GIF_SET))
5980                         break;
5981
5982                 /* nested_run_pending implies guest_mode.  */
5983                 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5984                     && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5985                         break;
5986
5987                 idx = srcu_read_lock(&vcpu->kvm->srcu);
5988                 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5989                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5990                 break;
5991         }
5992         case KVM_GET_SUPPORTED_HV_CPUID:
5993                 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5994                 break;
5995 #ifdef CONFIG_KVM_XEN
5996         case KVM_XEN_VCPU_GET_ATTR: {
5997                 struct kvm_xen_vcpu_attr xva;
5998
5999                 r = -EFAULT;
6000                 if (copy_from_user(&xva, argp, sizeof(xva)))
6001                         goto out;
6002                 r = kvm_xen_vcpu_get_attr(vcpu, &xva);
6003                 if (!r && copy_to_user(argp, &xva, sizeof(xva)))
6004                         r = -EFAULT;
6005                 break;
6006         }
6007         case KVM_XEN_VCPU_SET_ATTR: {
6008                 struct kvm_xen_vcpu_attr xva;
6009
6010                 r = -EFAULT;
6011                 if (copy_from_user(&xva, argp, sizeof(xva)))
6012                         goto out;
6013                 r = kvm_xen_vcpu_set_attr(vcpu, &xva);
6014                 break;
6015         }
6016 #endif
6017         case KVM_GET_SREGS2: {
6018                 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
6019                 r = -ENOMEM;
6020                 if (!u.sregs2)
6021                         goto out;
6022                 __get_sregs2(vcpu, u.sregs2);
6023                 r = -EFAULT;
6024                 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
6025                         goto out;
6026                 r = 0;
6027                 break;
6028         }
6029         case KVM_SET_SREGS2: {
6030                 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
6031                 if (IS_ERR(u.sregs2)) {
6032                         r = PTR_ERR(u.sregs2);
6033                         u.sregs2 = NULL;
6034                         goto out;
6035                 }
6036                 r = __set_sregs2(vcpu, u.sregs2);
6037                 break;
6038         }
6039         case KVM_HAS_DEVICE_ATTR:
6040         case KVM_GET_DEVICE_ATTR:
6041         case KVM_SET_DEVICE_ATTR:
6042                 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
6043                 break;
6044         default:
6045                 r = -EINVAL;
6046         }
6047 out:
6048         kfree(u.buffer);
6049 out_nofree:
6050         vcpu_put(vcpu);
6051         return r;
6052 }
6053
6054 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
6055 {
6056         return VM_FAULT_SIGBUS;
6057 }
6058
6059 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
6060 {
6061         int ret;
6062
6063         if (addr > (unsigned int)(-3 * PAGE_SIZE))
6064                 return -EINVAL;
6065         ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
6066         return ret;
6067 }
6068
6069 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
6070                                               u64 ident_addr)
6071 {
6072         return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
6073 }
6074
6075 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
6076                                          unsigned long kvm_nr_mmu_pages)
6077 {
6078         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
6079                 return -EINVAL;
6080
6081         mutex_lock(&kvm->slots_lock);
6082
6083         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
6084         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
6085
6086         mutex_unlock(&kvm->slots_lock);
6087         return 0;
6088 }
6089
6090 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6091 {
6092         struct kvm_pic *pic = kvm->arch.vpic;
6093         int r;
6094
6095         r = 0;
6096         switch (chip->chip_id) {
6097         case KVM_IRQCHIP_PIC_MASTER:
6098                 memcpy(&chip->chip.pic, &pic->pics[0],
6099                         sizeof(struct kvm_pic_state));
6100                 break;
6101         case KVM_IRQCHIP_PIC_SLAVE:
6102                 memcpy(&chip->chip.pic, &pic->pics[1],
6103                         sizeof(struct kvm_pic_state));
6104                 break;
6105         case KVM_IRQCHIP_IOAPIC:
6106                 kvm_get_ioapic(kvm, &chip->chip.ioapic);
6107                 break;
6108         default:
6109                 r = -EINVAL;
6110                 break;
6111         }
6112         return r;
6113 }
6114
6115 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6116 {
6117         struct kvm_pic *pic = kvm->arch.vpic;
6118         int r;
6119
6120         r = 0;
6121         switch (chip->chip_id) {
6122         case KVM_IRQCHIP_PIC_MASTER:
6123                 spin_lock(&pic->lock);
6124                 memcpy(&pic->pics[0], &chip->chip.pic,
6125                         sizeof(struct kvm_pic_state));
6126                 spin_unlock(&pic->lock);
6127                 break;
6128         case KVM_IRQCHIP_PIC_SLAVE:
6129                 spin_lock(&pic->lock);
6130                 memcpy(&pic->pics[1], &chip->chip.pic,
6131                         sizeof(struct kvm_pic_state));
6132                 spin_unlock(&pic->lock);
6133                 break;
6134         case KVM_IRQCHIP_IOAPIC:
6135                 kvm_set_ioapic(kvm, &chip->chip.ioapic);
6136                 break;
6137         default:
6138                 r = -EINVAL;
6139                 break;
6140         }
6141         kvm_pic_update_irq(pic);
6142         return r;
6143 }
6144
6145 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6146 {
6147         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
6148
6149         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
6150
6151         mutex_lock(&kps->lock);
6152         memcpy(ps, &kps->channels, sizeof(*ps));
6153         mutex_unlock(&kps->lock);
6154         return 0;
6155 }
6156
6157 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6158 {
6159         int i;
6160         struct kvm_pit *pit = kvm->arch.vpit;
6161
6162         mutex_lock(&pit->pit_state.lock);
6163         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
6164         for (i = 0; i < 3; i++)
6165                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
6166         mutex_unlock(&pit->pit_state.lock);
6167         return 0;
6168 }
6169
6170 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6171 {
6172         mutex_lock(&kvm->arch.vpit->pit_state.lock);
6173         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
6174                 sizeof(ps->channels));
6175         ps->flags = kvm->arch.vpit->pit_state.flags;
6176         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
6177         memset(&ps->reserved, 0, sizeof(ps->reserved));
6178         return 0;
6179 }
6180
6181 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6182 {
6183         int start = 0;
6184         int i;
6185         u32 prev_legacy, cur_legacy;
6186         struct kvm_pit *pit = kvm->arch.vpit;
6187
6188         mutex_lock(&pit->pit_state.lock);
6189         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
6190         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
6191         if (!prev_legacy && cur_legacy)
6192                 start = 1;
6193         memcpy(&pit->pit_state.channels, &ps->channels,
6194                sizeof(pit->pit_state.channels));
6195         pit->pit_state.flags = ps->flags;
6196         for (i = 0; i < 3; i++)
6197                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
6198                                    start && i == 0);
6199         mutex_unlock(&pit->pit_state.lock);
6200         return 0;
6201 }
6202
6203 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
6204                                  struct kvm_reinject_control *control)
6205 {
6206         struct kvm_pit *pit = kvm->arch.vpit;
6207
6208         /* pit->pit_state.lock was overloaded to prevent userspace from getting
6209          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
6210          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
6211          */
6212         mutex_lock(&pit->pit_state.lock);
6213         kvm_pit_set_reinject(pit, control->pit_reinject);
6214         mutex_unlock(&pit->pit_state.lock);
6215
6216         return 0;
6217 }
6218
6219 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
6220 {
6221
6222         /*
6223          * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
6224          * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
6225          * on all VM-Exits, thus we only need to kick running vCPUs to force a
6226          * VM-Exit.
6227          */
6228         struct kvm_vcpu *vcpu;
6229         unsigned long i;
6230
6231         kvm_for_each_vcpu(i, vcpu, kvm)
6232                 kvm_vcpu_kick(vcpu);
6233 }
6234
6235 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
6236                         bool line_status)
6237 {
6238         if (!irqchip_in_kernel(kvm))
6239                 return -ENXIO;
6240
6241         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
6242                                         irq_event->irq, irq_event->level,
6243                                         line_status);
6244         return 0;
6245 }
6246
6247 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
6248                             struct kvm_enable_cap *cap)
6249 {
6250         int r;
6251
6252         if (cap->flags)
6253                 return -EINVAL;
6254
6255         switch (cap->cap) {
6256         case KVM_CAP_DISABLE_QUIRKS2:
6257                 r = -EINVAL;
6258                 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS)
6259                         break;
6260                 fallthrough;
6261         case KVM_CAP_DISABLE_QUIRKS:
6262                 kvm->arch.disabled_quirks = cap->args[0];
6263                 r = 0;
6264                 break;
6265         case KVM_CAP_SPLIT_IRQCHIP: {
6266                 mutex_lock(&kvm->lock);
6267                 r = -EINVAL;
6268                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
6269                         goto split_irqchip_unlock;
6270                 r = -EEXIST;
6271                 if (irqchip_in_kernel(kvm))
6272                         goto split_irqchip_unlock;
6273                 if (kvm->created_vcpus)
6274                         goto split_irqchip_unlock;
6275                 r = kvm_setup_empty_irq_routing(kvm);
6276                 if (r)
6277                         goto split_irqchip_unlock;
6278                 /* Pairs with irqchip_in_kernel. */
6279                 smp_wmb();
6280                 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
6281                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
6282                 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6283                 r = 0;
6284 split_irqchip_unlock:
6285                 mutex_unlock(&kvm->lock);
6286                 break;
6287         }
6288         case KVM_CAP_X2APIC_API:
6289                 r = -EINVAL;
6290                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
6291                         break;
6292
6293                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
6294                         kvm->arch.x2apic_format = true;
6295                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
6296                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
6297
6298                 r = 0;
6299                 break;
6300         case KVM_CAP_X86_DISABLE_EXITS:
6301                 r = -EINVAL;
6302                 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
6303                         break;
6304
6305                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
6306                         kvm->arch.pause_in_guest = true;
6307
6308 #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \
6309                     "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests."
6310
6311                 if (!mitigate_smt_rsb) {
6312                         if (boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible() &&
6313                             (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE))
6314                                 pr_warn_once(SMT_RSB_MSG);
6315
6316                         if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
6317                             kvm_can_mwait_in_guest())
6318                                 kvm->arch.mwait_in_guest = true;
6319                         if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
6320                                 kvm->arch.hlt_in_guest = true;
6321                         if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
6322                                 kvm->arch.cstate_in_guest = true;
6323                 }
6324
6325                 r = 0;
6326                 break;
6327         case KVM_CAP_MSR_PLATFORM_INFO:
6328                 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
6329                 r = 0;
6330                 break;
6331         case KVM_CAP_EXCEPTION_PAYLOAD:
6332                 kvm->arch.exception_payload_enabled = cap->args[0];
6333                 r = 0;
6334                 break;
6335         case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
6336                 kvm->arch.triple_fault_event = cap->args[0];
6337                 r = 0;
6338                 break;
6339         case KVM_CAP_X86_USER_SPACE_MSR:
6340                 r = -EINVAL;
6341                 if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK)
6342                         break;
6343                 kvm->arch.user_space_msr_mask = cap->args[0];
6344                 r = 0;
6345                 break;
6346         case KVM_CAP_X86_BUS_LOCK_EXIT:
6347                 r = -EINVAL;
6348                 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
6349                         break;
6350
6351                 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6352                     (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6353                         break;
6354
6355                 if (kvm_caps.has_bus_lock_exit &&
6356                     cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6357                         kvm->arch.bus_lock_detection_enabled = true;
6358                 r = 0;
6359                 break;
6360 #ifdef CONFIG_X86_SGX_KVM
6361         case KVM_CAP_SGX_ATTRIBUTE: {
6362                 unsigned long allowed_attributes = 0;
6363
6364                 r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6365                 if (r)
6366                         break;
6367
6368                 /* KVM only supports the PROVISIONKEY privileged attribute. */
6369                 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6370                     !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6371                         kvm->arch.sgx_provisioning_allowed = true;
6372                 else
6373                         r = -EINVAL;
6374                 break;
6375         }
6376 #endif
6377         case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6378                 r = -EINVAL;
6379                 if (!kvm_x86_ops.vm_copy_enc_context_from)
6380                         break;
6381
6382                 r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]);
6383                 break;
6384         case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6385                 r = -EINVAL;
6386                 if (!kvm_x86_ops.vm_move_enc_context_from)
6387                         break;
6388
6389                 r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]);
6390                 break;
6391         case KVM_CAP_EXIT_HYPERCALL:
6392                 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6393                         r = -EINVAL;
6394                         break;
6395                 }
6396                 kvm->arch.hypercall_exit_enabled = cap->args[0];
6397                 r = 0;
6398                 break;
6399         case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6400                 r = -EINVAL;
6401                 if (cap->args[0] & ~1)
6402                         break;
6403                 kvm->arch.exit_on_emulation_error = cap->args[0];
6404                 r = 0;
6405                 break;
6406         case KVM_CAP_PMU_CAPABILITY:
6407                 r = -EINVAL;
6408                 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6409                         break;
6410
6411                 mutex_lock(&kvm->lock);
6412                 if (!kvm->created_vcpus) {
6413                         kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6414                         r = 0;
6415                 }
6416                 mutex_unlock(&kvm->lock);
6417                 break;
6418         case KVM_CAP_MAX_VCPU_ID:
6419                 r = -EINVAL;
6420                 if (cap->args[0] > KVM_MAX_VCPU_IDS)
6421                         break;
6422
6423                 mutex_lock(&kvm->lock);
6424                 if (kvm->arch.max_vcpu_ids == cap->args[0]) {
6425                         r = 0;
6426                 } else if (!kvm->arch.max_vcpu_ids) {
6427                         kvm->arch.max_vcpu_ids = cap->args[0];
6428                         r = 0;
6429                 }
6430                 mutex_unlock(&kvm->lock);
6431                 break;
6432         case KVM_CAP_X86_NOTIFY_VMEXIT:
6433                 r = -EINVAL;
6434                 if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS)
6435                         break;
6436                 if (!kvm_caps.has_notify_vmexit)
6437                         break;
6438                 if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED))
6439                         break;
6440                 mutex_lock(&kvm->lock);
6441                 if (!kvm->created_vcpus) {
6442                         kvm->arch.notify_window = cap->args[0] >> 32;
6443                         kvm->arch.notify_vmexit_flags = (u32)cap->args[0];
6444                         r = 0;
6445                 }
6446                 mutex_unlock(&kvm->lock);
6447                 break;
6448         case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
6449                 r = -EINVAL;
6450
6451                 /*
6452                  * Since the risk of disabling NX hugepages is a guest crashing
6453                  * the system, ensure the userspace process has permission to
6454                  * reboot the system.
6455                  *
6456                  * Note that unlike the reboot() syscall, the process must have
6457                  * this capability in the root namespace because exposing
6458                  * /dev/kvm into a container does not limit the scope of the
6459                  * iTLB multihit bug to that container. In other words,
6460                  * this must use capable(), not ns_capable().
6461                  */
6462                 if (!capable(CAP_SYS_BOOT)) {
6463                         r = -EPERM;
6464                         break;
6465                 }
6466
6467                 if (cap->args[0])
6468                         break;
6469
6470                 mutex_lock(&kvm->lock);
6471                 if (!kvm->created_vcpus) {
6472                         kvm->arch.disable_nx_huge_pages = true;
6473                         r = 0;
6474                 }
6475                 mutex_unlock(&kvm->lock);
6476                 break;
6477         default:
6478                 r = -EINVAL;
6479                 break;
6480         }
6481         return r;
6482 }
6483
6484 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6485 {
6486         struct kvm_x86_msr_filter *msr_filter;
6487
6488         msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6489         if (!msr_filter)
6490                 return NULL;
6491
6492         msr_filter->default_allow = default_allow;
6493         return msr_filter;
6494 }
6495
6496 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6497 {
6498         u32 i;
6499
6500         if (!msr_filter)
6501                 return;
6502
6503         for (i = 0; i < msr_filter->count; i++)
6504                 kfree(msr_filter->ranges[i].bitmap);
6505
6506         kfree(msr_filter);
6507 }
6508
6509 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6510                               struct kvm_msr_filter_range *user_range)
6511 {
6512         unsigned long *bitmap = NULL;
6513         size_t bitmap_size;
6514
6515         if (!user_range->nmsrs)
6516                 return 0;
6517
6518         if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK)
6519                 return -EINVAL;
6520
6521         if (!user_range->flags)
6522                 return -EINVAL;
6523
6524         bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6525         if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6526                 return -EINVAL;
6527
6528         bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6529         if (IS_ERR(bitmap))
6530                 return PTR_ERR(bitmap);
6531
6532         msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6533                 .flags = user_range->flags,
6534                 .base = user_range->base,
6535                 .nmsrs = user_range->nmsrs,
6536                 .bitmap = bitmap,
6537         };
6538
6539         msr_filter->count++;
6540         return 0;
6541 }
6542
6543 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm,
6544                                        struct kvm_msr_filter *filter)
6545 {
6546         struct kvm_x86_msr_filter *new_filter, *old_filter;
6547         bool default_allow;
6548         bool empty = true;
6549         int r;
6550         u32 i;
6551
6552         if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK)
6553                 return -EINVAL;
6554
6555         for (i = 0; i < ARRAY_SIZE(filter->ranges); i++)
6556                 empty &= !filter->ranges[i].nmsrs;
6557
6558         default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY);
6559         if (empty && !default_allow)
6560                 return -EINVAL;
6561
6562         new_filter = kvm_alloc_msr_filter(default_allow);
6563         if (!new_filter)
6564                 return -ENOMEM;
6565
6566         for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) {
6567                 r = kvm_add_msr_filter(new_filter, &filter->ranges[i]);
6568                 if (r) {
6569                         kvm_free_msr_filter(new_filter);
6570                         return r;
6571                 }
6572         }
6573
6574         mutex_lock(&kvm->lock);
6575         old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter,
6576                                          mutex_is_locked(&kvm->lock));
6577         mutex_unlock(&kvm->lock);
6578         synchronize_srcu(&kvm->srcu);
6579
6580         kvm_free_msr_filter(old_filter);
6581
6582         kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6583
6584         return 0;
6585 }
6586
6587 #ifdef CONFIG_KVM_COMPAT
6588 /* for KVM_X86_SET_MSR_FILTER */
6589 struct kvm_msr_filter_range_compat {
6590         __u32 flags;
6591         __u32 nmsrs;
6592         __u32 base;
6593         __u32 bitmap;
6594 };
6595
6596 struct kvm_msr_filter_compat {
6597         __u32 flags;
6598         struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES];
6599 };
6600
6601 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat)
6602
6603 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
6604                               unsigned long arg)
6605 {
6606         void __user *argp = (void __user *)arg;
6607         struct kvm *kvm = filp->private_data;
6608         long r = -ENOTTY;
6609
6610         switch (ioctl) {
6611         case KVM_X86_SET_MSR_FILTER_COMPAT: {
6612                 struct kvm_msr_filter __user *user_msr_filter = argp;
6613                 struct kvm_msr_filter_compat filter_compat;
6614                 struct kvm_msr_filter filter;
6615                 int i;
6616
6617                 if (copy_from_user(&filter_compat, user_msr_filter,
6618                                    sizeof(filter_compat)))
6619                         return -EFAULT;
6620
6621                 filter.flags = filter_compat.flags;
6622                 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6623                         struct kvm_msr_filter_range_compat *cr;
6624
6625                         cr = &filter_compat.ranges[i];
6626                         filter.ranges[i] = (struct kvm_msr_filter_range) {
6627                                 .flags = cr->flags,
6628                                 .nmsrs = cr->nmsrs,
6629                                 .base = cr->base,
6630                                 .bitmap = (__u8 *)(ulong)cr->bitmap,
6631                         };
6632                 }
6633
6634                 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
6635                 break;
6636         }
6637         }
6638
6639         return r;
6640 }
6641 #endif
6642
6643 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
6644 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6645 {
6646         struct kvm_vcpu *vcpu;
6647         unsigned long i;
6648         int ret = 0;
6649
6650         mutex_lock(&kvm->lock);
6651         kvm_for_each_vcpu(i, vcpu, kvm) {
6652                 if (!vcpu->arch.pv_time.active)
6653                         continue;
6654
6655                 ret = kvm_set_guest_paused(vcpu);
6656                 if (ret) {
6657                         kvm_err("Failed to pause guest VCPU%d: %d\n",
6658                                 vcpu->vcpu_id, ret);
6659                         break;
6660                 }
6661         }
6662         mutex_unlock(&kvm->lock);
6663
6664         return ret ? NOTIFY_BAD : NOTIFY_DONE;
6665 }
6666
6667 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6668 {
6669         switch (state) {
6670         case PM_HIBERNATION_PREPARE:
6671         case PM_SUSPEND_PREPARE:
6672                 return kvm_arch_suspend_notifier(kvm);
6673         }
6674
6675         return NOTIFY_DONE;
6676 }
6677 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6678
6679 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6680 {
6681         struct kvm_clock_data data = { 0 };
6682
6683         get_kvmclock(kvm, &data);
6684         if (copy_to_user(argp, &data, sizeof(data)))
6685                 return -EFAULT;
6686
6687         return 0;
6688 }
6689
6690 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6691 {
6692         struct kvm_arch *ka = &kvm->arch;
6693         struct kvm_clock_data data;
6694         u64 now_raw_ns;
6695
6696         if (copy_from_user(&data, argp, sizeof(data)))
6697                 return -EFAULT;
6698
6699         /*
6700          * Only KVM_CLOCK_REALTIME is used, but allow passing the
6701          * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6702          */
6703         if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6704                 return -EINVAL;
6705
6706         kvm_hv_request_tsc_page_update(kvm);
6707         kvm_start_pvclock_update(kvm);
6708         pvclock_update_vm_gtod_copy(kvm);
6709
6710         /*
6711          * This pairs with kvm_guest_time_update(): when masterclock is
6712          * in use, we use master_kernel_ns + kvmclock_offset to set
6713          * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6714          * is slightly ahead) here we risk going negative on unsigned
6715          * 'system_time' when 'data.clock' is very small.
6716          */
6717         if (data.flags & KVM_CLOCK_REALTIME) {
6718                 u64 now_real_ns = ktime_get_real_ns();
6719
6720                 /*
6721                  * Avoid stepping the kvmclock backwards.
6722                  */
6723                 if (now_real_ns > data.realtime)
6724                         data.clock += now_real_ns - data.realtime;
6725         }
6726
6727         if (ka->use_master_clock)
6728                 now_raw_ns = ka->master_kernel_ns;
6729         else
6730                 now_raw_ns = get_kvmclock_base_ns();
6731         ka->kvmclock_offset = data.clock - now_raw_ns;
6732         kvm_end_pvclock_update(kvm);
6733         return 0;
6734 }
6735
6736 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
6737 {
6738         struct kvm *kvm = filp->private_data;
6739         void __user *argp = (void __user *)arg;
6740         int r = -ENOTTY;
6741         /*
6742          * This union makes it completely explicit to gcc-3.x
6743          * that these two variables' stack usage should be
6744          * combined, not added together.
6745          */
6746         union {
6747                 struct kvm_pit_state ps;
6748                 struct kvm_pit_state2 ps2;
6749                 struct kvm_pit_config pit_config;
6750         } u;
6751
6752         switch (ioctl) {
6753         case KVM_SET_TSS_ADDR:
6754                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
6755                 break;
6756         case KVM_SET_IDENTITY_MAP_ADDR: {
6757                 u64 ident_addr;
6758
6759                 mutex_lock(&kvm->lock);
6760                 r = -EINVAL;
6761                 if (kvm->created_vcpus)
6762                         goto set_identity_unlock;
6763                 r = -EFAULT;
6764                 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
6765                         goto set_identity_unlock;
6766                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
6767 set_identity_unlock:
6768                 mutex_unlock(&kvm->lock);
6769                 break;
6770         }
6771         case KVM_SET_NR_MMU_PAGES:
6772                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
6773                 break;
6774         case KVM_CREATE_IRQCHIP: {
6775                 mutex_lock(&kvm->lock);
6776
6777                 r = -EEXIST;
6778                 if (irqchip_in_kernel(kvm))
6779                         goto create_irqchip_unlock;
6780
6781                 r = -EINVAL;
6782                 if (kvm->created_vcpus)
6783                         goto create_irqchip_unlock;
6784
6785                 r = kvm_pic_init(kvm);
6786                 if (r)
6787                         goto create_irqchip_unlock;
6788
6789                 r = kvm_ioapic_init(kvm);
6790                 if (r) {
6791                         kvm_pic_destroy(kvm);
6792                         goto create_irqchip_unlock;
6793                 }
6794
6795                 r = kvm_setup_default_irq_routing(kvm);
6796                 if (r) {
6797                         kvm_ioapic_destroy(kvm);
6798                         kvm_pic_destroy(kvm);
6799                         goto create_irqchip_unlock;
6800                 }
6801                 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
6802                 smp_wmb();
6803                 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
6804                 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6805         create_irqchip_unlock:
6806                 mutex_unlock(&kvm->lock);
6807                 break;
6808         }
6809         case KVM_CREATE_PIT:
6810                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
6811                 goto create_pit;
6812         case KVM_CREATE_PIT2:
6813                 r = -EFAULT;
6814                 if (copy_from_user(&u.pit_config, argp,
6815                                    sizeof(struct kvm_pit_config)))
6816                         goto out;
6817         create_pit:
6818                 mutex_lock(&kvm->lock);
6819                 r = -EEXIST;
6820                 if (kvm->arch.vpit)
6821                         goto create_pit_unlock;
6822                 r = -ENOMEM;
6823                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
6824                 if (kvm->arch.vpit)
6825                         r = 0;
6826         create_pit_unlock:
6827                 mutex_unlock(&kvm->lock);
6828                 break;
6829         case KVM_GET_IRQCHIP: {
6830                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6831                 struct kvm_irqchip *chip;
6832
6833                 chip = memdup_user(argp, sizeof(*chip));
6834                 if (IS_ERR(chip)) {
6835                         r = PTR_ERR(chip);
6836                         goto out;
6837                 }
6838
6839                 r = -ENXIO;
6840                 if (!irqchip_kernel(kvm))
6841                         goto get_irqchip_out;
6842                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
6843                 if (r)
6844                         goto get_irqchip_out;
6845                 r = -EFAULT;
6846                 if (copy_to_user(argp, chip, sizeof(*chip)))
6847                         goto get_irqchip_out;
6848                 r = 0;
6849         get_irqchip_out:
6850                 kfree(chip);
6851                 break;
6852         }
6853         case KVM_SET_IRQCHIP: {
6854                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6855                 struct kvm_irqchip *chip;
6856
6857                 chip = memdup_user(argp, sizeof(*chip));
6858                 if (IS_ERR(chip)) {
6859                         r = PTR_ERR(chip);
6860                         goto out;
6861                 }
6862
6863                 r = -ENXIO;
6864                 if (!irqchip_kernel(kvm))
6865                         goto set_irqchip_out;
6866                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
6867         set_irqchip_out:
6868                 kfree(chip);
6869                 break;
6870         }
6871         case KVM_GET_PIT: {
6872                 r = -EFAULT;
6873                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
6874                         goto out;
6875                 r = -ENXIO;
6876                 if (!kvm->arch.vpit)
6877                         goto out;
6878                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
6879                 if (r)
6880                         goto out;
6881                 r = -EFAULT;
6882                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
6883                         goto out;
6884                 r = 0;
6885                 break;
6886         }
6887         case KVM_SET_PIT: {
6888                 r = -EFAULT;
6889                 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
6890                         goto out;
6891                 mutex_lock(&kvm->lock);
6892                 r = -ENXIO;
6893                 if (!kvm->arch.vpit)
6894                         goto set_pit_out;
6895                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
6896 set_pit_out:
6897                 mutex_unlock(&kvm->lock);
6898                 break;
6899         }
6900         case KVM_GET_PIT2: {
6901                 r = -ENXIO;
6902                 if (!kvm->arch.vpit)
6903                         goto out;
6904                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
6905                 if (r)
6906                         goto out;
6907                 r = -EFAULT;
6908                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
6909                         goto out;
6910                 r = 0;
6911                 break;
6912         }
6913         case KVM_SET_PIT2: {
6914                 r = -EFAULT;
6915                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
6916                         goto out;
6917                 mutex_lock(&kvm->lock);
6918                 r = -ENXIO;
6919                 if (!kvm->arch.vpit)
6920                         goto set_pit2_out;
6921                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
6922 set_pit2_out:
6923                 mutex_unlock(&kvm->lock);
6924                 break;
6925         }
6926         case KVM_REINJECT_CONTROL: {
6927                 struct kvm_reinject_control control;
6928                 r =  -EFAULT;
6929                 if (copy_from_user(&control, argp, sizeof(control)))
6930                         goto out;
6931                 r = -ENXIO;
6932                 if (!kvm->arch.vpit)
6933                         goto out;
6934                 r = kvm_vm_ioctl_reinject(kvm, &control);
6935                 break;
6936         }
6937         case KVM_SET_BOOT_CPU_ID:
6938                 r = 0;
6939                 mutex_lock(&kvm->lock);
6940                 if (kvm->created_vcpus)
6941                         r = -EBUSY;
6942                 else
6943                         kvm->arch.bsp_vcpu_id = arg;
6944                 mutex_unlock(&kvm->lock);
6945                 break;
6946 #ifdef CONFIG_KVM_XEN
6947         case KVM_XEN_HVM_CONFIG: {
6948                 struct kvm_xen_hvm_config xhc;
6949                 r = -EFAULT;
6950                 if (copy_from_user(&xhc, argp, sizeof(xhc)))
6951                         goto out;
6952                 r = kvm_xen_hvm_config(kvm, &xhc);
6953                 break;
6954         }
6955         case KVM_XEN_HVM_GET_ATTR: {
6956                 struct kvm_xen_hvm_attr xha;
6957
6958                 r = -EFAULT;
6959                 if (copy_from_user(&xha, argp, sizeof(xha)))
6960                         goto out;
6961                 r = kvm_xen_hvm_get_attr(kvm, &xha);
6962                 if (!r && copy_to_user(argp, &xha, sizeof(xha)))
6963                         r = -EFAULT;
6964                 break;
6965         }
6966         case KVM_XEN_HVM_SET_ATTR: {
6967                 struct kvm_xen_hvm_attr xha;
6968
6969                 r = -EFAULT;
6970                 if (copy_from_user(&xha, argp, sizeof(xha)))
6971                         goto out;
6972                 r = kvm_xen_hvm_set_attr(kvm, &xha);
6973                 break;
6974         }
6975         case KVM_XEN_HVM_EVTCHN_SEND: {
6976                 struct kvm_irq_routing_xen_evtchn uxe;
6977
6978                 r = -EFAULT;
6979                 if (copy_from_user(&uxe, argp, sizeof(uxe)))
6980                         goto out;
6981                 r = kvm_xen_hvm_evtchn_send(kvm, &uxe);
6982                 break;
6983         }
6984 #endif
6985         case KVM_SET_CLOCK:
6986                 r = kvm_vm_ioctl_set_clock(kvm, argp);
6987                 break;
6988         case KVM_GET_CLOCK:
6989                 r = kvm_vm_ioctl_get_clock(kvm, argp);
6990                 break;
6991         case KVM_SET_TSC_KHZ: {
6992                 u32 user_tsc_khz;
6993
6994                 r = -EINVAL;
6995                 user_tsc_khz = (u32)arg;
6996
6997                 if (kvm_caps.has_tsc_control &&
6998                     user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
6999                         goto out;
7000
7001                 if (user_tsc_khz == 0)
7002                         user_tsc_khz = tsc_khz;
7003
7004                 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz);
7005                 r = 0;
7006
7007                 goto out;
7008         }
7009         case KVM_GET_TSC_KHZ: {
7010                 r = READ_ONCE(kvm->arch.default_tsc_khz);
7011                 goto out;
7012         }
7013         case KVM_MEMORY_ENCRYPT_OP: {
7014                 r = -ENOTTY;
7015                 if (!kvm_x86_ops.mem_enc_ioctl)
7016                         goto out;
7017
7018                 r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp);
7019                 break;
7020         }
7021         case KVM_MEMORY_ENCRYPT_REG_REGION: {
7022                 struct kvm_enc_region region;
7023
7024                 r = -EFAULT;
7025                 if (copy_from_user(&region, argp, sizeof(region)))
7026                         goto out;
7027
7028                 r = -ENOTTY;
7029                 if (!kvm_x86_ops.mem_enc_register_region)
7030                         goto out;
7031
7032                 r = static_call(kvm_x86_mem_enc_register_region)(kvm, &region);
7033                 break;
7034         }
7035         case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
7036                 struct kvm_enc_region region;
7037
7038                 r = -EFAULT;
7039                 if (copy_from_user(&region, argp, sizeof(region)))
7040                         goto out;
7041
7042                 r = -ENOTTY;
7043                 if (!kvm_x86_ops.mem_enc_unregister_region)
7044                         goto out;
7045
7046                 r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, &region);
7047                 break;
7048         }
7049         case KVM_HYPERV_EVENTFD: {
7050                 struct kvm_hyperv_eventfd hvevfd;
7051
7052                 r = -EFAULT;
7053                 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
7054                         goto out;
7055                 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
7056                 break;
7057         }
7058         case KVM_SET_PMU_EVENT_FILTER:
7059                 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
7060                 break;
7061         case KVM_X86_SET_MSR_FILTER: {
7062                 struct kvm_msr_filter __user *user_msr_filter = argp;
7063                 struct kvm_msr_filter filter;
7064
7065                 if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
7066                         return -EFAULT;
7067
7068                 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
7069                 break;
7070         }
7071         default:
7072                 r = -ENOTTY;
7073         }
7074 out:
7075         return r;
7076 }
7077
7078 static void kvm_probe_feature_msr(u32 msr_index)
7079 {
7080         struct kvm_msr_entry msr = {
7081                 .index = msr_index,
7082         };
7083
7084         if (kvm_get_msr_feature(&msr))
7085                 return;
7086
7087         msr_based_features[num_msr_based_features++] = msr_index;
7088 }
7089
7090 static void kvm_probe_msr_to_save(u32 msr_index)
7091 {
7092         u32 dummy[2];
7093
7094         if (rdmsr_safe(msr_index, &dummy[0], &dummy[1]))
7095                 return;
7096
7097         /*
7098          * Even MSRs that are valid in the host may not be exposed to guests in
7099          * some cases.
7100          */
7101         switch (msr_index) {
7102         case MSR_IA32_BNDCFGS:
7103                 if (!kvm_mpx_supported())
7104                         return;
7105                 break;
7106         case MSR_TSC_AUX:
7107                 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
7108                     !kvm_cpu_cap_has(X86_FEATURE_RDPID))
7109                         return;
7110                 break;
7111         case MSR_IA32_UMWAIT_CONTROL:
7112                 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
7113                         return;
7114                 break;
7115         case MSR_IA32_RTIT_CTL:
7116         case MSR_IA32_RTIT_STATUS:
7117                 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
7118                         return;
7119                 break;
7120         case MSR_IA32_RTIT_CR3_MATCH:
7121                 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7122                     !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
7123                         return;
7124                 break;
7125         case MSR_IA32_RTIT_OUTPUT_BASE:
7126         case MSR_IA32_RTIT_OUTPUT_MASK:
7127                 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7128                     (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
7129                      !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
7130                         return;
7131                 break;
7132         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
7133                 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7134                     (msr_index - MSR_IA32_RTIT_ADDR0_A >=
7135                      intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2))
7136                         return;
7137                 break;
7138         case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR_MAX:
7139                 if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >=
7140                     kvm_pmu_cap.num_counters_gp)
7141                         return;
7142                 break;
7143         case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL_MAX:
7144                 if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >=
7145                     kvm_pmu_cap.num_counters_gp)
7146                         return;
7147                 break;
7148         case MSR_ARCH_PERFMON_FIXED_CTR0 ... MSR_ARCH_PERFMON_FIXED_CTR_MAX:
7149                 if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >=
7150                     kvm_pmu_cap.num_counters_fixed)
7151                         return;
7152                 break;
7153         case MSR_IA32_XFD:
7154         case MSR_IA32_XFD_ERR:
7155                 if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
7156                         return;
7157                 break;
7158         case MSR_IA32_TSX_CTRL:
7159                 if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR))
7160                         return;
7161                 break;
7162         default:
7163                 break;
7164         }
7165
7166         msrs_to_save[num_msrs_to_save++] = msr_index;
7167 }
7168
7169 static void kvm_init_msr_lists(void)
7170 {
7171         unsigned i;
7172
7173         BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3,
7174                          "Please update the fixed PMCs in msrs_to_save_pmu[]");
7175
7176         num_msrs_to_save = 0;
7177         num_emulated_msrs = 0;
7178         num_msr_based_features = 0;
7179
7180         for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++)
7181                 kvm_probe_msr_to_save(msrs_to_save_base[i]);
7182
7183         if (enable_pmu) {
7184                 for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++)
7185                         kvm_probe_msr_to_save(msrs_to_save_pmu[i]);
7186         }
7187
7188         for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
7189                 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
7190                         continue;
7191
7192                 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
7193         }
7194
7195         for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++)
7196                 kvm_probe_feature_msr(i);
7197
7198         for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++)
7199                 kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]);
7200 }
7201
7202 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
7203                            const void *v)
7204 {
7205         int handled = 0;
7206         int n;
7207
7208         do {
7209                 n = min(len, 8);
7210                 if (!(lapic_in_kernel(vcpu) &&
7211                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
7212                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
7213                         break;
7214                 handled += n;
7215                 addr += n;
7216                 len -= n;
7217                 v += n;
7218         } while (len);
7219
7220         return handled;
7221 }
7222
7223 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
7224 {
7225         int handled = 0;
7226         int n;
7227
7228         do {
7229                 n = min(len, 8);
7230                 if (!(lapic_in_kernel(vcpu) &&
7231                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
7232                                          addr, n, v))
7233                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
7234                         break;
7235                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
7236                 handled += n;
7237                 addr += n;
7238                 len -= n;
7239                 v += n;
7240         } while (len);
7241
7242         return handled;
7243 }
7244
7245 void kvm_set_segment(struct kvm_vcpu *vcpu,
7246                      struct kvm_segment *var, int seg)
7247 {
7248         static_call(kvm_x86_set_segment)(vcpu, var, seg);
7249 }
7250
7251 void kvm_get_segment(struct kvm_vcpu *vcpu,
7252                      struct kvm_segment *var, int seg)
7253 {
7254         static_call(kvm_x86_get_segment)(vcpu, var, seg);
7255 }
7256
7257 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
7258                            struct x86_exception *exception)
7259 {
7260         struct kvm_mmu *mmu = vcpu->arch.mmu;
7261         gpa_t t_gpa;
7262
7263         BUG_ON(!mmu_is_nested(vcpu));
7264
7265         /* NPT walks are always user-walks */
7266         access |= PFERR_USER_MASK;
7267         t_gpa  = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
7268
7269         return t_gpa;
7270 }
7271
7272 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
7273                               struct x86_exception *exception)
7274 {
7275         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7276
7277         u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7278         return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7279 }
7280 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
7281
7282 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
7283                                struct x86_exception *exception)
7284 {
7285         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7286
7287         u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7288         access |= PFERR_WRITE_MASK;
7289         return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7290 }
7291 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
7292
7293 /* uses this to access any guest's mapped memory without checking CPL */
7294 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
7295                                 struct x86_exception *exception)
7296 {
7297         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7298
7299         return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
7300 }
7301
7302 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7303                                       struct kvm_vcpu *vcpu, u64 access,
7304                                       struct x86_exception *exception)
7305 {
7306         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7307         void *data = val;
7308         int r = X86EMUL_CONTINUE;
7309
7310         while (bytes) {
7311                 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7312                 unsigned offset = addr & (PAGE_SIZE-1);
7313                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
7314                 int ret;
7315
7316                 if (gpa == INVALID_GPA)
7317                         return X86EMUL_PROPAGATE_FAULT;
7318                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
7319                                                offset, toread);
7320                 if (ret < 0) {
7321                         r = X86EMUL_IO_NEEDED;
7322                         goto out;
7323                 }
7324
7325                 bytes -= toread;
7326                 data += toread;
7327                 addr += toread;
7328         }
7329 out:
7330         return r;
7331 }
7332
7333 /* used for instruction fetching */
7334 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
7335                                 gva_t addr, void *val, unsigned int bytes,
7336                                 struct x86_exception *exception)
7337 {
7338         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7339         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7340         u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7341         unsigned offset;
7342         int ret;
7343
7344         /* Inline kvm_read_guest_virt_helper for speed.  */
7345         gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
7346                                     exception);
7347         if (unlikely(gpa == INVALID_GPA))
7348                 return X86EMUL_PROPAGATE_FAULT;
7349
7350         offset = addr & (PAGE_SIZE-1);
7351         if (WARN_ON(offset + bytes > PAGE_SIZE))
7352                 bytes = (unsigned)PAGE_SIZE - offset;
7353         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
7354                                        offset, bytes);
7355         if (unlikely(ret < 0))
7356                 return X86EMUL_IO_NEEDED;
7357
7358         return X86EMUL_CONTINUE;
7359 }
7360
7361 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
7362                                gva_t addr, void *val, unsigned int bytes,
7363                                struct x86_exception *exception)
7364 {
7365         u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7366
7367         /*
7368          * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
7369          * is returned, but our callers are not ready for that and they blindly
7370          * call kvm_inject_page_fault.  Ensure that they at least do not leak
7371          * uninitialized kernel stack memory into cr2 and error code.
7372          */
7373         memset(exception, 0, sizeof(*exception));
7374         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
7375                                           exception);
7376 }
7377 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
7378
7379 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
7380                              gva_t addr, void *val, unsigned int bytes,
7381                              struct x86_exception *exception, bool system)
7382 {
7383         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7384         u64 access = 0;
7385
7386         if (system)
7387                 access |= PFERR_IMPLICIT_ACCESS;
7388         else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7389                 access |= PFERR_USER_MASK;
7390
7391         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
7392 }
7393
7394 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7395                                       struct kvm_vcpu *vcpu, u64 access,
7396                                       struct x86_exception *exception)
7397 {
7398         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7399         void *data = val;
7400         int r = X86EMUL_CONTINUE;
7401
7402         while (bytes) {
7403                 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7404                 unsigned offset = addr & (PAGE_SIZE-1);
7405                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
7406                 int ret;
7407
7408                 if (gpa == INVALID_GPA)
7409                         return X86EMUL_PROPAGATE_FAULT;
7410                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
7411                 if (ret < 0) {
7412                         r = X86EMUL_IO_NEEDED;
7413                         goto out;
7414                 }
7415
7416                 bytes -= towrite;
7417                 data += towrite;
7418                 addr += towrite;
7419         }
7420 out:
7421         return r;
7422 }
7423
7424 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
7425                               unsigned int bytes, struct x86_exception *exception,
7426                               bool system)
7427 {
7428         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7429         u64 access = PFERR_WRITE_MASK;
7430
7431         if (system)
7432                 access |= PFERR_IMPLICIT_ACCESS;
7433         else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7434                 access |= PFERR_USER_MASK;
7435
7436         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7437                                            access, exception);
7438 }
7439
7440 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
7441                                 unsigned int bytes, struct x86_exception *exception)
7442 {
7443         /* kvm_write_guest_virt_system can pull in tons of pages. */
7444         vcpu->arch.l1tf_flush_l1d = true;
7445
7446         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7447                                            PFERR_WRITE_MASK, exception);
7448 }
7449 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
7450
7451 static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
7452                                 void *insn, int insn_len)
7453 {
7454         return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type,
7455                                                             insn, insn_len);
7456 }
7457
7458 int handle_ud(struct kvm_vcpu *vcpu)
7459 {
7460         static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
7461         int fep_flags = READ_ONCE(force_emulation_prefix);
7462         int emul_type = EMULTYPE_TRAP_UD;
7463         char sig[5]; /* ud2; .ascii "kvm" */
7464         struct x86_exception e;
7465
7466         if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0)))
7467                 return 1;
7468
7469         if (fep_flags &&
7470             kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
7471                                 sig, sizeof(sig), &e) == 0 &&
7472             memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
7473                 if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF)
7474                         kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF);
7475                 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
7476                 emul_type = EMULTYPE_TRAP_UD_FORCED;
7477         }
7478
7479         return kvm_emulate_instruction(vcpu, emul_type);
7480 }
7481 EXPORT_SYMBOL_GPL(handle_ud);
7482
7483 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7484                             gpa_t gpa, bool write)
7485 {
7486         /* For APIC access vmexit */
7487         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7488                 return 1;
7489
7490         if (vcpu_match_mmio_gpa(vcpu, gpa)) {
7491                 trace_vcpu_match_mmio(gva, gpa, write, true);
7492                 return 1;
7493         }
7494
7495         return 0;
7496 }
7497
7498 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7499                                 gpa_t *gpa, struct x86_exception *exception,
7500                                 bool write)
7501 {
7502         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7503         u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
7504                 | (write ? PFERR_WRITE_MASK : 0);
7505
7506         /*
7507          * currently PKRU is only applied to ept enabled guest so
7508          * there is no pkey in EPT page table for L1 guest or EPT
7509          * shadow page table for L2 guest.
7510          */
7511         if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
7512             !permission_fault(vcpu, vcpu->arch.walk_mmu,
7513                               vcpu->arch.mmio_access, 0, access))) {
7514                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
7515                                         (gva & (PAGE_SIZE - 1));
7516                 trace_vcpu_match_mmio(gva, *gpa, write, false);
7517                 return 1;
7518         }
7519
7520         *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7521
7522         if (*gpa == INVALID_GPA)
7523                 return -1;
7524
7525         return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
7526 }
7527
7528 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
7529                         const void *val, int bytes)
7530 {
7531         int ret;
7532
7533         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
7534         if (ret < 0)
7535                 return 0;
7536         kvm_page_track_write(vcpu, gpa, val, bytes);
7537         return 1;
7538 }
7539
7540 struct read_write_emulator_ops {
7541         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
7542                                   int bytes);
7543         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
7544                                   void *val, int bytes);
7545         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7546                                int bytes, void *val);
7547         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7548                                     void *val, int bytes);
7549         bool write;
7550 };
7551
7552 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
7553 {
7554         if (vcpu->mmio_read_completed) {
7555                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
7556                                vcpu->mmio_fragments[0].gpa, val);
7557                 vcpu->mmio_read_completed = 0;
7558                 return 1;
7559         }
7560
7561         return 0;
7562 }
7563
7564 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7565                         void *val, int bytes)
7566 {
7567         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
7568 }
7569
7570 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7571                          void *val, int bytes)
7572 {
7573         return emulator_write_phys(vcpu, gpa, val, bytes);
7574 }
7575
7576 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7577 {
7578         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7579         return vcpu_mmio_write(vcpu, gpa, bytes, val);
7580 }
7581
7582 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7583                           void *val, int bytes)
7584 {
7585         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7586         return X86EMUL_IO_NEEDED;
7587 }
7588
7589 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7590                            void *val, int bytes)
7591 {
7592         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7593
7594         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7595         return X86EMUL_CONTINUE;
7596 }
7597
7598 static const struct read_write_emulator_ops read_emultor = {
7599         .read_write_prepare = read_prepare,
7600         .read_write_emulate = read_emulate,
7601         .read_write_mmio = vcpu_mmio_read,
7602         .read_write_exit_mmio = read_exit_mmio,
7603 };
7604
7605 static const struct read_write_emulator_ops write_emultor = {
7606         .read_write_emulate = write_emulate,
7607         .read_write_mmio = write_mmio,
7608         .read_write_exit_mmio = write_exit_mmio,
7609         .write = true,
7610 };
7611
7612 static int emulator_read_write_onepage(unsigned long addr, void *val,
7613                                        unsigned int bytes,
7614                                        struct x86_exception *exception,
7615                                        struct kvm_vcpu *vcpu,
7616                                        const struct read_write_emulator_ops *ops)
7617 {
7618         gpa_t gpa;
7619         int handled, ret;
7620         bool write = ops->write;
7621         struct kvm_mmio_fragment *frag;
7622         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7623
7624         /*
7625          * If the exit was due to a NPF we may already have a GPA.
7626          * If the GPA is present, use it to avoid the GVA to GPA table walk.
7627          * Note, this cannot be used on string operations since string
7628          * operation using rep will only have the initial GPA from the NPF
7629          * occurred.
7630          */
7631         if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7632             (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7633                 gpa = ctxt->gpa_val;
7634                 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7635         } else {
7636                 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7637                 if (ret < 0)
7638                         return X86EMUL_PROPAGATE_FAULT;
7639         }
7640
7641         if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7642                 return X86EMUL_CONTINUE;
7643
7644         /*
7645          * Is this MMIO handled locally?
7646          */
7647         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7648         if (handled == bytes)
7649                 return X86EMUL_CONTINUE;
7650
7651         gpa += handled;
7652         bytes -= handled;
7653         val += handled;
7654
7655         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7656         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7657         frag->gpa = gpa;
7658         frag->data = val;
7659         frag->len = bytes;
7660         return X86EMUL_CONTINUE;
7661 }
7662
7663 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7664                         unsigned long addr,
7665                         void *val, unsigned int bytes,
7666                         struct x86_exception *exception,
7667                         const struct read_write_emulator_ops *ops)
7668 {
7669         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7670         gpa_t gpa;
7671         int rc;
7672
7673         if (ops->read_write_prepare &&
7674                   ops->read_write_prepare(vcpu, val, bytes))
7675                 return X86EMUL_CONTINUE;
7676
7677         vcpu->mmio_nr_fragments = 0;
7678
7679         /* Crossing a page boundary? */
7680         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7681                 int now;
7682
7683                 now = -addr & ~PAGE_MASK;
7684                 rc = emulator_read_write_onepage(addr, val, now, exception,
7685                                                  vcpu, ops);
7686
7687                 if (rc != X86EMUL_CONTINUE)
7688                         return rc;
7689                 addr += now;
7690                 if (ctxt->mode != X86EMUL_MODE_PROT64)
7691                         addr = (u32)addr;
7692                 val += now;
7693                 bytes -= now;
7694         }
7695
7696         rc = emulator_read_write_onepage(addr, val, bytes, exception,
7697                                          vcpu, ops);
7698         if (rc != X86EMUL_CONTINUE)
7699                 return rc;
7700
7701         if (!vcpu->mmio_nr_fragments)
7702                 return rc;
7703
7704         gpa = vcpu->mmio_fragments[0].gpa;
7705
7706         vcpu->mmio_needed = 1;
7707         vcpu->mmio_cur_fragment = 0;
7708
7709         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
7710         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
7711         vcpu->run->exit_reason = KVM_EXIT_MMIO;
7712         vcpu->run->mmio.phys_addr = gpa;
7713
7714         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
7715 }
7716
7717 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
7718                                   unsigned long addr,
7719                                   void *val,
7720                                   unsigned int bytes,
7721                                   struct x86_exception *exception)
7722 {
7723         return emulator_read_write(ctxt, addr, val, bytes,
7724                                    exception, &read_emultor);
7725 }
7726
7727 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
7728                             unsigned long addr,
7729                             const void *val,
7730                             unsigned int bytes,
7731                             struct x86_exception *exception)
7732 {
7733         return emulator_read_write(ctxt, addr, (void *)val, bytes,
7734                                    exception, &write_emultor);
7735 }
7736
7737 #define emulator_try_cmpxchg_user(t, ptr, old, new) \
7738         (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
7739
7740 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
7741                                      unsigned long addr,
7742                                      const void *old,
7743                                      const void *new,
7744                                      unsigned int bytes,
7745                                      struct x86_exception *exception)
7746 {
7747         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7748         u64 page_line_mask;
7749         unsigned long hva;
7750         gpa_t gpa;
7751         int r;
7752
7753         /* guests cmpxchg8b have to be emulated atomically */
7754         if (bytes > 8 || (bytes & (bytes - 1)))
7755                 goto emul_write;
7756
7757         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
7758
7759         if (gpa == INVALID_GPA ||
7760             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7761                 goto emul_write;
7762
7763         /*
7764          * Emulate the atomic as a straight write to avoid #AC if SLD is
7765          * enabled in the host and the access splits a cache line.
7766          */
7767         if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
7768                 page_line_mask = ~(cache_line_size() - 1);
7769         else
7770                 page_line_mask = PAGE_MASK;
7771
7772         if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
7773                 goto emul_write;
7774
7775         hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa));
7776         if (kvm_is_error_hva(hva))
7777                 goto emul_write;
7778
7779         hva += offset_in_page(gpa);
7780
7781         switch (bytes) {
7782         case 1:
7783                 r = emulator_try_cmpxchg_user(u8, hva, old, new);
7784                 break;
7785         case 2:
7786                 r = emulator_try_cmpxchg_user(u16, hva, old, new);
7787                 break;
7788         case 4:
7789                 r = emulator_try_cmpxchg_user(u32, hva, old, new);
7790                 break;
7791         case 8:
7792                 r = emulator_try_cmpxchg_user(u64, hva, old, new);
7793                 break;
7794         default:
7795                 BUG();
7796         }
7797
7798         if (r < 0)
7799                 return X86EMUL_UNHANDLEABLE;
7800         if (r)
7801                 return X86EMUL_CMPXCHG_FAILED;
7802
7803         kvm_page_track_write(vcpu, gpa, new, bytes);
7804
7805         return X86EMUL_CONTINUE;
7806
7807 emul_write:
7808         pr_warn_once("emulating exchange as write\n");
7809
7810         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
7811 }
7812
7813 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
7814                                unsigned short port, void *data,
7815                                unsigned int count, bool in)
7816 {
7817         unsigned i;
7818         int r;
7819
7820         WARN_ON_ONCE(vcpu->arch.pio.count);
7821         for (i = 0; i < count; i++) {
7822                 if (in)
7823                         r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data);
7824                 else
7825                         r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data);
7826
7827                 if (r) {
7828                         if (i == 0)
7829                                 goto userspace_io;
7830
7831                         /*
7832                          * Userspace must have unregistered the device while PIO
7833                          * was running.  Drop writes / read as 0.
7834                          */
7835                         if (in)
7836                                 memset(data, 0, size * (count - i));
7837                         break;
7838                 }
7839
7840                 data += size;
7841         }
7842         return 1;
7843
7844 userspace_io:
7845         vcpu->arch.pio.port = port;
7846         vcpu->arch.pio.in = in;
7847         vcpu->arch.pio.count = count;
7848         vcpu->arch.pio.size = size;
7849
7850         if (in)
7851                 memset(vcpu->arch.pio_data, 0, size * count);
7852         else
7853                 memcpy(vcpu->arch.pio_data, data, size * count);
7854
7855         vcpu->run->exit_reason = KVM_EXIT_IO;
7856         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
7857         vcpu->run->io.size = size;
7858         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
7859         vcpu->run->io.count = count;
7860         vcpu->run->io.port = port;
7861         return 0;
7862 }
7863
7864 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7865                            unsigned short port, void *val, unsigned int count)
7866 {
7867         int r = emulator_pio_in_out(vcpu, size, port, val, count, true);
7868         if (r)
7869                 trace_kvm_pio(KVM_PIO_IN, port, size, count, val);
7870
7871         return r;
7872 }
7873
7874 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
7875 {
7876         int size = vcpu->arch.pio.size;
7877         unsigned int count = vcpu->arch.pio.count;
7878         memcpy(val, vcpu->arch.pio_data, size * count);
7879         trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
7880         vcpu->arch.pio.count = 0;
7881 }
7882
7883 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
7884                                     int size, unsigned short port, void *val,
7885                                     unsigned int count)
7886 {
7887         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7888         if (vcpu->arch.pio.count) {
7889                 /*
7890                  * Complete a previous iteration that required userspace I/O.
7891                  * Note, @count isn't guaranteed to match pio.count as userspace
7892                  * can modify ECX before rerunning the vCPU.  Ignore any such
7893                  * shenanigans as KVM doesn't support modifying the rep count,
7894                  * and the emulator ensures @count doesn't overflow the buffer.
7895                  */
7896                 complete_emulator_pio_in(vcpu, val);
7897                 return 1;
7898         }
7899
7900         return emulator_pio_in(vcpu, size, port, val, count);
7901 }
7902
7903 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
7904                             unsigned short port, const void *val,
7905                             unsigned int count)
7906 {
7907         trace_kvm_pio(KVM_PIO_OUT, port, size, count, val);
7908         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
7909 }
7910
7911 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
7912                                      int size, unsigned short port,
7913                                      const void *val, unsigned int count)
7914 {
7915         return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
7916 }
7917
7918 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
7919 {
7920         return static_call(kvm_x86_get_segment_base)(vcpu, seg);
7921 }
7922
7923 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
7924 {
7925         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
7926 }
7927
7928 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
7929 {
7930         if (!need_emulate_wbinvd(vcpu))
7931                 return X86EMUL_CONTINUE;
7932
7933         if (static_call(kvm_x86_has_wbinvd_exit)()) {
7934                 int cpu = get_cpu();
7935
7936                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
7937                 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
7938                                 wbinvd_ipi, NULL, 1);
7939                 put_cpu();
7940                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
7941         } else
7942                 wbinvd();
7943         return X86EMUL_CONTINUE;
7944 }
7945
7946 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
7947 {
7948         kvm_emulate_wbinvd_noskip(vcpu);
7949         return kvm_skip_emulated_instruction(vcpu);
7950 }
7951 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
7952
7953
7954
7955 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
7956 {
7957         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
7958 }
7959
7960 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
7961                             unsigned long *dest)
7962 {
7963         kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
7964 }
7965
7966 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
7967                            unsigned long value)
7968 {
7969
7970         return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
7971 }
7972
7973 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
7974 {
7975         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
7976 }
7977
7978 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
7979 {
7980         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7981         unsigned long value;
7982
7983         switch (cr) {
7984         case 0:
7985                 value = kvm_read_cr0(vcpu);
7986                 break;
7987         case 2:
7988                 value = vcpu->arch.cr2;
7989                 break;
7990         case 3:
7991                 value = kvm_read_cr3(vcpu);
7992                 break;
7993         case 4:
7994                 value = kvm_read_cr4(vcpu);
7995                 break;
7996         case 8:
7997                 value = kvm_get_cr8(vcpu);
7998                 break;
7999         default:
8000                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
8001                 return 0;
8002         }
8003
8004         return value;
8005 }
8006
8007 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
8008 {
8009         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8010         int res = 0;
8011
8012         switch (cr) {
8013         case 0:
8014                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
8015                 break;
8016         case 2:
8017                 vcpu->arch.cr2 = val;
8018                 break;
8019         case 3:
8020                 res = kvm_set_cr3(vcpu, val);
8021                 break;
8022         case 4:
8023                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
8024                 break;
8025         case 8:
8026                 res = kvm_set_cr8(vcpu, val);
8027                 break;
8028         default:
8029                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
8030                 res = -1;
8031         }
8032
8033         return res;
8034 }
8035
8036 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
8037 {
8038         return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
8039 }
8040
8041 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8042 {
8043         static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
8044 }
8045
8046 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8047 {
8048         static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
8049 }
8050
8051 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8052 {
8053         static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
8054 }
8055
8056 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8057 {
8058         static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
8059 }
8060
8061 static unsigned long emulator_get_cached_segment_base(
8062         struct x86_emulate_ctxt *ctxt, int seg)
8063 {
8064         return get_segment_base(emul_to_vcpu(ctxt), seg);
8065 }
8066
8067 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
8068                                  struct desc_struct *desc, u32 *base3,
8069                                  int seg)
8070 {
8071         struct kvm_segment var;
8072
8073         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
8074         *selector = var.selector;
8075
8076         if (var.unusable) {
8077                 memset(desc, 0, sizeof(*desc));
8078                 if (base3)
8079                         *base3 = 0;
8080                 return false;
8081         }
8082
8083         if (var.g)
8084                 var.limit >>= 12;
8085         set_desc_limit(desc, var.limit);
8086         set_desc_base(desc, (unsigned long)var.base);
8087 #ifdef CONFIG_X86_64
8088         if (base3)
8089                 *base3 = var.base >> 32;
8090 #endif
8091         desc->type = var.type;
8092         desc->s = var.s;
8093         desc->dpl = var.dpl;
8094         desc->p = var.present;
8095         desc->avl = var.avl;
8096         desc->l = var.l;
8097         desc->d = var.db;
8098         desc->g = var.g;
8099
8100         return true;
8101 }
8102
8103 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
8104                                  struct desc_struct *desc, u32 base3,
8105                                  int seg)
8106 {
8107         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8108         struct kvm_segment var;
8109
8110         var.selector = selector;
8111         var.base = get_desc_base(desc);
8112 #ifdef CONFIG_X86_64
8113         var.base |= ((u64)base3) << 32;
8114 #endif
8115         var.limit = get_desc_limit(desc);
8116         if (desc->g)
8117                 var.limit = (var.limit << 12) | 0xfff;
8118         var.type = desc->type;
8119         var.dpl = desc->dpl;
8120         var.db = desc->d;
8121         var.s = desc->s;
8122         var.l = desc->l;
8123         var.g = desc->g;
8124         var.avl = desc->avl;
8125         var.present = desc->p;
8126         var.unusable = !var.present;
8127         var.padding = 0;
8128
8129         kvm_set_segment(vcpu, &var, seg);
8130         return;
8131 }
8132
8133 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8134                                         u32 msr_index, u64 *pdata)
8135 {
8136         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8137         int r;
8138
8139         r = kvm_get_msr_with_filter(vcpu, msr_index, pdata);
8140         if (r < 0)
8141                 return X86EMUL_UNHANDLEABLE;
8142
8143         if (r) {
8144                 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
8145                                        complete_emulated_rdmsr, r))
8146                         return X86EMUL_IO_NEEDED;
8147
8148                 trace_kvm_msr_read_ex(msr_index);
8149                 return X86EMUL_PROPAGATE_FAULT;
8150         }
8151
8152         trace_kvm_msr_read(msr_index, *pdata);
8153         return X86EMUL_CONTINUE;
8154 }
8155
8156 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8157                                         u32 msr_index, u64 data)
8158 {
8159         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8160         int r;
8161
8162         r = kvm_set_msr_with_filter(vcpu, msr_index, data);
8163         if (r < 0)
8164                 return X86EMUL_UNHANDLEABLE;
8165
8166         if (r) {
8167                 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
8168                                        complete_emulated_msr_access, r))
8169                         return X86EMUL_IO_NEEDED;
8170
8171                 trace_kvm_msr_write_ex(msr_index, data);
8172                 return X86EMUL_PROPAGATE_FAULT;
8173         }
8174
8175         trace_kvm_msr_write(msr_index, data);
8176         return X86EMUL_CONTINUE;
8177 }
8178
8179 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
8180                             u32 msr_index, u64 *pdata)
8181 {
8182         return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
8183 }
8184
8185 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
8186                               u32 pmc)
8187 {
8188         if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc))
8189                 return 0;
8190         return -EINVAL;
8191 }
8192
8193 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
8194                              u32 pmc, u64 *pdata)
8195 {
8196         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
8197 }
8198
8199 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
8200 {
8201         emul_to_vcpu(ctxt)->arch.halt_request = 1;
8202 }
8203
8204 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
8205                               struct x86_instruction_info *info,
8206                               enum x86_intercept_stage stage)
8207 {
8208         return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
8209                                             &ctxt->exception);
8210 }
8211
8212 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
8213                               u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
8214                               bool exact_only)
8215 {
8216         return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
8217 }
8218
8219 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
8220 {
8221         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
8222 }
8223
8224 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
8225 {
8226         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
8227 }
8228
8229 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
8230 {
8231         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
8232 }
8233
8234 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
8235 {
8236         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
8237 }
8238
8239 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
8240 {
8241         return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
8242 }
8243
8244 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
8245 {
8246         kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
8247 }
8248
8249 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
8250 {
8251         static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
8252 }
8253
8254 static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt)
8255 {
8256         return is_smm(emul_to_vcpu(ctxt));
8257 }
8258
8259 static bool emulator_is_guest_mode(struct x86_emulate_ctxt *ctxt)
8260 {
8261         return is_guest_mode(emul_to_vcpu(ctxt));
8262 }
8263
8264 #ifndef CONFIG_KVM_SMM
8265 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt)
8266 {
8267         WARN_ON_ONCE(1);
8268         return X86EMUL_UNHANDLEABLE;
8269 }
8270 #endif
8271
8272 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
8273 {
8274         kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
8275 }
8276
8277 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
8278 {
8279         return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
8280 }
8281
8282 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt)
8283 {
8284         struct kvm *kvm = emul_to_vcpu(ctxt)->kvm;
8285
8286         if (!kvm->vm_bugged)
8287                 kvm_vm_bugged(kvm);
8288 }
8289
8290 static const struct x86_emulate_ops emulate_ops = {
8291         .vm_bugged           = emulator_vm_bugged,
8292         .read_gpr            = emulator_read_gpr,
8293         .write_gpr           = emulator_write_gpr,
8294         .read_std            = emulator_read_std,
8295         .write_std           = emulator_write_std,
8296         .fetch               = kvm_fetch_guest_virt,
8297         .read_emulated       = emulator_read_emulated,
8298         .write_emulated      = emulator_write_emulated,
8299         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
8300         .invlpg              = emulator_invlpg,
8301         .pio_in_emulated     = emulator_pio_in_emulated,
8302         .pio_out_emulated    = emulator_pio_out_emulated,
8303         .get_segment         = emulator_get_segment,
8304         .set_segment         = emulator_set_segment,
8305         .get_cached_segment_base = emulator_get_cached_segment_base,
8306         .get_gdt             = emulator_get_gdt,
8307         .get_idt             = emulator_get_idt,
8308         .set_gdt             = emulator_set_gdt,
8309         .set_idt             = emulator_set_idt,
8310         .get_cr              = emulator_get_cr,
8311         .set_cr              = emulator_set_cr,
8312         .cpl                 = emulator_get_cpl,
8313         .get_dr              = emulator_get_dr,
8314         .set_dr              = emulator_set_dr,
8315         .set_msr_with_filter = emulator_set_msr_with_filter,
8316         .get_msr_with_filter = emulator_get_msr_with_filter,
8317         .get_msr             = emulator_get_msr,
8318         .check_pmc           = emulator_check_pmc,
8319         .read_pmc            = emulator_read_pmc,
8320         .halt                = emulator_halt,
8321         .wbinvd              = emulator_wbinvd,
8322         .fix_hypercall       = emulator_fix_hypercall,
8323         .intercept           = emulator_intercept,
8324         .get_cpuid           = emulator_get_cpuid,
8325         .guest_has_long_mode = emulator_guest_has_long_mode,
8326         .guest_has_movbe     = emulator_guest_has_movbe,
8327         .guest_has_fxsr      = emulator_guest_has_fxsr,
8328         .guest_has_rdpid     = emulator_guest_has_rdpid,
8329         .set_nmi_mask        = emulator_set_nmi_mask,
8330         .is_smm              = emulator_is_smm,
8331         .is_guest_mode       = emulator_is_guest_mode,
8332         .leave_smm           = emulator_leave_smm,
8333         .triple_fault        = emulator_triple_fault,
8334         .set_xcr             = emulator_set_xcr,
8335 };
8336
8337 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
8338 {
8339         u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8340         /*
8341          * an sti; sti; sequence only disable interrupts for the first
8342          * instruction. So, if the last instruction, be it emulated or
8343          * not, left the system with the INT_STI flag enabled, it
8344          * means that the last instruction is an sti. We should not
8345          * leave the flag on in this case. The same goes for mov ss
8346          */
8347         if (int_shadow & mask)
8348                 mask = 0;
8349         if (unlikely(int_shadow || mask)) {
8350                 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
8351                 if (!mask)
8352                         kvm_make_request(KVM_REQ_EVENT, vcpu);
8353         }
8354 }
8355
8356 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
8357 {
8358         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8359
8360         if (ctxt->exception.vector == PF_VECTOR)
8361                 kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
8362         else if (ctxt->exception.error_code_valid)
8363                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
8364                                       ctxt->exception.error_code);
8365         else
8366                 kvm_queue_exception(vcpu, ctxt->exception.vector);
8367 }
8368
8369 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
8370 {
8371         struct x86_emulate_ctxt *ctxt;
8372
8373         ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
8374         if (!ctxt) {
8375                 pr_err("failed to allocate vcpu's emulator\n");
8376                 return NULL;
8377         }
8378
8379         ctxt->vcpu = vcpu;
8380         ctxt->ops = &emulate_ops;
8381         vcpu->arch.emulate_ctxt = ctxt;
8382
8383         return ctxt;
8384 }
8385
8386 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
8387 {
8388         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8389         int cs_db, cs_l;
8390
8391         static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
8392
8393         ctxt->gpa_available = false;
8394         ctxt->eflags = kvm_get_rflags(vcpu);
8395         ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
8396
8397         ctxt->eip = kvm_rip_read(vcpu);
8398         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
8399                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
8400                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
8401                      cs_db                              ? X86EMUL_MODE_PROT32 :
8402                                                           X86EMUL_MODE_PROT16;
8403         ctxt->interruptibility = 0;
8404         ctxt->have_exception = false;
8405         ctxt->exception.vector = -1;
8406         ctxt->perm_ok = false;
8407
8408         init_decode_cache(ctxt);
8409         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8410 }
8411
8412 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
8413 {
8414         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8415         int ret;
8416
8417         init_emulate_ctxt(vcpu);
8418
8419         ctxt->op_bytes = 2;
8420         ctxt->ad_bytes = 2;
8421         ctxt->_eip = ctxt->eip + inc_eip;
8422         ret = emulate_int_real(ctxt, irq);
8423
8424         if (ret != X86EMUL_CONTINUE) {
8425                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8426         } else {
8427                 ctxt->eip = ctxt->_eip;
8428                 kvm_rip_write(vcpu, ctxt->eip);
8429                 kvm_set_rflags(vcpu, ctxt->eflags);
8430         }
8431 }
8432 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
8433
8434 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8435                                            u8 ndata, u8 *insn_bytes, u8 insn_size)
8436 {
8437         struct kvm_run *run = vcpu->run;
8438         u64 info[5];
8439         u8 info_start;
8440
8441         /*
8442          * Zero the whole array used to retrieve the exit info, as casting to
8443          * u32 for select entries will leave some chunks uninitialized.
8444          */
8445         memset(&info, 0, sizeof(info));
8446
8447         static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1],
8448                                            &info[2], (u32 *)&info[3],
8449                                            (u32 *)&info[4]);
8450
8451         run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8452         run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
8453
8454         /*
8455          * There's currently space for 13 entries, but 5 are used for the exit
8456          * reason and info.  Restrict to 4 to reduce the maintenance burden
8457          * when expanding kvm_run.emulation_failure in the future.
8458          */
8459         if (WARN_ON_ONCE(ndata > 4))
8460                 ndata = 4;
8461
8462         /* Always include the flags as a 'data' entry. */
8463         info_start = 1;
8464         run->emulation_failure.flags = 0;
8465
8466         if (insn_size) {
8467                 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
8468                               sizeof(run->emulation_failure.insn_bytes) != 16));
8469                 info_start += 2;
8470                 run->emulation_failure.flags |=
8471                         KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
8472                 run->emulation_failure.insn_size = insn_size;
8473                 memset(run->emulation_failure.insn_bytes, 0x90,
8474                        sizeof(run->emulation_failure.insn_bytes));
8475                 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
8476         }
8477
8478         memcpy(&run->internal.data[info_start], info, sizeof(info));
8479         memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
8480                ndata * sizeof(data[0]));
8481
8482         run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
8483 }
8484
8485 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
8486 {
8487         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8488
8489         prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
8490                                        ctxt->fetch.end - ctxt->fetch.data);
8491 }
8492
8493 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8494                                           u8 ndata)
8495 {
8496         prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
8497 }
8498 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
8499
8500 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
8501 {
8502         __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
8503 }
8504 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
8505
8506 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
8507 {
8508         struct kvm *kvm = vcpu->kvm;
8509
8510         ++vcpu->stat.insn_emulation_fail;
8511         trace_kvm_emulate_insn_failed(vcpu);
8512
8513         if (emulation_type & EMULTYPE_VMWARE_GP) {
8514                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8515                 return 1;
8516         }
8517
8518         if (kvm->arch.exit_on_emulation_error ||
8519             (emulation_type & EMULTYPE_SKIP)) {
8520                 prepare_emulation_ctxt_failure_exit(vcpu);
8521                 return 0;
8522         }
8523
8524         kvm_queue_exception(vcpu, UD_VECTOR);
8525
8526         if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
8527                 prepare_emulation_ctxt_failure_exit(vcpu);
8528                 return 0;
8529         }
8530
8531         return 1;
8532 }
8533
8534 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8535                                   int emulation_type)
8536 {
8537         gpa_t gpa = cr2_or_gpa;
8538         kvm_pfn_t pfn;
8539
8540         if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8541                 return false;
8542
8543         if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8544             WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8545                 return false;
8546
8547         if (!vcpu->arch.mmu->root_role.direct) {
8548                 /*
8549                  * Write permission should be allowed since only
8550                  * write access need to be emulated.
8551                  */
8552                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8553
8554                 /*
8555                  * If the mapping is invalid in guest, let cpu retry
8556                  * it to generate fault.
8557                  */
8558                 if (gpa == INVALID_GPA)
8559                         return true;
8560         }
8561
8562         /*
8563          * Do not retry the unhandleable instruction if it faults on the
8564          * readonly host memory, otherwise it will goto a infinite loop:
8565          * retry instruction -> write #PF -> emulation fail -> retry
8566          * instruction -> ...
8567          */
8568         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
8569
8570         /*
8571          * If the instruction failed on the error pfn, it can not be fixed,
8572          * report the error to userspace.
8573          */
8574         if (is_error_noslot_pfn(pfn))
8575                 return false;
8576
8577         kvm_release_pfn_clean(pfn);
8578
8579         /* The instructions are well-emulated on direct mmu. */
8580         if (vcpu->arch.mmu->root_role.direct) {
8581                 unsigned int indirect_shadow_pages;
8582
8583                 write_lock(&vcpu->kvm->mmu_lock);
8584                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
8585                 write_unlock(&vcpu->kvm->mmu_lock);
8586
8587                 if (indirect_shadow_pages)
8588                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8589
8590                 return true;
8591         }
8592
8593         /*
8594          * if emulation was due to access to shadowed page table
8595          * and it failed try to unshadow page and re-enter the
8596          * guest to let CPU execute the instruction.
8597          */
8598         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8599
8600         /*
8601          * If the access faults on its page table, it can not
8602          * be fixed by unprotecting shadow page and it should
8603          * be reported to userspace.
8604          */
8605         return !(emulation_type & EMULTYPE_WRITE_PF_TO_SP);
8606 }
8607
8608 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
8609                               gpa_t cr2_or_gpa,  int emulation_type)
8610 {
8611         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8612         unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
8613
8614         last_retry_eip = vcpu->arch.last_retry_eip;
8615         last_retry_addr = vcpu->arch.last_retry_addr;
8616
8617         /*
8618          * If the emulation is caused by #PF and it is non-page_table
8619          * writing instruction, it means the VM-EXIT is caused by shadow
8620          * page protected, we can zap the shadow page and retry this
8621          * instruction directly.
8622          *
8623          * Note: if the guest uses a non-page-table modifying instruction
8624          * on the PDE that points to the instruction, then we will unmap
8625          * the instruction and go to an infinite loop. So, we cache the
8626          * last retried eip and the last fault address, if we meet the eip
8627          * and the address again, we can break out of the potential infinite
8628          * loop.
8629          */
8630         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
8631
8632         if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8633                 return false;
8634
8635         if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8636             WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8637                 return false;
8638
8639         if (x86_page_table_writing_insn(ctxt))
8640                 return false;
8641
8642         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
8643                 return false;
8644
8645         vcpu->arch.last_retry_eip = ctxt->eip;
8646         vcpu->arch.last_retry_addr = cr2_or_gpa;
8647
8648         if (!vcpu->arch.mmu->root_role.direct)
8649                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8650
8651         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8652
8653         return true;
8654 }
8655
8656 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8657 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8658
8659 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8660                                 unsigned long *db)
8661 {
8662         u32 dr6 = 0;
8663         int i;
8664         u32 enable, rwlen;
8665
8666         enable = dr7;
8667         rwlen = dr7 >> 16;
8668         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8669                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8670                         dr6 |= (1 << i);
8671         return dr6;
8672 }
8673
8674 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8675 {
8676         struct kvm_run *kvm_run = vcpu->run;
8677
8678         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8679                 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8680                 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8681                 kvm_run->debug.arch.exception = DB_VECTOR;
8682                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
8683                 return 0;
8684         }
8685         kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8686         return 1;
8687 }
8688
8689 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8690 {
8691         unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8692         int r;
8693
8694         r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
8695         if (unlikely(!r))
8696                 return 0;
8697
8698         kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8699
8700         /*
8701          * rflags is the old, "raw" value of the flags.  The new value has
8702          * not been saved yet.
8703          *
8704          * This is correct even for TF set by the guest, because "the
8705          * processor will not generate this exception after the instruction
8706          * that sets the TF flag".
8707          */
8708         if (unlikely(rflags & X86_EFLAGS_TF))
8709                 r = kvm_vcpu_do_singlestep(vcpu);
8710         return r;
8711 }
8712 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8713
8714 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu)
8715 {
8716         u32 shadow;
8717
8718         if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF)
8719                 return true;
8720
8721         /*
8722          * Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active,
8723          * but AMD CPUs do not.  MOV/POP SS blocking is rare, check that first
8724          * to avoid the relatively expensive CPUID lookup.
8725          */
8726         shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8727         return (shadow & KVM_X86_SHADOW_INT_MOV_SS) &&
8728                guest_cpuid_is_intel(vcpu);
8729 }
8730
8731 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu,
8732                                            int emulation_type, int *r)
8733 {
8734         WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE);
8735
8736         /*
8737          * Do not check for code breakpoints if hardware has already done the
8738          * checks, as inferred from the emulation type.  On NO_DECODE and SKIP,
8739          * the instruction has passed all exception checks, and all intercepted
8740          * exceptions that trigger emulation have lower priority than code
8741          * breakpoints, i.e. the fact that the intercepted exception occurred
8742          * means any code breakpoints have already been serviced.
8743          *
8744          * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as
8745          * hardware has checked the RIP of the magic prefix, but not the RIP of
8746          * the instruction being emulated.  The intent of forced emulation is
8747          * to behave as if KVM intercepted the instruction without an exception
8748          * and without a prefix.
8749          */
8750         if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
8751                               EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF))
8752                 return false;
8753
8754         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
8755             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
8756                 struct kvm_run *kvm_run = vcpu->run;
8757                 unsigned long eip = kvm_get_linear_rip(vcpu);
8758                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8759                                            vcpu->arch.guest_debug_dr7,
8760                                            vcpu->arch.eff_db);
8761
8762                 if (dr6 != 0) {
8763                         kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
8764                         kvm_run->debug.arch.pc = eip;
8765                         kvm_run->debug.arch.exception = DB_VECTOR;
8766                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
8767                         *r = 0;
8768                         return true;
8769                 }
8770         }
8771
8772         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
8773             !kvm_is_code_breakpoint_inhibited(vcpu)) {
8774                 unsigned long eip = kvm_get_linear_rip(vcpu);
8775                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8776                                            vcpu->arch.dr7,
8777                                            vcpu->arch.db);
8778
8779                 if (dr6 != 0) {
8780                         kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
8781                         *r = 1;
8782                         return true;
8783                 }
8784         }
8785
8786         return false;
8787 }
8788
8789 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
8790 {
8791         switch (ctxt->opcode_len) {
8792         case 1:
8793                 switch (ctxt->b) {
8794                 case 0xe4:      /* IN */
8795                 case 0xe5:
8796                 case 0xec:
8797                 case 0xed:
8798                 case 0xe6:      /* OUT */
8799                 case 0xe7:
8800                 case 0xee:
8801                 case 0xef:
8802                 case 0x6c:      /* INS */
8803                 case 0x6d:
8804                 case 0x6e:      /* OUTS */
8805                 case 0x6f:
8806                         return true;
8807                 }
8808                 break;
8809         case 2:
8810                 switch (ctxt->b) {
8811                 case 0x33:      /* RDPMC */
8812                         return true;
8813                 }
8814                 break;
8815         }
8816
8817         return false;
8818 }
8819
8820 /*
8821  * Decode an instruction for emulation.  The caller is responsible for handling
8822  * code breakpoints.  Note, manually detecting code breakpoints is unnecessary
8823  * (and wrong) when emulating on an intercepted fault-like exception[*], as
8824  * code breakpoints have higher priority and thus have already been done by
8825  * hardware.
8826  *
8827  * [*] Except #MC, which is higher priority, but KVM should never emulate in
8828  *     response to a machine check.
8829  */
8830 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
8831                                     void *insn, int insn_len)
8832 {
8833         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8834         int r;
8835
8836         init_emulate_ctxt(vcpu);
8837
8838         r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
8839
8840         trace_kvm_emulate_insn_start(vcpu);
8841         ++vcpu->stat.insn_emulation;
8842
8843         return r;
8844 }
8845 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
8846
8847 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8848                             int emulation_type, void *insn, int insn_len)
8849 {
8850         int r;
8851         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8852         bool writeback = true;
8853
8854         if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len)))
8855                 return 1;
8856
8857         vcpu->arch.l1tf_flush_l1d = true;
8858
8859         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
8860                 kvm_clear_exception_queue(vcpu);
8861
8862                 /*
8863                  * Return immediately if RIP hits a code breakpoint, such #DBs
8864                  * are fault-like and are higher priority than any faults on
8865                  * the code fetch itself.
8866                  */
8867                 if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r))
8868                         return r;
8869
8870                 r = x86_decode_emulated_instruction(vcpu, emulation_type,
8871                                                     insn, insn_len);
8872                 if (r != EMULATION_OK)  {
8873                         if ((emulation_type & EMULTYPE_TRAP_UD) ||
8874                             (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
8875                                 kvm_queue_exception(vcpu, UD_VECTOR);
8876                                 return 1;
8877                         }
8878                         if (reexecute_instruction(vcpu, cr2_or_gpa,
8879                                                   emulation_type))
8880                                 return 1;
8881
8882                         if (ctxt->have_exception &&
8883                             !(emulation_type & EMULTYPE_SKIP)) {
8884                                 /*
8885                                  * #UD should result in just EMULATION_FAILED, and trap-like
8886                                  * exception should not be encountered during decode.
8887                                  */
8888                                 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
8889                                              exception_type(ctxt->exception.vector) == EXCPT_TRAP);
8890                                 inject_emulated_exception(vcpu);
8891                                 return 1;
8892                         }
8893                         return handle_emulation_failure(vcpu, emulation_type);
8894                 }
8895         }
8896
8897         if ((emulation_type & EMULTYPE_VMWARE_GP) &&
8898             !is_vmware_backdoor_opcode(ctxt)) {
8899                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8900                 return 1;
8901         }
8902
8903         /*
8904          * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
8905          * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
8906          * The caller is responsible for updating interruptibility state and
8907          * injecting single-step #DBs.
8908          */
8909         if (emulation_type & EMULTYPE_SKIP) {
8910                 if (ctxt->mode != X86EMUL_MODE_PROT64)
8911                         ctxt->eip = (u32)ctxt->_eip;
8912                 else
8913                         ctxt->eip = ctxt->_eip;
8914
8915                 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
8916                         r = 1;
8917                         goto writeback;
8918                 }
8919
8920                 kvm_rip_write(vcpu, ctxt->eip);
8921                 if (ctxt->eflags & X86_EFLAGS_RF)
8922                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
8923                 return 1;
8924         }
8925
8926         if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
8927                 return 1;
8928
8929         /* this is needed for vmware backdoor interface to work since it
8930            changes registers values  during IO operation */
8931         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
8932                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8933                 emulator_invalidate_register_cache(ctxt);
8934         }
8935
8936 restart:
8937         if (emulation_type & EMULTYPE_PF) {
8938                 /* Save the faulting GPA (cr2) in the address field */
8939                 ctxt->exception.address = cr2_or_gpa;
8940
8941                 /* With shadow page tables, cr2 contains a GVA or nGPA. */
8942                 if (vcpu->arch.mmu->root_role.direct) {
8943                         ctxt->gpa_available = true;
8944                         ctxt->gpa_val = cr2_or_gpa;
8945                 }
8946         } else {
8947                 /* Sanitize the address out of an abundance of paranoia. */
8948                 ctxt->exception.address = 0;
8949         }
8950
8951         r = x86_emulate_insn(ctxt);
8952
8953         if (r == EMULATION_INTERCEPTED)
8954                 return 1;
8955
8956         if (r == EMULATION_FAILED) {
8957                 if (reexecute_instruction(vcpu, cr2_or_gpa, emulation_type))
8958                         return 1;
8959
8960                 return handle_emulation_failure(vcpu, emulation_type);
8961         }
8962
8963         if (ctxt->have_exception) {
8964                 WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write);
8965                 vcpu->mmio_needed = false;
8966                 r = 1;
8967                 inject_emulated_exception(vcpu);
8968         } else if (vcpu->arch.pio.count) {
8969                 if (!vcpu->arch.pio.in) {
8970                         /* FIXME: return into emulator if single-stepping.  */
8971                         vcpu->arch.pio.count = 0;
8972                 } else {
8973                         writeback = false;
8974                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
8975                 }
8976                 r = 0;
8977         } else if (vcpu->mmio_needed) {
8978                 ++vcpu->stat.mmio_exits;
8979
8980                 if (!vcpu->mmio_is_write)
8981                         writeback = false;
8982                 r = 0;
8983                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8984         } else if (vcpu->arch.complete_userspace_io) {
8985                 writeback = false;
8986                 r = 0;
8987         } else if (r == EMULATION_RESTART)
8988                 goto restart;
8989         else
8990                 r = 1;
8991
8992 writeback:
8993         if (writeback) {
8994                 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8995                 toggle_interruptibility(vcpu, ctxt->interruptibility);
8996                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8997
8998                 /*
8999                  * Note, EXCPT_DB is assumed to be fault-like as the emulator
9000                  * only supports code breakpoints and general detect #DB, both
9001                  * of which are fault-like.
9002                  */
9003                 if (!ctxt->have_exception ||
9004                     exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
9005                         kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
9006                         if (ctxt->is_branch)
9007                                 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
9008                         kvm_rip_write(vcpu, ctxt->eip);
9009                         if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
9010                                 r = kvm_vcpu_do_singlestep(vcpu);
9011                         static_call_cond(kvm_x86_update_emulated_instruction)(vcpu);
9012                         __kvm_set_rflags(vcpu, ctxt->eflags);
9013                 }
9014
9015                 /*
9016                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
9017                  * do nothing, and it will be requested again as soon as
9018                  * the shadow expires.  But we still need to check here,
9019                  * because POPF has no interrupt shadow.
9020                  */
9021                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
9022                         kvm_make_request(KVM_REQ_EVENT, vcpu);
9023         } else
9024                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
9025
9026         return r;
9027 }
9028
9029 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
9030 {
9031         return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
9032 }
9033 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
9034
9035 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
9036                                         void *insn, int insn_len)
9037 {
9038         return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
9039 }
9040 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
9041
9042 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
9043 {
9044         vcpu->arch.pio.count = 0;
9045         return 1;
9046 }
9047
9048 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
9049 {
9050         vcpu->arch.pio.count = 0;
9051
9052         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
9053                 return 1;
9054
9055         return kvm_skip_emulated_instruction(vcpu);
9056 }
9057
9058 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
9059                             unsigned short port)
9060 {
9061         unsigned long val = kvm_rax_read(vcpu);
9062         int ret = emulator_pio_out(vcpu, size, port, &val, 1);
9063
9064         if (ret)
9065                 return ret;
9066
9067         /*
9068          * Workaround userspace that relies on old KVM behavior of %rip being
9069          * incremented prior to exiting to userspace to handle "OUT 0x7e".
9070          */
9071         if (port == 0x7e &&
9072             kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
9073                 vcpu->arch.complete_userspace_io =
9074                         complete_fast_pio_out_port_0x7e;
9075                 kvm_skip_emulated_instruction(vcpu);
9076         } else {
9077                 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9078                 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
9079         }
9080         return 0;
9081 }
9082
9083 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
9084 {
9085         unsigned long val;
9086
9087         /* We should only ever be called with arch.pio.count equal to 1 */
9088         BUG_ON(vcpu->arch.pio.count != 1);
9089
9090         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
9091                 vcpu->arch.pio.count = 0;
9092                 return 1;
9093         }
9094
9095         /* For size less than 4 we merge, else we zero extend */
9096         val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
9097
9098         complete_emulator_pio_in(vcpu, &val);
9099         kvm_rax_write(vcpu, val);
9100
9101         return kvm_skip_emulated_instruction(vcpu);
9102 }
9103
9104 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
9105                            unsigned short port)
9106 {
9107         unsigned long val;
9108         int ret;
9109
9110         /* For size less than 4 we merge, else we zero extend */
9111         val = (size < 4) ? kvm_rax_read(vcpu) : 0;
9112
9113         ret = emulator_pio_in(vcpu, size, port, &val, 1);
9114         if (ret) {
9115                 kvm_rax_write(vcpu, val);
9116                 return ret;
9117         }
9118
9119         vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9120         vcpu->arch.complete_userspace_io = complete_fast_pio_in;
9121
9122         return 0;
9123 }
9124
9125 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
9126 {
9127         int ret;
9128
9129         if (in)
9130                 ret = kvm_fast_pio_in(vcpu, size, port);
9131         else
9132                 ret = kvm_fast_pio_out(vcpu, size, port);
9133         return ret && kvm_skip_emulated_instruction(vcpu);
9134 }
9135 EXPORT_SYMBOL_GPL(kvm_fast_pio);
9136
9137 static int kvmclock_cpu_down_prep(unsigned int cpu)
9138 {
9139         __this_cpu_write(cpu_tsc_khz, 0);
9140         return 0;
9141 }
9142
9143 static void tsc_khz_changed(void *data)
9144 {
9145         struct cpufreq_freqs *freq = data;
9146         unsigned long khz = 0;
9147
9148         WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC));
9149
9150         if (data)
9151                 khz = freq->new;
9152         else
9153                 khz = cpufreq_quick_get(raw_smp_processor_id());
9154         if (!khz)
9155                 khz = tsc_khz;
9156         __this_cpu_write(cpu_tsc_khz, khz);
9157 }
9158
9159 #ifdef CONFIG_X86_64
9160 static void kvm_hyperv_tsc_notifier(void)
9161 {
9162         struct kvm *kvm;
9163         int cpu;
9164
9165         mutex_lock(&kvm_lock);
9166         list_for_each_entry(kvm, &vm_list, vm_list)
9167                 kvm_make_mclock_inprogress_request(kvm);
9168
9169         /* no guest entries from this point */
9170         hyperv_stop_tsc_emulation();
9171
9172         /* TSC frequency always matches when on Hyper-V */
9173         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9174                 for_each_present_cpu(cpu)
9175                         per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
9176         }
9177         kvm_caps.max_guest_tsc_khz = tsc_khz;
9178
9179         list_for_each_entry(kvm, &vm_list, vm_list) {
9180                 __kvm_start_pvclock_update(kvm);
9181                 pvclock_update_vm_gtod_copy(kvm);
9182                 kvm_end_pvclock_update(kvm);
9183         }
9184
9185         mutex_unlock(&kvm_lock);
9186 }
9187 #endif
9188
9189 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
9190 {
9191         struct kvm *kvm;
9192         struct kvm_vcpu *vcpu;
9193         int send_ipi = 0;
9194         unsigned long i;
9195
9196         /*
9197          * We allow guests to temporarily run on slowing clocks,
9198          * provided we notify them after, or to run on accelerating
9199          * clocks, provided we notify them before.  Thus time never
9200          * goes backwards.
9201          *
9202          * However, we have a problem.  We can't atomically update
9203          * the frequency of a given CPU from this function; it is
9204          * merely a notifier, which can be called from any CPU.
9205          * Changing the TSC frequency at arbitrary points in time
9206          * requires a recomputation of local variables related to
9207          * the TSC for each VCPU.  We must flag these local variables
9208          * to be updated and be sure the update takes place with the
9209          * new frequency before any guests proceed.
9210          *
9211          * Unfortunately, the combination of hotplug CPU and frequency
9212          * change creates an intractable locking scenario; the order
9213          * of when these callouts happen is undefined with respect to
9214          * CPU hotplug, and they can race with each other.  As such,
9215          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
9216          * undefined; you can actually have a CPU frequency change take
9217          * place in between the computation of X and the setting of the
9218          * variable.  To protect against this problem, all updates of
9219          * the per_cpu tsc_khz variable are done in an interrupt
9220          * protected IPI, and all callers wishing to update the value
9221          * must wait for a synchronous IPI to complete (which is trivial
9222          * if the caller is on the CPU already).  This establishes the
9223          * necessary total order on variable updates.
9224          *
9225          * Note that because a guest time update may take place
9226          * anytime after the setting of the VCPU's request bit, the
9227          * correct TSC value must be set before the request.  However,
9228          * to ensure the update actually makes it to any guest which
9229          * starts running in hardware virtualization between the set
9230          * and the acquisition of the spinlock, we must also ping the
9231          * CPU after setting the request bit.
9232          *
9233          */
9234
9235         smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9236
9237         mutex_lock(&kvm_lock);
9238         list_for_each_entry(kvm, &vm_list, vm_list) {
9239                 kvm_for_each_vcpu(i, vcpu, kvm) {
9240                         if (vcpu->cpu != cpu)
9241                                 continue;
9242                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9243                         if (vcpu->cpu != raw_smp_processor_id())
9244                                 send_ipi = 1;
9245                 }
9246         }
9247         mutex_unlock(&kvm_lock);
9248
9249         if (freq->old < freq->new && send_ipi) {
9250                 /*
9251                  * We upscale the frequency.  Must make the guest
9252                  * doesn't see old kvmclock values while running with
9253                  * the new frequency, otherwise we risk the guest sees
9254                  * time go backwards.
9255                  *
9256                  * In case we update the frequency for another cpu
9257                  * (which might be in guest context) send an interrupt
9258                  * to kick the cpu out of guest context.  Next time
9259                  * guest context is entered kvmclock will be updated,
9260                  * so the guest will not see stale values.
9261                  */
9262                 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9263         }
9264 }
9265
9266 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
9267                                      void *data)
9268 {
9269         struct cpufreq_freqs *freq = data;
9270         int cpu;
9271
9272         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
9273                 return 0;
9274         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
9275                 return 0;
9276
9277         for_each_cpu(cpu, freq->policy->cpus)
9278                 __kvmclock_cpufreq_notifier(freq, cpu);
9279
9280         return 0;
9281 }
9282
9283 static struct notifier_block kvmclock_cpufreq_notifier_block = {
9284         .notifier_call  = kvmclock_cpufreq_notifier
9285 };
9286
9287 static int kvmclock_cpu_online(unsigned int cpu)
9288 {
9289         tsc_khz_changed(NULL);
9290         return 0;
9291 }
9292
9293 static void kvm_timer_init(void)
9294 {
9295         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9296                 max_tsc_khz = tsc_khz;
9297
9298                 if (IS_ENABLED(CONFIG_CPU_FREQ)) {
9299                         struct cpufreq_policy *policy;
9300                         int cpu;
9301
9302                         cpu = get_cpu();
9303                         policy = cpufreq_cpu_get(cpu);
9304                         if (policy) {
9305                                 if (policy->cpuinfo.max_freq)
9306                                         max_tsc_khz = policy->cpuinfo.max_freq;
9307                                 cpufreq_cpu_put(policy);
9308                         }
9309                         put_cpu();
9310                 }
9311                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
9312                                           CPUFREQ_TRANSITION_NOTIFIER);
9313
9314                 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
9315                                   kvmclock_cpu_online, kvmclock_cpu_down_prep);
9316         }
9317 }
9318
9319 #ifdef CONFIG_X86_64
9320 static void pvclock_gtod_update_fn(struct work_struct *work)
9321 {
9322         struct kvm *kvm;
9323         struct kvm_vcpu *vcpu;
9324         unsigned long i;
9325
9326         mutex_lock(&kvm_lock);
9327         list_for_each_entry(kvm, &vm_list, vm_list)
9328                 kvm_for_each_vcpu(i, vcpu, kvm)
9329                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9330         atomic_set(&kvm_guest_has_master_clock, 0);
9331         mutex_unlock(&kvm_lock);
9332 }
9333
9334 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
9335
9336 /*
9337  * Indirection to move queue_work() out of the tk_core.seq write held
9338  * region to prevent possible deadlocks against time accessors which
9339  * are invoked with work related locks held.
9340  */
9341 static void pvclock_irq_work_fn(struct irq_work *w)
9342 {
9343         queue_work(system_long_wq, &pvclock_gtod_work);
9344 }
9345
9346 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
9347
9348 /*
9349  * Notification about pvclock gtod data update.
9350  */
9351 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
9352                                void *priv)
9353 {
9354         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
9355         struct timekeeper *tk = priv;
9356
9357         update_pvclock_gtod(tk);
9358
9359         /*
9360          * Disable master clock if host does not trust, or does not use,
9361          * TSC based clocksource. Delegate queue_work() to irq_work as
9362          * this is invoked with tk_core.seq write held.
9363          */
9364         if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
9365             atomic_read(&kvm_guest_has_master_clock) != 0)
9366                 irq_work_queue(&pvclock_irq_work);
9367         return 0;
9368 }
9369
9370 static struct notifier_block pvclock_gtod_notifier = {
9371         .notifier_call = pvclock_gtod_notify,
9372 };
9373 #endif
9374
9375 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops)
9376 {
9377         memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
9378
9379 #define __KVM_X86_OP(func) \
9380         static_call_update(kvm_x86_##func, kvm_x86_ops.func);
9381 #define KVM_X86_OP(func) \
9382         WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func)
9383 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP
9384 #define KVM_X86_OP_OPTIONAL_RET0(func) \
9385         static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \
9386                                            (void *)__static_call_return0);
9387 #include <asm/kvm-x86-ops.h>
9388 #undef __KVM_X86_OP
9389
9390         kvm_pmu_ops_update(ops->pmu_ops);
9391 }
9392
9393 static int kvm_x86_check_processor_compatibility(void)
9394 {
9395         int cpu = smp_processor_id();
9396         struct cpuinfo_x86 *c = &cpu_data(cpu);
9397
9398         /*
9399          * Compatibility checks are done when loading KVM and when enabling
9400          * hardware, e.g. during CPU hotplug, to ensure all online CPUs are
9401          * compatible, i.e. KVM should never perform a compatibility check on
9402          * an offline CPU.
9403          */
9404         WARN_ON(!cpu_online(cpu));
9405
9406         if (__cr4_reserved_bits(cpu_has, c) !=
9407             __cr4_reserved_bits(cpu_has, &boot_cpu_data))
9408                 return -EIO;
9409
9410         return static_call(kvm_x86_check_processor_compatibility)();
9411 }
9412
9413 static void kvm_x86_check_cpu_compat(void *ret)
9414 {
9415         *(int *)ret = kvm_x86_check_processor_compatibility();
9416 }
9417
9418 static int __kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9419 {
9420         u64 host_pat;
9421         int r, cpu;
9422
9423         if (kvm_x86_ops.hardware_enable) {
9424                 pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name);
9425                 return -EEXIST;
9426         }
9427
9428         /*
9429          * KVM explicitly assumes that the guest has an FPU and
9430          * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
9431          * vCPU's FPU state as a fxregs_state struct.
9432          */
9433         if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
9434                 pr_err("inadequate fpu\n");
9435                 return -EOPNOTSUPP;
9436         }
9437
9438         if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9439                 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
9440                 return -EOPNOTSUPP;
9441         }
9442
9443         /*
9444          * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes
9445          * the PAT bits in SPTEs.  Bail if PAT[0] is programmed to something
9446          * other than WB.  Note, EPT doesn't utilize the PAT, but don't bother
9447          * with an exception.  PAT[0] is set to WB on RESET and also by the
9448          * kernel, i.e. failure indicates a kernel bug or broken firmware.
9449          */
9450         if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) ||
9451             (host_pat & GENMASK(2, 0)) != 6) {
9452                 pr_err("host PAT[0] is not WB\n");
9453                 return -EIO;
9454         }
9455
9456         x86_emulator_cache = kvm_alloc_emulator_cache();
9457         if (!x86_emulator_cache) {
9458                 pr_err("failed to allocate cache for x86 emulator\n");
9459                 return -ENOMEM;
9460         }
9461
9462         user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
9463         if (!user_return_msrs) {
9464                 pr_err("failed to allocate percpu kvm_user_return_msrs\n");
9465                 r = -ENOMEM;
9466                 goto out_free_x86_emulator_cache;
9467         }
9468         kvm_nr_uret_msrs = 0;
9469
9470         r = kvm_mmu_vendor_module_init();
9471         if (r)
9472                 goto out_free_percpu;
9473
9474         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
9475                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
9476                 kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
9477         }
9478
9479         rdmsrl_safe(MSR_EFER, &host_efer);
9480
9481         if (boot_cpu_has(X86_FEATURE_XSAVES))
9482                 rdmsrl(MSR_IA32_XSS, host_xss);
9483
9484         kvm_init_pmu_capability(ops->pmu_ops);
9485
9486         r = ops->hardware_setup();
9487         if (r != 0)
9488                 goto out_mmu_exit;
9489
9490         kvm_ops_update(ops);
9491
9492         for_each_online_cpu(cpu) {
9493                 smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1);
9494                 if (r < 0)
9495                         goto out_unwind_ops;
9496         }
9497
9498         /*
9499          * Point of no return!  DO NOT add error paths below this point unless
9500          * absolutely necessary, as most operations from this point forward
9501          * require unwinding.
9502          */
9503         kvm_timer_init();
9504
9505         if (pi_inject_timer == -1)
9506                 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
9507 #ifdef CONFIG_X86_64
9508         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
9509
9510         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9511                 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
9512 #endif
9513
9514         kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
9515
9516         if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
9517                 kvm_caps.supported_xss = 0;
9518
9519 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
9520         cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
9521 #undef __kvm_cpu_cap_has
9522
9523         if (kvm_caps.has_tsc_control) {
9524                 /*
9525                  * Make sure the user can only configure tsc_khz values that
9526                  * fit into a signed integer.
9527                  * A min value is not calculated because it will always
9528                  * be 1 on all machines.
9529                  */
9530                 u64 max = min(0x7fffffffULL,
9531                               __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz));
9532                 kvm_caps.max_guest_tsc_khz = max;
9533         }
9534         kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits;
9535         kvm_init_msr_lists();
9536         return 0;
9537
9538 out_unwind_ops:
9539         kvm_x86_ops.hardware_enable = NULL;
9540         static_call(kvm_x86_hardware_unsetup)();
9541 out_mmu_exit:
9542         kvm_mmu_vendor_module_exit();
9543 out_free_percpu:
9544         free_percpu(user_return_msrs);
9545 out_free_x86_emulator_cache:
9546         kmem_cache_destroy(x86_emulator_cache);
9547         return r;
9548 }
9549
9550 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9551 {
9552         int r;
9553
9554         mutex_lock(&vendor_module_lock);
9555         r = __kvm_x86_vendor_init(ops);
9556         mutex_unlock(&vendor_module_lock);
9557
9558         return r;
9559 }
9560 EXPORT_SYMBOL_GPL(kvm_x86_vendor_init);
9561
9562 void kvm_x86_vendor_exit(void)
9563 {
9564         kvm_unregister_perf_callbacks();
9565
9566 #ifdef CONFIG_X86_64
9567         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9568                 clear_hv_tscchange_cb();
9569 #endif
9570         kvm_lapic_exit();
9571
9572         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9573                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
9574                                             CPUFREQ_TRANSITION_NOTIFIER);
9575                 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
9576         }
9577 #ifdef CONFIG_X86_64
9578         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
9579         irq_work_sync(&pvclock_irq_work);
9580         cancel_work_sync(&pvclock_gtod_work);
9581 #endif
9582         static_call(kvm_x86_hardware_unsetup)();
9583         kvm_mmu_vendor_module_exit();
9584         free_percpu(user_return_msrs);
9585         kmem_cache_destroy(x86_emulator_cache);
9586 #ifdef CONFIG_KVM_XEN
9587         static_key_deferred_flush(&kvm_xen_enabled);
9588         WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
9589 #endif
9590         mutex_lock(&vendor_module_lock);
9591         kvm_x86_ops.hardware_enable = NULL;
9592         mutex_unlock(&vendor_module_lock);
9593 }
9594 EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit);
9595
9596 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
9597 {
9598         /*
9599          * The vCPU has halted, e.g. executed HLT.  Update the run state if the
9600          * local APIC is in-kernel, the run loop will detect the non-runnable
9601          * state and halt the vCPU.  Exit to userspace if the local APIC is
9602          * managed by userspace, in which case userspace is responsible for
9603          * handling wake events.
9604          */
9605         ++vcpu->stat.halt_exits;
9606         if (lapic_in_kernel(vcpu)) {
9607                 vcpu->arch.mp_state = state;
9608                 return 1;
9609         } else {
9610                 vcpu->run->exit_reason = reason;
9611                 return 0;
9612         }
9613 }
9614
9615 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
9616 {
9617         return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
9618 }
9619 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
9620
9621 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
9622 {
9623         int ret = kvm_skip_emulated_instruction(vcpu);
9624         /*
9625          * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
9626          * KVM_EXIT_DEBUG here.
9627          */
9628         return kvm_emulate_halt_noskip(vcpu) && ret;
9629 }
9630 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
9631
9632 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
9633 {
9634         int ret = kvm_skip_emulated_instruction(vcpu);
9635
9636         return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
9637                                         KVM_EXIT_AP_RESET_HOLD) && ret;
9638 }
9639 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
9640
9641 #ifdef CONFIG_X86_64
9642 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
9643                                 unsigned long clock_type)
9644 {
9645         struct kvm_clock_pairing clock_pairing;
9646         struct timespec64 ts;
9647         u64 cycle;
9648         int ret;
9649
9650         if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
9651                 return -KVM_EOPNOTSUPP;
9652
9653         /*
9654          * When tsc is in permanent catchup mode guests won't be able to use
9655          * pvclock_read_retry loop to get consistent view of pvclock
9656          */
9657         if (vcpu->arch.tsc_always_catchup)
9658                 return -KVM_EOPNOTSUPP;
9659
9660         if (!kvm_get_walltime_and_clockread(&ts, &cycle))
9661                 return -KVM_EOPNOTSUPP;
9662
9663         clock_pairing.sec = ts.tv_sec;
9664         clock_pairing.nsec = ts.tv_nsec;
9665         clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
9666         clock_pairing.flags = 0;
9667         memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
9668
9669         ret = 0;
9670         if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
9671                             sizeof(struct kvm_clock_pairing)))
9672                 ret = -KVM_EFAULT;
9673
9674         return ret;
9675 }
9676 #endif
9677
9678 /*
9679  * kvm_pv_kick_cpu_op:  Kick a vcpu.
9680  *
9681  * @apicid - apicid of vcpu to be kicked.
9682  */
9683 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
9684 {
9685         /*
9686          * All other fields are unused for APIC_DM_REMRD, but may be consumed by
9687          * common code, e.g. for tracing. Defer initialization to the compiler.
9688          */
9689         struct kvm_lapic_irq lapic_irq = {
9690                 .delivery_mode = APIC_DM_REMRD,
9691                 .dest_mode = APIC_DEST_PHYSICAL,
9692                 .shorthand = APIC_DEST_NOSHORT,
9693                 .dest_id = apicid,
9694         };
9695
9696         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
9697 }
9698
9699 bool kvm_apicv_activated(struct kvm *kvm)
9700 {
9701         return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
9702 }
9703 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
9704
9705 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
9706 {
9707         ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons);
9708         ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu);
9709
9710         return (vm_reasons | vcpu_reasons) == 0;
9711 }
9712 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated);
9713
9714 static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
9715                                        enum kvm_apicv_inhibit reason, bool set)
9716 {
9717         if (set)
9718                 __set_bit(reason, inhibits);
9719         else
9720                 __clear_bit(reason, inhibits);
9721
9722         trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
9723 }
9724
9725 static void kvm_apicv_init(struct kvm *kvm)
9726 {
9727         unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons;
9728
9729         init_rwsem(&kvm->arch.apicv_update_lock);
9730
9731         set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true);
9732
9733         if (!enable_apicv)
9734                 set_or_clear_apicv_inhibit(inhibits,
9735                                            APICV_INHIBIT_REASON_DISABLE, true);
9736 }
9737
9738 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
9739 {
9740         struct kvm_vcpu *target = NULL;
9741         struct kvm_apic_map *map;
9742
9743         vcpu->stat.directed_yield_attempted++;
9744
9745         if (single_task_running())
9746                 goto no_yield;
9747
9748         rcu_read_lock();
9749         map = rcu_dereference(vcpu->kvm->arch.apic_map);
9750
9751         if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
9752                 target = map->phys_map[dest_id]->vcpu;
9753
9754         rcu_read_unlock();
9755
9756         if (!target || !READ_ONCE(target->ready))
9757                 goto no_yield;
9758
9759         /* Ignore requests to yield to self */
9760         if (vcpu == target)
9761                 goto no_yield;
9762
9763         if (kvm_vcpu_yield_to(target) <= 0)
9764                 goto no_yield;
9765
9766         vcpu->stat.directed_yield_successful++;
9767
9768 no_yield:
9769         return;
9770 }
9771
9772 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
9773 {
9774         u64 ret = vcpu->run->hypercall.ret;
9775
9776         if (!is_64_bit_mode(vcpu))
9777                 ret = (u32)ret;
9778         kvm_rax_write(vcpu, ret);
9779         ++vcpu->stat.hypercalls;
9780         return kvm_skip_emulated_instruction(vcpu);
9781 }
9782
9783 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
9784 {
9785         unsigned long nr, a0, a1, a2, a3, ret;
9786         int op_64_bit;
9787
9788         if (kvm_xen_hypercall_enabled(vcpu->kvm))
9789                 return kvm_xen_hypercall(vcpu);
9790
9791         if (kvm_hv_hypercall_enabled(vcpu))
9792                 return kvm_hv_hypercall(vcpu);
9793
9794         nr = kvm_rax_read(vcpu);
9795         a0 = kvm_rbx_read(vcpu);
9796         a1 = kvm_rcx_read(vcpu);
9797         a2 = kvm_rdx_read(vcpu);
9798         a3 = kvm_rsi_read(vcpu);
9799
9800         trace_kvm_hypercall(nr, a0, a1, a2, a3);
9801
9802         op_64_bit = is_64_bit_hypercall(vcpu);
9803         if (!op_64_bit) {
9804                 nr &= 0xFFFFFFFF;
9805                 a0 &= 0xFFFFFFFF;
9806                 a1 &= 0xFFFFFFFF;
9807                 a2 &= 0xFFFFFFFF;
9808                 a3 &= 0xFFFFFFFF;
9809         }
9810
9811         if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
9812                 ret = -KVM_EPERM;
9813                 goto out;
9814         }
9815
9816         ret = -KVM_ENOSYS;
9817
9818         switch (nr) {
9819         case KVM_HC_VAPIC_POLL_IRQ:
9820                 ret = 0;
9821                 break;
9822         case KVM_HC_KICK_CPU:
9823                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
9824                         break;
9825
9826                 kvm_pv_kick_cpu_op(vcpu->kvm, a1);
9827                 kvm_sched_yield(vcpu, a1);
9828                 ret = 0;
9829                 break;
9830 #ifdef CONFIG_X86_64
9831         case KVM_HC_CLOCK_PAIRING:
9832                 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
9833                 break;
9834 #endif
9835         case KVM_HC_SEND_IPI:
9836                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
9837                         break;
9838
9839                 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
9840                 break;
9841         case KVM_HC_SCHED_YIELD:
9842                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
9843                         break;
9844
9845                 kvm_sched_yield(vcpu, a0);
9846                 ret = 0;
9847                 break;
9848         case KVM_HC_MAP_GPA_RANGE: {
9849                 u64 gpa = a0, npages = a1, attrs = a2;
9850
9851                 ret = -KVM_ENOSYS;
9852                 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
9853                         break;
9854
9855                 if (!PAGE_ALIGNED(gpa) || !npages ||
9856                     gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
9857                         ret = -KVM_EINVAL;
9858                         break;
9859                 }
9860
9861                 vcpu->run->exit_reason        = KVM_EXIT_HYPERCALL;
9862                 vcpu->run->hypercall.nr       = KVM_HC_MAP_GPA_RANGE;
9863                 vcpu->run->hypercall.args[0]  = gpa;
9864                 vcpu->run->hypercall.args[1]  = npages;
9865                 vcpu->run->hypercall.args[2]  = attrs;
9866                 vcpu->run->hypercall.flags    = 0;
9867                 if (op_64_bit)
9868                         vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE;
9869
9870                 WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ);
9871                 vcpu->arch.complete_userspace_io = complete_hypercall_exit;
9872                 return 0;
9873         }
9874         default:
9875                 ret = -KVM_ENOSYS;
9876                 break;
9877         }
9878 out:
9879         if (!op_64_bit)
9880                 ret = (u32)ret;
9881         kvm_rax_write(vcpu, ret);
9882
9883         ++vcpu->stat.hypercalls;
9884         return kvm_skip_emulated_instruction(vcpu);
9885 }
9886 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
9887
9888 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
9889 {
9890         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
9891         char instruction[3];
9892         unsigned long rip = kvm_rip_read(vcpu);
9893
9894         /*
9895          * If the quirk is disabled, synthesize a #UD and let the guest pick up
9896          * the pieces.
9897          */
9898         if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) {
9899                 ctxt->exception.error_code_valid = false;
9900                 ctxt->exception.vector = UD_VECTOR;
9901                 ctxt->have_exception = true;
9902                 return X86EMUL_PROPAGATE_FAULT;
9903         }
9904
9905         static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
9906
9907         return emulator_write_emulated(ctxt, rip, instruction, 3,
9908                 &ctxt->exception);
9909 }
9910
9911 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
9912 {
9913         return vcpu->run->request_interrupt_window &&
9914                 likely(!pic_in_kernel(vcpu->kvm));
9915 }
9916
9917 /* Called within kvm->srcu read side.  */
9918 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
9919 {
9920         struct kvm_run *kvm_run = vcpu->run;
9921
9922         kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu);
9923         kvm_run->cr8 = kvm_get_cr8(vcpu);
9924         kvm_run->apic_base = kvm_get_apic_base(vcpu);
9925
9926         kvm_run->ready_for_interrupt_injection =
9927                 pic_in_kernel(vcpu->kvm) ||
9928                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
9929
9930         if (is_smm(vcpu))
9931                 kvm_run->flags |= KVM_RUN_X86_SMM;
9932 }
9933
9934 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
9935 {
9936         int max_irr, tpr;
9937
9938         if (!kvm_x86_ops.update_cr8_intercept)
9939                 return;
9940
9941         if (!lapic_in_kernel(vcpu))
9942                 return;
9943
9944         if (vcpu->arch.apic->apicv_active)
9945                 return;
9946
9947         if (!vcpu->arch.apic->vapic_addr)
9948                 max_irr = kvm_lapic_find_highest_irr(vcpu);
9949         else
9950                 max_irr = -1;
9951
9952         if (max_irr != -1)
9953                 max_irr >>= 4;
9954
9955         tpr = kvm_lapic_get_cr8(vcpu);
9956
9957         static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
9958 }
9959
9960
9961 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
9962 {
9963         if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9964                 kvm_x86_ops.nested_ops->triple_fault(vcpu);
9965                 return 1;
9966         }
9967
9968         return kvm_x86_ops.nested_ops->check_events(vcpu);
9969 }
9970
9971 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
9972 {
9973         /*
9974          * Suppress the error code if the vCPU is in Real Mode, as Real Mode
9975          * exceptions don't report error codes.  The presence of an error code
9976          * is carried with the exception and only stripped when the exception
9977          * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do
9978          * report an error code despite the CPU being in Real Mode.
9979          */
9980         vcpu->arch.exception.has_error_code &= is_protmode(vcpu);
9981
9982         trace_kvm_inj_exception(vcpu->arch.exception.vector,
9983                                 vcpu->arch.exception.has_error_code,
9984                                 vcpu->arch.exception.error_code,
9985                                 vcpu->arch.exception.injected);
9986
9987         static_call(kvm_x86_inject_exception)(vcpu);
9988 }
9989
9990 /*
9991  * Check for any event (interrupt or exception) that is ready to be injected,
9992  * and if there is at least one event, inject the event with the highest
9993  * priority.  This handles both "pending" events, i.e. events that have never
9994  * been injected into the guest, and "injected" events, i.e. events that were
9995  * injected as part of a previous VM-Enter, but weren't successfully delivered
9996  * and need to be re-injected.
9997  *
9998  * Note, this is not guaranteed to be invoked on a guest instruction boundary,
9999  * i.e. doesn't guarantee that there's an event window in the guest.  KVM must
10000  * be able to inject exceptions in the "middle" of an instruction, and so must
10001  * also be able to re-inject NMIs and IRQs in the middle of an instruction.
10002  * I.e. for exceptions and re-injected events, NOT invoking this on instruction
10003  * boundaries is necessary and correct.
10004  *
10005  * For simplicity, KVM uses a single path to inject all events (except events
10006  * that are injected directly from L1 to L2) and doesn't explicitly track
10007  * instruction boundaries for asynchronous events.  However, because VM-Exits
10008  * that can occur during instruction execution typically result in KVM skipping
10009  * the instruction or injecting an exception, e.g. instruction and exception
10010  * intercepts, and because pending exceptions have higher priority than pending
10011  * interrupts, KVM still honors instruction boundaries in most scenarios.
10012  *
10013  * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip
10014  * the instruction or inject an exception, then KVM can incorrecty inject a new
10015  * asynchrounous event if the event became pending after the CPU fetched the
10016  * instruction (in the guest).  E.g. if a page fault (#PF, #NPF, EPT violation)
10017  * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be
10018  * injected on the restarted instruction instead of being deferred until the
10019  * instruction completes.
10020  *
10021  * In practice, this virtualization hole is unlikely to be observed by the
10022  * guest, and even less likely to cause functional problems.  To detect the
10023  * hole, the guest would have to trigger an event on a side effect of an early
10024  * phase of instruction execution, e.g. on the instruction fetch from memory.
10025  * And for it to be a functional problem, the guest would need to depend on the
10026  * ordering between that side effect, the instruction completing, _and_ the
10027  * delivery of the asynchronous event.
10028  */
10029 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu,
10030                                        bool *req_immediate_exit)
10031 {
10032         bool can_inject;
10033         int r;
10034
10035         /*
10036          * Process nested events first, as nested VM-Exit supercedes event
10037          * re-injection.  If there's an event queued for re-injection, it will
10038          * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit.
10039          */
10040         if (is_guest_mode(vcpu))
10041                 r = kvm_check_nested_events(vcpu);
10042         else
10043                 r = 0;
10044
10045         /*
10046          * Re-inject exceptions and events *especially* if immediate entry+exit
10047          * to/from L2 is needed, as any event that has already been injected
10048          * into L2 needs to complete its lifecycle before injecting a new event.
10049          *
10050          * Don't re-inject an NMI or interrupt if there is a pending exception.
10051          * This collision arises if an exception occurred while vectoring the
10052          * injected event, KVM intercepted said exception, and KVM ultimately
10053          * determined the fault belongs to the guest and queues the exception
10054          * for injection back into the guest.
10055          *
10056          * "Injected" interrupts can also collide with pending exceptions if
10057          * userspace ignores the "ready for injection" flag and blindly queues
10058          * an interrupt.  In that case, prioritizing the exception is correct,
10059          * as the exception "occurred" before the exit to userspace.  Trap-like
10060          * exceptions, e.g. most #DBs, have higher priority than interrupts.
10061          * And while fault-like exceptions, e.g. #GP and #PF, are the lowest
10062          * priority, they're only generated (pended) during instruction
10063          * execution, and interrupts are recognized at instruction boundaries.
10064          * Thus a pending fault-like exception means the fault occurred on the
10065          * *previous* instruction and must be serviced prior to recognizing any
10066          * new events in order to fully complete the previous instruction.
10067          */
10068         if (vcpu->arch.exception.injected)
10069                 kvm_inject_exception(vcpu);
10070         else if (kvm_is_exception_pending(vcpu))
10071                 ; /* see above */
10072         else if (vcpu->arch.nmi_injected)
10073                 static_call(kvm_x86_inject_nmi)(vcpu);
10074         else if (vcpu->arch.interrupt.injected)
10075                 static_call(kvm_x86_inject_irq)(vcpu, true);
10076
10077         /*
10078          * Exceptions that morph to VM-Exits are handled above, and pending
10079          * exceptions on top of injected exceptions that do not VM-Exit should
10080          * either morph to #DF or, sadly, override the injected exception.
10081          */
10082         WARN_ON_ONCE(vcpu->arch.exception.injected &&
10083                      vcpu->arch.exception.pending);
10084
10085         /*
10086          * Bail if immediate entry+exit to/from the guest is needed to complete
10087          * nested VM-Enter or event re-injection so that a different pending
10088          * event can be serviced (or if KVM needs to exit to userspace).
10089          *
10090          * Otherwise, continue processing events even if VM-Exit occurred.  The
10091          * VM-Exit will have cleared exceptions that were meant for L2, but
10092          * there may now be events that can be injected into L1.
10093          */
10094         if (r < 0)
10095                 goto out;
10096
10097         /*
10098          * A pending exception VM-Exit should either result in nested VM-Exit
10099          * or force an immediate re-entry and exit to/from L2, and exception
10100          * VM-Exits cannot be injected (flag should _never_ be set).
10101          */
10102         WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected ||
10103                      vcpu->arch.exception_vmexit.pending);
10104
10105         /*
10106          * New events, other than exceptions, cannot be injected if KVM needs
10107          * to re-inject a previous event.  See above comments on re-injecting
10108          * for why pending exceptions get priority.
10109          */
10110         can_inject = !kvm_event_needs_reinjection(vcpu);
10111
10112         if (vcpu->arch.exception.pending) {
10113                 /*
10114                  * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS
10115                  * value pushed on the stack.  Trap-like exception and all #DBs
10116                  * leave RF as-is (KVM follows Intel's behavior in this regard;
10117                  * AMD states that code breakpoint #DBs excplitly clear RF=0).
10118                  *
10119                  * Note, most versions of Intel's SDM and AMD's APM incorrectly
10120                  * describe the behavior of General Detect #DBs, which are
10121                  * fault-like.  They do _not_ set RF, a la code breakpoints.
10122                  */
10123                 if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT)
10124                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
10125                                              X86_EFLAGS_RF);
10126
10127                 if (vcpu->arch.exception.vector == DB_VECTOR) {
10128                         kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception);
10129                         if (vcpu->arch.dr7 & DR7_GD) {
10130                                 vcpu->arch.dr7 &= ~DR7_GD;
10131                                 kvm_update_dr7(vcpu);
10132                         }
10133                 }
10134
10135                 kvm_inject_exception(vcpu);
10136
10137                 vcpu->arch.exception.pending = false;
10138                 vcpu->arch.exception.injected = true;
10139
10140                 can_inject = false;
10141         }
10142
10143         /* Don't inject interrupts if the user asked to avoid doing so */
10144         if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
10145                 return 0;
10146
10147         /*
10148          * Finally, inject interrupt events.  If an event cannot be injected
10149          * due to architectural conditions (e.g. IF=0) a window-open exit
10150          * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
10151          * and can architecturally be injected, but we cannot do it right now:
10152          * an interrupt could have arrived just now and we have to inject it
10153          * as a vmexit, or there could already an event in the queue, which is
10154          * indicated by can_inject.  In that case we request an immediate exit
10155          * in order to make progress and get back here for another iteration.
10156          * The kvm_x86_ops hooks communicate this by returning -EBUSY.
10157          */
10158 #ifdef CONFIG_KVM_SMM
10159         if (vcpu->arch.smi_pending) {
10160                 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
10161                 if (r < 0)
10162                         goto out;
10163                 if (r) {
10164                         vcpu->arch.smi_pending = false;
10165                         ++vcpu->arch.smi_count;
10166                         enter_smm(vcpu);
10167                         can_inject = false;
10168                 } else
10169                         static_call(kvm_x86_enable_smi_window)(vcpu);
10170         }
10171 #endif
10172
10173         if (vcpu->arch.nmi_pending) {
10174                 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
10175                 if (r < 0)
10176                         goto out;
10177                 if (r) {
10178                         --vcpu->arch.nmi_pending;
10179                         vcpu->arch.nmi_injected = true;
10180                         static_call(kvm_x86_inject_nmi)(vcpu);
10181                         can_inject = false;
10182                         WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
10183                 }
10184                 if (vcpu->arch.nmi_pending)
10185                         static_call(kvm_x86_enable_nmi_window)(vcpu);
10186         }
10187
10188         if (kvm_cpu_has_injectable_intr(vcpu)) {
10189                 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
10190                 if (r < 0)
10191                         goto out;
10192                 if (r) {
10193                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
10194                         static_call(kvm_x86_inject_irq)(vcpu, false);
10195                         WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
10196                 }
10197                 if (kvm_cpu_has_injectable_intr(vcpu))
10198                         static_call(kvm_x86_enable_irq_window)(vcpu);
10199         }
10200
10201         if (is_guest_mode(vcpu) &&
10202             kvm_x86_ops.nested_ops->has_events &&
10203             kvm_x86_ops.nested_ops->has_events(vcpu))
10204                 *req_immediate_exit = true;
10205
10206         /*
10207          * KVM must never queue a new exception while injecting an event; KVM
10208          * is done emulating and should only propagate the to-be-injected event
10209          * to the VMCS/VMCB.  Queueing a new exception can put the vCPU into an
10210          * infinite loop as KVM will bail from VM-Enter to inject the pending
10211          * exception and start the cycle all over.
10212          *
10213          * Exempt triple faults as they have special handling and won't put the
10214          * vCPU into an infinite loop.  Triple fault can be queued when running
10215          * VMX without unrestricted guest, as that requires KVM to emulate Real
10216          * Mode events (see kvm_inject_realmode_interrupt()).
10217          */
10218         WARN_ON_ONCE(vcpu->arch.exception.pending ||
10219                      vcpu->arch.exception_vmexit.pending);
10220         return 0;
10221
10222 out:
10223         if (r == -EBUSY) {
10224                 *req_immediate_exit = true;
10225                 r = 0;
10226         }
10227         return r;
10228 }
10229
10230 static void process_nmi(struct kvm_vcpu *vcpu)
10231 {
10232         unsigned int limit;
10233
10234         /*
10235          * x86 is limited to one NMI pending, but because KVM can't react to
10236          * incoming NMIs as quickly as bare metal, e.g. if the vCPU is
10237          * scheduled out, KVM needs to play nice with two queued NMIs showing
10238          * up at the same time.  To handle this scenario, allow two NMIs to be
10239          * (temporarily) pending so long as NMIs are not blocked and KVM is not
10240          * waiting for a previous NMI injection to complete (which effectively
10241          * blocks NMIs).  KVM will immediately inject one of the two NMIs, and
10242          * will request an NMI window to handle the second NMI.
10243          */
10244         if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
10245                 limit = 1;
10246         else
10247                 limit = 2;
10248
10249         /*
10250          * Adjust the limit to account for pending virtual NMIs, which aren't
10251          * tracked in vcpu->arch.nmi_pending.
10252          */
10253         if (static_call(kvm_x86_is_vnmi_pending)(vcpu))
10254                 limit--;
10255
10256         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
10257         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
10258
10259         if (vcpu->arch.nmi_pending &&
10260             (static_call(kvm_x86_set_vnmi_pending)(vcpu)))
10261                 vcpu->arch.nmi_pending--;
10262
10263         if (vcpu->arch.nmi_pending)
10264                 kvm_make_request(KVM_REQ_EVENT, vcpu);
10265 }
10266
10267 /* Return total number of NMIs pending injection to the VM */
10268 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu)
10269 {
10270         return vcpu->arch.nmi_pending +
10271                static_call(kvm_x86_is_vnmi_pending)(vcpu);
10272 }
10273
10274 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
10275                                        unsigned long *vcpu_bitmap)
10276 {
10277         kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
10278 }
10279
10280 void kvm_make_scan_ioapic_request(struct kvm *kvm)
10281 {
10282         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
10283 }
10284
10285 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10286 {
10287         struct kvm_lapic *apic = vcpu->arch.apic;
10288         bool activate;
10289
10290         if (!lapic_in_kernel(vcpu))
10291                 return;
10292
10293         down_read(&vcpu->kvm->arch.apicv_update_lock);
10294         preempt_disable();
10295
10296         /* Do not activate APICV when APIC is disabled */
10297         activate = kvm_vcpu_apicv_activated(vcpu) &&
10298                    (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED);
10299
10300         if (apic->apicv_active == activate)
10301                 goto out;
10302
10303         apic->apicv_active = activate;
10304         kvm_apic_update_apicv(vcpu);
10305         static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
10306
10307         /*
10308          * When APICv gets disabled, we may still have injected interrupts
10309          * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
10310          * still active when the interrupt got accepted. Make sure
10311          * kvm_check_and_inject_events() is called to check for that.
10312          */
10313         if (!apic->apicv_active)
10314                 kvm_make_request(KVM_REQ_EVENT, vcpu);
10315
10316 out:
10317         preempt_enable();
10318         up_read(&vcpu->kvm->arch.apicv_update_lock);
10319 }
10320 EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv);
10321
10322 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10323 {
10324         if (!lapic_in_kernel(vcpu))
10325                 return;
10326
10327         /*
10328          * Due to sharing page tables across vCPUs, the xAPIC memslot must be
10329          * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but
10330          * and hardware doesn't support x2APIC virtualization.  E.g. some AMD
10331          * CPUs support AVIC but not x2APIC.  KVM still allows enabling AVIC in
10332          * this case so that KVM can the AVIC doorbell to inject interrupts to
10333          * running vCPUs, but KVM must not create SPTEs for the APIC base as
10334          * the vCPU would incorrectly be able to access the vAPIC page via MMIO
10335          * despite being in x2APIC mode.  For simplicity, inhibiting the APIC
10336          * access page is sticky.
10337          */
10338         if (apic_x2apic_mode(vcpu->arch.apic) &&
10339             kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization)
10340                 kvm_inhibit_apic_access_page(vcpu);
10341
10342         __kvm_vcpu_update_apicv(vcpu);
10343 }
10344
10345 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10346                                       enum kvm_apicv_inhibit reason, bool set)
10347 {
10348         unsigned long old, new;
10349
10350         lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
10351
10352         if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason)))
10353                 return;
10354
10355         old = new = kvm->arch.apicv_inhibit_reasons;
10356
10357         set_or_clear_apicv_inhibit(&new, reason, set);
10358
10359         if (!!old != !!new) {
10360                 /*
10361                  * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
10362                  * false positives in the sanity check WARN in svm_vcpu_run().
10363                  * This task will wait for all vCPUs to ack the kick IRQ before
10364                  * updating apicv_inhibit_reasons, and all other vCPUs will
10365                  * block on acquiring apicv_update_lock so that vCPUs can't
10366                  * redo svm_vcpu_run() without seeing the new inhibit state.
10367                  *
10368                  * Note, holding apicv_update_lock and taking it in the read
10369                  * side (handling the request) also prevents other vCPUs from
10370                  * servicing the request with a stale apicv_inhibit_reasons.
10371                  */
10372                 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
10373                 kvm->arch.apicv_inhibit_reasons = new;
10374                 if (new) {
10375                         unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
10376                         int idx = srcu_read_lock(&kvm->srcu);
10377
10378                         kvm_zap_gfn_range(kvm, gfn, gfn+1);
10379                         srcu_read_unlock(&kvm->srcu, idx);
10380                 }
10381         } else {
10382                 kvm->arch.apicv_inhibit_reasons = new;
10383         }
10384 }
10385
10386 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10387                                     enum kvm_apicv_inhibit reason, bool set)
10388 {
10389         if (!enable_apicv)
10390                 return;
10391
10392         down_write(&kvm->arch.apicv_update_lock);
10393         __kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
10394         up_write(&kvm->arch.apicv_update_lock);
10395 }
10396 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit);
10397
10398 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
10399 {
10400         if (!kvm_apic_present(vcpu))
10401                 return;
10402
10403         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
10404
10405         if (irqchip_split(vcpu->kvm))
10406                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
10407         else {
10408                 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10409                 if (ioapic_in_kernel(vcpu->kvm))
10410                         kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
10411         }
10412
10413         if (is_guest_mode(vcpu))
10414                 vcpu->arch.load_eoi_exitmap_pending = true;
10415         else
10416                 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
10417 }
10418
10419 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
10420 {
10421         u64 eoi_exit_bitmap[4];
10422
10423         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
10424                 return;
10425
10426         if (to_hv_vcpu(vcpu)) {
10427                 bitmap_or((ulong *)eoi_exit_bitmap,
10428                           vcpu->arch.ioapic_handled_vectors,
10429                           to_hv_synic(vcpu)->vec_bitmap, 256);
10430                 static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
10431                 return;
10432         }
10433
10434         static_call_cond(kvm_x86_load_eoi_exitmap)(
10435                 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
10436 }
10437
10438 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
10439                                             unsigned long start, unsigned long end)
10440 {
10441         unsigned long apic_address;
10442
10443         /*
10444          * The physical address of apic access page is stored in the VMCS.
10445          * Update it when it becomes invalid.
10446          */
10447         apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
10448         if (start <= apic_address && apic_address < end)
10449                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
10450 }
10451
10452 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
10453 {
10454         static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm);
10455 }
10456
10457 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
10458 {
10459         if (!lapic_in_kernel(vcpu))
10460                 return;
10461
10462         static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu);
10463 }
10464
10465 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
10466 {
10467         smp_send_reschedule(vcpu->cpu);
10468 }
10469 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
10470
10471 /*
10472  * Called within kvm->srcu read side.
10473  * Returns 1 to let vcpu_run() continue the guest execution loop without
10474  * exiting to the userspace.  Otherwise, the value will be returned to the
10475  * userspace.
10476  */
10477 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
10478 {
10479         int r;
10480         bool req_int_win =
10481                 dm_request_for_irq_injection(vcpu) &&
10482                 kvm_cpu_accept_dm_intr(vcpu);
10483         fastpath_t exit_fastpath;
10484
10485         bool req_immediate_exit = false;
10486
10487         if (kvm_request_pending(vcpu)) {
10488                 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
10489                         r = -EIO;
10490                         goto out;
10491                 }
10492
10493                 if (kvm_dirty_ring_check_request(vcpu)) {
10494                         r = 0;
10495                         goto out;
10496                 }
10497
10498                 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
10499                         if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
10500                                 r = 0;
10501                                 goto out;
10502                         }
10503                 }
10504                 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
10505                         kvm_mmu_free_obsolete_roots(vcpu);
10506                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
10507                         __kvm_migrate_timers(vcpu);
10508                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
10509                         kvm_update_masterclock(vcpu->kvm);
10510                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
10511                         kvm_gen_kvmclock_update(vcpu);
10512                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
10513                         r = kvm_guest_time_update(vcpu);
10514                         if (unlikely(r))
10515                                 goto out;
10516                 }
10517                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
10518                         kvm_mmu_sync_roots(vcpu);
10519                 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
10520                         kvm_mmu_load_pgd(vcpu);
10521
10522                 /*
10523                  * Note, the order matters here, as flushing "all" TLB entries
10524                  * also flushes the "current" TLB entries, i.e. servicing the
10525                  * flush "all" will clear any request to flush "current".
10526                  */
10527                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
10528                         kvm_vcpu_flush_tlb_all(vcpu);
10529
10530                 kvm_service_local_tlb_flush_requests(vcpu);
10531
10532                 /*
10533                  * Fall back to a "full" guest flush if Hyper-V's precise
10534                  * flushing fails.  Note, Hyper-V's flushing is per-vCPU, but
10535                  * the flushes are considered "remote" and not "local" because
10536                  * the requests can be initiated from other vCPUs.
10537                  */
10538                 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) &&
10539                     kvm_hv_vcpu_flush_tlb(vcpu))
10540                         kvm_vcpu_flush_tlb_guest(vcpu);
10541
10542                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
10543                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
10544                         r = 0;
10545                         goto out;
10546                 }
10547                 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10548                         if (is_guest_mode(vcpu))
10549                                 kvm_x86_ops.nested_ops->triple_fault(vcpu);
10550
10551                         if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10552                                 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
10553                                 vcpu->mmio_needed = 0;
10554                                 r = 0;
10555                                 goto out;
10556                         }
10557                 }
10558                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
10559                         /* Page is swapped out. Do synthetic halt */
10560                         vcpu->arch.apf.halted = true;
10561                         r = 1;
10562                         goto out;
10563                 }
10564                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
10565                         record_steal_time(vcpu);
10566 #ifdef CONFIG_KVM_SMM
10567                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
10568                         process_smi(vcpu);
10569 #endif
10570                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
10571                         process_nmi(vcpu);
10572                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
10573                         kvm_pmu_handle_event(vcpu);
10574                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
10575                         kvm_pmu_deliver_pmi(vcpu);
10576                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
10577                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
10578                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
10579                                      vcpu->arch.ioapic_handled_vectors)) {
10580                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
10581                                 vcpu->run->eoi.vector =
10582                                                 vcpu->arch.pending_ioapic_eoi;
10583                                 r = 0;
10584                                 goto out;
10585                         }
10586                 }
10587                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
10588                         vcpu_scan_ioapic(vcpu);
10589                 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
10590                         vcpu_load_eoi_exitmap(vcpu);
10591                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
10592                         kvm_vcpu_reload_apic_access_page(vcpu);
10593                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
10594                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10595                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
10596                         vcpu->run->system_event.ndata = 0;
10597                         r = 0;
10598                         goto out;
10599                 }
10600                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
10601                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10602                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
10603                         vcpu->run->system_event.ndata = 0;
10604                         r = 0;
10605                         goto out;
10606                 }
10607                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
10608                         struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
10609
10610                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
10611                         vcpu->run->hyperv = hv_vcpu->exit;
10612                         r = 0;
10613                         goto out;
10614                 }
10615
10616                 /*
10617                  * KVM_REQ_HV_STIMER has to be processed after
10618                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
10619                  * depend on the guest clock being up-to-date
10620                  */
10621                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
10622                         kvm_hv_process_stimers(vcpu);
10623                 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
10624                         kvm_vcpu_update_apicv(vcpu);
10625                 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
10626                         kvm_check_async_pf_completion(vcpu);
10627                 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
10628                         static_call(kvm_x86_msr_filter_changed)(vcpu);
10629
10630                 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
10631                         static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
10632         }
10633
10634         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
10635             kvm_xen_has_interrupt(vcpu)) {
10636                 ++vcpu->stat.req_event;
10637                 r = kvm_apic_accept_events(vcpu);
10638                 if (r < 0) {
10639                         r = 0;
10640                         goto out;
10641                 }
10642                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
10643                         r = 1;
10644                         goto out;
10645                 }
10646
10647                 r = kvm_check_and_inject_events(vcpu, &req_immediate_exit);
10648                 if (r < 0) {
10649                         r = 0;
10650                         goto out;
10651                 }
10652                 if (req_int_win)
10653                         static_call(kvm_x86_enable_irq_window)(vcpu);
10654
10655                 if (kvm_lapic_enabled(vcpu)) {
10656                         update_cr8_intercept(vcpu);
10657                         kvm_lapic_sync_to_vapic(vcpu);
10658                 }
10659         }
10660
10661         r = kvm_mmu_reload(vcpu);
10662         if (unlikely(r)) {
10663                 goto cancel_injection;
10664         }
10665
10666         preempt_disable();
10667
10668         static_call(kvm_x86_prepare_switch_to_guest)(vcpu);
10669
10670         /*
10671          * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
10672          * IPI are then delayed after guest entry, which ensures that they
10673          * result in virtual interrupt delivery.
10674          */
10675         local_irq_disable();
10676
10677         /* Store vcpu->apicv_active before vcpu->mode.  */
10678         smp_store_release(&vcpu->mode, IN_GUEST_MODE);
10679
10680         kvm_vcpu_srcu_read_unlock(vcpu);
10681
10682         /*
10683          * 1) We should set ->mode before checking ->requests.  Please see
10684          * the comment in kvm_vcpu_exiting_guest_mode().
10685          *
10686          * 2) For APICv, we should set ->mode before checking PID.ON. This
10687          * pairs with the memory barrier implicit in pi_test_and_set_on
10688          * (see vmx_deliver_posted_interrupt).
10689          *
10690          * 3) This also orders the write to mode from any reads to the page
10691          * tables done while the VCPU is running.  Please see the comment
10692          * in kvm_flush_remote_tlbs.
10693          */
10694         smp_mb__after_srcu_read_unlock();
10695
10696         /*
10697          * Process pending posted interrupts to handle the case where the
10698          * notification IRQ arrived in the host, or was never sent (because the
10699          * target vCPU wasn't running).  Do this regardless of the vCPU's APICv
10700          * status, KVM doesn't update assigned devices when APICv is inhibited,
10701          * i.e. they can post interrupts even if APICv is temporarily disabled.
10702          */
10703         if (kvm_lapic_enabled(vcpu))
10704                 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10705
10706         if (kvm_vcpu_exit_request(vcpu)) {
10707                 vcpu->mode = OUTSIDE_GUEST_MODE;
10708                 smp_wmb();
10709                 local_irq_enable();
10710                 preempt_enable();
10711                 kvm_vcpu_srcu_read_lock(vcpu);
10712                 r = 1;
10713                 goto cancel_injection;
10714         }
10715
10716         if (req_immediate_exit) {
10717                 kvm_make_request(KVM_REQ_EVENT, vcpu);
10718                 static_call(kvm_x86_request_immediate_exit)(vcpu);
10719         }
10720
10721         fpregs_assert_state_consistent();
10722         if (test_thread_flag(TIF_NEED_FPU_LOAD))
10723                 switch_fpu_return();
10724
10725         if (vcpu->arch.guest_fpu.xfd_err)
10726                 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
10727
10728         if (unlikely(vcpu->arch.switch_db_regs)) {
10729                 set_debugreg(0, 7);
10730                 set_debugreg(vcpu->arch.eff_db[0], 0);
10731                 set_debugreg(vcpu->arch.eff_db[1], 1);
10732                 set_debugreg(vcpu->arch.eff_db[2], 2);
10733                 set_debugreg(vcpu->arch.eff_db[3], 3);
10734         } else if (unlikely(hw_breakpoint_active())) {
10735                 set_debugreg(0, 7);
10736         }
10737
10738         guest_timing_enter_irqoff();
10739
10740         for (;;) {
10741                 /*
10742                  * Assert that vCPU vs. VM APICv state is consistent.  An APICv
10743                  * update must kick and wait for all vCPUs before toggling the
10744                  * per-VM state, and responsing vCPUs must wait for the update
10745                  * to complete before servicing KVM_REQ_APICV_UPDATE.
10746                  */
10747                 WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) &&
10748                              (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED));
10749
10750                 exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu);
10751                 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
10752                         break;
10753
10754                 if (kvm_lapic_enabled(vcpu))
10755                         static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10756
10757                 if (unlikely(kvm_vcpu_exit_request(vcpu))) {
10758                         exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
10759                         break;
10760                 }
10761         }
10762
10763         /*
10764          * Do this here before restoring debug registers on the host.  And
10765          * since we do this before handling the vmexit, a DR access vmexit
10766          * can (a) read the correct value of the debug registers, (b) set
10767          * KVM_DEBUGREG_WONT_EXIT again.
10768          */
10769         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
10770                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
10771                 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
10772                 kvm_update_dr0123(vcpu);
10773                 kvm_update_dr7(vcpu);
10774         }
10775
10776         /*
10777          * If the guest has used debug registers, at least dr7
10778          * will be disabled while returning to the host.
10779          * If we don't have active breakpoints in the host, we don't
10780          * care about the messed up debug address registers. But if
10781          * we have some of them active, restore the old state.
10782          */
10783         if (hw_breakpoint_active())
10784                 hw_breakpoint_restore();
10785
10786         vcpu->arch.last_vmentry_cpu = vcpu->cpu;
10787         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
10788
10789         vcpu->mode = OUTSIDE_GUEST_MODE;
10790         smp_wmb();
10791
10792         /*
10793          * Sync xfd before calling handle_exit_irqoff() which may
10794          * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
10795          * in #NM irqoff handler).
10796          */
10797         if (vcpu->arch.xfd_no_write_intercept)
10798                 fpu_sync_guest_vmexit_xfd_state();
10799
10800         static_call(kvm_x86_handle_exit_irqoff)(vcpu);
10801
10802         if (vcpu->arch.guest_fpu.xfd_err)
10803                 wrmsrl(MSR_IA32_XFD_ERR, 0);
10804
10805         /*
10806          * Consume any pending interrupts, including the possible source of
10807          * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
10808          * An instruction is required after local_irq_enable() to fully unblock
10809          * interrupts on processors that implement an interrupt shadow, the
10810          * stat.exits increment will do nicely.
10811          */
10812         kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
10813         local_irq_enable();
10814         ++vcpu->stat.exits;
10815         local_irq_disable();
10816         kvm_after_interrupt(vcpu);
10817
10818         /*
10819          * Wait until after servicing IRQs to account guest time so that any
10820          * ticks that occurred while running the guest are properly accounted
10821          * to the guest.  Waiting until IRQs are enabled degrades the accuracy
10822          * of accounting via context tracking, but the loss of accuracy is
10823          * acceptable for all known use cases.
10824          */
10825         guest_timing_exit_irqoff();
10826
10827         local_irq_enable();
10828         preempt_enable();
10829
10830         kvm_vcpu_srcu_read_lock(vcpu);
10831
10832         /*
10833          * Profile KVM exit RIPs:
10834          */
10835         if (unlikely(prof_on == KVM_PROFILING)) {
10836                 unsigned long rip = kvm_rip_read(vcpu);
10837                 profile_hit(KVM_PROFILING, (void *)rip);
10838         }
10839
10840         if (unlikely(vcpu->arch.tsc_always_catchup))
10841                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10842
10843         if (vcpu->arch.apic_attention)
10844                 kvm_lapic_sync_from_vapic(vcpu);
10845
10846         r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
10847         return r;
10848
10849 cancel_injection:
10850         if (req_immediate_exit)
10851                 kvm_make_request(KVM_REQ_EVENT, vcpu);
10852         static_call(kvm_x86_cancel_injection)(vcpu);
10853         if (unlikely(vcpu->arch.apic_attention))
10854                 kvm_lapic_sync_from_vapic(vcpu);
10855 out:
10856         return r;
10857 }
10858
10859 /* Called within kvm->srcu read side.  */
10860 static inline int vcpu_block(struct kvm_vcpu *vcpu)
10861 {
10862         bool hv_timer;
10863
10864         if (!kvm_arch_vcpu_runnable(vcpu)) {
10865                 /*
10866                  * Switch to the software timer before halt-polling/blocking as
10867                  * the guest's timer may be a break event for the vCPU, and the
10868                  * hypervisor timer runs only when the CPU is in guest mode.
10869                  * Switch before halt-polling so that KVM recognizes an expired
10870                  * timer before blocking.
10871                  */
10872                 hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
10873                 if (hv_timer)
10874                         kvm_lapic_switch_to_sw_timer(vcpu);
10875
10876                 kvm_vcpu_srcu_read_unlock(vcpu);
10877                 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10878                         kvm_vcpu_halt(vcpu);
10879                 else
10880                         kvm_vcpu_block(vcpu);
10881                 kvm_vcpu_srcu_read_lock(vcpu);
10882
10883                 if (hv_timer)
10884                         kvm_lapic_switch_to_hv_timer(vcpu);
10885
10886                 /*
10887                  * If the vCPU is not runnable, a signal or another host event
10888                  * of some kind is pending; service it without changing the
10889                  * vCPU's activity state.
10890                  */
10891                 if (!kvm_arch_vcpu_runnable(vcpu))
10892                         return 1;
10893         }
10894
10895         /*
10896          * Evaluate nested events before exiting the halted state.  This allows
10897          * the halt state to be recorded properly in the VMCS12's activity
10898          * state field (AMD does not have a similar field and a VM-Exit always
10899          * causes a spurious wakeup from HLT).
10900          */
10901         if (is_guest_mode(vcpu)) {
10902                 if (kvm_check_nested_events(vcpu) < 0)
10903                         return 0;
10904         }
10905
10906         if (kvm_apic_accept_events(vcpu) < 0)
10907                 return 0;
10908         switch(vcpu->arch.mp_state) {
10909         case KVM_MP_STATE_HALTED:
10910         case KVM_MP_STATE_AP_RESET_HOLD:
10911                 vcpu->arch.pv.pv_unhalted = false;
10912                 vcpu->arch.mp_state =
10913                         KVM_MP_STATE_RUNNABLE;
10914                 fallthrough;
10915         case KVM_MP_STATE_RUNNABLE:
10916                 vcpu->arch.apf.halted = false;
10917                 break;
10918         case KVM_MP_STATE_INIT_RECEIVED:
10919                 break;
10920         default:
10921                 WARN_ON_ONCE(1);
10922                 break;
10923         }
10924         return 1;
10925 }
10926
10927 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
10928 {
10929         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
10930                 !vcpu->arch.apf.halted);
10931 }
10932
10933 /* Called within kvm->srcu read side.  */
10934 static int vcpu_run(struct kvm_vcpu *vcpu)
10935 {
10936         int r;
10937
10938         vcpu->arch.l1tf_flush_l1d = true;
10939
10940         for (;;) {
10941                 /*
10942                  * If another guest vCPU requests a PV TLB flush in the middle
10943                  * of instruction emulation, the rest of the emulation could
10944                  * use a stale page translation. Assume that any code after
10945                  * this point can start executing an instruction.
10946                  */
10947                 vcpu->arch.at_instruction_boundary = false;
10948                 if (kvm_vcpu_running(vcpu)) {
10949                         r = vcpu_enter_guest(vcpu);
10950                 } else {
10951                         r = vcpu_block(vcpu);
10952                 }
10953
10954                 if (r <= 0)
10955                         break;
10956
10957                 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
10958                 if (kvm_xen_has_pending_events(vcpu))
10959                         kvm_xen_inject_pending_events(vcpu);
10960
10961                 if (kvm_cpu_has_pending_timer(vcpu))
10962                         kvm_inject_pending_timer_irqs(vcpu);
10963
10964                 if (dm_request_for_irq_injection(vcpu) &&
10965                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
10966                         r = 0;
10967                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
10968                         ++vcpu->stat.request_irq_exits;
10969                         break;
10970                 }
10971
10972                 if (__xfer_to_guest_mode_work_pending()) {
10973                         kvm_vcpu_srcu_read_unlock(vcpu);
10974                         r = xfer_to_guest_mode_handle_work(vcpu);
10975                         kvm_vcpu_srcu_read_lock(vcpu);
10976                         if (r)
10977                                 return r;
10978                 }
10979         }
10980
10981         return r;
10982 }
10983
10984 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
10985 {
10986         return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
10987 }
10988
10989 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
10990 {
10991         BUG_ON(!vcpu->arch.pio.count);
10992
10993         return complete_emulated_io(vcpu);
10994 }
10995
10996 /*
10997  * Implements the following, as a state machine:
10998  *
10999  * read:
11000  *   for each fragment
11001  *     for each mmio piece in the fragment
11002  *       write gpa, len
11003  *       exit
11004  *       copy data
11005  *   execute insn
11006  *
11007  * write:
11008  *   for each fragment
11009  *     for each mmio piece in the fragment
11010  *       write gpa, len
11011  *       copy data
11012  *       exit
11013  */
11014 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
11015 {
11016         struct kvm_run *run = vcpu->run;
11017         struct kvm_mmio_fragment *frag;
11018         unsigned len;
11019
11020         BUG_ON(!vcpu->mmio_needed);
11021
11022         /* Complete previous fragment */
11023         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
11024         len = min(8u, frag->len);
11025         if (!vcpu->mmio_is_write)
11026                 memcpy(frag->data, run->mmio.data, len);
11027
11028         if (frag->len <= 8) {
11029                 /* Switch to the next fragment. */
11030                 frag++;
11031                 vcpu->mmio_cur_fragment++;
11032         } else {
11033                 /* Go forward to the next mmio piece. */
11034                 frag->data += len;
11035                 frag->gpa += len;
11036                 frag->len -= len;
11037         }
11038
11039         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
11040                 vcpu->mmio_needed = 0;
11041
11042                 /* FIXME: return into emulator if single-stepping.  */
11043                 if (vcpu->mmio_is_write)
11044                         return 1;
11045                 vcpu->mmio_read_completed = 1;
11046                 return complete_emulated_io(vcpu);
11047         }
11048
11049         run->exit_reason = KVM_EXIT_MMIO;
11050         run->mmio.phys_addr = frag->gpa;
11051         if (vcpu->mmio_is_write)
11052                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
11053         run->mmio.len = min(8u, frag->len);
11054         run->mmio.is_write = vcpu->mmio_is_write;
11055         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
11056         return 0;
11057 }
11058
11059 /* Swap (qemu) user FPU context for the guest FPU context. */
11060 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
11061 {
11062         /* Exclude PKRU, it's restored separately immediately after VM-Exit. */
11063         fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
11064         trace_kvm_fpu(1);
11065 }
11066
11067 /* When vcpu_run ends, restore user space FPU context. */
11068 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
11069 {
11070         fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
11071         ++vcpu->stat.fpu_reload;
11072         trace_kvm_fpu(0);
11073 }
11074
11075 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
11076 {
11077         struct kvm_queued_exception *ex = &vcpu->arch.exception;
11078         struct kvm_run *kvm_run = vcpu->run;
11079         int r;
11080
11081         vcpu_load(vcpu);
11082         kvm_sigset_activate(vcpu);
11083         kvm_run->flags = 0;
11084         kvm_load_guest_fpu(vcpu);
11085
11086         kvm_vcpu_srcu_read_lock(vcpu);
11087         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
11088                 if (kvm_run->immediate_exit) {
11089                         r = -EINTR;
11090                         goto out;
11091                 }
11092                 /*
11093                  * It should be impossible for the hypervisor timer to be in
11094                  * use before KVM has ever run the vCPU.
11095                  */
11096                 WARN_ON_ONCE(kvm_lapic_hv_timer_in_use(vcpu));
11097
11098                 kvm_vcpu_srcu_read_unlock(vcpu);
11099                 kvm_vcpu_block(vcpu);
11100                 kvm_vcpu_srcu_read_lock(vcpu);
11101
11102                 if (kvm_apic_accept_events(vcpu) < 0) {
11103                         r = 0;
11104                         goto out;
11105                 }
11106                 r = -EAGAIN;
11107                 if (signal_pending(current)) {
11108                         r = -EINTR;
11109                         kvm_run->exit_reason = KVM_EXIT_INTR;
11110                         ++vcpu->stat.signal_exits;
11111                 }
11112                 goto out;
11113         }
11114
11115         if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
11116             (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
11117                 r = -EINVAL;
11118                 goto out;
11119         }
11120
11121         if (kvm_run->kvm_dirty_regs) {
11122                 r = sync_regs(vcpu);
11123                 if (r != 0)
11124                         goto out;
11125         }
11126
11127         /* re-sync apic's tpr */
11128         if (!lapic_in_kernel(vcpu)) {
11129                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
11130                         r = -EINVAL;
11131                         goto out;
11132                 }
11133         }
11134
11135         /*
11136          * If userspace set a pending exception and L2 is active, convert it to
11137          * a pending VM-Exit if L1 wants to intercept the exception.
11138          */
11139         if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) &&
11140             kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector,
11141                                                         ex->error_code)) {
11142                 kvm_queue_exception_vmexit(vcpu, ex->vector,
11143                                            ex->has_error_code, ex->error_code,
11144                                            ex->has_payload, ex->payload);
11145                 ex->injected = false;
11146                 ex->pending = false;
11147         }
11148         vcpu->arch.exception_from_userspace = false;
11149
11150         if (unlikely(vcpu->arch.complete_userspace_io)) {
11151                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
11152                 vcpu->arch.complete_userspace_io = NULL;
11153                 r = cui(vcpu);
11154                 if (r <= 0)
11155                         goto out;
11156         } else {
11157                 WARN_ON_ONCE(vcpu->arch.pio.count);
11158                 WARN_ON_ONCE(vcpu->mmio_needed);
11159         }
11160
11161         if (kvm_run->immediate_exit) {
11162                 r = -EINTR;
11163                 goto out;
11164         }
11165
11166         r = static_call(kvm_x86_vcpu_pre_run)(vcpu);
11167         if (r <= 0)
11168                 goto out;
11169
11170         r = vcpu_run(vcpu);
11171
11172 out:
11173         kvm_put_guest_fpu(vcpu);
11174         if (kvm_run->kvm_valid_regs)
11175                 store_regs(vcpu);
11176         post_kvm_run_save(vcpu);
11177         kvm_vcpu_srcu_read_unlock(vcpu);
11178
11179         kvm_sigset_deactivate(vcpu);
11180         vcpu_put(vcpu);
11181         return r;
11182 }
11183
11184 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11185 {
11186         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
11187                 /*
11188                  * We are here if userspace calls get_regs() in the middle of
11189                  * instruction emulation. Registers state needs to be copied
11190                  * back from emulation context to vcpu. Userspace shouldn't do
11191                  * that usually, but some bad designed PV devices (vmware
11192                  * backdoor interface) need this to work
11193                  */
11194                 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
11195                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11196         }
11197         regs->rax = kvm_rax_read(vcpu);
11198         regs->rbx = kvm_rbx_read(vcpu);
11199         regs->rcx = kvm_rcx_read(vcpu);
11200         regs->rdx = kvm_rdx_read(vcpu);
11201         regs->rsi = kvm_rsi_read(vcpu);
11202         regs->rdi = kvm_rdi_read(vcpu);
11203         regs->rsp = kvm_rsp_read(vcpu);
11204         regs->rbp = kvm_rbp_read(vcpu);
11205 #ifdef CONFIG_X86_64
11206         regs->r8 = kvm_r8_read(vcpu);
11207         regs->r9 = kvm_r9_read(vcpu);
11208         regs->r10 = kvm_r10_read(vcpu);
11209         regs->r11 = kvm_r11_read(vcpu);
11210         regs->r12 = kvm_r12_read(vcpu);
11211         regs->r13 = kvm_r13_read(vcpu);
11212         regs->r14 = kvm_r14_read(vcpu);
11213         regs->r15 = kvm_r15_read(vcpu);
11214 #endif
11215
11216         regs->rip = kvm_rip_read(vcpu);
11217         regs->rflags = kvm_get_rflags(vcpu);
11218 }
11219
11220 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11221 {
11222         vcpu_load(vcpu);
11223         __get_regs(vcpu, regs);
11224         vcpu_put(vcpu);
11225         return 0;
11226 }
11227
11228 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11229 {
11230         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
11231         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11232
11233         kvm_rax_write(vcpu, regs->rax);
11234         kvm_rbx_write(vcpu, regs->rbx);
11235         kvm_rcx_write(vcpu, regs->rcx);
11236         kvm_rdx_write(vcpu, regs->rdx);
11237         kvm_rsi_write(vcpu, regs->rsi);
11238         kvm_rdi_write(vcpu, regs->rdi);
11239         kvm_rsp_write(vcpu, regs->rsp);
11240         kvm_rbp_write(vcpu, regs->rbp);
11241 #ifdef CONFIG_X86_64
11242         kvm_r8_write(vcpu, regs->r8);
11243         kvm_r9_write(vcpu, regs->r9);
11244         kvm_r10_write(vcpu, regs->r10);
11245         kvm_r11_write(vcpu, regs->r11);
11246         kvm_r12_write(vcpu, regs->r12);
11247         kvm_r13_write(vcpu, regs->r13);
11248         kvm_r14_write(vcpu, regs->r14);
11249         kvm_r15_write(vcpu, regs->r15);
11250 #endif
11251
11252         kvm_rip_write(vcpu, regs->rip);
11253         kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
11254
11255         vcpu->arch.exception.pending = false;
11256         vcpu->arch.exception_vmexit.pending = false;
11257
11258         kvm_make_request(KVM_REQ_EVENT, vcpu);
11259 }
11260
11261 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11262 {
11263         vcpu_load(vcpu);
11264         __set_regs(vcpu, regs);
11265         vcpu_put(vcpu);
11266         return 0;
11267 }
11268
11269 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11270 {
11271         struct desc_ptr dt;
11272
11273         if (vcpu->arch.guest_state_protected)
11274                 goto skip_protected_regs;
11275
11276         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11277         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11278         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11279         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11280         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11281         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11282
11283         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11284         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11285
11286         static_call(kvm_x86_get_idt)(vcpu, &dt);
11287         sregs->idt.limit = dt.size;
11288         sregs->idt.base = dt.address;
11289         static_call(kvm_x86_get_gdt)(vcpu, &dt);
11290         sregs->gdt.limit = dt.size;
11291         sregs->gdt.base = dt.address;
11292
11293         sregs->cr2 = vcpu->arch.cr2;
11294         sregs->cr3 = kvm_read_cr3(vcpu);
11295
11296 skip_protected_regs:
11297         sregs->cr0 = kvm_read_cr0(vcpu);
11298         sregs->cr4 = kvm_read_cr4(vcpu);
11299         sregs->cr8 = kvm_get_cr8(vcpu);
11300         sregs->efer = vcpu->arch.efer;
11301         sregs->apic_base = kvm_get_apic_base(vcpu);
11302 }
11303
11304 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11305 {
11306         __get_sregs_common(vcpu, sregs);
11307
11308         if (vcpu->arch.guest_state_protected)
11309                 return;
11310
11311         if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
11312                 set_bit(vcpu->arch.interrupt.nr,
11313                         (unsigned long *)sregs->interrupt_bitmap);
11314 }
11315
11316 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11317 {
11318         int i;
11319
11320         __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
11321
11322         if (vcpu->arch.guest_state_protected)
11323                 return;
11324
11325         if (is_pae_paging(vcpu)) {
11326                 for (i = 0 ; i < 4 ; i++)
11327                         sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
11328                 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
11329         }
11330 }
11331
11332 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
11333                                   struct kvm_sregs *sregs)
11334 {
11335         vcpu_load(vcpu);
11336         __get_sregs(vcpu, sregs);
11337         vcpu_put(vcpu);
11338         return 0;
11339 }
11340
11341 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
11342                                     struct kvm_mp_state *mp_state)
11343 {
11344         int r;
11345
11346         vcpu_load(vcpu);
11347         if (kvm_mpx_supported())
11348                 kvm_load_guest_fpu(vcpu);
11349
11350         r = kvm_apic_accept_events(vcpu);
11351         if (r < 0)
11352                 goto out;
11353         r = 0;
11354
11355         if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
11356              vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
11357             vcpu->arch.pv.pv_unhalted)
11358                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
11359         else
11360                 mp_state->mp_state = vcpu->arch.mp_state;
11361
11362 out:
11363         if (kvm_mpx_supported())
11364                 kvm_put_guest_fpu(vcpu);
11365         vcpu_put(vcpu);
11366         return r;
11367 }
11368
11369 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
11370                                     struct kvm_mp_state *mp_state)
11371 {
11372         int ret = -EINVAL;
11373
11374         vcpu_load(vcpu);
11375
11376         switch (mp_state->mp_state) {
11377         case KVM_MP_STATE_UNINITIALIZED:
11378         case KVM_MP_STATE_HALTED:
11379         case KVM_MP_STATE_AP_RESET_HOLD:
11380         case KVM_MP_STATE_INIT_RECEIVED:
11381         case KVM_MP_STATE_SIPI_RECEIVED:
11382                 if (!lapic_in_kernel(vcpu))
11383                         goto out;
11384                 break;
11385
11386         case KVM_MP_STATE_RUNNABLE:
11387                 break;
11388
11389         default:
11390                 goto out;
11391         }
11392
11393         /*
11394          * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow
11395          * forcing the guest into INIT/SIPI if those events are supposed to be
11396          * blocked.  KVM prioritizes SMI over INIT, so reject INIT/SIPI state
11397          * if an SMI is pending as well.
11398          */
11399         if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) &&
11400             (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
11401              mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
11402                 goto out;
11403
11404         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
11405                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
11406                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
11407         } else
11408                 vcpu->arch.mp_state = mp_state->mp_state;
11409         kvm_make_request(KVM_REQ_EVENT, vcpu);
11410
11411         ret = 0;
11412 out:
11413         vcpu_put(vcpu);
11414         return ret;
11415 }
11416
11417 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
11418                     int reason, bool has_error_code, u32 error_code)
11419 {
11420         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
11421         int ret;
11422
11423         init_emulate_ctxt(vcpu);
11424
11425         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
11426                                    has_error_code, error_code);
11427         if (ret) {
11428                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11429                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11430                 vcpu->run->internal.ndata = 0;
11431                 return 0;
11432         }
11433
11434         kvm_rip_write(vcpu, ctxt->eip);
11435         kvm_set_rflags(vcpu, ctxt->eflags);
11436         return 1;
11437 }
11438 EXPORT_SYMBOL_GPL(kvm_task_switch);
11439
11440 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11441 {
11442         if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
11443                 /*
11444                  * When EFER.LME and CR0.PG are set, the processor is in
11445                  * 64-bit mode (though maybe in a 32-bit code segment).
11446                  * CR4.PAE and EFER.LMA must be set.
11447                  */
11448                 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
11449                         return false;
11450                 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
11451                         return false;
11452         } else {
11453                 /*
11454                  * Not in 64-bit mode: EFER.LMA is clear and the code
11455                  * segment cannot be 64-bit.
11456                  */
11457                 if (sregs->efer & EFER_LMA || sregs->cs.l)
11458                         return false;
11459         }
11460
11461         return kvm_is_valid_cr4(vcpu, sregs->cr4);
11462 }
11463
11464 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
11465                 int *mmu_reset_needed, bool update_pdptrs)
11466 {
11467         struct msr_data apic_base_msr;
11468         int idx;
11469         struct desc_ptr dt;
11470
11471         if (!kvm_is_valid_sregs(vcpu, sregs))
11472                 return -EINVAL;
11473
11474         apic_base_msr.data = sregs->apic_base;
11475         apic_base_msr.host_initiated = true;
11476         if (kvm_set_apic_base(vcpu, &apic_base_msr))
11477                 return -EINVAL;
11478
11479         if (vcpu->arch.guest_state_protected)
11480                 return 0;
11481
11482         dt.size = sregs->idt.limit;
11483         dt.address = sregs->idt.base;
11484         static_call(kvm_x86_set_idt)(vcpu, &dt);
11485         dt.size = sregs->gdt.limit;
11486         dt.address = sregs->gdt.base;
11487         static_call(kvm_x86_set_gdt)(vcpu, &dt);
11488
11489         vcpu->arch.cr2 = sregs->cr2;
11490         *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
11491         vcpu->arch.cr3 = sregs->cr3;
11492         kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11493         static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3);
11494
11495         kvm_set_cr8(vcpu, sregs->cr8);
11496
11497         *mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
11498         static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
11499
11500         *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
11501         static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
11502         vcpu->arch.cr0 = sregs->cr0;
11503
11504         *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
11505         static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
11506
11507         if (update_pdptrs) {
11508                 idx = srcu_read_lock(&vcpu->kvm->srcu);
11509                 if (is_pae_paging(vcpu)) {
11510                         load_pdptrs(vcpu, kvm_read_cr3(vcpu));
11511                         *mmu_reset_needed = 1;
11512                 }
11513                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
11514         }
11515
11516         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11517         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11518         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11519         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11520         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11521         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11522
11523         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11524         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11525
11526         update_cr8_intercept(vcpu);
11527
11528         /* Older userspace won't unhalt the vcpu on reset. */
11529         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
11530             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
11531             !is_protmode(vcpu))
11532                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11533
11534         return 0;
11535 }
11536
11537 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11538 {
11539         int pending_vec, max_bits;
11540         int mmu_reset_needed = 0;
11541         int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
11542
11543         if (ret)
11544                 return ret;
11545
11546         if (mmu_reset_needed)
11547                 kvm_mmu_reset_context(vcpu);
11548
11549         max_bits = KVM_NR_INTERRUPTS;
11550         pending_vec = find_first_bit(
11551                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
11552
11553         if (pending_vec < max_bits) {
11554                 kvm_queue_interrupt(vcpu, pending_vec, false);
11555                 pr_debug("Set back pending irq %d\n", pending_vec);
11556                 kvm_make_request(KVM_REQ_EVENT, vcpu);
11557         }
11558         return 0;
11559 }
11560
11561 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11562 {
11563         int mmu_reset_needed = 0;
11564         bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
11565         bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
11566                 !(sregs2->efer & EFER_LMA);
11567         int i, ret;
11568
11569         if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
11570                 return -EINVAL;
11571
11572         if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
11573                 return -EINVAL;
11574
11575         ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
11576                                  &mmu_reset_needed, !valid_pdptrs);
11577         if (ret)
11578                 return ret;
11579
11580         if (valid_pdptrs) {
11581                 for (i = 0; i < 4 ; i++)
11582                         kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
11583
11584                 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
11585                 mmu_reset_needed = 1;
11586                 vcpu->arch.pdptrs_from_userspace = true;
11587         }
11588         if (mmu_reset_needed)
11589                 kvm_mmu_reset_context(vcpu);
11590         return 0;
11591 }
11592
11593 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
11594                                   struct kvm_sregs *sregs)
11595 {
11596         int ret;
11597
11598         vcpu_load(vcpu);
11599         ret = __set_sregs(vcpu, sregs);
11600         vcpu_put(vcpu);
11601         return ret;
11602 }
11603
11604 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
11605 {
11606         bool set = false;
11607         struct kvm_vcpu *vcpu;
11608         unsigned long i;
11609
11610         if (!enable_apicv)
11611                 return;
11612
11613         down_write(&kvm->arch.apicv_update_lock);
11614
11615         kvm_for_each_vcpu(i, vcpu, kvm) {
11616                 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
11617                         set = true;
11618                         break;
11619                 }
11620         }
11621         __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
11622         up_write(&kvm->arch.apicv_update_lock);
11623 }
11624
11625 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
11626                                         struct kvm_guest_debug *dbg)
11627 {
11628         unsigned long rflags;
11629         int i, r;
11630
11631         if (vcpu->arch.guest_state_protected)
11632                 return -EINVAL;
11633
11634         vcpu_load(vcpu);
11635
11636         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
11637                 r = -EBUSY;
11638                 if (kvm_is_exception_pending(vcpu))
11639                         goto out;
11640                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
11641                         kvm_queue_exception(vcpu, DB_VECTOR);
11642                 else
11643                         kvm_queue_exception(vcpu, BP_VECTOR);
11644         }
11645
11646         /*
11647          * Read rflags as long as potentially injected trace flags are still
11648          * filtered out.
11649          */
11650         rflags = kvm_get_rflags(vcpu);
11651
11652         vcpu->guest_debug = dbg->control;
11653         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
11654                 vcpu->guest_debug = 0;
11655
11656         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
11657                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
11658                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
11659                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
11660         } else {
11661                 for (i = 0; i < KVM_NR_DB_REGS; i++)
11662                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
11663         }
11664         kvm_update_dr7(vcpu);
11665
11666         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11667                 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
11668
11669         /*
11670          * Trigger an rflags update that will inject or remove the trace
11671          * flags.
11672          */
11673         kvm_set_rflags(vcpu, rflags);
11674
11675         static_call(kvm_x86_update_exception_bitmap)(vcpu);
11676
11677         kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
11678
11679         r = 0;
11680
11681 out:
11682         vcpu_put(vcpu);
11683         return r;
11684 }
11685
11686 /*
11687  * Translate a guest virtual address to a guest physical address.
11688  */
11689 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
11690                                     struct kvm_translation *tr)
11691 {
11692         unsigned long vaddr = tr->linear_address;
11693         gpa_t gpa;
11694         int idx;
11695
11696         vcpu_load(vcpu);
11697
11698         idx = srcu_read_lock(&vcpu->kvm->srcu);
11699         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
11700         srcu_read_unlock(&vcpu->kvm->srcu, idx);
11701         tr->physical_address = gpa;
11702         tr->valid = gpa != INVALID_GPA;
11703         tr->writeable = 1;
11704         tr->usermode = 0;
11705
11706         vcpu_put(vcpu);
11707         return 0;
11708 }
11709
11710 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11711 {
11712         struct fxregs_state *fxsave;
11713
11714         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11715                 return 0;
11716
11717         vcpu_load(vcpu);
11718
11719         fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11720         memcpy(fpu->fpr, fxsave->st_space, 128);
11721         fpu->fcw = fxsave->cwd;
11722         fpu->fsw = fxsave->swd;
11723         fpu->ftwx = fxsave->twd;
11724         fpu->last_opcode = fxsave->fop;
11725         fpu->last_ip = fxsave->rip;
11726         fpu->last_dp = fxsave->rdp;
11727         memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
11728
11729         vcpu_put(vcpu);
11730         return 0;
11731 }
11732
11733 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11734 {
11735         struct fxregs_state *fxsave;
11736
11737         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11738                 return 0;
11739
11740         vcpu_load(vcpu);
11741
11742         fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11743
11744         memcpy(fxsave->st_space, fpu->fpr, 128);
11745         fxsave->cwd = fpu->fcw;
11746         fxsave->swd = fpu->fsw;
11747         fxsave->twd = fpu->ftwx;
11748         fxsave->fop = fpu->last_opcode;
11749         fxsave->rip = fpu->last_ip;
11750         fxsave->rdp = fpu->last_dp;
11751         memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
11752
11753         vcpu_put(vcpu);
11754         return 0;
11755 }
11756
11757 static void store_regs(struct kvm_vcpu *vcpu)
11758 {
11759         BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
11760
11761         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
11762                 __get_regs(vcpu, &vcpu->run->s.regs.regs);
11763
11764         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
11765                 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
11766
11767         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
11768                 kvm_vcpu_ioctl_x86_get_vcpu_events(
11769                                 vcpu, &vcpu->run->s.regs.events);
11770 }
11771
11772 static int sync_regs(struct kvm_vcpu *vcpu)
11773 {
11774         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
11775                 __set_regs(vcpu, &vcpu->run->s.regs.regs);
11776                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
11777         }
11778         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
11779                 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
11780                         return -EINVAL;
11781                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
11782         }
11783         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
11784                 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
11785                                 vcpu, &vcpu->run->s.regs.events))
11786                         return -EINVAL;
11787                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
11788         }
11789
11790         return 0;
11791 }
11792
11793 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
11794 {
11795         if (kvm_check_tsc_unstable() && kvm->created_vcpus)
11796                 pr_warn_once("SMP vm created on host with unstable TSC; "
11797                              "guest TSC will not be reliable\n");
11798
11799         if (!kvm->arch.max_vcpu_ids)
11800                 kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS;
11801
11802         if (id >= kvm->arch.max_vcpu_ids)
11803                 return -EINVAL;
11804
11805         return static_call(kvm_x86_vcpu_precreate)(kvm);
11806 }
11807
11808 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
11809 {
11810         struct page *page;
11811         int r;
11812
11813         vcpu->arch.last_vmentry_cpu = -1;
11814         vcpu->arch.regs_avail = ~0;
11815         vcpu->arch.regs_dirty = ~0;
11816
11817         kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm, vcpu, KVM_HOST_USES_PFN);
11818
11819         if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
11820                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11821         else
11822                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
11823
11824         r = kvm_mmu_create(vcpu);
11825         if (r < 0)
11826                 return r;
11827
11828         if (irqchip_in_kernel(vcpu->kvm)) {
11829                 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
11830                 if (r < 0)
11831                         goto fail_mmu_destroy;
11832
11833                 /*
11834                  * Defer evaluating inhibits until the vCPU is first run, as
11835                  * this vCPU will not get notified of any changes until this
11836                  * vCPU is visible to other vCPUs (marked online and added to
11837                  * the set of vCPUs).  Opportunistically mark APICv active as
11838                  * VMX in particularly is highly unlikely to have inhibits.
11839                  * Ignore the current per-VM APICv state so that vCPU creation
11840                  * is guaranteed to run with a deterministic value, the request
11841                  * will ensure the vCPU gets the correct state before VM-Entry.
11842                  */
11843                 if (enable_apicv) {
11844                         vcpu->arch.apic->apicv_active = true;
11845                         kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
11846                 }
11847         } else
11848                 static_branch_inc(&kvm_has_noapic_vcpu);
11849
11850         r = -ENOMEM;
11851
11852         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
11853         if (!page)
11854                 goto fail_free_lapic;
11855         vcpu->arch.pio_data = page_address(page);
11856
11857         vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64),
11858                                        GFP_KERNEL_ACCOUNT);
11859         vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64),
11860                                             GFP_KERNEL_ACCOUNT);
11861         if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks)
11862                 goto fail_free_mce_banks;
11863         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
11864
11865         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
11866                                 GFP_KERNEL_ACCOUNT))
11867                 goto fail_free_mce_banks;
11868
11869         if (!alloc_emulate_ctxt(vcpu))
11870                 goto free_wbinvd_dirty_mask;
11871
11872         if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
11873                 pr_err("failed to allocate vcpu's fpu\n");
11874                 goto free_emulate_ctxt;
11875         }
11876
11877         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
11878         vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
11879
11880         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
11881
11882         kvm_async_pf_hash_reset(vcpu);
11883
11884         vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap;
11885         kvm_pmu_init(vcpu);
11886
11887         vcpu->arch.pending_external_vector = -1;
11888         vcpu->arch.preempted_in_kernel = false;
11889
11890 #if IS_ENABLED(CONFIG_HYPERV)
11891         vcpu->arch.hv_root_tdp = INVALID_PAGE;
11892 #endif
11893
11894         r = static_call(kvm_x86_vcpu_create)(vcpu);
11895         if (r)
11896                 goto free_guest_fpu;
11897
11898         vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
11899         vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
11900         kvm_xen_init_vcpu(vcpu);
11901         kvm_vcpu_mtrr_init(vcpu);
11902         vcpu_load(vcpu);
11903         kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz);
11904         kvm_vcpu_reset(vcpu, false);
11905         kvm_init_mmu(vcpu);
11906         vcpu_put(vcpu);
11907         return 0;
11908
11909 free_guest_fpu:
11910         fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11911 free_emulate_ctxt:
11912         kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11913 free_wbinvd_dirty_mask:
11914         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11915 fail_free_mce_banks:
11916         kfree(vcpu->arch.mce_banks);
11917         kfree(vcpu->arch.mci_ctl2_banks);
11918         free_page((unsigned long)vcpu->arch.pio_data);
11919 fail_free_lapic:
11920         kvm_free_lapic(vcpu);
11921 fail_mmu_destroy:
11922         kvm_mmu_destroy(vcpu);
11923         return r;
11924 }
11925
11926 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
11927 {
11928         struct kvm *kvm = vcpu->kvm;
11929
11930         if (mutex_lock_killable(&vcpu->mutex))
11931                 return;
11932         vcpu_load(vcpu);
11933         kvm_synchronize_tsc(vcpu, 0);
11934         vcpu_put(vcpu);
11935
11936         /* poll control enabled by default */
11937         vcpu->arch.msr_kvm_poll_control = 1;
11938
11939         mutex_unlock(&vcpu->mutex);
11940
11941         if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
11942                 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
11943                                                 KVMCLOCK_SYNC_PERIOD);
11944 }
11945
11946 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
11947 {
11948         int idx;
11949
11950         kvmclock_reset(vcpu);
11951
11952         static_call(kvm_x86_vcpu_free)(vcpu);
11953
11954         kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11955         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11956         fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11957
11958         kvm_xen_destroy_vcpu(vcpu);
11959         kvm_hv_vcpu_uninit(vcpu);
11960         kvm_pmu_destroy(vcpu);
11961         kfree(vcpu->arch.mce_banks);
11962         kfree(vcpu->arch.mci_ctl2_banks);
11963         kvm_free_lapic(vcpu);
11964         idx = srcu_read_lock(&vcpu->kvm->srcu);
11965         kvm_mmu_destroy(vcpu);
11966         srcu_read_unlock(&vcpu->kvm->srcu, idx);
11967         free_page((unsigned long)vcpu->arch.pio_data);
11968         kvfree(vcpu->arch.cpuid_entries);
11969         if (!lapic_in_kernel(vcpu))
11970                 static_branch_dec(&kvm_has_noapic_vcpu);
11971 }
11972
11973 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
11974 {
11975         struct kvm_cpuid_entry2 *cpuid_0x1;
11976         unsigned long old_cr0 = kvm_read_cr0(vcpu);
11977         unsigned long new_cr0;
11978
11979         /*
11980          * Several of the "set" flows, e.g. ->set_cr0(), read other registers
11981          * to handle side effects.  RESET emulation hits those flows and relies
11982          * on emulated/virtualized registers, including those that are loaded
11983          * into hardware, to be zeroed at vCPU creation.  Use CRs as a sentinel
11984          * to detect improper or missing initialization.
11985          */
11986         WARN_ON_ONCE(!init_event &&
11987                      (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
11988
11989         /*
11990          * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's
11991          * possible to INIT the vCPU while L2 is active.  Force the vCPU back
11992          * into L1 as EFER.SVME is cleared on INIT (along with all other EFER
11993          * bits), i.e. virtualization is disabled.
11994          */
11995         if (is_guest_mode(vcpu))
11996                 kvm_leave_nested(vcpu);
11997
11998         kvm_lapic_reset(vcpu, init_event);
11999
12000         WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu));
12001         vcpu->arch.hflags = 0;
12002
12003         vcpu->arch.smi_pending = 0;
12004         vcpu->arch.smi_count = 0;
12005         atomic_set(&vcpu->arch.nmi_queued, 0);
12006         vcpu->arch.nmi_pending = 0;
12007         vcpu->arch.nmi_injected = false;
12008         kvm_clear_interrupt_queue(vcpu);
12009         kvm_clear_exception_queue(vcpu);
12010
12011         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
12012         kvm_update_dr0123(vcpu);
12013         vcpu->arch.dr6 = DR6_ACTIVE_LOW;
12014         vcpu->arch.dr7 = DR7_FIXED_1;
12015         kvm_update_dr7(vcpu);
12016
12017         vcpu->arch.cr2 = 0;
12018
12019         kvm_make_request(KVM_REQ_EVENT, vcpu);
12020         vcpu->arch.apf.msr_en_val = 0;
12021         vcpu->arch.apf.msr_int_val = 0;
12022         vcpu->arch.st.msr_val = 0;
12023
12024         kvmclock_reset(vcpu);
12025
12026         kvm_clear_async_pf_completion_queue(vcpu);
12027         kvm_async_pf_hash_reset(vcpu);
12028         vcpu->arch.apf.halted = false;
12029
12030         if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
12031                 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
12032
12033                 /*
12034                  * All paths that lead to INIT are required to load the guest's
12035                  * FPU state (because most paths are buried in KVM_RUN).
12036                  */
12037                 if (init_event)
12038                         kvm_put_guest_fpu(vcpu);
12039
12040                 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
12041                 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
12042
12043                 if (init_event)
12044                         kvm_load_guest_fpu(vcpu);
12045         }
12046
12047         if (!init_event) {
12048                 kvm_pmu_reset(vcpu);
12049                 vcpu->arch.smbase = 0x30000;
12050
12051                 vcpu->arch.msr_misc_features_enables = 0;
12052                 vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL |
12053                                                   MSR_IA32_MISC_ENABLE_BTS_UNAVAIL;
12054
12055                 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
12056                 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
12057         }
12058
12059         /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
12060         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
12061         kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
12062
12063         /*
12064          * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
12065          * if no CPUID match is found.  Note, it's impossible to get a match at
12066          * RESET since KVM emulates RESET before exposing the vCPU to userspace,
12067          * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
12068          * on RESET.  But, go through the motions in case that's ever remedied.
12069          */
12070         cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1);
12071         kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
12072
12073         static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
12074
12075         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
12076         kvm_rip_write(vcpu, 0xfff0);
12077
12078         vcpu->arch.cr3 = 0;
12079         kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
12080
12081         /*
12082          * CR0.CD/NW are set on RESET, preserved on INIT.  Note, some versions
12083          * of Intel's SDM list CD/NW as being set on INIT, but they contradict
12084          * (or qualify) that with a footnote stating that CD/NW are preserved.
12085          */
12086         new_cr0 = X86_CR0_ET;
12087         if (init_event)
12088                 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
12089         else
12090                 new_cr0 |= X86_CR0_NW | X86_CR0_CD;
12091
12092         static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
12093         static_call(kvm_x86_set_cr4)(vcpu, 0);
12094         static_call(kvm_x86_set_efer)(vcpu, 0);
12095         static_call(kvm_x86_update_exception_bitmap)(vcpu);
12096
12097         /*
12098          * On the standard CR0/CR4/EFER modification paths, there are several
12099          * complex conditions determining whether the MMU has to be reset and/or
12100          * which PCIDs have to be flushed.  However, CR0.WP and the paging-related
12101          * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
12102          * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
12103          * CR0 will be '0' prior to RESET).  So we only need to check CR0.PG here.
12104          */
12105         if (old_cr0 & X86_CR0_PG) {
12106                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12107                 kvm_mmu_reset_context(vcpu);
12108         }
12109
12110         /*
12111          * Intel's SDM states that all TLB entries are flushed on INIT.  AMD's
12112          * APM states the TLBs are untouched by INIT, but it also states that
12113          * the TLBs are flushed on "External initialization of the processor."
12114          * Flush the guest TLB regardless of vendor, there is no meaningful
12115          * benefit in relying on the guest to flush the TLB immediately after
12116          * INIT.  A spurious TLB flush is benign and likely negligible from a
12117          * performance perspective.
12118          */
12119         if (init_event)
12120                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12121 }
12122 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
12123
12124 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
12125 {
12126         struct kvm_segment cs;
12127
12128         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
12129         cs.selector = vector << 8;
12130         cs.base = vector << 12;
12131         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
12132         kvm_rip_write(vcpu, 0);
12133 }
12134 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
12135
12136 int kvm_arch_hardware_enable(void)
12137 {
12138         struct kvm *kvm;
12139         struct kvm_vcpu *vcpu;
12140         unsigned long i;
12141         int ret;
12142         u64 local_tsc;
12143         u64 max_tsc = 0;
12144         bool stable, backwards_tsc = false;
12145
12146         kvm_user_return_msr_cpu_online();
12147
12148         ret = kvm_x86_check_processor_compatibility();
12149         if (ret)
12150                 return ret;
12151
12152         ret = static_call(kvm_x86_hardware_enable)();
12153         if (ret != 0)
12154                 return ret;
12155
12156         local_tsc = rdtsc();
12157         stable = !kvm_check_tsc_unstable();
12158         list_for_each_entry(kvm, &vm_list, vm_list) {
12159                 kvm_for_each_vcpu(i, vcpu, kvm) {
12160                         if (!stable && vcpu->cpu == smp_processor_id())
12161                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
12162                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
12163                                 backwards_tsc = true;
12164                                 if (vcpu->arch.last_host_tsc > max_tsc)
12165                                         max_tsc = vcpu->arch.last_host_tsc;
12166                         }
12167                 }
12168         }
12169
12170         /*
12171          * Sometimes, even reliable TSCs go backwards.  This happens on
12172          * platforms that reset TSC during suspend or hibernate actions, but
12173          * maintain synchronization.  We must compensate.  Fortunately, we can
12174          * detect that condition here, which happens early in CPU bringup,
12175          * before any KVM threads can be running.  Unfortunately, we can't
12176          * bring the TSCs fully up to date with real time, as we aren't yet far
12177          * enough into CPU bringup that we know how much real time has actually
12178          * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
12179          * variables that haven't been updated yet.
12180          *
12181          * So we simply find the maximum observed TSC above, then record the
12182          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
12183          * the adjustment will be applied.  Note that we accumulate
12184          * adjustments, in case multiple suspend cycles happen before some VCPU
12185          * gets a chance to run again.  In the event that no KVM threads get a
12186          * chance to run, we will miss the entire elapsed period, as we'll have
12187          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
12188          * loose cycle time.  This isn't too big a deal, since the loss will be
12189          * uniform across all VCPUs (not to mention the scenario is extremely
12190          * unlikely). It is possible that a second hibernate recovery happens
12191          * much faster than a first, causing the observed TSC here to be
12192          * smaller; this would require additional padding adjustment, which is
12193          * why we set last_host_tsc to the local tsc observed here.
12194          *
12195          * N.B. - this code below runs only on platforms with reliable TSC,
12196          * as that is the only way backwards_tsc is set above.  Also note
12197          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
12198          * have the same delta_cyc adjustment applied if backwards_tsc
12199          * is detected.  Note further, this adjustment is only done once,
12200          * as we reset last_host_tsc on all VCPUs to stop this from being
12201          * called multiple times (one for each physical CPU bringup).
12202          *
12203          * Platforms with unreliable TSCs don't have to deal with this, they
12204          * will be compensated by the logic in vcpu_load, which sets the TSC to
12205          * catchup mode.  This will catchup all VCPUs to real time, but cannot
12206          * guarantee that they stay in perfect synchronization.
12207          */
12208         if (backwards_tsc) {
12209                 u64 delta_cyc = max_tsc - local_tsc;
12210                 list_for_each_entry(kvm, &vm_list, vm_list) {
12211                         kvm->arch.backwards_tsc_observed = true;
12212                         kvm_for_each_vcpu(i, vcpu, kvm) {
12213                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
12214                                 vcpu->arch.last_host_tsc = local_tsc;
12215                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
12216                         }
12217
12218                         /*
12219                          * We have to disable TSC offset matching.. if you were
12220                          * booting a VM while issuing an S4 host suspend....
12221                          * you may have some problem.  Solving this issue is
12222                          * left as an exercise to the reader.
12223                          */
12224                         kvm->arch.last_tsc_nsec = 0;
12225                         kvm->arch.last_tsc_write = 0;
12226                 }
12227
12228         }
12229         return 0;
12230 }
12231
12232 void kvm_arch_hardware_disable(void)
12233 {
12234         static_call(kvm_x86_hardware_disable)();
12235         drop_user_return_notifiers();
12236 }
12237
12238 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
12239 {
12240         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
12241 }
12242
12243 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
12244 {
12245         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
12246 }
12247
12248 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
12249 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
12250
12251 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
12252 {
12253         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
12254
12255         vcpu->arch.l1tf_flush_l1d = true;
12256         if (pmu->version && unlikely(pmu->event_count)) {
12257                 pmu->need_cleanup = true;
12258                 kvm_make_request(KVM_REQ_PMU, vcpu);
12259         }
12260         static_call(kvm_x86_sched_in)(vcpu, cpu);
12261 }
12262
12263 void kvm_arch_free_vm(struct kvm *kvm)
12264 {
12265         kfree(to_kvm_hv(kvm)->hv_pa_pg);
12266         __kvm_arch_free_vm(kvm);
12267 }
12268
12269
12270 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
12271 {
12272         int ret;
12273         unsigned long flags;
12274
12275         if (type)
12276                 return -EINVAL;
12277
12278         ret = kvm_page_track_init(kvm);
12279         if (ret)
12280                 goto out;
12281
12282         ret = kvm_mmu_init_vm(kvm);
12283         if (ret)
12284                 goto out_page_track;
12285
12286         ret = static_call(kvm_x86_vm_init)(kvm);
12287         if (ret)
12288                 goto out_uninit_mmu;
12289
12290         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
12291         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
12292         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
12293
12294         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
12295         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
12296         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
12297         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
12298                 &kvm->arch.irq_sources_bitmap);
12299
12300         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
12301         mutex_init(&kvm->arch.apic_map_lock);
12302         seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
12303         kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
12304
12305         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
12306         pvclock_update_vm_gtod_copy(kvm);
12307         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
12308
12309         kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz;
12310         kvm->arch.guest_can_read_msr_platform_info = true;
12311         kvm->arch.enable_pmu = enable_pmu;
12312
12313 #if IS_ENABLED(CONFIG_HYPERV)
12314         spin_lock_init(&kvm->arch.hv_root_tdp_lock);
12315         kvm->arch.hv_root_tdp = INVALID_PAGE;
12316 #endif
12317
12318         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
12319         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
12320
12321         kvm_apicv_init(kvm);
12322         kvm_hv_init_vm(kvm);
12323         kvm_xen_init_vm(kvm);
12324
12325         return 0;
12326
12327 out_uninit_mmu:
12328         kvm_mmu_uninit_vm(kvm);
12329 out_page_track:
12330         kvm_page_track_cleanup(kvm);
12331 out:
12332         return ret;
12333 }
12334
12335 int kvm_arch_post_init_vm(struct kvm *kvm)
12336 {
12337         return kvm_mmu_post_init_vm(kvm);
12338 }
12339
12340 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
12341 {
12342         vcpu_load(vcpu);
12343         kvm_mmu_unload(vcpu);
12344         vcpu_put(vcpu);
12345 }
12346
12347 static void kvm_unload_vcpu_mmus(struct kvm *kvm)
12348 {
12349         unsigned long i;
12350         struct kvm_vcpu *vcpu;
12351
12352         kvm_for_each_vcpu(i, vcpu, kvm) {
12353                 kvm_clear_async_pf_completion_queue(vcpu);
12354                 kvm_unload_vcpu_mmu(vcpu);
12355         }
12356 }
12357
12358 void kvm_arch_sync_events(struct kvm *kvm)
12359 {
12360         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
12361         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
12362         kvm_free_pit(kvm);
12363 }
12364
12365 /**
12366  * __x86_set_memory_region: Setup KVM internal memory slot
12367  *
12368  * @kvm: the kvm pointer to the VM.
12369  * @id: the slot ID to setup.
12370  * @gpa: the GPA to install the slot (unused when @size == 0).
12371  * @size: the size of the slot. Set to zero to uninstall a slot.
12372  *
12373  * This function helps to setup a KVM internal memory slot.  Specify
12374  * @size > 0 to install a new slot, while @size == 0 to uninstall a
12375  * slot.  The return code can be one of the following:
12376  *
12377  *   HVA:           on success (uninstall will return a bogus HVA)
12378  *   -errno:        on error
12379  *
12380  * The caller should always use IS_ERR() to check the return value
12381  * before use.  Note, the KVM internal memory slots are guaranteed to
12382  * remain valid and unchanged until the VM is destroyed, i.e., the
12383  * GPA->HVA translation will not change.  However, the HVA is a user
12384  * address, i.e. its accessibility is not guaranteed, and must be
12385  * accessed via __copy_{to,from}_user().
12386  */
12387 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
12388                                       u32 size)
12389 {
12390         int i, r;
12391         unsigned long hva, old_npages;
12392         struct kvm_memslots *slots = kvm_memslots(kvm);
12393         struct kvm_memory_slot *slot;
12394
12395         /* Called with kvm->slots_lock held.  */
12396         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
12397                 return ERR_PTR_USR(-EINVAL);
12398
12399         slot = id_to_memslot(slots, id);
12400         if (size) {
12401                 if (slot && slot->npages)
12402                         return ERR_PTR_USR(-EEXIST);
12403
12404                 /*
12405                  * MAP_SHARED to prevent internal slot pages from being moved
12406                  * by fork()/COW.
12407                  */
12408                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
12409                               MAP_SHARED | MAP_ANONYMOUS, 0);
12410                 if (IS_ERR_VALUE(hva))
12411                         return (void __user *)hva;
12412         } else {
12413                 if (!slot || !slot->npages)
12414                         return NULL;
12415
12416                 old_npages = slot->npages;
12417                 hva = slot->userspace_addr;
12418         }
12419
12420         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
12421                 struct kvm_userspace_memory_region m;
12422
12423                 m.slot = id | (i << 16);
12424                 m.flags = 0;
12425                 m.guest_phys_addr = gpa;
12426                 m.userspace_addr = hva;
12427                 m.memory_size = size;
12428                 r = __kvm_set_memory_region(kvm, &m);
12429                 if (r < 0)
12430                         return ERR_PTR_USR(r);
12431         }
12432
12433         if (!size)
12434                 vm_munmap(hva, old_npages * PAGE_SIZE);
12435
12436         return (void __user *)hva;
12437 }
12438 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
12439
12440 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
12441 {
12442         kvm_mmu_pre_destroy_vm(kvm);
12443 }
12444
12445 void kvm_arch_destroy_vm(struct kvm *kvm)
12446 {
12447         if (current->mm == kvm->mm) {
12448                 /*
12449                  * Free memory regions allocated on behalf of userspace,
12450                  * unless the memory map has changed due to process exit
12451                  * or fd copying.
12452                  */
12453                 mutex_lock(&kvm->slots_lock);
12454                 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
12455                                         0, 0);
12456                 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
12457                                         0, 0);
12458                 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
12459                 mutex_unlock(&kvm->slots_lock);
12460         }
12461         kvm_unload_vcpu_mmus(kvm);
12462         static_call_cond(kvm_x86_vm_destroy)(kvm);
12463         kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
12464         kvm_pic_destroy(kvm);
12465         kvm_ioapic_destroy(kvm);
12466         kvm_destroy_vcpus(kvm);
12467         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
12468         kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
12469         kvm_mmu_uninit_vm(kvm);
12470         kvm_page_track_cleanup(kvm);
12471         kvm_xen_destroy_vm(kvm);
12472         kvm_hv_destroy_vm(kvm);
12473 }
12474
12475 static void memslot_rmap_free(struct kvm_memory_slot *slot)
12476 {
12477         int i;
12478
12479         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12480                 kvfree(slot->arch.rmap[i]);
12481                 slot->arch.rmap[i] = NULL;
12482         }
12483 }
12484
12485 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
12486 {
12487         int i;
12488
12489         memslot_rmap_free(slot);
12490
12491         for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12492                 kvfree(slot->arch.lpage_info[i - 1]);
12493                 slot->arch.lpage_info[i - 1] = NULL;
12494         }
12495
12496         kvm_page_track_free_memslot(slot);
12497 }
12498
12499 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
12500 {
12501         const int sz = sizeof(*slot->arch.rmap[0]);
12502         int i;
12503
12504         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12505                 int level = i + 1;
12506                 int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12507
12508                 if (slot->arch.rmap[i])
12509                         continue;
12510
12511                 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
12512                 if (!slot->arch.rmap[i]) {
12513                         memslot_rmap_free(slot);
12514                         return -ENOMEM;
12515                 }
12516         }
12517
12518         return 0;
12519 }
12520
12521 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
12522                                       struct kvm_memory_slot *slot)
12523 {
12524         unsigned long npages = slot->npages;
12525         int i, r;
12526
12527         /*
12528          * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
12529          * old arrays will be freed by __kvm_set_memory_region() if installing
12530          * the new memslot is successful.
12531          */
12532         memset(&slot->arch, 0, sizeof(slot->arch));
12533
12534         if (kvm_memslots_have_rmaps(kvm)) {
12535                 r = memslot_rmap_alloc(slot, npages);
12536                 if (r)
12537                         return r;
12538         }
12539
12540         for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12541                 struct kvm_lpage_info *linfo;
12542                 unsigned long ugfn;
12543                 int lpages;
12544                 int level = i + 1;
12545
12546                 lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12547
12548                 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
12549                 if (!linfo)
12550                         goto out_free;
12551
12552                 slot->arch.lpage_info[i - 1] = linfo;
12553
12554                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
12555                         linfo[0].disallow_lpage = 1;
12556                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
12557                         linfo[lpages - 1].disallow_lpage = 1;
12558                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
12559                 /*
12560                  * If the gfn and userspace address are not aligned wrt each
12561                  * other, disable large page support for this slot.
12562                  */
12563                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
12564                         unsigned long j;
12565
12566                         for (j = 0; j < lpages; ++j)
12567                                 linfo[j].disallow_lpage = 1;
12568                 }
12569         }
12570
12571         if (kvm_page_track_create_memslot(kvm, slot, npages))
12572                 goto out_free;
12573
12574         return 0;
12575
12576 out_free:
12577         memslot_rmap_free(slot);
12578
12579         for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12580                 kvfree(slot->arch.lpage_info[i - 1]);
12581                 slot->arch.lpage_info[i - 1] = NULL;
12582         }
12583         return -ENOMEM;
12584 }
12585
12586 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
12587 {
12588         struct kvm_vcpu *vcpu;
12589         unsigned long i;
12590
12591         /*
12592          * memslots->generation has been incremented.
12593          * mmio generation may have reached its maximum value.
12594          */
12595         kvm_mmu_invalidate_mmio_sptes(kvm, gen);
12596
12597         /* Force re-initialization of steal_time cache */
12598         kvm_for_each_vcpu(i, vcpu, kvm)
12599                 kvm_vcpu_kick(vcpu);
12600 }
12601
12602 int kvm_arch_prepare_memory_region(struct kvm *kvm,
12603                                    const struct kvm_memory_slot *old,
12604                                    struct kvm_memory_slot *new,
12605                                    enum kvm_mr_change change)
12606 {
12607         if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
12608                 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
12609                         return -EINVAL;
12610
12611                 return kvm_alloc_memslot_metadata(kvm, new);
12612         }
12613
12614         if (change == KVM_MR_FLAGS_ONLY)
12615                 memcpy(&new->arch, &old->arch, sizeof(old->arch));
12616         else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
12617                 return -EIO;
12618
12619         return 0;
12620 }
12621
12622
12623 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
12624 {
12625         int nr_slots;
12626
12627         if (!kvm_x86_ops.cpu_dirty_log_size)
12628                 return;
12629
12630         nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging);
12631         if ((enable && nr_slots == 1) || !nr_slots)
12632                 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
12633 }
12634
12635 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
12636                                      struct kvm_memory_slot *old,
12637                                      const struct kvm_memory_slot *new,
12638                                      enum kvm_mr_change change)
12639 {
12640         u32 old_flags = old ? old->flags : 0;
12641         u32 new_flags = new ? new->flags : 0;
12642         bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
12643
12644         /*
12645          * Update CPU dirty logging if dirty logging is being toggled.  This
12646          * applies to all operations.
12647          */
12648         if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
12649                 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
12650
12651         /*
12652          * Nothing more to do for RO slots (which can't be dirtied and can't be
12653          * made writable) or CREATE/MOVE/DELETE of a slot.
12654          *
12655          * For a memslot with dirty logging disabled:
12656          * CREATE:      No dirty mappings will already exist.
12657          * MOVE/DELETE: The old mappings will already have been cleaned up by
12658          *              kvm_arch_flush_shadow_memslot()
12659          *
12660          * For a memslot with dirty logging enabled:
12661          * CREATE:      No shadow pages exist, thus nothing to write-protect
12662          *              and no dirty bits to clear.
12663          * MOVE/DELETE: The old mappings will already have been cleaned up by
12664          *              kvm_arch_flush_shadow_memslot().
12665          */
12666         if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
12667                 return;
12668
12669         /*
12670          * READONLY and non-flags changes were filtered out above, and the only
12671          * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
12672          * logging isn't being toggled on or off.
12673          */
12674         if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
12675                 return;
12676
12677         if (!log_dirty_pages) {
12678                 /*
12679                  * Dirty logging tracks sptes in 4k granularity, meaning that
12680                  * large sptes have to be split.  If live migration succeeds,
12681                  * the guest in the source machine will be destroyed and large
12682                  * sptes will be created in the destination.  However, if the
12683                  * guest continues to run in the source machine (for example if
12684                  * live migration fails), small sptes will remain around and
12685                  * cause bad performance.
12686                  *
12687                  * Scan sptes if dirty logging has been stopped, dropping those
12688                  * which can be collapsed into a single large-page spte.  Later
12689                  * page faults will create the large-page sptes.
12690                  */
12691                 kvm_mmu_zap_collapsible_sptes(kvm, new);
12692         } else {
12693                 /*
12694                  * Initially-all-set does not require write protecting any page,
12695                  * because they're all assumed to be dirty.
12696                  */
12697                 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
12698                         return;
12699
12700                 if (READ_ONCE(eager_page_split))
12701                         kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
12702
12703                 if (kvm_x86_ops.cpu_dirty_log_size) {
12704                         kvm_mmu_slot_leaf_clear_dirty(kvm, new);
12705                         kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
12706                 } else {
12707                         kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
12708                 }
12709
12710                 /*
12711                  * Unconditionally flush the TLBs after enabling dirty logging.
12712                  * A flush is almost always going to be necessary (see below),
12713                  * and unconditionally flushing allows the helpers to omit
12714                  * the subtly complex checks when removing write access.
12715                  *
12716                  * Do the flush outside of mmu_lock to reduce the amount of
12717                  * time mmu_lock is held.  Flushing after dropping mmu_lock is
12718                  * safe as KVM only needs to guarantee the slot is fully
12719                  * write-protected before returning to userspace, i.e. before
12720                  * userspace can consume the dirty status.
12721                  *
12722                  * Flushing outside of mmu_lock requires KVM to be careful when
12723                  * making decisions based on writable status of an SPTE, e.g. a
12724                  * !writable SPTE doesn't guarantee a CPU can't perform writes.
12725                  *
12726                  * Specifically, KVM also write-protects guest page tables to
12727                  * monitor changes when using shadow paging, and must guarantee
12728                  * no CPUs can write to those page before mmu_lock is dropped.
12729                  * Because CPUs may have stale TLB entries at this point, a
12730                  * !writable SPTE doesn't guarantee CPUs can't perform writes.
12731                  *
12732                  * KVM also allows making SPTES writable outside of mmu_lock,
12733                  * e.g. to allow dirty logging without taking mmu_lock.
12734                  *
12735                  * To handle these scenarios, KVM uses a separate software-only
12736                  * bit (MMU-writable) to track if a SPTE is !writable due to
12737                  * a guest page table being write-protected (KVM clears the
12738                  * MMU-writable flag when write-protecting for shadow paging).
12739                  *
12740                  * The use of MMU-writable is also the primary motivation for
12741                  * the unconditional flush.  Because KVM must guarantee that a
12742                  * CPU doesn't contain stale, writable TLB entries for a
12743                  * !MMU-writable SPTE, KVM must flush if it encounters any
12744                  * MMU-writable SPTE regardless of whether the actual hardware
12745                  * writable bit was set.  I.e. KVM is almost guaranteed to need
12746                  * to flush, while unconditionally flushing allows the "remove
12747                  * write access" helpers to ignore MMU-writable entirely.
12748                  *
12749                  * See is_writable_pte() for more details (the case involving
12750                  * access-tracked SPTEs is particularly relevant).
12751                  */
12752                 kvm_arch_flush_remote_tlbs_memslot(kvm, new);
12753         }
12754 }
12755
12756 void kvm_arch_commit_memory_region(struct kvm *kvm,
12757                                 struct kvm_memory_slot *old,
12758                                 const struct kvm_memory_slot *new,
12759                                 enum kvm_mr_change change)
12760 {
12761         if (!kvm->arch.n_requested_mmu_pages &&
12762             (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
12763                 unsigned long nr_mmu_pages;
12764
12765                 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
12766                 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
12767                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
12768         }
12769
12770         kvm_mmu_slot_apply_flags(kvm, old, new, change);
12771
12772         /* Free the arrays associated with the old memslot. */
12773         if (change == KVM_MR_MOVE)
12774                 kvm_arch_free_memslot(kvm, old);
12775 }
12776
12777 void kvm_arch_flush_shadow_all(struct kvm *kvm)
12778 {
12779         kvm_mmu_zap_all(kvm);
12780 }
12781
12782 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
12783                                    struct kvm_memory_slot *slot)
12784 {
12785         kvm_page_track_flush_slot(kvm, slot);
12786 }
12787
12788 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
12789 {
12790         return (is_guest_mode(vcpu) &&
12791                 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
12792 }
12793
12794 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
12795 {
12796         if (!list_empty_careful(&vcpu->async_pf.done))
12797                 return true;
12798
12799         if (kvm_apic_has_pending_init_or_sipi(vcpu) &&
12800             kvm_apic_init_sipi_allowed(vcpu))
12801                 return true;
12802
12803         if (vcpu->arch.pv.pv_unhalted)
12804                 return true;
12805
12806         if (kvm_is_exception_pending(vcpu))
12807                 return true;
12808
12809         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12810             (vcpu->arch.nmi_pending &&
12811              static_call(kvm_x86_nmi_allowed)(vcpu, false)))
12812                 return true;
12813
12814 #ifdef CONFIG_KVM_SMM
12815         if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
12816             (vcpu->arch.smi_pending &&
12817              static_call(kvm_x86_smi_allowed)(vcpu, false)))
12818                 return true;
12819 #endif
12820
12821         if (kvm_arch_interrupt_allowed(vcpu) &&
12822             (kvm_cpu_has_interrupt(vcpu) ||
12823             kvm_guest_apic_has_interrupt(vcpu)))
12824                 return true;
12825
12826         if (kvm_hv_has_stimer_pending(vcpu))
12827                 return true;
12828
12829         if (is_guest_mode(vcpu) &&
12830             kvm_x86_ops.nested_ops->has_events &&
12831             kvm_x86_ops.nested_ops->has_events(vcpu))
12832                 return true;
12833
12834         if (kvm_xen_has_pending_events(vcpu))
12835                 return true;
12836
12837         return false;
12838 }
12839
12840 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
12841 {
12842         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
12843 }
12844
12845 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
12846 {
12847         if (kvm_vcpu_apicv_active(vcpu) &&
12848             static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
12849                 return true;
12850
12851         return false;
12852 }
12853
12854 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
12855 {
12856         if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
12857                 return true;
12858
12859         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12860 #ifdef CONFIG_KVM_SMM
12861                 kvm_test_request(KVM_REQ_SMI, vcpu) ||
12862 #endif
12863                  kvm_test_request(KVM_REQ_EVENT, vcpu))
12864                 return true;
12865
12866         return kvm_arch_dy_has_pending_interrupt(vcpu);
12867 }
12868
12869 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
12870 {
12871         if (vcpu->arch.guest_state_protected)
12872                 return true;
12873
12874         return vcpu->arch.preempted_in_kernel;
12875 }
12876
12877 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
12878 {
12879         return kvm_rip_read(vcpu);
12880 }
12881
12882 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
12883 {
12884         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
12885 }
12886
12887 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
12888 {
12889         return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
12890 }
12891
12892 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
12893 {
12894         /* Can't read the RIP when guest state is protected, just return 0 */
12895         if (vcpu->arch.guest_state_protected)
12896                 return 0;
12897
12898         if (is_64_bit_mode(vcpu))
12899                 return kvm_rip_read(vcpu);
12900         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
12901                      kvm_rip_read(vcpu));
12902 }
12903 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
12904
12905 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
12906 {
12907         return kvm_get_linear_rip(vcpu) == linear_rip;
12908 }
12909 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
12910
12911 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
12912 {
12913         unsigned long rflags;
12914
12915         rflags = static_call(kvm_x86_get_rflags)(vcpu);
12916         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
12917                 rflags &= ~X86_EFLAGS_TF;
12918         return rflags;
12919 }
12920 EXPORT_SYMBOL_GPL(kvm_get_rflags);
12921
12922 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12923 {
12924         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
12925             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
12926                 rflags |= X86_EFLAGS_TF;
12927         static_call(kvm_x86_set_rflags)(vcpu, rflags);
12928 }
12929
12930 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12931 {
12932         __kvm_set_rflags(vcpu, rflags);
12933         kvm_make_request(KVM_REQ_EVENT, vcpu);
12934 }
12935 EXPORT_SYMBOL_GPL(kvm_set_rflags);
12936
12937 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
12938 {
12939         BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
12940
12941         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
12942 }
12943
12944 static inline u32 kvm_async_pf_next_probe(u32 key)
12945 {
12946         return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
12947 }
12948
12949 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12950 {
12951         u32 key = kvm_async_pf_hash_fn(gfn);
12952
12953         while (vcpu->arch.apf.gfns[key] != ~0)
12954                 key = kvm_async_pf_next_probe(key);
12955
12956         vcpu->arch.apf.gfns[key] = gfn;
12957 }
12958
12959 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
12960 {
12961         int i;
12962         u32 key = kvm_async_pf_hash_fn(gfn);
12963
12964         for (i = 0; i < ASYNC_PF_PER_VCPU &&
12965                      (vcpu->arch.apf.gfns[key] != gfn &&
12966                       vcpu->arch.apf.gfns[key] != ~0); i++)
12967                 key = kvm_async_pf_next_probe(key);
12968
12969         return key;
12970 }
12971
12972 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12973 {
12974         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
12975 }
12976
12977 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12978 {
12979         u32 i, j, k;
12980
12981         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
12982
12983         if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
12984                 return;
12985
12986         while (true) {
12987                 vcpu->arch.apf.gfns[i] = ~0;
12988                 do {
12989                         j = kvm_async_pf_next_probe(j);
12990                         if (vcpu->arch.apf.gfns[j] == ~0)
12991                                 return;
12992                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
12993                         /*
12994                          * k lies cyclically in ]i,j]
12995                          * |    i.k.j |
12996                          * |....j i.k.| or  |.k..j i...|
12997                          */
12998                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
12999                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
13000                 i = j;
13001         }
13002 }
13003
13004 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
13005 {
13006         u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
13007
13008         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
13009                                       sizeof(reason));
13010 }
13011
13012 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
13013 {
13014         unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13015
13016         return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13017                                              &token, offset, sizeof(token));
13018 }
13019
13020 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
13021 {
13022         unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13023         u32 val;
13024
13025         if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13026                                          &val, offset, sizeof(val)))
13027                 return false;
13028
13029         return !val;
13030 }
13031
13032 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
13033 {
13034
13035         if (!kvm_pv_async_pf_enabled(vcpu))
13036                 return false;
13037
13038         if (vcpu->arch.apf.send_user_only &&
13039             static_call(kvm_x86_get_cpl)(vcpu) == 0)
13040                 return false;
13041
13042         if (is_guest_mode(vcpu)) {
13043                 /*
13044                  * L1 needs to opt into the special #PF vmexits that are
13045                  * used to deliver async page faults.
13046                  */
13047                 return vcpu->arch.apf.delivery_as_pf_vmexit;
13048         } else {
13049                 /*
13050                  * Play it safe in case the guest temporarily disables paging.
13051                  * The real mode IDT in particular is unlikely to have a #PF
13052                  * exception setup.
13053                  */
13054                 return is_paging(vcpu);
13055         }
13056 }
13057
13058 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
13059 {
13060         if (unlikely(!lapic_in_kernel(vcpu) ||
13061                      kvm_event_needs_reinjection(vcpu) ||
13062                      kvm_is_exception_pending(vcpu)))
13063                 return false;
13064
13065         if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
13066                 return false;
13067
13068         /*
13069          * If interrupts are off we cannot even use an artificial
13070          * halt state.
13071          */
13072         return kvm_arch_interrupt_allowed(vcpu);
13073 }
13074
13075 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
13076                                      struct kvm_async_pf *work)
13077 {
13078         struct x86_exception fault;
13079
13080         trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
13081         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
13082
13083         if (kvm_can_deliver_async_pf(vcpu) &&
13084             !apf_put_user_notpresent(vcpu)) {
13085                 fault.vector = PF_VECTOR;
13086                 fault.error_code_valid = true;
13087                 fault.error_code = 0;
13088                 fault.nested_page_fault = false;
13089                 fault.address = work->arch.token;
13090                 fault.async_page_fault = true;
13091                 kvm_inject_page_fault(vcpu, &fault);
13092                 return true;
13093         } else {
13094                 /*
13095                  * It is not possible to deliver a paravirtualized asynchronous
13096                  * page fault, but putting the guest in an artificial halt state
13097                  * can be beneficial nevertheless: if an interrupt arrives, we
13098                  * can deliver it timely and perhaps the guest will schedule
13099                  * another process.  When the instruction that triggered a page
13100                  * fault is retried, hopefully the page will be ready in the host.
13101                  */
13102                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
13103                 return false;
13104         }
13105 }
13106
13107 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
13108                                  struct kvm_async_pf *work)
13109 {
13110         struct kvm_lapic_irq irq = {
13111                 .delivery_mode = APIC_DM_FIXED,
13112                 .vector = vcpu->arch.apf.vec
13113         };
13114
13115         if (work->wakeup_all)
13116                 work->arch.token = ~0; /* broadcast wakeup */
13117         else
13118                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
13119         trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
13120
13121         if ((work->wakeup_all || work->notpresent_injected) &&
13122             kvm_pv_async_pf_enabled(vcpu) &&
13123             !apf_put_user_ready(vcpu, work->arch.token)) {
13124                 vcpu->arch.apf.pageready_pending = true;
13125                 kvm_apic_set_irq(vcpu, &irq, NULL);
13126         }
13127
13128         vcpu->arch.apf.halted = false;
13129         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
13130 }
13131
13132 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
13133 {
13134         kvm_make_request(KVM_REQ_APF_READY, vcpu);
13135         if (!vcpu->arch.apf.pageready_pending)
13136                 kvm_vcpu_kick(vcpu);
13137 }
13138
13139 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
13140 {
13141         if (!kvm_pv_async_pf_enabled(vcpu))
13142                 return true;
13143         else
13144                 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
13145 }
13146
13147 void kvm_arch_start_assignment(struct kvm *kvm)
13148 {
13149         if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
13150                 static_call_cond(kvm_x86_pi_start_assignment)(kvm);
13151 }
13152 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
13153
13154 void kvm_arch_end_assignment(struct kvm *kvm)
13155 {
13156         atomic_dec(&kvm->arch.assigned_device_count);
13157 }
13158 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
13159
13160 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm)
13161 {
13162         return arch_atomic_read(&kvm->arch.assigned_device_count);
13163 }
13164 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
13165
13166 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
13167 {
13168         atomic_inc(&kvm->arch.noncoherent_dma_count);
13169 }
13170 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
13171
13172 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
13173 {
13174         atomic_dec(&kvm->arch.noncoherent_dma_count);
13175 }
13176 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
13177
13178 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
13179 {
13180         return atomic_read(&kvm->arch.noncoherent_dma_count);
13181 }
13182 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
13183
13184 bool kvm_arch_has_irq_bypass(void)
13185 {
13186         return true;
13187 }
13188
13189 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
13190                                       struct irq_bypass_producer *prod)
13191 {
13192         struct kvm_kernel_irqfd *irqfd =
13193                 container_of(cons, struct kvm_kernel_irqfd, consumer);
13194         int ret;
13195
13196         irqfd->producer = prod;
13197         kvm_arch_start_assignment(irqfd->kvm);
13198         ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm,
13199                                          prod->irq, irqfd->gsi, 1);
13200
13201         if (ret)
13202                 kvm_arch_end_assignment(irqfd->kvm);
13203
13204         return ret;
13205 }
13206
13207 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
13208                                       struct irq_bypass_producer *prod)
13209 {
13210         int ret;
13211         struct kvm_kernel_irqfd *irqfd =
13212                 container_of(cons, struct kvm_kernel_irqfd, consumer);
13213
13214         WARN_ON(irqfd->producer != prod);
13215         irqfd->producer = NULL;
13216
13217         /*
13218          * When producer of consumer is unregistered, we change back to
13219          * remapped mode, so we can re-use the current implementation
13220          * when the irq is masked/disabled or the consumer side (KVM
13221          * int this case doesn't want to receive the interrupts.
13222         */
13223         ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
13224         if (ret)
13225                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
13226                        " fails: %d\n", irqfd->consumer.token, ret);
13227
13228         kvm_arch_end_assignment(irqfd->kvm);
13229 }
13230
13231 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
13232                                    uint32_t guest_irq, bool set)
13233 {
13234         return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set);
13235 }
13236
13237 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
13238                                   struct kvm_kernel_irq_routing_entry *new)
13239 {
13240         if (new->type != KVM_IRQ_ROUTING_MSI)
13241                 return true;
13242
13243         return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
13244 }
13245
13246 bool kvm_vector_hashing_enabled(void)
13247 {
13248         return vector_hashing;
13249 }
13250
13251 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
13252 {
13253         return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
13254 }
13255 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
13256
13257
13258 int kvm_spec_ctrl_test_value(u64 value)
13259 {
13260         /*
13261          * test that setting IA32_SPEC_CTRL to given value
13262          * is allowed by the host processor
13263          */
13264
13265         u64 saved_value;
13266         unsigned long flags;
13267         int ret = 0;
13268
13269         local_irq_save(flags);
13270
13271         if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
13272                 ret = 1;
13273         else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
13274                 ret = 1;
13275         else
13276                 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
13277
13278         local_irq_restore(flags);
13279
13280         return ret;
13281 }
13282 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
13283
13284 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
13285 {
13286         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
13287         struct x86_exception fault;
13288         u64 access = error_code &
13289                 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
13290
13291         if (!(error_code & PFERR_PRESENT_MASK) ||
13292             mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) {
13293                 /*
13294                  * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
13295                  * tables probably do not match the TLB.  Just proceed
13296                  * with the error code that the processor gave.
13297                  */
13298                 fault.vector = PF_VECTOR;
13299                 fault.error_code_valid = true;
13300                 fault.error_code = error_code;
13301                 fault.nested_page_fault = false;
13302                 fault.address = gva;
13303                 fault.async_page_fault = false;
13304         }
13305         vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
13306 }
13307 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
13308
13309 /*
13310  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
13311  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
13312  * indicates whether exit to userspace is needed.
13313  */
13314 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
13315                               struct x86_exception *e)
13316 {
13317         if (r == X86EMUL_PROPAGATE_FAULT) {
13318                 if (KVM_BUG_ON(!e, vcpu->kvm))
13319                         return -EIO;
13320
13321                 kvm_inject_emulated_page_fault(vcpu, e);
13322                 return 1;
13323         }
13324
13325         /*
13326          * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
13327          * while handling a VMX instruction KVM could've handled the request
13328          * correctly by exiting to userspace and performing I/O but there
13329          * doesn't seem to be a real use-case behind such requests, just return
13330          * KVM_EXIT_INTERNAL_ERROR for now.
13331          */
13332         kvm_prepare_emulation_failure_exit(vcpu);
13333
13334         return 0;
13335 }
13336 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
13337
13338 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
13339 {
13340         bool pcid_enabled;
13341         struct x86_exception e;
13342         struct {
13343                 u64 pcid;
13344                 u64 gla;
13345         } operand;
13346         int r;
13347
13348         r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
13349         if (r != X86EMUL_CONTINUE)
13350                 return kvm_handle_memory_failure(vcpu, r, &e);
13351
13352         if (operand.pcid >> 12 != 0) {
13353                 kvm_inject_gp(vcpu, 0);
13354                 return 1;
13355         }
13356
13357         pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE);
13358
13359         switch (type) {
13360         case INVPCID_TYPE_INDIV_ADDR:
13361                 if ((!pcid_enabled && (operand.pcid != 0)) ||
13362                     is_noncanonical_address(operand.gla, vcpu)) {
13363                         kvm_inject_gp(vcpu, 0);
13364                         return 1;
13365                 }
13366                 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
13367                 return kvm_skip_emulated_instruction(vcpu);
13368
13369         case INVPCID_TYPE_SINGLE_CTXT:
13370                 if (!pcid_enabled && (operand.pcid != 0)) {
13371                         kvm_inject_gp(vcpu, 0);
13372                         return 1;
13373                 }
13374
13375                 kvm_invalidate_pcid(vcpu, operand.pcid);
13376                 return kvm_skip_emulated_instruction(vcpu);
13377
13378         case INVPCID_TYPE_ALL_NON_GLOBAL:
13379                 /*
13380                  * Currently, KVM doesn't mark global entries in the shadow
13381                  * page tables, so a non-global flush just degenerates to a
13382                  * global flush. If needed, we could optimize this later by
13383                  * keeping track of global entries in shadow page tables.
13384                  */
13385
13386                 fallthrough;
13387         case INVPCID_TYPE_ALL_INCL_GLOBAL:
13388                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
13389                 return kvm_skip_emulated_instruction(vcpu);
13390
13391         default:
13392                 kvm_inject_gp(vcpu, 0);
13393                 return 1;
13394         }
13395 }
13396 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
13397
13398 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
13399 {
13400         struct kvm_run *run = vcpu->run;
13401         struct kvm_mmio_fragment *frag;
13402         unsigned int len;
13403
13404         BUG_ON(!vcpu->mmio_needed);
13405
13406         /* Complete previous fragment */
13407         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
13408         len = min(8u, frag->len);
13409         if (!vcpu->mmio_is_write)
13410                 memcpy(frag->data, run->mmio.data, len);
13411
13412         if (frag->len <= 8) {
13413                 /* Switch to the next fragment. */
13414                 frag++;
13415                 vcpu->mmio_cur_fragment++;
13416         } else {
13417                 /* Go forward to the next mmio piece. */
13418                 frag->data += len;
13419                 frag->gpa += len;
13420                 frag->len -= len;
13421         }
13422
13423         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
13424                 vcpu->mmio_needed = 0;
13425
13426                 // VMG change, at this point, we're always done
13427                 // RIP has already been advanced
13428                 return 1;
13429         }
13430
13431         // More MMIO is needed
13432         run->mmio.phys_addr = frag->gpa;
13433         run->mmio.len = min(8u, frag->len);
13434         run->mmio.is_write = vcpu->mmio_is_write;
13435         if (run->mmio.is_write)
13436                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
13437         run->exit_reason = KVM_EXIT_MMIO;
13438
13439         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13440
13441         return 0;
13442 }
13443
13444 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13445                           void *data)
13446 {
13447         int handled;
13448         struct kvm_mmio_fragment *frag;
13449
13450         if (!data)
13451                 return -EINVAL;
13452
13453         handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13454         if (handled == bytes)
13455                 return 1;
13456
13457         bytes -= handled;
13458         gpa += handled;
13459         data += handled;
13460
13461         /*TODO: Check if need to increment number of frags */
13462         frag = vcpu->mmio_fragments;
13463         vcpu->mmio_nr_fragments = 1;
13464         frag->len = bytes;
13465         frag->gpa = gpa;
13466         frag->data = data;
13467
13468         vcpu->mmio_needed = 1;
13469         vcpu->mmio_cur_fragment = 0;
13470
13471         vcpu->run->mmio.phys_addr = gpa;
13472         vcpu->run->mmio.len = min(8u, frag->len);
13473         vcpu->run->mmio.is_write = 1;
13474         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
13475         vcpu->run->exit_reason = KVM_EXIT_MMIO;
13476
13477         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13478
13479         return 0;
13480 }
13481 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
13482
13483 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13484                          void *data)
13485 {
13486         int handled;
13487         struct kvm_mmio_fragment *frag;
13488
13489         if (!data)
13490                 return -EINVAL;
13491
13492         handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13493         if (handled == bytes)
13494                 return 1;
13495
13496         bytes -= handled;
13497         gpa += handled;
13498         data += handled;
13499
13500         /*TODO: Check if need to increment number of frags */
13501         frag = vcpu->mmio_fragments;
13502         vcpu->mmio_nr_fragments = 1;
13503         frag->len = bytes;
13504         frag->gpa = gpa;
13505         frag->data = data;
13506
13507         vcpu->mmio_needed = 1;
13508         vcpu->mmio_cur_fragment = 0;
13509
13510         vcpu->run->mmio.phys_addr = gpa;
13511         vcpu->run->mmio.len = min(8u, frag->len);
13512         vcpu->run->mmio.is_write = 0;
13513         vcpu->run->exit_reason = KVM_EXIT_MMIO;
13514
13515         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13516
13517         return 0;
13518 }
13519 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
13520
13521 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size)
13522 {
13523         vcpu->arch.sev_pio_count -= count;
13524         vcpu->arch.sev_pio_data += count * size;
13525 }
13526
13527 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13528                            unsigned int port);
13529
13530 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
13531 {
13532         int size = vcpu->arch.pio.size;
13533         int port = vcpu->arch.pio.port;
13534
13535         vcpu->arch.pio.count = 0;
13536         if (vcpu->arch.sev_pio_count)
13537                 return kvm_sev_es_outs(vcpu, size, port);
13538         return 1;
13539 }
13540
13541 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13542                            unsigned int port)
13543 {
13544         for (;;) {
13545                 unsigned int count =
13546                         min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13547                 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
13548
13549                 /* memcpy done already by emulator_pio_out.  */
13550                 advance_sev_es_emulated_pio(vcpu, count, size);
13551                 if (!ret)
13552                         break;
13553
13554                 /* Emulation done by the kernel.  */
13555                 if (!vcpu->arch.sev_pio_count)
13556                         return 1;
13557         }
13558
13559         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
13560         return 0;
13561 }
13562
13563 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13564                           unsigned int port);
13565
13566 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
13567 {
13568         unsigned count = vcpu->arch.pio.count;
13569         int size = vcpu->arch.pio.size;
13570         int port = vcpu->arch.pio.port;
13571
13572         complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
13573         advance_sev_es_emulated_pio(vcpu, count, size);
13574         if (vcpu->arch.sev_pio_count)
13575                 return kvm_sev_es_ins(vcpu, size, port);
13576         return 1;
13577 }
13578
13579 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13580                           unsigned int port)
13581 {
13582         for (;;) {
13583                 unsigned int count =
13584                         min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13585                 if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count))
13586                         break;
13587
13588                 /* Emulation done by the kernel.  */
13589                 advance_sev_es_emulated_pio(vcpu, count, size);
13590                 if (!vcpu->arch.sev_pio_count)
13591                         return 1;
13592         }
13593
13594         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
13595         return 0;
13596 }
13597
13598 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
13599                          unsigned int port, void *data,  unsigned int count,
13600                          int in)
13601 {
13602         vcpu->arch.sev_pio_data = data;
13603         vcpu->arch.sev_pio_count = count;
13604         return in ? kvm_sev_es_ins(vcpu, size, port)
13605                   : kvm_sev_es_outs(vcpu, size, port);
13606 }
13607 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
13608
13609 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
13610 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
13611 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
13612 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
13613 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
13614 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
13615 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
13616 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter);
13617 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
13618 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
13619 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
13620 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
13621 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
13622 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
13623 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
13624 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
13625 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
13626 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
13627 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
13628 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
13629 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
13630 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
13631 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath);
13632 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell);
13633 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
13634 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
13635 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
13636 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
13637 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
13638
13639 static int __init kvm_x86_init(void)
13640 {
13641         kvm_mmu_x86_module_init();
13642         mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible();
13643         return 0;
13644 }
13645 module_init(kvm_x86_init);
13646
13647 static void __exit kvm_x86_exit(void)
13648 {
13649         /*
13650          * If module_init() is implemented, module_exit() must also be
13651          * implemented to allow module unload.
13652          */
13653 }
13654 module_exit(kvm_x86_exit);