1 // SPDX-License-Identifier: GPL-2.0-only
3 * Kernel-based Virtual Machine driver for Linux
5 * derived from drivers/kvm/kvm_main.c
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright (C) 2008 Qumranet, Inc.
9 * Copyright IBM Corporation, 2008
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
13 * Avi Kivity <avi@qumranet.com>
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Amit Shah <amit.shah@qumranet.com>
16 * Ben-Ami Yassour <benami@il.ibm.com>
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20 #include <linux/kvm_host.h>
26 #include "kvm_cache_regs.h"
27 #include "kvm_emulate.h"
36 #include <linux/clocksource.h>
37 #include <linux/interrupt.h>
38 #include <linux/kvm.h>
40 #include <linux/vmalloc.h>
41 #include <linux/export.h>
42 #include <linux/moduleparam.h>
43 #include <linux/mman.h>
44 #include <linux/highmem.h>
45 #include <linux/iommu.h>
46 #include <linux/cpufreq.h>
47 #include <linux/user-return-notifier.h>
48 #include <linux/srcu.h>
49 #include <linux/slab.h>
50 #include <linux/perf_event.h>
51 #include <linux/uaccess.h>
52 #include <linux/hash.h>
53 #include <linux/pci.h>
54 #include <linux/timekeeper_internal.h>
55 #include <linux/pvclock_gtod.h>
56 #include <linux/kvm_irqfd.h>
57 #include <linux/irqbypass.h>
58 #include <linux/sched/stat.h>
59 #include <linux/sched/isolation.h>
60 #include <linux/mem_encrypt.h>
61 #include <linux/entry-kvm.h>
62 #include <linux/suspend.h>
63 #include <linux/smp.h>
65 #include <trace/events/ipi.h>
66 #include <trace/events/kvm.h>
68 #include <asm/debugreg.h>
73 #include <linux/kernel_stat.h>
74 #include <asm/fpu/api.h>
75 #include <asm/fpu/xcr.h>
76 #include <asm/fpu/xstate.h>
77 #include <asm/pvclock.h>
78 #include <asm/div64.h>
79 #include <asm/irq_remapping.h>
80 #include <asm/mshyperv.h>
81 #include <asm/hypervisor.h>
82 #include <asm/tlbflush.h>
83 #include <asm/intel_pt.h>
84 #include <asm/emulate_prefix.h>
86 #include <clocksource/hyperv_timer.h>
88 #define CREATE_TRACE_POINTS
91 #define MAX_IO_MSRS 256
92 #define KVM_MAX_MCE_BANKS 32
94 struct kvm_caps kvm_caps __read_mostly = {
95 .supported_mce_cap = MCG_CTL_P | MCG_SER_P,
97 EXPORT_SYMBOL_GPL(kvm_caps);
99 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e))
101 #define emul_to_vcpu(ctxt) \
102 ((struct kvm_vcpu *)(ctxt)->vcpu)
105 * - enable syscall per default because its emulated by KVM
106 * - enable LME and LMA per default on 64 bit KVM
110 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
112 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
115 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
117 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
119 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
121 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
122 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
124 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
125 static void process_nmi(struct kvm_vcpu *vcpu);
126 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
127 static void store_regs(struct kvm_vcpu *vcpu);
128 static int sync_regs(struct kvm_vcpu *vcpu);
129 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
131 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
132 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
134 static DEFINE_MUTEX(vendor_module_lock);
135 struct kvm_x86_ops kvm_x86_ops __read_mostly;
137 #define KVM_X86_OP(func) \
138 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \
139 *(((struct kvm_x86_ops *)0)->func));
140 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
141 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
142 #include <asm/kvm-x86-ops.h>
143 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
144 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
146 static bool __read_mostly ignore_msrs = 0;
147 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
149 bool __read_mostly report_ignored_msrs = true;
150 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
151 EXPORT_SYMBOL_GPL(report_ignored_msrs);
153 unsigned int min_timer_period_us = 200;
154 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
156 static bool __read_mostly kvmclock_periodic_sync = true;
157 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
159 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
160 static u32 __read_mostly tsc_tolerance_ppm = 250;
161 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
164 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables
165 * adaptive tuning starting from default advancement of 1000ns. '0' disables
166 * advancement entirely. Any other value is used as-is and disables adaptive
167 * tuning, i.e. allows privileged userspace to set an exact advancement time.
169 static int __read_mostly lapic_timer_advance_ns = -1;
170 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
172 static bool __read_mostly vector_hashing = true;
173 module_param(vector_hashing, bool, S_IRUGO);
175 bool __read_mostly enable_vmware_backdoor = false;
176 module_param(enable_vmware_backdoor, bool, S_IRUGO);
177 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
180 * Flags to manipulate forced emulation behavior (any non-zero value will
181 * enable forced emulation).
183 #define KVM_FEP_CLEAR_RFLAGS_RF BIT(1)
184 static int __read_mostly force_emulation_prefix;
185 module_param(force_emulation_prefix, int, 0644);
187 int __read_mostly pi_inject_timer = -1;
188 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
190 /* Enable/disable PMU virtualization */
191 bool __read_mostly enable_pmu = true;
192 EXPORT_SYMBOL_GPL(enable_pmu);
193 module_param(enable_pmu, bool, 0444);
195 bool __read_mostly eager_page_split = true;
196 module_param(eager_page_split, bool, 0644);
198 /* Enable/disable SMT_RSB bug mitigation */
199 static bool __read_mostly mitigate_smt_rsb;
200 module_param(mitigate_smt_rsb, bool, 0444);
203 * Restoring the host value for MSRs that are only consumed when running in
204 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
205 * returns to userspace, i.e. the kernel can run with the guest's value.
207 #define KVM_MAX_NR_USER_RETURN_MSRS 16
209 struct kvm_user_return_msrs {
210 struct user_return_notifier urn;
212 struct kvm_user_return_msr_values {
215 } values[KVM_MAX_NR_USER_RETURN_MSRS];
218 u32 __read_mostly kvm_nr_uret_msrs;
219 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
220 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
221 static struct kvm_user_return_msrs __percpu *user_return_msrs;
223 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
224 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
225 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
226 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
228 u64 __read_mostly host_efer;
229 EXPORT_SYMBOL_GPL(host_efer);
231 bool __read_mostly allow_smaller_maxphyaddr = 0;
232 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
234 bool __read_mostly enable_apicv = true;
235 EXPORT_SYMBOL_GPL(enable_apicv);
237 u64 __read_mostly host_xss;
238 EXPORT_SYMBOL_GPL(host_xss);
240 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
241 KVM_GENERIC_VM_STATS(),
242 STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
243 STATS_DESC_COUNTER(VM, mmu_pte_write),
244 STATS_DESC_COUNTER(VM, mmu_pde_zapped),
245 STATS_DESC_COUNTER(VM, mmu_flooded),
246 STATS_DESC_COUNTER(VM, mmu_recycled),
247 STATS_DESC_COUNTER(VM, mmu_cache_miss),
248 STATS_DESC_ICOUNTER(VM, mmu_unsync),
249 STATS_DESC_ICOUNTER(VM, pages_4k),
250 STATS_DESC_ICOUNTER(VM, pages_2m),
251 STATS_DESC_ICOUNTER(VM, pages_1g),
252 STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
253 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
254 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
257 const struct kvm_stats_header kvm_vm_stats_header = {
258 .name_size = KVM_STATS_NAME_SIZE,
259 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
260 .id_offset = sizeof(struct kvm_stats_header),
261 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
262 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
263 sizeof(kvm_vm_stats_desc),
266 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
267 KVM_GENERIC_VCPU_STATS(),
268 STATS_DESC_COUNTER(VCPU, pf_taken),
269 STATS_DESC_COUNTER(VCPU, pf_fixed),
270 STATS_DESC_COUNTER(VCPU, pf_emulate),
271 STATS_DESC_COUNTER(VCPU, pf_spurious),
272 STATS_DESC_COUNTER(VCPU, pf_fast),
273 STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created),
274 STATS_DESC_COUNTER(VCPU, pf_guest),
275 STATS_DESC_COUNTER(VCPU, tlb_flush),
276 STATS_DESC_COUNTER(VCPU, invlpg),
277 STATS_DESC_COUNTER(VCPU, exits),
278 STATS_DESC_COUNTER(VCPU, io_exits),
279 STATS_DESC_COUNTER(VCPU, mmio_exits),
280 STATS_DESC_COUNTER(VCPU, signal_exits),
281 STATS_DESC_COUNTER(VCPU, irq_window_exits),
282 STATS_DESC_COUNTER(VCPU, nmi_window_exits),
283 STATS_DESC_COUNTER(VCPU, l1d_flush),
284 STATS_DESC_COUNTER(VCPU, halt_exits),
285 STATS_DESC_COUNTER(VCPU, request_irq_exits),
286 STATS_DESC_COUNTER(VCPU, irq_exits),
287 STATS_DESC_COUNTER(VCPU, host_state_reload),
288 STATS_DESC_COUNTER(VCPU, fpu_reload),
289 STATS_DESC_COUNTER(VCPU, insn_emulation),
290 STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
291 STATS_DESC_COUNTER(VCPU, hypercalls),
292 STATS_DESC_COUNTER(VCPU, irq_injections),
293 STATS_DESC_COUNTER(VCPU, nmi_injections),
294 STATS_DESC_COUNTER(VCPU, req_event),
295 STATS_DESC_COUNTER(VCPU, nested_run),
296 STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
297 STATS_DESC_COUNTER(VCPU, directed_yield_successful),
298 STATS_DESC_COUNTER(VCPU, preemption_reported),
299 STATS_DESC_COUNTER(VCPU, preemption_other),
300 STATS_DESC_IBOOLEAN(VCPU, guest_mode),
301 STATS_DESC_COUNTER(VCPU, notify_window_exits),
304 const struct kvm_stats_header kvm_vcpu_stats_header = {
305 .name_size = KVM_STATS_NAME_SIZE,
306 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
307 .id_offset = sizeof(struct kvm_stats_header),
308 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
309 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
310 sizeof(kvm_vcpu_stats_desc),
313 u64 __read_mostly host_xcr0;
315 static struct kmem_cache *x86_emulator_cache;
318 * When called, it means the previous get/set msr reached an invalid msr.
319 * Return true if we want to ignore/silent this failed msr access.
321 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
323 const char *op = write ? "wrmsr" : "rdmsr";
326 if (report_ignored_msrs)
327 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
332 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
338 static struct kmem_cache *kvm_alloc_emulator_cache(void)
340 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
341 unsigned int size = sizeof(struct x86_emulate_ctxt);
343 return kmem_cache_create_usercopy("x86_emulator", size,
344 __alignof__(struct x86_emulate_ctxt),
345 SLAB_ACCOUNT, useroffset,
346 size - useroffset, NULL);
349 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
351 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
354 for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
355 vcpu->arch.apf.gfns[i] = ~0;
358 static void kvm_on_user_return(struct user_return_notifier *urn)
361 struct kvm_user_return_msrs *msrs
362 = container_of(urn, struct kvm_user_return_msrs, urn);
363 struct kvm_user_return_msr_values *values;
367 * Disabling irqs at this point since the following code could be
368 * interrupted and executed through kvm_arch_hardware_disable()
370 local_irq_save(flags);
371 if (msrs->registered) {
372 msrs->registered = false;
373 user_return_notifier_unregister(urn);
375 local_irq_restore(flags);
376 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
377 values = &msrs->values[slot];
378 if (values->host != values->curr) {
379 wrmsrl(kvm_uret_msrs_list[slot], values->host);
380 values->curr = values->host;
385 static int kvm_probe_user_return_msr(u32 msr)
391 ret = rdmsrl_safe(msr, &val);
394 ret = wrmsrl_safe(msr, val);
400 int kvm_add_user_return_msr(u32 msr)
402 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
404 if (kvm_probe_user_return_msr(msr))
407 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
408 return kvm_nr_uret_msrs++;
410 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
412 int kvm_find_user_return_msr(u32 msr)
416 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
417 if (kvm_uret_msrs_list[i] == msr)
422 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
424 static void kvm_user_return_msr_cpu_online(void)
426 unsigned int cpu = smp_processor_id();
427 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
431 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
432 rdmsrl_safe(kvm_uret_msrs_list[i], &value);
433 msrs->values[i].host = value;
434 msrs->values[i].curr = value;
438 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
440 unsigned int cpu = smp_processor_id();
441 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
444 value = (value & mask) | (msrs->values[slot].host & ~mask);
445 if (value == msrs->values[slot].curr)
447 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
451 msrs->values[slot].curr = value;
452 if (!msrs->registered) {
453 msrs->urn.on_user_return = kvm_on_user_return;
454 user_return_notifier_register(&msrs->urn);
455 msrs->registered = true;
459 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
461 static void drop_user_return_notifiers(void)
463 unsigned int cpu = smp_processor_id();
464 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
466 if (msrs->registered)
467 kvm_on_user_return(&msrs->urn);
470 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
472 return vcpu->arch.apic_base;
475 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
477 return kvm_apic_mode(kvm_get_apic_base(vcpu));
479 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
481 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
483 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
484 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
485 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
486 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
488 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
490 if (!msr_info->host_initiated) {
491 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
493 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
497 kvm_lapic_set_base(vcpu, msr_info->data);
498 kvm_recalculate_apic_map(vcpu->kvm);
503 * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
505 * Hardware virtualization extension instructions may fault if a reboot turns
506 * off virtualization while processes are running. Usually after catching the
507 * fault we just panic; during reboot instead the instruction is ignored.
509 noinstr void kvm_spurious_fault(void)
511 /* Fault while not rebooting. We want the trace. */
512 BUG_ON(!kvm_rebooting);
514 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
516 #define EXCPT_BENIGN 0
517 #define EXCPT_CONTRIBUTORY 1
520 static int exception_class(int vector)
530 return EXCPT_CONTRIBUTORY;
537 #define EXCPT_FAULT 0
539 #define EXCPT_ABORT 2
540 #define EXCPT_INTERRUPT 3
543 static int exception_type(int vector)
547 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
548 return EXCPT_INTERRUPT;
553 * #DBs can be trap-like or fault-like, the caller must check other CPU
554 * state, e.g. DR6, to determine whether a #DB is a trap or fault.
556 if (mask & (1 << DB_VECTOR))
559 if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR)))
562 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
565 /* Reserved exceptions will result in fault */
569 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu,
570 struct kvm_queued_exception *ex)
572 if (!ex->has_payload)
575 switch (ex->vector) {
578 * "Certain debug exceptions may clear bit 0-3. The
579 * remaining contents of the DR6 register are never
580 * cleared by the processor".
582 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
584 * In order to reflect the #DB exception payload in guest
585 * dr6, three components need to be considered: active low
586 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
588 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
589 * In the target guest dr6:
590 * FIXED_1 bits should always be set.
591 * Active low bits should be cleared if 1-setting in payload.
592 * Active high bits should be set if 1-setting in payload.
594 * Note, the payload is compatible with the pending debug
595 * exceptions/exit qualification under VMX, that active_low bits
596 * are active high in payload.
597 * So they need to be flipped for DR6.
599 vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
600 vcpu->arch.dr6 |= ex->payload;
601 vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW;
604 * The #DB payload is defined as compatible with the 'pending
605 * debug exceptions' field under VMX, not DR6. While bit 12 is
606 * defined in the 'pending debug exceptions' field (enabled
607 * breakpoint), it is reserved and must be zero in DR6.
609 vcpu->arch.dr6 &= ~BIT(12);
612 vcpu->arch.cr2 = ex->payload;
616 ex->has_payload = false;
619 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
621 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector,
622 bool has_error_code, u32 error_code,
623 bool has_payload, unsigned long payload)
625 struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
628 ex->injected = false;
630 ex->has_error_code = has_error_code;
631 ex->error_code = error_code;
632 ex->has_payload = has_payload;
633 ex->payload = payload;
636 /* Forcibly leave the nested mode in cases like a vCPU reset */
637 static void kvm_leave_nested(struct kvm_vcpu *vcpu)
639 kvm_x86_ops.nested_ops->leave_nested(vcpu);
642 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
643 unsigned nr, bool has_error, u32 error_code,
644 bool has_payload, unsigned long payload, bool reinject)
649 kvm_make_request(KVM_REQ_EVENT, vcpu);
652 * If the exception is destined for L2 and isn't being reinjected,
653 * morph it to a VM-Exit if L1 wants to intercept the exception. A
654 * previously injected exception is not checked because it was checked
655 * when it was original queued, and re-checking is incorrect if _L1_
656 * injected the exception, in which case it's exempt from interception.
658 if (!reinject && is_guest_mode(vcpu) &&
659 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) {
660 kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code,
661 has_payload, payload);
665 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
669 * On VM-Entry, an exception can be pending if and only
670 * if event injection was blocked by nested_run_pending.
671 * In that case, however, vcpu_enter_guest() requests an
672 * immediate exit, and the guest shouldn't proceed far
673 * enough to need reinjection.
675 WARN_ON_ONCE(kvm_is_exception_pending(vcpu));
676 vcpu->arch.exception.injected = true;
677 if (WARN_ON_ONCE(has_payload)) {
679 * A reinjected event has already
680 * delivered its payload.
686 vcpu->arch.exception.pending = true;
687 vcpu->arch.exception.injected = false;
689 vcpu->arch.exception.has_error_code = has_error;
690 vcpu->arch.exception.vector = nr;
691 vcpu->arch.exception.error_code = error_code;
692 vcpu->arch.exception.has_payload = has_payload;
693 vcpu->arch.exception.payload = payload;
694 if (!is_guest_mode(vcpu))
695 kvm_deliver_exception_payload(vcpu,
696 &vcpu->arch.exception);
700 /* to check exception */
701 prev_nr = vcpu->arch.exception.vector;
702 if (prev_nr == DF_VECTOR) {
703 /* triple fault -> shutdown */
704 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
707 class1 = exception_class(prev_nr);
708 class2 = exception_class(nr);
709 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) ||
710 (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
712 * Synthesize #DF. Clear the previously injected or pending
713 * exception so as not to incorrectly trigger shutdown.
715 vcpu->arch.exception.injected = false;
716 vcpu->arch.exception.pending = false;
718 kvm_queue_exception_e(vcpu, DF_VECTOR, 0);
720 /* replace previous exception with a new one in a hope
721 that instruction re-execution will regenerate lost
727 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
729 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
731 EXPORT_SYMBOL_GPL(kvm_queue_exception);
733 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
735 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
737 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
739 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
740 unsigned long payload)
742 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
744 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
746 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
747 u32 error_code, unsigned long payload)
749 kvm_multiple_exception(vcpu, nr, true, error_code,
750 true, payload, false);
753 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
756 kvm_inject_gp(vcpu, 0);
758 return kvm_skip_emulated_instruction(vcpu);
762 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
764 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
767 kvm_inject_gp(vcpu, 0);
771 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
772 EMULTYPE_COMPLETE_USER_EXIT);
775 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
777 ++vcpu->stat.pf_guest;
780 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of
781 * whether or not L1 wants to intercept "regular" #PF.
783 if (is_guest_mode(vcpu) && fault->async_page_fault)
784 kvm_queue_exception_vmexit(vcpu, PF_VECTOR,
785 true, fault->error_code,
786 true, fault->address);
788 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
792 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
793 struct x86_exception *fault)
795 struct kvm_mmu *fault_mmu;
796 WARN_ON_ONCE(fault->vector != PF_VECTOR);
798 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
802 * Invalidate the TLB entry for the faulting address, if it exists,
803 * else the access will fault indefinitely (and to emulate hardware).
805 if ((fault->error_code & PFERR_PRESENT_MASK) &&
806 !(fault->error_code & PFERR_RSVD_MASK))
807 kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address,
808 KVM_MMU_ROOT_CURRENT);
810 fault_mmu->inject_page_fault(vcpu, fault);
812 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
814 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
816 atomic_inc(&vcpu->arch.nmi_queued);
817 kvm_make_request(KVM_REQ_NMI, vcpu);
820 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
822 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
824 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
826 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
828 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
830 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
833 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
834 * a #GP and return false.
836 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
838 if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
840 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
844 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
846 if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE))
849 kvm_queue_exception(vcpu, UD_VECTOR);
852 EXPORT_SYMBOL_GPL(kvm_require_dr);
854 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
856 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
860 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise.
862 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
864 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
865 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
869 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
872 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
875 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
876 PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
877 if (real_gpa == INVALID_GPA)
880 /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
881 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
882 cr3 & GENMASK(11, 5), sizeof(pdpte));
886 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
887 if ((pdpte[i] & PT_PRESENT_MASK) &&
888 (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
894 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
895 * Shadow page roots need to be reconstructed instead.
897 if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
898 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
900 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
901 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
902 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
903 vcpu->arch.pdptrs_from_userspace = false;
907 EXPORT_SYMBOL_GPL(load_pdptrs);
909 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
912 * CR0.WP is incorporated into the MMU role, but only for non-nested,
913 * indirect shadow MMUs. If paging is disabled, no updates are needed
914 * as there are no permission bits to emulate. If TDP is enabled, the
915 * MMU's metadata needs to be updated, e.g. so that emulating guest
916 * translations does the right thing, but there's no need to unload the
917 * root as CR0.WP doesn't affect SPTEs.
919 if ((cr0 ^ old_cr0) == X86_CR0_WP) {
920 if (!(cr0 & X86_CR0_PG))
929 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
930 kvm_clear_async_pf_completion_queue(vcpu);
931 kvm_async_pf_hash_reset(vcpu);
934 * Clearing CR0.PG is defined to flush the TLB from the guest's
937 if (!(cr0 & X86_CR0_PG))
938 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
941 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
942 kvm_mmu_reset_context(vcpu);
944 if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
945 kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
946 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
947 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
949 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
951 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
953 unsigned long old_cr0 = kvm_read_cr0(vcpu);
958 if (cr0 & 0xffffffff00000000UL)
962 cr0 &= ~CR0_RESERVED_BITS;
964 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
967 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
971 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
972 (cr0 & X86_CR0_PG)) {
977 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
982 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
983 is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
984 !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
987 if (!(cr0 & X86_CR0_PG) &&
988 (is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)))
991 static_call(kvm_x86_set_cr0)(vcpu, cr0);
993 kvm_post_set_cr0(vcpu, old_cr0, cr0);
997 EXPORT_SYMBOL_GPL(kvm_set_cr0);
999 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
1001 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
1003 EXPORT_SYMBOL_GPL(kvm_lmsw);
1005 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
1007 if (vcpu->arch.guest_state_protected)
1010 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1012 if (vcpu->arch.xcr0 != host_xcr0)
1013 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
1015 if (vcpu->arch.xsaves_enabled &&
1016 vcpu->arch.ia32_xss != host_xss)
1017 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
1020 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
1021 if (static_cpu_has(X86_FEATURE_PKU) &&
1022 vcpu->arch.pkru != vcpu->arch.host_pkru &&
1023 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1024 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE)))
1025 write_pkru(vcpu->arch.pkru);
1026 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */
1028 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
1030 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
1032 if (vcpu->arch.guest_state_protected)
1035 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
1036 if (static_cpu_has(X86_FEATURE_PKU) &&
1037 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1038 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) {
1039 vcpu->arch.pkru = rdpkru();
1040 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
1041 write_pkru(vcpu->arch.host_pkru);
1043 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */
1045 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1047 if (vcpu->arch.xcr0 != host_xcr0)
1048 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
1050 if (vcpu->arch.xsaves_enabled &&
1051 vcpu->arch.ia32_xss != host_xss)
1052 wrmsrl(MSR_IA32_XSS, host_xss);
1056 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
1058 #ifdef CONFIG_X86_64
1059 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1061 return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC;
1065 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1068 u64 old_xcr0 = vcpu->arch.xcr0;
1071 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
1072 if (index != XCR_XFEATURE_ENABLED_MASK)
1074 if (!(xcr0 & XFEATURE_MASK_FP))
1076 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1080 * Do not allow the guest to set bits that we do not support
1081 * saving. However, xcr0 bit 0 is always set, even if the
1082 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1084 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
1085 if (xcr0 & ~valid_bits)
1088 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1089 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1092 if (xcr0 & XFEATURE_MASK_AVX512) {
1093 if (!(xcr0 & XFEATURE_MASK_YMM))
1095 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1099 if ((xcr0 & XFEATURE_MASK_XTILE) &&
1100 ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1103 vcpu->arch.xcr0 = xcr0;
1105 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1106 kvm_update_cpuid_runtime(vcpu);
1110 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1112 /* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */
1113 if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1114 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1115 kvm_inject_gp(vcpu, 0);
1119 return kvm_skip_emulated_instruction(vcpu);
1121 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1123 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1125 if (cr4 & cr4_reserved_bits)
1128 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1133 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4);
1135 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1137 return __kvm_is_valid_cr4(vcpu, cr4) &&
1138 static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1141 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1143 if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1144 kvm_mmu_reset_context(vcpu);
1147 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1148 * according to the SDM; however, stale prev_roots could be reused
1149 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1150 * free them all. This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1151 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1155 (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1156 kvm_mmu_unload(vcpu);
1159 * The TLB has to be flushed for all PCIDs if any of the following
1160 * (architecturally required) changes happen:
1161 * - CR4.PCIDE is changed from 1 to 0
1162 * - CR4.PGE is toggled
1164 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1166 if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1167 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1168 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1171 * The TLB has to be flushed for the current PCID if any of the
1172 * following (architecturally required) changes happen:
1173 * - CR4.SMEP is changed from 0 to 1
1174 * - CR4.PAE is toggled
1176 else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1177 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1178 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1181 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1183 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1185 unsigned long old_cr4 = kvm_read_cr4(vcpu);
1187 if (!kvm_is_valid_cr4(vcpu, cr4))
1190 if (is_long_mode(vcpu)) {
1191 if (!(cr4 & X86_CR4_PAE))
1193 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1195 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1196 && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1197 && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1200 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1201 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1202 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1206 static_call(kvm_x86_set_cr4)(vcpu, cr4);
1208 kvm_post_set_cr4(vcpu, old_cr4, cr4);
1212 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1214 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1216 struct kvm_mmu *mmu = vcpu->arch.mmu;
1217 unsigned long roots_to_free = 0;
1221 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1222 * this is reachable when running EPT=1 and unrestricted_guest=0, and
1223 * also via the emulator. KVM's TDP page tables are not in the scope of
1224 * the invalidation, but the guest's TLB entries need to be flushed as
1225 * the CPU may have cached entries in its TLB for the target PCID.
1227 if (unlikely(tdp_enabled)) {
1228 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1233 * If neither the current CR3 nor any of the prev_roots use the given
1234 * PCID, then nothing needs to be done here because a resync will
1235 * happen anyway before switching to any other CR3.
1237 if (kvm_get_active_pcid(vcpu) == pcid) {
1238 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1239 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1243 * If PCID is disabled, there is no need to free prev_roots even if the
1244 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1247 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))
1250 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1251 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1252 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1254 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1257 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1259 bool skip_tlb_flush = false;
1260 unsigned long pcid = 0;
1261 #ifdef CONFIG_X86_64
1262 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) {
1263 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1264 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1265 pcid = cr3 & X86_CR3_PCID_MASK;
1269 /* PDPTRs are always reloaded for PAE paging. */
1270 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1271 goto handle_tlb_flush;
1274 * Do not condition the GPA check on long mode, this helper is used to
1275 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1276 * the current vCPU mode is accurate.
1278 if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1281 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1284 if (cr3 != kvm_read_cr3(vcpu))
1285 kvm_mmu_new_pgd(vcpu, cr3);
1287 vcpu->arch.cr3 = cr3;
1288 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1289 /* Do not call post_set_cr3, we do not get here for confidential guests. */
1293 * A load of CR3 that flushes the TLB flushes only the current PCID,
1294 * even if PCID is disabled, in which case PCID=0 is flushed. It's a
1295 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1296 * and it's impossible to use a non-zero PCID when PCID is disabled,
1297 * i.e. only PCID=0 can be relevant.
1299 if (!skip_tlb_flush)
1300 kvm_invalidate_pcid(vcpu, pcid);
1304 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1306 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1308 if (cr8 & CR8_RESERVED_BITS)
1310 if (lapic_in_kernel(vcpu))
1311 kvm_lapic_set_tpr(vcpu, cr8);
1313 vcpu->arch.cr8 = cr8;
1316 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1318 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1320 if (lapic_in_kernel(vcpu))
1321 return kvm_lapic_get_cr8(vcpu);
1323 return vcpu->arch.cr8;
1325 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1327 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1331 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1332 for (i = 0; i < KVM_NR_DB_REGS; i++)
1333 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1337 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1341 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1342 dr7 = vcpu->arch.guest_debug_dr7;
1344 dr7 = vcpu->arch.dr7;
1345 static_call(kvm_x86_set_dr7)(vcpu, dr7);
1346 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1347 if (dr7 & DR7_BP_EN_MASK)
1348 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1350 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1352 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1354 u64 fixed = DR6_FIXED_1;
1356 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1359 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1360 fixed |= DR6_BUS_LOCK;
1364 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1366 size_t size = ARRAY_SIZE(vcpu->arch.db);
1370 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1371 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1372 vcpu->arch.eff_db[dr] = val;
1376 if (!kvm_dr6_valid(val))
1378 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1382 if (!kvm_dr7_valid(val))
1384 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1385 kvm_update_dr7(vcpu);
1391 EXPORT_SYMBOL_GPL(kvm_set_dr);
1393 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1395 size_t size = ARRAY_SIZE(vcpu->arch.db);
1399 *val = vcpu->arch.db[array_index_nospec(dr, size)];
1403 *val = vcpu->arch.dr6;
1407 *val = vcpu->arch.dr7;
1411 EXPORT_SYMBOL_GPL(kvm_get_dr);
1413 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1415 u32 ecx = kvm_rcx_read(vcpu);
1418 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1419 kvm_inject_gp(vcpu, 0);
1423 kvm_rax_write(vcpu, (u32)data);
1424 kvm_rdx_write(vcpu, data >> 32);
1425 return kvm_skip_emulated_instruction(vcpu);
1427 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1430 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1431 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1433 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1434 * extract the supported MSRs from the related const lists.
1435 * msrs_to_save is selected from the msrs_to_save_all to reflect the
1436 * capabilities of the host cpu. This capabilities test skips MSRs that are
1437 * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1438 * may depend on host virtualization features rather than host cpu features.
1441 static const u32 msrs_to_save_base[] = {
1442 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1444 #ifdef CONFIG_X86_64
1445 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1447 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1448 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1449 MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL,
1450 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1451 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1452 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1453 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1454 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1455 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1456 MSR_IA32_UMWAIT_CONTROL,
1458 MSR_IA32_XFD, MSR_IA32_XFD_ERR,
1461 static const u32 msrs_to_save_pmu[] = {
1462 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1463 MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1464 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1465 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1466 MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG,
1468 /* This part of MSRs should match KVM_INTEL_PMC_MAX_GENERIC. */
1469 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1470 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1471 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1472 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1473 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1474 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1475 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1476 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1478 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1479 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1481 /* This part of MSRs should match KVM_AMD_PMC_MAX_GENERIC. */
1482 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1483 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1484 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1485 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1488 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) +
1489 ARRAY_SIZE(msrs_to_save_pmu)];
1490 static unsigned num_msrs_to_save;
1492 static const u32 emulated_msrs_all[] = {
1493 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1494 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1495 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1496 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1497 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1498 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1499 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1501 HV_X64_MSR_VP_INDEX,
1502 HV_X64_MSR_VP_RUNTIME,
1503 HV_X64_MSR_SCONTROL,
1504 HV_X64_MSR_STIMER0_CONFIG,
1505 HV_X64_MSR_VP_ASSIST_PAGE,
1506 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1507 HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL,
1508 HV_X64_MSR_SYNDBG_OPTIONS,
1509 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1510 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1511 HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1513 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1514 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1516 MSR_IA32_TSC_ADJUST,
1517 MSR_IA32_TSC_DEADLINE,
1518 MSR_IA32_ARCH_CAPABILITIES,
1519 MSR_IA32_PERF_CAPABILITIES,
1520 MSR_IA32_MISC_ENABLE,
1521 MSR_IA32_MCG_STATUS,
1523 MSR_IA32_MCG_EXT_CTL,
1527 MSR_MISC_FEATURES_ENABLES,
1528 MSR_AMD64_VIRT_SPEC_CTRL,
1529 MSR_AMD64_TSC_RATIO,
1534 * The following list leaves out MSRs whose values are determined
1535 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1536 * We always support the "true" VMX control MSRs, even if the host
1537 * processor does not, so I am putting these registers here rather
1538 * than in msrs_to_save_all.
1541 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1542 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1543 MSR_IA32_VMX_TRUE_EXIT_CTLS,
1544 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1546 MSR_IA32_VMX_CR0_FIXED0,
1547 MSR_IA32_VMX_CR4_FIXED0,
1548 MSR_IA32_VMX_VMCS_ENUM,
1549 MSR_IA32_VMX_PROCBASED_CTLS2,
1550 MSR_IA32_VMX_EPT_VPID_CAP,
1551 MSR_IA32_VMX_VMFUNC,
1554 MSR_KVM_POLL_CONTROL,
1557 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1558 static unsigned num_emulated_msrs;
1561 * List of MSRs that control the existence of MSR-based features, i.e. MSRs
1562 * that are effectively CPUID leafs. VMX MSRs are also included in the set of
1563 * feature MSRs, but are handled separately to allow expedited lookups.
1565 static const u32 msr_based_features_all_except_vmx[] = {
1568 MSR_IA32_ARCH_CAPABILITIES,
1569 MSR_IA32_PERF_CAPABILITIES,
1572 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) +
1573 (KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)];
1574 static unsigned int num_msr_based_features;
1577 * All feature MSRs except uCode revID, which tracks the currently loaded uCode
1578 * patch, are immutable once the vCPU model is defined.
1580 static bool kvm_is_immutable_feature_msr(u32 msr)
1584 if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR)
1587 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) {
1588 if (msr == msr_based_features_all_except_vmx[i])
1589 return msr != MSR_IA32_UCODE_REV;
1596 * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM
1597 * does not yet virtualize. These include:
1598 * 10 - MISC_PACKAGE_CTRLS
1599 * 11 - ENERGY_FILTERING_CTL
1601 * 18 - FB_CLEAR_CTRL
1602 * 21 - XAPIC_DISABLE_STATUS
1603 * 23 - OVERCLOCKING_STATUS
1606 #define KVM_SUPPORTED_ARCH_CAP \
1607 (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \
1608 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \
1609 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \
1610 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \
1611 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO)
1613 static u64 kvm_get_arch_capabilities(void)
1617 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
1618 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1619 data &= KVM_SUPPORTED_ARCH_CAP;
1623 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1624 * the nested hypervisor runs with NX huge pages. If it is not,
1625 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1626 * L1 guests, so it need not worry about its own (L2) guests.
1628 data |= ARCH_CAP_PSCHANGE_MC_NO;
1631 * If we're doing cache flushes (either "always" or "cond")
1632 * we will do one whenever the guest does a vmlaunch/vmresume.
1633 * If an outer hypervisor is doing the cache flush for us
1634 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1635 * capability to the guest too, and if EPT is disabled we're not
1636 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will
1637 * require a nested hypervisor to do a flush of its own.
1639 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1640 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1642 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1643 data |= ARCH_CAP_RDCL_NO;
1644 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1645 data |= ARCH_CAP_SSB_NO;
1646 if (!boot_cpu_has_bug(X86_BUG_MDS))
1647 data |= ARCH_CAP_MDS_NO;
1649 if (!boot_cpu_has(X86_FEATURE_RTM)) {
1651 * If RTM=0 because the kernel has disabled TSX, the host might
1652 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0
1653 * and therefore knows that there cannot be TAA) but keep
1654 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1655 * and we want to allow migrating those guests to tsx=off hosts.
1657 data &= ~ARCH_CAP_TAA_NO;
1658 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1659 data |= ARCH_CAP_TAA_NO;
1662 * Nothing to do here; we emulate TSX_CTRL if present on the
1663 * host so the guest can choose between disabling TSX or
1664 * using VERW to clear CPU buffers.
1671 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1673 switch (msr->index) {
1674 case MSR_IA32_ARCH_CAPABILITIES:
1675 msr->data = kvm_get_arch_capabilities();
1677 case MSR_IA32_PERF_CAPABILITIES:
1678 msr->data = kvm_caps.supported_perf_cap;
1680 case MSR_IA32_UCODE_REV:
1681 rdmsrl_safe(msr->index, &msr->data);
1684 return static_call(kvm_x86_get_msr_feature)(msr);
1689 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1691 struct kvm_msr_entry msr;
1695 r = kvm_get_msr_feature(&msr);
1697 if (r == KVM_MSR_RET_INVALID) {
1698 /* Unconditionally clear the output for simplicity */
1700 if (kvm_msr_ignored_check(index, 0, false))
1712 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1714 if (efer & EFER_AUTOIBRS && !guest_cpuid_has(vcpu, X86_FEATURE_AUTOIBRS))
1717 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1720 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1723 if (efer & (EFER_LME | EFER_LMA) &&
1724 !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1727 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1733 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1735 if (efer & efer_reserved_bits)
1738 return __kvm_valid_efer(vcpu, efer);
1740 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1742 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1744 u64 old_efer = vcpu->arch.efer;
1745 u64 efer = msr_info->data;
1748 if (efer & efer_reserved_bits)
1751 if (!msr_info->host_initiated) {
1752 if (!__kvm_valid_efer(vcpu, efer))
1755 if (is_paging(vcpu) &&
1756 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1761 efer |= vcpu->arch.efer & EFER_LMA;
1763 r = static_call(kvm_x86_set_efer)(vcpu, efer);
1769 if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1770 kvm_mmu_reset_context(vcpu);
1775 void kvm_enable_efer_bits(u64 mask)
1777 efer_reserved_bits &= ~mask;
1779 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1781 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1783 struct kvm_x86_msr_filter *msr_filter;
1784 struct msr_bitmap_range *ranges;
1785 struct kvm *kvm = vcpu->kvm;
1790 /* x2APIC MSRs do not support filtering. */
1791 if (index >= 0x800 && index <= 0x8ff)
1794 idx = srcu_read_lock(&kvm->srcu);
1796 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1802 allowed = msr_filter->default_allow;
1803 ranges = msr_filter->ranges;
1805 for (i = 0; i < msr_filter->count; i++) {
1806 u32 start = ranges[i].base;
1807 u32 end = start + ranges[i].nmsrs;
1808 u32 flags = ranges[i].flags;
1809 unsigned long *bitmap = ranges[i].bitmap;
1811 if ((index >= start) && (index < end) && (flags & type)) {
1812 allowed = !!test_bit(index - start, bitmap);
1818 srcu_read_unlock(&kvm->srcu, idx);
1822 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1825 * Write @data into the MSR specified by @index. Select MSR specific fault
1826 * checks are bypassed if @host_initiated is %true.
1827 * Returns 0 on success, non-0 otherwise.
1828 * Assumes vcpu_load() was already called.
1830 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1831 bool host_initiated)
1833 struct msr_data msr;
1838 case MSR_KERNEL_GS_BASE:
1841 if (is_noncanonical_address(data, vcpu))
1844 case MSR_IA32_SYSENTER_EIP:
1845 case MSR_IA32_SYSENTER_ESP:
1847 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1848 * non-canonical address is written on Intel but not on
1849 * AMD (which ignores the top 32-bits, because it does
1850 * not implement 64-bit SYSENTER).
1852 * 64-bit code should hence be able to write a non-canonical
1853 * value on AMD. Making the address canonical ensures that
1854 * vmentry does not fail on Intel after writing a non-canonical
1855 * value, and that something deterministic happens if the guest
1856 * invokes 64-bit SYSENTER.
1858 data = __canonical_address(data, vcpu_virt_addr_bits(vcpu));
1861 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1864 if (!host_initiated &&
1865 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1866 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1870 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1871 * incomplete and conflicting architectural behavior. Current
1872 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1873 * reserved and always read as zeros. Enforce Intel's reserved
1874 * bits check if and only if the guest CPU is Intel, and clear
1875 * the bits in all other cases. This ensures cross-vendor
1876 * migration will provide consistent behavior for the guest.
1878 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1887 msr.host_initiated = host_initiated;
1889 return static_call(kvm_x86_set_msr)(vcpu, &msr);
1892 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1893 u32 index, u64 data, bool host_initiated)
1895 int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1897 if (ret == KVM_MSR_RET_INVALID)
1898 if (kvm_msr_ignored_check(index, data, true))
1905 * Read the MSR specified by @index into @data. Select MSR specific fault
1906 * checks are bypassed if @host_initiated is %true.
1907 * Returns 0 on success, non-0 otherwise.
1908 * Assumes vcpu_load() was already called.
1910 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1911 bool host_initiated)
1913 struct msr_data msr;
1918 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1921 if (!host_initiated &&
1922 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1923 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1929 msr.host_initiated = host_initiated;
1931 ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1937 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1938 u32 index, u64 *data, bool host_initiated)
1940 int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1942 if (ret == KVM_MSR_RET_INVALID) {
1943 /* Unconditionally clear *data for simplicity */
1945 if (kvm_msr_ignored_check(index, 0, false))
1952 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1954 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1955 return KVM_MSR_RET_FILTERED;
1956 return kvm_get_msr_ignored_check(vcpu, index, data, false);
1959 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data)
1961 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1962 return KVM_MSR_RET_FILTERED;
1963 return kvm_set_msr_ignored_check(vcpu, index, data, false);
1966 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1968 return kvm_get_msr_ignored_check(vcpu, index, data, false);
1970 EXPORT_SYMBOL_GPL(kvm_get_msr);
1972 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1974 return kvm_set_msr_ignored_check(vcpu, index, data, false);
1976 EXPORT_SYMBOL_GPL(kvm_set_msr);
1978 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1980 if (!vcpu->run->msr.error) {
1981 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1982 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1986 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
1988 return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
1991 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1993 complete_userspace_rdmsr(vcpu);
1994 return complete_emulated_msr_access(vcpu);
1997 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
1999 return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
2002 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
2004 complete_userspace_rdmsr(vcpu);
2005 return complete_fast_msr_access(vcpu);
2008 static u64 kvm_msr_reason(int r)
2011 case KVM_MSR_RET_INVALID:
2012 return KVM_MSR_EXIT_REASON_UNKNOWN;
2013 case KVM_MSR_RET_FILTERED:
2014 return KVM_MSR_EXIT_REASON_FILTER;
2016 return KVM_MSR_EXIT_REASON_INVAL;
2020 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
2021 u32 exit_reason, u64 data,
2022 int (*completion)(struct kvm_vcpu *vcpu),
2025 u64 msr_reason = kvm_msr_reason(r);
2027 /* Check if the user wanted to know about this MSR fault */
2028 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
2031 vcpu->run->exit_reason = exit_reason;
2032 vcpu->run->msr.error = 0;
2033 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
2034 vcpu->run->msr.reason = msr_reason;
2035 vcpu->run->msr.index = index;
2036 vcpu->run->msr.data = data;
2037 vcpu->arch.complete_userspace_io = completion;
2042 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
2044 u32 ecx = kvm_rcx_read(vcpu);
2048 r = kvm_get_msr_with_filter(vcpu, ecx, &data);
2051 trace_kvm_msr_read(ecx, data);
2053 kvm_rax_write(vcpu, data & -1u);
2054 kvm_rdx_write(vcpu, (data >> 32) & -1u);
2056 /* MSR read failed? See if we should ask user space */
2057 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
2058 complete_fast_rdmsr, r))
2060 trace_kvm_msr_read_ex(ecx);
2063 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2065 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
2067 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
2069 u32 ecx = kvm_rcx_read(vcpu);
2070 u64 data = kvm_read_edx_eax(vcpu);
2073 r = kvm_set_msr_with_filter(vcpu, ecx, data);
2076 trace_kvm_msr_write(ecx, data);
2078 /* MSR write failed? See if we should ask user space */
2079 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
2080 complete_fast_msr_access, r))
2082 /* Signal all other negative errors to userspace */
2085 trace_kvm_msr_write_ex(ecx, data);
2088 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2090 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
2092 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2094 return kvm_skip_emulated_instruction(vcpu);
2097 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2099 /* Treat an INVD instruction as a NOP and just skip it. */
2100 return kvm_emulate_as_nop(vcpu);
2102 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
2104 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2106 kvm_queue_exception(vcpu, UD_VECTOR);
2109 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
2112 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn)
2114 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) &&
2115 !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT))
2116 return kvm_handle_invalid_op(vcpu);
2118 pr_warn_once("%s instruction emulated as NOP!\n", insn);
2119 return kvm_emulate_as_nop(vcpu);
2121 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2123 return kvm_emulate_monitor_mwait(vcpu, "MWAIT");
2125 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
2127 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2129 return kvm_emulate_monitor_mwait(vcpu, "MONITOR");
2131 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2133 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2135 xfer_to_guest_mode_prepare();
2136 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
2137 xfer_to_guest_mode_work_pending();
2141 * The fast path for frequent and performance sensitive wrmsr emulation,
2142 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2143 * the latency of virtual IPI by avoiding the expensive bits of transitioning
2144 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2145 * other cases which must be called after interrupts are enabled on the host.
2147 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2149 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2152 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2153 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2154 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2155 ((u32)(data >> 32) != X2APIC_BROADCAST))
2156 return kvm_x2apic_icr_write(vcpu->arch.apic, data);
2161 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2163 if (!kvm_can_use_hv_timer(vcpu))
2166 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2170 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2172 u32 msr = kvm_rcx_read(vcpu);
2174 fastpath_t ret = EXIT_FASTPATH_NONE;
2177 case APIC_BASE_MSR + (APIC_ICR >> 4):
2178 data = kvm_read_edx_eax(vcpu);
2179 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2180 kvm_skip_emulated_instruction(vcpu);
2181 ret = EXIT_FASTPATH_EXIT_HANDLED;
2184 case MSR_IA32_TSC_DEADLINE:
2185 data = kvm_read_edx_eax(vcpu);
2186 if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2187 kvm_skip_emulated_instruction(vcpu);
2188 ret = EXIT_FASTPATH_REENTER_GUEST;
2195 if (ret != EXIT_FASTPATH_NONE)
2196 trace_kvm_msr_write(msr, data);
2200 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2203 * Adapt set_msr() to msr_io()'s calling convention
2205 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2207 return kvm_get_msr_ignored_check(vcpu, index, data, true);
2210 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2215 * Disallow writes to immutable feature MSRs after KVM_RUN. KVM does
2216 * not support modifying the guest vCPU model on the fly, e.g. changing
2217 * the nVMX capabilities while L2 is running is nonsensical. Ignore
2218 * writes of the same value, e.g. to allow userspace to blindly stuff
2219 * all MSRs when emulating RESET.
2221 if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index)) {
2222 if (do_get_msr(vcpu, index, &val) || *data != val)
2228 return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2231 #ifdef CONFIG_X86_64
2232 struct pvclock_clock {
2242 struct pvclock_gtod_data {
2245 struct pvclock_clock clock; /* extract of a clocksource struct */
2246 struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2252 static struct pvclock_gtod_data pvclock_gtod_data;
2254 static void update_pvclock_gtod(struct timekeeper *tk)
2256 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2258 write_seqcount_begin(&vdata->seq);
2260 /* copy pvclock gtod data */
2261 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode;
2262 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
2263 vdata->clock.mask = tk->tkr_mono.mask;
2264 vdata->clock.mult = tk->tkr_mono.mult;
2265 vdata->clock.shift = tk->tkr_mono.shift;
2266 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec;
2267 vdata->clock.offset = tk->tkr_mono.base;
2269 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode;
2270 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last;
2271 vdata->raw_clock.mask = tk->tkr_raw.mask;
2272 vdata->raw_clock.mult = tk->tkr_raw.mult;
2273 vdata->raw_clock.shift = tk->tkr_raw.shift;
2274 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec;
2275 vdata->raw_clock.offset = tk->tkr_raw.base;
2277 vdata->wall_time_sec = tk->xtime_sec;
2279 vdata->offs_boot = tk->offs_boot;
2281 write_seqcount_end(&vdata->seq);
2284 static s64 get_kvmclock_base_ns(void)
2286 /* Count up from boot time, but with the frequency of the raw clock. */
2287 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2290 static s64 get_kvmclock_base_ns(void)
2292 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */
2293 return ktime_get_boottime_ns();
2297 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2301 struct pvclock_wall_clock wc;
2308 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2313 ++version; /* first time write, random junk */
2317 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2321 * The guest calculates current wall clock time by adding
2322 * system time (updated by kvm_guest_time_update below) to the
2323 * wall clock specified here. We do the reverse here.
2325 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2327 wc.nsec = do_div(wall_nsec, 1000000000);
2328 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2329 wc.version = version;
2331 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2334 wc_sec_hi = wall_nsec >> 32;
2335 kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2336 &wc_sec_hi, sizeof(wc_sec_hi));
2340 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2343 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2344 bool old_msr, bool host_initiated)
2346 struct kvm_arch *ka = &vcpu->kvm->arch;
2348 if (vcpu->vcpu_id == 0 && !host_initiated) {
2349 if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2350 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2352 ka->boot_vcpu_runs_old_kvmclock = old_msr;
2355 vcpu->arch.time = system_time;
2356 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2358 /* we verify if the enable bit is set... */
2359 if (system_time & 1)
2360 kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL,
2361 sizeof(struct pvclock_vcpu_time_info));
2363 kvm_gpc_deactivate(&vcpu->arch.pv_time);
2368 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2370 do_shl32_div32(dividend, divisor);
2374 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2375 s8 *pshift, u32 *pmultiplier)
2383 scaled64 = scaled_hz;
2384 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2389 tps32 = (uint32_t)tps64;
2390 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2391 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2399 *pmultiplier = div_frac(scaled64, tps32);
2402 #ifdef CONFIG_X86_64
2403 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2406 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2407 static unsigned long max_tsc_khz;
2409 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2411 u64 v = (u64)khz * (1000000 + ppm);
2416 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2418 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2422 /* Guest TSC same frequency as host TSC? */
2424 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2428 /* TSC scaling supported? */
2429 if (!kvm_caps.has_tsc_control) {
2430 if (user_tsc_khz > tsc_khz) {
2431 vcpu->arch.tsc_catchup = 1;
2432 vcpu->arch.tsc_always_catchup = 1;
2435 pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2440 /* TSC scaling required - calculate ratio */
2441 ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits,
2442 user_tsc_khz, tsc_khz);
2444 if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) {
2445 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2450 kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2454 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2456 u32 thresh_lo, thresh_hi;
2457 int use_scaling = 0;
2459 /* tsc_khz can be zero if TSC calibration fails */
2460 if (user_tsc_khz == 0) {
2461 /* set tsc_scaling_ratio to a safe value */
2462 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2466 /* Compute a scale to convert nanoseconds in TSC cycles */
2467 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2468 &vcpu->arch.virtual_tsc_shift,
2469 &vcpu->arch.virtual_tsc_mult);
2470 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2473 * Compute the variation in TSC rate which is acceptable
2474 * within the range of tolerance and decide if the
2475 * rate being applied is within that bounds of the hardware
2476 * rate. If so, no scaling or compensation need be done.
2478 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2479 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2480 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2481 pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n",
2482 user_tsc_khz, thresh_lo, thresh_hi);
2485 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2488 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2490 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2491 vcpu->arch.virtual_tsc_mult,
2492 vcpu->arch.virtual_tsc_shift);
2493 tsc += vcpu->arch.this_tsc_write;
2497 #ifdef CONFIG_X86_64
2498 static inline int gtod_is_based_on_tsc(int mode)
2500 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2504 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2506 #ifdef CONFIG_X86_64
2508 struct kvm_arch *ka = &vcpu->kvm->arch;
2509 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2511 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2512 atomic_read(&vcpu->kvm->online_vcpus));
2515 * Once the masterclock is enabled, always perform request in
2516 * order to update it.
2518 * In order to enable masterclock, the host clocksource must be TSC
2519 * and the vcpus need to have matched TSCs. When that happens,
2520 * perform request to enable masterclock.
2522 if (ka->use_master_clock ||
2523 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2524 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2526 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2527 atomic_read(&vcpu->kvm->online_vcpus),
2528 ka->use_master_clock, gtod->clock.vclock_mode);
2533 * Multiply tsc by a fixed point number represented by ratio.
2535 * The most significant 64-N bits (mult) of ratio represent the
2536 * integral part of the fixed point number; the remaining N bits
2537 * (frac) represent the fractional part, ie. ratio represents a fixed
2538 * point number (mult + frac * 2^(-N)).
2540 * N equals to kvm_caps.tsc_scaling_ratio_frac_bits.
2542 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2544 return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits);
2547 u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2551 if (ratio != kvm_caps.default_tsc_scaling_ratio)
2552 _tsc = __scale_tsc(ratio, tsc);
2557 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2561 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2563 return target_tsc - tsc;
2566 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2568 return vcpu->arch.l1_tsc_offset +
2569 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2571 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2573 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2577 if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio)
2578 nested_offset = l1_offset;
2580 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2581 kvm_caps.tsc_scaling_ratio_frac_bits);
2583 nested_offset += l2_offset;
2584 return nested_offset;
2586 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2588 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2590 if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio)
2591 return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2592 kvm_caps.tsc_scaling_ratio_frac_bits);
2594 return l1_multiplier;
2596 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2598 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2600 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2601 vcpu->arch.l1_tsc_offset,
2604 vcpu->arch.l1_tsc_offset = l1_offset;
2607 * If we are here because L1 chose not to trap WRMSR to TSC then
2608 * according to the spec this should set L1's TSC (as opposed to
2609 * setting L1's offset for L2).
2611 if (is_guest_mode(vcpu))
2612 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2614 static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2615 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2617 vcpu->arch.tsc_offset = l1_offset;
2619 static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset);
2622 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2624 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2626 /* Userspace is changing the multiplier while L2 is active */
2627 if (is_guest_mode(vcpu))
2628 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2630 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2632 vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2634 if (kvm_caps.has_tsc_control)
2635 static_call(kvm_x86_write_tsc_multiplier)(
2636 vcpu, vcpu->arch.tsc_scaling_ratio);
2639 static inline bool kvm_check_tsc_unstable(void)
2641 #ifdef CONFIG_X86_64
2643 * TSC is marked unstable when we're running on Hyper-V,
2644 * 'TSC page' clocksource is good.
2646 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2649 return check_tsc_unstable();
2653 * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2654 * offset for the vcpu and tracks the TSC matching generation that the vcpu
2657 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2658 u64 ns, bool matched)
2660 struct kvm *kvm = vcpu->kvm;
2662 lockdep_assert_held(&kvm->arch.tsc_write_lock);
2665 * We also track th most recent recorded KHZ, write and time to
2666 * allow the matching interval to be extended at each write.
2668 kvm->arch.last_tsc_nsec = ns;
2669 kvm->arch.last_tsc_write = tsc;
2670 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2671 kvm->arch.last_tsc_offset = offset;
2673 vcpu->arch.last_guest_tsc = tsc;
2675 kvm_vcpu_write_tsc_offset(vcpu, offset);
2679 * We split periods of matched TSC writes into generations.
2680 * For each generation, we track the original measured
2681 * nanosecond time, offset, and write, so if TSCs are in
2682 * sync, we can match exact offset, and if not, we can match
2683 * exact software computation in compute_guest_tsc()
2685 * These values are tracked in kvm->arch.cur_xxx variables.
2687 kvm->arch.cur_tsc_generation++;
2688 kvm->arch.cur_tsc_nsec = ns;
2689 kvm->arch.cur_tsc_write = tsc;
2690 kvm->arch.cur_tsc_offset = offset;
2691 kvm->arch.nr_vcpus_matched_tsc = 0;
2692 } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2693 kvm->arch.nr_vcpus_matched_tsc++;
2696 /* Keep track of which generation this VCPU has synchronized to */
2697 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2698 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2699 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2701 kvm_track_tsc_matching(vcpu);
2704 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2706 struct kvm *kvm = vcpu->kvm;
2707 u64 offset, ns, elapsed;
2708 unsigned long flags;
2709 bool matched = false;
2710 bool synchronizing = false;
2712 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2713 offset = kvm_compute_l1_tsc_offset(vcpu, data);
2714 ns = get_kvmclock_base_ns();
2715 elapsed = ns - kvm->arch.last_tsc_nsec;
2717 if (vcpu->arch.virtual_tsc_khz) {
2720 * detection of vcpu initialization -- need to sync
2721 * with other vCPUs. This particularly helps to keep
2722 * kvm_clock stable after CPU hotplug
2724 synchronizing = true;
2726 u64 tsc_exp = kvm->arch.last_tsc_write +
2727 nsec_to_cycles(vcpu, elapsed);
2728 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2730 * Special case: TSC write with a small delta (1 second)
2731 * of virtual cycle time against real time is
2732 * interpreted as an attempt to synchronize the CPU.
2734 synchronizing = data < tsc_exp + tsc_hz &&
2735 data + tsc_hz > tsc_exp;
2740 * For a reliable TSC, we can match TSC offsets, and for an unstable
2741 * TSC, we add elapsed time in this computation. We could let the
2742 * compensation code attempt to catch up if we fall behind, but
2743 * it's better to try to match offsets from the beginning.
2745 if (synchronizing &&
2746 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2747 if (!kvm_check_tsc_unstable()) {
2748 offset = kvm->arch.cur_tsc_offset;
2750 u64 delta = nsec_to_cycles(vcpu, elapsed);
2752 offset = kvm_compute_l1_tsc_offset(vcpu, data);
2757 __kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2758 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2761 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2764 u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2765 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2768 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2770 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio)
2771 WARN_ON(adjustment < 0);
2772 adjustment = kvm_scale_tsc((u64) adjustment,
2773 vcpu->arch.l1_tsc_scaling_ratio);
2774 adjust_tsc_offset_guest(vcpu, adjustment);
2777 #ifdef CONFIG_X86_64
2779 static u64 read_tsc(void)
2781 u64 ret = (u64)rdtsc_ordered();
2782 u64 last = pvclock_gtod_data.clock.cycle_last;
2784 if (likely(ret >= last))
2788 * GCC likes to generate cmov here, but this branch is extremely
2789 * predictable (it's just a function of time and the likely is
2790 * very likely) and there's a data dependence, so force GCC
2791 * to generate a branch instead. I don't barrier() because
2792 * we don't actually need a barrier, and if this function
2793 * ever gets inlined it will generate worse code.
2799 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2805 switch (clock->vclock_mode) {
2806 case VDSO_CLOCKMODE_HVCLOCK:
2807 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2809 if (tsc_pg_val != U64_MAX) {
2810 /* TSC page valid */
2811 *mode = VDSO_CLOCKMODE_HVCLOCK;
2812 v = (tsc_pg_val - clock->cycle_last) &
2815 /* TSC page invalid */
2816 *mode = VDSO_CLOCKMODE_NONE;
2819 case VDSO_CLOCKMODE_TSC:
2820 *mode = VDSO_CLOCKMODE_TSC;
2821 *tsc_timestamp = read_tsc();
2822 v = (*tsc_timestamp - clock->cycle_last) &
2826 *mode = VDSO_CLOCKMODE_NONE;
2829 if (*mode == VDSO_CLOCKMODE_NONE)
2830 *tsc_timestamp = v = 0;
2832 return v * clock->mult;
2835 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2837 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2843 seq = read_seqcount_begin(>od->seq);
2844 ns = gtod->raw_clock.base_cycles;
2845 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode);
2846 ns >>= gtod->raw_clock.shift;
2847 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2848 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
2854 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2856 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2862 seq = read_seqcount_begin(>od->seq);
2863 ts->tv_sec = gtod->wall_time_sec;
2864 ns = gtod->clock.base_cycles;
2865 ns += vgettsc(>od->clock, tsc_timestamp, &mode);
2866 ns >>= gtod->clock.shift;
2867 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
2869 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2875 /* returns true if host is using TSC based clocksource */
2876 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2878 /* checked again under seqlock below */
2879 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2882 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2886 /* returns true if host is using TSC based clocksource */
2887 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2890 /* checked again under seqlock below */
2891 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2894 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2900 * Assuming a stable TSC across physical CPUS, and a stable TSC
2901 * across virtual CPUs, the following condition is possible.
2902 * Each numbered line represents an event visible to both
2903 * CPUs at the next numbered event.
2905 * "timespecX" represents host monotonic time. "tscX" represents
2908 * VCPU0 on CPU0 | VCPU1 on CPU1
2910 * 1. read timespec0,tsc0
2911 * 2. | timespec1 = timespec0 + N
2913 * 3. transition to guest | transition to guest
2914 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2915 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
2916 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2918 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2921 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2923 * - 0 < N - M => M < N
2925 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2926 * always the case (the difference between two distinct xtime instances
2927 * might be smaller then the difference between corresponding TSC reads,
2928 * when updating guest vcpus pvclock areas).
2930 * To avoid that problem, do not allow visibility of distinct
2931 * system_timestamp/tsc_timestamp values simultaneously: use a master
2932 * copy of host monotonic time values. Update that master copy
2935 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2939 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2941 #ifdef CONFIG_X86_64
2942 struct kvm_arch *ka = &kvm->arch;
2944 bool host_tsc_clocksource, vcpus_matched;
2946 lockdep_assert_held(&kvm->arch.tsc_write_lock);
2947 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2948 atomic_read(&kvm->online_vcpus));
2951 * If the host uses TSC clock, then passthrough TSC as stable
2954 host_tsc_clocksource = kvm_get_time_and_clockread(
2955 &ka->master_kernel_ns,
2956 &ka->master_cycle_now);
2958 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2959 && !ka->backwards_tsc_observed
2960 && !ka->boot_vcpu_runs_old_kvmclock;
2962 if (ka->use_master_clock)
2963 atomic_set(&kvm_guest_has_master_clock, 1);
2965 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2966 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2971 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2973 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2976 static void __kvm_start_pvclock_update(struct kvm *kvm)
2978 raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
2979 write_seqcount_begin(&kvm->arch.pvclock_sc);
2982 static void kvm_start_pvclock_update(struct kvm *kvm)
2984 kvm_make_mclock_inprogress_request(kvm);
2986 /* no guest entries from this point */
2987 __kvm_start_pvclock_update(kvm);
2990 static void kvm_end_pvclock_update(struct kvm *kvm)
2992 struct kvm_arch *ka = &kvm->arch;
2993 struct kvm_vcpu *vcpu;
2996 write_seqcount_end(&ka->pvclock_sc);
2997 raw_spin_unlock_irq(&ka->tsc_write_lock);
2998 kvm_for_each_vcpu(i, vcpu, kvm)
2999 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3001 /* guest entries allowed */
3002 kvm_for_each_vcpu(i, vcpu, kvm)
3003 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
3006 static void kvm_update_masterclock(struct kvm *kvm)
3008 kvm_hv_request_tsc_page_update(kvm);
3009 kvm_start_pvclock_update(kvm);
3010 pvclock_update_vm_gtod_copy(kvm);
3011 kvm_end_pvclock_update(kvm);
3015 * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's
3016 * per-CPU value (which may be zero if a CPU is going offline). Note, tsc_khz
3017 * can change during boot even if the TSC is constant, as it's possible for KVM
3018 * to be loaded before TSC calibration completes. Ideally, KVM would get a
3019 * notification when calibration completes, but practically speaking calibration
3020 * will complete before userspace is alive enough to create VMs.
3022 static unsigned long get_cpu_tsc_khz(void)
3024 if (static_cpu_has(X86_FEATURE_CONSTANT_TSC))
3027 return __this_cpu_read(cpu_tsc_khz);
3030 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */
3031 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3033 struct kvm_arch *ka = &kvm->arch;
3034 struct pvclock_vcpu_time_info hv_clock;
3036 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
3040 if (ka->use_master_clock &&
3041 (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) {
3042 #ifdef CONFIG_X86_64
3043 struct timespec64 ts;
3045 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
3046 data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
3047 data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
3050 data->host_tsc = rdtsc();
3052 data->flags |= KVM_CLOCK_TSC_STABLE;
3053 hv_clock.tsc_timestamp = ka->master_cycle_now;
3054 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3055 kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL,
3056 &hv_clock.tsc_shift,
3057 &hv_clock.tsc_to_system_mul);
3058 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
3060 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
3066 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3068 struct kvm_arch *ka = &kvm->arch;
3072 seq = read_seqcount_begin(&ka->pvclock_sc);
3073 __get_kvmclock(kvm, data);
3074 } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3077 u64 get_kvmclock_ns(struct kvm *kvm)
3079 struct kvm_clock_data data;
3081 get_kvmclock(kvm, &data);
3085 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v,
3086 struct gfn_to_pfn_cache *gpc,
3087 unsigned int offset)
3089 struct kvm_vcpu_arch *vcpu = &v->arch;
3090 struct pvclock_vcpu_time_info *guest_hv_clock;
3091 unsigned long flags;
3093 read_lock_irqsave(&gpc->lock, flags);
3094 while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) {
3095 read_unlock_irqrestore(&gpc->lock, flags);
3097 if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock)))
3100 read_lock_irqsave(&gpc->lock, flags);
3103 guest_hv_clock = (void *)(gpc->khva + offset);
3106 * This VCPU is paused, but it's legal for a guest to read another
3107 * VCPU's kvmclock, so we really have to follow the specification where
3108 * it says that version is odd if data is being modified, and even after
3112 guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1;
3115 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3116 vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
3118 if (vcpu->pvclock_set_guest_stopped_request) {
3119 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3120 vcpu->pvclock_set_guest_stopped_request = false;
3123 memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock));
3126 guest_hv_clock->version = ++vcpu->hv_clock.version;
3128 mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT);
3129 read_unlock_irqrestore(&gpc->lock, flags);
3131 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
3134 static int kvm_guest_time_update(struct kvm_vcpu *v)
3136 unsigned long flags, tgt_tsc_khz;
3138 struct kvm_vcpu_arch *vcpu = &v->arch;
3139 struct kvm_arch *ka = &v->kvm->arch;
3141 u64 tsc_timestamp, host_tsc;
3143 bool use_master_clock;
3149 * If the host uses TSC clock, then passthrough TSC as stable
3153 seq = read_seqcount_begin(&ka->pvclock_sc);
3154 use_master_clock = ka->use_master_clock;
3155 if (use_master_clock) {
3156 host_tsc = ka->master_cycle_now;
3157 kernel_ns = ka->master_kernel_ns;
3159 } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3161 /* Keep irq disabled to prevent changes to the clock */
3162 local_irq_save(flags);
3163 tgt_tsc_khz = get_cpu_tsc_khz();
3164 if (unlikely(tgt_tsc_khz == 0)) {
3165 local_irq_restore(flags);
3166 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3169 if (!use_master_clock) {
3171 kernel_ns = get_kvmclock_base_ns();
3174 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3177 * We may have to catch up the TSC to match elapsed wall clock
3178 * time for two reasons, even if kvmclock is used.
3179 * 1) CPU could have been running below the maximum TSC rate
3180 * 2) Broken TSC compensation resets the base at each VCPU
3181 * entry to avoid unknown leaps of TSC even when running
3182 * again on the same CPU. This may cause apparent elapsed
3183 * time to disappear, and the guest to stand still or run
3186 if (vcpu->tsc_catchup) {
3187 u64 tsc = compute_guest_tsc(v, kernel_ns);
3188 if (tsc > tsc_timestamp) {
3189 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3190 tsc_timestamp = tsc;
3194 local_irq_restore(flags);
3196 /* With all the info we got, fill in the values */
3198 if (kvm_caps.has_tsc_control)
3199 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3200 v->arch.l1_tsc_scaling_ratio);
3202 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3203 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3204 &vcpu->hv_clock.tsc_shift,
3205 &vcpu->hv_clock.tsc_to_system_mul);
3206 vcpu->hw_tsc_khz = tgt_tsc_khz;
3207 kvm_xen_update_tsc_info(v);
3210 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3211 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3212 vcpu->last_guest_tsc = tsc_timestamp;
3214 /* If the host uses TSC clocksource, then it is stable */
3216 if (use_master_clock)
3217 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3219 vcpu->hv_clock.flags = pvclock_flags;
3221 if (vcpu->pv_time.active)
3222 kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0);
3223 if (vcpu->xen.vcpu_info_cache.active)
3224 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache,
3225 offsetof(struct compat_vcpu_info, time));
3226 if (vcpu->xen.vcpu_time_info_cache.active)
3227 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0);
3228 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3233 * kvmclock updates which are isolated to a given vcpu, such as
3234 * vcpu->cpu migration, should not allow system_timestamp from
3235 * the rest of the vcpus to remain static. Otherwise ntp frequency
3236 * correction applies to one vcpu's system_timestamp but not
3239 * So in those cases, request a kvmclock update for all vcpus.
3240 * We need to rate-limit these requests though, as they can
3241 * considerably slow guests that have a large number of vcpus.
3242 * The time for a remote vcpu to update its kvmclock is bound
3243 * by the delay we use to rate-limit the updates.
3246 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3248 static void kvmclock_update_fn(struct work_struct *work)
3251 struct delayed_work *dwork = to_delayed_work(work);
3252 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3253 kvmclock_update_work);
3254 struct kvm *kvm = container_of(ka, struct kvm, arch);
3255 struct kvm_vcpu *vcpu;
3257 kvm_for_each_vcpu(i, vcpu, kvm) {
3258 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3259 kvm_vcpu_kick(vcpu);
3263 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3265 struct kvm *kvm = v->kvm;
3267 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3268 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3269 KVMCLOCK_UPDATE_DELAY);
3272 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3274 static void kvmclock_sync_fn(struct work_struct *work)
3276 struct delayed_work *dwork = to_delayed_work(work);
3277 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3278 kvmclock_sync_work);
3279 struct kvm *kvm = container_of(ka, struct kvm, arch);
3281 if (!kvmclock_periodic_sync)
3284 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3285 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3286 KVMCLOCK_SYNC_PERIOD);
3289 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */
3290 static bool is_mci_control_msr(u32 msr)
3292 return (msr & 3) == 0;
3294 static bool is_mci_status_msr(u32 msr)
3296 return (msr & 3) == 1;
3300 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3302 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3304 /* McStatusWrEn enabled? */
3305 if (guest_cpuid_is_amd_or_hygon(vcpu))
3306 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3311 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3313 u64 mcg_cap = vcpu->arch.mcg_cap;
3314 unsigned bank_num = mcg_cap & 0xff;
3315 u32 msr = msr_info->index;
3316 u64 data = msr_info->data;
3317 u32 offset, last_msr;
3320 case MSR_IA32_MCG_STATUS:
3321 vcpu->arch.mcg_status = data;
3323 case MSR_IA32_MCG_CTL:
3324 if (!(mcg_cap & MCG_CTL_P) &&
3325 (data || !msr_info->host_initiated))
3327 if (data != 0 && data != ~(u64)0)
3329 vcpu->arch.mcg_ctl = data;
3331 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3332 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3336 if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated))
3338 /* An attempt to write a 1 to a reserved bit raises #GP */
3339 if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK))
3341 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3342 last_msr + 1 - MSR_IA32_MC0_CTL2);
3343 vcpu->arch.mci_ctl2_banks[offset] = data;
3345 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3346 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3351 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other
3352 * values are architecturally undefined. But, some Linux
3353 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB
3354 * issue on AMD K8s, allow bit 10 to be clear when setting all
3355 * other bits in order to avoid an uncaught #GP in the guest.
3357 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable,
3358 * single-bit ECC data errors.
3360 if (is_mci_control_msr(msr) &&
3361 data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
3365 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR.
3366 * AMD-based CPUs allow non-zero values, but if and only if
3367 * HWCR[McStatusWrEn] is set.
3369 if (!msr_info->host_initiated && is_mci_status_msr(msr) &&
3370 data != 0 && !can_set_mci_status(vcpu))
3373 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3374 last_msr + 1 - MSR_IA32_MC0_CTL);
3375 vcpu->arch.mce_banks[offset] = data;
3383 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3385 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3387 return (vcpu->arch.apf.msr_en_val & mask) == mask;
3390 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3392 gpa_t gpa = data & ~0x3f;
3394 /* Bits 4:5 are reserved, Should be zero */
3398 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3399 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3402 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3403 (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3406 if (!lapic_in_kernel(vcpu))
3407 return data ? 1 : 0;
3409 vcpu->arch.apf.msr_en_val = data;
3411 if (!kvm_pv_async_pf_enabled(vcpu)) {
3412 kvm_clear_async_pf_completion_queue(vcpu);
3413 kvm_async_pf_hash_reset(vcpu);
3417 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3421 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3422 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3424 kvm_async_pf_wakeup_all(vcpu);
3429 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3431 /* Bits 8-63 are reserved */
3435 if (!lapic_in_kernel(vcpu))
3438 vcpu->arch.apf.msr_int_val = data;
3440 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3445 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3447 kvm_gpc_deactivate(&vcpu->arch.pv_time);
3448 vcpu->arch.time = 0;
3451 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3453 ++vcpu->stat.tlb_flush;
3454 static_call(kvm_x86_flush_tlb_all)(vcpu);
3456 /* Flushing all ASIDs flushes the current ASID... */
3457 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3460 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3462 ++vcpu->stat.tlb_flush;
3466 * A TLB flush on behalf of the guest is equivalent to
3467 * INVPCID(all), toggling CR4.PGE, etc., which requires
3468 * a forced sync of the shadow page tables. Ensure all the
3469 * roots are synced and the guest TLB in hardware is clean.
3471 kvm_mmu_sync_roots(vcpu);
3472 kvm_mmu_sync_prev_roots(vcpu);
3475 static_call(kvm_x86_flush_tlb_guest)(vcpu);
3478 * Flushing all "guest" TLB is always a superset of Hyper-V's fine
3481 kvm_hv_vcpu_purge_flush_tlb(vcpu);
3485 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3487 ++vcpu->stat.tlb_flush;
3488 static_call(kvm_x86_flush_tlb_current)(vcpu);
3492 * Service "local" TLB flush requests, which are specific to the current MMU
3493 * context. In addition to the generic event handling in vcpu_enter_guest(),
3494 * TLB flushes that are targeted at an MMU context also need to be serviced
3495 * prior before nested VM-Enter/VM-Exit.
3497 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3499 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3500 kvm_vcpu_flush_tlb_current(vcpu);
3502 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3503 kvm_vcpu_flush_tlb_guest(vcpu);
3505 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3507 static void record_steal_time(struct kvm_vcpu *vcpu)
3509 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3510 struct kvm_steal_time __user *st;
3511 struct kvm_memslots *slots;
3512 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3516 if (kvm_xen_msr_enabled(vcpu->kvm)) {
3517 kvm_xen_runstate_set_running(vcpu);
3521 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3524 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3527 slots = kvm_memslots(vcpu->kvm);
3529 if (unlikely(slots->generation != ghc->generation ||
3531 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3532 /* We rely on the fact that it fits in a single page. */
3533 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3535 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) ||
3536 kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3540 st = (struct kvm_steal_time __user *)ghc->hva;
3542 * Doing a TLB flush here, on the guest's behalf, can avoid
3545 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3546 u8 st_preempted = 0;
3549 if (!user_access_begin(st, sizeof(*st)))
3552 asm volatile("1: xchgb %0, %2\n"
3555 _ASM_EXTABLE_UA(1b, 2b)
3556 : "+q" (st_preempted),
3558 "+m" (st->preempted));
3564 vcpu->arch.st.preempted = 0;
3566 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3567 st_preempted & KVM_VCPU_FLUSH_TLB);
3568 if (st_preempted & KVM_VCPU_FLUSH_TLB)
3569 kvm_vcpu_flush_tlb_guest(vcpu);
3571 if (!user_access_begin(st, sizeof(*st)))
3574 if (!user_access_begin(st, sizeof(*st)))
3577 unsafe_put_user(0, &st->preempted, out);
3578 vcpu->arch.st.preempted = 0;
3581 unsafe_get_user(version, &st->version, out);
3583 version += 1; /* first time write, random junk */
3586 unsafe_put_user(version, &st->version, out);
3590 unsafe_get_user(steal, &st->steal, out);
3591 steal += current->sched_info.run_delay -
3592 vcpu->arch.st.last_steal;
3593 vcpu->arch.st.last_steal = current->sched_info.run_delay;
3594 unsafe_put_user(steal, &st->steal, out);
3597 unsafe_put_user(version, &st->version, out);
3602 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3605 static bool kvm_is_msr_to_save(u32 msr_index)
3609 for (i = 0; i < num_msrs_to_save; i++) {
3610 if (msrs_to_save[i] == msr_index)
3617 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3619 u32 msr = msr_info->index;
3620 u64 data = msr_info->data;
3622 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3623 return kvm_xen_write_hypercall_page(vcpu, data);
3626 case MSR_AMD64_NB_CFG:
3627 case MSR_IA32_UCODE_WRITE:
3628 case MSR_VM_HSAVE_PA:
3629 case MSR_AMD64_PATCH_LOADER:
3630 case MSR_AMD64_BU_CFG2:
3631 case MSR_AMD64_DC_CFG:
3632 case MSR_F15H_EX_CFG:
3635 case MSR_IA32_UCODE_REV:
3636 if (msr_info->host_initiated)
3637 vcpu->arch.microcode_version = data;
3639 case MSR_IA32_ARCH_CAPABILITIES:
3640 if (!msr_info->host_initiated)
3642 vcpu->arch.arch_capabilities = data;
3644 case MSR_IA32_PERF_CAPABILITIES:
3645 if (!msr_info->host_initiated)
3647 if (data & ~kvm_caps.supported_perf_cap)
3651 * Note, this is not just a performance optimization! KVM
3652 * disallows changing feature MSRs after the vCPU has run; PMU
3653 * refresh will bug the VM if called after the vCPU has run.
3655 if (vcpu->arch.perf_capabilities == data)
3658 vcpu->arch.perf_capabilities = data;
3659 kvm_pmu_refresh(vcpu);
3661 case MSR_IA32_PRED_CMD:
3662 if (!msr_info->host_initiated && !guest_has_pred_cmd_msr(vcpu))
3665 if (!boot_cpu_has(X86_FEATURE_IBPB) || (data & ~PRED_CMD_IBPB))
3670 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
3672 case MSR_IA32_FLUSH_CMD:
3673 if (!msr_info->host_initiated &&
3674 !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D))
3677 if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH))
3682 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
3685 return set_efer(vcpu, msr_info);
3687 data &= ~(u64)0x40; /* ignore flush filter disable */
3688 data &= ~(u64)0x100; /* ignore ignne emulation enable */
3689 data &= ~(u64)0x8; /* ignore TLB cache disable */
3691 /* Handle McStatusWrEn */
3692 if (data == BIT_ULL(18)) {
3693 vcpu->arch.msr_hwcr = data;
3694 } else if (data != 0) {
3695 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3699 case MSR_FAM10H_MMIO_CONF_BASE:
3701 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3705 case 0x200 ... MSR_IA32_MC0_CTL2 - 1:
3706 case MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) ... 0x2ff:
3707 return kvm_mtrr_set_msr(vcpu, msr, data);
3708 case MSR_IA32_APICBASE:
3709 return kvm_set_apic_base(vcpu, msr_info);
3710 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3711 return kvm_x2apic_msr_write(vcpu, msr, data);
3712 case MSR_IA32_TSC_DEADLINE:
3713 kvm_set_lapic_tscdeadline_msr(vcpu, data);
3715 case MSR_IA32_TSC_ADJUST:
3716 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3717 if (!msr_info->host_initiated) {
3718 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3719 adjust_tsc_offset_guest(vcpu, adj);
3720 /* Before back to guest, tsc_timestamp must be adjusted
3721 * as well, otherwise guest's percpu pvclock time could jump.
3723 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3725 vcpu->arch.ia32_tsc_adjust_msr = data;
3728 case MSR_IA32_MISC_ENABLE: {
3729 u64 old_val = vcpu->arch.ia32_misc_enable_msr;
3731 if (!msr_info->host_initiated) {
3733 if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK)
3736 /* R bits, i.e. writes are ignored, but don't fault. */
3737 data = data & ~MSR_IA32_MISC_ENABLE_EMON;
3738 data |= old_val & MSR_IA32_MISC_ENABLE_EMON;
3741 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3742 ((old_val ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3743 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3745 vcpu->arch.ia32_misc_enable_msr = data;
3746 kvm_update_cpuid_runtime(vcpu);
3748 vcpu->arch.ia32_misc_enable_msr = data;
3752 case MSR_IA32_SMBASE:
3753 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
3755 vcpu->arch.smbase = data;
3757 case MSR_IA32_POWER_CTL:
3758 vcpu->arch.msr_ia32_power_ctl = data;
3761 if (msr_info->host_initiated) {
3762 kvm_synchronize_tsc(vcpu, data);
3764 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3765 adjust_tsc_offset_guest(vcpu, adj);
3766 vcpu->arch.ia32_tsc_adjust_msr += adj;
3770 if (!msr_info->host_initiated &&
3771 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3774 * KVM supports exposing PT to the guest, but does not support
3775 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3776 * XSAVES/XRSTORS to save/restore PT MSRs.
3778 if (data & ~kvm_caps.supported_xss)
3780 vcpu->arch.ia32_xss = data;
3781 kvm_update_cpuid_runtime(vcpu);
3784 if (!msr_info->host_initiated)
3786 vcpu->arch.smi_count = data;
3788 case MSR_KVM_WALL_CLOCK_NEW:
3789 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3792 vcpu->kvm->arch.wall_clock = data;
3793 kvm_write_wall_clock(vcpu->kvm, data, 0);
3795 case MSR_KVM_WALL_CLOCK:
3796 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3799 vcpu->kvm->arch.wall_clock = data;
3800 kvm_write_wall_clock(vcpu->kvm, data, 0);
3802 case MSR_KVM_SYSTEM_TIME_NEW:
3803 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3806 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3808 case MSR_KVM_SYSTEM_TIME:
3809 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3812 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated);
3814 case MSR_KVM_ASYNC_PF_EN:
3815 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3818 if (kvm_pv_enable_async_pf(vcpu, data))
3821 case MSR_KVM_ASYNC_PF_INT:
3822 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3825 if (kvm_pv_enable_async_pf_int(vcpu, data))
3828 case MSR_KVM_ASYNC_PF_ACK:
3829 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3832 vcpu->arch.apf.pageready_pending = false;
3833 kvm_check_async_pf_completion(vcpu);
3836 case MSR_KVM_STEAL_TIME:
3837 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3840 if (unlikely(!sched_info_on()))
3843 if (data & KVM_STEAL_RESERVED_MASK)
3846 vcpu->arch.st.msr_val = data;
3848 if (!(data & KVM_MSR_ENABLED))
3851 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3854 case MSR_KVM_PV_EOI_EN:
3855 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3858 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
3862 case MSR_KVM_POLL_CONTROL:
3863 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3866 /* only enable bit supported */
3867 if (data & (-1ULL << 1))
3870 vcpu->arch.msr_kvm_poll_control = data;
3873 case MSR_IA32_MCG_CTL:
3874 case MSR_IA32_MCG_STATUS:
3875 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3876 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3877 return set_msr_mce(vcpu, msr_info);
3879 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3880 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3881 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3882 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3883 if (kvm_pmu_is_valid_msr(vcpu, msr))
3884 return kvm_pmu_set_msr(vcpu, msr_info);
3887 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3889 case MSR_K7_CLK_CTL:
3891 * Ignore all writes to this no longer documented MSR.
3892 * Writes are only relevant for old K7 processors,
3893 * all pre-dating SVM, but a recommended workaround from
3894 * AMD for these chips. It is possible to specify the
3895 * affected processor models on the command line, hence
3896 * the need to ignore the workaround.
3899 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3900 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3901 case HV_X64_MSR_SYNDBG_OPTIONS:
3902 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3903 case HV_X64_MSR_CRASH_CTL:
3904 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3905 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3906 case HV_X64_MSR_TSC_EMULATION_CONTROL:
3907 case HV_X64_MSR_TSC_EMULATION_STATUS:
3908 case HV_X64_MSR_TSC_INVARIANT_CONTROL:
3909 return kvm_hv_set_msr_common(vcpu, msr, data,
3910 msr_info->host_initiated);
3911 case MSR_IA32_BBL_CR_CTL3:
3912 /* Drop writes to this legacy MSR -- see rdmsr
3913 * counterpart for further detail.
3915 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3917 case MSR_AMD64_OSVW_ID_LENGTH:
3918 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3920 vcpu->arch.osvw.length = data;
3922 case MSR_AMD64_OSVW_STATUS:
3923 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3925 vcpu->arch.osvw.status = data;
3927 case MSR_PLATFORM_INFO:
3928 if (!msr_info->host_initiated ||
3929 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3930 cpuid_fault_enabled(vcpu)))
3932 vcpu->arch.msr_platform_info = data;
3934 case MSR_MISC_FEATURES_ENABLES:
3935 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3936 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3937 !supports_cpuid_fault(vcpu)))
3939 vcpu->arch.msr_misc_features_enables = data;
3941 #ifdef CONFIG_X86_64
3943 if (!msr_info->host_initiated &&
3944 !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3947 if (data & ~kvm_guest_supported_xfd(vcpu))
3950 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
3952 case MSR_IA32_XFD_ERR:
3953 if (!msr_info->host_initiated &&
3954 !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3957 if (data & ~kvm_guest_supported_xfd(vcpu))
3960 vcpu->arch.guest_fpu.xfd_err = data;
3964 if (kvm_pmu_is_valid_msr(vcpu, msr))
3965 return kvm_pmu_set_msr(vcpu, msr_info);
3968 * Userspace is allowed to write '0' to MSRs that KVM reports
3969 * as to-be-saved, even if an MSRs isn't fully supported.
3971 if (msr_info->host_initiated && !data &&
3972 kvm_is_msr_to_save(msr))
3975 return KVM_MSR_RET_INVALID;
3979 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3981 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3984 u64 mcg_cap = vcpu->arch.mcg_cap;
3985 unsigned bank_num = mcg_cap & 0xff;
3986 u32 offset, last_msr;
3989 case MSR_IA32_P5_MC_ADDR:
3990 case MSR_IA32_P5_MC_TYPE:
3993 case MSR_IA32_MCG_CAP:
3994 data = vcpu->arch.mcg_cap;
3996 case MSR_IA32_MCG_CTL:
3997 if (!(mcg_cap & MCG_CTL_P) && !host)
3999 data = vcpu->arch.mcg_ctl;
4001 case MSR_IA32_MCG_STATUS:
4002 data = vcpu->arch.mcg_status;
4004 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4005 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
4009 if (!(mcg_cap & MCG_CMCI_P) && !host)
4011 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
4012 last_msr + 1 - MSR_IA32_MC0_CTL2);
4013 data = vcpu->arch.mci_ctl2_banks[offset];
4015 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4016 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
4020 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
4021 last_msr + 1 - MSR_IA32_MC0_CTL);
4022 data = vcpu->arch.mce_banks[offset];
4031 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4033 switch (msr_info->index) {
4034 case MSR_IA32_PLATFORM_ID:
4035 case MSR_IA32_EBL_CR_POWERON:
4036 case MSR_IA32_LASTBRANCHFROMIP:
4037 case MSR_IA32_LASTBRANCHTOIP:
4038 case MSR_IA32_LASTINTFROMIP:
4039 case MSR_IA32_LASTINTTOIP:
4040 case MSR_AMD64_SYSCFG:
4041 case MSR_K8_TSEG_ADDR:
4042 case MSR_K8_TSEG_MASK:
4043 case MSR_VM_HSAVE_PA:
4044 case MSR_K8_INT_PENDING_MSG:
4045 case MSR_AMD64_NB_CFG:
4046 case MSR_FAM10H_MMIO_CONF_BASE:
4047 case MSR_AMD64_BU_CFG2:
4048 case MSR_IA32_PERF_CTL:
4049 case MSR_AMD64_DC_CFG:
4050 case MSR_F15H_EX_CFG:
4052 * Intel Sandy Bridge CPUs must support the RAPL (running average power
4053 * limit) MSRs. Just return 0, as we do not want to expose the host
4054 * data here. Do not conditionalize this on CPUID, as KVM does not do
4055 * so for existing CPU-specific MSRs.
4057 case MSR_RAPL_POWER_UNIT:
4058 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */
4059 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */
4060 case MSR_PKG_ENERGY_STATUS: /* Total package */
4061 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */
4064 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4065 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4066 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4067 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4068 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4069 return kvm_pmu_get_msr(vcpu, msr_info);
4072 case MSR_IA32_UCODE_REV:
4073 msr_info->data = vcpu->arch.microcode_version;
4075 case MSR_IA32_ARCH_CAPABILITIES:
4076 if (!msr_info->host_initiated &&
4077 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
4079 msr_info->data = vcpu->arch.arch_capabilities;
4081 case MSR_IA32_PERF_CAPABILITIES:
4082 if (!msr_info->host_initiated &&
4083 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
4085 msr_info->data = vcpu->arch.perf_capabilities;
4087 case MSR_IA32_POWER_CTL:
4088 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
4090 case MSR_IA32_TSC: {
4092 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
4093 * even when not intercepted. AMD manual doesn't explicitly
4094 * state this but appears to behave the same.
4096 * On userspace reads and writes, however, we unconditionally
4097 * return L1's TSC value to ensure backwards-compatible
4098 * behavior for migration.
4102 if (msr_info->host_initiated) {
4103 offset = vcpu->arch.l1_tsc_offset;
4104 ratio = vcpu->arch.l1_tsc_scaling_ratio;
4106 offset = vcpu->arch.tsc_offset;
4107 ratio = vcpu->arch.tsc_scaling_ratio;
4110 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
4114 case 0x200 ... MSR_IA32_MC0_CTL2 - 1:
4115 case MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) ... 0x2ff:
4116 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
4117 case 0xcd: /* fsb frequency */
4121 * MSR_EBC_FREQUENCY_ID
4122 * Conservative value valid for even the basic CPU models.
4123 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
4124 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
4125 * and 266MHz for model 3, or 4. Set Core Clock
4126 * Frequency to System Bus Frequency Ratio to 1 (bits
4127 * 31:24) even though these are only valid for CPU
4128 * models > 2, however guests may end up dividing or
4129 * multiplying by zero otherwise.
4131 case MSR_EBC_FREQUENCY_ID:
4132 msr_info->data = 1 << 24;
4134 case MSR_IA32_APICBASE:
4135 msr_info->data = kvm_get_apic_base(vcpu);
4137 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
4138 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
4139 case MSR_IA32_TSC_DEADLINE:
4140 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
4142 case MSR_IA32_TSC_ADJUST:
4143 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
4145 case MSR_IA32_MISC_ENABLE:
4146 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
4148 case MSR_IA32_SMBASE:
4149 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
4151 msr_info->data = vcpu->arch.smbase;
4154 msr_info->data = vcpu->arch.smi_count;
4156 case MSR_IA32_PERF_STATUS:
4157 /* TSC increment by tick */
4158 msr_info->data = 1000ULL;
4159 /* CPU multiplier */
4160 msr_info->data |= (((uint64_t)4ULL) << 40);
4163 msr_info->data = vcpu->arch.efer;
4165 case MSR_KVM_WALL_CLOCK:
4166 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4169 msr_info->data = vcpu->kvm->arch.wall_clock;
4171 case MSR_KVM_WALL_CLOCK_NEW:
4172 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4175 msr_info->data = vcpu->kvm->arch.wall_clock;
4177 case MSR_KVM_SYSTEM_TIME:
4178 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4181 msr_info->data = vcpu->arch.time;
4183 case MSR_KVM_SYSTEM_TIME_NEW:
4184 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4187 msr_info->data = vcpu->arch.time;
4189 case MSR_KVM_ASYNC_PF_EN:
4190 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4193 msr_info->data = vcpu->arch.apf.msr_en_val;
4195 case MSR_KVM_ASYNC_PF_INT:
4196 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4199 msr_info->data = vcpu->arch.apf.msr_int_val;
4201 case MSR_KVM_ASYNC_PF_ACK:
4202 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4207 case MSR_KVM_STEAL_TIME:
4208 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4211 msr_info->data = vcpu->arch.st.msr_val;
4213 case MSR_KVM_PV_EOI_EN:
4214 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4217 msr_info->data = vcpu->arch.pv_eoi.msr_val;
4219 case MSR_KVM_POLL_CONTROL:
4220 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4223 msr_info->data = vcpu->arch.msr_kvm_poll_control;
4225 case MSR_IA32_P5_MC_ADDR:
4226 case MSR_IA32_P5_MC_TYPE:
4227 case MSR_IA32_MCG_CAP:
4228 case MSR_IA32_MCG_CTL:
4229 case MSR_IA32_MCG_STATUS:
4230 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4231 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4232 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4233 msr_info->host_initiated);
4235 if (!msr_info->host_initiated &&
4236 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4238 msr_info->data = vcpu->arch.ia32_xss;
4240 case MSR_K7_CLK_CTL:
4242 * Provide expected ramp-up count for K7. All other
4243 * are set to zero, indicating minimum divisors for
4246 * This prevents guest kernels on AMD host with CPU
4247 * type 6, model 8 and higher from exploding due to
4248 * the rdmsr failing.
4250 msr_info->data = 0x20000000;
4252 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4253 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4254 case HV_X64_MSR_SYNDBG_OPTIONS:
4255 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4256 case HV_X64_MSR_CRASH_CTL:
4257 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4258 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4259 case HV_X64_MSR_TSC_EMULATION_CONTROL:
4260 case HV_X64_MSR_TSC_EMULATION_STATUS:
4261 case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4262 return kvm_hv_get_msr_common(vcpu,
4263 msr_info->index, &msr_info->data,
4264 msr_info->host_initiated);
4265 case MSR_IA32_BBL_CR_CTL3:
4266 /* This legacy MSR exists but isn't fully documented in current
4267 * silicon. It is however accessed by winxp in very narrow
4268 * scenarios where it sets bit #19, itself documented as
4269 * a "reserved" bit. Best effort attempt to source coherent
4270 * read data here should the balance of the register be
4271 * interpreted by the guest:
4273 * L2 cache control register 3: 64GB range, 256KB size,
4274 * enabled, latency 0x1, configured
4276 msr_info->data = 0xbe702111;
4278 case MSR_AMD64_OSVW_ID_LENGTH:
4279 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4281 msr_info->data = vcpu->arch.osvw.length;
4283 case MSR_AMD64_OSVW_STATUS:
4284 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4286 msr_info->data = vcpu->arch.osvw.status;
4288 case MSR_PLATFORM_INFO:
4289 if (!msr_info->host_initiated &&
4290 !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4292 msr_info->data = vcpu->arch.msr_platform_info;
4294 case MSR_MISC_FEATURES_ENABLES:
4295 msr_info->data = vcpu->arch.msr_misc_features_enables;
4298 msr_info->data = vcpu->arch.msr_hwcr;
4300 #ifdef CONFIG_X86_64
4302 if (!msr_info->host_initiated &&
4303 !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4306 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4308 case MSR_IA32_XFD_ERR:
4309 if (!msr_info->host_initiated &&
4310 !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4313 msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4317 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4318 return kvm_pmu_get_msr(vcpu, msr_info);
4321 * Userspace is allowed to read MSRs that KVM reports as
4322 * to-be-saved, even if an MSR isn't fully supported.
4324 if (msr_info->host_initiated &&
4325 kvm_is_msr_to_save(msr_info->index)) {
4330 return KVM_MSR_RET_INVALID;
4334 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4337 * Read or write a bunch of msrs. All parameters are kernel addresses.
4339 * @return number of msrs set successfully.
4341 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4342 struct kvm_msr_entry *entries,
4343 int (*do_msr)(struct kvm_vcpu *vcpu,
4344 unsigned index, u64 *data))
4348 for (i = 0; i < msrs->nmsrs; ++i)
4349 if (do_msr(vcpu, entries[i].index, &entries[i].data))
4356 * Read or write a bunch of msrs. Parameters are user addresses.
4358 * @return number of msrs set successfully.
4360 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4361 int (*do_msr)(struct kvm_vcpu *vcpu,
4362 unsigned index, u64 *data),
4365 struct kvm_msrs msrs;
4366 struct kvm_msr_entry *entries;
4371 if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4375 if (msrs.nmsrs >= MAX_IO_MSRS)
4378 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4379 entries = memdup_user(user_msrs->entries, size);
4380 if (IS_ERR(entries)) {
4381 r = PTR_ERR(entries);
4385 r = __msr_io(vcpu, &msrs, entries, do_msr);
4387 if (writeback && copy_to_user(user_msrs->entries, entries, size))
4395 static inline bool kvm_can_mwait_in_guest(void)
4397 return boot_cpu_has(X86_FEATURE_MWAIT) &&
4398 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
4399 boot_cpu_has(X86_FEATURE_ARAT);
4402 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4403 struct kvm_cpuid2 __user *cpuid_arg)
4405 struct kvm_cpuid2 cpuid;
4409 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4412 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4417 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4423 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4428 case KVM_CAP_IRQCHIP:
4430 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4431 case KVM_CAP_SET_TSS_ADDR:
4432 case KVM_CAP_EXT_CPUID:
4433 case KVM_CAP_EXT_EMUL_CPUID:
4434 case KVM_CAP_CLOCKSOURCE:
4436 case KVM_CAP_NOP_IO_DELAY:
4437 case KVM_CAP_MP_STATE:
4438 case KVM_CAP_SYNC_MMU:
4439 case KVM_CAP_USER_NMI:
4440 case KVM_CAP_REINJECT_CONTROL:
4441 case KVM_CAP_IRQ_INJECT_STATUS:
4442 case KVM_CAP_IOEVENTFD:
4443 case KVM_CAP_IOEVENTFD_NO_LENGTH:
4445 case KVM_CAP_PIT_STATE2:
4446 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4447 case KVM_CAP_VCPU_EVENTS:
4448 case KVM_CAP_HYPERV:
4449 case KVM_CAP_HYPERV_VAPIC:
4450 case KVM_CAP_HYPERV_SPIN:
4451 case KVM_CAP_HYPERV_SYNIC:
4452 case KVM_CAP_HYPERV_SYNIC2:
4453 case KVM_CAP_HYPERV_VP_INDEX:
4454 case KVM_CAP_HYPERV_EVENTFD:
4455 case KVM_CAP_HYPERV_TLBFLUSH:
4456 case KVM_CAP_HYPERV_SEND_IPI:
4457 case KVM_CAP_HYPERV_CPUID:
4458 case KVM_CAP_HYPERV_ENFORCE_CPUID:
4459 case KVM_CAP_SYS_HYPERV_CPUID:
4460 case KVM_CAP_PCI_SEGMENT:
4461 case KVM_CAP_DEBUGREGS:
4462 case KVM_CAP_X86_ROBUST_SINGLESTEP:
4464 case KVM_CAP_ASYNC_PF:
4465 case KVM_CAP_ASYNC_PF_INT:
4466 case KVM_CAP_GET_TSC_KHZ:
4467 case KVM_CAP_KVMCLOCK_CTRL:
4468 case KVM_CAP_READONLY_MEM:
4469 case KVM_CAP_HYPERV_TIME:
4470 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4471 case KVM_CAP_TSC_DEADLINE_TIMER:
4472 case KVM_CAP_DISABLE_QUIRKS:
4473 case KVM_CAP_SET_BOOT_CPU_ID:
4474 case KVM_CAP_SPLIT_IRQCHIP:
4475 case KVM_CAP_IMMEDIATE_EXIT:
4476 case KVM_CAP_PMU_EVENT_FILTER:
4477 case KVM_CAP_PMU_EVENT_MASKED_EVENTS:
4478 case KVM_CAP_GET_MSR_FEATURES:
4479 case KVM_CAP_MSR_PLATFORM_INFO:
4480 case KVM_CAP_EXCEPTION_PAYLOAD:
4481 case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
4482 case KVM_CAP_SET_GUEST_DEBUG:
4483 case KVM_CAP_LAST_CPU:
4484 case KVM_CAP_X86_USER_SPACE_MSR:
4485 case KVM_CAP_X86_MSR_FILTER:
4486 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4487 #ifdef CONFIG_X86_SGX_KVM
4488 case KVM_CAP_SGX_ATTRIBUTE:
4490 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4491 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4492 case KVM_CAP_SREGS2:
4493 case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4494 case KVM_CAP_VCPU_ATTRIBUTES:
4495 case KVM_CAP_SYS_ATTRIBUTES:
4497 case KVM_CAP_ENABLE_CAP:
4498 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
4499 case KVM_CAP_IRQFD_RESAMPLE:
4502 case KVM_CAP_EXIT_HYPERCALL:
4503 r = KVM_EXIT_HYPERCALL_VALID_MASK;
4505 case KVM_CAP_SET_GUEST_DEBUG2:
4506 return KVM_GUESTDBG_VALID_MASK;
4507 #ifdef CONFIG_KVM_XEN
4508 case KVM_CAP_XEN_HVM:
4509 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4510 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4511 KVM_XEN_HVM_CONFIG_SHARED_INFO |
4512 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL |
4513 KVM_XEN_HVM_CONFIG_EVTCHN_SEND;
4514 if (sched_info_on())
4515 r |= KVM_XEN_HVM_CONFIG_RUNSTATE |
4516 KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG;
4519 case KVM_CAP_SYNC_REGS:
4520 r = KVM_SYNC_X86_VALID_FIELDS;
4522 case KVM_CAP_ADJUST_CLOCK:
4523 r = KVM_CLOCK_VALID_FLAGS;
4525 case KVM_CAP_X86_DISABLE_EXITS:
4526 r = KVM_X86_DISABLE_EXITS_PAUSE;
4528 if (!mitigate_smt_rsb) {
4529 r |= KVM_X86_DISABLE_EXITS_HLT |
4530 KVM_X86_DISABLE_EXITS_CSTATE;
4532 if (kvm_can_mwait_in_guest())
4533 r |= KVM_X86_DISABLE_EXITS_MWAIT;
4536 case KVM_CAP_X86_SMM:
4537 if (!IS_ENABLED(CONFIG_KVM_SMM))
4540 /* SMBASE is usually relocated above 1M on modern chipsets,
4541 * and SMM handlers might indeed rely on 4G segment limits,
4542 * so do not report SMM to be available if real mode is
4543 * emulated via vm86 mode. Still, do not go to great lengths
4544 * to avoid userspace's usage of the feature, because it is a
4545 * fringe case that is not enabled except via specific settings
4546 * of the module parameters.
4548 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4550 case KVM_CAP_NR_VCPUS:
4551 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4553 case KVM_CAP_MAX_VCPUS:
4556 case KVM_CAP_MAX_VCPU_ID:
4557 r = KVM_MAX_VCPU_IDS;
4559 case KVM_CAP_PV_MMU: /* obsolete */
4563 r = KVM_MAX_MCE_BANKS;
4566 r = boot_cpu_has(X86_FEATURE_XSAVE);
4568 case KVM_CAP_TSC_CONTROL:
4569 case KVM_CAP_VM_TSC_CONTROL:
4570 r = kvm_caps.has_tsc_control;
4572 case KVM_CAP_X2APIC_API:
4573 r = KVM_X2APIC_API_VALID_FLAGS;
4575 case KVM_CAP_NESTED_STATE:
4576 r = kvm_x86_ops.nested_ops->get_state ?
4577 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4579 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4580 r = kvm_x86_ops.enable_l2_tlb_flush != NULL;
4582 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4583 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4585 case KVM_CAP_SMALLER_MAXPHYADDR:
4586 r = (int) allow_smaller_maxphyaddr;
4588 case KVM_CAP_STEAL_TIME:
4589 r = sched_info_on();
4591 case KVM_CAP_X86_BUS_LOCK_EXIT:
4592 if (kvm_caps.has_bus_lock_exit)
4593 r = KVM_BUS_LOCK_DETECTION_OFF |
4594 KVM_BUS_LOCK_DETECTION_EXIT;
4598 case KVM_CAP_XSAVE2: {
4599 r = xstate_required_size(kvm_get_filtered_xcr0(), false);
4600 if (r < sizeof(struct kvm_xsave))
4601 r = sizeof(struct kvm_xsave);
4604 case KVM_CAP_PMU_CAPABILITY:
4605 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4607 case KVM_CAP_DISABLE_QUIRKS2:
4608 r = KVM_X86_VALID_QUIRKS;
4610 case KVM_CAP_X86_NOTIFY_VMEXIT:
4611 r = kvm_caps.has_notify_vmexit;
4619 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr)
4621 void __user *uaddr = (void __user*)(unsigned long)attr->addr;
4623 if ((u64)(unsigned long)uaddr != attr->addr)
4624 return ERR_PTR_USR(-EFAULT);
4628 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4630 u64 __user *uaddr = kvm_get_attr_addr(attr);
4636 return PTR_ERR(uaddr);
4638 switch (attr->attr) {
4639 case KVM_X86_XCOMP_GUEST_SUPP:
4640 if (put_user(kvm_caps.supported_xcr0, uaddr))
4649 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4654 switch (attr->attr) {
4655 case KVM_X86_XCOMP_GUEST_SUPP:
4662 long kvm_arch_dev_ioctl(struct file *filp,
4663 unsigned int ioctl, unsigned long arg)
4665 void __user *argp = (void __user *)arg;
4669 case KVM_GET_MSR_INDEX_LIST: {
4670 struct kvm_msr_list __user *user_msr_list = argp;
4671 struct kvm_msr_list msr_list;
4675 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4678 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4679 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4682 if (n < msr_list.nmsrs)
4685 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4686 num_msrs_to_save * sizeof(u32)))
4688 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4690 num_emulated_msrs * sizeof(u32)))
4695 case KVM_GET_SUPPORTED_CPUID:
4696 case KVM_GET_EMULATED_CPUID: {
4697 struct kvm_cpuid2 __user *cpuid_arg = argp;
4698 struct kvm_cpuid2 cpuid;
4701 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4704 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4710 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4715 case KVM_X86_GET_MCE_CAP_SUPPORTED:
4717 if (copy_to_user(argp, &kvm_caps.supported_mce_cap,
4718 sizeof(kvm_caps.supported_mce_cap)))
4722 case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4723 struct kvm_msr_list __user *user_msr_list = argp;
4724 struct kvm_msr_list msr_list;
4728 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4731 msr_list.nmsrs = num_msr_based_features;
4732 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4735 if (n < msr_list.nmsrs)
4738 if (copy_to_user(user_msr_list->indices, &msr_based_features,
4739 num_msr_based_features * sizeof(u32)))
4745 r = msr_io(NULL, argp, do_get_msr_feature, 1);
4747 case KVM_GET_SUPPORTED_HV_CPUID:
4748 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4750 case KVM_GET_DEVICE_ATTR: {
4751 struct kvm_device_attr attr;
4753 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4755 r = kvm_x86_dev_get_attr(&attr);
4758 case KVM_HAS_DEVICE_ATTR: {
4759 struct kvm_device_attr attr;
4761 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4763 r = kvm_x86_dev_has_attr(&attr);
4774 static void wbinvd_ipi(void *garbage)
4779 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4781 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4784 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4786 /* Address WBINVD may be executed by guest */
4787 if (need_emulate_wbinvd(vcpu)) {
4788 if (static_call(kvm_x86_has_wbinvd_exit)())
4789 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4790 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4791 smp_call_function_single(vcpu->cpu,
4792 wbinvd_ipi, NULL, 1);
4795 static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4797 /* Save host pkru register if supported */
4798 vcpu->arch.host_pkru = read_pkru();
4800 /* Apply any externally detected TSC adjustments (due to suspend) */
4801 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4802 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4803 vcpu->arch.tsc_offset_adjustment = 0;
4804 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4807 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4808 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4809 rdtsc() - vcpu->arch.last_host_tsc;
4811 mark_tsc_unstable("KVM discovered backwards TSC");
4813 if (kvm_check_tsc_unstable()) {
4814 u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4815 vcpu->arch.last_guest_tsc);
4816 kvm_vcpu_write_tsc_offset(vcpu, offset);
4817 vcpu->arch.tsc_catchup = 1;
4820 if (kvm_lapic_hv_timer_in_use(vcpu))
4821 kvm_lapic_restart_hv_timer(vcpu);
4824 * On a host with synchronized TSC, there is no need to update
4825 * kvmclock on vcpu->cpu migration
4827 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4828 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4829 if (vcpu->cpu != cpu)
4830 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4834 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4837 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4839 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
4840 struct kvm_steal_time __user *st;
4841 struct kvm_memslots *slots;
4842 static const u8 preempted = KVM_VCPU_PREEMPTED;
4843 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
4846 * The vCPU can be marked preempted if and only if the VM-Exit was on
4847 * an instruction boundary and will not trigger guest emulation of any
4848 * kind (see vcpu_run). Vendor specific code controls (conservatively)
4849 * when this is true, for example allowing the vCPU to be marked
4850 * preempted if and only if the VM-Exit was due to a host interrupt.
4852 if (!vcpu->arch.at_instruction_boundary) {
4853 vcpu->stat.preemption_other++;
4857 vcpu->stat.preemption_reported++;
4858 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4861 if (vcpu->arch.st.preempted)
4864 /* This happens on process exit */
4865 if (unlikely(current->mm != vcpu->kvm->mm))
4868 slots = kvm_memslots(vcpu->kvm);
4870 if (unlikely(slots->generation != ghc->generation ||
4872 kvm_is_error_hva(ghc->hva) || !ghc->memslot))
4875 st = (struct kvm_steal_time __user *)ghc->hva;
4876 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
4878 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
4879 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4881 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
4884 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4888 if (vcpu->preempted) {
4889 if (!vcpu->arch.guest_state_protected)
4890 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4893 * Take the srcu lock as memslots will be accessed to check the gfn
4894 * cache generation against the memslots generation.
4896 idx = srcu_read_lock(&vcpu->kvm->srcu);
4897 if (kvm_xen_msr_enabled(vcpu->kvm))
4898 kvm_xen_runstate_set_preempted(vcpu);
4900 kvm_steal_time_set_preempted(vcpu);
4901 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4904 static_call(kvm_x86_vcpu_put)(vcpu);
4905 vcpu->arch.last_host_tsc = rdtsc();
4908 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4909 struct kvm_lapic_state *s)
4911 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
4913 return kvm_apic_get_state(vcpu, s);
4916 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4917 struct kvm_lapic_state *s)
4921 r = kvm_apic_set_state(vcpu, s);
4924 update_cr8_intercept(vcpu);
4929 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4932 * We can accept userspace's request for interrupt injection
4933 * as long as we have a place to store the interrupt number.
4934 * The actual injection will happen when the CPU is able to
4935 * deliver the interrupt.
4937 if (kvm_cpu_has_extint(vcpu))
4940 /* Acknowledging ExtINT does not happen if LINT0 is masked. */
4941 return (!lapic_in_kernel(vcpu) ||
4942 kvm_apic_accept_pic_intr(vcpu));
4945 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4948 * Do not cause an interrupt window exit if an exception
4949 * is pending or an event needs reinjection; userspace
4950 * might want to inject the interrupt manually using KVM_SET_REGS
4951 * or KVM_SET_SREGS. For that to work, we must be at an
4952 * instruction boundary and with no events half-injected.
4954 return (kvm_arch_interrupt_allowed(vcpu) &&
4955 kvm_cpu_accept_dm_intr(vcpu) &&
4956 !kvm_event_needs_reinjection(vcpu) &&
4957 !kvm_is_exception_pending(vcpu));
4960 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4961 struct kvm_interrupt *irq)
4963 if (irq->irq >= KVM_NR_INTERRUPTS)
4966 if (!irqchip_in_kernel(vcpu->kvm)) {
4967 kvm_queue_interrupt(vcpu, irq->irq, false);
4968 kvm_make_request(KVM_REQ_EVENT, vcpu);
4973 * With in-kernel LAPIC, we only use this to inject EXTINT, so
4974 * fail for in-kernel 8259.
4976 if (pic_in_kernel(vcpu->kvm))
4979 if (vcpu->arch.pending_external_vector != -1)
4982 vcpu->arch.pending_external_vector = irq->irq;
4983 kvm_make_request(KVM_REQ_EVENT, vcpu);
4987 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4989 kvm_inject_nmi(vcpu);
4994 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4995 struct kvm_tpr_access_ctl *tac)
4999 vcpu->arch.tpr_access_reporting = !!tac->enabled;
5003 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
5007 unsigned bank_num = mcg_cap & 0xff, bank;
5010 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
5012 if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000))
5015 vcpu->arch.mcg_cap = mcg_cap;
5016 /* Init IA32_MCG_CTL to all 1s */
5017 if (mcg_cap & MCG_CTL_P)
5018 vcpu->arch.mcg_ctl = ~(u64)0;
5019 /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */
5020 for (bank = 0; bank < bank_num; bank++) {
5021 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
5022 if (mcg_cap & MCG_CMCI_P)
5023 vcpu->arch.mci_ctl2_banks[bank] = 0;
5026 kvm_apic_after_set_mcg_cap(vcpu);
5028 static_call(kvm_x86_setup_mce)(vcpu);
5034 * Validate this is an UCNA (uncorrectable no action) error by checking the
5035 * MCG_STATUS and MCi_STATUS registers:
5036 * - none of the bits for Machine Check Exceptions are set
5037 * - both the VAL (valid) and UC (uncorrectable) bits are set
5038 * MCI_STATUS_PCC - Processor Context Corrupted
5039 * MCI_STATUS_S - Signaled as a Machine Check Exception
5040 * MCI_STATUS_AR - Software recoverable Action Required
5042 static bool is_ucna(struct kvm_x86_mce *mce)
5044 return !mce->mcg_status &&
5045 !(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) &&
5046 (mce->status & MCI_STATUS_VAL) &&
5047 (mce->status & MCI_STATUS_UC);
5050 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks)
5052 u64 mcg_cap = vcpu->arch.mcg_cap;
5054 banks[1] = mce->status;
5055 banks[2] = mce->addr;
5056 banks[3] = mce->misc;
5057 vcpu->arch.mcg_status = mce->mcg_status;
5059 if (!(mcg_cap & MCG_CMCI_P) ||
5060 !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN))
5063 if (lapic_in_kernel(vcpu))
5064 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI);
5069 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
5070 struct kvm_x86_mce *mce)
5072 u64 mcg_cap = vcpu->arch.mcg_cap;
5073 unsigned bank_num = mcg_cap & 0xff;
5074 u64 *banks = vcpu->arch.mce_banks;
5076 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
5079 banks += array_index_nospec(4 * mce->bank, 4 * bank_num);
5082 return kvm_vcpu_x86_set_ucna(vcpu, mce, banks);
5085 * if IA32_MCG_CTL is not all 1s, the uncorrected error
5086 * reporting is disabled
5088 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
5089 vcpu->arch.mcg_ctl != ~(u64)0)
5092 * if IA32_MCi_CTL is not all 1s, the uncorrected error
5093 * reporting is disabled for the bank
5095 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
5097 if (mce->status & MCI_STATUS_UC) {
5098 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
5099 !kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) {
5100 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5103 if (banks[1] & MCI_STATUS_VAL)
5104 mce->status |= MCI_STATUS_OVER;
5105 banks[2] = mce->addr;
5106 banks[3] = mce->misc;
5107 vcpu->arch.mcg_status = mce->mcg_status;
5108 banks[1] = mce->status;
5109 kvm_queue_exception(vcpu, MC_VECTOR);
5110 } else if (!(banks[1] & MCI_STATUS_VAL)
5111 || !(banks[1] & MCI_STATUS_UC)) {
5112 if (banks[1] & MCI_STATUS_VAL)
5113 mce->status |= MCI_STATUS_OVER;
5114 banks[2] = mce->addr;
5115 banks[3] = mce->misc;
5116 banks[1] = mce->status;
5118 banks[1] |= MCI_STATUS_OVER;
5122 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
5123 struct kvm_vcpu_events *events)
5125 struct kvm_queued_exception *ex;
5129 #ifdef CONFIG_KVM_SMM
5130 if (kvm_check_request(KVM_REQ_SMI, vcpu))
5135 * KVM's ABI only allows for one exception to be migrated. Luckily,
5136 * the only time there can be two queued exceptions is if there's a
5137 * non-exiting _injected_ exception, and a pending exiting exception.
5138 * In that case, ignore the VM-Exiting exception as it's an extension
5139 * of the injected exception.
5141 if (vcpu->arch.exception_vmexit.pending &&
5142 !vcpu->arch.exception.pending &&
5143 !vcpu->arch.exception.injected)
5144 ex = &vcpu->arch.exception_vmexit;
5146 ex = &vcpu->arch.exception;
5149 * In guest mode, payload delivery should be deferred if the exception
5150 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1
5151 * intercepts #PF, ditto for DR6 and #DBs. If the per-VM capability,
5152 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not
5153 * propagate the payload and so it cannot be safely deferred. Deliver
5154 * the payload if the capability hasn't been requested.
5156 if (!vcpu->kvm->arch.exception_payload_enabled &&
5157 ex->pending && ex->has_payload)
5158 kvm_deliver_exception_payload(vcpu, ex);
5160 memset(events, 0, sizeof(*events));
5163 * The API doesn't provide the instruction length for software
5164 * exceptions, so don't report them. As long as the guest RIP
5165 * isn't advanced, we should expect to encounter the exception
5168 if (!kvm_exception_is_soft(ex->vector)) {
5169 events->exception.injected = ex->injected;
5170 events->exception.pending = ex->pending;
5172 * For ABI compatibility, deliberately conflate
5173 * pending and injected exceptions when
5174 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
5176 if (!vcpu->kvm->arch.exception_payload_enabled)
5177 events->exception.injected |= ex->pending;
5179 events->exception.nr = ex->vector;
5180 events->exception.has_error_code = ex->has_error_code;
5181 events->exception.error_code = ex->error_code;
5182 events->exception_has_payload = ex->has_payload;
5183 events->exception_payload = ex->payload;
5185 events->interrupt.injected =
5186 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
5187 events->interrupt.nr = vcpu->arch.interrupt.nr;
5188 events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
5190 events->nmi.injected = vcpu->arch.nmi_injected;
5191 events->nmi.pending = kvm_get_nr_pending_nmis(vcpu);
5192 events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
5194 /* events->sipi_vector is never valid when reporting to user space */
5196 #ifdef CONFIG_KVM_SMM
5197 events->smi.smm = is_smm(vcpu);
5198 events->smi.pending = vcpu->arch.smi_pending;
5199 events->smi.smm_inside_nmi =
5200 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
5202 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
5204 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
5205 | KVM_VCPUEVENT_VALID_SHADOW
5206 | KVM_VCPUEVENT_VALID_SMM);
5207 if (vcpu->kvm->arch.exception_payload_enabled)
5208 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
5209 if (vcpu->kvm->arch.triple_fault_event) {
5210 events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5211 events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
5215 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
5216 struct kvm_vcpu_events *events)
5218 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
5219 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
5220 | KVM_VCPUEVENT_VALID_SHADOW
5221 | KVM_VCPUEVENT_VALID_SMM
5222 | KVM_VCPUEVENT_VALID_PAYLOAD
5223 | KVM_VCPUEVENT_VALID_TRIPLE_FAULT))
5226 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
5227 if (!vcpu->kvm->arch.exception_payload_enabled)
5229 if (events->exception.pending)
5230 events->exception.injected = 0;
5232 events->exception_has_payload = 0;
5234 events->exception.pending = 0;
5235 events->exception_has_payload = 0;
5238 if ((events->exception.injected || events->exception.pending) &&
5239 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
5242 /* INITs are latched while in SMM */
5243 if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
5244 (events->smi.smm || events->smi.pending) &&
5245 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
5251 * Flag that userspace is stuffing an exception, the next KVM_RUN will
5252 * morph the exception to a VM-Exit if appropriate. Do this only for
5253 * pending exceptions, already-injected exceptions are not subject to
5254 * intercpetion. Note, userspace that conflates pending and injected
5255 * is hosed, and will incorrectly convert an injected exception into a
5256 * pending exception, which in turn may cause a spurious VM-Exit.
5258 vcpu->arch.exception_from_userspace = events->exception.pending;
5260 vcpu->arch.exception_vmexit.pending = false;
5262 vcpu->arch.exception.injected = events->exception.injected;
5263 vcpu->arch.exception.pending = events->exception.pending;
5264 vcpu->arch.exception.vector = events->exception.nr;
5265 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
5266 vcpu->arch.exception.error_code = events->exception.error_code;
5267 vcpu->arch.exception.has_payload = events->exception_has_payload;
5268 vcpu->arch.exception.payload = events->exception_payload;
5270 vcpu->arch.interrupt.injected = events->interrupt.injected;
5271 vcpu->arch.interrupt.nr = events->interrupt.nr;
5272 vcpu->arch.interrupt.soft = events->interrupt.soft;
5273 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
5274 static_call(kvm_x86_set_interrupt_shadow)(vcpu,
5275 events->interrupt.shadow);
5277 vcpu->arch.nmi_injected = events->nmi.injected;
5278 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) {
5279 vcpu->arch.nmi_pending = 0;
5280 atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending);
5281 kvm_make_request(KVM_REQ_NMI, vcpu);
5283 static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
5285 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
5286 lapic_in_kernel(vcpu))
5287 vcpu->arch.apic->sipi_vector = events->sipi_vector;
5289 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
5290 #ifdef CONFIG_KVM_SMM
5291 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
5292 kvm_leave_nested(vcpu);
5293 kvm_smm_changed(vcpu, events->smi.smm);
5296 vcpu->arch.smi_pending = events->smi.pending;
5298 if (events->smi.smm) {
5299 if (events->smi.smm_inside_nmi)
5300 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
5302 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
5306 if (events->smi.smm || events->smi.pending ||
5307 events->smi.smm_inside_nmi)
5311 if (lapic_in_kernel(vcpu)) {
5312 if (events->smi.latched_init)
5313 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5315 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5319 if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
5320 if (!vcpu->kvm->arch.triple_fault_event)
5322 if (events->triple_fault.pending)
5323 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5325 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5328 kvm_make_request(KVM_REQ_EVENT, vcpu);
5333 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
5334 struct kvm_debugregs *dbgregs)
5338 memset(dbgregs, 0, sizeof(*dbgregs));
5339 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
5340 kvm_get_dr(vcpu, 6, &val);
5342 dbgregs->dr7 = vcpu->arch.dr7;
5345 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5346 struct kvm_debugregs *dbgregs)
5351 if (!kvm_dr6_valid(dbgregs->dr6))
5353 if (!kvm_dr7_valid(dbgregs->dr7))
5356 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
5357 kvm_update_dr0123(vcpu);
5358 vcpu->arch.dr6 = dbgregs->dr6;
5359 vcpu->arch.dr7 = dbgregs->dr7;
5360 kvm_update_dr7(vcpu);
5365 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5366 struct kvm_xsave *guest_xsave)
5368 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5371 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5372 guest_xsave->region,
5373 sizeof(guest_xsave->region),
5377 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5378 u8 *state, unsigned int size)
5380 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5383 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5384 state, size, vcpu->arch.pkru);
5387 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5388 struct kvm_xsave *guest_xsave)
5390 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5393 return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5394 guest_xsave->region,
5395 kvm_caps.supported_xcr0,
5399 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5400 struct kvm_xcrs *guest_xcrs)
5402 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5403 guest_xcrs->nr_xcrs = 0;
5407 guest_xcrs->nr_xcrs = 1;
5408 guest_xcrs->flags = 0;
5409 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5410 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5413 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5414 struct kvm_xcrs *guest_xcrs)
5418 if (!boot_cpu_has(X86_FEATURE_XSAVE))
5421 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5424 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5425 /* Only support XCR0 currently */
5426 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5427 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5428 guest_xcrs->xcrs[i].value);
5437 * kvm_set_guest_paused() indicates to the guest kernel that it has been
5438 * stopped by the hypervisor. This function will be called from the host only.
5439 * EINVAL is returned when the host attempts to set the flag for a guest that
5440 * does not support pv clocks.
5442 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5444 if (!vcpu->arch.pv_time.active)
5446 vcpu->arch.pvclock_set_guest_stopped_request = true;
5447 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5451 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5452 struct kvm_device_attr *attr)
5456 switch (attr->attr) {
5457 case KVM_VCPU_TSC_OFFSET:
5467 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5468 struct kvm_device_attr *attr)
5470 u64 __user *uaddr = kvm_get_attr_addr(attr);
5474 return PTR_ERR(uaddr);
5476 switch (attr->attr) {
5477 case KVM_VCPU_TSC_OFFSET:
5479 if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5490 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5491 struct kvm_device_attr *attr)
5493 u64 __user *uaddr = kvm_get_attr_addr(attr);
5494 struct kvm *kvm = vcpu->kvm;
5498 return PTR_ERR(uaddr);
5500 switch (attr->attr) {
5501 case KVM_VCPU_TSC_OFFSET: {
5502 u64 offset, tsc, ns;
5503 unsigned long flags;
5507 if (get_user(offset, uaddr))
5510 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5512 matched = (vcpu->arch.virtual_tsc_khz &&
5513 kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5514 kvm->arch.last_tsc_offset == offset);
5516 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5517 ns = get_kvmclock_base_ns();
5519 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5520 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5532 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5536 struct kvm_device_attr attr;
5539 if (copy_from_user(&attr, argp, sizeof(attr)))
5542 if (attr.group != KVM_VCPU_TSC_CTRL)
5546 case KVM_HAS_DEVICE_ATTR:
5547 r = kvm_arch_tsc_has_attr(vcpu, &attr);
5549 case KVM_GET_DEVICE_ATTR:
5550 r = kvm_arch_tsc_get_attr(vcpu, &attr);
5552 case KVM_SET_DEVICE_ATTR:
5553 r = kvm_arch_tsc_set_attr(vcpu, &attr);
5560 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5561 struct kvm_enable_cap *cap)
5564 uint16_t vmcs_version;
5565 void __user *user_ptr;
5571 case KVM_CAP_HYPERV_SYNIC2:
5576 case KVM_CAP_HYPERV_SYNIC:
5577 if (!irqchip_in_kernel(vcpu->kvm))
5579 return kvm_hv_activate_synic(vcpu, cap->cap ==
5580 KVM_CAP_HYPERV_SYNIC2);
5581 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5582 if (!kvm_x86_ops.nested_ops->enable_evmcs)
5584 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5586 user_ptr = (void __user *)(uintptr_t)cap->args[0];
5587 if (copy_to_user(user_ptr, &vmcs_version,
5588 sizeof(vmcs_version)))
5592 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5593 if (!kvm_x86_ops.enable_l2_tlb_flush)
5596 return static_call(kvm_x86_enable_l2_tlb_flush)(vcpu);
5598 case KVM_CAP_HYPERV_ENFORCE_CPUID:
5599 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5601 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5602 vcpu->arch.pv_cpuid.enforce = cap->args[0];
5603 if (vcpu->arch.pv_cpuid.enforce)
5604 kvm_update_pv_runtime(vcpu);
5612 long kvm_arch_vcpu_ioctl(struct file *filp,
5613 unsigned int ioctl, unsigned long arg)
5615 struct kvm_vcpu *vcpu = filp->private_data;
5616 void __user *argp = (void __user *)arg;
5619 struct kvm_sregs2 *sregs2;
5620 struct kvm_lapic_state *lapic;
5621 struct kvm_xsave *xsave;
5622 struct kvm_xcrs *xcrs;
5630 case KVM_GET_LAPIC: {
5632 if (!lapic_in_kernel(vcpu))
5634 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5635 GFP_KERNEL_ACCOUNT);
5640 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5644 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5649 case KVM_SET_LAPIC: {
5651 if (!lapic_in_kernel(vcpu))
5653 u.lapic = memdup_user(argp, sizeof(*u.lapic));
5654 if (IS_ERR(u.lapic)) {
5655 r = PTR_ERR(u.lapic);
5659 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5662 case KVM_INTERRUPT: {
5663 struct kvm_interrupt irq;
5666 if (copy_from_user(&irq, argp, sizeof(irq)))
5668 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5672 r = kvm_vcpu_ioctl_nmi(vcpu);
5676 r = kvm_inject_smi(vcpu);
5679 case KVM_SET_CPUID: {
5680 struct kvm_cpuid __user *cpuid_arg = argp;
5681 struct kvm_cpuid cpuid;
5684 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5686 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5689 case KVM_SET_CPUID2: {
5690 struct kvm_cpuid2 __user *cpuid_arg = argp;
5691 struct kvm_cpuid2 cpuid;
5694 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5696 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5697 cpuid_arg->entries);
5700 case KVM_GET_CPUID2: {
5701 struct kvm_cpuid2 __user *cpuid_arg = argp;
5702 struct kvm_cpuid2 cpuid;
5705 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5707 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5708 cpuid_arg->entries);
5712 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5717 case KVM_GET_MSRS: {
5718 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5719 r = msr_io(vcpu, argp, do_get_msr, 1);
5720 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5723 case KVM_SET_MSRS: {
5724 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5725 r = msr_io(vcpu, argp, do_set_msr, 0);
5726 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5729 case KVM_TPR_ACCESS_REPORTING: {
5730 struct kvm_tpr_access_ctl tac;
5733 if (copy_from_user(&tac, argp, sizeof(tac)))
5735 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5739 if (copy_to_user(argp, &tac, sizeof(tac)))
5744 case KVM_SET_VAPIC_ADDR: {
5745 struct kvm_vapic_addr va;
5749 if (!lapic_in_kernel(vcpu))
5752 if (copy_from_user(&va, argp, sizeof(va)))
5754 idx = srcu_read_lock(&vcpu->kvm->srcu);
5755 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5756 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5759 case KVM_X86_SETUP_MCE: {
5763 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5765 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5768 case KVM_X86_SET_MCE: {
5769 struct kvm_x86_mce mce;
5772 if (copy_from_user(&mce, argp, sizeof(mce)))
5774 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5777 case KVM_GET_VCPU_EVENTS: {
5778 struct kvm_vcpu_events events;
5780 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5783 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5788 case KVM_SET_VCPU_EVENTS: {
5789 struct kvm_vcpu_events events;
5792 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5795 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5798 case KVM_GET_DEBUGREGS: {
5799 struct kvm_debugregs dbgregs;
5801 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5804 if (copy_to_user(argp, &dbgregs,
5805 sizeof(struct kvm_debugregs)))
5810 case KVM_SET_DEBUGREGS: {
5811 struct kvm_debugregs dbgregs;
5814 if (copy_from_user(&dbgregs, argp,
5815 sizeof(struct kvm_debugregs)))
5818 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5821 case KVM_GET_XSAVE: {
5823 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
5826 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5831 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5834 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5839 case KVM_SET_XSAVE: {
5840 int size = vcpu->arch.guest_fpu.uabi_size;
5842 u.xsave = memdup_user(argp, size);
5843 if (IS_ERR(u.xsave)) {
5844 r = PTR_ERR(u.xsave);
5848 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5852 case KVM_GET_XSAVE2: {
5853 int size = vcpu->arch.guest_fpu.uabi_size;
5855 u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT);
5860 kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
5863 if (copy_to_user(argp, u.xsave, size))
5870 case KVM_GET_XCRS: {
5871 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5876 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5879 if (copy_to_user(argp, u.xcrs,
5880 sizeof(struct kvm_xcrs)))
5885 case KVM_SET_XCRS: {
5886 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5887 if (IS_ERR(u.xcrs)) {
5888 r = PTR_ERR(u.xcrs);
5892 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5895 case KVM_SET_TSC_KHZ: {
5899 user_tsc_khz = (u32)arg;
5901 if (kvm_caps.has_tsc_control &&
5902 user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
5905 if (user_tsc_khz == 0)
5906 user_tsc_khz = tsc_khz;
5908 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5913 case KVM_GET_TSC_KHZ: {
5914 r = vcpu->arch.virtual_tsc_khz;
5917 case KVM_KVMCLOCK_CTRL: {
5918 r = kvm_set_guest_paused(vcpu);
5921 case KVM_ENABLE_CAP: {
5922 struct kvm_enable_cap cap;
5925 if (copy_from_user(&cap, argp, sizeof(cap)))
5927 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5930 case KVM_GET_NESTED_STATE: {
5931 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5935 if (!kvm_x86_ops.nested_ops->get_state)
5938 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5940 if (get_user(user_data_size, &user_kvm_nested_state->size))
5943 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5948 if (r > user_data_size) {
5949 if (put_user(r, &user_kvm_nested_state->size))
5959 case KVM_SET_NESTED_STATE: {
5960 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5961 struct kvm_nested_state kvm_state;
5965 if (!kvm_x86_ops.nested_ops->set_state)
5969 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5973 if (kvm_state.size < sizeof(kvm_state))
5976 if (kvm_state.flags &
5977 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5978 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5979 | KVM_STATE_NESTED_GIF_SET))
5982 /* nested_run_pending implies guest_mode. */
5983 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5984 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5987 idx = srcu_read_lock(&vcpu->kvm->srcu);
5988 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5989 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5992 case KVM_GET_SUPPORTED_HV_CPUID:
5993 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5995 #ifdef CONFIG_KVM_XEN
5996 case KVM_XEN_VCPU_GET_ATTR: {
5997 struct kvm_xen_vcpu_attr xva;
6000 if (copy_from_user(&xva, argp, sizeof(xva)))
6002 r = kvm_xen_vcpu_get_attr(vcpu, &xva);
6003 if (!r && copy_to_user(argp, &xva, sizeof(xva)))
6007 case KVM_XEN_VCPU_SET_ATTR: {
6008 struct kvm_xen_vcpu_attr xva;
6011 if (copy_from_user(&xva, argp, sizeof(xva)))
6013 r = kvm_xen_vcpu_set_attr(vcpu, &xva);
6017 case KVM_GET_SREGS2: {
6018 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
6022 __get_sregs2(vcpu, u.sregs2);
6024 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
6029 case KVM_SET_SREGS2: {
6030 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
6031 if (IS_ERR(u.sregs2)) {
6032 r = PTR_ERR(u.sregs2);
6036 r = __set_sregs2(vcpu, u.sregs2);
6039 case KVM_HAS_DEVICE_ATTR:
6040 case KVM_GET_DEVICE_ATTR:
6041 case KVM_SET_DEVICE_ATTR:
6042 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
6054 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
6056 return VM_FAULT_SIGBUS;
6059 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
6063 if (addr > (unsigned int)(-3 * PAGE_SIZE))
6065 ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
6069 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
6072 return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
6075 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
6076 unsigned long kvm_nr_mmu_pages)
6078 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
6081 mutex_lock(&kvm->slots_lock);
6083 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
6084 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
6086 mutex_unlock(&kvm->slots_lock);
6090 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6092 struct kvm_pic *pic = kvm->arch.vpic;
6096 switch (chip->chip_id) {
6097 case KVM_IRQCHIP_PIC_MASTER:
6098 memcpy(&chip->chip.pic, &pic->pics[0],
6099 sizeof(struct kvm_pic_state));
6101 case KVM_IRQCHIP_PIC_SLAVE:
6102 memcpy(&chip->chip.pic, &pic->pics[1],
6103 sizeof(struct kvm_pic_state));
6105 case KVM_IRQCHIP_IOAPIC:
6106 kvm_get_ioapic(kvm, &chip->chip.ioapic);
6115 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6117 struct kvm_pic *pic = kvm->arch.vpic;
6121 switch (chip->chip_id) {
6122 case KVM_IRQCHIP_PIC_MASTER:
6123 spin_lock(&pic->lock);
6124 memcpy(&pic->pics[0], &chip->chip.pic,
6125 sizeof(struct kvm_pic_state));
6126 spin_unlock(&pic->lock);
6128 case KVM_IRQCHIP_PIC_SLAVE:
6129 spin_lock(&pic->lock);
6130 memcpy(&pic->pics[1], &chip->chip.pic,
6131 sizeof(struct kvm_pic_state));
6132 spin_unlock(&pic->lock);
6134 case KVM_IRQCHIP_IOAPIC:
6135 kvm_set_ioapic(kvm, &chip->chip.ioapic);
6141 kvm_pic_update_irq(pic);
6145 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6147 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
6149 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
6151 mutex_lock(&kps->lock);
6152 memcpy(ps, &kps->channels, sizeof(*ps));
6153 mutex_unlock(&kps->lock);
6157 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6160 struct kvm_pit *pit = kvm->arch.vpit;
6162 mutex_lock(&pit->pit_state.lock);
6163 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
6164 for (i = 0; i < 3; i++)
6165 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
6166 mutex_unlock(&pit->pit_state.lock);
6170 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6172 mutex_lock(&kvm->arch.vpit->pit_state.lock);
6173 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
6174 sizeof(ps->channels));
6175 ps->flags = kvm->arch.vpit->pit_state.flags;
6176 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
6177 memset(&ps->reserved, 0, sizeof(ps->reserved));
6181 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6185 u32 prev_legacy, cur_legacy;
6186 struct kvm_pit *pit = kvm->arch.vpit;
6188 mutex_lock(&pit->pit_state.lock);
6189 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
6190 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
6191 if (!prev_legacy && cur_legacy)
6193 memcpy(&pit->pit_state.channels, &ps->channels,
6194 sizeof(pit->pit_state.channels));
6195 pit->pit_state.flags = ps->flags;
6196 for (i = 0; i < 3; i++)
6197 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
6199 mutex_unlock(&pit->pit_state.lock);
6203 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
6204 struct kvm_reinject_control *control)
6206 struct kvm_pit *pit = kvm->arch.vpit;
6208 /* pit->pit_state.lock was overloaded to prevent userspace from getting
6209 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
6210 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
6212 mutex_lock(&pit->pit_state.lock);
6213 kvm_pit_set_reinject(pit, control->pit_reinject);
6214 mutex_unlock(&pit->pit_state.lock);
6219 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
6223 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called
6224 * before reporting dirty_bitmap to userspace. KVM flushes the buffers
6225 * on all VM-Exits, thus we only need to kick running vCPUs to force a
6228 struct kvm_vcpu *vcpu;
6231 kvm_for_each_vcpu(i, vcpu, kvm)
6232 kvm_vcpu_kick(vcpu);
6235 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
6238 if (!irqchip_in_kernel(kvm))
6241 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
6242 irq_event->irq, irq_event->level,
6247 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
6248 struct kvm_enable_cap *cap)
6256 case KVM_CAP_DISABLE_QUIRKS2:
6258 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS)
6261 case KVM_CAP_DISABLE_QUIRKS:
6262 kvm->arch.disabled_quirks = cap->args[0];
6265 case KVM_CAP_SPLIT_IRQCHIP: {
6266 mutex_lock(&kvm->lock);
6268 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
6269 goto split_irqchip_unlock;
6271 if (irqchip_in_kernel(kvm))
6272 goto split_irqchip_unlock;
6273 if (kvm->created_vcpus)
6274 goto split_irqchip_unlock;
6275 r = kvm_setup_empty_irq_routing(kvm);
6277 goto split_irqchip_unlock;
6278 /* Pairs with irqchip_in_kernel. */
6280 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
6281 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
6282 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6284 split_irqchip_unlock:
6285 mutex_unlock(&kvm->lock);
6288 case KVM_CAP_X2APIC_API:
6290 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
6293 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
6294 kvm->arch.x2apic_format = true;
6295 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
6296 kvm->arch.x2apic_broadcast_quirk_disabled = true;
6300 case KVM_CAP_X86_DISABLE_EXITS:
6302 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
6305 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
6306 kvm->arch.pause_in_guest = true;
6308 #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \
6309 "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests."
6311 if (!mitigate_smt_rsb) {
6312 if (boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible() &&
6313 (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE))
6314 pr_warn_once(SMT_RSB_MSG);
6316 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
6317 kvm_can_mwait_in_guest())
6318 kvm->arch.mwait_in_guest = true;
6319 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
6320 kvm->arch.hlt_in_guest = true;
6321 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
6322 kvm->arch.cstate_in_guest = true;
6327 case KVM_CAP_MSR_PLATFORM_INFO:
6328 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
6331 case KVM_CAP_EXCEPTION_PAYLOAD:
6332 kvm->arch.exception_payload_enabled = cap->args[0];
6335 case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
6336 kvm->arch.triple_fault_event = cap->args[0];
6339 case KVM_CAP_X86_USER_SPACE_MSR:
6341 if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK)
6343 kvm->arch.user_space_msr_mask = cap->args[0];
6346 case KVM_CAP_X86_BUS_LOCK_EXIT:
6348 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
6351 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6352 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6355 if (kvm_caps.has_bus_lock_exit &&
6356 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6357 kvm->arch.bus_lock_detection_enabled = true;
6360 #ifdef CONFIG_X86_SGX_KVM
6361 case KVM_CAP_SGX_ATTRIBUTE: {
6362 unsigned long allowed_attributes = 0;
6364 r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6368 /* KVM only supports the PROVISIONKEY privileged attribute. */
6369 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6370 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6371 kvm->arch.sgx_provisioning_allowed = true;
6377 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6379 if (!kvm_x86_ops.vm_copy_enc_context_from)
6382 r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]);
6384 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6386 if (!kvm_x86_ops.vm_move_enc_context_from)
6389 r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]);
6391 case KVM_CAP_EXIT_HYPERCALL:
6392 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6396 kvm->arch.hypercall_exit_enabled = cap->args[0];
6399 case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6401 if (cap->args[0] & ~1)
6403 kvm->arch.exit_on_emulation_error = cap->args[0];
6406 case KVM_CAP_PMU_CAPABILITY:
6408 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6411 mutex_lock(&kvm->lock);
6412 if (!kvm->created_vcpus) {
6413 kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6416 mutex_unlock(&kvm->lock);
6418 case KVM_CAP_MAX_VCPU_ID:
6420 if (cap->args[0] > KVM_MAX_VCPU_IDS)
6423 mutex_lock(&kvm->lock);
6424 if (kvm->arch.max_vcpu_ids == cap->args[0]) {
6426 } else if (!kvm->arch.max_vcpu_ids) {
6427 kvm->arch.max_vcpu_ids = cap->args[0];
6430 mutex_unlock(&kvm->lock);
6432 case KVM_CAP_X86_NOTIFY_VMEXIT:
6434 if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS)
6436 if (!kvm_caps.has_notify_vmexit)
6438 if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED))
6440 mutex_lock(&kvm->lock);
6441 if (!kvm->created_vcpus) {
6442 kvm->arch.notify_window = cap->args[0] >> 32;
6443 kvm->arch.notify_vmexit_flags = (u32)cap->args[0];
6446 mutex_unlock(&kvm->lock);
6448 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
6452 * Since the risk of disabling NX hugepages is a guest crashing
6453 * the system, ensure the userspace process has permission to
6454 * reboot the system.
6456 * Note that unlike the reboot() syscall, the process must have
6457 * this capability in the root namespace because exposing
6458 * /dev/kvm into a container does not limit the scope of the
6459 * iTLB multihit bug to that container. In other words,
6460 * this must use capable(), not ns_capable().
6462 if (!capable(CAP_SYS_BOOT)) {
6470 mutex_lock(&kvm->lock);
6471 if (!kvm->created_vcpus) {
6472 kvm->arch.disable_nx_huge_pages = true;
6475 mutex_unlock(&kvm->lock);
6484 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6486 struct kvm_x86_msr_filter *msr_filter;
6488 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6492 msr_filter->default_allow = default_allow;
6496 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6503 for (i = 0; i < msr_filter->count; i++)
6504 kfree(msr_filter->ranges[i].bitmap);
6509 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6510 struct kvm_msr_filter_range *user_range)
6512 unsigned long *bitmap = NULL;
6515 if (!user_range->nmsrs)
6518 if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK)
6521 if (!user_range->flags)
6524 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6525 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6528 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6530 return PTR_ERR(bitmap);
6532 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6533 .flags = user_range->flags,
6534 .base = user_range->base,
6535 .nmsrs = user_range->nmsrs,
6539 msr_filter->count++;
6543 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm,
6544 struct kvm_msr_filter *filter)
6546 struct kvm_x86_msr_filter *new_filter, *old_filter;
6552 if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK)
6555 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++)
6556 empty &= !filter->ranges[i].nmsrs;
6558 default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY);
6559 if (empty && !default_allow)
6562 new_filter = kvm_alloc_msr_filter(default_allow);
6566 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) {
6567 r = kvm_add_msr_filter(new_filter, &filter->ranges[i]);
6569 kvm_free_msr_filter(new_filter);
6574 mutex_lock(&kvm->lock);
6575 old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter,
6576 mutex_is_locked(&kvm->lock));
6577 mutex_unlock(&kvm->lock);
6578 synchronize_srcu(&kvm->srcu);
6580 kvm_free_msr_filter(old_filter);
6582 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6587 #ifdef CONFIG_KVM_COMPAT
6588 /* for KVM_X86_SET_MSR_FILTER */
6589 struct kvm_msr_filter_range_compat {
6596 struct kvm_msr_filter_compat {
6598 struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES];
6601 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat)
6603 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
6606 void __user *argp = (void __user *)arg;
6607 struct kvm *kvm = filp->private_data;
6611 case KVM_X86_SET_MSR_FILTER_COMPAT: {
6612 struct kvm_msr_filter __user *user_msr_filter = argp;
6613 struct kvm_msr_filter_compat filter_compat;
6614 struct kvm_msr_filter filter;
6617 if (copy_from_user(&filter_compat, user_msr_filter,
6618 sizeof(filter_compat)))
6621 filter.flags = filter_compat.flags;
6622 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6623 struct kvm_msr_filter_range_compat *cr;
6625 cr = &filter_compat.ranges[i];
6626 filter.ranges[i] = (struct kvm_msr_filter_range) {
6630 .bitmap = (__u8 *)(ulong)cr->bitmap,
6634 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
6643 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
6644 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6646 struct kvm_vcpu *vcpu;
6650 mutex_lock(&kvm->lock);
6651 kvm_for_each_vcpu(i, vcpu, kvm) {
6652 if (!vcpu->arch.pv_time.active)
6655 ret = kvm_set_guest_paused(vcpu);
6657 kvm_err("Failed to pause guest VCPU%d: %d\n",
6658 vcpu->vcpu_id, ret);
6662 mutex_unlock(&kvm->lock);
6664 return ret ? NOTIFY_BAD : NOTIFY_DONE;
6667 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6670 case PM_HIBERNATION_PREPARE:
6671 case PM_SUSPEND_PREPARE:
6672 return kvm_arch_suspend_notifier(kvm);
6677 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6679 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6681 struct kvm_clock_data data = { 0 };
6683 get_kvmclock(kvm, &data);
6684 if (copy_to_user(argp, &data, sizeof(data)))
6690 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6692 struct kvm_arch *ka = &kvm->arch;
6693 struct kvm_clock_data data;
6696 if (copy_from_user(&data, argp, sizeof(data)))
6700 * Only KVM_CLOCK_REALTIME is used, but allow passing the
6701 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6703 if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6706 kvm_hv_request_tsc_page_update(kvm);
6707 kvm_start_pvclock_update(kvm);
6708 pvclock_update_vm_gtod_copy(kvm);
6711 * This pairs with kvm_guest_time_update(): when masterclock is
6712 * in use, we use master_kernel_ns + kvmclock_offset to set
6713 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6714 * is slightly ahead) here we risk going negative on unsigned
6715 * 'system_time' when 'data.clock' is very small.
6717 if (data.flags & KVM_CLOCK_REALTIME) {
6718 u64 now_real_ns = ktime_get_real_ns();
6721 * Avoid stepping the kvmclock backwards.
6723 if (now_real_ns > data.realtime)
6724 data.clock += now_real_ns - data.realtime;
6727 if (ka->use_master_clock)
6728 now_raw_ns = ka->master_kernel_ns;
6730 now_raw_ns = get_kvmclock_base_ns();
6731 ka->kvmclock_offset = data.clock - now_raw_ns;
6732 kvm_end_pvclock_update(kvm);
6736 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
6738 struct kvm *kvm = filp->private_data;
6739 void __user *argp = (void __user *)arg;
6742 * This union makes it completely explicit to gcc-3.x
6743 * that these two variables' stack usage should be
6744 * combined, not added together.
6747 struct kvm_pit_state ps;
6748 struct kvm_pit_state2 ps2;
6749 struct kvm_pit_config pit_config;
6753 case KVM_SET_TSS_ADDR:
6754 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
6756 case KVM_SET_IDENTITY_MAP_ADDR: {
6759 mutex_lock(&kvm->lock);
6761 if (kvm->created_vcpus)
6762 goto set_identity_unlock;
6764 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
6765 goto set_identity_unlock;
6766 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
6767 set_identity_unlock:
6768 mutex_unlock(&kvm->lock);
6771 case KVM_SET_NR_MMU_PAGES:
6772 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
6774 case KVM_CREATE_IRQCHIP: {
6775 mutex_lock(&kvm->lock);
6778 if (irqchip_in_kernel(kvm))
6779 goto create_irqchip_unlock;
6782 if (kvm->created_vcpus)
6783 goto create_irqchip_unlock;
6785 r = kvm_pic_init(kvm);
6787 goto create_irqchip_unlock;
6789 r = kvm_ioapic_init(kvm);
6791 kvm_pic_destroy(kvm);
6792 goto create_irqchip_unlock;
6795 r = kvm_setup_default_irq_routing(kvm);
6797 kvm_ioapic_destroy(kvm);
6798 kvm_pic_destroy(kvm);
6799 goto create_irqchip_unlock;
6801 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
6803 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
6804 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6805 create_irqchip_unlock:
6806 mutex_unlock(&kvm->lock);
6809 case KVM_CREATE_PIT:
6810 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
6812 case KVM_CREATE_PIT2:
6814 if (copy_from_user(&u.pit_config, argp,
6815 sizeof(struct kvm_pit_config)))
6818 mutex_lock(&kvm->lock);
6821 goto create_pit_unlock;
6823 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
6827 mutex_unlock(&kvm->lock);
6829 case KVM_GET_IRQCHIP: {
6830 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6831 struct kvm_irqchip *chip;
6833 chip = memdup_user(argp, sizeof(*chip));
6840 if (!irqchip_kernel(kvm))
6841 goto get_irqchip_out;
6842 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
6844 goto get_irqchip_out;
6846 if (copy_to_user(argp, chip, sizeof(*chip)))
6847 goto get_irqchip_out;
6853 case KVM_SET_IRQCHIP: {
6854 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6855 struct kvm_irqchip *chip;
6857 chip = memdup_user(argp, sizeof(*chip));
6864 if (!irqchip_kernel(kvm))
6865 goto set_irqchip_out;
6866 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
6873 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
6876 if (!kvm->arch.vpit)
6878 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
6882 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
6889 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
6891 mutex_lock(&kvm->lock);
6893 if (!kvm->arch.vpit)
6895 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
6897 mutex_unlock(&kvm->lock);
6900 case KVM_GET_PIT2: {
6902 if (!kvm->arch.vpit)
6904 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
6908 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
6913 case KVM_SET_PIT2: {
6915 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
6917 mutex_lock(&kvm->lock);
6919 if (!kvm->arch.vpit)
6921 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
6923 mutex_unlock(&kvm->lock);
6926 case KVM_REINJECT_CONTROL: {
6927 struct kvm_reinject_control control;
6929 if (copy_from_user(&control, argp, sizeof(control)))
6932 if (!kvm->arch.vpit)
6934 r = kvm_vm_ioctl_reinject(kvm, &control);
6937 case KVM_SET_BOOT_CPU_ID:
6939 mutex_lock(&kvm->lock);
6940 if (kvm->created_vcpus)
6943 kvm->arch.bsp_vcpu_id = arg;
6944 mutex_unlock(&kvm->lock);
6946 #ifdef CONFIG_KVM_XEN
6947 case KVM_XEN_HVM_CONFIG: {
6948 struct kvm_xen_hvm_config xhc;
6950 if (copy_from_user(&xhc, argp, sizeof(xhc)))
6952 r = kvm_xen_hvm_config(kvm, &xhc);
6955 case KVM_XEN_HVM_GET_ATTR: {
6956 struct kvm_xen_hvm_attr xha;
6959 if (copy_from_user(&xha, argp, sizeof(xha)))
6961 r = kvm_xen_hvm_get_attr(kvm, &xha);
6962 if (!r && copy_to_user(argp, &xha, sizeof(xha)))
6966 case KVM_XEN_HVM_SET_ATTR: {
6967 struct kvm_xen_hvm_attr xha;
6970 if (copy_from_user(&xha, argp, sizeof(xha)))
6972 r = kvm_xen_hvm_set_attr(kvm, &xha);
6975 case KVM_XEN_HVM_EVTCHN_SEND: {
6976 struct kvm_irq_routing_xen_evtchn uxe;
6979 if (copy_from_user(&uxe, argp, sizeof(uxe)))
6981 r = kvm_xen_hvm_evtchn_send(kvm, &uxe);
6986 r = kvm_vm_ioctl_set_clock(kvm, argp);
6989 r = kvm_vm_ioctl_get_clock(kvm, argp);
6991 case KVM_SET_TSC_KHZ: {
6995 user_tsc_khz = (u32)arg;
6997 if (kvm_caps.has_tsc_control &&
6998 user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
7001 if (user_tsc_khz == 0)
7002 user_tsc_khz = tsc_khz;
7004 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz);
7009 case KVM_GET_TSC_KHZ: {
7010 r = READ_ONCE(kvm->arch.default_tsc_khz);
7013 case KVM_MEMORY_ENCRYPT_OP: {
7015 if (!kvm_x86_ops.mem_enc_ioctl)
7018 r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp);
7021 case KVM_MEMORY_ENCRYPT_REG_REGION: {
7022 struct kvm_enc_region region;
7025 if (copy_from_user(®ion, argp, sizeof(region)))
7029 if (!kvm_x86_ops.mem_enc_register_region)
7032 r = static_call(kvm_x86_mem_enc_register_region)(kvm, ®ion);
7035 case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
7036 struct kvm_enc_region region;
7039 if (copy_from_user(®ion, argp, sizeof(region)))
7043 if (!kvm_x86_ops.mem_enc_unregister_region)
7046 r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, ®ion);
7049 case KVM_HYPERV_EVENTFD: {
7050 struct kvm_hyperv_eventfd hvevfd;
7053 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
7055 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
7058 case KVM_SET_PMU_EVENT_FILTER:
7059 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
7061 case KVM_X86_SET_MSR_FILTER: {
7062 struct kvm_msr_filter __user *user_msr_filter = argp;
7063 struct kvm_msr_filter filter;
7065 if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
7068 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
7078 static void kvm_probe_feature_msr(u32 msr_index)
7080 struct kvm_msr_entry msr = {
7084 if (kvm_get_msr_feature(&msr))
7087 msr_based_features[num_msr_based_features++] = msr_index;
7090 static void kvm_probe_msr_to_save(u32 msr_index)
7094 if (rdmsr_safe(msr_index, &dummy[0], &dummy[1]))
7098 * Even MSRs that are valid in the host may not be exposed to guests in
7101 switch (msr_index) {
7102 case MSR_IA32_BNDCFGS:
7103 if (!kvm_mpx_supported())
7107 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
7108 !kvm_cpu_cap_has(X86_FEATURE_RDPID))
7111 case MSR_IA32_UMWAIT_CONTROL:
7112 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
7115 case MSR_IA32_RTIT_CTL:
7116 case MSR_IA32_RTIT_STATUS:
7117 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
7120 case MSR_IA32_RTIT_CR3_MATCH:
7121 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7122 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
7125 case MSR_IA32_RTIT_OUTPUT_BASE:
7126 case MSR_IA32_RTIT_OUTPUT_MASK:
7127 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7128 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
7129 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
7132 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
7133 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7134 (msr_index - MSR_IA32_RTIT_ADDR0_A >=
7135 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2))
7138 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR_MAX:
7139 if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >=
7140 kvm_pmu_cap.num_counters_gp)
7143 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL_MAX:
7144 if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >=
7145 kvm_pmu_cap.num_counters_gp)
7148 case MSR_ARCH_PERFMON_FIXED_CTR0 ... MSR_ARCH_PERFMON_FIXED_CTR_MAX:
7149 if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >=
7150 kvm_pmu_cap.num_counters_fixed)
7154 case MSR_IA32_XFD_ERR:
7155 if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
7158 case MSR_IA32_TSX_CTRL:
7159 if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR))
7166 msrs_to_save[num_msrs_to_save++] = msr_index;
7169 static void kvm_init_msr_lists(void)
7173 BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3,
7174 "Please update the fixed PMCs in msrs_to_save_pmu[]");
7176 num_msrs_to_save = 0;
7177 num_emulated_msrs = 0;
7178 num_msr_based_features = 0;
7180 for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++)
7181 kvm_probe_msr_to_save(msrs_to_save_base[i]);
7184 for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++)
7185 kvm_probe_msr_to_save(msrs_to_save_pmu[i]);
7188 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
7189 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
7192 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
7195 for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++)
7196 kvm_probe_feature_msr(i);
7198 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++)
7199 kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]);
7202 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
7210 if (!(lapic_in_kernel(vcpu) &&
7211 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
7212 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
7223 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
7230 if (!(lapic_in_kernel(vcpu) &&
7231 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
7233 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
7235 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
7245 void kvm_set_segment(struct kvm_vcpu *vcpu,
7246 struct kvm_segment *var, int seg)
7248 static_call(kvm_x86_set_segment)(vcpu, var, seg);
7251 void kvm_get_segment(struct kvm_vcpu *vcpu,
7252 struct kvm_segment *var, int seg)
7254 static_call(kvm_x86_get_segment)(vcpu, var, seg);
7257 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
7258 struct x86_exception *exception)
7260 struct kvm_mmu *mmu = vcpu->arch.mmu;
7263 BUG_ON(!mmu_is_nested(vcpu));
7265 /* NPT walks are always user-walks */
7266 access |= PFERR_USER_MASK;
7267 t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
7272 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
7273 struct x86_exception *exception)
7275 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7277 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7278 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7280 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
7282 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
7283 struct x86_exception *exception)
7285 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7287 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7288 access |= PFERR_WRITE_MASK;
7289 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7291 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
7293 /* uses this to access any guest's mapped memory without checking CPL */
7294 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
7295 struct x86_exception *exception)
7297 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7299 return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
7302 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7303 struct kvm_vcpu *vcpu, u64 access,
7304 struct x86_exception *exception)
7306 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7308 int r = X86EMUL_CONTINUE;
7311 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7312 unsigned offset = addr & (PAGE_SIZE-1);
7313 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
7316 if (gpa == INVALID_GPA)
7317 return X86EMUL_PROPAGATE_FAULT;
7318 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
7321 r = X86EMUL_IO_NEEDED;
7333 /* used for instruction fetching */
7334 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
7335 gva_t addr, void *val, unsigned int bytes,
7336 struct x86_exception *exception)
7338 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7339 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7340 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7344 /* Inline kvm_read_guest_virt_helper for speed. */
7345 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
7347 if (unlikely(gpa == INVALID_GPA))
7348 return X86EMUL_PROPAGATE_FAULT;
7350 offset = addr & (PAGE_SIZE-1);
7351 if (WARN_ON(offset + bytes > PAGE_SIZE))
7352 bytes = (unsigned)PAGE_SIZE - offset;
7353 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
7355 if (unlikely(ret < 0))
7356 return X86EMUL_IO_NEEDED;
7358 return X86EMUL_CONTINUE;
7361 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
7362 gva_t addr, void *val, unsigned int bytes,
7363 struct x86_exception *exception)
7365 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7368 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
7369 * is returned, but our callers are not ready for that and they blindly
7370 * call kvm_inject_page_fault. Ensure that they at least do not leak
7371 * uninitialized kernel stack memory into cr2 and error code.
7373 memset(exception, 0, sizeof(*exception));
7374 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
7377 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
7379 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
7380 gva_t addr, void *val, unsigned int bytes,
7381 struct x86_exception *exception, bool system)
7383 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7387 access |= PFERR_IMPLICIT_ACCESS;
7388 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7389 access |= PFERR_USER_MASK;
7391 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
7394 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7395 struct kvm_vcpu *vcpu, u64 access,
7396 struct x86_exception *exception)
7398 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7400 int r = X86EMUL_CONTINUE;
7403 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7404 unsigned offset = addr & (PAGE_SIZE-1);
7405 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
7408 if (gpa == INVALID_GPA)
7409 return X86EMUL_PROPAGATE_FAULT;
7410 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
7412 r = X86EMUL_IO_NEEDED;
7424 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
7425 unsigned int bytes, struct x86_exception *exception,
7428 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7429 u64 access = PFERR_WRITE_MASK;
7432 access |= PFERR_IMPLICIT_ACCESS;
7433 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7434 access |= PFERR_USER_MASK;
7436 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7440 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
7441 unsigned int bytes, struct x86_exception *exception)
7443 /* kvm_write_guest_virt_system can pull in tons of pages. */
7444 vcpu->arch.l1tf_flush_l1d = true;
7446 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7447 PFERR_WRITE_MASK, exception);
7449 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
7451 static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
7452 void *insn, int insn_len)
7454 return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type,
7458 int handle_ud(struct kvm_vcpu *vcpu)
7460 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
7461 int fep_flags = READ_ONCE(force_emulation_prefix);
7462 int emul_type = EMULTYPE_TRAP_UD;
7463 char sig[5]; /* ud2; .ascii "kvm" */
7464 struct x86_exception e;
7466 if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0)))
7470 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
7471 sig, sizeof(sig), &e) == 0 &&
7472 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
7473 if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF)
7474 kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF);
7475 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
7476 emul_type = EMULTYPE_TRAP_UD_FORCED;
7479 return kvm_emulate_instruction(vcpu, emul_type);
7481 EXPORT_SYMBOL_GPL(handle_ud);
7483 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7484 gpa_t gpa, bool write)
7486 /* For APIC access vmexit */
7487 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7490 if (vcpu_match_mmio_gpa(vcpu, gpa)) {
7491 trace_vcpu_match_mmio(gva, gpa, write, true);
7498 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7499 gpa_t *gpa, struct x86_exception *exception,
7502 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7503 u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
7504 | (write ? PFERR_WRITE_MASK : 0);
7507 * currently PKRU is only applied to ept enabled guest so
7508 * there is no pkey in EPT page table for L1 guest or EPT
7509 * shadow page table for L2 guest.
7511 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
7512 !permission_fault(vcpu, vcpu->arch.walk_mmu,
7513 vcpu->arch.mmio_access, 0, access))) {
7514 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
7515 (gva & (PAGE_SIZE - 1));
7516 trace_vcpu_match_mmio(gva, *gpa, write, false);
7520 *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7522 if (*gpa == INVALID_GPA)
7525 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
7528 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
7529 const void *val, int bytes)
7533 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
7536 kvm_page_track_write(vcpu, gpa, val, bytes);
7540 struct read_write_emulator_ops {
7541 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
7543 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
7544 void *val, int bytes);
7545 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7546 int bytes, void *val);
7547 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7548 void *val, int bytes);
7552 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
7554 if (vcpu->mmio_read_completed) {
7555 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
7556 vcpu->mmio_fragments[0].gpa, val);
7557 vcpu->mmio_read_completed = 0;
7564 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7565 void *val, int bytes)
7567 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
7570 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7571 void *val, int bytes)
7573 return emulator_write_phys(vcpu, gpa, val, bytes);
7576 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7578 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7579 return vcpu_mmio_write(vcpu, gpa, bytes, val);
7582 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7583 void *val, int bytes)
7585 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7586 return X86EMUL_IO_NEEDED;
7589 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7590 void *val, int bytes)
7592 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7594 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7595 return X86EMUL_CONTINUE;
7598 static const struct read_write_emulator_ops read_emultor = {
7599 .read_write_prepare = read_prepare,
7600 .read_write_emulate = read_emulate,
7601 .read_write_mmio = vcpu_mmio_read,
7602 .read_write_exit_mmio = read_exit_mmio,
7605 static const struct read_write_emulator_ops write_emultor = {
7606 .read_write_emulate = write_emulate,
7607 .read_write_mmio = write_mmio,
7608 .read_write_exit_mmio = write_exit_mmio,
7612 static int emulator_read_write_onepage(unsigned long addr, void *val,
7614 struct x86_exception *exception,
7615 struct kvm_vcpu *vcpu,
7616 const struct read_write_emulator_ops *ops)
7620 bool write = ops->write;
7621 struct kvm_mmio_fragment *frag;
7622 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7625 * If the exit was due to a NPF we may already have a GPA.
7626 * If the GPA is present, use it to avoid the GVA to GPA table walk.
7627 * Note, this cannot be used on string operations since string
7628 * operation using rep will only have the initial GPA from the NPF
7631 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7632 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7633 gpa = ctxt->gpa_val;
7634 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7636 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7638 return X86EMUL_PROPAGATE_FAULT;
7641 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7642 return X86EMUL_CONTINUE;
7645 * Is this MMIO handled locally?
7647 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7648 if (handled == bytes)
7649 return X86EMUL_CONTINUE;
7655 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7656 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7660 return X86EMUL_CONTINUE;
7663 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7665 void *val, unsigned int bytes,
7666 struct x86_exception *exception,
7667 const struct read_write_emulator_ops *ops)
7669 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7673 if (ops->read_write_prepare &&
7674 ops->read_write_prepare(vcpu, val, bytes))
7675 return X86EMUL_CONTINUE;
7677 vcpu->mmio_nr_fragments = 0;
7679 /* Crossing a page boundary? */
7680 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7683 now = -addr & ~PAGE_MASK;
7684 rc = emulator_read_write_onepage(addr, val, now, exception,
7687 if (rc != X86EMUL_CONTINUE)
7690 if (ctxt->mode != X86EMUL_MODE_PROT64)
7696 rc = emulator_read_write_onepage(addr, val, bytes, exception,
7698 if (rc != X86EMUL_CONTINUE)
7701 if (!vcpu->mmio_nr_fragments)
7704 gpa = vcpu->mmio_fragments[0].gpa;
7706 vcpu->mmio_needed = 1;
7707 vcpu->mmio_cur_fragment = 0;
7709 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
7710 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
7711 vcpu->run->exit_reason = KVM_EXIT_MMIO;
7712 vcpu->run->mmio.phys_addr = gpa;
7714 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
7717 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
7721 struct x86_exception *exception)
7723 return emulator_read_write(ctxt, addr, val, bytes,
7724 exception, &read_emultor);
7727 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
7731 struct x86_exception *exception)
7733 return emulator_read_write(ctxt, addr, (void *)val, bytes,
7734 exception, &write_emultor);
7737 #define emulator_try_cmpxchg_user(t, ptr, old, new) \
7738 (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
7740 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
7745 struct x86_exception *exception)
7747 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7753 /* guests cmpxchg8b have to be emulated atomically */
7754 if (bytes > 8 || (bytes & (bytes - 1)))
7757 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
7759 if (gpa == INVALID_GPA ||
7760 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7764 * Emulate the atomic as a straight write to avoid #AC if SLD is
7765 * enabled in the host and the access splits a cache line.
7767 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
7768 page_line_mask = ~(cache_line_size() - 1);
7770 page_line_mask = PAGE_MASK;
7772 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
7775 hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa));
7776 if (kvm_is_error_hva(hva))
7779 hva += offset_in_page(gpa);
7783 r = emulator_try_cmpxchg_user(u8, hva, old, new);
7786 r = emulator_try_cmpxchg_user(u16, hva, old, new);
7789 r = emulator_try_cmpxchg_user(u32, hva, old, new);
7792 r = emulator_try_cmpxchg_user(u64, hva, old, new);
7799 return X86EMUL_UNHANDLEABLE;
7801 return X86EMUL_CMPXCHG_FAILED;
7803 kvm_page_track_write(vcpu, gpa, new, bytes);
7805 return X86EMUL_CONTINUE;
7808 pr_warn_once("emulating exchange as write\n");
7810 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
7813 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
7814 unsigned short port, void *data,
7815 unsigned int count, bool in)
7820 WARN_ON_ONCE(vcpu->arch.pio.count);
7821 for (i = 0; i < count; i++) {
7823 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data);
7825 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data);
7832 * Userspace must have unregistered the device while PIO
7833 * was running. Drop writes / read as 0.
7836 memset(data, 0, size * (count - i));
7845 vcpu->arch.pio.port = port;
7846 vcpu->arch.pio.in = in;
7847 vcpu->arch.pio.count = count;
7848 vcpu->arch.pio.size = size;
7851 memset(vcpu->arch.pio_data, 0, size * count);
7853 memcpy(vcpu->arch.pio_data, data, size * count);
7855 vcpu->run->exit_reason = KVM_EXIT_IO;
7856 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
7857 vcpu->run->io.size = size;
7858 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
7859 vcpu->run->io.count = count;
7860 vcpu->run->io.port = port;
7864 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7865 unsigned short port, void *val, unsigned int count)
7867 int r = emulator_pio_in_out(vcpu, size, port, val, count, true);
7869 trace_kvm_pio(KVM_PIO_IN, port, size, count, val);
7874 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
7876 int size = vcpu->arch.pio.size;
7877 unsigned int count = vcpu->arch.pio.count;
7878 memcpy(val, vcpu->arch.pio_data, size * count);
7879 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
7880 vcpu->arch.pio.count = 0;
7883 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
7884 int size, unsigned short port, void *val,
7887 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7888 if (vcpu->arch.pio.count) {
7890 * Complete a previous iteration that required userspace I/O.
7891 * Note, @count isn't guaranteed to match pio.count as userspace
7892 * can modify ECX before rerunning the vCPU. Ignore any such
7893 * shenanigans as KVM doesn't support modifying the rep count,
7894 * and the emulator ensures @count doesn't overflow the buffer.
7896 complete_emulator_pio_in(vcpu, val);
7900 return emulator_pio_in(vcpu, size, port, val, count);
7903 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
7904 unsigned short port, const void *val,
7907 trace_kvm_pio(KVM_PIO_OUT, port, size, count, val);
7908 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
7911 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
7912 int size, unsigned short port,
7913 const void *val, unsigned int count)
7915 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
7918 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
7920 return static_call(kvm_x86_get_segment_base)(vcpu, seg);
7923 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
7925 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
7928 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
7930 if (!need_emulate_wbinvd(vcpu))
7931 return X86EMUL_CONTINUE;
7933 if (static_call(kvm_x86_has_wbinvd_exit)()) {
7934 int cpu = get_cpu();
7936 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
7937 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
7938 wbinvd_ipi, NULL, 1);
7940 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
7943 return X86EMUL_CONTINUE;
7946 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
7948 kvm_emulate_wbinvd_noskip(vcpu);
7949 return kvm_skip_emulated_instruction(vcpu);
7951 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
7955 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
7957 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
7960 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
7961 unsigned long *dest)
7963 kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
7966 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
7967 unsigned long value)
7970 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
7973 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
7975 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
7978 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
7980 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7981 unsigned long value;
7985 value = kvm_read_cr0(vcpu);
7988 value = vcpu->arch.cr2;
7991 value = kvm_read_cr3(vcpu);
7994 value = kvm_read_cr4(vcpu);
7997 value = kvm_get_cr8(vcpu);
8000 kvm_err("%s: unexpected cr %u\n", __func__, cr);
8007 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
8009 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8014 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
8017 vcpu->arch.cr2 = val;
8020 res = kvm_set_cr3(vcpu, val);
8023 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
8026 res = kvm_set_cr8(vcpu, val);
8029 kvm_err("%s: unexpected cr %u\n", __func__, cr);
8036 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
8038 return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
8041 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8043 static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
8046 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8048 static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
8051 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8053 static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
8056 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8058 static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
8061 static unsigned long emulator_get_cached_segment_base(
8062 struct x86_emulate_ctxt *ctxt, int seg)
8064 return get_segment_base(emul_to_vcpu(ctxt), seg);
8067 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
8068 struct desc_struct *desc, u32 *base3,
8071 struct kvm_segment var;
8073 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
8074 *selector = var.selector;
8077 memset(desc, 0, sizeof(*desc));
8085 set_desc_limit(desc, var.limit);
8086 set_desc_base(desc, (unsigned long)var.base);
8087 #ifdef CONFIG_X86_64
8089 *base3 = var.base >> 32;
8091 desc->type = var.type;
8093 desc->dpl = var.dpl;
8094 desc->p = var.present;
8095 desc->avl = var.avl;
8103 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
8104 struct desc_struct *desc, u32 base3,
8107 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8108 struct kvm_segment var;
8110 var.selector = selector;
8111 var.base = get_desc_base(desc);
8112 #ifdef CONFIG_X86_64
8113 var.base |= ((u64)base3) << 32;
8115 var.limit = get_desc_limit(desc);
8117 var.limit = (var.limit << 12) | 0xfff;
8118 var.type = desc->type;
8119 var.dpl = desc->dpl;
8124 var.avl = desc->avl;
8125 var.present = desc->p;
8126 var.unusable = !var.present;
8129 kvm_set_segment(vcpu, &var, seg);
8133 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8134 u32 msr_index, u64 *pdata)
8136 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8139 r = kvm_get_msr_with_filter(vcpu, msr_index, pdata);
8141 return X86EMUL_UNHANDLEABLE;
8144 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
8145 complete_emulated_rdmsr, r))
8146 return X86EMUL_IO_NEEDED;
8148 trace_kvm_msr_read_ex(msr_index);
8149 return X86EMUL_PROPAGATE_FAULT;
8152 trace_kvm_msr_read(msr_index, *pdata);
8153 return X86EMUL_CONTINUE;
8156 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8157 u32 msr_index, u64 data)
8159 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8162 r = kvm_set_msr_with_filter(vcpu, msr_index, data);
8164 return X86EMUL_UNHANDLEABLE;
8167 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
8168 complete_emulated_msr_access, r))
8169 return X86EMUL_IO_NEEDED;
8171 trace_kvm_msr_write_ex(msr_index, data);
8172 return X86EMUL_PROPAGATE_FAULT;
8175 trace_kvm_msr_write(msr_index, data);
8176 return X86EMUL_CONTINUE;
8179 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
8180 u32 msr_index, u64 *pdata)
8182 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
8185 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
8188 if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc))
8193 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
8194 u32 pmc, u64 *pdata)
8196 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
8199 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
8201 emul_to_vcpu(ctxt)->arch.halt_request = 1;
8204 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
8205 struct x86_instruction_info *info,
8206 enum x86_intercept_stage stage)
8208 return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
8212 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
8213 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
8216 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
8219 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
8221 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
8224 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
8226 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
8229 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
8231 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
8234 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
8236 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
8239 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
8241 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
8244 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
8246 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
8249 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
8251 static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
8254 static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt)
8256 return is_smm(emul_to_vcpu(ctxt));
8259 static bool emulator_is_guest_mode(struct x86_emulate_ctxt *ctxt)
8261 return is_guest_mode(emul_to_vcpu(ctxt));
8264 #ifndef CONFIG_KVM_SMM
8265 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt)
8268 return X86EMUL_UNHANDLEABLE;
8272 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
8274 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
8277 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
8279 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
8282 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt)
8284 struct kvm *kvm = emul_to_vcpu(ctxt)->kvm;
8286 if (!kvm->vm_bugged)
8290 static const struct x86_emulate_ops emulate_ops = {
8291 .vm_bugged = emulator_vm_bugged,
8292 .read_gpr = emulator_read_gpr,
8293 .write_gpr = emulator_write_gpr,
8294 .read_std = emulator_read_std,
8295 .write_std = emulator_write_std,
8296 .fetch = kvm_fetch_guest_virt,
8297 .read_emulated = emulator_read_emulated,
8298 .write_emulated = emulator_write_emulated,
8299 .cmpxchg_emulated = emulator_cmpxchg_emulated,
8300 .invlpg = emulator_invlpg,
8301 .pio_in_emulated = emulator_pio_in_emulated,
8302 .pio_out_emulated = emulator_pio_out_emulated,
8303 .get_segment = emulator_get_segment,
8304 .set_segment = emulator_set_segment,
8305 .get_cached_segment_base = emulator_get_cached_segment_base,
8306 .get_gdt = emulator_get_gdt,
8307 .get_idt = emulator_get_idt,
8308 .set_gdt = emulator_set_gdt,
8309 .set_idt = emulator_set_idt,
8310 .get_cr = emulator_get_cr,
8311 .set_cr = emulator_set_cr,
8312 .cpl = emulator_get_cpl,
8313 .get_dr = emulator_get_dr,
8314 .set_dr = emulator_set_dr,
8315 .set_msr_with_filter = emulator_set_msr_with_filter,
8316 .get_msr_with_filter = emulator_get_msr_with_filter,
8317 .get_msr = emulator_get_msr,
8318 .check_pmc = emulator_check_pmc,
8319 .read_pmc = emulator_read_pmc,
8320 .halt = emulator_halt,
8321 .wbinvd = emulator_wbinvd,
8322 .fix_hypercall = emulator_fix_hypercall,
8323 .intercept = emulator_intercept,
8324 .get_cpuid = emulator_get_cpuid,
8325 .guest_has_long_mode = emulator_guest_has_long_mode,
8326 .guest_has_movbe = emulator_guest_has_movbe,
8327 .guest_has_fxsr = emulator_guest_has_fxsr,
8328 .guest_has_rdpid = emulator_guest_has_rdpid,
8329 .set_nmi_mask = emulator_set_nmi_mask,
8330 .is_smm = emulator_is_smm,
8331 .is_guest_mode = emulator_is_guest_mode,
8332 .leave_smm = emulator_leave_smm,
8333 .triple_fault = emulator_triple_fault,
8334 .set_xcr = emulator_set_xcr,
8337 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
8339 u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8341 * an sti; sti; sequence only disable interrupts for the first
8342 * instruction. So, if the last instruction, be it emulated or
8343 * not, left the system with the INT_STI flag enabled, it
8344 * means that the last instruction is an sti. We should not
8345 * leave the flag on in this case. The same goes for mov ss
8347 if (int_shadow & mask)
8349 if (unlikely(int_shadow || mask)) {
8350 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
8352 kvm_make_request(KVM_REQ_EVENT, vcpu);
8356 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
8358 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8360 if (ctxt->exception.vector == PF_VECTOR)
8361 kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
8362 else if (ctxt->exception.error_code_valid)
8363 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
8364 ctxt->exception.error_code);
8366 kvm_queue_exception(vcpu, ctxt->exception.vector);
8369 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
8371 struct x86_emulate_ctxt *ctxt;
8373 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
8375 pr_err("failed to allocate vcpu's emulator\n");
8380 ctxt->ops = &emulate_ops;
8381 vcpu->arch.emulate_ctxt = ctxt;
8386 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
8388 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8391 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
8393 ctxt->gpa_available = false;
8394 ctxt->eflags = kvm_get_rflags(vcpu);
8395 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
8397 ctxt->eip = kvm_rip_read(vcpu);
8398 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
8399 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
8400 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
8401 cs_db ? X86EMUL_MODE_PROT32 :
8402 X86EMUL_MODE_PROT16;
8403 ctxt->interruptibility = 0;
8404 ctxt->have_exception = false;
8405 ctxt->exception.vector = -1;
8406 ctxt->perm_ok = false;
8408 init_decode_cache(ctxt);
8409 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8412 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
8414 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8417 init_emulate_ctxt(vcpu);
8421 ctxt->_eip = ctxt->eip + inc_eip;
8422 ret = emulate_int_real(ctxt, irq);
8424 if (ret != X86EMUL_CONTINUE) {
8425 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8427 ctxt->eip = ctxt->_eip;
8428 kvm_rip_write(vcpu, ctxt->eip);
8429 kvm_set_rflags(vcpu, ctxt->eflags);
8432 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
8434 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8435 u8 ndata, u8 *insn_bytes, u8 insn_size)
8437 struct kvm_run *run = vcpu->run;
8442 * Zero the whole array used to retrieve the exit info, as casting to
8443 * u32 for select entries will leave some chunks uninitialized.
8445 memset(&info, 0, sizeof(info));
8447 static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1],
8448 &info[2], (u32 *)&info[3],
8451 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8452 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
8455 * There's currently space for 13 entries, but 5 are used for the exit
8456 * reason and info. Restrict to 4 to reduce the maintenance burden
8457 * when expanding kvm_run.emulation_failure in the future.
8459 if (WARN_ON_ONCE(ndata > 4))
8462 /* Always include the flags as a 'data' entry. */
8464 run->emulation_failure.flags = 0;
8467 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
8468 sizeof(run->emulation_failure.insn_bytes) != 16));
8470 run->emulation_failure.flags |=
8471 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
8472 run->emulation_failure.insn_size = insn_size;
8473 memset(run->emulation_failure.insn_bytes, 0x90,
8474 sizeof(run->emulation_failure.insn_bytes));
8475 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
8478 memcpy(&run->internal.data[info_start], info, sizeof(info));
8479 memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
8480 ndata * sizeof(data[0]));
8482 run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
8485 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
8487 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8489 prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
8490 ctxt->fetch.end - ctxt->fetch.data);
8493 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8496 prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
8498 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
8500 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
8502 __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
8504 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
8506 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
8508 struct kvm *kvm = vcpu->kvm;
8510 ++vcpu->stat.insn_emulation_fail;
8511 trace_kvm_emulate_insn_failed(vcpu);
8513 if (emulation_type & EMULTYPE_VMWARE_GP) {
8514 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8518 if (kvm->arch.exit_on_emulation_error ||
8519 (emulation_type & EMULTYPE_SKIP)) {
8520 prepare_emulation_ctxt_failure_exit(vcpu);
8524 kvm_queue_exception(vcpu, UD_VECTOR);
8526 if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
8527 prepare_emulation_ctxt_failure_exit(vcpu);
8534 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8537 gpa_t gpa = cr2_or_gpa;
8540 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8543 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8544 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8547 if (!vcpu->arch.mmu->root_role.direct) {
8549 * Write permission should be allowed since only
8550 * write access need to be emulated.
8552 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8555 * If the mapping is invalid in guest, let cpu retry
8556 * it to generate fault.
8558 if (gpa == INVALID_GPA)
8563 * Do not retry the unhandleable instruction if it faults on the
8564 * readonly host memory, otherwise it will goto a infinite loop:
8565 * retry instruction -> write #PF -> emulation fail -> retry
8566 * instruction -> ...
8568 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
8571 * If the instruction failed on the error pfn, it can not be fixed,
8572 * report the error to userspace.
8574 if (is_error_noslot_pfn(pfn))
8577 kvm_release_pfn_clean(pfn);
8579 /* The instructions are well-emulated on direct mmu. */
8580 if (vcpu->arch.mmu->root_role.direct) {
8581 unsigned int indirect_shadow_pages;
8583 write_lock(&vcpu->kvm->mmu_lock);
8584 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
8585 write_unlock(&vcpu->kvm->mmu_lock);
8587 if (indirect_shadow_pages)
8588 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8594 * if emulation was due to access to shadowed page table
8595 * and it failed try to unshadow page and re-enter the
8596 * guest to let CPU execute the instruction.
8598 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8601 * If the access faults on its page table, it can not
8602 * be fixed by unprotecting shadow page and it should
8603 * be reported to userspace.
8605 return !(emulation_type & EMULTYPE_WRITE_PF_TO_SP);
8608 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
8609 gpa_t cr2_or_gpa, int emulation_type)
8611 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8612 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
8614 last_retry_eip = vcpu->arch.last_retry_eip;
8615 last_retry_addr = vcpu->arch.last_retry_addr;
8618 * If the emulation is caused by #PF and it is non-page_table
8619 * writing instruction, it means the VM-EXIT is caused by shadow
8620 * page protected, we can zap the shadow page and retry this
8621 * instruction directly.
8623 * Note: if the guest uses a non-page-table modifying instruction
8624 * on the PDE that points to the instruction, then we will unmap
8625 * the instruction and go to an infinite loop. So, we cache the
8626 * last retried eip and the last fault address, if we meet the eip
8627 * and the address again, we can break out of the potential infinite
8630 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
8632 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8635 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8636 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8639 if (x86_page_table_writing_insn(ctxt))
8642 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
8645 vcpu->arch.last_retry_eip = ctxt->eip;
8646 vcpu->arch.last_retry_addr = cr2_or_gpa;
8648 if (!vcpu->arch.mmu->root_role.direct)
8649 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8651 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8656 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8657 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8659 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8668 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8669 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8674 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8676 struct kvm_run *kvm_run = vcpu->run;
8678 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8679 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8680 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8681 kvm_run->debug.arch.exception = DB_VECTOR;
8682 kvm_run->exit_reason = KVM_EXIT_DEBUG;
8685 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8689 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8691 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8694 r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
8698 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8701 * rflags is the old, "raw" value of the flags. The new value has
8702 * not been saved yet.
8704 * This is correct even for TF set by the guest, because "the
8705 * processor will not generate this exception after the instruction
8706 * that sets the TF flag".
8708 if (unlikely(rflags & X86_EFLAGS_TF))
8709 r = kvm_vcpu_do_singlestep(vcpu);
8712 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8714 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu)
8718 if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF)
8722 * Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active,
8723 * but AMD CPUs do not. MOV/POP SS blocking is rare, check that first
8724 * to avoid the relatively expensive CPUID lookup.
8726 shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8727 return (shadow & KVM_X86_SHADOW_INT_MOV_SS) &&
8728 guest_cpuid_is_intel(vcpu);
8731 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu,
8732 int emulation_type, int *r)
8734 WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE);
8737 * Do not check for code breakpoints if hardware has already done the
8738 * checks, as inferred from the emulation type. On NO_DECODE and SKIP,
8739 * the instruction has passed all exception checks, and all intercepted
8740 * exceptions that trigger emulation have lower priority than code
8741 * breakpoints, i.e. the fact that the intercepted exception occurred
8742 * means any code breakpoints have already been serviced.
8744 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as
8745 * hardware has checked the RIP of the magic prefix, but not the RIP of
8746 * the instruction being emulated. The intent of forced emulation is
8747 * to behave as if KVM intercepted the instruction without an exception
8748 * and without a prefix.
8750 if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
8751 EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF))
8754 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
8755 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
8756 struct kvm_run *kvm_run = vcpu->run;
8757 unsigned long eip = kvm_get_linear_rip(vcpu);
8758 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8759 vcpu->arch.guest_debug_dr7,
8763 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
8764 kvm_run->debug.arch.pc = eip;
8765 kvm_run->debug.arch.exception = DB_VECTOR;
8766 kvm_run->exit_reason = KVM_EXIT_DEBUG;
8772 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
8773 !kvm_is_code_breakpoint_inhibited(vcpu)) {
8774 unsigned long eip = kvm_get_linear_rip(vcpu);
8775 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8780 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
8789 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
8791 switch (ctxt->opcode_len) {
8798 case 0xe6: /* OUT */
8802 case 0x6c: /* INS */
8804 case 0x6e: /* OUTS */
8811 case 0x33: /* RDPMC */
8821 * Decode an instruction for emulation. The caller is responsible for handling
8822 * code breakpoints. Note, manually detecting code breakpoints is unnecessary
8823 * (and wrong) when emulating on an intercepted fault-like exception[*], as
8824 * code breakpoints have higher priority and thus have already been done by
8827 * [*] Except #MC, which is higher priority, but KVM should never emulate in
8828 * response to a machine check.
8830 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
8831 void *insn, int insn_len)
8833 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8836 init_emulate_ctxt(vcpu);
8838 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
8840 trace_kvm_emulate_insn_start(vcpu);
8841 ++vcpu->stat.insn_emulation;
8845 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
8847 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8848 int emulation_type, void *insn, int insn_len)
8851 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8852 bool writeback = true;
8854 if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len)))
8857 vcpu->arch.l1tf_flush_l1d = true;
8859 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
8860 kvm_clear_exception_queue(vcpu);
8863 * Return immediately if RIP hits a code breakpoint, such #DBs
8864 * are fault-like and are higher priority than any faults on
8865 * the code fetch itself.
8867 if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r))
8870 r = x86_decode_emulated_instruction(vcpu, emulation_type,
8872 if (r != EMULATION_OK) {
8873 if ((emulation_type & EMULTYPE_TRAP_UD) ||
8874 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
8875 kvm_queue_exception(vcpu, UD_VECTOR);
8878 if (reexecute_instruction(vcpu, cr2_or_gpa,
8882 if (ctxt->have_exception &&
8883 !(emulation_type & EMULTYPE_SKIP)) {
8885 * #UD should result in just EMULATION_FAILED, and trap-like
8886 * exception should not be encountered during decode.
8888 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
8889 exception_type(ctxt->exception.vector) == EXCPT_TRAP);
8890 inject_emulated_exception(vcpu);
8893 return handle_emulation_failure(vcpu, emulation_type);
8897 if ((emulation_type & EMULTYPE_VMWARE_GP) &&
8898 !is_vmware_backdoor_opcode(ctxt)) {
8899 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8904 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
8905 * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
8906 * The caller is responsible for updating interruptibility state and
8907 * injecting single-step #DBs.
8909 if (emulation_type & EMULTYPE_SKIP) {
8910 if (ctxt->mode != X86EMUL_MODE_PROT64)
8911 ctxt->eip = (u32)ctxt->_eip;
8913 ctxt->eip = ctxt->_eip;
8915 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
8920 kvm_rip_write(vcpu, ctxt->eip);
8921 if (ctxt->eflags & X86_EFLAGS_RF)
8922 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
8926 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
8929 /* this is needed for vmware backdoor interface to work since it
8930 changes registers values during IO operation */
8931 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
8932 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8933 emulator_invalidate_register_cache(ctxt);
8937 if (emulation_type & EMULTYPE_PF) {
8938 /* Save the faulting GPA (cr2) in the address field */
8939 ctxt->exception.address = cr2_or_gpa;
8941 /* With shadow page tables, cr2 contains a GVA or nGPA. */
8942 if (vcpu->arch.mmu->root_role.direct) {
8943 ctxt->gpa_available = true;
8944 ctxt->gpa_val = cr2_or_gpa;
8947 /* Sanitize the address out of an abundance of paranoia. */
8948 ctxt->exception.address = 0;
8951 r = x86_emulate_insn(ctxt);
8953 if (r == EMULATION_INTERCEPTED)
8956 if (r == EMULATION_FAILED) {
8957 if (reexecute_instruction(vcpu, cr2_or_gpa, emulation_type))
8960 return handle_emulation_failure(vcpu, emulation_type);
8963 if (ctxt->have_exception) {
8964 WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write);
8965 vcpu->mmio_needed = false;
8967 inject_emulated_exception(vcpu);
8968 } else if (vcpu->arch.pio.count) {
8969 if (!vcpu->arch.pio.in) {
8970 /* FIXME: return into emulator if single-stepping. */
8971 vcpu->arch.pio.count = 0;
8974 vcpu->arch.complete_userspace_io = complete_emulated_pio;
8977 } else if (vcpu->mmio_needed) {
8978 ++vcpu->stat.mmio_exits;
8980 if (!vcpu->mmio_is_write)
8983 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8984 } else if (vcpu->arch.complete_userspace_io) {
8987 } else if (r == EMULATION_RESTART)
8994 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8995 toggle_interruptibility(vcpu, ctxt->interruptibility);
8996 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8999 * Note, EXCPT_DB is assumed to be fault-like as the emulator
9000 * only supports code breakpoints and general detect #DB, both
9001 * of which are fault-like.
9003 if (!ctxt->have_exception ||
9004 exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
9005 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
9006 if (ctxt->is_branch)
9007 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
9008 kvm_rip_write(vcpu, ctxt->eip);
9009 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
9010 r = kvm_vcpu_do_singlestep(vcpu);
9011 static_call_cond(kvm_x86_update_emulated_instruction)(vcpu);
9012 __kvm_set_rflags(vcpu, ctxt->eflags);
9016 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
9017 * do nothing, and it will be requested again as soon as
9018 * the shadow expires. But we still need to check here,
9019 * because POPF has no interrupt shadow.
9021 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
9022 kvm_make_request(KVM_REQ_EVENT, vcpu);
9024 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
9029 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
9031 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
9033 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
9035 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
9036 void *insn, int insn_len)
9038 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
9040 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
9042 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
9044 vcpu->arch.pio.count = 0;
9048 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
9050 vcpu->arch.pio.count = 0;
9052 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
9055 return kvm_skip_emulated_instruction(vcpu);
9058 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
9059 unsigned short port)
9061 unsigned long val = kvm_rax_read(vcpu);
9062 int ret = emulator_pio_out(vcpu, size, port, &val, 1);
9068 * Workaround userspace that relies on old KVM behavior of %rip being
9069 * incremented prior to exiting to userspace to handle "OUT 0x7e".
9072 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
9073 vcpu->arch.complete_userspace_io =
9074 complete_fast_pio_out_port_0x7e;
9075 kvm_skip_emulated_instruction(vcpu);
9077 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9078 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
9083 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
9087 /* We should only ever be called with arch.pio.count equal to 1 */
9088 BUG_ON(vcpu->arch.pio.count != 1);
9090 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
9091 vcpu->arch.pio.count = 0;
9095 /* For size less than 4 we merge, else we zero extend */
9096 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
9098 complete_emulator_pio_in(vcpu, &val);
9099 kvm_rax_write(vcpu, val);
9101 return kvm_skip_emulated_instruction(vcpu);
9104 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
9105 unsigned short port)
9110 /* For size less than 4 we merge, else we zero extend */
9111 val = (size < 4) ? kvm_rax_read(vcpu) : 0;
9113 ret = emulator_pio_in(vcpu, size, port, &val, 1);
9115 kvm_rax_write(vcpu, val);
9119 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9120 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
9125 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
9130 ret = kvm_fast_pio_in(vcpu, size, port);
9132 ret = kvm_fast_pio_out(vcpu, size, port);
9133 return ret && kvm_skip_emulated_instruction(vcpu);
9135 EXPORT_SYMBOL_GPL(kvm_fast_pio);
9137 static int kvmclock_cpu_down_prep(unsigned int cpu)
9139 __this_cpu_write(cpu_tsc_khz, 0);
9143 static void tsc_khz_changed(void *data)
9145 struct cpufreq_freqs *freq = data;
9146 unsigned long khz = 0;
9148 WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC));
9153 khz = cpufreq_quick_get(raw_smp_processor_id());
9156 __this_cpu_write(cpu_tsc_khz, khz);
9159 #ifdef CONFIG_X86_64
9160 static void kvm_hyperv_tsc_notifier(void)
9165 mutex_lock(&kvm_lock);
9166 list_for_each_entry(kvm, &vm_list, vm_list)
9167 kvm_make_mclock_inprogress_request(kvm);
9169 /* no guest entries from this point */
9170 hyperv_stop_tsc_emulation();
9172 /* TSC frequency always matches when on Hyper-V */
9173 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9174 for_each_present_cpu(cpu)
9175 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
9177 kvm_caps.max_guest_tsc_khz = tsc_khz;
9179 list_for_each_entry(kvm, &vm_list, vm_list) {
9180 __kvm_start_pvclock_update(kvm);
9181 pvclock_update_vm_gtod_copy(kvm);
9182 kvm_end_pvclock_update(kvm);
9185 mutex_unlock(&kvm_lock);
9189 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
9192 struct kvm_vcpu *vcpu;
9197 * We allow guests to temporarily run on slowing clocks,
9198 * provided we notify them after, or to run on accelerating
9199 * clocks, provided we notify them before. Thus time never
9202 * However, we have a problem. We can't atomically update
9203 * the frequency of a given CPU from this function; it is
9204 * merely a notifier, which can be called from any CPU.
9205 * Changing the TSC frequency at arbitrary points in time
9206 * requires a recomputation of local variables related to
9207 * the TSC for each VCPU. We must flag these local variables
9208 * to be updated and be sure the update takes place with the
9209 * new frequency before any guests proceed.
9211 * Unfortunately, the combination of hotplug CPU and frequency
9212 * change creates an intractable locking scenario; the order
9213 * of when these callouts happen is undefined with respect to
9214 * CPU hotplug, and they can race with each other. As such,
9215 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
9216 * undefined; you can actually have a CPU frequency change take
9217 * place in between the computation of X and the setting of the
9218 * variable. To protect against this problem, all updates of
9219 * the per_cpu tsc_khz variable are done in an interrupt
9220 * protected IPI, and all callers wishing to update the value
9221 * must wait for a synchronous IPI to complete (which is trivial
9222 * if the caller is on the CPU already). This establishes the
9223 * necessary total order on variable updates.
9225 * Note that because a guest time update may take place
9226 * anytime after the setting of the VCPU's request bit, the
9227 * correct TSC value must be set before the request. However,
9228 * to ensure the update actually makes it to any guest which
9229 * starts running in hardware virtualization between the set
9230 * and the acquisition of the spinlock, we must also ping the
9231 * CPU after setting the request bit.
9235 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9237 mutex_lock(&kvm_lock);
9238 list_for_each_entry(kvm, &vm_list, vm_list) {
9239 kvm_for_each_vcpu(i, vcpu, kvm) {
9240 if (vcpu->cpu != cpu)
9242 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9243 if (vcpu->cpu != raw_smp_processor_id())
9247 mutex_unlock(&kvm_lock);
9249 if (freq->old < freq->new && send_ipi) {
9251 * We upscale the frequency. Must make the guest
9252 * doesn't see old kvmclock values while running with
9253 * the new frequency, otherwise we risk the guest sees
9254 * time go backwards.
9256 * In case we update the frequency for another cpu
9257 * (which might be in guest context) send an interrupt
9258 * to kick the cpu out of guest context. Next time
9259 * guest context is entered kvmclock will be updated,
9260 * so the guest will not see stale values.
9262 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9266 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
9269 struct cpufreq_freqs *freq = data;
9272 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
9274 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
9277 for_each_cpu(cpu, freq->policy->cpus)
9278 __kvmclock_cpufreq_notifier(freq, cpu);
9283 static struct notifier_block kvmclock_cpufreq_notifier_block = {
9284 .notifier_call = kvmclock_cpufreq_notifier
9287 static int kvmclock_cpu_online(unsigned int cpu)
9289 tsc_khz_changed(NULL);
9293 static void kvm_timer_init(void)
9295 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9296 max_tsc_khz = tsc_khz;
9298 if (IS_ENABLED(CONFIG_CPU_FREQ)) {
9299 struct cpufreq_policy *policy;
9303 policy = cpufreq_cpu_get(cpu);
9305 if (policy->cpuinfo.max_freq)
9306 max_tsc_khz = policy->cpuinfo.max_freq;
9307 cpufreq_cpu_put(policy);
9311 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
9312 CPUFREQ_TRANSITION_NOTIFIER);
9314 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
9315 kvmclock_cpu_online, kvmclock_cpu_down_prep);
9319 #ifdef CONFIG_X86_64
9320 static void pvclock_gtod_update_fn(struct work_struct *work)
9323 struct kvm_vcpu *vcpu;
9326 mutex_lock(&kvm_lock);
9327 list_for_each_entry(kvm, &vm_list, vm_list)
9328 kvm_for_each_vcpu(i, vcpu, kvm)
9329 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9330 atomic_set(&kvm_guest_has_master_clock, 0);
9331 mutex_unlock(&kvm_lock);
9334 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
9337 * Indirection to move queue_work() out of the tk_core.seq write held
9338 * region to prevent possible deadlocks against time accessors which
9339 * are invoked with work related locks held.
9341 static void pvclock_irq_work_fn(struct irq_work *w)
9343 queue_work(system_long_wq, &pvclock_gtod_work);
9346 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
9349 * Notification about pvclock gtod data update.
9351 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
9354 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
9355 struct timekeeper *tk = priv;
9357 update_pvclock_gtod(tk);
9360 * Disable master clock if host does not trust, or does not use,
9361 * TSC based clocksource. Delegate queue_work() to irq_work as
9362 * this is invoked with tk_core.seq write held.
9364 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
9365 atomic_read(&kvm_guest_has_master_clock) != 0)
9366 irq_work_queue(&pvclock_irq_work);
9370 static struct notifier_block pvclock_gtod_notifier = {
9371 .notifier_call = pvclock_gtod_notify,
9375 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops)
9377 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
9379 #define __KVM_X86_OP(func) \
9380 static_call_update(kvm_x86_##func, kvm_x86_ops.func);
9381 #define KVM_X86_OP(func) \
9382 WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func)
9383 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP
9384 #define KVM_X86_OP_OPTIONAL_RET0(func) \
9385 static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \
9386 (void *)__static_call_return0);
9387 #include <asm/kvm-x86-ops.h>
9390 kvm_pmu_ops_update(ops->pmu_ops);
9393 static int kvm_x86_check_processor_compatibility(void)
9395 int cpu = smp_processor_id();
9396 struct cpuinfo_x86 *c = &cpu_data(cpu);
9399 * Compatibility checks are done when loading KVM and when enabling
9400 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are
9401 * compatible, i.e. KVM should never perform a compatibility check on
9404 WARN_ON(!cpu_online(cpu));
9406 if (__cr4_reserved_bits(cpu_has, c) !=
9407 __cr4_reserved_bits(cpu_has, &boot_cpu_data))
9410 return static_call(kvm_x86_check_processor_compatibility)();
9413 static void kvm_x86_check_cpu_compat(void *ret)
9415 *(int *)ret = kvm_x86_check_processor_compatibility();
9418 static int __kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9423 if (kvm_x86_ops.hardware_enable) {
9424 pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name);
9429 * KVM explicitly assumes that the guest has an FPU and
9430 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
9431 * vCPU's FPU state as a fxregs_state struct.
9433 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
9434 pr_err("inadequate fpu\n");
9438 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9439 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
9444 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes
9445 * the PAT bits in SPTEs. Bail if PAT[0] is programmed to something
9446 * other than WB. Note, EPT doesn't utilize the PAT, but don't bother
9447 * with an exception. PAT[0] is set to WB on RESET and also by the
9448 * kernel, i.e. failure indicates a kernel bug or broken firmware.
9450 if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) ||
9451 (host_pat & GENMASK(2, 0)) != 6) {
9452 pr_err("host PAT[0] is not WB\n");
9456 x86_emulator_cache = kvm_alloc_emulator_cache();
9457 if (!x86_emulator_cache) {
9458 pr_err("failed to allocate cache for x86 emulator\n");
9462 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
9463 if (!user_return_msrs) {
9464 pr_err("failed to allocate percpu kvm_user_return_msrs\n");
9466 goto out_free_x86_emulator_cache;
9468 kvm_nr_uret_msrs = 0;
9470 r = kvm_mmu_vendor_module_init();
9472 goto out_free_percpu;
9474 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
9475 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
9476 kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
9479 rdmsrl_safe(MSR_EFER, &host_efer);
9481 if (boot_cpu_has(X86_FEATURE_XSAVES))
9482 rdmsrl(MSR_IA32_XSS, host_xss);
9484 kvm_init_pmu_capability(ops->pmu_ops);
9486 r = ops->hardware_setup();
9490 kvm_ops_update(ops);
9492 for_each_online_cpu(cpu) {
9493 smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1);
9495 goto out_unwind_ops;
9499 * Point of no return! DO NOT add error paths below this point unless
9500 * absolutely necessary, as most operations from this point forward
9501 * require unwinding.
9505 if (pi_inject_timer == -1)
9506 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
9507 #ifdef CONFIG_X86_64
9508 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
9510 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9511 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
9514 kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
9516 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
9517 kvm_caps.supported_xss = 0;
9519 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
9520 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
9521 #undef __kvm_cpu_cap_has
9523 if (kvm_caps.has_tsc_control) {
9525 * Make sure the user can only configure tsc_khz values that
9526 * fit into a signed integer.
9527 * A min value is not calculated because it will always
9528 * be 1 on all machines.
9530 u64 max = min(0x7fffffffULL,
9531 __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz));
9532 kvm_caps.max_guest_tsc_khz = max;
9534 kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits;
9535 kvm_init_msr_lists();
9539 kvm_x86_ops.hardware_enable = NULL;
9540 static_call(kvm_x86_hardware_unsetup)();
9542 kvm_mmu_vendor_module_exit();
9544 free_percpu(user_return_msrs);
9545 out_free_x86_emulator_cache:
9546 kmem_cache_destroy(x86_emulator_cache);
9550 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9554 mutex_lock(&vendor_module_lock);
9555 r = __kvm_x86_vendor_init(ops);
9556 mutex_unlock(&vendor_module_lock);
9560 EXPORT_SYMBOL_GPL(kvm_x86_vendor_init);
9562 void kvm_x86_vendor_exit(void)
9564 kvm_unregister_perf_callbacks();
9566 #ifdef CONFIG_X86_64
9567 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9568 clear_hv_tscchange_cb();
9572 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9573 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
9574 CPUFREQ_TRANSITION_NOTIFIER);
9575 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
9577 #ifdef CONFIG_X86_64
9578 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
9579 irq_work_sync(&pvclock_irq_work);
9580 cancel_work_sync(&pvclock_gtod_work);
9582 static_call(kvm_x86_hardware_unsetup)();
9583 kvm_mmu_vendor_module_exit();
9584 free_percpu(user_return_msrs);
9585 kmem_cache_destroy(x86_emulator_cache);
9586 #ifdef CONFIG_KVM_XEN
9587 static_key_deferred_flush(&kvm_xen_enabled);
9588 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
9590 mutex_lock(&vendor_module_lock);
9591 kvm_x86_ops.hardware_enable = NULL;
9592 mutex_unlock(&vendor_module_lock);
9594 EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit);
9596 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
9599 * The vCPU has halted, e.g. executed HLT. Update the run state if the
9600 * local APIC is in-kernel, the run loop will detect the non-runnable
9601 * state and halt the vCPU. Exit to userspace if the local APIC is
9602 * managed by userspace, in which case userspace is responsible for
9603 * handling wake events.
9605 ++vcpu->stat.halt_exits;
9606 if (lapic_in_kernel(vcpu)) {
9607 vcpu->arch.mp_state = state;
9610 vcpu->run->exit_reason = reason;
9615 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
9617 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
9619 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
9621 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
9623 int ret = kvm_skip_emulated_instruction(vcpu);
9625 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
9626 * KVM_EXIT_DEBUG here.
9628 return kvm_emulate_halt_noskip(vcpu) && ret;
9630 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
9632 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
9634 int ret = kvm_skip_emulated_instruction(vcpu);
9636 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
9637 KVM_EXIT_AP_RESET_HOLD) && ret;
9639 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
9641 #ifdef CONFIG_X86_64
9642 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
9643 unsigned long clock_type)
9645 struct kvm_clock_pairing clock_pairing;
9646 struct timespec64 ts;
9650 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
9651 return -KVM_EOPNOTSUPP;
9654 * When tsc is in permanent catchup mode guests won't be able to use
9655 * pvclock_read_retry loop to get consistent view of pvclock
9657 if (vcpu->arch.tsc_always_catchup)
9658 return -KVM_EOPNOTSUPP;
9660 if (!kvm_get_walltime_and_clockread(&ts, &cycle))
9661 return -KVM_EOPNOTSUPP;
9663 clock_pairing.sec = ts.tv_sec;
9664 clock_pairing.nsec = ts.tv_nsec;
9665 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
9666 clock_pairing.flags = 0;
9667 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
9670 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
9671 sizeof(struct kvm_clock_pairing)))
9679 * kvm_pv_kick_cpu_op: Kick a vcpu.
9681 * @apicid - apicid of vcpu to be kicked.
9683 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
9686 * All other fields are unused for APIC_DM_REMRD, but may be consumed by
9687 * common code, e.g. for tracing. Defer initialization to the compiler.
9689 struct kvm_lapic_irq lapic_irq = {
9690 .delivery_mode = APIC_DM_REMRD,
9691 .dest_mode = APIC_DEST_PHYSICAL,
9692 .shorthand = APIC_DEST_NOSHORT,
9696 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
9699 bool kvm_apicv_activated(struct kvm *kvm)
9701 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
9703 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
9705 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
9707 ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons);
9708 ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu);
9710 return (vm_reasons | vcpu_reasons) == 0;
9712 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated);
9714 static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
9715 enum kvm_apicv_inhibit reason, bool set)
9718 __set_bit(reason, inhibits);
9720 __clear_bit(reason, inhibits);
9722 trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
9725 static void kvm_apicv_init(struct kvm *kvm)
9727 unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons;
9729 init_rwsem(&kvm->arch.apicv_update_lock);
9731 set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true);
9734 set_or_clear_apicv_inhibit(inhibits,
9735 APICV_INHIBIT_REASON_DISABLE, true);
9738 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
9740 struct kvm_vcpu *target = NULL;
9741 struct kvm_apic_map *map;
9743 vcpu->stat.directed_yield_attempted++;
9745 if (single_task_running())
9749 map = rcu_dereference(vcpu->kvm->arch.apic_map);
9751 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
9752 target = map->phys_map[dest_id]->vcpu;
9756 if (!target || !READ_ONCE(target->ready))
9759 /* Ignore requests to yield to self */
9763 if (kvm_vcpu_yield_to(target) <= 0)
9766 vcpu->stat.directed_yield_successful++;
9772 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
9774 u64 ret = vcpu->run->hypercall.ret;
9776 if (!is_64_bit_mode(vcpu))
9778 kvm_rax_write(vcpu, ret);
9779 ++vcpu->stat.hypercalls;
9780 return kvm_skip_emulated_instruction(vcpu);
9783 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
9785 unsigned long nr, a0, a1, a2, a3, ret;
9788 if (kvm_xen_hypercall_enabled(vcpu->kvm))
9789 return kvm_xen_hypercall(vcpu);
9791 if (kvm_hv_hypercall_enabled(vcpu))
9792 return kvm_hv_hypercall(vcpu);
9794 nr = kvm_rax_read(vcpu);
9795 a0 = kvm_rbx_read(vcpu);
9796 a1 = kvm_rcx_read(vcpu);
9797 a2 = kvm_rdx_read(vcpu);
9798 a3 = kvm_rsi_read(vcpu);
9800 trace_kvm_hypercall(nr, a0, a1, a2, a3);
9802 op_64_bit = is_64_bit_hypercall(vcpu);
9811 if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
9819 case KVM_HC_VAPIC_POLL_IRQ:
9822 case KVM_HC_KICK_CPU:
9823 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
9826 kvm_pv_kick_cpu_op(vcpu->kvm, a1);
9827 kvm_sched_yield(vcpu, a1);
9830 #ifdef CONFIG_X86_64
9831 case KVM_HC_CLOCK_PAIRING:
9832 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
9835 case KVM_HC_SEND_IPI:
9836 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
9839 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
9841 case KVM_HC_SCHED_YIELD:
9842 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
9845 kvm_sched_yield(vcpu, a0);
9848 case KVM_HC_MAP_GPA_RANGE: {
9849 u64 gpa = a0, npages = a1, attrs = a2;
9852 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
9855 if (!PAGE_ALIGNED(gpa) || !npages ||
9856 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
9861 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL;
9862 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE;
9863 vcpu->run->hypercall.args[0] = gpa;
9864 vcpu->run->hypercall.args[1] = npages;
9865 vcpu->run->hypercall.args[2] = attrs;
9866 vcpu->run->hypercall.flags = 0;
9868 vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE;
9870 WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ);
9871 vcpu->arch.complete_userspace_io = complete_hypercall_exit;
9881 kvm_rax_write(vcpu, ret);
9883 ++vcpu->stat.hypercalls;
9884 return kvm_skip_emulated_instruction(vcpu);
9886 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
9888 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
9890 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
9891 char instruction[3];
9892 unsigned long rip = kvm_rip_read(vcpu);
9895 * If the quirk is disabled, synthesize a #UD and let the guest pick up
9898 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) {
9899 ctxt->exception.error_code_valid = false;
9900 ctxt->exception.vector = UD_VECTOR;
9901 ctxt->have_exception = true;
9902 return X86EMUL_PROPAGATE_FAULT;
9905 static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
9907 return emulator_write_emulated(ctxt, rip, instruction, 3,
9911 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
9913 return vcpu->run->request_interrupt_window &&
9914 likely(!pic_in_kernel(vcpu->kvm));
9917 /* Called within kvm->srcu read side. */
9918 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
9920 struct kvm_run *kvm_run = vcpu->run;
9922 kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu);
9923 kvm_run->cr8 = kvm_get_cr8(vcpu);
9924 kvm_run->apic_base = kvm_get_apic_base(vcpu);
9926 kvm_run->ready_for_interrupt_injection =
9927 pic_in_kernel(vcpu->kvm) ||
9928 kvm_vcpu_ready_for_interrupt_injection(vcpu);
9931 kvm_run->flags |= KVM_RUN_X86_SMM;
9934 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
9938 if (!kvm_x86_ops.update_cr8_intercept)
9941 if (!lapic_in_kernel(vcpu))
9944 if (vcpu->arch.apic->apicv_active)
9947 if (!vcpu->arch.apic->vapic_addr)
9948 max_irr = kvm_lapic_find_highest_irr(vcpu);
9955 tpr = kvm_lapic_get_cr8(vcpu);
9957 static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
9961 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
9963 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9964 kvm_x86_ops.nested_ops->triple_fault(vcpu);
9968 return kvm_x86_ops.nested_ops->check_events(vcpu);
9971 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
9974 * Suppress the error code if the vCPU is in Real Mode, as Real Mode
9975 * exceptions don't report error codes. The presence of an error code
9976 * is carried with the exception and only stripped when the exception
9977 * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do
9978 * report an error code despite the CPU being in Real Mode.
9980 vcpu->arch.exception.has_error_code &= is_protmode(vcpu);
9982 trace_kvm_inj_exception(vcpu->arch.exception.vector,
9983 vcpu->arch.exception.has_error_code,
9984 vcpu->arch.exception.error_code,
9985 vcpu->arch.exception.injected);
9987 static_call(kvm_x86_inject_exception)(vcpu);
9991 * Check for any event (interrupt or exception) that is ready to be injected,
9992 * and if there is at least one event, inject the event with the highest
9993 * priority. This handles both "pending" events, i.e. events that have never
9994 * been injected into the guest, and "injected" events, i.e. events that were
9995 * injected as part of a previous VM-Enter, but weren't successfully delivered
9996 * and need to be re-injected.
9998 * Note, this is not guaranteed to be invoked on a guest instruction boundary,
9999 * i.e. doesn't guarantee that there's an event window in the guest. KVM must
10000 * be able to inject exceptions in the "middle" of an instruction, and so must
10001 * also be able to re-inject NMIs and IRQs in the middle of an instruction.
10002 * I.e. for exceptions and re-injected events, NOT invoking this on instruction
10003 * boundaries is necessary and correct.
10005 * For simplicity, KVM uses a single path to inject all events (except events
10006 * that are injected directly from L1 to L2) and doesn't explicitly track
10007 * instruction boundaries for asynchronous events. However, because VM-Exits
10008 * that can occur during instruction execution typically result in KVM skipping
10009 * the instruction or injecting an exception, e.g. instruction and exception
10010 * intercepts, and because pending exceptions have higher priority than pending
10011 * interrupts, KVM still honors instruction boundaries in most scenarios.
10013 * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip
10014 * the instruction or inject an exception, then KVM can incorrecty inject a new
10015 * asynchrounous event if the event became pending after the CPU fetched the
10016 * instruction (in the guest). E.g. if a page fault (#PF, #NPF, EPT violation)
10017 * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be
10018 * injected on the restarted instruction instead of being deferred until the
10019 * instruction completes.
10021 * In practice, this virtualization hole is unlikely to be observed by the
10022 * guest, and even less likely to cause functional problems. To detect the
10023 * hole, the guest would have to trigger an event on a side effect of an early
10024 * phase of instruction execution, e.g. on the instruction fetch from memory.
10025 * And for it to be a functional problem, the guest would need to depend on the
10026 * ordering between that side effect, the instruction completing, _and_ the
10027 * delivery of the asynchronous event.
10029 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu,
10030 bool *req_immediate_exit)
10036 * Process nested events first, as nested VM-Exit supercedes event
10037 * re-injection. If there's an event queued for re-injection, it will
10038 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit.
10040 if (is_guest_mode(vcpu))
10041 r = kvm_check_nested_events(vcpu);
10046 * Re-inject exceptions and events *especially* if immediate entry+exit
10047 * to/from L2 is needed, as any event that has already been injected
10048 * into L2 needs to complete its lifecycle before injecting a new event.
10050 * Don't re-inject an NMI or interrupt if there is a pending exception.
10051 * This collision arises if an exception occurred while vectoring the
10052 * injected event, KVM intercepted said exception, and KVM ultimately
10053 * determined the fault belongs to the guest and queues the exception
10054 * for injection back into the guest.
10056 * "Injected" interrupts can also collide with pending exceptions if
10057 * userspace ignores the "ready for injection" flag and blindly queues
10058 * an interrupt. In that case, prioritizing the exception is correct,
10059 * as the exception "occurred" before the exit to userspace. Trap-like
10060 * exceptions, e.g. most #DBs, have higher priority than interrupts.
10061 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest
10062 * priority, they're only generated (pended) during instruction
10063 * execution, and interrupts are recognized at instruction boundaries.
10064 * Thus a pending fault-like exception means the fault occurred on the
10065 * *previous* instruction and must be serviced prior to recognizing any
10066 * new events in order to fully complete the previous instruction.
10068 if (vcpu->arch.exception.injected)
10069 kvm_inject_exception(vcpu);
10070 else if (kvm_is_exception_pending(vcpu))
10072 else if (vcpu->arch.nmi_injected)
10073 static_call(kvm_x86_inject_nmi)(vcpu);
10074 else if (vcpu->arch.interrupt.injected)
10075 static_call(kvm_x86_inject_irq)(vcpu, true);
10078 * Exceptions that morph to VM-Exits are handled above, and pending
10079 * exceptions on top of injected exceptions that do not VM-Exit should
10080 * either morph to #DF or, sadly, override the injected exception.
10082 WARN_ON_ONCE(vcpu->arch.exception.injected &&
10083 vcpu->arch.exception.pending);
10086 * Bail if immediate entry+exit to/from the guest is needed to complete
10087 * nested VM-Enter or event re-injection so that a different pending
10088 * event can be serviced (or if KVM needs to exit to userspace).
10090 * Otherwise, continue processing events even if VM-Exit occurred. The
10091 * VM-Exit will have cleared exceptions that were meant for L2, but
10092 * there may now be events that can be injected into L1.
10098 * A pending exception VM-Exit should either result in nested VM-Exit
10099 * or force an immediate re-entry and exit to/from L2, and exception
10100 * VM-Exits cannot be injected (flag should _never_ be set).
10102 WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected ||
10103 vcpu->arch.exception_vmexit.pending);
10106 * New events, other than exceptions, cannot be injected if KVM needs
10107 * to re-inject a previous event. See above comments on re-injecting
10108 * for why pending exceptions get priority.
10110 can_inject = !kvm_event_needs_reinjection(vcpu);
10112 if (vcpu->arch.exception.pending) {
10114 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS
10115 * value pushed on the stack. Trap-like exception and all #DBs
10116 * leave RF as-is (KVM follows Intel's behavior in this regard;
10117 * AMD states that code breakpoint #DBs excplitly clear RF=0).
10119 * Note, most versions of Intel's SDM and AMD's APM incorrectly
10120 * describe the behavior of General Detect #DBs, which are
10121 * fault-like. They do _not_ set RF, a la code breakpoints.
10123 if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT)
10124 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
10127 if (vcpu->arch.exception.vector == DB_VECTOR) {
10128 kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception);
10129 if (vcpu->arch.dr7 & DR7_GD) {
10130 vcpu->arch.dr7 &= ~DR7_GD;
10131 kvm_update_dr7(vcpu);
10135 kvm_inject_exception(vcpu);
10137 vcpu->arch.exception.pending = false;
10138 vcpu->arch.exception.injected = true;
10140 can_inject = false;
10143 /* Don't inject interrupts if the user asked to avoid doing so */
10144 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
10148 * Finally, inject interrupt events. If an event cannot be injected
10149 * due to architectural conditions (e.g. IF=0) a window-open exit
10150 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending
10151 * and can architecturally be injected, but we cannot do it right now:
10152 * an interrupt could have arrived just now and we have to inject it
10153 * as a vmexit, or there could already an event in the queue, which is
10154 * indicated by can_inject. In that case we request an immediate exit
10155 * in order to make progress and get back here for another iteration.
10156 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
10158 #ifdef CONFIG_KVM_SMM
10159 if (vcpu->arch.smi_pending) {
10160 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
10164 vcpu->arch.smi_pending = false;
10165 ++vcpu->arch.smi_count;
10167 can_inject = false;
10169 static_call(kvm_x86_enable_smi_window)(vcpu);
10173 if (vcpu->arch.nmi_pending) {
10174 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
10178 --vcpu->arch.nmi_pending;
10179 vcpu->arch.nmi_injected = true;
10180 static_call(kvm_x86_inject_nmi)(vcpu);
10181 can_inject = false;
10182 WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
10184 if (vcpu->arch.nmi_pending)
10185 static_call(kvm_x86_enable_nmi_window)(vcpu);
10188 if (kvm_cpu_has_injectable_intr(vcpu)) {
10189 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
10193 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
10194 static_call(kvm_x86_inject_irq)(vcpu, false);
10195 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
10197 if (kvm_cpu_has_injectable_intr(vcpu))
10198 static_call(kvm_x86_enable_irq_window)(vcpu);
10201 if (is_guest_mode(vcpu) &&
10202 kvm_x86_ops.nested_ops->has_events &&
10203 kvm_x86_ops.nested_ops->has_events(vcpu))
10204 *req_immediate_exit = true;
10207 * KVM must never queue a new exception while injecting an event; KVM
10208 * is done emulating and should only propagate the to-be-injected event
10209 * to the VMCS/VMCB. Queueing a new exception can put the vCPU into an
10210 * infinite loop as KVM will bail from VM-Enter to inject the pending
10211 * exception and start the cycle all over.
10213 * Exempt triple faults as they have special handling and won't put the
10214 * vCPU into an infinite loop. Triple fault can be queued when running
10215 * VMX without unrestricted guest, as that requires KVM to emulate Real
10216 * Mode events (see kvm_inject_realmode_interrupt()).
10218 WARN_ON_ONCE(vcpu->arch.exception.pending ||
10219 vcpu->arch.exception_vmexit.pending);
10224 *req_immediate_exit = true;
10230 static void process_nmi(struct kvm_vcpu *vcpu)
10232 unsigned int limit;
10235 * x86 is limited to one NMI pending, but because KVM can't react to
10236 * incoming NMIs as quickly as bare metal, e.g. if the vCPU is
10237 * scheduled out, KVM needs to play nice with two queued NMIs showing
10238 * up at the same time. To handle this scenario, allow two NMIs to be
10239 * (temporarily) pending so long as NMIs are not blocked and KVM is not
10240 * waiting for a previous NMI injection to complete (which effectively
10241 * blocks NMIs). KVM will immediately inject one of the two NMIs, and
10242 * will request an NMI window to handle the second NMI.
10244 if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
10250 * Adjust the limit to account for pending virtual NMIs, which aren't
10251 * tracked in vcpu->arch.nmi_pending.
10253 if (static_call(kvm_x86_is_vnmi_pending)(vcpu))
10256 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
10257 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
10259 if (vcpu->arch.nmi_pending &&
10260 (static_call(kvm_x86_set_vnmi_pending)(vcpu)))
10261 vcpu->arch.nmi_pending--;
10263 if (vcpu->arch.nmi_pending)
10264 kvm_make_request(KVM_REQ_EVENT, vcpu);
10267 /* Return total number of NMIs pending injection to the VM */
10268 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu)
10270 return vcpu->arch.nmi_pending +
10271 static_call(kvm_x86_is_vnmi_pending)(vcpu);
10274 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
10275 unsigned long *vcpu_bitmap)
10277 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
10280 void kvm_make_scan_ioapic_request(struct kvm *kvm)
10282 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
10285 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10287 struct kvm_lapic *apic = vcpu->arch.apic;
10290 if (!lapic_in_kernel(vcpu))
10293 down_read(&vcpu->kvm->arch.apicv_update_lock);
10296 /* Do not activate APICV when APIC is disabled */
10297 activate = kvm_vcpu_apicv_activated(vcpu) &&
10298 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED);
10300 if (apic->apicv_active == activate)
10303 apic->apicv_active = activate;
10304 kvm_apic_update_apicv(vcpu);
10305 static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
10308 * When APICv gets disabled, we may still have injected interrupts
10309 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
10310 * still active when the interrupt got accepted. Make sure
10311 * kvm_check_and_inject_events() is called to check for that.
10313 if (!apic->apicv_active)
10314 kvm_make_request(KVM_REQ_EVENT, vcpu);
10318 up_read(&vcpu->kvm->arch.apicv_update_lock);
10320 EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv);
10322 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10324 if (!lapic_in_kernel(vcpu))
10328 * Due to sharing page tables across vCPUs, the xAPIC memslot must be
10329 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but
10330 * and hardware doesn't support x2APIC virtualization. E.g. some AMD
10331 * CPUs support AVIC but not x2APIC. KVM still allows enabling AVIC in
10332 * this case so that KVM can the AVIC doorbell to inject interrupts to
10333 * running vCPUs, but KVM must not create SPTEs for the APIC base as
10334 * the vCPU would incorrectly be able to access the vAPIC page via MMIO
10335 * despite being in x2APIC mode. For simplicity, inhibiting the APIC
10336 * access page is sticky.
10338 if (apic_x2apic_mode(vcpu->arch.apic) &&
10339 kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization)
10340 kvm_inhibit_apic_access_page(vcpu);
10342 __kvm_vcpu_update_apicv(vcpu);
10345 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10346 enum kvm_apicv_inhibit reason, bool set)
10348 unsigned long old, new;
10350 lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
10352 if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason)))
10355 old = new = kvm->arch.apicv_inhibit_reasons;
10357 set_or_clear_apicv_inhibit(&new, reason, set);
10359 if (!!old != !!new) {
10361 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
10362 * false positives in the sanity check WARN in svm_vcpu_run().
10363 * This task will wait for all vCPUs to ack the kick IRQ before
10364 * updating apicv_inhibit_reasons, and all other vCPUs will
10365 * block on acquiring apicv_update_lock so that vCPUs can't
10366 * redo svm_vcpu_run() without seeing the new inhibit state.
10368 * Note, holding apicv_update_lock and taking it in the read
10369 * side (handling the request) also prevents other vCPUs from
10370 * servicing the request with a stale apicv_inhibit_reasons.
10372 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
10373 kvm->arch.apicv_inhibit_reasons = new;
10375 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
10376 int idx = srcu_read_lock(&kvm->srcu);
10378 kvm_zap_gfn_range(kvm, gfn, gfn+1);
10379 srcu_read_unlock(&kvm->srcu, idx);
10382 kvm->arch.apicv_inhibit_reasons = new;
10386 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10387 enum kvm_apicv_inhibit reason, bool set)
10392 down_write(&kvm->arch.apicv_update_lock);
10393 __kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
10394 up_write(&kvm->arch.apicv_update_lock);
10396 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit);
10398 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
10400 if (!kvm_apic_present(vcpu))
10403 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
10405 if (irqchip_split(vcpu->kvm))
10406 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
10408 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10409 if (ioapic_in_kernel(vcpu->kvm))
10410 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
10413 if (is_guest_mode(vcpu))
10414 vcpu->arch.load_eoi_exitmap_pending = true;
10416 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
10419 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
10421 u64 eoi_exit_bitmap[4];
10423 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
10426 if (to_hv_vcpu(vcpu)) {
10427 bitmap_or((ulong *)eoi_exit_bitmap,
10428 vcpu->arch.ioapic_handled_vectors,
10429 to_hv_synic(vcpu)->vec_bitmap, 256);
10430 static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
10434 static_call_cond(kvm_x86_load_eoi_exitmap)(
10435 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
10438 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
10439 unsigned long start, unsigned long end)
10441 unsigned long apic_address;
10444 * The physical address of apic access page is stored in the VMCS.
10445 * Update it when it becomes invalid.
10447 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
10448 if (start <= apic_address && apic_address < end)
10449 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
10452 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
10454 static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm);
10457 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
10459 if (!lapic_in_kernel(vcpu))
10462 static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu);
10465 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
10467 smp_send_reschedule(vcpu->cpu);
10469 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
10472 * Called within kvm->srcu read side.
10473 * Returns 1 to let vcpu_run() continue the guest execution loop without
10474 * exiting to the userspace. Otherwise, the value will be returned to the
10477 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
10481 dm_request_for_irq_injection(vcpu) &&
10482 kvm_cpu_accept_dm_intr(vcpu);
10483 fastpath_t exit_fastpath;
10485 bool req_immediate_exit = false;
10487 if (kvm_request_pending(vcpu)) {
10488 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
10493 if (kvm_dirty_ring_check_request(vcpu)) {
10498 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
10499 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
10504 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
10505 kvm_mmu_free_obsolete_roots(vcpu);
10506 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
10507 __kvm_migrate_timers(vcpu);
10508 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
10509 kvm_update_masterclock(vcpu->kvm);
10510 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
10511 kvm_gen_kvmclock_update(vcpu);
10512 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
10513 r = kvm_guest_time_update(vcpu);
10517 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
10518 kvm_mmu_sync_roots(vcpu);
10519 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
10520 kvm_mmu_load_pgd(vcpu);
10523 * Note, the order matters here, as flushing "all" TLB entries
10524 * also flushes the "current" TLB entries, i.e. servicing the
10525 * flush "all" will clear any request to flush "current".
10527 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
10528 kvm_vcpu_flush_tlb_all(vcpu);
10530 kvm_service_local_tlb_flush_requests(vcpu);
10533 * Fall back to a "full" guest flush if Hyper-V's precise
10534 * flushing fails. Note, Hyper-V's flushing is per-vCPU, but
10535 * the flushes are considered "remote" and not "local" because
10536 * the requests can be initiated from other vCPUs.
10538 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) &&
10539 kvm_hv_vcpu_flush_tlb(vcpu))
10540 kvm_vcpu_flush_tlb_guest(vcpu);
10542 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
10543 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
10547 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10548 if (is_guest_mode(vcpu))
10549 kvm_x86_ops.nested_ops->triple_fault(vcpu);
10551 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10552 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
10553 vcpu->mmio_needed = 0;
10558 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
10559 /* Page is swapped out. Do synthetic halt */
10560 vcpu->arch.apf.halted = true;
10564 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
10565 record_steal_time(vcpu);
10566 #ifdef CONFIG_KVM_SMM
10567 if (kvm_check_request(KVM_REQ_SMI, vcpu))
10570 if (kvm_check_request(KVM_REQ_NMI, vcpu))
10572 if (kvm_check_request(KVM_REQ_PMU, vcpu))
10573 kvm_pmu_handle_event(vcpu);
10574 if (kvm_check_request(KVM_REQ_PMI, vcpu))
10575 kvm_pmu_deliver_pmi(vcpu);
10576 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
10577 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
10578 if (test_bit(vcpu->arch.pending_ioapic_eoi,
10579 vcpu->arch.ioapic_handled_vectors)) {
10580 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
10581 vcpu->run->eoi.vector =
10582 vcpu->arch.pending_ioapic_eoi;
10587 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
10588 vcpu_scan_ioapic(vcpu);
10589 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
10590 vcpu_load_eoi_exitmap(vcpu);
10591 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
10592 kvm_vcpu_reload_apic_access_page(vcpu);
10593 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
10594 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10595 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
10596 vcpu->run->system_event.ndata = 0;
10600 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
10601 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10602 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
10603 vcpu->run->system_event.ndata = 0;
10607 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
10608 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
10610 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
10611 vcpu->run->hyperv = hv_vcpu->exit;
10617 * KVM_REQ_HV_STIMER has to be processed after
10618 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
10619 * depend on the guest clock being up-to-date
10621 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
10622 kvm_hv_process_stimers(vcpu);
10623 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
10624 kvm_vcpu_update_apicv(vcpu);
10625 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
10626 kvm_check_async_pf_completion(vcpu);
10627 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
10628 static_call(kvm_x86_msr_filter_changed)(vcpu);
10630 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
10631 static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
10634 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
10635 kvm_xen_has_interrupt(vcpu)) {
10636 ++vcpu->stat.req_event;
10637 r = kvm_apic_accept_events(vcpu);
10642 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
10647 r = kvm_check_and_inject_events(vcpu, &req_immediate_exit);
10653 static_call(kvm_x86_enable_irq_window)(vcpu);
10655 if (kvm_lapic_enabled(vcpu)) {
10656 update_cr8_intercept(vcpu);
10657 kvm_lapic_sync_to_vapic(vcpu);
10661 r = kvm_mmu_reload(vcpu);
10663 goto cancel_injection;
10668 static_call(kvm_x86_prepare_switch_to_guest)(vcpu);
10671 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
10672 * IPI are then delayed after guest entry, which ensures that they
10673 * result in virtual interrupt delivery.
10675 local_irq_disable();
10677 /* Store vcpu->apicv_active before vcpu->mode. */
10678 smp_store_release(&vcpu->mode, IN_GUEST_MODE);
10680 kvm_vcpu_srcu_read_unlock(vcpu);
10683 * 1) We should set ->mode before checking ->requests. Please see
10684 * the comment in kvm_vcpu_exiting_guest_mode().
10686 * 2) For APICv, we should set ->mode before checking PID.ON. This
10687 * pairs with the memory barrier implicit in pi_test_and_set_on
10688 * (see vmx_deliver_posted_interrupt).
10690 * 3) This also orders the write to mode from any reads to the page
10691 * tables done while the VCPU is running. Please see the comment
10692 * in kvm_flush_remote_tlbs.
10694 smp_mb__after_srcu_read_unlock();
10697 * Process pending posted interrupts to handle the case where the
10698 * notification IRQ arrived in the host, or was never sent (because the
10699 * target vCPU wasn't running). Do this regardless of the vCPU's APICv
10700 * status, KVM doesn't update assigned devices when APICv is inhibited,
10701 * i.e. they can post interrupts even if APICv is temporarily disabled.
10703 if (kvm_lapic_enabled(vcpu))
10704 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10706 if (kvm_vcpu_exit_request(vcpu)) {
10707 vcpu->mode = OUTSIDE_GUEST_MODE;
10709 local_irq_enable();
10711 kvm_vcpu_srcu_read_lock(vcpu);
10713 goto cancel_injection;
10716 if (req_immediate_exit) {
10717 kvm_make_request(KVM_REQ_EVENT, vcpu);
10718 static_call(kvm_x86_request_immediate_exit)(vcpu);
10721 fpregs_assert_state_consistent();
10722 if (test_thread_flag(TIF_NEED_FPU_LOAD))
10723 switch_fpu_return();
10725 if (vcpu->arch.guest_fpu.xfd_err)
10726 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
10728 if (unlikely(vcpu->arch.switch_db_regs)) {
10729 set_debugreg(0, 7);
10730 set_debugreg(vcpu->arch.eff_db[0], 0);
10731 set_debugreg(vcpu->arch.eff_db[1], 1);
10732 set_debugreg(vcpu->arch.eff_db[2], 2);
10733 set_debugreg(vcpu->arch.eff_db[3], 3);
10734 } else if (unlikely(hw_breakpoint_active())) {
10735 set_debugreg(0, 7);
10738 guest_timing_enter_irqoff();
10742 * Assert that vCPU vs. VM APICv state is consistent. An APICv
10743 * update must kick and wait for all vCPUs before toggling the
10744 * per-VM state, and responsing vCPUs must wait for the update
10745 * to complete before servicing KVM_REQ_APICV_UPDATE.
10747 WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) &&
10748 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED));
10750 exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu);
10751 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
10754 if (kvm_lapic_enabled(vcpu))
10755 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10757 if (unlikely(kvm_vcpu_exit_request(vcpu))) {
10758 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
10764 * Do this here before restoring debug registers on the host. And
10765 * since we do this before handling the vmexit, a DR access vmexit
10766 * can (a) read the correct value of the debug registers, (b) set
10767 * KVM_DEBUGREG_WONT_EXIT again.
10769 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
10770 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
10771 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
10772 kvm_update_dr0123(vcpu);
10773 kvm_update_dr7(vcpu);
10777 * If the guest has used debug registers, at least dr7
10778 * will be disabled while returning to the host.
10779 * If we don't have active breakpoints in the host, we don't
10780 * care about the messed up debug address registers. But if
10781 * we have some of them active, restore the old state.
10783 if (hw_breakpoint_active())
10784 hw_breakpoint_restore();
10786 vcpu->arch.last_vmentry_cpu = vcpu->cpu;
10787 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
10789 vcpu->mode = OUTSIDE_GUEST_MODE;
10793 * Sync xfd before calling handle_exit_irqoff() which may
10794 * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
10795 * in #NM irqoff handler).
10797 if (vcpu->arch.xfd_no_write_intercept)
10798 fpu_sync_guest_vmexit_xfd_state();
10800 static_call(kvm_x86_handle_exit_irqoff)(vcpu);
10802 if (vcpu->arch.guest_fpu.xfd_err)
10803 wrmsrl(MSR_IA32_XFD_ERR, 0);
10806 * Consume any pending interrupts, including the possible source of
10807 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
10808 * An instruction is required after local_irq_enable() to fully unblock
10809 * interrupts on processors that implement an interrupt shadow, the
10810 * stat.exits increment will do nicely.
10812 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
10813 local_irq_enable();
10814 ++vcpu->stat.exits;
10815 local_irq_disable();
10816 kvm_after_interrupt(vcpu);
10819 * Wait until after servicing IRQs to account guest time so that any
10820 * ticks that occurred while running the guest are properly accounted
10821 * to the guest. Waiting until IRQs are enabled degrades the accuracy
10822 * of accounting via context tracking, but the loss of accuracy is
10823 * acceptable for all known use cases.
10825 guest_timing_exit_irqoff();
10827 local_irq_enable();
10830 kvm_vcpu_srcu_read_lock(vcpu);
10833 * Profile KVM exit RIPs:
10835 if (unlikely(prof_on == KVM_PROFILING)) {
10836 unsigned long rip = kvm_rip_read(vcpu);
10837 profile_hit(KVM_PROFILING, (void *)rip);
10840 if (unlikely(vcpu->arch.tsc_always_catchup))
10841 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10843 if (vcpu->arch.apic_attention)
10844 kvm_lapic_sync_from_vapic(vcpu);
10846 r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
10850 if (req_immediate_exit)
10851 kvm_make_request(KVM_REQ_EVENT, vcpu);
10852 static_call(kvm_x86_cancel_injection)(vcpu);
10853 if (unlikely(vcpu->arch.apic_attention))
10854 kvm_lapic_sync_from_vapic(vcpu);
10859 /* Called within kvm->srcu read side. */
10860 static inline int vcpu_block(struct kvm_vcpu *vcpu)
10864 if (!kvm_arch_vcpu_runnable(vcpu)) {
10866 * Switch to the software timer before halt-polling/blocking as
10867 * the guest's timer may be a break event for the vCPU, and the
10868 * hypervisor timer runs only when the CPU is in guest mode.
10869 * Switch before halt-polling so that KVM recognizes an expired
10870 * timer before blocking.
10872 hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
10874 kvm_lapic_switch_to_sw_timer(vcpu);
10876 kvm_vcpu_srcu_read_unlock(vcpu);
10877 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10878 kvm_vcpu_halt(vcpu);
10880 kvm_vcpu_block(vcpu);
10881 kvm_vcpu_srcu_read_lock(vcpu);
10884 kvm_lapic_switch_to_hv_timer(vcpu);
10887 * If the vCPU is not runnable, a signal or another host event
10888 * of some kind is pending; service it without changing the
10889 * vCPU's activity state.
10891 if (!kvm_arch_vcpu_runnable(vcpu))
10896 * Evaluate nested events before exiting the halted state. This allows
10897 * the halt state to be recorded properly in the VMCS12's activity
10898 * state field (AMD does not have a similar field and a VM-Exit always
10899 * causes a spurious wakeup from HLT).
10901 if (is_guest_mode(vcpu)) {
10902 if (kvm_check_nested_events(vcpu) < 0)
10906 if (kvm_apic_accept_events(vcpu) < 0)
10908 switch(vcpu->arch.mp_state) {
10909 case KVM_MP_STATE_HALTED:
10910 case KVM_MP_STATE_AP_RESET_HOLD:
10911 vcpu->arch.pv.pv_unhalted = false;
10912 vcpu->arch.mp_state =
10913 KVM_MP_STATE_RUNNABLE;
10915 case KVM_MP_STATE_RUNNABLE:
10916 vcpu->arch.apf.halted = false;
10918 case KVM_MP_STATE_INIT_RECEIVED:
10927 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
10929 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
10930 !vcpu->arch.apf.halted);
10933 /* Called within kvm->srcu read side. */
10934 static int vcpu_run(struct kvm_vcpu *vcpu)
10938 vcpu->arch.l1tf_flush_l1d = true;
10942 * If another guest vCPU requests a PV TLB flush in the middle
10943 * of instruction emulation, the rest of the emulation could
10944 * use a stale page translation. Assume that any code after
10945 * this point can start executing an instruction.
10947 vcpu->arch.at_instruction_boundary = false;
10948 if (kvm_vcpu_running(vcpu)) {
10949 r = vcpu_enter_guest(vcpu);
10951 r = vcpu_block(vcpu);
10957 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
10958 if (kvm_xen_has_pending_events(vcpu))
10959 kvm_xen_inject_pending_events(vcpu);
10961 if (kvm_cpu_has_pending_timer(vcpu))
10962 kvm_inject_pending_timer_irqs(vcpu);
10964 if (dm_request_for_irq_injection(vcpu) &&
10965 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
10967 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
10968 ++vcpu->stat.request_irq_exits;
10972 if (__xfer_to_guest_mode_work_pending()) {
10973 kvm_vcpu_srcu_read_unlock(vcpu);
10974 r = xfer_to_guest_mode_handle_work(vcpu);
10975 kvm_vcpu_srcu_read_lock(vcpu);
10984 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
10986 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
10989 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
10991 BUG_ON(!vcpu->arch.pio.count);
10993 return complete_emulated_io(vcpu);
10997 * Implements the following, as a state machine:
11000 * for each fragment
11001 * for each mmio piece in the fragment
11008 * for each fragment
11009 * for each mmio piece in the fragment
11014 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
11016 struct kvm_run *run = vcpu->run;
11017 struct kvm_mmio_fragment *frag;
11020 BUG_ON(!vcpu->mmio_needed);
11022 /* Complete previous fragment */
11023 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
11024 len = min(8u, frag->len);
11025 if (!vcpu->mmio_is_write)
11026 memcpy(frag->data, run->mmio.data, len);
11028 if (frag->len <= 8) {
11029 /* Switch to the next fragment. */
11031 vcpu->mmio_cur_fragment++;
11033 /* Go forward to the next mmio piece. */
11039 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
11040 vcpu->mmio_needed = 0;
11042 /* FIXME: return into emulator if single-stepping. */
11043 if (vcpu->mmio_is_write)
11045 vcpu->mmio_read_completed = 1;
11046 return complete_emulated_io(vcpu);
11049 run->exit_reason = KVM_EXIT_MMIO;
11050 run->mmio.phys_addr = frag->gpa;
11051 if (vcpu->mmio_is_write)
11052 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
11053 run->mmio.len = min(8u, frag->len);
11054 run->mmio.is_write = vcpu->mmio_is_write;
11055 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
11059 /* Swap (qemu) user FPU context for the guest FPU context. */
11060 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
11062 /* Exclude PKRU, it's restored separately immediately after VM-Exit. */
11063 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
11067 /* When vcpu_run ends, restore user space FPU context. */
11068 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
11070 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
11071 ++vcpu->stat.fpu_reload;
11075 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
11077 struct kvm_queued_exception *ex = &vcpu->arch.exception;
11078 struct kvm_run *kvm_run = vcpu->run;
11082 kvm_sigset_activate(vcpu);
11083 kvm_run->flags = 0;
11084 kvm_load_guest_fpu(vcpu);
11086 kvm_vcpu_srcu_read_lock(vcpu);
11087 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
11088 if (kvm_run->immediate_exit) {
11093 * It should be impossible for the hypervisor timer to be in
11094 * use before KVM has ever run the vCPU.
11096 WARN_ON_ONCE(kvm_lapic_hv_timer_in_use(vcpu));
11098 kvm_vcpu_srcu_read_unlock(vcpu);
11099 kvm_vcpu_block(vcpu);
11100 kvm_vcpu_srcu_read_lock(vcpu);
11102 if (kvm_apic_accept_events(vcpu) < 0) {
11107 if (signal_pending(current)) {
11109 kvm_run->exit_reason = KVM_EXIT_INTR;
11110 ++vcpu->stat.signal_exits;
11115 if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
11116 (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
11121 if (kvm_run->kvm_dirty_regs) {
11122 r = sync_regs(vcpu);
11127 /* re-sync apic's tpr */
11128 if (!lapic_in_kernel(vcpu)) {
11129 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
11136 * If userspace set a pending exception and L2 is active, convert it to
11137 * a pending VM-Exit if L1 wants to intercept the exception.
11139 if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) &&
11140 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector,
11142 kvm_queue_exception_vmexit(vcpu, ex->vector,
11143 ex->has_error_code, ex->error_code,
11144 ex->has_payload, ex->payload);
11145 ex->injected = false;
11146 ex->pending = false;
11148 vcpu->arch.exception_from_userspace = false;
11150 if (unlikely(vcpu->arch.complete_userspace_io)) {
11151 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
11152 vcpu->arch.complete_userspace_io = NULL;
11157 WARN_ON_ONCE(vcpu->arch.pio.count);
11158 WARN_ON_ONCE(vcpu->mmio_needed);
11161 if (kvm_run->immediate_exit) {
11166 r = static_call(kvm_x86_vcpu_pre_run)(vcpu);
11170 r = vcpu_run(vcpu);
11173 kvm_put_guest_fpu(vcpu);
11174 if (kvm_run->kvm_valid_regs)
11176 post_kvm_run_save(vcpu);
11177 kvm_vcpu_srcu_read_unlock(vcpu);
11179 kvm_sigset_deactivate(vcpu);
11184 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11186 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
11188 * We are here if userspace calls get_regs() in the middle of
11189 * instruction emulation. Registers state needs to be copied
11190 * back from emulation context to vcpu. Userspace shouldn't do
11191 * that usually, but some bad designed PV devices (vmware
11192 * backdoor interface) need this to work
11194 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
11195 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11197 regs->rax = kvm_rax_read(vcpu);
11198 regs->rbx = kvm_rbx_read(vcpu);
11199 regs->rcx = kvm_rcx_read(vcpu);
11200 regs->rdx = kvm_rdx_read(vcpu);
11201 regs->rsi = kvm_rsi_read(vcpu);
11202 regs->rdi = kvm_rdi_read(vcpu);
11203 regs->rsp = kvm_rsp_read(vcpu);
11204 regs->rbp = kvm_rbp_read(vcpu);
11205 #ifdef CONFIG_X86_64
11206 regs->r8 = kvm_r8_read(vcpu);
11207 regs->r9 = kvm_r9_read(vcpu);
11208 regs->r10 = kvm_r10_read(vcpu);
11209 regs->r11 = kvm_r11_read(vcpu);
11210 regs->r12 = kvm_r12_read(vcpu);
11211 regs->r13 = kvm_r13_read(vcpu);
11212 regs->r14 = kvm_r14_read(vcpu);
11213 regs->r15 = kvm_r15_read(vcpu);
11216 regs->rip = kvm_rip_read(vcpu);
11217 regs->rflags = kvm_get_rflags(vcpu);
11220 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11223 __get_regs(vcpu, regs);
11228 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11230 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
11231 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11233 kvm_rax_write(vcpu, regs->rax);
11234 kvm_rbx_write(vcpu, regs->rbx);
11235 kvm_rcx_write(vcpu, regs->rcx);
11236 kvm_rdx_write(vcpu, regs->rdx);
11237 kvm_rsi_write(vcpu, regs->rsi);
11238 kvm_rdi_write(vcpu, regs->rdi);
11239 kvm_rsp_write(vcpu, regs->rsp);
11240 kvm_rbp_write(vcpu, regs->rbp);
11241 #ifdef CONFIG_X86_64
11242 kvm_r8_write(vcpu, regs->r8);
11243 kvm_r9_write(vcpu, regs->r9);
11244 kvm_r10_write(vcpu, regs->r10);
11245 kvm_r11_write(vcpu, regs->r11);
11246 kvm_r12_write(vcpu, regs->r12);
11247 kvm_r13_write(vcpu, regs->r13);
11248 kvm_r14_write(vcpu, regs->r14);
11249 kvm_r15_write(vcpu, regs->r15);
11252 kvm_rip_write(vcpu, regs->rip);
11253 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
11255 vcpu->arch.exception.pending = false;
11256 vcpu->arch.exception_vmexit.pending = false;
11258 kvm_make_request(KVM_REQ_EVENT, vcpu);
11261 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11264 __set_regs(vcpu, regs);
11269 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11271 struct desc_ptr dt;
11273 if (vcpu->arch.guest_state_protected)
11274 goto skip_protected_regs;
11276 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11277 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11278 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11279 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11280 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11281 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11283 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11284 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11286 static_call(kvm_x86_get_idt)(vcpu, &dt);
11287 sregs->idt.limit = dt.size;
11288 sregs->idt.base = dt.address;
11289 static_call(kvm_x86_get_gdt)(vcpu, &dt);
11290 sregs->gdt.limit = dt.size;
11291 sregs->gdt.base = dt.address;
11293 sregs->cr2 = vcpu->arch.cr2;
11294 sregs->cr3 = kvm_read_cr3(vcpu);
11296 skip_protected_regs:
11297 sregs->cr0 = kvm_read_cr0(vcpu);
11298 sregs->cr4 = kvm_read_cr4(vcpu);
11299 sregs->cr8 = kvm_get_cr8(vcpu);
11300 sregs->efer = vcpu->arch.efer;
11301 sregs->apic_base = kvm_get_apic_base(vcpu);
11304 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11306 __get_sregs_common(vcpu, sregs);
11308 if (vcpu->arch.guest_state_protected)
11311 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
11312 set_bit(vcpu->arch.interrupt.nr,
11313 (unsigned long *)sregs->interrupt_bitmap);
11316 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11320 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
11322 if (vcpu->arch.guest_state_protected)
11325 if (is_pae_paging(vcpu)) {
11326 for (i = 0 ; i < 4 ; i++)
11327 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
11328 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
11332 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
11333 struct kvm_sregs *sregs)
11336 __get_sregs(vcpu, sregs);
11341 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
11342 struct kvm_mp_state *mp_state)
11347 if (kvm_mpx_supported())
11348 kvm_load_guest_fpu(vcpu);
11350 r = kvm_apic_accept_events(vcpu);
11355 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
11356 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
11357 vcpu->arch.pv.pv_unhalted)
11358 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
11360 mp_state->mp_state = vcpu->arch.mp_state;
11363 if (kvm_mpx_supported())
11364 kvm_put_guest_fpu(vcpu);
11369 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
11370 struct kvm_mp_state *mp_state)
11376 switch (mp_state->mp_state) {
11377 case KVM_MP_STATE_UNINITIALIZED:
11378 case KVM_MP_STATE_HALTED:
11379 case KVM_MP_STATE_AP_RESET_HOLD:
11380 case KVM_MP_STATE_INIT_RECEIVED:
11381 case KVM_MP_STATE_SIPI_RECEIVED:
11382 if (!lapic_in_kernel(vcpu))
11386 case KVM_MP_STATE_RUNNABLE:
11394 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow
11395 * forcing the guest into INIT/SIPI if those events are supposed to be
11396 * blocked. KVM prioritizes SMI over INIT, so reject INIT/SIPI state
11397 * if an SMI is pending as well.
11399 if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) &&
11400 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
11401 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
11404 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
11405 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
11406 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
11408 vcpu->arch.mp_state = mp_state->mp_state;
11409 kvm_make_request(KVM_REQ_EVENT, vcpu);
11417 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
11418 int reason, bool has_error_code, u32 error_code)
11420 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
11423 init_emulate_ctxt(vcpu);
11425 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
11426 has_error_code, error_code);
11428 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11429 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11430 vcpu->run->internal.ndata = 0;
11434 kvm_rip_write(vcpu, ctxt->eip);
11435 kvm_set_rflags(vcpu, ctxt->eflags);
11438 EXPORT_SYMBOL_GPL(kvm_task_switch);
11440 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11442 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
11444 * When EFER.LME and CR0.PG are set, the processor is in
11445 * 64-bit mode (though maybe in a 32-bit code segment).
11446 * CR4.PAE and EFER.LMA must be set.
11448 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
11450 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
11454 * Not in 64-bit mode: EFER.LMA is clear and the code
11455 * segment cannot be 64-bit.
11457 if (sregs->efer & EFER_LMA || sregs->cs.l)
11461 return kvm_is_valid_cr4(vcpu, sregs->cr4);
11464 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
11465 int *mmu_reset_needed, bool update_pdptrs)
11467 struct msr_data apic_base_msr;
11469 struct desc_ptr dt;
11471 if (!kvm_is_valid_sregs(vcpu, sregs))
11474 apic_base_msr.data = sregs->apic_base;
11475 apic_base_msr.host_initiated = true;
11476 if (kvm_set_apic_base(vcpu, &apic_base_msr))
11479 if (vcpu->arch.guest_state_protected)
11482 dt.size = sregs->idt.limit;
11483 dt.address = sregs->idt.base;
11484 static_call(kvm_x86_set_idt)(vcpu, &dt);
11485 dt.size = sregs->gdt.limit;
11486 dt.address = sregs->gdt.base;
11487 static_call(kvm_x86_set_gdt)(vcpu, &dt);
11489 vcpu->arch.cr2 = sregs->cr2;
11490 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
11491 vcpu->arch.cr3 = sregs->cr3;
11492 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11493 static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3);
11495 kvm_set_cr8(vcpu, sregs->cr8);
11497 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
11498 static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
11500 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
11501 static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
11502 vcpu->arch.cr0 = sregs->cr0;
11504 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
11505 static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
11507 if (update_pdptrs) {
11508 idx = srcu_read_lock(&vcpu->kvm->srcu);
11509 if (is_pae_paging(vcpu)) {
11510 load_pdptrs(vcpu, kvm_read_cr3(vcpu));
11511 *mmu_reset_needed = 1;
11513 srcu_read_unlock(&vcpu->kvm->srcu, idx);
11516 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11517 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11518 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11519 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11520 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11521 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11523 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11524 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11526 update_cr8_intercept(vcpu);
11528 /* Older userspace won't unhalt the vcpu on reset. */
11529 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
11530 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
11531 !is_protmode(vcpu))
11532 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11537 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11539 int pending_vec, max_bits;
11540 int mmu_reset_needed = 0;
11541 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
11546 if (mmu_reset_needed)
11547 kvm_mmu_reset_context(vcpu);
11549 max_bits = KVM_NR_INTERRUPTS;
11550 pending_vec = find_first_bit(
11551 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
11553 if (pending_vec < max_bits) {
11554 kvm_queue_interrupt(vcpu, pending_vec, false);
11555 pr_debug("Set back pending irq %d\n", pending_vec);
11556 kvm_make_request(KVM_REQ_EVENT, vcpu);
11561 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11563 int mmu_reset_needed = 0;
11564 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
11565 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
11566 !(sregs2->efer & EFER_LMA);
11569 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
11572 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
11575 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
11576 &mmu_reset_needed, !valid_pdptrs);
11580 if (valid_pdptrs) {
11581 for (i = 0; i < 4 ; i++)
11582 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
11584 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
11585 mmu_reset_needed = 1;
11586 vcpu->arch.pdptrs_from_userspace = true;
11588 if (mmu_reset_needed)
11589 kvm_mmu_reset_context(vcpu);
11593 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
11594 struct kvm_sregs *sregs)
11599 ret = __set_sregs(vcpu, sregs);
11604 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
11607 struct kvm_vcpu *vcpu;
11613 down_write(&kvm->arch.apicv_update_lock);
11615 kvm_for_each_vcpu(i, vcpu, kvm) {
11616 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
11621 __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
11622 up_write(&kvm->arch.apicv_update_lock);
11625 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
11626 struct kvm_guest_debug *dbg)
11628 unsigned long rflags;
11631 if (vcpu->arch.guest_state_protected)
11636 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
11638 if (kvm_is_exception_pending(vcpu))
11640 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
11641 kvm_queue_exception(vcpu, DB_VECTOR);
11643 kvm_queue_exception(vcpu, BP_VECTOR);
11647 * Read rflags as long as potentially injected trace flags are still
11650 rflags = kvm_get_rflags(vcpu);
11652 vcpu->guest_debug = dbg->control;
11653 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
11654 vcpu->guest_debug = 0;
11656 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
11657 for (i = 0; i < KVM_NR_DB_REGS; ++i)
11658 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
11659 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
11661 for (i = 0; i < KVM_NR_DB_REGS; i++)
11662 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
11664 kvm_update_dr7(vcpu);
11666 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11667 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
11670 * Trigger an rflags update that will inject or remove the trace
11673 kvm_set_rflags(vcpu, rflags);
11675 static_call(kvm_x86_update_exception_bitmap)(vcpu);
11677 kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
11687 * Translate a guest virtual address to a guest physical address.
11689 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
11690 struct kvm_translation *tr)
11692 unsigned long vaddr = tr->linear_address;
11698 idx = srcu_read_lock(&vcpu->kvm->srcu);
11699 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
11700 srcu_read_unlock(&vcpu->kvm->srcu, idx);
11701 tr->physical_address = gpa;
11702 tr->valid = gpa != INVALID_GPA;
11710 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11712 struct fxregs_state *fxsave;
11714 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11719 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11720 memcpy(fpu->fpr, fxsave->st_space, 128);
11721 fpu->fcw = fxsave->cwd;
11722 fpu->fsw = fxsave->swd;
11723 fpu->ftwx = fxsave->twd;
11724 fpu->last_opcode = fxsave->fop;
11725 fpu->last_ip = fxsave->rip;
11726 fpu->last_dp = fxsave->rdp;
11727 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
11733 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11735 struct fxregs_state *fxsave;
11737 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11742 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11744 memcpy(fxsave->st_space, fpu->fpr, 128);
11745 fxsave->cwd = fpu->fcw;
11746 fxsave->swd = fpu->fsw;
11747 fxsave->twd = fpu->ftwx;
11748 fxsave->fop = fpu->last_opcode;
11749 fxsave->rip = fpu->last_ip;
11750 fxsave->rdp = fpu->last_dp;
11751 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
11757 static void store_regs(struct kvm_vcpu *vcpu)
11759 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
11761 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
11762 __get_regs(vcpu, &vcpu->run->s.regs.regs);
11764 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
11765 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
11767 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
11768 kvm_vcpu_ioctl_x86_get_vcpu_events(
11769 vcpu, &vcpu->run->s.regs.events);
11772 static int sync_regs(struct kvm_vcpu *vcpu)
11774 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
11775 __set_regs(vcpu, &vcpu->run->s.regs.regs);
11776 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
11778 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
11779 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
11781 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
11783 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
11784 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
11785 vcpu, &vcpu->run->s.regs.events))
11787 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
11793 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
11795 if (kvm_check_tsc_unstable() && kvm->created_vcpus)
11796 pr_warn_once("SMP vm created on host with unstable TSC; "
11797 "guest TSC will not be reliable\n");
11799 if (!kvm->arch.max_vcpu_ids)
11800 kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS;
11802 if (id >= kvm->arch.max_vcpu_ids)
11805 return static_call(kvm_x86_vcpu_precreate)(kvm);
11808 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
11813 vcpu->arch.last_vmentry_cpu = -1;
11814 vcpu->arch.regs_avail = ~0;
11815 vcpu->arch.regs_dirty = ~0;
11817 kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm, vcpu, KVM_HOST_USES_PFN);
11819 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
11820 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11822 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
11824 r = kvm_mmu_create(vcpu);
11828 if (irqchip_in_kernel(vcpu->kvm)) {
11829 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
11831 goto fail_mmu_destroy;
11834 * Defer evaluating inhibits until the vCPU is first run, as
11835 * this vCPU will not get notified of any changes until this
11836 * vCPU is visible to other vCPUs (marked online and added to
11837 * the set of vCPUs). Opportunistically mark APICv active as
11838 * VMX in particularly is highly unlikely to have inhibits.
11839 * Ignore the current per-VM APICv state so that vCPU creation
11840 * is guaranteed to run with a deterministic value, the request
11841 * will ensure the vCPU gets the correct state before VM-Entry.
11843 if (enable_apicv) {
11844 vcpu->arch.apic->apicv_active = true;
11845 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
11848 static_branch_inc(&kvm_has_noapic_vcpu);
11852 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
11854 goto fail_free_lapic;
11855 vcpu->arch.pio_data = page_address(page);
11857 vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64),
11858 GFP_KERNEL_ACCOUNT);
11859 vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64),
11860 GFP_KERNEL_ACCOUNT);
11861 if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks)
11862 goto fail_free_mce_banks;
11863 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
11865 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
11866 GFP_KERNEL_ACCOUNT))
11867 goto fail_free_mce_banks;
11869 if (!alloc_emulate_ctxt(vcpu))
11870 goto free_wbinvd_dirty_mask;
11872 if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
11873 pr_err("failed to allocate vcpu's fpu\n");
11874 goto free_emulate_ctxt;
11877 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
11878 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
11880 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
11882 kvm_async_pf_hash_reset(vcpu);
11884 vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap;
11885 kvm_pmu_init(vcpu);
11887 vcpu->arch.pending_external_vector = -1;
11888 vcpu->arch.preempted_in_kernel = false;
11890 #if IS_ENABLED(CONFIG_HYPERV)
11891 vcpu->arch.hv_root_tdp = INVALID_PAGE;
11894 r = static_call(kvm_x86_vcpu_create)(vcpu);
11896 goto free_guest_fpu;
11898 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
11899 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
11900 kvm_xen_init_vcpu(vcpu);
11901 kvm_vcpu_mtrr_init(vcpu);
11903 kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz);
11904 kvm_vcpu_reset(vcpu, false);
11905 kvm_init_mmu(vcpu);
11910 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11912 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11913 free_wbinvd_dirty_mask:
11914 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11915 fail_free_mce_banks:
11916 kfree(vcpu->arch.mce_banks);
11917 kfree(vcpu->arch.mci_ctl2_banks);
11918 free_page((unsigned long)vcpu->arch.pio_data);
11920 kvm_free_lapic(vcpu);
11922 kvm_mmu_destroy(vcpu);
11926 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
11928 struct kvm *kvm = vcpu->kvm;
11930 if (mutex_lock_killable(&vcpu->mutex))
11933 kvm_synchronize_tsc(vcpu, 0);
11936 /* poll control enabled by default */
11937 vcpu->arch.msr_kvm_poll_control = 1;
11939 mutex_unlock(&vcpu->mutex);
11941 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
11942 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
11943 KVMCLOCK_SYNC_PERIOD);
11946 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
11950 kvmclock_reset(vcpu);
11952 static_call(kvm_x86_vcpu_free)(vcpu);
11954 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11955 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11956 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11958 kvm_xen_destroy_vcpu(vcpu);
11959 kvm_hv_vcpu_uninit(vcpu);
11960 kvm_pmu_destroy(vcpu);
11961 kfree(vcpu->arch.mce_banks);
11962 kfree(vcpu->arch.mci_ctl2_banks);
11963 kvm_free_lapic(vcpu);
11964 idx = srcu_read_lock(&vcpu->kvm->srcu);
11965 kvm_mmu_destroy(vcpu);
11966 srcu_read_unlock(&vcpu->kvm->srcu, idx);
11967 free_page((unsigned long)vcpu->arch.pio_data);
11968 kvfree(vcpu->arch.cpuid_entries);
11969 if (!lapic_in_kernel(vcpu))
11970 static_branch_dec(&kvm_has_noapic_vcpu);
11973 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
11975 struct kvm_cpuid_entry2 *cpuid_0x1;
11976 unsigned long old_cr0 = kvm_read_cr0(vcpu);
11977 unsigned long new_cr0;
11980 * Several of the "set" flows, e.g. ->set_cr0(), read other registers
11981 * to handle side effects. RESET emulation hits those flows and relies
11982 * on emulated/virtualized registers, including those that are loaded
11983 * into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel
11984 * to detect improper or missing initialization.
11986 WARN_ON_ONCE(!init_event &&
11987 (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
11990 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's
11991 * possible to INIT the vCPU while L2 is active. Force the vCPU back
11992 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER
11993 * bits), i.e. virtualization is disabled.
11995 if (is_guest_mode(vcpu))
11996 kvm_leave_nested(vcpu);
11998 kvm_lapic_reset(vcpu, init_event);
12000 WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu));
12001 vcpu->arch.hflags = 0;
12003 vcpu->arch.smi_pending = 0;
12004 vcpu->arch.smi_count = 0;
12005 atomic_set(&vcpu->arch.nmi_queued, 0);
12006 vcpu->arch.nmi_pending = 0;
12007 vcpu->arch.nmi_injected = false;
12008 kvm_clear_interrupt_queue(vcpu);
12009 kvm_clear_exception_queue(vcpu);
12011 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
12012 kvm_update_dr0123(vcpu);
12013 vcpu->arch.dr6 = DR6_ACTIVE_LOW;
12014 vcpu->arch.dr7 = DR7_FIXED_1;
12015 kvm_update_dr7(vcpu);
12017 vcpu->arch.cr2 = 0;
12019 kvm_make_request(KVM_REQ_EVENT, vcpu);
12020 vcpu->arch.apf.msr_en_val = 0;
12021 vcpu->arch.apf.msr_int_val = 0;
12022 vcpu->arch.st.msr_val = 0;
12024 kvmclock_reset(vcpu);
12026 kvm_clear_async_pf_completion_queue(vcpu);
12027 kvm_async_pf_hash_reset(vcpu);
12028 vcpu->arch.apf.halted = false;
12030 if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
12031 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
12034 * All paths that lead to INIT are required to load the guest's
12035 * FPU state (because most paths are buried in KVM_RUN).
12038 kvm_put_guest_fpu(vcpu);
12040 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
12041 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
12044 kvm_load_guest_fpu(vcpu);
12048 kvm_pmu_reset(vcpu);
12049 vcpu->arch.smbase = 0x30000;
12051 vcpu->arch.msr_misc_features_enables = 0;
12052 vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL |
12053 MSR_IA32_MISC_ENABLE_BTS_UNAVAIL;
12055 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
12056 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
12059 /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
12060 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
12061 kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
12064 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
12065 * if no CPUID match is found. Note, it's impossible to get a match at
12066 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
12067 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
12068 * on RESET. But, go through the motions in case that's ever remedied.
12070 cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1);
12071 kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
12073 static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
12075 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
12076 kvm_rip_write(vcpu, 0xfff0);
12078 vcpu->arch.cr3 = 0;
12079 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
12082 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions
12083 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
12084 * (or qualify) that with a footnote stating that CD/NW are preserved.
12086 new_cr0 = X86_CR0_ET;
12088 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
12090 new_cr0 |= X86_CR0_NW | X86_CR0_CD;
12092 static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
12093 static_call(kvm_x86_set_cr4)(vcpu, 0);
12094 static_call(kvm_x86_set_efer)(vcpu, 0);
12095 static_call(kvm_x86_update_exception_bitmap)(vcpu);
12098 * On the standard CR0/CR4/EFER modification paths, there are several
12099 * complex conditions determining whether the MMU has to be reset and/or
12100 * which PCIDs have to be flushed. However, CR0.WP and the paging-related
12101 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
12102 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
12103 * CR0 will be '0' prior to RESET). So we only need to check CR0.PG here.
12105 if (old_cr0 & X86_CR0_PG) {
12106 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12107 kvm_mmu_reset_context(vcpu);
12111 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's
12112 * APM states the TLBs are untouched by INIT, but it also states that
12113 * the TLBs are flushed on "External initialization of the processor."
12114 * Flush the guest TLB regardless of vendor, there is no meaningful
12115 * benefit in relying on the guest to flush the TLB immediately after
12116 * INIT. A spurious TLB flush is benign and likely negligible from a
12117 * performance perspective.
12120 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12122 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
12124 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
12126 struct kvm_segment cs;
12128 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
12129 cs.selector = vector << 8;
12130 cs.base = vector << 12;
12131 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
12132 kvm_rip_write(vcpu, 0);
12134 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
12136 int kvm_arch_hardware_enable(void)
12139 struct kvm_vcpu *vcpu;
12144 bool stable, backwards_tsc = false;
12146 kvm_user_return_msr_cpu_online();
12148 ret = kvm_x86_check_processor_compatibility();
12152 ret = static_call(kvm_x86_hardware_enable)();
12156 local_tsc = rdtsc();
12157 stable = !kvm_check_tsc_unstable();
12158 list_for_each_entry(kvm, &vm_list, vm_list) {
12159 kvm_for_each_vcpu(i, vcpu, kvm) {
12160 if (!stable && vcpu->cpu == smp_processor_id())
12161 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
12162 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
12163 backwards_tsc = true;
12164 if (vcpu->arch.last_host_tsc > max_tsc)
12165 max_tsc = vcpu->arch.last_host_tsc;
12171 * Sometimes, even reliable TSCs go backwards. This happens on
12172 * platforms that reset TSC during suspend or hibernate actions, but
12173 * maintain synchronization. We must compensate. Fortunately, we can
12174 * detect that condition here, which happens early in CPU bringup,
12175 * before any KVM threads can be running. Unfortunately, we can't
12176 * bring the TSCs fully up to date with real time, as we aren't yet far
12177 * enough into CPU bringup that we know how much real time has actually
12178 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
12179 * variables that haven't been updated yet.
12181 * So we simply find the maximum observed TSC above, then record the
12182 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
12183 * the adjustment will be applied. Note that we accumulate
12184 * adjustments, in case multiple suspend cycles happen before some VCPU
12185 * gets a chance to run again. In the event that no KVM threads get a
12186 * chance to run, we will miss the entire elapsed period, as we'll have
12187 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
12188 * loose cycle time. This isn't too big a deal, since the loss will be
12189 * uniform across all VCPUs (not to mention the scenario is extremely
12190 * unlikely). It is possible that a second hibernate recovery happens
12191 * much faster than a first, causing the observed TSC here to be
12192 * smaller; this would require additional padding adjustment, which is
12193 * why we set last_host_tsc to the local tsc observed here.
12195 * N.B. - this code below runs only on platforms with reliable TSC,
12196 * as that is the only way backwards_tsc is set above. Also note
12197 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
12198 * have the same delta_cyc adjustment applied if backwards_tsc
12199 * is detected. Note further, this adjustment is only done once,
12200 * as we reset last_host_tsc on all VCPUs to stop this from being
12201 * called multiple times (one for each physical CPU bringup).
12203 * Platforms with unreliable TSCs don't have to deal with this, they
12204 * will be compensated by the logic in vcpu_load, which sets the TSC to
12205 * catchup mode. This will catchup all VCPUs to real time, but cannot
12206 * guarantee that they stay in perfect synchronization.
12208 if (backwards_tsc) {
12209 u64 delta_cyc = max_tsc - local_tsc;
12210 list_for_each_entry(kvm, &vm_list, vm_list) {
12211 kvm->arch.backwards_tsc_observed = true;
12212 kvm_for_each_vcpu(i, vcpu, kvm) {
12213 vcpu->arch.tsc_offset_adjustment += delta_cyc;
12214 vcpu->arch.last_host_tsc = local_tsc;
12215 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
12219 * We have to disable TSC offset matching.. if you were
12220 * booting a VM while issuing an S4 host suspend....
12221 * you may have some problem. Solving this issue is
12222 * left as an exercise to the reader.
12224 kvm->arch.last_tsc_nsec = 0;
12225 kvm->arch.last_tsc_write = 0;
12232 void kvm_arch_hardware_disable(void)
12234 static_call(kvm_x86_hardware_disable)();
12235 drop_user_return_notifiers();
12238 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
12240 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
12243 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
12245 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
12248 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
12249 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
12251 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
12253 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
12255 vcpu->arch.l1tf_flush_l1d = true;
12256 if (pmu->version && unlikely(pmu->event_count)) {
12257 pmu->need_cleanup = true;
12258 kvm_make_request(KVM_REQ_PMU, vcpu);
12260 static_call(kvm_x86_sched_in)(vcpu, cpu);
12263 void kvm_arch_free_vm(struct kvm *kvm)
12265 kfree(to_kvm_hv(kvm)->hv_pa_pg);
12266 __kvm_arch_free_vm(kvm);
12270 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
12273 unsigned long flags;
12278 ret = kvm_page_track_init(kvm);
12282 ret = kvm_mmu_init_vm(kvm);
12284 goto out_page_track;
12286 ret = static_call(kvm_x86_vm_init)(kvm);
12288 goto out_uninit_mmu;
12290 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
12291 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
12292 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
12294 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
12295 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
12296 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
12297 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
12298 &kvm->arch.irq_sources_bitmap);
12300 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
12301 mutex_init(&kvm->arch.apic_map_lock);
12302 seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
12303 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
12305 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
12306 pvclock_update_vm_gtod_copy(kvm);
12307 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
12309 kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz;
12310 kvm->arch.guest_can_read_msr_platform_info = true;
12311 kvm->arch.enable_pmu = enable_pmu;
12313 #if IS_ENABLED(CONFIG_HYPERV)
12314 spin_lock_init(&kvm->arch.hv_root_tdp_lock);
12315 kvm->arch.hv_root_tdp = INVALID_PAGE;
12318 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
12319 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
12321 kvm_apicv_init(kvm);
12322 kvm_hv_init_vm(kvm);
12323 kvm_xen_init_vm(kvm);
12328 kvm_mmu_uninit_vm(kvm);
12330 kvm_page_track_cleanup(kvm);
12335 int kvm_arch_post_init_vm(struct kvm *kvm)
12337 return kvm_mmu_post_init_vm(kvm);
12340 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
12343 kvm_mmu_unload(vcpu);
12347 static void kvm_unload_vcpu_mmus(struct kvm *kvm)
12350 struct kvm_vcpu *vcpu;
12352 kvm_for_each_vcpu(i, vcpu, kvm) {
12353 kvm_clear_async_pf_completion_queue(vcpu);
12354 kvm_unload_vcpu_mmu(vcpu);
12358 void kvm_arch_sync_events(struct kvm *kvm)
12360 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
12361 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
12366 * __x86_set_memory_region: Setup KVM internal memory slot
12368 * @kvm: the kvm pointer to the VM.
12369 * @id: the slot ID to setup.
12370 * @gpa: the GPA to install the slot (unused when @size == 0).
12371 * @size: the size of the slot. Set to zero to uninstall a slot.
12373 * This function helps to setup a KVM internal memory slot. Specify
12374 * @size > 0 to install a new slot, while @size == 0 to uninstall a
12375 * slot. The return code can be one of the following:
12377 * HVA: on success (uninstall will return a bogus HVA)
12380 * The caller should always use IS_ERR() to check the return value
12381 * before use. Note, the KVM internal memory slots are guaranteed to
12382 * remain valid and unchanged until the VM is destroyed, i.e., the
12383 * GPA->HVA translation will not change. However, the HVA is a user
12384 * address, i.e. its accessibility is not guaranteed, and must be
12385 * accessed via __copy_{to,from}_user().
12387 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
12391 unsigned long hva, old_npages;
12392 struct kvm_memslots *slots = kvm_memslots(kvm);
12393 struct kvm_memory_slot *slot;
12395 /* Called with kvm->slots_lock held. */
12396 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
12397 return ERR_PTR_USR(-EINVAL);
12399 slot = id_to_memslot(slots, id);
12401 if (slot && slot->npages)
12402 return ERR_PTR_USR(-EEXIST);
12405 * MAP_SHARED to prevent internal slot pages from being moved
12408 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
12409 MAP_SHARED | MAP_ANONYMOUS, 0);
12410 if (IS_ERR_VALUE(hva))
12411 return (void __user *)hva;
12413 if (!slot || !slot->npages)
12416 old_npages = slot->npages;
12417 hva = slot->userspace_addr;
12420 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
12421 struct kvm_userspace_memory_region m;
12423 m.slot = id | (i << 16);
12425 m.guest_phys_addr = gpa;
12426 m.userspace_addr = hva;
12427 m.memory_size = size;
12428 r = __kvm_set_memory_region(kvm, &m);
12430 return ERR_PTR_USR(r);
12434 vm_munmap(hva, old_npages * PAGE_SIZE);
12436 return (void __user *)hva;
12438 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
12440 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
12442 kvm_mmu_pre_destroy_vm(kvm);
12445 void kvm_arch_destroy_vm(struct kvm *kvm)
12447 if (current->mm == kvm->mm) {
12449 * Free memory regions allocated on behalf of userspace,
12450 * unless the memory map has changed due to process exit
12453 mutex_lock(&kvm->slots_lock);
12454 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
12456 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
12458 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
12459 mutex_unlock(&kvm->slots_lock);
12461 kvm_unload_vcpu_mmus(kvm);
12462 static_call_cond(kvm_x86_vm_destroy)(kvm);
12463 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
12464 kvm_pic_destroy(kvm);
12465 kvm_ioapic_destroy(kvm);
12466 kvm_destroy_vcpus(kvm);
12467 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
12468 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
12469 kvm_mmu_uninit_vm(kvm);
12470 kvm_page_track_cleanup(kvm);
12471 kvm_xen_destroy_vm(kvm);
12472 kvm_hv_destroy_vm(kvm);
12475 static void memslot_rmap_free(struct kvm_memory_slot *slot)
12479 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12480 kvfree(slot->arch.rmap[i]);
12481 slot->arch.rmap[i] = NULL;
12485 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
12489 memslot_rmap_free(slot);
12491 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12492 kvfree(slot->arch.lpage_info[i - 1]);
12493 slot->arch.lpage_info[i - 1] = NULL;
12496 kvm_page_track_free_memslot(slot);
12499 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
12501 const int sz = sizeof(*slot->arch.rmap[0]);
12504 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12506 int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12508 if (slot->arch.rmap[i])
12511 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
12512 if (!slot->arch.rmap[i]) {
12513 memslot_rmap_free(slot);
12521 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
12522 struct kvm_memory_slot *slot)
12524 unsigned long npages = slot->npages;
12528 * Clear out the previous array pointers for the KVM_MR_MOVE case. The
12529 * old arrays will be freed by __kvm_set_memory_region() if installing
12530 * the new memslot is successful.
12532 memset(&slot->arch, 0, sizeof(slot->arch));
12534 if (kvm_memslots_have_rmaps(kvm)) {
12535 r = memslot_rmap_alloc(slot, npages);
12540 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12541 struct kvm_lpage_info *linfo;
12542 unsigned long ugfn;
12546 lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12548 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
12552 slot->arch.lpage_info[i - 1] = linfo;
12554 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
12555 linfo[0].disallow_lpage = 1;
12556 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
12557 linfo[lpages - 1].disallow_lpage = 1;
12558 ugfn = slot->userspace_addr >> PAGE_SHIFT;
12560 * If the gfn and userspace address are not aligned wrt each
12561 * other, disable large page support for this slot.
12563 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
12566 for (j = 0; j < lpages; ++j)
12567 linfo[j].disallow_lpage = 1;
12571 if (kvm_page_track_create_memslot(kvm, slot, npages))
12577 memslot_rmap_free(slot);
12579 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12580 kvfree(slot->arch.lpage_info[i - 1]);
12581 slot->arch.lpage_info[i - 1] = NULL;
12586 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
12588 struct kvm_vcpu *vcpu;
12592 * memslots->generation has been incremented.
12593 * mmio generation may have reached its maximum value.
12595 kvm_mmu_invalidate_mmio_sptes(kvm, gen);
12597 /* Force re-initialization of steal_time cache */
12598 kvm_for_each_vcpu(i, vcpu, kvm)
12599 kvm_vcpu_kick(vcpu);
12602 int kvm_arch_prepare_memory_region(struct kvm *kvm,
12603 const struct kvm_memory_slot *old,
12604 struct kvm_memory_slot *new,
12605 enum kvm_mr_change change)
12607 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
12608 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
12611 return kvm_alloc_memslot_metadata(kvm, new);
12614 if (change == KVM_MR_FLAGS_ONLY)
12615 memcpy(&new->arch, &old->arch, sizeof(old->arch));
12616 else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
12623 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
12627 if (!kvm_x86_ops.cpu_dirty_log_size)
12630 nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging);
12631 if ((enable && nr_slots == 1) || !nr_slots)
12632 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
12635 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
12636 struct kvm_memory_slot *old,
12637 const struct kvm_memory_slot *new,
12638 enum kvm_mr_change change)
12640 u32 old_flags = old ? old->flags : 0;
12641 u32 new_flags = new ? new->flags : 0;
12642 bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
12645 * Update CPU dirty logging if dirty logging is being toggled. This
12646 * applies to all operations.
12648 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
12649 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
12652 * Nothing more to do for RO slots (which can't be dirtied and can't be
12653 * made writable) or CREATE/MOVE/DELETE of a slot.
12655 * For a memslot with dirty logging disabled:
12656 * CREATE: No dirty mappings will already exist.
12657 * MOVE/DELETE: The old mappings will already have been cleaned up by
12658 * kvm_arch_flush_shadow_memslot()
12660 * For a memslot with dirty logging enabled:
12661 * CREATE: No shadow pages exist, thus nothing to write-protect
12662 * and no dirty bits to clear.
12663 * MOVE/DELETE: The old mappings will already have been cleaned up by
12664 * kvm_arch_flush_shadow_memslot().
12666 if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
12670 * READONLY and non-flags changes were filtered out above, and the only
12671 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
12672 * logging isn't being toggled on or off.
12674 if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
12677 if (!log_dirty_pages) {
12679 * Dirty logging tracks sptes in 4k granularity, meaning that
12680 * large sptes have to be split. If live migration succeeds,
12681 * the guest in the source machine will be destroyed and large
12682 * sptes will be created in the destination. However, if the
12683 * guest continues to run in the source machine (for example if
12684 * live migration fails), small sptes will remain around and
12685 * cause bad performance.
12687 * Scan sptes if dirty logging has been stopped, dropping those
12688 * which can be collapsed into a single large-page spte. Later
12689 * page faults will create the large-page sptes.
12691 kvm_mmu_zap_collapsible_sptes(kvm, new);
12694 * Initially-all-set does not require write protecting any page,
12695 * because they're all assumed to be dirty.
12697 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
12700 if (READ_ONCE(eager_page_split))
12701 kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
12703 if (kvm_x86_ops.cpu_dirty_log_size) {
12704 kvm_mmu_slot_leaf_clear_dirty(kvm, new);
12705 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
12707 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
12711 * Unconditionally flush the TLBs after enabling dirty logging.
12712 * A flush is almost always going to be necessary (see below),
12713 * and unconditionally flushing allows the helpers to omit
12714 * the subtly complex checks when removing write access.
12716 * Do the flush outside of mmu_lock to reduce the amount of
12717 * time mmu_lock is held. Flushing after dropping mmu_lock is
12718 * safe as KVM only needs to guarantee the slot is fully
12719 * write-protected before returning to userspace, i.e. before
12720 * userspace can consume the dirty status.
12722 * Flushing outside of mmu_lock requires KVM to be careful when
12723 * making decisions based on writable status of an SPTE, e.g. a
12724 * !writable SPTE doesn't guarantee a CPU can't perform writes.
12726 * Specifically, KVM also write-protects guest page tables to
12727 * monitor changes when using shadow paging, and must guarantee
12728 * no CPUs can write to those page before mmu_lock is dropped.
12729 * Because CPUs may have stale TLB entries at this point, a
12730 * !writable SPTE doesn't guarantee CPUs can't perform writes.
12732 * KVM also allows making SPTES writable outside of mmu_lock,
12733 * e.g. to allow dirty logging without taking mmu_lock.
12735 * To handle these scenarios, KVM uses a separate software-only
12736 * bit (MMU-writable) to track if a SPTE is !writable due to
12737 * a guest page table being write-protected (KVM clears the
12738 * MMU-writable flag when write-protecting for shadow paging).
12740 * The use of MMU-writable is also the primary motivation for
12741 * the unconditional flush. Because KVM must guarantee that a
12742 * CPU doesn't contain stale, writable TLB entries for a
12743 * !MMU-writable SPTE, KVM must flush if it encounters any
12744 * MMU-writable SPTE regardless of whether the actual hardware
12745 * writable bit was set. I.e. KVM is almost guaranteed to need
12746 * to flush, while unconditionally flushing allows the "remove
12747 * write access" helpers to ignore MMU-writable entirely.
12749 * See is_writable_pte() for more details (the case involving
12750 * access-tracked SPTEs is particularly relevant).
12752 kvm_arch_flush_remote_tlbs_memslot(kvm, new);
12756 void kvm_arch_commit_memory_region(struct kvm *kvm,
12757 struct kvm_memory_slot *old,
12758 const struct kvm_memory_slot *new,
12759 enum kvm_mr_change change)
12761 if (!kvm->arch.n_requested_mmu_pages &&
12762 (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
12763 unsigned long nr_mmu_pages;
12765 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
12766 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
12767 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
12770 kvm_mmu_slot_apply_flags(kvm, old, new, change);
12772 /* Free the arrays associated with the old memslot. */
12773 if (change == KVM_MR_MOVE)
12774 kvm_arch_free_memslot(kvm, old);
12777 void kvm_arch_flush_shadow_all(struct kvm *kvm)
12779 kvm_mmu_zap_all(kvm);
12782 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
12783 struct kvm_memory_slot *slot)
12785 kvm_page_track_flush_slot(kvm, slot);
12788 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
12790 return (is_guest_mode(vcpu) &&
12791 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
12794 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
12796 if (!list_empty_careful(&vcpu->async_pf.done))
12799 if (kvm_apic_has_pending_init_or_sipi(vcpu) &&
12800 kvm_apic_init_sipi_allowed(vcpu))
12803 if (vcpu->arch.pv.pv_unhalted)
12806 if (kvm_is_exception_pending(vcpu))
12809 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12810 (vcpu->arch.nmi_pending &&
12811 static_call(kvm_x86_nmi_allowed)(vcpu, false)))
12814 #ifdef CONFIG_KVM_SMM
12815 if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
12816 (vcpu->arch.smi_pending &&
12817 static_call(kvm_x86_smi_allowed)(vcpu, false)))
12821 if (kvm_arch_interrupt_allowed(vcpu) &&
12822 (kvm_cpu_has_interrupt(vcpu) ||
12823 kvm_guest_apic_has_interrupt(vcpu)))
12826 if (kvm_hv_has_stimer_pending(vcpu))
12829 if (is_guest_mode(vcpu) &&
12830 kvm_x86_ops.nested_ops->has_events &&
12831 kvm_x86_ops.nested_ops->has_events(vcpu))
12834 if (kvm_xen_has_pending_events(vcpu))
12840 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
12842 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
12845 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
12847 if (kvm_vcpu_apicv_active(vcpu) &&
12848 static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
12854 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
12856 if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
12859 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12860 #ifdef CONFIG_KVM_SMM
12861 kvm_test_request(KVM_REQ_SMI, vcpu) ||
12863 kvm_test_request(KVM_REQ_EVENT, vcpu))
12866 return kvm_arch_dy_has_pending_interrupt(vcpu);
12869 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
12871 if (vcpu->arch.guest_state_protected)
12874 return vcpu->arch.preempted_in_kernel;
12877 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
12879 return kvm_rip_read(vcpu);
12882 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
12884 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
12887 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
12889 return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
12892 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
12894 /* Can't read the RIP when guest state is protected, just return 0 */
12895 if (vcpu->arch.guest_state_protected)
12898 if (is_64_bit_mode(vcpu))
12899 return kvm_rip_read(vcpu);
12900 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
12901 kvm_rip_read(vcpu));
12903 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
12905 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
12907 return kvm_get_linear_rip(vcpu) == linear_rip;
12909 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
12911 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
12913 unsigned long rflags;
12915 rflags = static_call(kvm_x86_get_rflags)(vcpu);
12916 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
12917 rflags &= ~X86_EFLAGS_TF;
12920 EXPORT_SYMBOL_GPL(kvm_get_rflags);
12922 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12924 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
12925 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
12926 rflags |= X86_EFLAGS_TF;
12927 static_call(kvm_x86_set_rflags)(vcpu, rflags);
12930 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12932 __kvm_set_rflags(vcpu, rflags);
12933 kvm_make_request(KVM_REQ_EVENT, vcpu);
12935 EXPORT_SYMBOL_GPL(kvm_set_rflags);
12937 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
12939 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
12941 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
12944 static inline u32 kvm_async_pf_next_probe(u32 key)
12946 return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
12949 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12951 u32 key = kvm_async_pf_hash_fn(gfn);
12953 while (vcpu->arch.apf.gfns[key] != ~0)
12954 key = kvm_async_pf_next_probe(key);
12956 vcpu->arch.apf.gfns[key] = gfn;
12959 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
12962 u32 key = kvm_async_pf_hash_fn(gfn);
12964 for (i = 0; i < ASYNC_PF_PER_VCPU &&
12965 (vcpu->arch.apf.gfns[key] != gfn &&
12966 vcpu->arch.apf.gfns[key] != ~0); i++)
12967 key = kvm_async_pf_next_probe(key);
12972 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12974 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
12977 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12981 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
12983 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
12987 vcpu->arch.apf.gfns[i] = ~0;
12989 j = kvm_async_pf_next_probe(j);
12990 if (vcpu->arch.apf.gfns[j] == ~0)
12992 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
12994 * k lies cyclically in ]i,j]
12996 * |....j i.k.| or |.k..j i...|
12998 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
12999 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
13004 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
13006 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
13008 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
13012 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
13014 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13016 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13017 &token, offset, sizeof(token));
13020 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
13022 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13025 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13026 &val, offset, sizeof(val)))
13032 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
13035 if (!kvm_pv_async_pf_enabled(vcpu))
13038 if (vcpu->arch.apf.send_user_only &&
13039 static_call(kvm_x86_get_cpl)(vcpu) == 0)
13042 if (is_guest_mode(vcpu)) {
13044 * L1 needs to opt into the special #PF vmexits that are
13045 * used to deliver async page faults.
13047 return vcpu->arch.apf.delivery_as_pf_vmexit;
13050 * Play it safe in case the guest temporarily disables paging.
13051 * The real mode IDT in particular is unlikely to have a #PF
13054 return is_paging(vcpu);
13058 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
13060 if (unlikely(!lapic_in_kernel(vcpu) ||
13061 kvm_event_needs_reinjection(vcpu) ||
13062 kvm_is_exception_pending(vcpu)))
13065 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
13069 * If interrupts are off we cannot even use an artificial
13072 return kvm_arch_interrupt_allowed(vcpu);
13075 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
13076 struct kvm_async_pf *work)
13078 struct x86_exception fault;
13080 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
13081 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
13083 if (kvm_can_deliver_async_pf(vcpu) &&
13084 !apf_put_user_notpresent(vcpu)) {
13085 fault.vector = PF_VECTOR;
13086 fault.error_code_valid = true;
13087 fault.error_code = 0;
13088 fault.nested_page_fault = false;
13089 fault.address = work->arch.token;
13090 fault.async_page_fault = true;
13091 kvm_inject_page_fault(vcpu, &fault);
13095 * It is not possible to deliver a paravirtualized asynchronous
13096 * page fault, but putting the guest in an artificial halt state
13097 * can be beneficial nevertheless: if an interrupt arrives, we
13098 * can deliver it timely and perhaps the guest will schedule
13099 * another process. When the instruction that triggered a page
13100 * fault is retried, hopefully the page will be ready in the host.
13102 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
13107 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
13108 struct kvm_async_pf *work)
13110 struct kvm_lapic_irq irq = {
13111 .delivery_mode = APIC_DM_FIXED,
13112 .vector = vcpu->arch.apf.vec
13115 if (work->wakeup_all)
13116 work->arch.token = ~0; /* broadcast wakeup */
13118 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
13119 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
13121 if ((work->wakeup_all || work->notpresent_injected) &&
13122 kvm_pv_async_pf_enabled(vcpu) &&
13123 !apf_put_user_ready(vcpu, work->arch.token)) {
13124 vcpu->arch.apf.pageready_pending = true;
13125 kvm_apic_set_irq(vcpu, &irq, NULL);
13128 vcpu->arch.apf.halted = false;
13129 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
13132 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
13134 kvm_make_request(KVM_REQ_APF_READY, vcpu);
13135 if (!vcpu->arch.apf.pageready_pending)
13136 kvm_vcpu_kick(vcpu);
13139 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
13141 if (!kvm_pv_async_pf_enabled(vcpu))
13144 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
13147 void kvm_arch_start_assignment(struct kvm *kvm)
13149 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
13150 static_call_cond(kvm_x86_pi_start_assignment)(kvm);
13152 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
13154 void kvm_arch_end_assignment(struct kvm *kvm)
13156 atomic_dec(&kvm->arch.assigned_device_count);
13158 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
13160 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm)
13162 return arch_atomic_read(&kvm->arch.assigned_device_count);
13164 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
13166 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
13168 atomic_inc(&kvm->arch.noncoherent_dma_count);
13170 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
13172 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
13174 atomic_dec(&kvm->arch.noncoherent_dma_count);
13176 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
13178 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
13180 return atomic_read(&kvm->arch.noncoherent_dma_count);
13182 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
13184 bool kvm_arch_has_irq_bypass(void)
13189 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
13190 struct irq_bypass_producer *prod)
13192 struct kvm_kernel_irqfd *irqfd =
13193 container_of(cons, struct kvm_kernel_irqfd, consumer);
13196 irqfd->producer = prod;
13197 kvm_arch_start_assignment(irqfd->kvm);
13198 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm,
13199 prod->irq, irqfd->gsi, 1);
13202 kvm_arch_end_assignment(irqfd->kvm);
13207 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
13208 struct irq_bypass_producer *prod)
13211 struct kvm_kernel_irqfd *irqfd =
13212 container_of(cons, struct kvm_kernel_irqfd, consumer);
13214 WARN_ON(irqfd->producer != prod);
13215 irqfd->producer = NULL;
13218 * When producer of consumer is unregistered, we change back to
13219 * remapped mode, so we can re-use the current implementation
13220 * when the irq is masked/disabled or the consumer side (KVM
13221 * int this case doesn't want to receive the interrupts.
13223 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
13225 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
13226 " fails: %d\n", irqfd->consumer.token, ret);
13228 kvm_arch_end_assignment(irqfd->kvm);
13231 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
13232 uint32_t guest_irq, bool set)
13234 return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set);
13237 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
13238 struct kvm_kernel_irq_routing_entry *new)
13240 if (new->type != KVM_IRQ_ROUTING_MSI)
13243 return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
13246 bool kvm_vector_hashing_enabled(void)
13248 return vector_hashing;
13251 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
13253 return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
13255 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
13258 int kvm_spec_ctrl_test_value(u64 value)
13261 * test that setting IA32_SPEC_CTRL to given value
13262 * is allowed by the host processor
13266 unsigned long flags;
13269 local_irq_save(flags);
13271 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
13273 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
13276 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
13278 local_irq_restore(flags);
13282 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
13284 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
13286 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
13287 struct x86_exception fault;
13288 u64 access = error_code &
13289 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
13291 if (!(error_code & PFERR_PRESENT_MASK) ||
13292 mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) {
13294 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
13295 * tables probably do not match the TLB. Just proceed
13296 * with the error code that the processor gave.
13298 fault.vector = PF_VECTOR;
13299 fault.error_code_valid = true;
13300 fault.error_code = error_code;
13301 fault.nested_page_fault = false;
13302 fault.address = gva;
13303 fault.async_page_fault = false;
13305 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
13307 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
13310 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
13311 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
13312 * indicates whether exit to userspace is needed.
13314 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
13315 struct x86_exception *e)
13317 if (r == X86EMUL_PROPAGATE_FAULT) {
13318 if (KVM_BUG_ON(!e, vcpu->kvm))
13321 kvm_inject_emulated_page_fault(vcpu, e);
13326 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
13327 * while handling a VMX instruction KVM could've handled the request
13328 * correctly by exiting to userspace and performing I/O but there
13329 * doesn't seem to be a real use-case behind such requests, just return
13330 * KVM_EXIT_INTERNAL_ERROR for now.
13332 kvm_prepare_emulation_failure_exit(vcpu);
13336 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
13338 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
13341 struct x86_exception e;
13348 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
13349 if (r != X86EMUL_CONTINUE)
13350 return kvm_handle_memory_failure(vcpu, r, &e);
13352 if (operand.pcid >> 12 != 0) {
13353 kvm_inject_gp(vcpu, 0);
13357 pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE);
13360 case INVPCID_TYPE_INDIV_ADDR:
13361 if ((!pcid_enabled && (operand.pcid != 0)) ||
13362 is_noncanonical_address(operand.gla, vcpu)) {
13363 kvm_inject_gp(vcpu, 0);
13366 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
13367 return kvm_skip_emulated_instruction(vcpu);
13369 case INVPCID_TYPE_SINGLE_CTXT:
13370 if (!pcid_enabled && (operand.pcid != 0)) {
13371 kvm_inject_gp(vcpu, 0);
13375 kvm_invalidate_pcid(vcpu, operand.pcid);
13376 return kvm_skip_emulated_instruction(vcpu);
13378 case INVPCID_TYPE_ALL_NON_GLOBAL:
13380 * Currently, KVM doesn't mark global entries in the shadow
13381 * page tables, so a non-global flush just degenerates to a
13382 * global flush. If needed, we could optimize this later by
13383 * keeping track of global entries in shadow page tables.
13387 case INVPCID_TYPE_ALL_INCL_GLOBAL:
13388 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
13389 return kvm_skip_emulated_instruction(vcpu);
13392 kvm_inject_gp(vcpu, 0);
13396 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
13398 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
13400 struct kvm_run *run = vcpu->run;
13401 struct kvm_mmio_fragment *frag;
13404 BUG_ON(!vcpu->mmio_needed);
13406 /* Complete previous fragment */
13407 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
13408 len = min(8u, frag->len);
13409 if (!vcpu->mmio_is_write)
13410 memcpy(frag->data, run->mmio.data, len);
13412 if (frag->len <= 8) {
13413 /* Switch to the next fragment. */
13415 vcpu->mmio_cur_fragment++;
13417 /* Go forward to the next mmio piece. */
13423 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
13424 vcpu->mmio_needed = 0;
13426 // VMG change, at this point, we're always done
13427 // RIP has already been advanced
13431 // More MMIO is needed
13432 run->mmio.phys_addr = frag->gpa;
13433 run->mmio.len = min(8u, frag->len);
13434 run->mmio.is_write = vcpu->mmio_is_write;
13435 if (run->mmio.is_write)
13436 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
13437 run->exit_reason = KVM_EXIT_MMIO;
13439 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13444 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13448 struct kvm_mmio_fragment *frag;
13453 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13454 if (handled == bytes)
13461 /*TODO: Check if need to increment number of frags */
13462 frag = vcpu->mmio_fragments;
13463 vcpu->mmio_nr_fragments = 1;
13468 vcpu->mmio_needed = 1;
13469 vcpu->mmio_cur_fragment = 0;
13471 vcpu->run->mmio.phys_addr = gpa;
13472 vcpu->run->mmio.len = min(8u, frag->len);
13473 vcpu->run->mmio.is_write = 1;
13474 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
13475 vcpu->run->exit_reason = KVM_EXIT_MMIO;
13477 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13481 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
13483 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13487 struct kvm_mmio_fragment *frag;
13492 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13493 if (handled == bytes)
13500 /*TODO: Check if need to increment number of frags */
13501 frag = vcpu->mmio_fragments;
13502 vcpu->mmio_nr_fragments = 1;
13507 vcpu->mmio_needed = 1;
13508 vcpu->mmio_cur_fragment = 0;
13510 vcpu->run->mmio.phys_addr = gpa;
13511 vcpu->run->mmio.len = min(8u, frag->len);
13512 vcpu->run->mmio.is_write = 0;
13513 vcpu->run->exit_reason = KVM_EXIT_MMIO;
13515 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13519 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
13521 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size)
13523 vcpu->arch.sev_pio_count -= count;
13524 vcpu->arch.sev_pio_data += count * size;
13527 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13528 unsigned int port);
13530 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
13532 int size = vcpu->arch.pio.size;
13533 int port = vcpu->arch.pio.port;
13535 vcpu->arch.pio.count = 0;
13536 if (vcpu->arch.sev_pio_count)
13537 return kvm_sev_es_outs(vcpu, size, port);
13541 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13545 unsigned int count =
13546 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13547 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
13549 /* memcpy done already by emulator_pio_out. */
13550 advance_sev_es_emulated_pio(vcpu, count, size);
13554 /* Emulation done by the kernel. */
13555 if (!vcpu->arch.sev_pio_count)
13559 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
13563 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13564 unsigned int port);
13566 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
13568 unsigned count = vcpu->arch.pio.count;
13569 int size = vcpu->arch.pio.size;
13570 int port = vcpu->arch.pio.port;
13572 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
13573 advance_sev_es_emulated_pio(vcpu, count, size);
13574 if (vcpu->arch.sev_pio_count)
13575 return kvm_sev_es_ins(vcpu, size, port);
13579 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13583 unsigned int count =
13584 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13585 if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count))
13588 /* Emulation done by the kernel. */
13589 advance_sev_es_emulated_pio(vcpu, count, size);
13590 if (!vcpu->arch.sev_pio_count)
13594 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
13598 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
13599 unsigned int port, void *data, unsigned int count,
13602 vcpu->arch.sev_pio_data = data;
13603 vcpu->arch.sev_pio_count = count;
13604 return in ? kvm_sev_es_ins(vcpu, size, port)
13605 : kvm_sev_es_outs(vcpu, size, port);
13607 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
13609 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
13610 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
13611 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
13612 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
13613 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
13614 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
13615 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
13616 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter);
13617 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
13618 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
13619 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
13620 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
13621 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
13622 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
13623 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
13624 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
13625 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
13626 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
13627 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
13628 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
13629 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
13630 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
13631 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath);
13632 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell);
13633 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
13634 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
13635 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
13636 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
13637 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
13639 static int __init kvm_x86_init(void)
13641 kvm_mmu_x86_module_init();
13642 mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible();
13645 module_init(kvm_x86_init);
13647 static void __exit kvm_x86_exit(void)
13650 * If module_init() is implemented, module_exit() must also be
13651 * implemented to allow module unload.
13654 module_exit(kvm_x86_exit);