2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
22 #include <linux/kvm_host.h>
27 #include "kvm_cache_regs.h"
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/mem_encrypt.h>
59 #include <trace/events/kvm.h>
61 #include <asm/debugreg.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70 #include <asm/mshyperv.h>
71 #include <asm/hypervisor.h>
72 #include <asm/intel_pt.h>
74 #define CREATE_TRACE_POINTS
77 #define MAX_IO_MSRS 256
78 #define KVM_MAX_MCE_BANKS 32
79 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
80 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
82 #define emul_to_vcpu(ctxt) \
83 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
86 * - enable syscall per default because its emulated by KVM
87 * - enable LME and LMA per default on 64 bit KVM
91 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
93 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
96 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
97 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
99 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
100 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
102 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
103 static void process_nmi(struct kvm_vcpu *vcpu);
104 static void enter_smm(struct kvm_vcpu *vcpu);
105 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
106 static void store_regs(struct kvm_vcpu *vcpu);
107 static int sync_regs(struct kvm_vcpu *vcpu);
109 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
110 EXPORT_SYMBOL_GPL(kvm_x86_ops);
112 static bool __read_mostly ignore_msrs = 0;
113 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
115 static bool __read_mostly report_ignored_msrs = true;
116 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
118 unsigned int min_timer_period_us = 200;
119 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
121 static bool __read_mostly kvmclock_periodic_sync = true;
122 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
124 bool __read_mostly kvm_has_tsc_control;
125 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
126 u32 __read_mostly kvm_max_guest_tsc_khz;
127 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
128 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits;
129 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
130 u64 __read_mostly kvm_max_tsc_scaling_ratio;
131 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
132 u64 __read_mostly kvm_default_tsc_scaling_ratio;
133 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
135 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
136 static u32 __read_mostly tsc_tolerance_ppm = 250;
137 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
140 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables
141 * adaptive tuning starting from default advancment of 1000ns. '0' disables
142 * advancement entirely. Any other value is used as-is and disables adaptive
143 * tuning, i.e. allows priveleged userspace to set an exact advancement time.
145 static int __read_mostly lapic_timer_advance_ns = -1;
146 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
148 static bool __read_mostly vector_hashing = true;
149 module_param(vector_hashing, bool, S_IRUGO);
151 bool __read_mostly enable_vmware_backdoor = false;
152 module_param(enable_vmware_backdoor, bool, S_IRUGO);
153 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
155 static bool __read_mostly force_emulation_prefix = false;
156 module_param(force_emulation_prefix, bool, S_IRUGO);
158 #define KVM_NR_SHARED_MSRS 16
160 struct kvm_shared_msrs_global {
162 u32 msrs[KVM_NR_SHARED_MSRS];
165 struct kvm_shared_msrs {
166 struct user_return_notifier urn;
168 struct kvm_shared_msr_values {
171 } values[KVM_NR_SHARED_MSRS];
174 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
175 static struct kvm_shared_msrs __percpu *shared_msrs;
177 struct kvm_stats_debugfs_item debugfs_entries[] = {
178 { "pf_fixed", VCPU_STAT(pf_fixed) },
179 { "pf_guest", VCPU_STAT(pf_guest) },
180 { "tlb_flush", VCPU_STAT(tlb_flush) },
181 { "invlpg", VCPU_STAT(invlpg) },
182 { "exits", VCPU_STAT(exits) },
183 { "io_exits", VCPU_STAT(io_exits) },
184 { "mmio_exits", VCPU_STAT(mmio_exits) },
185 { "signal_exits", VCPU_STAT(signal_exits) },
186 { "irq_window", VCPU_STAT(irq_window_exits) },
187 { "nmi_window", VCPU_STAT(nmi_window_exits) },
188 { "halt_exits", VCPU_STAT(halt_exits) },
189 { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
190 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
191 { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
192 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
193 { "hypercalls", VCPU_STAT(hypercalls) },
194 { "request_irq", VCPU_STAT(request_irq_exits) },
195 { "irq_exits", VCPU_STAT(irq_exits) },
196 { "host_state_reload", VCPU_STAT(host_state_reload) },
197 { "fpu_reload", VCPU_STAT(fpu_reload) },
198 { "insn_emulation", VCPU_STAT(insn_emulation) },
199 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
200 { "irq_injections", VCPU_STAT(irq_injections) },
201 { "nmi_injections", VCPU_STAT(nmi_injections) },
202 { "req_event", VCPU_STAT(req_event) },
203 { "l1d_flush", VCPU_STAT(l1d_flush) },
204 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
205 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
206 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
207 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
208 { "mmu_flooded", VM_STAT(mmu_flooded) },
209 { "mmu_recycled", VM_STAT(mmu_recycled) },
210 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
211 { "mmu_unsync", VM_STAT(mmu_unsync) },
212 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
213 { "largepages", VM_STAT(lpages) },
214 { "max_mmu_page_hash_collisions",
215 VM_STAT(max_mmu_page_hash_collisions) },
219 u64 __read_mostly host_xcr0;
221 struct kmem_cache *x86_fpu_cache;
222 EXPORT_SYMBOL_GPL(x86_fpu_cache);
224 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
226 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
229 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
230 vcpu->arch.apf.gfns[i] = ~0;
233 static void kvm_on_user_return(struct user_return_notifier *urn)
236 struct kvm_shared_msrs *locals
237 = container_of(urn, struct kvm_shared_msrs, urn);
238 struct kvm_shared_msr_values *values;
242 * Disabling irqs at this point since the following code could be
243 * interrupted and executed through kvm_arch_hardware_disable()
245 local_irq_save(flags);
246 if (locals->registered) {
247 locals->registered = false;
248 user_return_notifier_unregister(urn);
250 local_irq_restore(flags);
251 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
252 values = &locals->values[slot];
253 if (values->host != values->curr) {
254 wrmsrl(shared_msrs_global.msrs[slot], values->host);
255 values->curr = values->host;
260 static void shared_msr_update(unsigned slot, u32 msr)
263 unsigned int cpu = smp_processor_id();
264 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
266 /* only read, and nobody should modify it at this time,
267 * so don't need lock */
268 if (slot >= shared_msrs_global.nr) {
269 printk(KERN_ERR "kvm: invalid MSR slot!");
272 rdmsrl_safe(msr, &value);
273 smsr->values[slot].host = value;
274 smsr->values[slot].curr = value;
277 void kvm_define_shared_msr(unsigned slot, u32 msr)
279 BUG_ON(slot >= KVM_NR_SHARED_MSRS);
280 shared_msrs_global.msrs[slot] = msr;
281 if (slot >= shared_msrs_global.nr)
282 shared_msrs_global.nr = slot + 1;
284 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
286 static void kvm_shared_msr_cpu_online(void)
290 for (i = 0; i < shared_msrs_global.nr; ++i)
291 shared_msr_update(i, shared_msrs_global.msrs[i]);
294 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
296 unsigned int cpu = smp_processor_id();
297 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
300 if (((value ^ smsr->values[slot].curr) & mask) == 0)
302 smsr->values[slot].curr = value;
303 err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
307 if (!smsr->registered) {
308 smsr->urn.on_user_return = kvm_on_user_return;
309 user_return_notifier_register(&smsr->urn);
310 smsr->registered = true;
314 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
316 static void drop_user_return_notifiers(void)
318 unsigned int cpu = smp_processor_id();
319 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
321 if (smsr->registered)
322 kvm_on_user_return(&smsr->urn);
325 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
327 return vcpu->arch.apic_base;
329 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
331 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
333 return kvm_apic_mode(kvm_get_apic_base(vcpu));
335 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
337 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
339 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
340 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
341 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
342 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
344 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
346 if (!msr_info->host_initiated) {
347 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
349 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
353 kvm_lapic_set_base(vcpu, msr_info->data);
356 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
358 asmlinkage __visible void kvm_spurious_fault(void)
360 /* Fault while not rebooting. We want the trace. */
363 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
365 #define EXCPT_BENIGN 0
366 #define EXCPT_CONTRIBUTORY 1
369 static int exception_class(int vector)
379 return EXCPT_CONTRIBUTORY;
386 #define EXCPT_FAULT 0
388 #define EXCPT_ABORT 2
389 #define EXCPT_INTERRUPT 3
391 static int exception_type(int vector)
395 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
396 return EXCPT_INTERRUPT;
400 /* #DB is trap, as instruction watchpoints are handled elsewhere */
401 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
404 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
407 /* Reserved exceptions will result in fault */
411 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
413 unsigned nr = vcpu->arch.exception.nr;
414 bool has_payload = vcpu->arch.exception.has_payload;
415 unsigned long payload = vcpu->arch.exception.payload;
423 * "Certain debug exceptions may clear bit 0-3. The
424 * remaining contents of the DR6 register are never
425 * cleared by the processor".
427 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
429 * DR6.RTM is set by all #DB exceptions that don't clear it.
431 vcpu->arch.dr6 |= DR6_RTM;
432 vcpu->arch.dr6 |= payload;
434 * Bit 16 should be set in the payload whenever the #DB
435 * exception should clear DR6.RTM. This makes the payload
436 * compatible with the pending debug exceptions under VMX.
437 * Though not currently documented in the SDM, this also
438 * makes the payload compatible with the exit qualification
439 * for #DB exceptions under VMX.
441 vcpu->arch.dr6 ^= payload & DR6_RTM;
444 vcpu->arch.cr2 = payload;
448 vcpu->arch.exception.has_payload = false;
449 vcpu->arch.exception.payload = 0;
451 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
453 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
454 unsigned nr, bool has_error, u32 error_code,
455 bool has_payload, unsigned long payload, bool reinject)
460 kvm_make_request(KVM_REQ_EVENT, vcpu);
462 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
464 if (has_error && !is_protmode(vcpu))
468 * On vmentry, vcpu->arch.exception.pending is only
469 * true if an event injection was blocked by
470 * nested_run_pending. In that case, however,
471 * vcpu_enter_guest requests an immediate exit,
472 * and the guest shouldn't proceed far enough to
475 WARN_ON_ONCE(vcpu->arch.exception.pending);
476 vcpu->arch.exception.injected = true;
477 if (WARN_ON_ONCE(has_payload)) {
479 * A reinjected event has already
480 * delivered its payload.
486 vcpu->arch.exception.pending = true;
487 vcpu->arch.exception.injected = false;
489 vcpu->arch.exception.has_error_code = has_error;
490 vcpu->arch.exception.nr = nr;
491 vcpu->arch.exception.error_code = error_code;
492 vcpu->arch.exception.has_payload = has_payload;
493 vcpu->arch.exception.payload = payload;
495 * In guest mode, payload delivery should be deferred,
496 * so that the L1 hypervisor can intercept #PF before
497 * CR2 is modified (or intercept #DB before DR6 is
498 * modified under nVMX). However, for ABI
499 * compatibility with KVM_GET_VCPU_EVENTS and
500 * KVM_SET_VCPU_EVENTS, we can't delay payload
501 * delivery unless userspace has enabled this
502 * functionality via the per-VM capability,
503 * KVM_CAP_EXCEPTION_PAYLOAD.
505 if (!vcpu->kvm->arch.exception_payload_enabled ||
506 !is_guest_mode(vcpu))
507 kvm_deliver_exception_payload(vcpu);
511 /* to check exception */
512 prev_nr = vcpu->arch.exception.nr;
513 if (prev_nr == DF_VECTOR) {
514 /* triple fault -> shutdown */
515 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
518 class1 = exception_class(prev_nr);
519 class2 = exception_class(nr);
520 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
521 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
523 * Generate double fault per SDM Table 5-5. Set
524 * exception.pending = true so that the double fault
525 * can trigger a nested vmexit.
527 vcpu->arch.exception.pending = true;
528 vcpu->arch.exception.injected = false;
529 vcpu->arch.exception.has_error_code = true;
530 vcpu->arch.exception.nr = DF_VECTOR;
531 vcpu->arch.exception.error_code = 0;
532 vcpu->arch.exception.has_payload = false;
533 vcpu->arch.exception.payload = 0;
535 /* replace previous exception with a new one in a hope
536 that instruction re-execution will regenerate lost
541 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
543 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
545 EXPORT_SYMBOL_GPL(kvm_queue_exception);
547 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
549 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
551 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
553 static void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
554 unsigned long payload)
556 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
559 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
560 u32 error_code, unsigned long payload)
562 kvm_multiple_exception(vcpu, nr, true, error_code,
563 true, payload, false);
566 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
569 kvm_inject_gp(vcpu, 0);
571 return kvm_skip_emulated_instruction(vcpu);
575 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
577 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
579 ++vcpu->stat.pf_guest;
580 vcpu->arch.exception.nested_apf =
581 is_guest_mode(vcpu) && fault->async_page_fault;
582 if (vcpu->arch.exception.nested_apf) {
583 vcpu->arch.apf.nested_apf_token = fault->address;
584 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
586 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
590 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
592 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
594 if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
595 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
597 vcpu->arch.mmu->inject_page_fault(vcpu, fault);
599 return fault->nested_page_fault;
602 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
604 atomic_inc(&vcpu->arch.nmi_queued);
605 kvm_make_request(KVM_REQ_NMI, vcpu);
607 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
609 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
611 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
613 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
615 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
617 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
619 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
622 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
623 * a #GP and return false.
625 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
627 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
629 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
632 EXPORT_SYMBOL_GPL(kvm_require_cpl);
634 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
636 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
639 kvm_queue_exception(vcpu, UD_VECTOR);
642 EXPORT_SYMBOL_GPL(kvm_require_dr);
645 * This function will be used to read from the physical memory of the currently
646 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
647 * can read from guest physical or from the guest's guest physical memory.
649 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
650 gfn_t ngfn, void *data, int offset, int len,
653 struct x86_exception exception;
657 ngpa = gfn_to_gpa(ngfn);
658 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
659 if (real_gfn == UNMAPPED_GVA)
662 real_gfn = gpa_to_gfn(real_gfn);
664 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
666 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
668 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
669 void *data, int offset, int len, u32 access)
671 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
672 data, offset, len, access);
676 * Load the pae pdptrs. Return true is they are all valid.
678 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
680 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
681 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
684 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
686 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
687 offset * sizeof(u64), sizeof(pdpte),
688 PFERR_USER_MASK|PFERR_WRITE_MASK);
693 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
694 if ((pdpte[i] & PT_PRESENT_MASK) &&
696 vcpu->arch.mmu->guest_rsvd_check.rsvd_bits_mask[0][2])) {
703 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
704 __set_bit(VCPU_EXREG_PDPTR,
705 (unsigned long *)&vcpu->arch.regs_avail);
706 __set_bit(VCPU_EXREG_PDPTR,
707 (unsigned long *)&vcpu->arch.regs_dirty);
712 EXPORT_SYMBOL_GPL(load_pdptrs);
714 bool pdptrs_changed(struct kvm_vcpu *vcpu)
716 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
722 if (is_long_mode(vcpu) || !is_pae(vcpu) || !is_paging(vcpu))
725 if (!test_bit(VCPU_EXREG_PDPTR,
726 (unsigned long *)&vcpu->arch.regs_avail))
729 gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
730 offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
731 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
732 PFERR_USER_MASK | PFERR_WRITE_MASK);
735 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
740 EXPORT_SYMBOL_GPL(pdptrs_changed);
742 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
744 unsigned long old_cr0 = kvm_read_cr0(vcpu);
745 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
750 if (cr0 & 0xffffffff00000000UL)
754 cr0 &= ~CR0_RESERVED_BITS;
756 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
759 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
762 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
764 if ((vcpu->arch.efer & EFER_LME)) {
769 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
774 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
779 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
782 kvm_x86_ops->set_cr0(vcpu, cr0);
784 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
785 kvm_clear_async_pf_completion_queue(vcpu);
786 kvm_async_pf_hash_reset(vcpu);
789 if ((cr0 ^ old_cr0) & update_bits)
790 kvm_mmu_reset_context(vcpu);
792 if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
793 kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
794 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
795 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
799 EXPORT_SYMBOL_GPL(kvm_set_cr0);
801 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
803 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
805 EXPORT_SYMBOL_GPL(kvm_lmsw);
807 void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
809 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
810 !vcpu->guest_xcr0_loaded) {
811 /* kvm_set_xcr() also depends on this */
812 if (vcpu->arch.xcr0 != host_xcr0)
813 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
814 vcpu->guest_xcr0_loaded = 1;
817 EXPORT_SYMBOL_GPL(kvm_load_guest_xcr0);
819 void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
821 if (vcpu->guest_xcr0_loaded) {
822 if (vcpu->arch.xcr0 != host_xcr0)
823 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
824 vcpu->guest_xcr0_loaded = 0;
827 EXPORT_SYMBOL_GPL(kvm_put_guest_xcr0);
829 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
832 u64 old_xcr0 = vcpu->arch.xcr0;
835 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
836 if (index != XCR_XFEATURE_ENABLED_MASK)
838 if (!(xcr0 & XFEATURE_MASK_FP))
840 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
844 * Do not allow the guest to set bits that we do not support
845 * saving. However, xcr0 bit 0 is always set, even if the
846 * emulated CPU does not support XSAVE (see fx_init).
848 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
849 if (xcr0 & ~valid_bits)
852 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
853 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
856 if (xcr0 & XFEATURE_MASK_AVX512) {
857 if (!(xcr0 & XFEATURE_MASK_YMM))
859 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
862 vcpu->arch.xcr0 = xcr0;
864 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
865 kvm_update_cpuid(vcpu);
869 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
871 if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
872 __kvm_set_xcr(vcpu, index, xcr)) {
873 kvm_inject_gp(vcpu, 0);
878 EXPORT_SYMBOL_GPL(kvm_set_xcr);
880 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
882 unsigned long old_cr4 = kvm_read_cr4(vcpu);
883 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
884 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
886 if (cr4 & CR4_RESERVED_BITS)
889 if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE))
892 if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP))
895 if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP))
898 if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE))
901 if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE))
904 if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57))
907 if (!guest_cpuid_has(vcpu, X86_FEATURE_UMIP) && (cr4 & X86_CR4_UMIP))
910 if (is_long_mode(vcpu)) {
911 if (!(cr4 & X86_CR4_PAE))
913 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
914 && ((cr4 ^ old_cr4) & pdptr_bits)
915 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
919 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
920 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
923 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
924 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
928 if (kvm_x86_ops->set_cr4(vcpu, cr4))
931 if (((cr4 ^ old_cr4) & pdptr_bits) ||
932 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
933 kvm_mmu_reset_context(vcpu);
935 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
936 kvm_update_cpuid(vcpu);
940 EXPORT_SYMBOL_GPL(kvm_set_cr4);
942 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
944 bool skip_tlb_flush = false;
946 bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
949 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
950 cr3 &= ~X86_CR3_PCID_NOFLUSH;
954 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
955 if (!skip_tlb_flush) {
956 kvm_mmu_sync_roots(vcpu);
957 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
962 if (is_long_mode(vcpu) &&
963 (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63)))
965 else if (is_pae(vcpu) && is_paging(vcpu) &&
966 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
969 kvm_mmu_new_cr3(vcpu, cr3, skip_tlb_flush);
970 vcpu->arch.cr3 = cr3;
971 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
975 EXPORT_SYMBOL_GPL(kvm_set_cr3);
977 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
979 if (cr8 & CR8_RESERVED_BITS)
981 if (lapic_in_kernel(vcpu))
982 kvm_lapic_set_tpr(vcpu, cr8);
984 vcpu->arch.cr8 = cr8;
987 EXPORT_SYMBOL_GPL(kvm_set_cr8);
989 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
991 if (lapic_in_kernel(vcpu))
992 return kvm_lapic_get_cr8(vcpu);
994 return vcpu->arch.cr8;
996 EXPORT_SYMBOL_GPL(kvm_get_cr8);
998 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1002 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1003 for (i = 0; i < KVM_NR_DB_REGS; i++)
1004 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1005 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
1009 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
1011 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1012 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
1015 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
1019 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1020 dr7 = vcpu->arch.guest_debug_dr7;
1022 dr7 = vcpu->arch.dr7;
1023 kvm_x86_ops->set_dr7(vcpu, dr7);
1024 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1025 if (dr7 & DR7_BP_EN_MASK)
1026 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1029 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1031 u64 fixed = DR6_FIXED_1;
1033 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1038 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1042 vcpu->arch.db[dr] = val;
1043 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1044 vcpu->arch.eff_db[dr] = val;
1049 if (val & 0xffffffff00000000ULL)
1050 return -1; /* #GP */
1051 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1052 kvm_update_dr6(vcpu);
1057 if (val & 0xffffffff00000000ULL)
1058 return -1; /* #GP */
1059 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1060 kvm_update_dr7(vcpu);
1067 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1069 if (__kvm_set_dr(vcpu, dr, val)) {
1070 kvm_inject_gp(vcpu, 0);
1075 EXPORT_SYMBOL_GPL(kvm_set_dr);
1077 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1081 *val = vcpu->arch.db[dr];
1086 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1087 *val = vcpu->arch.dr6;
1089 *val = kvm_x86_ops->get_dr6(vcpu);
1094 *val = vcpu->arch.dr7;
1099 EXPORT_SYMBOL_GPL(kvm_get_dr);
1101 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1103 u32 ecx = kvm_rcx_read(vcpu);
1107 err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1110 kvm_rax_write(vcpu, (u32)data);
1111 kvm_rdx_write(vcpu, data >> 32);
1114 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1117 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1118 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1120 * This list is modified at module load time to reflect the
1121 * capabilities of the host cpu. This capabilities test skips MSRs that are
1122 * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
1123 * may depend on host virtualization features rather than host cpu features.
1126 static u32 msrs_to_save[] = {
1127 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1129 #ifdef CONFIG_X86_64
1130 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1132 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1133 MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1135 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1136 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1137 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1138 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1139 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1140 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1143 static unsigned num_msrs_to_save;
1145 static u32 emulated_msrs[] = {
1146 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1147 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1148 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1149 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1150 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1151 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1152 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1154 HV_X64_MSR_VP_INDEX,
1155 HV_X64_MSR_VP_RUNTIME,
1156 HV_X64_MSR_SCONTROL,
1157 HV_X64_MSR_STIMER0_CONFIG,
1158 HV_X64_MSR_VP_ASSIST_PAGE,
1159 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1160 HV_X64_MSR_TSC_EMULATION_STATUS,
1162 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1165 MSR_IA32_TSC_ADJUST,
1166 MSR_IA32_TSCDEADLINE,
1167 MSR_IA32_ARCH_CAPABILITIES,
1168 MSR_IA32_MISC_ENABLE,
1169 MSR_IA32_MCG_STATUS,
1171 MSR_IA32_MCG_EXT_CTL,
1175 MSR_MISC_FEATURES_ENABLES,
1176 MSR_AMD64_VIRT_SPEC_CTRL,
1182 static unsigned num_emulated_msrs;
1185 * List of msr numbers which are used to expose MSR-based features that
1186 * can be used by a hypervisor to validate requested CPU features.
1188 static u32 msr_based_features[] = {
1190 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1191 MSR_IA32_VMX_PINBASED_CTLS,
1192 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1193 MSR_IA32_VMX_PROCBASED_CTLS,
1194 MSR_IA32_VMX_TRUE_EXIT_CTLS,
1195 MSR_IA32_VMX_EXIT_CTLS,
1196 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1197 MSR_IA32_VMX_ENTRY_CTLS,
1199 MSR_IA32_VMX_CR0_FIXED0,
1200 MSR_IA32_VMX_CR0_FIXED1,
1201 MSR_IA32_VMX_CR4_FIXED0,
1202 MSR_IA32_VMX_CR4_FIXED1,
1203 MSR_IA32_VMX_VMCS_ENUM,
1204 MSR_IA32_VMX_PROCBASED_CTLS2,
1205 MSR_IA32_VMX_EPT_VPID_CAP,
1206 MSR_IA32_VMX_VMFUNC,
1210 MSR_IA32_ARCH_CAPABILITIES,
1213 static unsigned int num_msr_based_features;
1215 u64 kvm_get_arch_capabilities(void)
1219 rdmsrl_safe(MSR_IA32_ARCH_CAPABILITIES, &data);
1222 * If we're doing cache flushes (either "always" or "cond")
1223 * we will do one whenever the guest does a vmlaunch/vmresume.
1224 * If an outer hypervisor is doing the cache flush for us
1225 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1226 * capability to the guest too, and if EPT is disabled we're not
1227 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will
1228 * require a nested hypervisor to do a flush of its own.
1230 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1231 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1235 EXPORT_SYMBOL_GPL(kvm_get_arch_capabilities);
1237 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1239 switch (msr->index) {
1240 case MSR_IA32_ARCH_CAPABILITIES:
1241 msr->data = kvm_get_arch_capabilities();
1243 case MSR_IA32_UCODE_REV:
1244 rdmsrl_safe(msr->index, &msr->data);
1247 if (kvm_x86_ops->get_msr_feature(msr))
1253 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1255 struct kvm_msr_entry msr;
1259 r = kvm_get_msr_feature(&msr);
1268 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1270 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1273 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1276 if (efer & (EFER_LME | EFER_LMA) &&
1277 !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1280 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1286 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1288 if (efer & efer_reserved_bits)
1291 return __kvm_valid_efer(vcpu, efer);
1293 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1295 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1297 u64 old_efer = vcpu->arch.efer;
1298 u64 efer = msr_info->data;
1300 if (efer & efer_reserved_bits)
1303 if (!msr_info->host_initiated) {
1304 if (!__kvm_valid_efer(vcpu, efer))
1307 if (is_paging(vcpu) &&
1308 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1313 efer |= vcpu->arch.efer & EFER_LMA;
1315 kvm_x86_ops->set_efer(vcpu, efer);
1317 /* Update reserved bits */
1318 if ((efer ^ old_efer) & EFER_NX)
1319 kvm_mmu_reset_context(vcpu);
1324 void kvm_enable_efer_bits(u64 mask)
1326 efer_reserved_bits &= ~mask;
1328 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1331 * Writes msr value into into the appropriate "register".
1332 * Returns 0 on success, non-0 otherwise.
1333 * Assumes vcpu_load() was already called.
1335 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1337 switch (msr->index) {
1340 case MSR_KERNEL_GS_BASE:
1343 if (is_noncanonical_address(msr->data, vcpu))
1346 case MSR_IA32_SYSENTER_EIP:
1347 case MSR_IA32_SYSENTER_ESP:
1349 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1350 * non-canonical address is written on Intel but not on
1351 * AMD (which ignores the top 32-bits, because it does
1352 * not implement 64-bit SYSENTER).
1354 * 64-bit code should hence be able to write a non-canonical
1355 * value on AMD. Making the address canonical ensures that
1356 * vmentry does not fail on Intel after writing a non-canonical
1357 * value, and that something deterministic happens if the guest
1358 * invokes 64-bit SYSENTER.
1360 msr->data = get_canonical(msr->data, vcpu_virt_addr_bits(vcpu));
1362 return kvm_x86_ops->set_msr(vcpu, msr);
1364 EXPORT_SYMBOL_GPL(kvm_set_msr);
1367 * Adapt set_msr() to msr_io()'s calling convention
1369 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1371 struct msr_data msr;
1375 msr.host_initiated = true;
1376 r = kvm_get_msr(vcpu, &msr);
1384 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1386 struct msr_data msr;
1390 msr.host_initiated = true;
1391 return kvm_set_msr(vcpu, &msr);
1394 #ifdef CONFIG_X86_64
1395 struct pvclock_gtod_data {
1398 struct { /* extract of a clocksource struct */
1411 static struct pvclock_gtod_data pvclock_gtod_data;
1413 static void update_pvclock_gtod(struct timekeeper *tk)
1415 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1418 boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1420 write_seqcount_begin(&vdata->seq);
1422 /* copy pvclock gtod data */
1423 vdata->clock.vclock_mode = tk->tkr_mono.clock->archdata.vclock_mode;
1424 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
1425 vdata->clock.mask = tk->tkr_mono.mask;
1426 vdata->clock.mult = tk->tkr_mono.mult;
1427 vdata->clock.shift = tk->tkr_mono.shift;
1429 vdata->boot_ns = boot_ns;
1430 vdata->nsec_base = tk->tkr_mono.xtime_nsec;
1432 vdata->wall_time_sec = tk->xtime_sec;
1434 write_seqcount_end(&vdata->seq);
1438 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1441 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1442 * vcpu_enter_guest. This function is only called from
1443 * the physical CPU that is running vcpu.
1445 kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1448 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1452 struct pvclock_wall_clock wc;
1453 struct timespec64 boot;
1458 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1463 ++version; /* first time write, random junk */
1467 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1471 * The guest calculates current wall clock time by adding
1472 * system time (updated by kvm_guest_time_update below) to the
1473 * wall clock specified here. guest system time equals host
1474 * system time for us, thus we must fill in host boot time here.
1476 getboottime64(&boot);
1478 if (kvm->arch.kvmclock_offset) {
1479 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1480 boot = timespec64_sub(boot, ts);
1482 wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1483 wc.nsec = boot.tv_nsec;
1484 wc.version = version;
1486 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1489 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1492 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1494 do_shl32_div32(dividend, divisor);
1498 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1499 s8 *pshift, u32 *pmultiplier)
1507 scaled64 = scaled_hz;
1508 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1513 tps32 = (uint32_t)tps64;
1514 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1515 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1523 *pmultiplier = div_frac(scaled64, tps32);
1525 pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1526 __func__, base_hz, scaled_hz, shift, *pmultiplier);
1529 #ifdef CONFIG_X86_64
1530 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1533 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1534 static unsigned long max_tsc_khz;
1536 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1538 u64 v = (u64)khz * (1000000 + ppm);
1543 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1547 /* Guest TSC same frequency as host TSC? */
1549 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1553 /* TSC scaling supported? */
1554 if (!kvm_has_tsc_control) {
1555 if (user_tsc_khz > tsc_khz) {
1556 vcpu->arch.tsc_catchup = 1;
1557 vcpu->arch.tsc_always_catchup = 1;
1560 WARN(1, "user requested TSC rate below hardware speed\n");
1565 /* TSC scaling required - calculate ratio */
1566 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1567 user_tsc_khz, tsc_khz);
1569 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1570 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1575 vcpu->arch.tsc_scaling_ratio = ratio;
1579 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1581 u32 thresh_lo, thresh_hi;
1582 int use_scaling = 0;
1584 /* tsc_khz can be zero if TSC calibration fails */
1585 if (user_tsc_khz == 0) {
1586 /* set tsc_scaling_ratio to a safe value */
1587 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1591 /* Compute a scale to convert nanoseconds in TSC cycles */
1592 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1593 &vcpu->arch.virtual_tsc_shift,
1594 &vcpu->arch.virtual_tsc_mult);
1595 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1598 * Compute the variation in TSC rate which is acceptable
1599 * within the range of tolerance and decide if the
1600 * rate being applied is within that bounds of the hardware
1601 * rate. If so, no scaling or compensation need be done.
1603 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1604 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1605 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1606 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1609 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1612 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1614 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1615 vcpu->arch.virtual_tsc_mult,
1616 vcpu->arch.virtual_tsc_shift);
1617 tsc += vcpu->arch.this_tsc_write;
1621 static inline int gtod_is_based_on_tsc(int mode)
1623 return mode == VCLOCK_TSC || mode == VCLOCK_HVCLOCK;
1626 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1628 #ifdef CONFIG_X86_64
1630 struct kvm_arch *ka = &vcpu->kvm->arch;
1631 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1633 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1634 atomic_read(&vcpu->kvm->online_vcpus));
1637 * Once the masterclock is enabled, always perform request in
1638 * order to update it.
1640 * In order to enable masterclock, the host clocksource must be TSC
1641 * and the vcpus need to have matched TSCs. When that happens,
1642 * perform request to enable masterclock.
1644 if (ka->use_master_clock ||
1645 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
1646 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1648 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1649 atomic_read(&vcpu->kvm->online_vcpus),
1650 ka->use_master_clock, gtod->clock.vclock_mode);
1654 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1656 u64 curr_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1657 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1661 * Multiply tsc by a fixed point number represented by ratio.
1663 * The most significant 64-N bits (mult) of ratio represent the
1664 * integral part of the fixed point number; the remaining N bits
1665 * (frac) represent the fractional part, ie. ratio represents a fixed
1666 * point number (mult + frac * 2^(-N)).
1668 * N equals to kvm_tsc_scaling_ratio_frac_bits.
1670 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1672 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1675 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1678 u64 ratio = vcpu->arch.tsc_scaling_ratio;
1680 if (ratio != kvm_default_tsc_scaling_ratio)
1681 _tsc = __scale_tsc(ratio, tsc);
1685 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1687 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1691 tsc = kvm_scale_tsc(vcpu, rdtsc());
1693 return target_tsc - tsc;
1696 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1698 u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1700 return tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1702 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1704 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1706 vcpu->arch.tsc_offset = kvm_x86_ops->write_l1_tsc_offset(vcpu, offset);
1709 static inline bool kvm_check_tsc_unstable(void)
1711 #ifdef CONFIG_X86_64
1713 * TSC is marked unstable when we're running on Hyper-V,
1714 * 'TSC page' clocksource is good.
1716 if (pvclock_gtod_data.clock.vclock_mode == VCLOCK_HVCLOCK)
1719 return check_tsc_unstable();
1722 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1724 struct kvm *kvm = vcpu->kvm;
1725 u64 offset, ns, elapsed;
1726 unsigned long flags;
1728 bool already_matched;
1729 u64 data = msr->data;
1730 bool synchronizing = false;
1732 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1733 offset = kvm_compute_tsc_offset(vcpu, data);
1734 ns = ktime_get_boot_ns();
1735 elapsed = ns - kvm->arch.last_tsc_nsec;
1737 if (vcpu->arch.virtual_tsc_khz) {
1738 if (data == 0 && msr->host_initiated) {
1740 * detection of vcpu initialization -- need to sync
1741 * with other vCPUs. This particularly helps to keep
1742 * kvm_clock stable after CPU hotplug
1744 synchronizing = true;
1746 u64 tsc_exp = kvm->arch.last_tsc_write +
1747 nsec_to_cycles(vcpu, elapsed);
1748 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1750 * Special case: TSC write with a small delta (1 second)
1751 * of virtual cycle time against real time is
1752 * interpreted as an attempt to synchronize the CPU.
1754 synchronizing = data < tsc_exp + tsc_hz &&
1755 data + tsc_hz > tsc_exp;
1760 * For a reliable TSC, we can match TSC offsets, and for an unstable
1761 * TSC, we add elapsed time in this computation. We could let the
1762 * compensation code attempt to catch up if we fall behind, but
1763 * it's better to try to match offsets from the beginning.
1765 if (synchronizing &&
1766 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1767 if (!kvm_check_tsc_unstable()) {
1768 offset = kvm->arch.cur_tsc_offset;
1769 pr_debug("kvm: matched tsc offset for %llu\n", data);
1771 u64 delta = nsec_to_cycles(vcpu, elapsed);
1773 offset = kvm_compute_tsc_offset(vcpu, data);
1774 pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1777 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1780 * We split periods of matched TSC writes into generations.
1781 * For each generation, we track the original measured
1782 * nanosecond time, offset, and write, so if TSCs are in
1783 * sync, we can match exact offset, and if not, we can match
1784 * exact software computation in compute_guest_tsc()
1786 * These values are tracked in kvm->arch.cur_xxx variables.
1788 kvm->arch.cur_tsc_generation++;
1789 kvm->arch.cur_tsc_nsec = ns;
1790 kvm->arch.cur_tsc_write = data;
1791 kvm->arch.cur_tsc_offset = offset;
1793 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1794 kvm->arch.cur_tsc_generation, data);
1798 * We also track th most recent recorded KHZ, write and time to
1799 * allow the matching interval to be extended at each write.
1801 kvm->arch.last_tsc_nsec = ns;
1802 kvm->arch.last_tsc_write = data;
1803 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1805 vcpu->arch.last_guest_tsc = data;
1807 /* Keep track of which generation this VCPU has synchronized to */
1808 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1809 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1810 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1812 if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
1813 update_ia32_tsc_adjust_msr(vcpu, offset);
1815 kvm_vcpu_write_tsc_offset(vcpu, offset);
1816 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1818 spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1820 kvm->arch.nr_vcpus_matched_tsc = 0;
1821 } else if (!already_matched) {
1822 kvm->arch.nr_vcpus_matched_tsc++;
1825 kvm_track_tsc_matching(vcpu);
1826 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1829 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1831 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1834 u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1835 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
1838 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1840 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1841 WARN_ON(adjustment < 0);
1842 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1843 adjust_tsc_offset_guest(vcpu, adjustment);
1846 #ifdef CONFIG_X86_64
1848 static u64 read_tsc(void)
1850 u64 ret = (u64)rdtsc_ordered();
1851 u64 last = pvclock_gtod_data.clock.cycle_last;
1853 if (likely(ret >= last))
1857 * GCC likes to generate cmov here, but this branch is extremely
1858 * predictable (it's just a function of time and the likely is
1859 * very likely) and there's a data dependence, so force GCC
1860 * to generate a branch instead. I don't barrier() because
1861 * we don't actually need a barrier, and if this function
1862 * ever gets inlined it will generate worse code.
1868 static inline u64 vgettsc(u64 *tsc_timestamp, int *mode)
1871 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1874 switch (gtod->clock.vclock_mode) {
1875 case VCLOCK_HVCLOCK:
1876 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
1878 if (tsc_pg_val != U64_MAX) {
1879 /* TSC page valid */
1880 *mode = VCLOCK_HVCLOCK;
1881 v = (tsc_pg_val - gtod->clock.cycle_last) &
1884 /* TSC page invalid */
1885 *mode = VCLOCK_NONE;
1890 *tsc_timestamp = read_tsc();
1891 v = (*tsc_timestamp - gtod->clock.cycle_last) &
1895 *mode = VCLOCK_NONE;
1898 if (*mode == VCLOCK_NONE)
1899 *tsc_timestamp = v = 0;
1901 return v * gtod->clock.mult;
1904 static int do_monotonic_boot(s64 *t, u64 *tsc_timestamp)
1906 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1912 seq = read_seqcount_begin(>od->seq);
1913 ns = gtod->nsec_base;
1914 ns += vgettsc(tsc_timestamp, &mode);
1915 ns >>= gtod->clock.shift;
1916 ns += gtod->boot_ns;
1917 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
1923 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
1925 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1931 seq = read_seqcount_begin(>od->seq);
1932 ts->tv_sec = gtod->wall_time_sec;
1933 ns = gtod->nsec_base;
1934 ns += vgettsc(tsc_timestamp, &mode);
1935 ns >>= gtod->clock.shift;
1936 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
1938 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1944 /* returns true if host is using TSC based clocksource */
1945 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
1947 /* checked again under seqlock below */
1948 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1951 return gtod_is_based_on_tsc(do_monotonic_boot(kernel_ns,
1955 /* returns true if host is using TSC based clocksource */
1956 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
1959 /* checked again under seqlock below */
1960 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1963 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
1969 * Assuming a stable TSC across physical CPUS, and a stable TSC
1970 * across virtual CPUs, the following condition is possible.
1971 * Each numbered line represents an event visible to both
1972 * CPUs at the next numbered event.
1974 * "timespecX" represents host monotonic time. "tscX" represents
1977 * VCPU0 on CPU0 | VCPU1 on CPU1
1979 * 1. read timespec0,tsc0
1980 * 2. | timespec1 = timespec0 + N
1982 * 3. transition to guest | transition to guest
1983 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1984 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
1985 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1987 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1990 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1992 * - 0 < N - M => M < N
1994 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1995 * always the case (the difference between two distinct xtime instances
1996 * might be smaller then the difference between corresponding TSC reads,
1997 * when updating guest vcpus pvclock areas).
1999 * To avoid that problem, do not allow visibility of distinct
2000 * system_timestamp/tsc_timestamp values simultaneously: use a master
2001 * copy of host monotonic time values. Update that master copy
2004 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2008 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2010 #ifdef CONFIG_X86_64
2011 struct kvm_arch *ka = &kvm->arch;
2013 bool host_tsc_clocksource, vcpus_matched;
2015 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2016 atomic_read(&kvm->online_vcpus));
2019 * If the host uses TSC clock, then passthrough TSC as stable
2022 host_tsc_clocksource = kvm_get_time_and_clockread(
2023 &ka->master_kernel_ns,
2024 &ka->master_cycle_now);
2026 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2027 && !ka->backwards_tsc_observed
2028 && !ka->boot_vcpu_runs_old_kvmclock;
2030 if (ka->use_master_clock)
2031 atomic_set(&kvm_guest_has_master_clock, 1);
2033 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2034 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2039 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2041 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2044 static void kvm_gen_update_masterclock(struct kvm *kvm)
2046 #ifdef CONFIG_X86_64
2048 struct kvm_vcpu *vcpu;
2049 struct kvm_arch *ka = &kvm->arch;
2051 spin_lock(&ka->pvclock_gtod_sync_lock);
2052 kvm_make_mclock_inprogress_request(kvm);
2053 /* no guest entries from this point */
2054 pvclock_update_vm_gtod_copy(kvm);
2056 kvm_for_each_vcpu(i, vcpu, kvm)
2057 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2059 /* guest entries allowed */
2060 kvm_for_each_vcpu(i, vcpu, kvm)
2061 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2063 spin_unlock(&ka->pvclock_gtod_sync_lock);
2067 u64 get_kvmclock_ns(struct kvm *kvm)
2069 struct kvm_arch *ka = &kvm->arch;
2070 struct pvclock_vcpu_time_info hv_clock;
2073 spin_lock(&ka->pvclock_gtod_sync_lock);
2074 if (!ka->use_master_clock) {
2075 spin_unlock(&ka->pvclock_gtod_sync_lock);
2076 return ktime_get_boot_ns() + ka->kvmclock_offset;
2079 hv_clock.tsc_timestamp = ka->master_cycle_now;
2080 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2081 spin_unlock(&ka->pvclock_gtod_sync_lock);
2083 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2086 if (__this_cpu_read(cpu_tsc_khz)) {
2087 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2088 &hv_clock.tsc_shift,
2089 &hv_clock.tsc_to_system_mul);
2090 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2092 ret = ktime_get_boot_ns() + ka->kvmclock_offset;
2099 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
2101 struct kvm_vcpu_arch *vcpu = &v->arch;
2102 struct pvclock_vcpu_time_info guest_hv_clock;
2104 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
2105 &guest_hv_clock, sizeof(guest_hv_clock))))
2108 /* This VCPU is paused, but it's legal for a guest to read another
2109 * VCPU's kvmclock, so we really have to follow the specification where
2110 * it says that version is odd if data is being modified, and even after
2113 * Version field updates must be kept separate. This is because
2114 * kvm_write_guest_cached might use a "rep movs" instruction, and
2115 * writes within a string instruction are weakly ordered. So there
2116 * are three writes overall.
2118 * As a small optimization, only write the version field in the first
2119 * and third write. The vcpu->pv_time cache is still valid, because the
2120 * version field is the first in the struct.
2122 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2124 if (guest_hv_clock.version & 1)
2125 ++guest_hv_clock.version; /* first time write, random junk */
2127 vcpu->hv_clock.version = guest_hv_clock.version + 1;
2128 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2130 sizeof(vcpu->hv_clock.version));
2134 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2135 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2137 if (vcpu->pvclock_set_guest_stopped_request) {
2138 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2139 vcpu->pvclock_set_guest_stopped_request = false;
2142 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2144 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2146 sizeof(vcpu->hv_clock));
2150 vcpu->hv_clock.version++;
2151 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2153 sizeof(vcpu->hv_clock.version));
2156 static int kvm_guest_time_update(struct kvm_vcpu *v)
2158 unsigned long flags, tgt_tsc_khz;
2159 struct kvm_vcpu_arch *vcpu = &v->arch;
2160 struct kvm_arch *ka = &v->kvm->arch;
2162 u64 tsc_timestamp, host_tsc;
2164 bool use_master_clock;
2170 * If the host uses TSC clock, then passthrough TSC as stable
2173 spin_lock(&ka->pvclock_gtod_sync_lock);
2174 use_master_clock = ka->use_master_clock;
2175 if (use_master_clock) {
2176 host_tsc = ka->master_cycle_now;
2177 kernel_ns = ka->master_kernel_ns;
2179 spin_unlock(&ka->pvclock_gtod_sync_lock);
2181 /* Keep irq disabled to prevent changes to the clock */
2182 local_irq_save(flags);
2183 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2184 if (unlikely(tgt_tsc_khz == 0)) {
2185 local_irq_restore(flags);
2186 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2189 if (!use_master_clock) {
2191 kernel_ns = ktime_get_boot_ns();
2194 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2197 * We may have to catch up the TSC to match elapsed wall clock
2198 * time for two reasons, even if kvmclock is used.
2199 * 1) CPU could have been running below the maximum TSC rate
2200 * 2) Broken TSC compensation resets the base at each VCPU
2201 * entry to avoid unknown leaps of TSC even when running
2202 * again on the same CPU. This may cause apparent elapsed
2203 * time to disappear, and the guest to stand still or run
2206 if (vcpu->tsc_catchup) {
2207 u64 tsc = compute_guest_tsc(v, kernel_ns);
2208 if (tsc > tsc_timestamp) {
2209 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2210 tsc_timestamp = tsc;
2214 local_irq_restore(flags);
2216 /* With all the info we got, fill in the values */
2218 if (kvm_has_tsc_control)
2219 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2221 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2222 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2223 &vcpu->hv_clock.tsc_shift,
2224 &vcpu->hv_clock.tsc_to_system_mul);
2225 vcpu->hw_tsc_khz = tgt_tsc_khz;
2228 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2229 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2230 vcpu->last_guest_tsc = tsc_timestamp;
2232 /* If the host uses TSC clocksource, then it is stable */
2234 if (use_master_clock)
2235 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2237 vcpu->hv_clock.flags = pvclock_flags;
2239 if (vcpu->pv_time_enabled)
2240 kvm_setup_pvclock_page(v);
2241 if (v == kvm_get_vcpu(v->kvm, 0))
2242 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2247 * kvmclock updates which are isolated to a given vcpu, such as
2248 * vcpu->cpu migration, should not allow system_timestamp from
2249 * the rest of the vcpus to remain static. Otherwise ntp frequency
2250 * correction applies to one vcpu's system_timestamp but not
2253 * So in those cases, request a kvmclock update for all vcpus.
2254 * We need to rate-limit these requests though, as they can
2255 * considerably slow guests that have a large number of vcpus.
2256 * The time for a remote vcpu to update its kvmclock is bound
2257 * by the delay we use to rate-limit the updates.
2260 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2262 static void kvmclock_update_fn(struct work_struct *work)
2265 struct delayed_work *dwork = to_delayed_work(work);
2266 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2267 kvmclock_update_work);
2268 struct kvm *kvm = container_of(ka, struct kvm, arch);
2269 struct kvm_vcpu *vcpu;
2271 kvm_for_each_vcpu(i, vcpu, kvm) {
2272 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2273 kvm_vcpu_kick(vcpu);
2277 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2279 struct kvm *kvm = v->kvm;
2281 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2282 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2283 KVMCLOCK_UPDATE_DELAY);
2286 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2288 static void kvmclock_sync_fn(struct work_struct *work)
2290 struct delayed_work *dwork = to_delayed_work(work);
2291 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2292 kvmclock_sync_work);
2293 struct kvm *kvm = container_of(ka, struct kvm, arch);
2295 if (!kvmclock_periodic_sync)
2298 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2299 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2300 KVMCLOCK_SYNC_PERIOD);
2304 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
2306 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
2308 /* McStatusWrEn enabled? */
2309 if (guest_cpuid_is_amd(vcpu))
2310 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
2315 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2317 u64 mcg_cap = vcpu->arch.mcg_cap;
2318 unsigned bank_num = mcg_cap & 0xff;
2319 u32 msr = msr_info->index;
2320 u64 data = msr_info->data;
2323 case MSR_IA32_MCG_STATUS:
2324 vcpu->arch.mcg_status = data;
2326 case MSR_IA32_MCG_CTL:
2327 if (!(mcg_cap & MCG_CTL_P) &&
2328 (data || !msr_info->host_initiated))
2330 if (data != 0 && data != ~(u64)0)
2332 vcpu->arch.mcg_ctl = data;
2335 if (msr >= MSR_IA32_MC0_CTL &&
2336 msr < MSR_IA32_MCx_CTL(bank_num)) {
2337 u32 offset = msr - MSR_IA32_MC0_CTL;
2338 /* only 0 or all 1s can be written to IA32_MCi_CTL
2339 * some Linux kernels though clear bit 10 in bank 4 to
2340 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2341 * this to avoid an uncatched #GP in the guest
2343 if ((offset & 0x3) == 0 &&
2344 data != 0 && (data | (1 << 10)) != ~(u64)0)
2348 if (!msr_info->host_initiated &&
2349 (offset & 0x3) == 1 && data != 0) {
2350 if (!can_set_mci_status(vcpu))
2354 vcpu->arch.mce_banks[offset] = data;
2362 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2364 struct kvm *kvm = vcpu->kvm;
2365 int lm = is_long_mode(vcpu);
2366 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2367 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2368 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2369 : kvm->arch.xen_hvm_config.blob_size_32;
2370 u32 page_num = data & ~PAGE_MASK;
2371 u64 page_addr = data & PAGE_MASK;
2376 if (page_num >= blob_size)
2379 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2384 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2393 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2395 gpa_t gpa = data & ~0x3f;
2397 /* Bits 3:5 are reserved, Should be zero */
2401 vcpu->arch.apf.msr_val = data;
2403 if (!(data & KVM_ASYNC_PF_ENABLED)) {
2404 kvm_clear_async_pf_completion_queue(vcpu);
2405 kvm_async_pf_hash_reset(vcpu);
2409 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2413 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2414 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2415 kvm_async_pf_wakeup_all(vcpu);
2419 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2421 vcpu->arch.pv_time_enabled = false;
2424 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
2426 ++vcpu->stat.tlb_flush;
2427 kvm_x86_ops->tlb_flush(vcpu, invalidate_gpa);
2430 static void record_steal_time(struct kvm_vcpu *vcpu)
2432 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2435 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2436 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2440 * Doing a TLB flush here, on the guest's behalf, can avoid
2443 if (xchg(&vcpu->arch.st.steal.preempted, 0) & KVM_VCPU_FLUSH_TLB)
2444 kvm_vcpu_flush_tlb(vcpu, false);
2446 if (vcpu->arch.st.steal.version & 1)
2447 vcpu->arch.st.steal.version += 1; /* first time write, random junk */
2449 vcpu->arch.st.steal.version += 1;
2451 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2452 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2456 vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2457 vcpu->arch.st.last_steal;
2458 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2460 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2461 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2465 vcpu->arch.st.steal.version += 1;
2467 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2468 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2471 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2474 u32 msr = msr_info->index;
2475 u64 data = msr_info->data;
2478 case MSR_AMD64_NB_CFG:
2479 case MSR_IA32_UCODE_WRITE:
2480 case MSR_VM_HSAVE_PA:
2481 case MSR_AMD64_PATCH_LOADER:
2482 case MSR_AMD64_BU_CFG2:
2483 case MSR_AMD64_DC_CFG:
2484 case MSR_F15H_EX_CFG:
2487 case MSR_IA32_UCODE_REV:
2488 if (msr_info->host_initiated)
2489 vcpu->arch.microcode_version = data;
2491 case MSR_IA32_ARCH_CAPABILITIES:
2492 if (!msr_info->host_initiated)
2494 vcpu->arch.arch_capabilities = data;
2497 return set_efer(vcpu, msr_info);
2499 data &= ~(u64)0x40; /* ignore flush filter disable */
2500 data &= ~(u64)0x100; /* ignore ignne emulation enable */
2501 data &= ~(u64)0x8; /* ignore TLB cache disable */
2503 /* Handle McStatusWrEn */
2504 if (data == BIT_ULL(18)) {
2505 vcpu->arch.msr_hwcr = data;
2506 } else if (data != 0) {
2507 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2512 case MSR_FAM10H_MMIO_CONF_BASE:
2514 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2519 case MSR_IA32_DEBUGCTLMSR:
2521 /* We support the non-activated case already */
2523 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2524 /* Values other than LBR and BTF are vendor-specific,
2525 thus reserved and should throw a #GP */
2528 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2531 case 0x200 ... 0x2ff:
2532 return kvm_mtrr_set_msr(vcpu, msr, data);
2533 case MSR_IA32_APICBASE:
2534 return kvm_set_apic_base(vcpu, msr_info);
2535 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2536 return kvm_x2apic_msr_write(vcpu, msr, data);
2537 case MSR_IA32_TSCDEADLINE:
2538 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2540 case MSR_IA32_TSC_ADJUST:
2541 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2542 if (!msr_info->host_initiated) {
2543 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2544 adjust_tsc_offset_guest(vcpu, adj);
2546 vcpu->arch.ia32_tsc_adjust_msr = data;
2549 case MSR_IA32_MISC_ENABLE:
2550 vcpu->arch.ia32_misc_enable_msr = data;
2552 case MSR_IA32_SMBASE:
2553 if (!msr_info->host_initiated)
2555 vcpu->arch.smbase = data;
2558 kvm_write_tsc(vcpu, msr_info);
2561 if (!msr_info->host_initiated)
2563 vcpu->arch.smi_count = data;
2565 case MSR_KVM_WALL_CLOCK_NEW:
2566 case MSR_KVM_WALL_CLOCK:
2567 vcpu->kvm->arch.wall_clock = data;
2568 kvm_write_wall_clock(vcpu->kvm, data);
2570 case MSR_KVM_SYSTEM_TIME_NEW:
2571 case MSR_KVM_SYSTEM_TIME: {
2572 struct kvm_arch *ka = &vcpu->kvm->arch;
2574 kvmclock_reset(vcpu);
2576 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2577 bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2579 if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2580 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2582 ka->boot_vcpu_runs_old_kvmclock = tmp;
2585 vcpu->arch.time = data;
2586 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2588 /* we verify if the enable bit is set... */
2592 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2593 &vcpu->arch.pv_time, data & ~1ULL,
2594 sizeof(struct pvclock_vcpu_time_info)))
2595 vcpu->arch.pv_time_enabled = false;
2597 vcpu->arch.pv_time_enabled = true;
2601 case MSR_KVM_ASYNC_PF_EN:
2602 if (kvm_pv_enable_async_pf(vcpu, data))
2605 case MSR_KVM_STEAL_TIME:
2607 if (unlikely(!sched_info_on()))
2610 if (data & KVM_STEAL_RESERVED_MASK)
2613 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2614 data & KVM_STEAL_VALID_BITS,
2615 sizeof(struct kvm_steal_time)))
2618 vcpu->arch.st.msr_val = data;
2620 if (!(data & KVM_MSR_ENABLED))
2623 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2626 case MSR_KVM_PV_EOI_EN:
2627 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
2631 case MSR_IA32_MCG_CTL:
2632 case MSR_IA32_MCG_STATUS:
2633 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2634 return set_msr_mce(vcpu, msr_info);
2636 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2637 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2638 pr = true; /* fall through */
2639 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2640 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2641 if (kvm_pmu_is_valid_msr(vcpu, msr))
2642 return kvm_pmu_set_msr(vcpu, msr_info);
2644 if (pr || data != 0)
2645 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2646 "0x%x data 0x%llx\n", msr, data);
2648 case MSR_K7_CLK_CTL:
2650 * Ignore all writes to this no longer documented MSR.
2651 * Writes are only relevant for old K7 processors,
2652 * all pre-dating SVM, but a recommended workaround from
2653 * AMD for these chips. It is possible to specify the
2654 * affected processor models on the command line, hence
2655 * the need to ignore the workaround.
2658 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2659 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2660 case HV_X64_MSR_CRASH_CTL:
2661 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2662 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2663 case HV_X64_MSR_TSC_EMULATION_CONTROL:
2664 case HV_X64_MSR_TSC_EMULATION_STATUS:
2665 return kvm_hv_set_msr_common(vcpu, msr, data,
2666 msr_info->host_initiated);
2667 case MSR_IA32_BBL_CR_CTL3:
2668 /* Drop writes to this legacy MSR -- see rdmsr
2669 * counterpart for further detail.
2671 if (report_ignored_msrs)
2672 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2675 case MSR_AMD64_OSVW_ID_LENGTH:
2676 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2678 vcpu->arch.osvw.length = data;
2680 case MSR_AMD64_OSVW_STATUS:
2681 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2683 vcpu->arch.osvw.status = data;
2685 case MSR_PLATFORM_INFO:
2686 if (!msr_info->host_initiated ||
2687 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2688 cpuid_fault_enabled(vcpu)))
2690 vcpu->arch.msr_platform_info = data;
2692 case MSR_MISC_FEATURES_ENABLES:
2693 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2694 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2695 !supports_cpuid_fault(vcpu)))
2697 vcpu->arch.msr_misc_features_enables = data;
2700 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2701 return xen_hvm_config(vcpu, data);
2702 if (kvm_pmu_is_valid_msr(vcpu, msr))
2703 return kvm_pmu_set_msr(vcpu, msr_info);
2705 vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2709 if (report_ignored_msrs)
2711 "ignored wrmsr: 0x%x data 0x%llx\n",
2718 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2722 * Reads an msr value (of 'msr_index') into 'pdata'.
2723 * Returns 0 on success, non-0 otherwise.
2724 * Assumes vcpu_load() was already called.
2726 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2728 return kvm_x86_ops->get_msr(vcpu, msr);
2730 EXPORT_SYMBOL_GPL(kvm_get_msr);
2732 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
2735 u64 mcg_cap = vcpu->arch.mcg_cap;
2736 unsigned bank_num = mcg_cap & 0xff;
2739 case MSR_IA32_P5_MC_ADDR:
2740 case MSR_IA32_P5_MC_TYPE:
2743 case MSR_IA32_MCG_CAP:
2744 data = vcpu->arch.mcg_cap;
2746 case MSR_IA32_MCG_CTL:
2747 if (!(mcg_cap & MCG_CTL_P) && !host)
2749 data = vcpu->arch.mcg_ctl;
2751 case MSR_IA32_MCG_STATUS:
2752 data = vcpu->arch.mcg_status;
2755 if (msr >= MSR_IA32_MC0_CTL &&
2756 msr < MSR_IA32_MCx_CTL(bank_num)) {
2757 u32 offset = msr - MSR_IA32_MC0_CTL;
2758 data = vcpu->arch.mce_banks[offset];
2767 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2769 switch (msr_info->index) {
2770 case MSR_IA32_PLATFORM_ID:
2771 case MSR_IA32_EBL_CR_POWERON:
2772 case MSR_IA32_DEBUGCTLMSR:
2773 case MSR_IA32_LASTBRANCHFROMIP:
2774 case MSR_IA32_LASTBRANCHTOIP:
2775 case MSR_IA32_LASTINTFROMIP:
2776 case MSR_IA32_LASTINTTOIP:
2778 case MSR_K8_TSEG_ADDR:
2779 case MSR_K8_TSEG_MASK:
2780 case MSR_VM_HSAVE_PA:
2781 case MSR_K8_INT_PENDING_MSG:
2782 case MSR_AMD64_NB_CFG:
2783 case MSR_FAM10H_MMIO_CONF_BASE:
2784 case MSR_AMD64_BU_CFG2:
2785 case MSR_IA32_PERF_CTL:
2786 case MSR_AMD64_DC_CFG:
2787 case MSR_F15H_EX_CFG:
2790 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
2791 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2792 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2793 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2794 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2795 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2796 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2799 case MSR_IA32_UCODE_REV:
2800 msr_info->data = vcpu->arch.microcode_version;
2802 case MSR_IA32_ARCH_CAPABILITIES:
2803 if (!msr_info->host_initiated &&
2804 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
2806 msr_info->data = vcpu->arch.arch_capabilities;
2809 msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset;
2812 case 0x200 ... 0x2ff:
2813 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2814 case 0xcd: /* fsb frequency */
2818 * MSR_EBC_FREQUENCY_ID
2819 * Conservative value valid for even the basic CPU models.
2820 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2821 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2822 * and 266MHz for model 3, or 4. Set Core Clock
2823 * Frequency to System Bus Frequency Ratio to 1 (bits
2824 * 31:24) even though these are only valid for CPU
2825 * models > 2, however guests may end up dividing or
2826 * multiplying by zero otherwise.
2828 case MSR_EBC_FREQUENCY_ID:
2829 msr_info->data = 1 << 24;
2831 case MSR_IA32_APICBASE:
2832 msr_info->data = kvm_get_apic_base(vcpu);
2834 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2835 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2837 case MSR_IA32_TSCDEADLINE:
2838 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2840 case MSR_IA32_TSC_ADJUST:
2841 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2843 case MSR_IA32_MISC_ENABLE:
2844 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2846 case MSR_IA32_SMBASE:
2847 if (!msr_info->host_initiated)
2849 msr_info->data = vcpu->arch.smbase;
2852 msr_info->data = vcpu->arch.smi_count;
2854 case MSR_IA32_PERF_STATUS:
2855 /* TSC increment by tick */
2856 msr_info->data = 1000ULL;
2857 /* CPU multiplier */
2858 msr_info->data |= (((uint64_t)4ULL) << 40);
2861 msr_info->data = vcpu->arch.efer;
2863 case MSR_KVM_WALL_CLOCK:
2864 case MSR_KVM_WALL_CLOCK_NEW:
2865 msr_info->data = vcpu->kvm->arch.wall_clock;
2867 case MSR_KVM_SYSTEM_TIME:
2868 case MSR_KVM_SYSTEM_TIME_NEW:
2869 msr_info->data = vcpu->arch.time;
2871 case MSR_KVM_ASYNC_PF_EN:
2872 msr_info->data = vcpu->arch.apf.msr_val;
2874 case MSR_KVM_STEAL_TIME:
2875 msr_info->data = vcpu->arch.st.msr_val;
2877 case MSR_KVM_PV_EOI_EN:
2878 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2880 case MSR_IA32_P5_MC_ADDR:
2881 case MSR_IA32_P5_MC_TYPE:
2882 case MSR_IA32_MCG_CAP:
2883 case MSR_IA32_MCG_CTL:
2884 case MSR_IA32_MCG_STATUS:
2885 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2886 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
2887 msr_info->host_initiated);
2888 case MSR_K7_CLK_CTL:
2890 * Provide expected ramp-up count for K7. All other
2891 * are set to zero, indicating minimum divisors for
2894 * This prevents guest kernels on AMD host with CPU
2895 * type 6, model 8 and higher from exploding due to
2896 * the rdmsr failing.
2898 msr_info->data = 0x20000000;
2900 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2901 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2902 case HV_X64_MSR_CRASH_CTL:
2903 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2904 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2905 case HV_X64_MSR_TSC_EMULATION_CONTROL:
2906 case HV_X64_MSR_TSC_EMULATION_STATUS:
2907 return kvm_hv_get_msr_common(vcpu,
2908 msr_info->index, &msr_info->data,
2909 msr_info->host_initiated);
2911 case MSR_IA32_BBL_CR_CTL3:
2912 /* This legacy MSR exists but isn't fully documented in current
2913 * silicon. It is however accessed by winxp in very narrow
2914 * scenarios where it sets bit #19, itself documented as
2915 * a "reserved" bit. Best effort attempt to source coherent
2916 * read data here should the balance of the register be
2917 * interpreted by the guest:
2919 * L2 cache control register 3: 64GB range, 256KB size,
2920 * enabled, latency 0x1, configured
2922 msr_info->data = 0xbe702111;
2924 case MSR_AMD64_OSVW_ID_LENGTH:
2925 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2927 msr_info->data = vcpu->arch.osvw.length;
2929 case MSR_AMD64_OSVW_STATUS:
2930 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2932 msr_info->data = vcpu->arch.osvw.status;
2934 case MSR_PLATFORM_INFO:
2935 if (!msr_info->host_initiated &&
2936 !vcpu->kvm->arch.guest_can_read_msr_platform_info)
2938 msr_info->data = vcpu->arch.msr_platform_info;
2940 case MSR_MISC_FEATURES_ENABLES:
2941 msr_info->data = vcpu->arch.msr_misc_features_enables;
2944 msr_info->data = vcpu->arch.msr_hwcr;
2947 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2948 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2950 vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2954 if (report_ignored_msrs)
2955 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n",
2963 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2966 * Read or write a bunch of msrs. All parameters are kernel addresses.
2968 * @return number of msrs set successfully.
2970 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2971 struct kvm_msr_entry *entries,
2972 int (*do_msr)(struct kvm_vcpu *vcpu,
2973 unsigned index, u64 *data))
2977 for (i = 0; i < msrs->nmsrs; ++i)
2978 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2985 * Read or write a bunch of msrs. Parameters are user addresses.
2987 * @return number of msrs set successfully.
2989 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2990 int (*do_msr)(struct kvm_vcpu *vcpu,
2991 unsigned index, u64 *data),
2994 struct kvm_msrs msrs;
2995 struct kvm_msr_entry *entries;
3000 if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3004 if (msrs.nmsrs >= MAX_IO_MSRS)
3007 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3008 entries = memdup_user(user_msrs->entries, size);
3009 if (IS_ERR(entries)) {
3010 r = PTR_ERR(entries);
3014 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3019 if (writeback && copy_to_user(user_msrs->entries, entries, size))
3030 static inline bool kvm_can_mwait_in_guest(void)
3032 return boot_cpu_has(X86_FEATURE_MWAIT) &&
3033 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
3034 boot_cpu_has(X86_FEATURE_ARAT);
3037 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
3042 case KVM_CAP_IRQCHIP:
3044 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3045 case KVM_CAP_SET_TSS_ADDR:
3046 case KVM_CAP_EXT_CPUID:
3047 case KVM_CAP_EXT_EMUL_CPUID:
3048 case KVM_CAP_CLOCKSOURCE:
3050 case KVM_CAP_NOP_IO_DELAY:
3051 case KVM_CAP_MP_STATE:
3052 case KVM_CAP_SYNC_MMU:
3053 case KVM_CAP_USER_NMI:
3054 case KVM_CAP_REINJECT_CONTROL:
3055 case KVM_CAP_IRQ_INJECT_STATUS:
3056 case KVM_CAP_IOEVENTFD:
3057 case KVM_CAP_IOEVENTFD_NO_LENGTH:
3059 case KVM_CAP_PIT_STATE2:
3060 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3061 case KVM_CAP_XEN_HVM:
3062 case KVM_CAP_VCPU_EVENTS:
3063 case KVM_CAP_HYPERV:
3064 case KVM_CAP_HYPERV_VAPIC:
3065 case KVM_CAP_HYPERV_SPIN:
3066 case KVM_CAP_HYPERV_SYNIC:
3067 case KVM_CAP_HYPERV_SYNIC2:
3068 case KVM_CAP_HYPERV_VP_INDEX:
3069 case KVM_CAP_HYPERV_EVENTFD:
3070 case KVM_CAP_HYPERV_TLBFLUSH:
3071 case KVM_CAP_HYPERV_SEND_IPI:
3072 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3073 case KVM_CAP_HYPERV_CPUID:
3074 case KVM_CAP_PCI_SEGMENT:
3075 case KVM_CAP_DEBUGREGS:
3076 case KVM_CAP_X86_ROBUST_SINGLESTEP:
3078 case KVM_CAP_ASYNC_PF:
3079 case KVM_CAP_GET_TSC_KHZ:
3080 case KVM_CAP_KVMCLOCK_CTRL:
3081 case KVM_CAP_READONLY_MEM:
3082 case KVM_CAP_HYPERV_TIME:
3083 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3084 case KVM_CAP_TSC_DEADLINE_TIMER:
3085 case KVM_CAP_DISABLE_QUIRKS:
3086 case KVM_CAP_SET_BOOT_CPU_ID:
3087 case KVM_CAP_SPLIT_IRQCHIP:
3088 case KVM_CAP_IMMEDIATE_EXIT:
3089 case KVM_CAP_GET_MSR_FEATURES:
3090 case KVM_CAP_MSR_PLATFORM_INFO:
3091 case KVM_CAP_EXCEPTION_PAYLOAD:
3094 case KVM_CAP_SYNC_REGS:
3095 r = KVM_SYNC_X86_VALID_FIELDS;
3097 case KVM_CAP_ADJUST_CLOCK:
3098 r = KVM_CLOCK_TSC_STABLE;
3100 case KVM_CAP_X86_DISABLE_EXITS:
3101 r |= KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE;
3102 if(kvm_can_mwait_in_guest())
3103 r |= KVM_X86_DISABLE_EXITS_MWAIT;
3105 case KVM_CAP_X86_SMM:
3106 /* SMBASE is usually relocated above 1M on modern chipsets,
3107 * and SMM handlers might indeed rely on 4G segment limits,
3108 * so do not report SMM to be available if real mode is
3109 * emulated via vm86 mode. Still, do not go to great lengths
3110 * to avoid userspace's usage of the feature, because it is a
3111 * fringe case that is not enabled except via specific settings
3112 * of the module parameters.
3114 r = kvm_x86_ops->has_emulated_msr(MSR_IA32_SMBASE);
3117 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
3119 case KVM_CAP_NR_VCPUS:
3120 r = KVM_SOFT_MAX_VCPUS;
3122 case KVM_CAP_MAX_VCPUS:
3125 case KVM_CAP_PV_MMU: /* obsolete */
3129 r = KVM_MAX_MCE_BANKS;
3132 r = boot_cpu_has(X86_FEATURE_XSAVE);
3134 case KVM_CAP_TSC_CONTROL:
3135 r = kvm_has_tsc_control;
3137 case KVM_CAP_X2APIC_API:
3138 r = KVM_X2APIC_API_VALID_FLAGS;
3140 case KVM_CAP_NESTED_STATE:
3141 r = kvm_x86_ops->get_nested_state ?
3142 kvm_x86_ops->get_nested_state(NULL, NULL, 0) : 0;
3151 long kvm_arch_dev_ioctl(struct file *filp,
3152 unsigned int ioctl, unsigned long arg)
3154 void __user *argp = (void __user *)arg;
3158 case KVM_GET_MSR_INDEX_LIST: {
3159 struct kvm_msr_list __user *user_msr_list = argp;
3160 struct kvm_msr_list msr_list;
3164 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3167 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3168 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3171 if (n < msr_list.nmsrs)
3174 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3175 num_msrs_to_save * sizeof(u32)))
3177 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3179 num_emulated_msrs * sizeof(u32)))
3184 case KVM_GET_SUPPORTED_CPUID:
3185 case KVM_GET_EMULATED_CPUID: {
3186 struct kvm_cpuid2 __user *cpuid_arg = argp;
3187 struct kvm_cpuid2 cpuid;
3190 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3193 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3199 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3204 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
3206 if (copy_to_user(argp, &kvm_mce_cap_supported,
3207 sizeof(kvm_mce_cap_supported)))
3211 case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3212 struct kvm_msr_list __user *user_msr_list = argp;
3213 struct kvm_msr_list msr_list;
3217 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3220 msr_list.nmsrs = num_msr_based_features;
3221 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3224 if (n < msr_list.nmsrs)
3227 if (copy_to_user(user_msr_list->indices, &msr_based_features,
3228 num_msr_based_features * sizeof(u32)))
3234 r = msr_io(NULL, argp, do_get_msr_feature, 1);
3244 static void wbinvd_ipi(void *garbage)
3249 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3251 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3254 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3256 /* Address WBINVD may be executed by guest */
3257 if (need_emulate_wbinvd(vcpu)) {
3258 if (kvm_x86_ops->has_wbinvd_exit())
3259 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3260 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3261 smp_call_function_single(vcpu->cpu,
3262 wbinvd_ipi, NULL, 1);
3265 kvm_x86_ops->vcpu_load(vcpu, cpu);
3267 /* Apply any externally detected TSC adjustments (due to suspend) */
3268 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3269 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3270 vcpu->arch.tsc_offset_adjustment = 0;
3271 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3274 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3275 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3276 rdtsc() - vcpu->arch.last_host_tsc;
3278 mark_tsc_unstable("KVM discovered backwards TSC");
3280 if (kvm_check_tsc_unstable()) {
3281 u64 offset = kvm_compute_tsc_offset(vcpu,
3282 vcpu->arch.last_guest_tsc);
3283 kvm_vcpu_write_tsc_offset(vcpu, offset);
3284 vcpu->arch.tsc_catchup = 1;
3287 if (kvm_lapic_hv_timer_in_use(vcpu))
3288 kvm_lapic_restart_hv_timer(vcpu);
3291 * On a host with synchronized TSC, there is no need to update
3292 * kvmclock on vcpu->cpu migration
3294 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3295 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3296 if (vcpu->cpu != cpu)
3297 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3301 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3304 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3306 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3309 vcpu->arch.st.steal.preempted = KVM_VCPU_PREEMPTED;
3311 kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
3312 &vcpu->arch.st.steal.preempted,
3313 offsetof(struct kvm_steal_time, preempted),
3314 sizeof(vcpu->arch.st.steal.preempted));
3317 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3321 if (vcpu->preempted)
3322 vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu);
3325 * Disable page faults because we're in atomic context here.
3326 * kvm_write_guest_offset_cached() would call might_fault()
3327 * that relies on pagefault_disable() to tell if there's a
3328 * bug. NOTE: the write to guest memory may not go through if
3329 * during postcopy live migration or if there's heavy guest
3332 pagefault_disable();
3334 * kvm_memslots() will be called by
3335 * kvm_write_guest_offset_cached() so take the srcu lock.
3337 idx = srcu_read_lock(&vcpu->kvm->srcu);
3338 kvm_steal_time_set_preempted(vcpu);
3339 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3341 kvm_x86_ops->vcpu_put(vcpu);
3342 vcpu->arch.last_host_tsc = rdtsc();
3344 * If userspace has set any breakpoints or watchpoints, dr6 is restored
3345 * on every vmexit, but if not, we might have a stale dr6 from the
3346 * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3351 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3352 struct kvm_lapic_state *s)
3354 if (vcpu->arch.apicv_active)
3355 kvm_x86_ops->sync_pir_to_irr(vcpu);
3357 return kvm_apic_get_state(vcpu, s);
3360 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3361 struct kvm_lapic_state *s)
3365 r = kvm_apic_set_state(vcpu, s);
3368 update_cr8_intercept(vcpu);
3373 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
3375 return (!lapic_in_kernel(vcpu) ||
3376 kvm_apic_accept_pic_intr(vcpu));
3380 * if userspace requested an interrupt window, check that the
3381 * interrupt window is open.
3383 * No need to exit to userspace if we already have an interrupt queued.
3385 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
3387 return kvm_arch_interrupt_allowed(vcpu) &&
3388 !kvm_cpu_has_interrupt(vcpu) &&
3389 !kvm_event_needs_reinjection(vcpu) &&
3390 kvm_cpu_accept_dm_intr(vcpu);
3393 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3394 struct kvm_interrupt *irq)
3396 if (irq->irq >= KVM_NR_INTERRUPTS)
3399 if (!irqchip_in_kernel(vcpu->kvm)) {
3400 kvm_queue_interrupt(vcpu, irq->irq, false);
3401 kvm_make_request(KVM_REQ_EVENT, vcpu);
3406 * With in-kernel LAPIC, we only use this to inject EXTINT, so
3407 * fail for in-kernel 8259.
3409 if (pic_in_kernel(vcpu->kvm))
3412 if (vcpu->arch.pending_external_vector != -1)
3415 vcpu->arch.pending_external_vector = irq->irq;
3416 kvm_make_request(KVM_REQ_EVENT, vcpu);
3420 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3422 kvm_inject_nmi(vcpu);
3427 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3429 kvm_make_request(KVM_REQ_SMI, vcpu);
3434 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3435 struct kvm_tpr_access_ctl *tac)
3439 vcpu->arch.tpr_access_reporting = !!tac->enabled;
3443 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3447 unsigned bank_num = mcg_cap & 0xff, bank;
3450 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3452 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3455 vcpu->arch.mcg_cap = mcg_cap;
3456 /* Init IA32_MCG_CTL to all 1s */
3457 if (mcg_cap & MCG_CTL_P)
3458 vcpu->arch.mcg_ctl = ~(u64)0;
3459 /* Init IA32_MCi_CTL to all 1s */
3460 for (bank = 0; bank < bank_num; bank++)
3461 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3463 if (kvm_x86_ops->setup_mce)
3464 kvm_x86_ops->setup_mce(vcpu);
3469 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3470 struct kvm_x86_mce *mce)
3472 u64 mcg_cap = vcpu->arch.mcg_cap;
3473 unsigned bank_num = mcg_cap & 0xff;
3474 u64 *banks = vcpu->arch.mce_banks;
3476 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3479 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3480 * reporting is disabled
3482 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3483 vcpu->arch.mcg_ctl != ~(u64)0)
3485 banks += 4 * mce->bank;
3487 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3488 * reporting is disabled for the bank
3490 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3492 if (mce->status & MCI_STATUS_UC) {
3493 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3494 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3495 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3498 if (banks[1] & MCI_STATUS_VAL)
3499 mce->status |= MCI_STATUS_OVER;
3500 banks[2] = mce->addr;
3501 banks[3] = mce->misc;
3502 vcpu->arch.mcg_status = mce->mcg_status;
3503 banks[1] = mce->status;
3504 kvm_queue_exception(vcpu, MC_VECTOR);
3505 } else if (!(banks[1] & MCI_STATUS_VAL)
3506 || !(banks[1] & MCI_STATUS_UC)) {
3507 if (banks[1] & MCI_STATUS_VAL)
3508 mce->status |= MCI_STATUS_OVER;
3509 banks[2] = mce->addr;
3510 banks[3] = mce->misc;
3511 banks[1] = mce->status;
3513 banks[1] |= MCI_STATUS_OVER;
3517 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3518 struct kvm_vcpu_events *events)
3523 * The API doesn't provide the instruction length for software
3524 * exceptions, so don't report them. As long as the guest RIP
3525 * isn't advanced, we should expect to encounter the exception
3528 if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
3529 events->exception.injected = 0;
3530 events->exception.pending = 0;
3532 events->exception.injected = vcpu->arch.exception.injected;
3533 events->exception.pending = vcpu->arch.exception.pending;
3535 * For ABI compatibility, deliberately conflate
3536 * pending and injected exceptions when
3537 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
3539 if (!vcpu->kvm->arch.exception_payload_enabled)
3540 events->exception.injected |=
3541 vcpu->arch.exception.pending;
3543 events->exception.nr = vcpu->arch.exception.nr;
3544 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3545 events->exception.error_code = vcpu->arch.exception.error_code;
3546 events->exception_has_payload = vcpu->arch.exception.has_payload;
3547 events->exception_payload = vcpu->arch.exception.payload;
3549 events->interrupt.injected =
3550 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
3551 events->interrupt.nr = vcpu->arch.interrupt.nr;
3552 events->interrupt.soft = 0;
3553 events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3555 events->nmi.injected = vcpu->arch.nmi_injected;
3556 events->nmi.pending = vcpu->arch.nmi_pending != 0;
3557 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3558 events->nmi.pad = 0;
3560 events->sipi_vector = 0; /* never valid when reporting to user space */
3562 events->smi.smm = is_smm(vcpu);
3563 events->smi.pending = vcpu->arch.smi_pending;
3564 events->smi.smm_inside_nmi =
3565 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3566 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3568 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3569 | KVM_VCPUEVENT_VALID_SHADOW
3570 | KVM_VCPUEVENT_VALID_SMM);
3571 if (vcpu->kvm->arch.exception_payload_enabled)
3572 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
3574 memset(&events->reserved, 0, sizeof(events->reserved));
3577 static void kvm_smm_changed(struct kvm_vcpu *vcpu);
3579 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3580 struct kvm_vcpu_events *events)
3582 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3583 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3584 | KVM_VCPUEVENT_VALID_SHADOW
3585 | KVM_VCPUEVENT_VALID_SMM
3586 | KVM_VCPUEVENT_VALID_PAYLOAD))
3589 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
3590 if (!vcpu->kvm->arch.exception_payload_enabled)
3592 if (events->exception.pending)
3593 events->exception.injected = 0;
3595 events->exception_has_payload = 0;
3597 events->exception.pending = 0;
3598 events->exception_has_payload = 0;
3601 if ((events->exception.injected || events->exception.pending) &&
3602 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
3605 /* INITs are latched while in SMM */
3606 if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3607 (events->smi.smm || events->smi.pending) &&
3608 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3612 vcpu->arch.exception.injected = events->exception.injected;
3613 vcpu->arch.exception.pending = events->exception.pending;
3614 vcpu->arch.exception.nr = events->exception.nr;
3615 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3616 vcpu->arch.exception.error_code = events->exception.error_code;
3617 vcpu->arch.exception.has_payload = events->exception_has_payload;
3618 vcpu->arch.exception.payload = events->exception_payload;
3620 vcpu->arch.interrupt.injected = events->interrupt.injected;
3621 vcpu->arch.interrupt.nr = events->interrupt.nr;
3622 vcpu->arch.interrupt.soft = events->interrupt.soft;
3623 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3624 kvm_x86_ops->set_interrupt_shadow(vcpu,
3625 events->interrupt.shadow);
3627 vcpu->arch.nmi_injected = events->nmi.injected;
3628 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3629 vcpu->arch.nmi_pending = events->nmi.pending;
3630 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3632 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3633 lapic_in_kernel(vcpu))
3634 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3636 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3637 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
3638 if (events->smi.smm)
3639 vcpu->arch.hflags |= HF_SMM_MASK;
3641 vcpu->arch.hflags &= ~HF_SMM_MASK;
3642 kvm_smm_changed(vcpu);
3645 vcpu->arch.smi_pending = events->smi.pending;
3647 if (events->smi.smm) {
3648 if (events->smi.smm_inside_nmi)
3649 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3651 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3652 if (lapic_in_kernel(vcpu)) {
3653 if (events->smi.latched_init)
3654 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3656 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3661 kvm_make_request(KVM_REQ_EVENT, vcpu);
3666 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3667 struct kvm_debugregs *dbgregs)
3671 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3672 kvm_get_dr(vcpu, 6, &val);
3674 dbgregs->dr7 = vcpu->arch.dr7;
3676 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3679 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3680 struct kvm_debugregs *dbgregs)
3685 if (dbgregs->dr6 & ~0xffffffffull)
3687 if (dbgregs->dr7 & ~0xffffffffull)
3690 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3691 kvm_update_dr0123(vcpu);
3692 vcpu->arch.dr6 = dbgregs->dr6;
3693 kvm_update_dr6(vcpu);
3694 vcpu->arch.dr7 = dbgregs->dr7;
3695 kvm_update_dr7(vcpu);
3700 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3702 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3704 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
3705 u64 xstate_bv = xsave->header.xfeatures;
3709 * Copy legacy XSAVE area, to avoid complications with CPUID
3710 * leaves 0 and 1 in the loop below.
3712 memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3715 xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3716 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3719 * Copy each region from the possibly compacted offset to the
3720 * non-compacted offset.
3722 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3724 u64 xfeature_mask = valid & -valid;
3725 int xfeature_nr = fls64(xfeature_mask) - 1;
3726 void *src = get_xsave_addr(xsave, xfeature_nr);
3729 u32 size, offset, ecx, edx;
3730 cpuid_count(XSTATE_CPUID, xfeature_nr,
3731 &size, &offset, &ecx, &edx);
3732 if (xfeature_nr == XFEATURE_PKRU)
3733 memcpy(dest + offset, &vcpu->arch.pkru,
3734 sizeof(vcpu->arch.pkru));
3736 memcpy(dest + offset, src, size);
3740 valid -= xfeature_mask;
3744 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3746 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
3747 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3751 * Copy legacy XSAVE area, to avoid complications with CPUID
3752 * leaves 0 and 1 in the loop below.
3754 memcpy(xsave, src, XSAVE_HDR_OFFSET);
3756 /* Set XSTATE_BV and possibly XCOMP_BV. */
3757 xsave->header.xfeatures = xstate_bv;
3758 if (boot_cpu_has(X86_FEATURE_XSAVES))
3759 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3762 * Copy each region from the non-compacted offset to the
3763 * possibly compacted offset.
3765 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3767 u64 xfeature_mask = valid & -valid;
3768 int xfeature_nr = fls64(xfeature_mask) - 1;
3769 void *dest = get_xsave_addr(xsave, xfeature_nr);
3772 u32 size, offset, ecx, edx;
3773 cpuid_count(XSTATE_CPUID, xfeature_nr,
3774 &size, &offset, &ecx, &edx);
3775 if (xfeature_nr == XFEATURE_PKRU)
3776 memcpy(&vcpu->arch.pkru, src + offset,
3777 sizeof(vcpu->arch.pkru));
3779 memcpy(dest, src + offset, size);
3782 valid -= xfeature_mask;
3786 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3787 struct kvm_xsave *guest_xsave)
3789 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3790 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3791 fill_xsave((u8 *) guest_xsave->region, vcpu);
3793 memcpy(guest_xsave->region,
3794 &vcpu->arch.guest_fpu->state.fxsave,
3795 sizeof(struct fxregs_state));
3796 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3797 XFEATURE_MASK_FPSSE;
3801 #define XSAVE_MXCSR_OFFSET 24
3803 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3804 struct kvm_xsave *guest_xsave)
3807 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3808 u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3810 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3812 * Here we allow setting states that are not present in
3813 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
3814 * with old userspace.
3816 if (xstate_bv & ~kvm_supported_xcr0() ||
3817 mxcsr & ~mxcsr_feature_mask)
3819 load_xsave(vcpu, (u8 *)guest_xsave->region);
3821 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
3822 mxcsr & ~mxcsr_feature_mask)
3824 memcpy(&vcpu->arch.guest_fpu->state.fxsave,
3825 guest_xsave->region, sizeof(struct fxregs_state));
3830 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3831 struct kvm_xcrs *guest_xcrs)
3833 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3834 guest_xcrs->nr_xcrs = 0;
3838 guest_xcrs->nr_xcrs = 1;
3839 guest_xcrs->flags = 0;
3840 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3841 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3844 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3845 struct kvm_xcrs *guest_xcrs)
3849 if (!boot_cpu_has(X86_FEATURE_XSAVE))
3852 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3855 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3856 /* Only support XCR0 currently */
3857 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3858 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3859 guest_xcrs->xcrs[i].value);
3868 * kvm_set_guest_paused() indicates to the guest kernel that it has been
3869 * stopped by the hypervisor. This function will be called from the host only.
3870 * EINVAL is returned when the host attempts to set the flag for a guest that
3871 * does not support pv clocks.
3873 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3875 if (!vcpu->arch.pv_time_enabled)
3877 vcpu->arch.pvclock_set_guest_stopped_request = true;
3878 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3882 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3883 struct kvm_enable_cap *cap)
3886 uint16_t vmcs_version;
3887 void __user *user_ptr;
3893 case KVM_CAP_HYPERV_SYNIC2:
3898 case KVM_CAP_HYPERV_SYNIC:
3899 if (!irqchip_in_kernel(vcpu->kvm))
3901 return kvm_hv_activate_synic(vcpu, cap->cap ==
3902 KVM_CAP_HYPERV_SYNIC2);
3903 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3904 if (!kvm_x86_ops->nested_enable_evmcs)
3906 r = kvm_x86_ops->nested_enable_evmcs(vcpu, &vmcs_version);
3908 user_ptr = (void __user *)(uintptr_t)cap->args[0];
3909 if (copy_to_user(user_ptr, &vmcs_version,
3910 sizeof(vmcs_version)))
3920 long kvm_arch_vcpu_ioctl(struct file *filp,
3921 unsigned int ioctl, unsigned long arg)
3923 struct kvm_vcpu *vcpu = filp->private_data;
3924 void __user *argp = (void __user *)arg;
3927 struct kvm_lapic_state *lapic;
3928 struct kvm_xsave *xsave;
3929 struct kvm_xcrs *xcrs;
3937 case KVM_GET_LAPIC: {
3939 if (!lapic_in_kernel(vcpu))
3941 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
3942 GFP_KERNEL_ACCOUNT);
3947 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3951 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3956 case KVM_SET_LAPIC: {
3958 if (!lapic_in_kernel(vcpu))
3960 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3961 if (IS_ERR(u.lapic)) {
3962 r = PTR_ERR(u.lapic);
3966 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3969 case KVM_INTERRUPT: {
3970 struct kvm_interrupt irq;
3973 if (copy_from_user(&irq, argp, sizeof(irq)))
3975 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3979 r = kvm_vcpu_ioctl_nmi(vcpu);
3983 r = kvm_vcpu_ioctl_smi(vcpu);
3986 case KVM_SET_CPUID: {
3987 struct kvm_cpuid __user *cpuid_arg = argp;
3988 struct kvm_cpuid cpuid;
3991 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3993 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3996 case KVM_SET_CPUID2: {
3997 struct kvm_cpuid2 __user *cpuid_arg = argp;
3998 struct kvm_cpuid2 cpuid;
4001 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4003 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
4004 cpuid_arg->entries);
4007 case KVM_GET_CPUID2: {
4008 struct kvm_cpuid2 __user *cpuid_arg = argp;
4009 struct kvm_cpuid2 cpuid;
4012 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4014 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
4015 cpuid_arg->entries);
4019 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4024 case KVM_GET_MSRS: {
4025 int idx = srcu_read_lock(&vcpu->kvm->srcu);
4026 r = msr_io(vcpu, argp, do_get_msr, 1);
4027 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4030 case KVM_SET_MSRS: {
4031 int idx = srcu_read_lock(&vcpu->kvm->srcu);
4032 r = msr_io(vcpu, argp, do_set_msr, 0);
4033 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4036 case KVM_TPR_ACCESS_REPORTING: {
4037 struct kvm_tpr_access_ctl tac;
4040 if (copy_from_user(&tac, argp, sizeof(tac)))
4042 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
4046 if (copy_to_user(argp, &tac, sizeof(tac)))
4051 case KVM_SET_VAPIC_ADDR: {
4052 struct kvm_vapic_addr va;
4056 if (!lapic_in_kernel(vcpu))
4059 if (copy_from_user(&va, argp, sizeof(va)))
4061 idx = srcu_read_lock(&vcpu->kvm->srcu);
4062 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
4063 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4066 case KVM_X86_SETUP_MCE: {
4070 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
4072 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
4075 case KVM_X86_SET_MCE: {
4076 struct kvm_x86_mce mce;
4079 if (copy_from_user(&mce, argp, sizeof(mce)))
4081 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4084 case KVM_GET_VCPU_EVENTS: {
4085 struct kvm_vcpu_events events;
4087 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4090 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4095 case KVM_SET_VCPU_EVENTS: {
4096 struct kvm_vcpu_events events;
4099 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
4102 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4105 case KVM_GET_DEBUGREGS: {
4106 struct kvm_debugregs dbgregs;
4108 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4111 if (copy_to_user(argp, &dbgregs,
4112 sizeof(struct kvm_debugregs)))
4117 case KVM_SET_DEBUGREGS: {
4118 struct kvm_debugregs dbgregs;
4121 if (copy_from_user(&dbgregs, argp,
4122 sizeof(struct kvm_debugregs)))
4125 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
4128 case KVM_GET_XSAVE: {
4129 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
4134 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
4137 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
4142 case KVM_SET_XSAVE: {
4143 u.xsave = memdup_user(argp, sizeof(*u.xsave));
4144 if (IS_ERR(u.xsave)) {
4145 r = PTR_ERR(u.xsave);
4149 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
4152 case KVM_GET_XCRS: {
4153 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
4158 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
4161 if (copy_to_user(argp, u.xcrs,
4162 sizeof(struct kvm_xcrs)))
4167 case KVM_SET_XCRS: {
4168 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
4169 if (IS_ERR(u.xcrs)) {
4170 r = PTR_ERR(u.xcrs);
4174 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
4177 case KVM_SET_TSC_KHZ: {
4181 user_tsc_khz = (u32)arg;
4183 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
4186 if (user_tsc_khz == 0)
4187 user_tsc_khz = tsc_khz;
4189 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
4194 case KVM_GET_TSC_KHZ: {
4195 r = vcpu->arch.virtual_tsc_khz;
4198 case KVM_KVMCLOCK_CTRL: {
4199 r = kvm_set_guest_paused(vcpu);
4202 case KVM_ENABLE_CAP: {
4203 struct kvm_enable_cap cap;
4206 if (copy_from_user(&cap, argp, sizeof(cap)))
4208 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
4211 case KVM_GET_NESTED_STATE: {
4212 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4216 if (!kvm_x86_ops->get_nested_state)
4219 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
4221 if (get_user(user_data_size, &user_kvm_nested_state->size))
4224 r = kvm_x86_ops->get_nested_state(vcpu, user_kvm_nested_state,
4229 if (r > user_data_size) {
4230 if (put_user(r, &user_kvm_nested_state->size))
4240 case KVM_SET_NESTED_STATE: {
4241 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4242 struct kvm_nested_state kvm_state;
4245 if (!kvm_x86_ops->set_nested_state)
4249 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
4253 if (kvm_state.size < sizeof(kvm_state))
4256 if (kvm_state.flags &
4257 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
4258 | KVM_STATE_NESTED_EVMCS))
4261 /* nested_run_pending implies guest_mode. */
4262 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
4263 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
4266 r = kvm_x86_ops->set_nested_state(vcpu, user_kvm_nested_state, &kvm_state);
4269 case KVM_GET_SUPPORTED_HV_CPUID: {
4270 struct kvm_cpuid2 __user *cpuid_arg = argp;
4271 struct kvm_cpuid2 cpuid;
4274 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4277 r = kvm_vcpu_ioctl_get_hv_cpuid(vcpu, &cpuid,
4278 cpuid_arg->entries);
4283 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4298 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
4300 return VM_FAULT_SIGBUS;
4303 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
4307 if (addr > (unsigned int)(-3 * PAGE_SIZE))
4309 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
4313 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
4316 return kvm_x86_ops->set_identity_map_addr(kvm, ident_addr);
4319 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
4320 unsigned long kvm_nr_mmu_pages)
4322 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
4325 mutex_lock(&kvm->slots_lock);
4327 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
4328 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
4330 mutex_unlock(&kvm->slots_lock);
4334 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
4336 return kvm->arch.n_max_mmu_pages;
4339 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4341 struct kvm_pic *pic = kvm->arch.vpic;
4345 switch (chip->chip_id) {
4346 case KVM_IRQCHIP_PIC_MASTER:
4347 memcpy(&chip->chip.pic, &pic->pics[0],
4348 sizeof(struct kvm_pic_state));
4350 case KVM_IRQCHIP_PIC_SLAVE:
4351 memcpy(&chip->chip.pic, &pic->pics[1],
4352 sizeof(struct kvm_pic_state));
4354 case KVM_IRQCHIP_IOAPIC:
4355 kvm_get_ioapic(kvm, &chip->chip.ioapic);
4364 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4366 struct kvm_pic *pic = kvm->arch.vpic;
4370 switch (chip->chip_id) {
4371 case KVM_IRQCHIP_PIC_MASTER:
4372 spin_lock(&pic->lock);
4373 memcpy(&pic->pics[0], &chip->chip.pic,
4374 sizeof(struct kvm_pic_state));
4375 spin_unlock(&pic->lock);
4377 case KVM_IRQCHIP_PIC_SLAVE:
4378 spin_lock(&pic->lock);
4379 memcpy(&pic->pics[1], &chip->chip.pic,
4380 sizeof(struct kvm_pic_state));
4381 spin_unlock(&pic->lock);
4383 case KVM_IRQCHIP_IOAPIC:
4384 kvm_set_ioapic(kvm, &chip->chip.ioapic);
4390 kvm_pic_update_irq(pic);
4394 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4396 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
4398 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
4400 mutex_lock(&kps->lock);
4401 memcpy(ps, &kps->channels, sizeof(*ps));
4402 mutex_unlock(&kps->lock);
4406 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4409 struct kvm_pit *pit = kvm->arch.vpit;
4411 mutex_lock(&pit->pit_state.lock);
4412 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
4413 for (i = 0; i < 3; i++)
4414 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
4415 mutex_unlock(&pit->pit_state.lock);
4419 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4421 mutex_lock(&kvm->arch.vpit->pit_state.lock);
4422 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
4423 sizeof(ps->channels));
4424 ps->flags = kvm->arch.vpit->pit_state.flags;
4425 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
4426 memset(&ps->reserved, 0, sizeof(ps->reserved));
4430 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4434 u32 prev_legacy, cur_legacy;
4435 struct kvm_pit *pit = kvm->arch.vpit;
4437 mutex_lock(&pit->pit_state.lock);
4438 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
4439 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
4440 if (!prev_legacy && cur_legacy)
4442 memcpy(&pit->pit_state.channels, &ps->channels,
4443 sizeof(pit->pit_state.channels));
4444 pit->pit_state.flags = ps->flags;
4445 for (i = 0; i < 3; i++)
4446 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
4448 mutex_unlock(&pit->pit_state.lock);
4452 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
4453 struct kvm_reinject_control *control)
4455 struct kvm_pit *pit = kvm->arch.vpit;
4460 /* pit->pit_state.lock was overloaded to prevent userspace from getting
4461 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
4462 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
4464 mutex_lock(&pit->pit_state.lock);
4465 kvm_pit_set_reinject(pit, control->pit_reinject);
4466 mutex_unlock(&pit->pit_state.lock);
4472 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
4473 * @kvm: kvm instance
4474 * @log: slot id and address to which we copy the log
4476 * Steps 1-4 below provide general overview of dirty page logging. See
4477 * kvm_get_dirty_log_protect() function description for additional details.
4479 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
4480 * always flush the TLB (step 4) even if previous step failed and the dirty
4481 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
4482 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
4483 * writes will be marked dirty for next log read.
4485 * 1. Take a snapshot of the bit and clear it if needed.
4486 * 2. Write protect the corresponding page.
4487 * 3. Copy the snapshot to the userspace.
4488 * 4. Flush TLB's if needed.
4490 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
4495 mutex_lock(&kvm->slots_lock);
4498 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4500 if (kvm_x86_ops->flush_log_dirty)
4501 kvm_x86_ops->flush_log_dirty(kvm);
4503 r = kvm_get_dirty_log_protect(kvm, log, &flush);
4506 * All the TLBs can be flushed out of mmu lock, see the comments in
4507 * kvm_mmu_slot_remove_write_access().
4509 lockdep_assert_held(&kvm->slots_lock);
4511 kvm_flush_remote_tlbs(kvm);
4513 mutex_unlock(&kvm->slots_lock);
4517 int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, struct kvm_clear_dirty_log *log)
4522 mutex_lock(&kvm->slots_lock);
4525 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4527 if (kvm_x86_ops->flush_log_dirty)
4528 kvm_x86_ops->flush_log_dirty(kvm);
4530 r = kvm_clear_dirty_log_protect(kvm, log, &flush);
4533 * All the TLBs can be flushed out of mmu lock, see the comments in
4534 * kvm_mmu_slot_remove_write_access().
4536 lockdep_assert_held(&kvm->slots_lock);
4538 kvm_flush_remote_tlbs(kvm);
4540 mutex_unlock(&kvm->slots_lock);
4544 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
4547 if (!irqchip_in_kernel(kvm))
4550 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
4551 irq_event->irq, irq_event->level,
4556 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4557 struct kvm_enable_cap *cap)
4565 case KVM_CAP_DISABLE_QUIRKS:
4566 kvm->arch.disabled_quirks = cap->args[0];
4569 case KVM_CAP_SPLIT_IRQCHIP: {
4570 mutex_lock(&kvm->lock);
4572 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
4573 goto split_irqchip_unlock;
4575 if (irqchip_in_kernel(kvm))
4576 goto split_irqchip_unlock;
4577 if (kvm->created_vcpus)
4578 goto split_irqchip_unlock;
4579 r = kvm_setup_empty_irq_routing(kvm);
4581 goto split_irqchip_unlock;
4582 /* Pairs with irqchip_in_kernel. */
4584 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4585 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4587 split_irqchip_unlock:
4588 mutex_unlock(&kvm->lock);
4591 case KVM_CAP_X2APIC_API:
4593 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4596 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4597 kvm->arch.x2apic_format = true;
4598 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4599 kvm->arch.x2apic_broadcast_quirk_disabled = true;
4603 case KVM_CAP_X86_DISABLE_EXITS:
4605 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
4608 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
4609 kvm_can_mwait_in_guest())
4610 kvm->arch.mwait_in_guest = true;
4611 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
4612 kvm->arch.hlt_in_guest = true;
4613 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
4614 kvm->arch.pause_in_guest = true;
4617 case KVM_CAP_MSR_PLATFORM_INFO:
4618 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
4621 case KVM_CAP_EXCEPTION_PAYLOAD:
4622 kvm->arch.exception_payload_enabled = cap->args[0];
4632 long kvm_arch_vm_ioctl(struct file *filp,
4633 unsigned int ioctl, unsigned long arg)
4635 struct kvm *kvm = filp->private_data;
4636 void __user *argp = (void __user *)arg;
4639 * This union makes it completely explicit to gcc-3.x
4640 * that these two variables' stack usage should be
4641 * combined, not added together.
4644 struct kvm_pit_state ps;
4645 struct kvm_pit_state2 ps2;
4646 struct kvm_pit_config pit_config;
4650 case KVM_SET_TSS_ADDR:
4651 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4653 case KVM_SET_IDENTITY_MAP_ADDR: {
4656 mutex_lock(&kvm->lock);
4658 if (kvm->created_vcpus)
4659 goto set_identity_unlock;
4661 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
4662 goto set_identity_unlock;
4663 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4664 set_identity_unlock:
4665 mutex_unlock(&kvm->lock);
4668 case KVM_SET_NR_MMU_PAGES:
4669 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4671 case KVM_GET_NR_MMU_PAGES:
4672 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4674 case KVM_CREATE_IRQCHIP: {
4675 mutex_lock(&kvm->lock);
4678 if (irqchip_in_kernel(kvm))
4679 goto create_irqchip_unlock;
4682 if (kvm->created_vcpus)
4683 goto create_irqchip_unlock;
4685 r = kvm_pic_init(kvm);
4687 goto create_irqchip_unlock;
4689 r = kvm_ioapic_init(kvm);
4691 kvm_pic_destroy(kvm);
4692 goto create_irqchip_unlock;
4695 r = kvm_setup_default_irq_routing(kvm);
4697 kvm_ioapic_destroy(kvm);
4698 kvm_pic_destroy(kvm);
4699 goto create_irqchip_unlock;
4701 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4703 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4704 create_irqchip_unlock:
4705 mutex_unlock(&kvm->lock);
4708 case KVM_CREATE_PIT:
4709 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4711 case KVM_CREATE_PIT2:
4713 if (copy_from_user(&u.pit_config, argp,
4714 sizeof(struct kvm_pit_config)))
4717 mutex_lock(&kvm->lock);
4720 goto create_pit_unlock;
4722 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4726 mutex_unlock(&kvm->lock);
4728 case KVM_GET_IRQCHIP: {
4729 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4730 struct kvm_irqchip *chip;
4732 chip = memdup_user(argp, sizeof(*chip));
4739 if (!irqchip_kernel(kvm))
4740 goto get_irqchip_out;
4741 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4743 goto get_irqchip_out;
4745 if (copy_to_user(argp, chip, sizeof(*chip)))
4746 goto get_irqchip_out;
4752 case KVM_SET_IRQCHIP: {
4753 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4754 struct kvm_irqchip *chip;
4756 chip = memdup_user(argp, sizeof(*chip));
4763 if (!irqchip_kernel(kvm))
4764 goto set_irqchip_out;
4765 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4767 goto set_irqchip_out;
4775 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4778 if (!kvm->arch.vpit)
4780 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4784 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4791 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
4794 if (!kvm->arch.vpit)
4796 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4799 case KVM_GET_PIT2: {
4801 if (!kvm->arch.vpit)
4803 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4807 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4812 case KVM_SET_PIT2: {
4814 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4817 if (!kvm->arch.vpit)
4819 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4822 case KVM_REINJECT_CONTROL: {
4823 struct kvm_reinject_control control;
4825 if (copy_from_user(&control, argp, sizeof(control)))
4827 r = kvm_vm_ioctl_reinject(kvm, &control);
4830 case KVM_SET_BOOT_CPU_ID:
4832 mutex_lock(&kvm->lock);
4833 if (kvm->created_vcpus)
4836 kvm->arch.bsp_vcpu_id = arg;
4837 mutex_unlock(&kvm->lock);
4839 case KVM_XEN_HVM_CONFIG: {
4840 struct kvm_xen_hvm_config xhc;
4842 if (copy_from_user(&xhc, argp, sizeof(xhc)))
4847 memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
4851 case KVM_SET_CLOCK: {
4852 struct kvm_clock_data user_ns;
4856 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4865 * TODO: userspace has to take care of races with VCPU_RUN, so
4866 * kvm_gen_update_masterclock() can be cut down to locked
4867 * pvclock_update_vm_gtod_copy().
4869 kvm_gen_update_masterclock(kvm);
4870 now_ns = get_kvmclock_ns(kvm);
4871 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4872 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
4875 case KVM_GET_CLOCK: {
4876 struct kvm_clock_data user_ns;
4879 now_ns = get_kvmclock_ns(kvm);
4880 user_ns.clock = now_ns;
4881 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4882 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4885 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4890 case KVM_MEMORY_ENCRYPT_OP: {
4892 if (kvm_x86_ops->mem_enc_op)
4893 r = kvm_x86_ops->mem_enc_op(kvm, argp);
4896 case KVM_MEMORY_ENCRYPT_REG_REGION: {
4897 struct kvm_enc_region region;
4900 if (copy_from_user(®ion, argp, sizeof(region)))
4904 if (kvm_x86_ops->mem_enc_reg_region)
4905 r = kvm_x86_ops->mem_enc_reg_region(kvm, ®ion);
4908 case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
4909 struct kvm_enc_region region;
4912 if (copy_from_user(®ion, argp, sizeof(region)))
4916 if (kvm_x86_ops->mem_enc_unreg_region)
4917 r = kvm_x86_ops->mem_enc_unreg_region(kvm, ®ion);
4920 case KVM_HYPERV_EVENTFD: {
4921 struct kvm_hyperv_eventfd hvevfd;
4924 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
4926 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
4936 static void kvm_init_msr_list(void)
4941 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4942 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4946 * Even MSRs that are valid in the host may not be exposed
4947 * to the guests in some cases.
4949 switch (msrs_to_save[i]) {
4950 case MSR_IA32_BNDCFGS:
4951 if (!kvm_mpx_supported())
4955 if (!kvm_x86_ops->rdtscp_supported())
4958 case MSR_IA32_RTIT_CTL:
4959 case MSR_IA32_RTIT_STATUS:
4960 if (!kvm_x86_ops->pt_supported())
4963 case MSR_IA32_RTIT_CR3_MATCH:
4964 if (!kvm_x86_ops->pt_supported() ||
4965 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
4968 case MSR_IA32_RTIT_OUTPUT_BASE:
4969 case MSR_IA32_RTIT_OUTPUT_MASK:
4970 if (!kvm_x86_ops->pt_supported() ||
4971 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
4972 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
4975 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: {
4976 if (!kvm_x86_ops->pt_supported() ||
4977 msrs_to_save[i] - MSR_IA32_RTIT_ADDR0_A >=
4978 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
4987 msrs_to_save[j] = msrs_to_save[i];
4990 num_msrs_to_save = j;
4992 for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4993 if (!kvm_x86_ops->has_emulated_msr(emulated_msrs[i]))
4997 emulated_msrs[j] = emulated_msrs[i];
5000 num_emulated_msrs = j;
5002 for (i = j = 0; i < ARRAY_SIZE(msr_based_features); i++) {
5003 struct kvm_msr_entry msr;
5005 msr.index = msr_based_features[i];
5006 if (kvm_get_msr_feature(&msr))
5010 msr_based_features[j] = msr_based_features[i];
5013 num_msr_based_features = j;
5016 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
5024 if (!(lapic_in_kernel(vcpu) &&
5025 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
5026 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
5037 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
5044 if (!(lapic_in_kernel(vcpu) &&
5045 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
5047 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
5049 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
5059 static void kvm_set_segment(struct kvm_vcpu *vcpu,
5060 struct kvm_segment *var, int seg)
5062 kvm_x86_ops->set_segment(vcpu, var, seg);
5065 void kvm_get_segment(struct kvm_vcpu *vcpu,
5066 struct kvm_segment *var, int seg)
5068 kvm_x86_ops->get_segment(vcpu, var, seg);
5071 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
5072 struct x86_exception *exception)
5076 BUG_ON(!mmu_is_nested(vcpu));
5078 /* NPT walks are always user-walks */
5079 access |= PFERR_USER_MASK;
5080 t_gpa = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
5085 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
5086 struct x86_exception *exception)
5088 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5089 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5092 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
5093 struct x86_exception *exception)
5095 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5096 access |= PFERR_FETCH_MASK;
5097 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5100 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
5101 struct x86_exception *exception)
5103 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5104 access |= PFERR_WRITE_MASK;
5105 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5108 /* uses this to access any guest's mapped memory without checking CPL */
5109 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
5110 struct x86_exception *exception)
5112 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
5115 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5116 struct kvm_vcpu *vcpu, u32 access,
5117 struct x86_exception *exception)
5120 int r = X86EMUL_CONTINUE;
5123 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
5125 unsigned offset = addr & (PAGE_SIZE-1);
5126 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
5129 if (gpa == UNMAPPED_GVA)
5130 return X86EMUL_PROPAGATE_FAULT;
5131 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
5134 r = X86EMUL_IO_NEEDED;
5146 /* used for instruction fetching */
5147 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
5148 gva_t addr, void *val, unsigned int bytes,
5149 struct x86_exception *exception)
5151 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5152 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5156 /* Inline kvm_read_guest_virt_helper for speed. */
5157 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
5159 if (unlikely(gpa == UNMAPPED_GVA))
5160 return X86EMUL_PROPAGATE_FAULT;
5162 offset = addr & (PAGE_SIZE-1);
5163 if (WARN_ON(offset + bytes > PAGE_SIZE))
5164 bytes = (unsigned)PAGE_SIZE - offset;
5165 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
5167 if (unlikely(ret < 0))
5168 return X86EMUL_IO_NEEDED;
5170 return X86EMUL_CONTINUE;
5173 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
5174 gva_t addr, void *val, unsigned int bytes,
5175 struct x86_exception *exception)
5177 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5180 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5181 * is returned, but our callers are not ready for that and they blindly
5182 * call kvm_inject_page_fault. Ensure that they at least do not leak
5183 * uninitialized kernel stack memory into cr2 and error code.
5185 memset(exception, 0, sizeof(*exception));
5186 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
5189 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
5191 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
5192 gva_t addr, void *val, unsigned int bytes,
5193 struct x86_exception *exception, bool system)
5195 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5198 if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
5199 access |= PFERR_USER_MASK;
5201 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
5204 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
5205 unsigned long addr, void *val, unsigned int bytes)
5207 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5208 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
5210 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
5213 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5214 struct kvm_vcpu *vcpu, u32 access,
5215 struct x86_exception *exception)
5218 int r = X86EMUL_CONTINUE;
5221 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
5224 unsigned offset = addr & (PAGE_SIZE-1);
5225 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
5228 if (gpa == UNMAPPED_GVA)
5229 return X86EMUL_PROPAGATE_FAULT;
5230 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
5232 r = X86EMUL_IO_NEEDED;
5244 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
5245 unsigned int bytes, struct x86_exception *exception,
5248 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5249 u32 access = PFERR_WRITE_MASK;
5251 if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
5252 access |= PFERR_USER_MASK;
5254 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5258 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
5259 unsigned int bytes, struct x86_exception *exception)
5261 /* kvm_write_guest_virt_system can pull in tons of pages. */
5262 vcpu->arch.l1tf_flush_l1d = true;
5264 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5265 PFERR_WRITE_MASK, exception);
5267 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
5269 int handle_ud(struct kvm_vcpu *vcpu)
5271 int emul_type = EMULTYPE_TRAP_UD;
5272 enum emulation_result er;
5273 char sig[5]; /* ud2; .ascii "kvm" */
5274 struct x86_exception e;
5276 if (force_emulation_prefix &&
5277 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
5278 sig, sizeof(sig), &e) == 0 &&
5279 memcmp(sig, "\xf\xbkvm", sizeof(sig)) == 0) {
5280 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
5284 er = kvm_emulate_instruction(vcpu, emul_type);
5285 if (er == EMULATE_USER_EXIT)
5287 if (er != EMULATE_DONE)
5288 kvm_queue_exception(vcpu, UD_VECTOR);
5291 EXPORT_SYMBOL_GPL(handle_ud);
5293 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5294 gpa_t gpa, bool write)
5296 /* For APIC access vmexit */
5297 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5300 if (vcpu_match_mmio_gpa(vcpu, gpa)) {
5301 trace_vcpu_match_mmio(gva, gpa, write, true);
5308 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5309 gpa_t *gpa, struct x86_exception *exception,
5312 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
5313 | (write ? PFERR_WRITE_MASK : 0);
5316 * currently PKRU is only applied to ept enabled guest so
5317 * there is no pkey in EPT page table for L1 guest or EPT
5318 * shadow page table for L2 guest.
5320 if (vcpu_match_mmio_gva(vcpu, gva)
5321 && !permission_fault(vcpu, vcpu->arch.walk_mmu,
5322 vcpu->arch.access, 0, access)) {
5323 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
5324 (gva & (PAGE_SIZE - 1));
5325 trace_vcpu_match_mmio(gva, *gpa, write, false);
5329 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5331 if (*gpa == UNMAPPED_GVA)
5334 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
5337 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
5338 const void *val, int bytes)
5342 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
5345 kvm_page_track_write(vcpu, gpa, val, bytes);
5349 struct read_write_emulator_ops {
5350 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
5352 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
5353 void *val, int bytes);
5354 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5355 int bytes, void *val);
5356 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5357 void *val, int bytes);
5361 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
5363 if (vcpu->mmio_read_completed) {
5364 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
5365 vcpu->mmio_fragments[0].gpa, val);
5366 vcpu->mmio_read_completed = 0;
5373 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5374 void *val, int bytes)
5376 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
5379 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5380 void *val, int bytes)
5382 return emulator_write_phys(vcpu, gpa, val, bytes);
5385 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
5387 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
5388 return vcpu_mmio_write(vcpu, gpa, bytes, val);
5391 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5392 void *val, int bytes)
5394 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
5395 return X86EMUL_IO_NEEDED;
5398 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5399 void *val, int bytes)
5401 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
5403 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
5404 return X86EMUL_CONTINUE;
5407 static const struct read_write_emulator_ops read_emultor = {
5408 .read_write_prepare = read_prepare,
5409 .read_write_emulate = read_emulate,
5410 .read_write_mmio = vcpu_mmio_read,
5411 .read_write_exit_mmio = read_exit_mmio,
5414 static const struct read_write_emulator_ops write_emultor = {
5415 .read_write_emulate = write_emulate,
5416 .read_write_mmio = write_mmio,
5417 .read_write_exit_mmio = write_exit_mmio,
5421 static int emulator_read_write_onepage(unsigned long addr, void *val,
5423 struct x86_exception *exception,
5424 struct kvm_vcpu *vcpu,
5425 const struct read_write_emulator_ops *ops)
5429 bool write = ops->write;
5430 struct kvm_mmio_fragment *frag;
5431 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5434 * If the exit was due to a NPF we may already have a GPA.
5435 * If the GPA is present, use it to avoid the GVA to GPA table walk.
5436 * Note, this cannot be used on string operations since string
5437 * operation using rep will only have the initial GPA from the NPF
5440 if (vcpu->arch.gpa_available &&
5441 emulator_can_use_gpa(ctxt) &&
5442 (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) {
5443 gpa = vcpu->arch.gpa_val;
5444 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
5446 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
5448 return X86EMUL_PROPAGATE_FAULT;
5451 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
5452 return X86EMUL_CONTINUE;
5455 * Is this MMIO handled locally?
5457 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
5458 if (handled == bytes)
5459 return X86EMUL_CONTINUE;
5465 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
5466 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
5470 return X86EMUL_CONTINUE;
5473 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
5475 void *val, unsigned int bytes,
5476 struct x86_exception *exception,
5477 const struct read_write_emulator_ops *ops)
5479 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5483 if (ops->read_write_prepare &&
5484 ops->read_write_prepare(vcpu, val, bytes))
5485 return X86EMUL_CONTINUE;
5487 vcpu->mmio_nr_fragments = 0;
5489 /* Crossing a page boundary? */
5490 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
5493 now = -addr & ~PAGE_MASK;
5494 rc = emulator_read_write_onepage(addr, val, now, exception,
5497 if (rc != X86EMUL_CONTINUE)
5500 if (ctxt->mode != X86EMUL_MODE_PROT64)
5506 rc = emulator_read_write_onepage(addr, val, bytes, exception,
5508 if (rc != X86EMUL_CONTINUE)
5511 if (!vcpu->mmio_nr_fragments)
5514 gpa = vcpu->mmio_fragments[0].gpa;
5516 vcpu->mmio_needed = 1;
5517 vcpu->mmio_cur_fragment = 0;
5519 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
5520 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
5521 vcpu->run->exit_reason = KVM_EXIT_MMIO;
5522 vcpu->run->mmio.phys_addr = gpa;
5524 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
5527 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
5531 struct x86_exception *exception)
5533 return emulator_read_write(ctxt, addr, val, bytes,
5534 exception, &read_emultor);
5537 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
5541 struct x86_exception *exception)
5543 return emulator_read_write(ctxt, addr, (void *)val, bytes,
5544 exception, &write_emultor);
5547 #define CMPXCHG_TYPE(t, ptr, old, new) \
5548 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
5550 #ifdef CONFIG_X86_64
5551 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
5553 # define CMPXCHG64(ptr, old, new) \
5554 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
5557 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
5562 struct x86_exception *exception)
5564 struct kvm_host_map map;
5565 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5570 /* guests cmpxchg8b have to be emulated atomically */
5571 if (bytes > 8 || (bytes & (bytes - 1)))
5574 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
5576 if (gpa == UNMAPPED_GVA ||
5577 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5580 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
5583 if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
5586 kaddr = map.hva + offset_in_page(gpa);
5590 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
5593 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
5596 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
5599 exchanged = CMPXCHG64(kaddr, old, new);
5605 kvm_vcpu_unmap(vcpu, &map, true);
5608 return X86EMUL_CMPXCHG_FAILED;
5610 kvm_page_track_write(vcpu, gpa, new, bytes);
5612 return X86EMUL_CONTINUE;
5615 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
5617 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
5620 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
5624 for (i = 0; i < vcpu->arch.pio.count; i++) {
5625 if (vcpu->arch.pio.in)
5626 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
5627 vcpu->arch.pio.size, pd);
5629 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
5630 vcpu->arch.pio.port, vcpu->arch.pio.size,
5634 pd += vcpu->arch.pio.size;
5639 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
5640 unsigned short port, void *val,
5641 unsigned int count, bool in)
5643 vcpu->arch.pio.port = port;
5644 vcpu->arch.pio.in = in;
5645 vcpu->arch.pio.count = count;
5646 vcpu->arch.pio.size = size;
5648 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
5649 vcpu->arch.pio.count = 0;
5653 vcpu->run->exit_reason = KVM_EXIT_IO;
5654 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
5655 vcpu->run->io.size = size;
5656 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
5657 vcpu->run->io.count = count;
5658 vcpu->run->io.port = port;
5663 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
5664 int size, unsigned short port, void *val,
5667 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5670 if (vcpu->arch.pio.count)
5673 memset(vcpu->arch.pio_data, 0, size * count);
5675 ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
5678 memcpy(val, vcpu->arch.pio_data, size * count);
5679 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
5680 vcpu->arch.pio.count = 0;
5687 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
5688 int size, unsigned short port,
5689 const void *val, unsigned int count)
5691 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5693 memcpy(vcpu->arch.pio_data, val, size * count);
5694 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
5695 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
5698 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
5700 return kvm_x86_ops->get_segment_base(vcpu, seg);
5703 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
5705 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
5708 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
5710 if (!need_emulate_wbinvd(vcpu))
5711 return X86EMUL_CONTINUE;
5713 if (kvm_x86_ops->has_wbinvd_exit()) {
5714 int cpu = get_cpu();
5716 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
5717 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
5718 wbinvd_ipi, NULL, 1);
5720 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
5723 return X86EMUL_CONTINUE;
5726 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
5728 kvm_emulate_wbinvd_noskip(vcpu);
5729 return kvm_skip_emulated_instruction(vcpu);
5731 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
5735 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
5737 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
5740 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
5741 unsigned long *dest)
5743 return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
5746 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
5747 unsigned long value)
5750 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
5753 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
5755 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
5758 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
5760 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5761 unsigned long value;
5765 value = kvm_read_cr0(vcpu);
5768 value = vcpu->arch.cr2;
5771 value = kvm_read_cr3(vcpu);
5774 value = kvm_read_cr4(vcpu);
5777 value = kvm_get_cr8(vcpu);
5780 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5787 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5789 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5794 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5797 vcpu->arch.cr2 = val;
5800 res = kvm_set_cr3(vcpu, val);
5803 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5806 res = kvm_set_cr8(vcpu, val);
5809 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5816 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5818 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5821 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5823 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5826 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5828 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5831 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5833 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5836 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5838 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5841 static unsigned long emulator_get_cached_segment_base(
5842 struct x86_emulate_ctxt *ctxt, int seg)
5844 return get_segment_base(emul_to_vcpu(ctxt), seg);
5847 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5848 struct desc_struct *desc, u32 *base3,
5851 struct kvm_segment var;
5853 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5854 *selector = var.selector;
5857 memset(desc, 0, sizeof(*desc));
5865 set_desc_limit(desc, var.limit);
5866 set_desc_base(desc, (unsigned long)var.base);
5867 #ifdef CONFIG_X86_64
5869 *base3 = var.base >> 32;
5871 desc->type = var.type;
5873 desc->dpl = var.dpl;
5874 desc->p = var.present;
5875 desc->avl = var.avl;
5883 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5884 struct desc_struct *desc, u32 base3,
5887 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5888 struct kvm_segment var;
5890 var.selector = selector;
5891 var.base = get_desc_base(desc);
5892 #ifdef CONFIG_X86_64
5893 var.base |= ((u64)base3) << 32;
5895 var.limit = get_desc_limit(desc);
5897 var.limit = (var.limit << 12) | 0xfff;
5898 var.type = desc->type;
5899 var.dpl = desc->dpl;
5904 var.avl = desc->avl;
5905 var.present = desc->p;
5906 var.unusable = !var.present;
5909 kvm_set_segment(vcpu, &var, seg);
5913 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5914 u32 msr_index, u64 *pdata)
5916 struct msr_data msr;
5919 msr.index = msr_index;
5920 msr.host_initiated = false;
5921 r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5929 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5930 u32 msr_index, u64 data)
5932 struct msr_data msr;
5935 msr.index = msr_index;
5936 msr.host_initiated = false;
5937 return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5940 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5942 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5944 return vcpu->arch.smbase;
5947 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5949 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5951 vcpu->arch.smbase = smbase;
5954 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5957 return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5960 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5961 u32 pmc, u64 *pdata)
5963 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5966 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5968 emul_to_vcpu(ctxt)->arch.halt_request = 1;
5971 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5972 struct x86_instruction_info *info,
5973 enum x86_intercept_stage stage)
5975 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5978 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5979 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit)
5981 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit);
5984 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5986 return kvm_register_read(emul_to_vcpu(ctxt), reg);
5989 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5991 kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5994 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5996 kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5999 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
6001 return emul_to_vcpu(ctxt)->arch.hflags;
6004 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
6006 emul_to_vcpu(ctxt)->arch.hflags = emul_flags;
6009 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt,
6010 const char *smstate)
6012 return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smstate);
6015 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt)
6017 kvm_smm_changed(emul_to_vcpu(ctxt));
6020 static const struct x86_emulate_ops emulate_ops = {
6021 .read_gpr = emulator_read_gpr,
6022 .write_gpr = emulator_write_gpr,
6023 .read_std = emulator_read_std,
6024 .write_std = emulator_write_std,
6025 .read_phys = kvm_read_guest_phys_system,
6026 .fetch = kvm_fetch_guest_virt,
6027 .read_emulated = emulator_read_emulated,
6028 .write_emulated = emulator_write_emulated,
6029 .cmpxchg_emulated = emulator_cmpxchg_emulated,
6030 .invlpg = emulator_invlpg,
6031 .pio_in_emulated = emulator_pio_in_emulated,
6032 .pio_out_emulated = emulator_pio_out_emulated,
6033 .get_segment = emulator_get_segment,
6034 .set_segment = emulator_set_segment,
6035 .get_cached_segment_base = emulator_get_cached_segment_base,
6036 .get_gdt = emulator_get_gdt,
6037 .get_idt = emulator_get_idt,
6038 .set_gdt = emulator_set_gdt,
6039 .set_idt = emulator_set_idt,
6040 .get_cr = emulator_get_cr,
6041 .set_cr = emulator_set_cr,
6042 .cpl = emulator_get_cpl,
6043 .get_dr = emulator_get_dr,
6044 .set_dr = emulator_set_dr,
6045 .get_smbase = emulator_get_smbase,
6046 .set_smbase = emulator_set_smbase,
6047 .set_msr = emulator_set_msr,
6048 .get_msr = emulator_get_msr,
6049 .check_pmc = emulator_check_pmc,
6050 .read_pmc = emulator_read_pmc,
6051 .halt = emulator_halt,
6052 .wbinvd = emulator_wbinvd,
6053 .fix_hypercall = emulator_fix_hypercall,
6054 .intercept = emulator_intercept,
6055 .get_cpuid = emulator_get_cpuid,
6056 .set_nmi_mask = emulator_set_nmi_mask,
6057 .get_hflags = emulator_get_hflags,
6058 .set_hflags = emulator_set_hflags,
6059 .pre_leave_smm = emulator_pre_leave_smm,
6060 .post_leave_smm = emulator_post_leave_smm,
6063 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
6065 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
6067 * an sti; sti; sequence only disable interrupts for the first
6068 * instruction. So, if the last instruction, be it emulated or
6069 * not, left the system with the INT_STI flag enabled, it
6070 * means that the last instruction is an sti. We should not
6071 * leave the flag on in this case. The same goes for mov ss
6073 if (int_shadow & mask)
6075 if (unlikely(int_shadow || mask)) {
6076 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
6078 kvm_make_request(KVM_REQ_EVENT, vcpu);
6082 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
6084 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6085 if (ctxt->exception.vector == PF_VECTOR)
6086 return kvm_propagate_fault(vcpu, &ctxt->exception);
6088 if (ctxt->exception.error_code_valid)
6089 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
6090 ctxt->exception.error_code);
6092 kvm_queue_exception(vcpu, ctxt->exception.vector);
6096 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
6098 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6101 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
6103 ctxt->eflags = kvm_get_rflags(vcpu);
6104 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
6106 ctxt->eip = kvm_rip_read(vcpu);
6107 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
6108 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
6109 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
6110 cs_db ? X86EMUL_MODE_PROT32 :
6111 X86EMUL_MODE_PROT16;
6112 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
6113 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
6114 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
6116 init_decode_cache(ctxt);
6117 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6120 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
6122 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6125 init_emulate_ctxt(vcpu);
6129 ctxt->_eip = ctxt->eip + inc_eip;
6130 ret = emulate_int_real(ctxt, irq);
6132 if (ret != X86EMUL_CONTINUE)
6133 return EMULATE_FAIL;
6135 ctxt->eip = ctxt->_eip;
6136 kvm_rip_write(vcpu, ctxt->eip);
6137 kvm_set_rflags(vcpu, ctxt->eflags);
6139 return EMULATE_DONE;
6141 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
6143 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
6145 int r = EMULATE_DONE;
6147 ++vcpu->stat.insn_emulation_fail;
6148 trace_kvm_emulate_insn_failed(vcpu);
6150 if (emulation_type & EMULTYPE_NO_UD_ON_FAIL)
6151 return EMULATE_FAIL;
6153 if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
6154 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6155 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6156 vcpu->run->internal.ndata = 0;
6157 r = EMULATE_USER_EXIT;
6160 kvm_queue_exception(vcpu, UD_VECTOR);
6165 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
6166 bool write_fault_to_shadow_pgtable,
6172 if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
6175 if (WARN_ON_ONCE(is_guest_mode(vcpu)))
6178 if (!vcpu->arch.mmu->direct_map) {
6180 * Write permission should be allowed since only
6181 * write access need to be emulated.
6183 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
6186 * If the mapping is invalid in guest, let cpu retry
6187 * it to generate fault.
6189 if (gpa == UNMAPPED_GVA)
6194 * Do not retry the unhandleable instruction if it faults on the
6195 * readonly host memory, otherwise it will goto a infinite loop:
6196 * retry instruction -> write #PF -> emulation fail -> retry
6197 * instruction -> ...
6199 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
6202 * If the instruction failed on the error pfn, it can not be fixed,
6203 * report the error to userspace.
6205 if (is_error_noslot_pfn(pfn))
6208 kvm_release_pfn_clean(pfn);
6210 /* The instructions are well-emulated on direct mmu. */
6211 if (vcpu->arch.mmu->direct_map) {
6212 unsigned int indirect_shadow_pages;
6214 spin_lock(&vcpu->kvm->mmu_lock);
6215 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
6216 spin_unlock(&vcpu->kvm->mmu_lock);
6218 if (indirect_shadow_pages)
6219 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6225 * if emulation was due to access to shadowed page table
6226 * and it failed try to unshadow page and re-enter the
6227 * guest to let CPU execute the instruction.
6229 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6232 * If the access faults on its page table, it can not
6233 * be fixed by unprotecting shadow page and it should
6234 * be reported to userspace.
6236 return !write_fault_to_shadow_pgtable;
6239 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
6240 unsigned long cr2, int emulation_type)
6242 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6243 unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
6245 last_retry_eip = vcpu->arch.last_retry_eip;
6246 last_retry_addr = vcpu->arch.last_retry_addr;
6249 * If the emulation is caused by #PF and it is non-page_table
6250 * writing instruction, it means the VM-EXIT is caused by shadow
6251 * page protected, we can zap the shadow page and retry this
6252 * instruction directly.
6254 * Note: if the guest uses a non-page-table modifying instruction
6255 * on the PDE that points to the instruction, then we will unmap
6256 * the instruction and go to an infinite loop. So, we cache the
6257 * last retried eip and the last fault address, if we meet the eip
6258 * and the address again, we can break out of the potential infinite
6261 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
6263 if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
6266 if (WARN_ON_ONCE(is_guest_mode(vcpu)))
6269 if (x86_page_table_writing_insn(ctxt))
6272 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
6275 vcpu->arch.last_retry_eip = ctxt->eip;
6276 vcpu->arch.last_retry_addr = cr2;
6278 if (!vcpu->arch.mmu->direct_map)
6279 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
6281 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6286 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
6287 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
6289 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
6291 if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
6292 /* This is a good place to trace that we are exiting SMM. */
6293 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
6295 /* Process a latched INIT or SMI, if any. */
6296 kvm_make_request(KVM_REQ_EVENT, vcpu);
6299 kvm_mmu_reset_context(vcpu);
6302 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
6311 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
6312 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
6317 static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r)
6319 struct kvm_run *kvm_run = vcpu->run;
6321 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
6322 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
6323 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
6324 kvm_run->debug.arch.exception = DB_VECTOR;
6325 kvm_run->exit_reason = KVM_EXIT_DEBUG;
6326 *r = EMULATE_USER_EXIT;
6328 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
6332 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
6334 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6335 int r = EMULATE_DONE;
6337 kvm_x86_ops->skip_emulated_instruction(vcpu);
6340 * rflags is the old, "raw" value of the flags. The new value has
6341 * not been saved yet.
6343 * This is correct even for TF set by the guest, because "the
6344 * processor will not generate this exception after the instruction
6345 * that sets the TF flag".
6347 if (unlikely(rflags & X86_EFLAGS_TF))
6348 kvm_vcpu_do_singlestep(vcpu, &r);
6349 return r == EMULATE_DONE;
6351 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
6353 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
6355 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
6356 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
6357 struct kvm_run *kvm_run = vcpu->run;
6358 unsigned long eip = kvm_get_linear_rip(vcpu);
6359 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6360 vcpu->arch.guest_debug_dr7,
6364 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
6365 kvm_run->debug.arch.pc = eip;
6366 kvm_run->debug.arch.exception = DB_VECTOR;
6367 kvm_run->exit_reason = KVM_EXIT_DEBUG;
6368 *r = EMULATE_USER_EXIT;
6373 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
6374 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
6375 unsigned long eip = kvm_get_linear_rip(vcpu);
6376 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6381 vcpu->arch.dr6 &= ~15;
6382 vcpu->arch.dr6 |= dr6 | DR6_RTM;
6383 kvm_queue_exception(vcpu, DB_VECTOR);
6392 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
6394 switch (ctxt->opcode_len) {
6401 case 0xe6: /* OUT */
6405 case 0x6c: /* INS */
6407 case 0x6e: /* OUTS */
6414 case 0x33: /* RDPMC */
6423 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
6430 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6431 bool writeback = true;
6432 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
6434 vcpu->arch.l1tf_flush_l1d = true;
6437 * Clear write_fault_to_shadow_pgtable here to ensure it is
6440 vcpu->arch.write_fault_to_shadow_pgtable = false;
6441 kvm_clear_exception_queue(vcpu);
6443 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
6444 init_emulate_ctxt(vcpu);
6447 * We will reenter on the same instruction since
6448 * we do not set complete_userspace_io. This does not
6449 * handle watchpoints yet, those would be handled in
6452 if (!(emulation_type & EMULTYPE_SKIP) &&
6453 kvm_vcpu_check_breakpoint(vcpu, &r))
6456 ctxt->interruptibility = 0;
6457 ctxt->have_exception = false;
6458 ctxt->exception.vector = -1;
6459 ctxt->perm_ok = false;
6461 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
6463 r = x86_decode_insn(ctxt, insn, insn_len);
6465 trace_kvm_emulate_insn_start(vcpu);
6466 ++vcpu->stat.insn_emulation;
6467 if (r != EMULATION_OK) {
6468 if (emulation_type & EMULTYPE_TRAP_UD)
6469 return EMULATE_FAIL;
6470 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6472 return EMULATE_DONE;
6473 if (ctxt->have_exception && inject_emulated_exception(vcpu))
6474 return EMULATE_DONE;
6475 if (emulation_type & EMULTYPE_SKIP)
6476 return EMULATE_FAIL;
6477 return handle_emulation_failure(vcpu, emulation_type);
6481 if ((emulation_type & EMULTYPE_VMWARE) &&
6482 !is_vmware_backdoor_opcode(ctxt))
6483 return EMULATE_FAIL;
6485 if (emulation_type & EMULTYPE_SKIP) {
6486 kvm_rip_write(vcpu, ctxt->_eip);
6487 if (ctxt->eflags & X86_EFLAGS_RF)
6488 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
6489 return EMULATE_DONE;
6492 if (retry_instruction(ctxt, cr2, emulation_type))
6493 return EMULATE_DONE;
6495 /* this is needed for vmware backdoor interface to work since it
6496 changes registers values during IO operation */
6497 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
6498 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6499 emulator_invalidate_register_cache(ctxt);
6503 /* Save the faulting GPA (cr2) in the address field */
6504 ctxt->exception.address = cr2;
6506 r = x86_emulate_insn(ctxt);
6508 if (r == EMULATION_INTERCEPTED)
6509 return EMULATE_DONE;
6511 if (r == EMULATION_FAILED) {
6512 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6514 return EMULATE_DONE;
6516 return handle_emulation_failure(vcpu, emulation_type);
6519 if (ctxt->have_exception) {
6521 if (inject_emulated_exception(vcpu))
6523 } else if (vcpu->arch.pio.count) {
6524 if (!vcpu->arch.pio.in) {
6525 /* FIXME: return into emulator if single-stepping. */
6526 vcpu->arch.pio.count = 0;
6529 vcpu->arch.complete_userspace_io = complete_emulated_pio;
6531 r = EMULATE_USER_EXIT;
6532 } else if (vcpu->mmio_needed) {
6533 if (!vcpu->mmio_is_write)
6535 r = EMULATE_USER_EXIT;
6536 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6537 } else if (r == EMULATION_RESTART)
6543 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6544 toggle_interruptibility(vcpu, ctxt->interruptibility);
6545 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6546 kvm_rip_write(vcpu, ctxt->eip);
6547 if (r == EMULATE_DONE && ctxt->tf)
6548 kvm_vcpu_do_singlestep(vcpu, &r);
6549 if (!ctxt->have_exception ||
6550 exception_type(ctxt->exception.vector) == EXCPT_TRAP)
6551 __kvm_set_rflags(vcpu, ctxt->eflags);
6554 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
6555 * do nothing, and it will be requested again as soon as
6556 * the shadow expires. But we still need to check here,
6557 * because POPF has no interrupt shadow.
6559 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
6560 kvm_make_request(KVM_REQ_EVENT, vcpu);
6562 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
6567 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
6569 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
6571 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
6573 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
6574 void *insn, int insn_len)
6576 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
6578 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
6580 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
6582 vcpu->arch.pio.count = 0;
6586 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
6588 vcpu->arch.pio.count = 0;
6590 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
6593 return kvm_skip_emulated_instruction(vcpu);
6596 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
6597 unsigned short port)
6599 unsigned long val = kvm_rax_read(vcpu);
6600 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
6601 size, port, &val, 1);
6606 * Workaround userspace that relies on old KVM behavior of %rip being
6607 * incremented prior to exiting to userspace to handle "OUT 0x7e".
6610 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
6611 vcpu->arch.complete_userspace_io =
6612 complete_fast_pio_out_port_0x7e;
6613 kvm_skip_emulated_instruction(vcpu);
6615 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
6616 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
6621 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
6625 /* We should only ever be called with arch.pio.count equal to 1 */
6626 BUG_ON(vcpu->arch.pio.count != 1);
6628 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
6629 vcpu->arch.pio.count = 0;
6633 /* For size less than 4 we merge, else we zero extend */
6634 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
6637 * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
6638 * the copy and tracing
6640 emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
6641 vcpu->arch.pio.port, &val, 1);
6642 kvm_rax_write(vcpu, val);
6644 return kvm_skip_emulated_instruction(vcpu);
6647 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
6648 unsigned short port)
6653 /* For size less than 4 we merge, else we zero extend */
6654 val = (size < 4) ? kvm_rax_read(vcpu) : 0;
6656 ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
6659 kvm_rax_write(vcpu, val);
6663 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
6664 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
6669 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
6674 ret = kvm_fast_pio_in(vcpu, size, port);
6676 ret = kvm_fast_pio_out(vcpu, size, port);
6677 return ret && kvm_skip_emulated_instruction(vcpu);
6679 EXPORT_SYMBOL_GPL(kvm_fast_pio);
6681 static int kvmclock_cpu_down_prep(unsigned int cpu)
6683 __this_cpu_write(cpu_tsc_khz, 0);
6687 static void tsc_khz_changed(void *data)
6689 struct cpufreq_freqs *freq = data;
6690 unsigned long khz = 0;
6694 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6695 khz = cpufreq_quick_get(raw_smp_processor_id());
6698 __this_cpu_write(cpu_tsc_khz, khz);
6701 #ifdef CONFIG_X86_64
6702 static void kvm_hyperv_tsc_notifier(void)
6705 struct kvm_vcpu *vcpu;
6708 spin_lock(&kvm_lock);
6709 list_for_each_entry(kvm, &vm_list, vm_list)
6710 kvm_make_mclock_inprogress_request(kvm);
6712 hyperv_stop_tsc_emulation();
6714 /* TSC frequency always matches when on Hyper-V */
6715 for_each_present_cpu(cpu)
6716 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
6717 kvm_max_guest_tsc_khz = tsc_khz;
6719 list_for_each_entry(kvm, &vm_list, vm_list) {
6720 struct kvm_arch *ka = &kvm->arch;
6722 spin_lock(&ka->pvclock_gtod_sync_lock);
6724 pvclock_update_vm_gtod_copy(kvm);
6726 kvm_for_each_vcpu(cpu, vcpu, kvm)
6727 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6729 kvm_for_each_vcpu(cpu, vcpu, kvm)
6730 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
6732 spin_unlock(&ka->pvclock_gtod_sync_lock);
6734 spin_unlock(&kvm_lock);
6738 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
6741 struct kvm_vcpu *vcpu;
6742 int i, send_ipi = 0;
6745 * We allow guests to temporarily run on slowing clocks,
6746 * provided we notify them after, or to run on accelerating
6747 * clocks, provided we notify them before. Thus time never
6750 * However, we have a problem. We can't atomically update
6751 * the frequency of a given CPU from this function; it is
6752 * merely a notifier, which can be called from any CPU.
6753 * Changing the TSC frequency at arbitrary points in time
6754 * requires a recomputation of local variables related to
6755 * the TSC for each VCPU. We must flag these local variables
6756 * to be updated and be sure the update takes place with the
6757 * new frequency before any guests proceed.
6759 * Unfortunately, the combination of hotplug CPU and frequency
6760 * change creates an intractable locking scenario; the order
6761 * of when these callouts happen is undefined with respect to
6762 * CPU hotplug, and they can race with each other. As such,
6763 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
6764 * undefined; you can actually have a CPU frequency change take
6765 * place in between the computation of X and the setting of the
6766 * variable. To protect against this problem, all updates of
6767 * the per_cpu tsc_khz variable are done in an interrupt
6768 * protected IPI, and all callers wishing to update the value
6769 * must wait for a synchronous IPI to complete (which is trivial
6770 * if the caller is on the CPU already). This establishes the
6771 * necessary total order on variable updates.
6773 * Note that because a guest time update may take place
6774 * anytime after the setting of the VCPU's request bit, the
6775 * correct TSC value must be set before the request. However,
6776 * to ensure the update actually makes it to any guest which
6777 * starts running in hardware virtualization between the set
6778 * and the acquisition of the spinlock, we must also ping the
6779 * CPU after setting the request bit.
6783 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
6785 spin_lock(&kvm_lock);
6786 list_for_each_entry(kvm, &vm_list, vm_list) {
6787 kvm_for_each_vcpu(i, vcpu, kvm) {
6788 if (vcpu->cpu != cpu)
6790 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6791 if (vcpu->cpu != smp_processor_id())
6795 spin_unlock(&kvm_lock);
6797 if (freq->old < freq->new && send_ipi) {
6799 * We upscale the frequency. Must make the guest
6800 * doesn't see old kvmclock values while running with
6801 * the new frequency, otherwise we risk the guest sees
6802 * time go backwards.
6804 * In case we update the frequency for another cpu
6805 * (which might be in guest context) send an interrupt
6806 * to kick the cpu out of guest context. Next time
6807 * guest context is entered kvmclock will be updated,
6808 * so the guest will not see stale values.
6810 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
6814 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
6817 struct cpufreq_freqs *freq = data;
6820 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
6822 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
6825 for_each_cpu(cpu, freq->policy->cpus)
6826 __kvmclock_cpufreq_notifier(freq, cpu);
6831 static struct notifier_block kvmclock_cpufreq_notifier_block = {
6832 .notifier_call = kvmclock_cpufreq_notifier
6835 static int kvmclock_cpu_online(unsigned int cpu)
6837 tsc_khz_changed(NULL);
6841 static void kvm_timer_init(void)
6843 max_tsc_khz = tsc_khz;
6845 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
6846 #ifdef CONFIG_CPU_FREQ
6847 struct cpufreq_policy policy;
6850 memset(&policy, 0, sizeof(policy));
6852 cpufreq_get_policy(&policy, cpu);
6853 if (policy.cpuinfo.max_freq)
6854 max_tsc_khz = policy.cpuinfo.max_freq;
6857 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
6858 CPUFREQ_TRANSITION_NOTIFIER);
6860 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
6862 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
6863 kvmclock_cpu_online, kvmclock_cpu_down_prep);
6866 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
6867 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
6869 int kvm_is_in_guest(void)
6871 return __this_cpu_read(current_vcpu) != NULL;
6874 static int kvm_is_user_mode(void)
6878 if (__this_cpu_read(current_vcpu))
6879 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
6881 return user_mode != 0;
6884 static unsigned long kvm_get_guest_ip(void)
6886 unsigned long ip = 0;
6888 if (__this_cpu_read(current_vcpu))
6889 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
6894 static void kvm_handle_intel_pt_intr(void)
6896 struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
6898 kvm_make_request(KVM_REQ_PMI, vcpu);
6899 __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
6900 (unsigned long *)&vcpu->arch.pmu.global_status);
6903 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6904 .is_in_guest = kvm_is_in_guest,
6905 .is_user_mode = kvm_is_user_mode,
6906 .get_guest_ip = kvm_get_guest_ip,
6907 .handle_intel_pt_intr = kvm_handle_intel_pt_intr,
6910 static void kvm_set_mmio_spte_mask(void)
6913 int maxphyaddr = boot_cpu_data.x86_phys_bits;
6916 * Set the reserved bits and the present bit of an paging-structure
6917 * entry to generate page fault with PFER.RSV = 1.
6921 * Mask the uppermost physical address bit, which would be reserved as
6922 * long as the supported physical address width is less than 52.
6926 /* Set the present bit. */
6930 * If reserved bit is not supported, clear the present bit to disable
6933 if (IS_ENABLED(CONFIG_X86_64) && maxphyaddr == 52)
6936 kvm_mmu_set_mmio_spte_mask(mask, mask);
6939 #ifdef CONFIG_X86_64
6940 static void pvclock_gtod_update_fn(struct work_struct *work)
6944 struct kvm_vcpu *vcpu;
6947 spin_lock(&kvm_lock);
6948 list_for_each_entry(kvm, &vm_list, vm_list)
6949 kvm_for_each_vcpu(i, vcpu, kvm)
6950 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6951 atomic_set(&kvm_guest_has_master_clock, 0);
6952 spin_unlock(&kvm_lock);
6955 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6958 * Notification about pvclock gtod data update.
6960 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6963 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6964 struct timekeeper *tk = priv;
6966 update_pvclock_gtod(tk);
6968 /* disable master clock if host does not trust, or does not
6969 * use, TSC based clocksource.
6971 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
6972 atomic_read(&kvm_guest_has_master_clock) != 0)
6973 queue_work(system_long_wq, &pvclock_gtod_work);
6978 static struct notifier_block pvclock_gtod_notifier = {
6979 .notifier_call = pvclock_gtod_notify,
6983 int kvm_arch_init(void *opaque)
6986 struct kvm_x86_ops *ops = opaque;
6989 printk(KERN_ERR "kvm: already loaded the other module\n");
6994 if (!ops->cpu_has_kvm_support()) {
6995 printk(KERN_ERR "kvm: no hardware support\n");
6999 if (ops->disabled_by_bios()) {
7000 printk(KERN_ERR "kvm: disabled by bios\n");
7006 * KVM explicitly assumes that the guest has an FPU and
7007 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
7008 * vCPU's FPU state as a fxregs_state struct.
7010 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
7011 printk(KERN_ERR "kvm: inadequate fpu\n");
7017 x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
7018 __alignof__(struct fpu), SLAB_ACCOUNT,
7020 if (!x86_fpu_cache) {
7021 printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
7025 shared_msrs = alloc_percpu(struct kvm_shared_msrs);
7027 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
7028 goto out_free_x86_fpu_cache;
7031 r = kvm_mmu_module_init();
7033 goto out_free_percpu;
7035 kvm_set_mmio_spte_mask();
7039 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
7040 PT_DIRTY_MASK, PT64_NX_MASK, 0,
7041 PT_PRESENT_MASK, 0, sme_me_mask);
7044 perf_register_guest_info_callbacks(&kvm_guest_cbs);
7046 if (boot_cpu_has(X86_FEATURE_XSAVE))
7047 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
7050 #ifdef CONFIG_X86_64
7051 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
7053 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7054 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
7060 free_percpu(shared_msrs);
7061 out_free_x86_fpu_cache:
7062 kmem_cache_destroy(x86_fpu_cache);
7067 void kvm_arch_exit(void)
7069 #ifdef CONFIG_X86_64
7070 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7071 clear_hv_tscchange_cb();
7074 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
7076 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7077 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
7078 CPUFREQ_TRANSITION_NOTIFIER);
7079 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
7080 #ifdef CONFIG_X86_64
7081 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
7084 kvm_mmu_module_exit();
7085 free_percpu(shared_msrs);
7086 kmem_cache_destroy(x86_fpu_cache);
7089 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
7091 ++vcpu->stat.halt_exits;
7092 if (lapic_in_kernel(vcpu)) {
7093 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
7096 vcpu->run->exit_reason = KVM_EXIT_HLT;
7100 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
7102 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
7104 int ret = kvm_skip_emulated_instruction(vcpu);
7106 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
7107 * KVM_EXIT_DEBUG here.
7109 return kvm_vcpu_halt(vcpu) && ret;
7111 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
7113 #ifdef CONFIG_X86_64
7114 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
7115 unsigned long clock_type)
7117 struct kvm_clock_pairing clock_pairing;
7118 struct timespec64 ts;
7122 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
7123 return -KVM_EOPNOTSUPP;
7125 if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
7126 return -KVM_EOPNOTSUPP;
7128 clock_pairing.sec = ts.tv_sec;
7129 clock_pairing.nsec = ts.tv_nsec;
7130 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
7131 clock_pairing.flags = 0;
7132 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
7135 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
7136 sizeof(struct kvm_clock_pairing)))
7144 * kvm_pv_kick_cpu_op: Kick a vcpu.
7146 * @apicid - apicid of vcpu to be kicked.
7148 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
7150 struct kvm_lapic_irq lapic_irq;
7152 lapic_irq.shorthand = 0;
7153 lapic_irq.dest_mode = 0;
7154 lapic_irq.level = 0;
7155 lapic_irq.dest_id = apicid;
7156 lapic_irq.msi_redir_hint = false;
7158 lapic_irq.delivery_mode = APIC_DM_REMRD;
7159 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
7162 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
7164 if (!lapic_in_kernel(vcpu)) {
7165 WARN_ON_ONCE(vcpu->arch.apicv_active);
7168 if (!vcpu->arch.apicv_active)
7171 vcpu->arch.apicv_active = false;
7172 kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
7175 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
7177 unsigned long nr, a0, a1, a2, a3, ret;
7180 if (kvm_hv_hypercall_enabled(vcpu->kvm))
7181 return kvm_hv_hypercall(vcpu);
7183 nr = kvm_rax_read(vcpu);
7184 a0 = kvm_rbx_read(vcpu);
7185 a1 = kvm_rcx_read(vcpu);
7186 a2 = kvm_rdx_read(vcpu);
7187 a3 = kvm_rsi_read(vcpu);
7189 trace_kvm_hypercall(nr, a0, a1, a2, a3);
7191 op_64_bit = is_64_bit_mode(vcpu);
7200 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
7206 case KVM_HC_VAPIC_POLL_IRQ:
7209 case KVM_HC_KICK_CPU:
7210 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
7213 #ifdef CONFIG_X86_64
7214 case KVM_HC_CLOCK_PAIRING:
7215 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
7218 case KVM_HC_SEND_IPI:
7219 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
7228 kvm_rax_write(vcpu, ret);
7230 ++vcpu->stat.hypercalls;
7231 return kvm_skip_emulated_instruction(vcpu);
7233 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
7235 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
7237 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7238 char instruction[3];
7239 unsigned long rip = kvm_rip_read(vcpu);
7241 kvm_x86_ops->patch_hypercall(vcpu, instruction);
7243 return emulator_write_emulated(ctxt, rip, instruction, 3,
7247 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
7249 return vcpu->run->request_interrupt_window &&
7250 likely(!pic_in_kernel(vcpu->kvm));
7253 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
7255 struct kvm_run *kvm_run = vcpu->run;
7257 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
7258 kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
7259 kvm_run->cr8 = kvm_get_cr8(vcpu);
7260 kvm_run->apic_base = kvm_get_apic_base(vcpu);
7261 kvm_run->ready_for_interrupt_injection =
7262 pic_in_kernel(vcpu->kvm) ||
7263 kvm_vcpu_ready_for_interrupt_injection(vcpu);
7266 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
7270 if (!kvm_x86_ops->update_cr8_intercept)
7273 if (!lapic_in_kernel(vcpu))
7276 if (vcpu->arch.apicv_active)
7279 if (!vcpu->arch.apic->vapic_addr)
7280 max_irr = kvm_lapic_find_highest_irr(vcpu);
7287 tpr = kvm_lapic_get_cr8(vcpu);
7289 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
7292 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
7296 /* try to reinject previous events if any */
7298 if (vcpu->arch.exception.injected)
7299 kvm_x86_ops->queue_exception(vcpu);
7301 * Do not inject an NMI or interrupt if there is a pending
7302 * exception. Exceptions and interrupts are recognized at
7303 * instruction boundaries, i.e. the start of an instruction.
7304 * Trap-like exceptions, e.g. #DB, have higher priority than
7305 * NMIs and interrupts, i.e. traps are recognized before an
7306 * NMI/interrupt that's pending on the same instruction.
7307 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
7308 * priority, but are only generated (pended) during instruction
7309 * execution, i.e. a pending fault-like exception means the
7310 * fault occurred on the *previous* instruction and must be
7311 * serviced prior to recognizing any new events in order to
7312 * fully complete the previous instruction.
7314 else if (!vcpu->arch.exception.pending) {
7315 if (vcpu->arch.nmi_injected)
7316 kvm_x86_ops->set_nmi(vcpu);
7317 else if (vcpu->arch.interrupt.injected)
7318 kvm_x86_ops->set_irq(vcpu);
7322 * Call check_nested_events() even if we reinjected a previous event
7323 * in order for caller to determine if it should require immediate-exit
7324 * from L2 to L1 due to pending L1 events which require exit
7327 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7328 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
7333 /* try to inject new event if pending */
7334 if (vcpu->arch.exception.pending) {
7335 trace_kvm_inj_exception(vcpu->arch.exception.nr,
7336 vcpu->arch.exception.has_error_code,
7337 vcpu->arch.exception.error_code);
7339 WARN_ON_ONCE(vcpu->arch.exception.injected);
7340 vcpu->arch.exception.pending = false;
7341 vcpu->arch.exception.injected = true;
7343 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
7344 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
7347 if (vcpu->arch.exception.nr == DB_VECTOR) {
7349 * This code assumes that nSVM doesn't use
7350 * check_nested_events(). If it does, the
7351 * DR6/DR7 changes should happen before L1
7352 * gets a #VMEXIT for an intercepted #DB in
7353 * L2. (Under VMX, on the other hand, the
7354 * DR6/DR7 changes should not happen in the
7355 * event of a VM-exit to L1 for an intercepted
7358 kvm_deliver_exception_payload(vcpu);
7359 if (vcpu->arch.dr7 & DR7_GD) {
7360 vcpu->arch.dr7 &= ~DR7_GD;
7361 kvm_update_dr7(vcpu);
7365 kvm_x86_ops->queue_exception(vcpu);
7368 /* Don't consider new event if we re-injected an event */
7369 if (kvm_event_needs_reinjection(vcpu))
7372 if (vcpu->arch.smi_pending && !is_smm(vcpu) &&
7373 kvm_x86_ops->smi_allowed(vcpu)) {
7374 vcpu->arch.smi_pending = false;
7375 ++vcpu->arch.smi_count;
7377 } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
7378 --vcpu->arch.nmi_pending;
7379 vcpu->arch.nmi_injected = true;
7380 kvm_x86_ops->set_nmi(vcpu);
7381 } else if (kvm_cpu_has_injectable_intr(vcpu)) {
7383 * Because interrupts can be injected asynchronously, we are
7384 * calling check_nested_events again here to avoid a race condition.
7385 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
7386 * proposal and current concerns. Perhaps we should be setting
7387 * KVM_REQ_EVENT only on certain events and not unconditionally?
7389 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7390 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
7394 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
7395 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
7397 kvm_x86_ops->set_irq(vcpu);
7404 static void process_nmi(struct kvm_vcpu *vcpu)
7409 * x86 is limited to one NMI running, and one NMI pending after it.
7410 * If an NMI is already in progress, limit further NMIs to just one.
7411 * Otherwise, allow two (and we'll inject the first one immediately).
7413 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
7416 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
7417 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
7418 kvm_make_request(KVM_REQ_EVENT, vcpu);
7421 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
7424 flags |= seg->g << 23;
7425 flags |= seg->db << 22;
7426 flags |= seg->l << 21;
7427 flags |= seg->avl << 20;
7428 flags |= seg->present << 15;
7429 flags |= seg->dpl << 13;
7430 flags |= seg->s << 12;
7431 flags |= seg->type << 8;
7435 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
7437 struct kvm_segment seg;
7440 kvm_get_segment(vcpu, &seg, n);
7441 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
7444 offset = 0x7f84 + n * 12;
7446 offset = 0x7f2c + (n - 3) * 12;
7448 put_smstate(u32, buf, offset + 8, seg.base);
7449 put_smstate(u32, buf, offset + 4, seg.limit);
7450 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
7453 #ifdef CONFIG_X86_64
7454 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
7456 struct kvm_segment seg;
7460 kvm_get_segment(vcpu, &seg, n);
7461 offset = 0x7e00 + n * 16;
7463 flags = enter_smm_get_segment_flags(&seg) >> 8;
7464 put_smstate(u16, buf, offset, seg.selector);
7465 put_smstate(u16, buf, offset + 2, flags);
7466 put_smstate(u32, buf, offset + 4, seg.limit);
7467 put_smstate(u64, buf, offset + 8, seg.base);
7471 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
7474 struct kvm_segment seg;
7478 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
7479 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
7480 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
7481 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
7483 for (i = 0; i < 8; i++)
7484 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
7486 kvm_get_dr(vcpu, 6, &val);
7487 put_smstate(u32, buf, 0x7fcc, (u32)val);
7488 kvm_get_dr(vcpu, 7, &val);
7489 put_smstate(u32, buf, 0x7fc8, (u32)val);
7491 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7492 put_smstate(u32, buf, 0x7fc4, seg.selector);
7493 put_smstate(u32, buf, 0x7f64, seg.base);
7494 put_smstate(u32, buf, 0x7f60, seg.limit);
7495 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
7497 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7498 put_smstate(u32, buf, 0x7fc0, seg.selector);
7499 put_smstate(u32, buf, 0x7f80, seg.base);
7500 put_smstate(u32, buf, 0x7f7c, seg.limit);
7501 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
7503 kvm_x86_ops->get_gdt(vcpu, &dt);
7504 put_smstate(u32, buf, 0x7f74, dt.address);
7505 put_smstate(u32, buf, 0x7f70, dt.size);
7507 kvm_x86_ops->get_idt(vcpu, &dt);
7508 put_smstate(u32, buf, 0x7f58, dt.address);
7509 put_smstate(u32, buf, 0x7f54, dt.size);
7511 for (i = 0; i < 6; i++)
7512 enter_smm_save_seg_32(vcpu, buf, i);
7514 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
7517 put_smstate(u32, buf, 0x7efc, 0x00020000);
7518 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
7521 #ifdef CONFIG_X86_64
7522 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
7525 struct kvm_segment seg;
7529 for (i = 0; i < 16; i++)
7530 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
7532 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
7533 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
7535 kvm_get_dr(vcpu, 6, &val);
7536 put_smstate(u64, buf, 0x7f68, val);
7537 kvm_get_dr(vcpu, 7, &val);
7538 put_smstate(u64, buf, 0x7f60, val);
7540 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
7541 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
7542 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
7544 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
7547 put_smstate(u32, buf, 0x7efc, 0x00020064);
7549 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
7551 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7552 put_smstate(u16, buf, 0x7e90, seg.selector);
7553 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
7554 put_smstate(u32, buf, 0x7e94, seg.limit);
7555 put_smstate(u64, buf, 0x7e98, seg.base);
7557 kvm_x86_ops->get_idt(vcpu, &dt);
7558 put_smstate(u32, buf, 0x7e84, dt.size);
7559 put_smstate(u64, buf, 0x7e88, dt.address);
7561 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7562 put_smstate(u16, buf, 0x7e70, seg.selector);
7563 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
7564 put_smstate(u32, buf, 0x7e74, seg.limit);
7565 put_smstate(u64, buf, 0x7e78, seg.base);
7567 kvm_x86_ops->get_gdt(vcpu, &dt);
7568 put_smstate(u32, buf, 0x7e64, dt.size);
7569 put_smstate(u64, buf, 0x7e68, dt.address);
7571 for (i = 0; i < 6; i++)
7572 enter_smm_save_seg_64(vcpu, buf, i);
7576 static void enter_smm(struct kvm_vcpu *vcpu)
7578 struct kvm_segment cs, ds;
7583 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
7584 memset(buf, 0, 512);
7585 #ifdef CONFIG_X86_64
7586 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7587 enter_smm_save_state_64(vcpu, buf);
7590 enter_smm_save_state_32(vcpu, buf);
7593 * Give pre_enter_smm() a chance to make ISA-specific changes to the
7594 * vCPU state (e.g. leave guest mode) after we've saved the state into
7595 * the SMM state-save area.
7597 kvm_x86_ops->pre_enter_smm(vcpu, buf);
7599 vcpu->arch.hflags |= HF_SMM_MASK;
7600 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
7602 if (kvm_x86_ops->get_nmi_mask(vcpu))
7603 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
7605 kvm_x86_ops->set_nmi_mask(vcpu, true);
7607 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
7608 kvm_rip_write(vcpu, 0x8000);
7610 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
7611 kvm_x86_ops->set_cr0(vcpu, cr0);
7612 vcpu->arch.cr0 = cr0;
7614 kvm_x86_ops->set_cr4(vcpu, 0);
7616 /* Undocumented: IDT limit is set to zero on entry to SMM. */
7617 dt.address = dt.size = 0;
7618 kvm_x86_ops->set_idt(vcpu, &dt);
7620 __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
7622 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
7623 cs.base = vcpu->arch.smbase;
7628 cs.limit = ds.limit = 0xffffffff;
7629 cs.type = ds.type = 0x3;
7630 cs.dpl = ds.dpl = 0;
7635 cs.avl = ds.avl = 0;
7636 cs.present = ds.present = 1;
7637 cs.unusable = ds.unusable = 0;
7638 cs.padding = ds.padding = 0;
7640 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7641 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
7642 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
7643 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
7644 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
7645 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
7647 #ifdef CONFIG_X86_64
7648 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7649 kvm_x86_ops->set_efer(vcpu, 0);
7652 kvm_update_cpuid(vcpu);
7653 kvm_mmu_reset_context(vcpu);
7656 static void process_smi(struct kvm_vcpu *vcpu)
7658 vcpu->arch.smi_pending = true;
7659 kvm_make_request(KVM_REQ_EVENT, vcpu);
7662 void kvm_make_scan_ioapic_request(struct kvm *kvm)
7664 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
7667 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
7669 if (!kvm_apic_present(vcpu))
7672 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
7674 if (irqchip_split(vcpu->kvm))
7675 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
7677 if (vcpu->arch.apicv_active)
7678 kvm_x86_ops->sync_pir_to_irr(vcpu);
7679 if (ioapic_in_kernel(vcpu->kvm))
7680 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
7683 if (is_guest_mode(vcpu))
7684 vcpu->arch.load_eoi_exitmap_pending = true;
7686 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
7689 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
7691 u64 eoi_exit_bitmap[4];
7693 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
7696 bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
7697 vcpu_to_synic(vcpu)->vec_bitmap, 256);
7698 kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
7701 int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
7702 unsigned long start, unsigned long end,
7705 unsigned long apic_address;
7708 * The physical address of apic access page is stored in the VMCS.
7709 * Update it when it becomes invalid.
7711 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7712 if (start <= apic_address && apic_address < end)
7713 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
7718 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
7720 struct page *page = NULL;
7722 if (!lapic_in_kernel(vcpu))
7725 if (!kvm_x86_ops->set_apic_access_page_addr)
7728 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7729 if (is_error_page(page))
7731 kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
7734 * Do not pin apic access page in memory, the MMU notifier
7735 * will call us again if it is migrated or swapped out.
7739 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
7741 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
7743 smp_send_reschedule(vcpu->cpu);
7745 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
7748 * Returns 1 to let vcpu_run() continue the guest execution loop without
7749 * exiting to the userspace. Otherwise, the value will be returned to the
7752 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
7756 dm_request_for_irq_injection(vcpu) &&
7757 kvm_cpu_accept_dm_intr(vcpu);
7759 bool req_immediate_exit = false;
7761 if (kvm_request_pending(vcpu)) {
7762 if (kvm_check_request(KVM_REQ_GET_VMCS12_PAGES, vcpu))
7763 kvm_x86_ops->get_vmcs12_pages(vcpu);
7764 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
7765 kvm_mmu_unload(vcpu);
7766 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
7767 __kvm_migrate_timers(vcpu);
7768 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
7769 kvm_gen_update_masterclock(vcpu->kvm);
7770 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
7771 kvm_gen_kvmclock_update(vcpu);
7772 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
7773 r = kvm_guest_time_update(vcpu);
7777 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
7778 kvm_mmu_sync_roots(vcpu);
7779 if (kvm_check_request(KVM_REQ_LOAD_CR3, vcpu))
7780 kvm_mmu_load_cr3(vcpu);
7781 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
7782 kvm_vcpu_flush_tlb(vcpu, true);
7783 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
7784 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
7788 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
7789 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
7790 vcpu->mmio_needed = 0;
7794 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
7795 /* Page is swapped out. Do synthetic halt */
7796 vcpu->arch.apf.halted = true;
7800 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
7801 record_steal_time(vcpu);
7802 if (kvm_check_request(KVM_REQ_SMI, vcpu))
7804 if (kvm_check_request(KVM_REQ_NMI, vcpu))
7806 if (kvm_check_request(KVM_REQ_PMU, vcpu))
7807 kvm_pmu_handle_event(vcpu);
7808 if (kvm_check_request(KVM_REQ_PMI, vcpu))
7809 kvm_pmu_deliver_pmi(vcpu);
7810 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
7811 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
7812 if (test_bit(vcpu->arch.pending_ioapic_eoi,
7813 vcpu->arch.ioapic_handled_vectors)) {
7814 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
7815 vcpu->run->eoi.vector =
7816 vcpu->arch.pending_ioapic_eoi;
7821 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
7822 vcpu_scan_ioapic(vcpu);
7823 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
7824 vcpu_load_eoi_exitmap(vcpu);
7825 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
7826 kvm_vcpu_reload_apic_access_page(vcpu);
7827 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
7828 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7829 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
7833 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
7834 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7835 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
7839 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
7840 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
7841 vcpu->run->hyperv = vcpu->arch.hyperv.exit;
7847 * KVM_REQ_HV_STIMER has to be processed after
7848 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
7849 * depend on the guest clock being up-to-date
7851 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
7852 kvm_hv_process_stimers(vcpu);
7855 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
7856 ++vcpu->stat.req_event;
7857 kvm_apic_accept_events(vcpu);
7858 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
7863 if (inject_pending_event(vcpu, req_int_win) != 0)
7864 req_immediate_exit = true;
7866 /* Enable SMI/NMI/IRQ window open exits if needed.
7868 * SMIs have three cases:
7869 * 1) They can be nested, and then there is nothing to
7870 * do here because RSM will cause a vmexit anyway.
7871 * 2) There is an ISA-specific reason why SMI cannot be
7872 * injected, and the moment when this changes can be
7874 * 3) Or the SMI can be pending because
7875 * inject_pending_event has completed the injection
7876 * of an IRQ or NMI from the previous vmexit, and
7877 * then we request an immediate exit to inject the
7880 if (vcpu->arch.smi_pending && !is_smm(vcpu))
7881 if (!kvm_x86_ops->enable_smi_window(vcpu))
7882 req_immediate_exit = true;
7883 if (vcpu->arch.nmi_pending)
7884 kvm_x86_ops->enable_nmi_window(vcpu);
7885 if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
7886 kvm_x86_ops->enable_irq_window(vcpu);
7887 WARN_ON(vcpu->arch.exception.pending);
7890 if (kvm_lapic_enabled(vcpu)) {
7891 update_cr8_intercept(vcpu);
7892 kvm_lapic_sync_to_vapic(vcpu);
7896 r = kvm_mmu_reload(vcpu);
7898 goto cancel_injection;
7903 kvm_x86_ops->prepare_guest_switch(vcpu);
7906 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
7907 * IPI are then delayed after guest entry, which ensures that they
7908 * result in virtual interrupt delivery.
7910 local_irq_disable();
7911 vcpu->mode = IN_GUEST_MODE;
7913 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7916 * 1) We should set ->mode before checking ->requests. Please see
7917 * the comment in kvm_vcpu_exiting_guest_mode().
7919 * 2) For APICv, we should set ->mode before checking PID.ON. This
7920 * pairs with the memory barrier implicit in pi_test_and_set_on
7921 * (see vmx_deliver_posted_interrupt).
7923 * 3) This also orders the write to mode from any reads to the page
7924 * tables done while the VCPU is running. Please see the comment
7925 * in kvm_flush_remote_tlbs.
7927 smp_mb__after_srcu_read_unlock();
7930 * This handles the case where a posted interrupt was
7931 * notified with kvm_vcpu_kick.
7933 if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
7934 kvm_x86_ops->sync_pir_to_irr(vcpu);
7936 if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
7937 || need_resched() || signal_pending(current)) {
7938 vcpu->mode = OUTSIDE_GUEST_MODE;
7942 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7944 goto cancel_injection;
7947 if (req_immediate_exit) {
7948 kvm_make_request(KVM_REQ_EVENT, vcpu);
7949 kvm_x86_ops->request_immediate_exit(vcpu);
7952 trace_kvm_entry(vcpu->vcpu_id);
7953 if (lapic_in_kernel(vcpu) &&
7954 vcpu->arch.apic->lapic_timer.timer_advance_ns)
7955 wait_lapic_expire(vcpu);
7956 guest_enter_irqoff();
7958 fpregs_assert_state_consistent();
7959 if (test_thread_flag(TIF_NEED_FPU_LOAD))
7960 switch_fpu_return();
7962 if (unlikely(vcpu->arch.switch_db_regs)) {
7964 set_debugreg(vcpu->arch.eff_db[0], 0);
7965 set_debugreg(vcpu->arch.eff_db[1], 1);
7966 set_debugreg(vcpu->arch.eff_db[2], 2);
7967 set_debugreg(vcpu->arch.eff_db[3], 3);
7968 set_debugreg(vcpu->arch.dr6, 6);
7969 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7972 kvm_x86_ops->run(vcpu);
7975 * Do this here before restoring debug registers on the host. And
7976 * since we do this before handling the vmexit, a DR access vmexit
7977 * can (a) read the correct value of the debug registers, (b) set
7978 * KVM_DEBUGREG_WONT_EXIT again.
7980 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
7981 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
7982 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
7983 kvm_update_dr0123(vcpu);
7984 kvm_update_dr6(vcpu);
7985 kvm_update_dr7(vcpu);
7986 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7990 * If the guest has used debug registers, at least dr7
7991 * will be disabled while returning to the host.
7992 * If we don't have active breakpoints in the host, we don't
7993 * care about the messed up debug address registers. But if
7994 * we have some of them active, restore the old state.
7996 if (hw_breakpoint_active())
7997 hw_breakpoint_restore();
7999 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
8001 vcpu->mode = OUTSIDE_GUEST_MODE;
8004 kvm_before_interrupt(vcpu);
8005 kvm_x86_ops->handle_external_intr(vcpu);
8006 kvm_after_interrupt(vcpu);
8010 guest_exit_irqoff();
8015 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8018 * Profile KVM exit RIPs:
8020 if (unlikely(prof_on == KVM_PROFILING)) {
8021 unsigned long rip = kvm_rip_read(vcpu);
8022 profile_hit(KVM_PROFILING, (void *)rip);
8025 if (unlikely(vcpu->arch.tsc_always_catchup))
8026 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8028 if (vcpu->arch.apic_attention)
8029 kvm_lapic_sync_from_vapic(vcpu);
8031 vcpu->arch.gpa_available = false;
8032 r = kvm_x86_ops->handle_exit(vcpu);
8036 kvm_x86_ops->cancel_injection(vcpu);
8037 if (unlikely(vcpu->arch.apic_attention))
8038 kvm_lapic_sync_from_vapic(vcpu);
8043 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
8045 if (!kvm_arch_vcpu_runnable(vcpu) &&
8046 (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
8047 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8048 kvm_vcpu_block(vcpu);
8049 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8051 if (kvm_x86_ops->post_block)
8052 kvm_x86_ops->post_block(vcpu);
8054 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
8058 kvm_apic_accept_events(vcpu);
8059 switch(vcpu->arch.mp_state) {
8060 case KVM_MP_STATE_HALTED:
8061 vcpu->arch.pv.pv_unhalted = false;
8062 vcpu->arch.mp_state =
8063 KVM_MP_STATE_RUNNABLE;
8065 case KVM_MP_STATE_RUNNABLE:
8066 vcpu->arch.apf.halted = false;
8068 case KVM_MP_STATE_INIT_RECEIVED:
8077 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
8079 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
8080 kvm_x86_ops->check_nested_events(vcpu, false);
8082 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
8083 !vcpu->arch.apf.halted);
8086 static int vcpu_run(struct kvm_vcpu *vcpu)
8089 struct kvm *kvm = vcpu->kvm;
8091 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8092 vcpu->arch.l1tf_flush_l1d = true;
8095 if (kvm_vcpu_running(vcpu)) {
8096 r = vcpu_enter_guest(vcpu);
8098 r = vcpu_block(kvm, vcpu);
8104 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
8105 if (kvm_cpu_has_pending_timer(vcpu))
8106 kvm_inject_pending_timer_irqs(vcpu);
8108 if (dm_request_for_irq_injection(vcpu) &&
8109 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
8111 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
8112 ++vcpu->stat.request_irq_exits;
8116 kvm_check_async_pf_completion(vcpu);
8118 if (signal_pending(current)) {
8120 vcpu->run->exit_reason = KVM_EXIT_INTR;
8121 ++vcpu->stat.signal_exits;
8124 if (need_resched()) {
8125 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8127 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8131 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8136 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
8139 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8140 r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
8141 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8142 if (r != EMULATE_DONE)
8147 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
8149 BUG_ON(!vcpu->arch.pio.count);
8151 return complete_emulated_io(vcpu);
8155 * Implements the following, as a state machine:
8159 * for each mmio piece in the fragment
8167 * for each mmio piece in the fragment
8172 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
8174 struct kvm_run *run = vcpu->run;
8175 struct kvm_mmio_fragment *frag;
8178 BUG_ON(!vcpu->mmio_needed);
8180 /* Complete previous fragment */
8181 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
8182 len = min(8u, frag->len);
8183 if (!vcpu->mmio_is_write)
8184 memcpy(frag->data, run->mmio.data, len);
8186 if (frag->len <= 8) {
8187 /* Switch to the next fragment. */
8189 vcpu->mmio_cur_fragment++;
8191 /* Go forward to the next mmio piece. */
8197 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
8198 vcpu->mmio_needed = 0;
8200 /* FIXME: return into emulator if single-stepping. */
8201 if (vcpu->mmio_is_write)
8203 vcpu->mmio_read_completed = 1;
8204 return complete_emulated_io(vcpu);
8207 run->exit_reason = KVM_EXIT_MMIO;
8208 run->mmio.phys_addr = frag->gpa;
8209 if (vcpu->mmio_is_write)
8210 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
8211 run->mmio.len = min(8u, frag->len);
8212 run->mmio.is_write = vcpu->mmio_is_write;
8213 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8217 /* Swap (qemu) user FPU context for the guest FPU context. */
8218 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
8222 copy_fpregs_to_fpstate(¤t->thread.fpu);
8223 /* PKRU is separately restored in kvm_x86_ops->run. */
8224 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state,
8225 ~XFEATURE_MASK_PKRU);
8227 fpregs_mark_activate();
8233 /* When vcpu_run ends, restore user space FPU context. */
8234 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
8238 copy_fpregs_to_fpstate(vcpu->arch.guest_fpu);
8239 copy_kernel_to_fpregs(¤t->thread.fpu.state);
8241 fpregs_mark_activate();
8244 ++vcpu->stat.fpu_reload;
8248 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
8253 kvm_sigset_activate(vcpu);
8254 kvm_load_guest_fpu(vcpu);
8256 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
8257 if (kvm_run->immediate_exit) {
8261 kvm_vcpu_block(vcpu);
8262 kvm_apic_accept_events(vcpu);
8263 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
8265 if (signal_pending(current)) {
8267 vcpu->run->exit_reason = KVM_EXIT_INTR;
8268 ++vcpu->stat.signal_exits;
8273 if (vcpu->run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
8278 if (vcpu->run->kvm_dirty_regs) {
8279 r = sync_regs(vcpu);
8284 /* re-sync apic's tpr */
8285 if (!lapic_in_kernel(vcpu)) {
8286 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
8292 if (unlikely(vcpu->arch.complete_userspace_io)) {
8293 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
8294 vcpu->arch.complete_userspace_io = NULL;
8299 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
8301 if (kvm_run->immediate_exit)
8307 kvm_put_guest_fpu(vcpu);
8308 if (vcpu->run->kvm_valid_regs)
8310 post_kvm_run_save(vcpu);
8311 kvm_sigset_deactivate(vcpu);
8317 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8319 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
8321 * We are here if userspace calls get_regs() in the middle of
8322 * instruction emulation. Registers state needs to be copied
8323 * back from emulation context to vcpu. Userspace shouldn't do
8324 * that usually, but some bad designed PV devices (vmware
8325 * backdoor interface) need this to work
8327 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
8328 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8330 regs->rax = kvm_rax_read(vcpu);
8331 regs->rbx = kvm_rbx_read(vcpu);
8332 regs->rcx = kvm_rcx_read(vcpu);
8333 regs->rdx = kvm_rdx_read(vcpu);
8334 regs->rsi = kvm_rsi_read(vcpu);
8335 regs->rdi = kvm_rdi_read(vcpu);
8336 regs->rsp = kvm_rsp_read(vcpu);
8337 regs->rbp = kvm_rbp_read(vcpu);
8338 #ifdef CONFIG_X86_64
8339 regs->r8 = kvm_r8_read(vcpu);
8340 regs->r9 = kvm_r9_read(vcpu);
8341 regs->r10 = kvm_r10_read(vcpu);
8342 regs->r11 = kvm_r11_read(vcpu);
8343 regs->r12 = kvm_r12_read(vcpu);
8344 regs->r13 = kvm_r13_read(vcpu);
8345 regs->r14 = kvm_r14_read(vcpu);
8346 regs->r15 = kvm_r15_read(vcpu);
8349 regs->rip = kvm_rip_read(vcpu);
8350 regs->rflags = kvm_get_rflags(vcpu);
8353 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8356 __get_regs(vcpu, regs);
8361 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8363 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
8364 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8366 kvm_rax_write(vcpu, regs->rax);
8367 kvm_rbx_write(vcpu, regs->rbx);
8368 kvm_rcx_write(vcpu, regs->rcx);
8369 kvm_rdx_write(vcpu, regs->rdx);
8370 kvm_rsi_write(vcpu, regs->rsi);
8371 kvm_rdi_write(vcpu, regs->rdi);
8372 kvm_rsp_write(vcpu, regs->rsp);
8373 kvm_rbp_write(vcpu, regs->rbp);
8374 #ifdef CONFIG_X86_64
8375 kvm_r8_write(vcpu, regs->r8);
8376 kvm_r9_write(vcpu, regs->r9);
8377 kvm_r10_write(vcpu, regs->r10);
8378 kvm_r11_write(vcpu, regs->r11);
8379 kvm_r12_write(vcpu, regs->r12);
8380 kvm_r13_write(vcpu, regs->r13);
8381 kvm_r14_write(vcpu, regs->r14);
8382 kvm_r15_write(vcpu, regs->r15);
8385 kvm_rip_write(vcpu, regs->rip);
8386 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
8388 vcpu->arch.exception.pending = false;
8390 kvm_make_request(KVM_REQ_EVENT, vcpu);
8393 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8396 __set_regs(vcpu, regs);
8401 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
8403 struct kvm_segment cs;
8405 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8409 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
8411 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8415 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8416 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8417 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8418 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8419 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8420 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8422 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8423 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8425 kvm_x86_ops->get_idt(vcpu, &dt);
8426 sregs->idt.limit = dt.size;
8427 sregs->idt.base = dt.address;
8428 kvm_x86_ops->get_gdt(vcpu, &dt);
8429 sregs->gdt.limit = dt.size;
8430 sregs->gdt.base = dt.address;
8432 sregs->cr0 = kvm_read_cr0(vcpu);
8433 sregs->cr2 = vcpu->arch.cr2;
8434 sregs->cr3 = kvm_read_cr3(vcpu);
8435 sregs->cr4 = kvm_read_cr4(vcpu);
8436 sregs->cr8 = kvm_get_cr8(vcpu);
8437 sregs->efer = vcpu->arch.efer;
8438 sregs->apic_base = kvm_get_apic_base(vcpu);
8440 memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
8442 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
8443 set_bit(vcpu->arch.interrupt.nr,
8444 (unsigned long *)sregs->interrupt_bitmap);
8447 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
8448 struct kvm_sregs *sregs)
8451 __get_sregs(vcpu, sregs);
8456 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
8457 struct kvm_mp_state *mp_state)
8461 kvm_apic_accept_events(vcpu);
8462 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
8463 vcpu->arch.pv.pv_unhalted)
8464 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
8466 mp_state->mp_state = vcpu->arch.mp_state;
8472 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
8473 struct kvm_mp_state *mp_state)
8479 if (!lapic_in_kernel(vcpu) &&
8480 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
8483 /* INITs are latched while in SMM */
8484 if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
8485 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
8486 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
8489 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
8490 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
8491 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
8493 vcpu->arch.mp_state = mp_state->mp_state;
8494 kvm_make_request(KVM_REQ_EVENT, vcpu);
8502 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
8503 int reason, bool has_error_code, u32 error_code)
8505 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
8508 init_emulate_ctxt(vcpu);
8510 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
8511 has_error_code, error_code);
8514 return EMULATE_FAIL;
8516 kvm_rip_write(vcpu, ctxt->eip);
8517 kvm_set_rflags(vcpu, ctxt->eflags);
8518 kvm_make_request(KVM_REQ_EVENT, vcpu);
8519 return EMULATE_DONE;
8521 EXPORT_SYMBOL_GPL(kvm_task_switch);
8523 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8525 if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
8526 (sregs->cr4 & X86_CR4_OSXSAVE))
8529 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
8531 * When EFER.LME and CR0.PG are set, the processor is in
8532 * 64-bit mode (though maybe in a 32-bit code segment).
8533 * CR4.PAE and EFER.LMA must be set.
8535 if (!(sregs->cr4 & X86_CR4_PAE)
8536 || !(sregs->efer & EFER_LMA))
8540 * Not in 64-bit mode: EFER.LMA is clear and the code
8541 * segment cannot be 64-bit.
8543 if (sregs->efer & EFER_LMA || sregs->cs.l)
8550 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8552 struct msr_data apic_base_msr;
8553 int mmu_reset_needed = 0;
8554 int cpuid_update_needed = 0;
8555 int pending_vec, max_bits, idx;
8559 if (kvm_valid_sregs(vcpu, sregs))
8562 apic_base_msr.data = sregs->apic_base;
8563 apic_base_msr.host_initiated = true;
8564 if (kvm_set_apic_base(vcpu, &apic_base_msr))
8567 dt.size = sregs->idt.limit;
8568 dt.address = sregs->idt.base;
8569 kvm_x86_ops->set_idt(vcpu, &dt);
8570 dt.size = sregs->gdt.limit;
8571 dt.address = sregs->gdt.base;
8572 kvm_x86_ops->set_gdt(vcpu, &dt);
8574 vcpu->arch.cr2 = sregs->cr2;
8575 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
8576 vcpu->arch.cr3 = sregs->cr3;
8577 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
8579 kvm_set_cr8(vcpu, sregs->cr8);
8581 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
8582 kvm_x86_ops->set_efer(vcpu, sregs->efer);
8584 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
8585 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
8586 vcpu->arch.cr0 = sregs->cr0;
8588 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
8589 cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
8590 (X86_CR4_OSXSAVE | X86_CR4_PKE));
8591 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
8592 if (cpuid_update_needed)
8593 kvm_update_cpuid(vcpu);
8595 idx = srcu_read_lock(&vcpu->kvm->srcu);
8596 if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu)) {
8597 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
8598 mmu_reset_needed = 1;
8600 srcu_read_unlock(&vcpu->kvm->srcu, idx);
8602 if (mmu_reset_needed)
8603 kvm_mmu_reset_context(vcpu);
8605 max_bits = KVM_NR_INTERRUPTS;
8606 pending_vec = find_first_bit(
8607 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
8608 if (pending_vec < max_bits) {
8609 kvm_queue_interrupt(vcpu, pending_vec, false);
8610 pr_debug("Set back pending irq %d\n", pending_vec);
8613 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8614 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8615 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8616 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8617 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8618 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8620 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8621 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8623 update_cr8_intercept(vcpu);
8625 /* Older userspace won't unhalt the vcpu on reset. */
8626 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
8627 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
8629 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8631 kvm_make_request(KVM_REQ_EVENT, vcpu);
8638 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
8639 struct kvm_sregs *sregs)
8644 ret = __set_sregs(vcpu, sregs);
8649 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
8650 struct kvm_guest_debug *dbg)
8652 unsigned long rflags;
8657 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
8659 if (vcpu->arch.exception.pending)
8661 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
8662 kvm_queue_exception(vcpu, DB_VECTOR);
8664 kvm_queue_exception(vcpu, BP_VECTOR);
8668 * Read rflags as long as potentially injected trace flags are still
8671 rflags = kvm_get_rflags(vcpu);
8673 vcpu->guest_debug = dbg->control;
8674 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
8675 vcpu->guest_debug = 0;
8677 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
8678 for (i = 0; i < KVM_NR_DB_REGS; ++i)
8679 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
8680 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
8682 for (i = 0; i < KVM_NR_DB_REGS; i++)
8683 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
8685 kvm_update_dr7(vcpu);
8687 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8688 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
8689 get_segment_base(vcpu, VCPU_SREG_CS);
8692 * Trigger an rflags update that will inject or remove the trace
8695 kvm_set_rflags(vcpu, rflags);
8697 kvm_x86_ops->update_bp_intercept(vcpu);
8707 * Translate a guest virtual address to a guest physical address.
8709 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
8710 struct kvm_translation *tr)
8712 unsigned long vaddr = tr->linear_address;
8718 idx = srcu_read_lock(&vcpu->kvm->srcu);
8719 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
8720 srcu_read_unlock(&vcpu->kvm->srcu, idx);
8721 tr->physical_address = gpa;
8722 tr->valid = gpa != UNMAPPED_GVA;
8730 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8732 struct fxregs_state *fxsave;
8736 fxsave = &vcpu->arch.guest_fpu->state.fxsave;
8737 memcpy(fpu->fpr, fxsave->st_space, 128);
8738 fpu->fcw = fxsave->cwd;
8739 fpu->fsw = fxsave->swd;
8740 fpu->ftwx = fxsave->twd;
8741 fpu->last_opcode = fxsave->fop;
8742 fpu->last_ip = fxsave->rip;
8743 fpu->last_dp = fxsave->rdp;
8744 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
8750 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8752 struct fxregs_state *fxsave;
8756 fxsave = &vcpu->arch.guest_fpu->state.fxsave;
8758 memcpy(fxsave->st_space, fpu->fpr, 128);
8759 fxsave->cwd = fpu->fcw;
8760 fxsave->swd = fpu->fsw;
8761 fxsave->twd = fpu->ftwx;
8762 fxsave->fop = fpu->last_opcode;
8763 fxsave->rip = fpu->last_ip;
8764 fxsave->rdp = fpu->last_dp;
8765 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
8771 static void store_regs(struct kvm_vcpu *vcpu)
8773 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
8775 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
8776 __get_regs(vcpu, &vcpu->run->s.regs.regs);
8778 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
8779 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
8781 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
8782 kvm_vcpu_ioctl_x86_get_vcpu_events(
8783 vcpu, &vcpu->run->s.regs.events);
8786 static int sync_regs(struct kvm_vcpu *vcpu)
8788 if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
8791 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
8792 __set_regs(vcpu, &vcpu->run->s.regs.regs);
8793 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
8795 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
8796 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
8798 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
8800 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
8801 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
8802 vcpu, &vcpu->run->s.regs.events))
8804 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
8810 static void fx_init(struct kvm_vcpu *vcpu)
8812 fpstate_init(&vcpu->arch.guest_fpu->state);
8813 if (boot_cpu_has(X86_FEATURE_XSAVES))
8814 vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
8815 host_xcr0 | XSTATE_COMPACTION_ENABLED;
8818 * Ensure guest xcr0 is valid for loading
8820 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8822 vcpu->arch.cr0 |= X86_CR0_ET;
8825 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
8827 void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
8829 kvmclock_reset(vcpu);
8831 kvm_x86_ops->vcpu_free(vcpu);
8832 free_cpumask_var(wbinvd_dirty_mask);
8835 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
8838 struct kvm_vcpu *vcpu;
8840 if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
8841 printk_once(KERN_WARNING
8842 "kvm: SMP vm created on host with unstable TSC; "
8843 "guest TSC will not be reliable\n");
8845 vcpu = kvm_x86_ops->vcpu_create(kvm, id);
8850 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
8852 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
8853 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
8854 kvm_vcpu_mtrr_init(vcpu);
8856 kvm_vcpu_reset(vcpu, false);
8857 kvm_init_mmu(vcpu, false);
8862 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
8864 struct msr_data msr;
8865 struct kvm *kvm = vcpu->kvm;
8867 kvm_hv_vcpu_postcreate(vcpu);
8869 if (mutex_lock_killable(&vcpu->mutex))
8873 msr.index = MSR_IA32_TSC;
8874 msr.host_initiated = true;
8875 kvm_write_tsc(vcpu, &msr);
8877 mutex_unlock(&vcpu->mutex);
8879 if (!kvmclock_periodic_sync)
8882 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
8883 KVMCLOCK_SYNC_PERIOD);
8886 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
8888 vcpu->arch.apf.msr_val = 0;
8891 kvm_mmu_unload(vcpu);
8894 kvm_x86_ops->vcpu_free(vcpu);
8897 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
8899 kvm_lapic_reset(vcpu, init_event);
8901 vcpu->arch.hflags = 0;
8903 vcpu->arch.smi_pending = 0;
8904 vcpu->arch.smi_count = 0;
8905 atomic_set(&vcpu->arch.nmi_queued, 0);
8906 vcpu->arch.nmi_pending = 0;
8907 vcpu->arch.nmi_injected = false;
8908 kvm_clear_interrupt_queue(vcpu);
8909 kvm_clear_exception_queue(vcpu);
8910 vcpu->arch.exception.pending = false;
8912 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
8913 kvm_update_dr0123(vcpu);
8914 vcpu->arch.dr6 = DR6_INIT;
8915 kvm_update_dr6(vcpu);
8916 vcpu->arch.dr7 = DR7_FIXED_1;
8917 kvm_update_dr7(vcpu);
8921 kvm_make_request(KVM_REQ_EVENT, vcpu);
8922 vcpu->arch.apf.msr_val = 0;
8923 vcpu->arch.st.msr_val = 0;
8925 kvmclock_reset(vcpu);
8927 kvm_clear_async_pf_completion_queue(vcpu);
8928 kvm_async_pf_hash_reset(vcpu);
8929 vcpu->arch.apf.halted = false;
8931 if (kvm_mpx_supported()) {
8932 void *mpx_state_buffer;
8935 * To avoid have the INIT path from kvm_apic_has_events() that be
8936 * called with loaded FPU and does not let userspace fix the state.
8939 kvm_put_guest_fpu(vcpu);
8940 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
8942 if (mpx_state_buffer)
8943 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
8944 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
8946 if (mpx_state_buffer)
8947 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
8949 kvm_load_guest_fpu(vcpu);
8953 kvm_pmu_reset(vcpu);
8954 vcpu->arch.smbase = 0x30000;
8956 vcpu->arch.msr_misc_features_enables = 0;
8958 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8961 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
8962 vcpu->arch.regs_avail = ~0;
8963 vcpu->arch.regs_dirty = ~0;
8965 vcpu->arch.ia32_xss = 0;
8967 kvm_x86_ops->vcpu_reset(vcpu, init_event);
8970 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
8972 struct kvm_segment cs;
8974 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8975 cs.selector = vector << 8;
8976 cs.base = vector << 12;
8977 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8978 kvm_rip_write(vcpu, 0);
8981 int kvm_arch_hardware_enable(void)
8984 struct kvm_vcpu *vcpu;
8989 bool stable, backwards_tsc = false;
8991 kvm_shared_msr_cpu_online();
8992 ret = kvm_x86_ops->hardware_enable();
8996 local_tsc = rdtsc();
8997 stable = !kvm_check_tsc_unstable();
8998 list_for_each_entry(kvm, &vm_list, vm_list) {
8999 kvm_for_each_vcpu(i, vcpu, kvm) {
9000 if (!stable && vcpu->cpu == smp_processor_id())
9001 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9002 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
9003 backwards_tsc = true;
9004 if (vcpu->arch.last_host_tsc > max_tsc)
9005 max_tsc = vcpu->arch.last_host_tsc;
9011 * Sometimes, even reliable TSCs go backwards. This happens on
9012 * platforms that reset TSC during suspend or hibernate actions, but
9013 * maintain synchronization. We must compensate. Fortunately, we can
9014 * detect that condition here, which happens early in CPU bringup,
9015 * before any KVM threads can be running. Unfortunately, we can't
9016 * bring the TSCs fully up to date with real time, as we aren't yet far
9017 * enough into CPU bringup that we know how much real time has actually
9018 * elapsed; our helper function, ktime_get_boot_ns() will be using boot
9019 * variables that haven't been updated yet.
9021 * So we simply find the maximum observed TSC above, then record the
9022 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
9023 * the adjustment will be applied. Note that we accumulate
9024 * adjustments, in case multiple suspend cycles happen before some VCPU
9025 * gets a chance to run again. In the event that no KVM threads get a
9026 * chance to run, we will miss the entire elapsed period, as we'll have
9027 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
9028 * loose cycle time. This isn't too big a deal, since the loss will be
9029 * uniform across all VCPUs (not to mention the scenario is extremely
9030 * unlikely). It is possible that a second hibernate recovery happens
9031 * much faster than a first, causing the observed TSC here to be
9032 * smaller; this would require additional padding adjustment, which is
9033 * why we set last_host_tsc to the local tsc observed here.
9035 * N.B. - this code below runs only on platforms with reliable TSC,
9036 * as that is the only way backwards_tsc is set above. Also note
9037 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
9038 * have the same delta_cyc adjustment applied if backwards_tsc
9039 * is detected. Note further, this adjustment is only done once,
9040 * as we reset last_host_tsc on all VCPUs to stop this from being
9041 * called multiple times (one for each physical CPU bringup).
9043 * Platforms with unreliable TSCs don't have to deal with this, they
9044 * will be compensated by the logic in vcpu_load, which sets the TSC to
9045 * catchup mode. This will catchup all VCPUs to real time, but cannot
9046 * guarantee that they stay in perfect synchronization.
9048 if (backwards_tsc) {
9049 u64 delta_cyc = max_tsc - local_tsc;
9050 list_for_each_entry(kvm, &vm_list, vm_list) {
9051 kvm->arch.backwards_tsc_observed = true;
9052 kvm_for_each_vcpu(i, vcpu, kvm) {
9053 vcpu->arch.tsc_offset_adjustment += delta_cyc;
9054 vcpu->arch.last_host_tsc = local_tsc;
9055 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9059 * We have to disable TSC offset matching.. if you were
9060 * booting a VM while issuing an S4 host suspend....
9061 * you may have some problem. Solving this issue is
9062 * left as an exercise to the reader.
9064 kvm->arch.last_tsc_nsec = 0;
9065 kvm->arch.last_tsc_write = 0;
9072 void kvm_arch_hardware_disable(void)
9074 kvm_x86_ops->hardware_disable();
9075 drop_user_return_notifiers();
9078 int kvm_arch_hardware_setup(void)
9082 r = kvm_x86_ops->hardware_setup();
9086 if (kvm_has_tsc_control) {
9088 * Make sure the user can only configure tsc_khz values that
9089 * fit into a signed integer.
9090 * A min value is not calculated because it will always
9091 * be 1 on all machines.
9093 u64 max = min(0x7fffffffULL,
9094 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
9095 kvm_max_guest_tsc_khz = max;
9097 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
9100 kvm_init_msr_list();
9104 void kvm_arch_hardware_unsetup(void)
9106 kvm_x86_ops->hardware_unsetup();
9109 void kvm_arch_check_processor_compat(void *rtn)
9111 kvm_x86_ops->check_processor_compatibility(rtn);
9114 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
9116 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
9118 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
9120 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
9122 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
9125 struct static_key kvm_no_apic_vcpu __read_mostly;
9126 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
9128 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
9133 vcpu->arch.emulate_ctxt.ops = &emulate_ops;
9134 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
9135 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9137 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
9139 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
9144 vcpu->arch.pio_data = page_address(page);
9146 kvm_set_tsc_khz(vcpu, max_tsc_khz);
9148 r = kvm_mmu_create(vcpu);
9150 goto fail_free_pio_data;
9152 if (irqchip_in_kernel(vcpu->kvm)) {
9153 vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu);
9154 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
9156 goto fail_mmu_destroy;
9158 static_key_slow_inc(&kvm_no_apic_vcpu);
9160 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
9161 GFP_KERNEL_ACCOUNT);
9162 if (!vcpu->arch.mce_banks) {
9164 goto fail_free_lapic;
9166 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
9168 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
9169 GFP_KERNEL_ACCOUNT)) {
9171 goto fail_free_mce_banks;
9176 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
9178 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
9180 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
9182 kvm_async_pf_hash_reset(vcpu);
9185 vcpu->arch.pending_external_vector = -1;
9186 vcpu->arch.preempted_in_kernel = false;
9188 kvm_hv_vcpu_init(vcpu);
9192 fail_free_mce_banks:
9193 kfree(vcpu->arch.mce_banks);
9195 kvm_free_lapic(vcpu);
9197 kvm_mmu_destroy(vcpu);
9199 free_page((unsigned long)vcpu->arch.pio_data);
9204 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
9208 kvm_hv_vcpu_uninit(vcpu);
9209 kvm_pmu_destroy(vcpu);
9210 kfree(vcpu->arch.mce_banks);
9211 kvm_free_lapic(vcpu);
9212 idx = srcu_read_lock(&vcpu->kvm->srcu);
9213 kvm_mmu_destroy(vcpu);
9214 srcu_read_unlock(&vcpu->kvm->srcu, idx);
9215 free_page((unsigned long)vcpu->arch.pio_data);
9216 if (!lapic_in_kernel(vcpu))
9217 static_key_slow_dec(&kvm_no_apic_vcpu);
9220 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
9222 vcpu->arch.l1tf_flush_l1d = true;
9223 kvm_x86_ops->sched_in(vcpu, cpu);
9226 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
9231 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
9232 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
9233 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
9234 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
9236 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
9237 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
9238 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
9239 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
9240 &kvm->arch.irq_sources_bitmap);
9242 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
9243 mutex_init(&kvm->arch.apic_map_lock);
9244 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
9246 kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
9247 pvclock_update_vm_gtod_copy(kvm);
9249 kvm->arch.guest_can_read_msr_platform_info = true;
9251 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
9252 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
9254 kvm_hv_init_vm(kvm);
9255 kvm_page_track_init(kvm);
9256 kvm_mmu_init_vm(kvm);
9258 if (kvm_x86_ops->vm_init)
9259 return kvm_x86_ops->vm_init(kvm);
9264 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
9267 kvm_mmu_unload(vcpu);
9271 static void kvm_free_vcpus(struct kvm *kvm)
9274 struct kvm_vcpu *vcpu;
9277 * Unpin any mmu pages first.
9279 kvm_for_each_vcpu(i, vcpu, kvm) {
9280 kvm_clear_async_pf_completion_queue(vcpu);
9281 kvm_unload_vcpu_mmu(vcpu);
9283 kvm_for_each_vcpu(i, vcpu, kvm)
9284 kvm_arch_vcpu_free(vcpu);
9286 mutex_lock(&kvm->lock);
9287 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
9288 kvm->vcpus[i] = NULL;
9290 atomic_set(&kvm->online_vcpus, 0);
9291 mutex_unlock(&kvm->lock);
9294 void kvm_arch_sync_events(struct kvm *kvm)
9296 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
9297 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
9301 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9305 struct kvm_memslots *slots = kvm_memslots(kvm);
9306 struct kvm_memory_slot *slot, old;
9308 /* Called with kvm->slots_lock held. */
9309 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
9312 slot = id_to_memslot(slots, id);
9318 * MAP_SHARED to prevent internal slot pages from being moved
9321 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
9322 MAP_SHARED | MAP_ANONYMOUS, 0);
9323 if (IS_ERR((void *)hva))
9324 return PTR_ERR((void *)hva);
9333 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
9334 struct kvm_userspace_memory_region m;
9336 m.slot = id | (i << 16);
9338 m.guest_phys_addr = gpa;
9339 m.userspace_addr = hva;
9340 m.memory_size = size;
9341 r = __kvm_set_memory_region(kvm, &m);
9347 vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
9351 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
9353 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9357 mutex_lock(&kvm->slots_lock);
9358 r = __x86_set_memory_region(kvm, id, gpa, size);
9359 mutex_unlock(&kvm->slots_lock);
9363 EXPORT_SYMBOL_GPL(x86_set_memory_region);
9365 void kvm_arch_destroy_vm(struct kvm *kvm)
9367 if (current->mm == kvm->mm) {
9369 * Free memory regions allocated on behalf of userspace,
9370 * unless the the memory map has changed due to process exit
9373 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
9374 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
9375 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
9377 if (kvm_x86_ops->vm_destroy)
9378 kvm_x86_ops->vm_destroy(kvm);
9379 kvm_pic_destroy(kvm);
9380 kvm_ioapic_destroy(kvm);
9381 kvm_free_vcpus(kvm);
9382 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
9383 kvm_mmu_uninit_vm(kvm);
9384 kvm_page_track_cleanup(kvm);
9385 kvm_hv_destroy_vm(kvm);
9388 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
9389 struct kvm_memory_slot *dont)
9393 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9394 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
9395 kvfree(free->arch.rmap[i]);
9396 free->arch.rmap[i] = NULL;
9401 if (!dont || free->arch.lpage_info[i - 1] !=
9402 dont->arch.lpage_info[i - 1]) {
9403 kvfree(free->arch.lpage_info[i - 1]);
9404 free->arch.lpage_info[i - 1] = NULL;
9408 kvm_page_track_free_memslot(free, dont);
9411 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
9412 unsigned long npages)
9416 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9417 struct kvm_lpage_info *linfo;
9422 lpages = gfn_to_index(slot->base_gfn + npages - 1,
9423 slot->base_gfn, level) + 1;
9425 slot->arch.rmap[i] =
9426 kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
9427 GFP_KERNEL_ACCOUNT);
9428 if (!slot->arch.rmap[i])
9433 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
9437 slot->arch.lpage_info[i - 1] = linfo;
9439 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
9440 linfo[0].disallow_lpage = 1;
9441 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
9442 linfo[lpages - 1].disallow_lpage = 1;
9443 ugfn = slot->userspace_addr >> PAGE_SHIFT;
9445 * If the gfn and userspace address are not aligned wrt each
9446 * other, or if explicitly asked to, disable large page
9447 * support for this slot
9449 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
9450 !kvm_largepages_enabled()) {
9453 for (j = 0; j < lpages; ++j)
9454 linfo[j].disallow_lpage = 1;
9458 if (kvm_page_track_create_memslot(slot, npages))
9464 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9465 kvfree(slot->arch.rmap[i]);
9466 slot->arch.rmap[i] = NULL;
9470 kvfree(slot->arch.lpage_info[i - 1]);
9471 slot->arch.lpage_info[i - 1] = NULL;
9476 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
9479 * memslots->generation has been incremented.
9480 * mmio generation may have reached its maximum value.
9482 kvm_mmu_invalidate_mmio_sptes(kvm, gen);
9485 int kvm_arch_prepare_memory_region(struct kvm *kvm,
9486 struct kvm_memory_slot *memslot,
9487 const struct kvm_userspace_memory_region *mem,
9488 enum kvm_mr_change change)
9493 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
9494 struct kvm_memory_slot *new)
9496 /* Still write protect RO slot */
9497 if (new->flags & KVM_MEM_READONLY) {
9498 kvm_mmu_slot_remove_write_access(kvm, new);
9503 * Call kvm_x86_ops dirty logging hooks when they are valid.
9505 * kvm_x86_ops->slot_disable_log_dirty is called when:
9507 * - KVM_MR_CREATE with dirty logging is disabled
9508 * - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
9510 * The reason is, in case of PML, we need to set D-bit for any slots
9511 * with dirty logging disabled in order to eliminate unnecessary GPA
9512 * logging in PML buffer (and potential PML buffer full VMEXT). This
9513 * guarantees leaving PML enabled during guest's lifetime won't have
9514 * any additional overhead from PML when guest is running with dirty
9515 * logging disabled for memory slots.
9517 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
9518 * to dirty logging mode.
9520 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
9522 * In case of write protect:
9524 * Write protect all pages for dirty logging.
9526 * All the sptes including the large sptes which point to this
9527 * slot are set to readonly. We can not create any new large
9528 * spte on this slot until the end of the logging.
9530 * See the comments in fast_page_fault().
9532 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
9533 if (kvm_x86_ops->slot_enable_log_dirty)
9534 kvm_x86_ops->slot_enable_log_dirty(kvm, new);
9536 kvm_mmu_slot_remove_write_access(kvm, new);
9538 if (kvm_x86_ops->slot_disable_log_dirty)
9539 kvm_x86_ops->slot_disable_log_dirty(kvm, new);
9543 void kvm_arch_commit_memory_region(struct kvm *kvm,
9544 const struct kvm_userspace_memory_region *mem,
9545 const struct kvm_memory_slot *old,
9546 const struct kvm_memory_slot *new,
9547 enum kvm_mr_change change)
9549 if (!kvm->arch.n_requested_mmu_pages)
9550 kvm_mmu_change_mmu_pages(kvm,
9551 kvm_mmu_calculate_default_mmu_pages(kvm));
9554 * Dirty logging tracks sptes in 4k granularity, meaning that large
9555 * sptes have to be split. If live migration is successful, the guest
9556 * in the source machine will be destroyed and large sptes will be
9557 * created in the destination. However, if the guest continues to run
9558 * in the source machine (for example if live migration fails), small
9559 * sptes will remain around and cause bad performance.
9561 * Scan sptes if dirty logging has been stopped, dropping those
9562 * which can be collapsed into a single large-page spte. Later
9563 * page faults will create the large-page sptes.
9565 if ((change != KVM_MR_DELETE) &&
9566 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
9567 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
9568 kvm_mmu_zap_collapsible_sptes(kvm, new);
9571 * Set up write protection and/or dirty logging for the new slot.
9573 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
9574 * been zapped so no dirty logging staff is needed for old slot. For
9575 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
9576 * new and it's also covered when dealing with the new slot.
9578 * FIXME: const-ify all uses of struct kvm_memory_slot.
9580 if (change != KVM_MR_DELETE)
9581 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
9584 void kvm_arch_flush_shadow_all(struct kvm *kvm)
9586 kvm_mmu_zap_all(kvm);
9589 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
9590 struct kvm_memory_slot *slot)
9592 kvm_page_track_flush_slot(kvm, slot);
9595 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
9597 return (is_guest_mode(vcpu) &&
9598 kvm_x86_ops->guest_apic_has_interrupt &&
9599 kvm_x86_ops->guest_apic_has_interrupt(vcpu));
9602 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
9604 if (!list_empty_careful(&vcpu->async_pf.done))
9607 if (kvm_apic_has_events(vcpu))
9610 if (vcpu->arch.pv.pv_unhalted)
9613 if (vcpu->arch.exception.pending)
9616 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
9617 (vcpu->arch.nmi_pending &&
9618 kvm_x86_ops->nmi_allowed(vcpu)))
9621 if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
9622 (vcpu->arch.smi_pending && !is_smm(vcpu)))
9625 if (kvm_arch_interrupt_allowed(vcpu) &&
9626 (kvm_cpu_has_interrupt(vcpu) ||
9627 kvm_guest_apic_has_interrupt(vcpu)))
9630 if (kvm_hv_has_stimer_pending(vcpu))
9636 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
9638 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
9641 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
9643 return vcpu->arch.preempted_in_kernel;
9646 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
9648 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
9651 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
9653 return kvm_x86_ops->interrupt_allowed(vcpu);
9656 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
9658 if (is_64_bit_mode(vcpu))
9659 return kvm_rip_read(vcpu);
9660 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
9661 kvm_rip_read(vcpu));
9663 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
9665 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
9667 return kvm_get_linear_rip(vcpu) == linear_rip;
9669 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
9671 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
9673 unsigned long rflags;
9675 rflags = kvm_x86_ops->get_rflags(vcpu);
9676 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9677 rflags &= ~X86_EFLAGS_TF;
9680 EXPORT_SYMBOL_GPL(kvm_get_rflags);
9682 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9684 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
9685 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
9686 rflags |= X86_EFLAGS_TF;
9687 kvm_x86_ops->set_rflags(vcpu, rflags);
9690 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9692 __kvm_set_rflags(vcpu, rflags);
9693 kvm_make_request(KVM_REQ_EVENT, vcpu);
9695 EXPORT_SYMBOL_GPL(kvm_set_rflags);
9697 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
9701 if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
9705 r = kvm_mmu_reload(vcpu);
9709 if (!vcpu->arch.mmu->direct_map &&
9710 work->arch.cr3 != vcpu->arch.mmu->get_cr3(vcpu))
9713 vcpu->arch.mmu->page_fault(vcpu, work->gva, 0, true);
9716 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
9718 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
9721 static inline u32 kvm_async_pf_next_probe(u32 key)
9723 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
9726 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9728 u32 key = kvm_async_pf_hash_fn(gfn);
9730 while (vcpu->arch.apf.gfns[key] != ~0)
9731 key = kvm_async_pf_next_probe(key);
9733 vcpu->arch.apf.gfns[key] = gfn;
9736 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
9739 u32 key = kvm_async_pf_hash_fn(gfn);
9741 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
9742 (vcpu->arch.apf.gfns[key] != gfn &&
9743 vcpu->arch.apf.gfns[key] != ~0); i++)
9744 key = kvm_async_pf_next_probe(key);
9749 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9751 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
9754 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9758 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
9760 vcpu->arch.apf.gfns[i] = ~0;
9762 j = kvm_async_pf_next_probe(j);
9763 if (vcpu->arch.apf.gfns[j] == ~0)
9765 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
9767 * k lies cyclically in ]i,j]
9769 * |....j i.k.| or |.k..j i...|
9771 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
9772 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
9777 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
9780 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
9784 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
9787 return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
9791 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
9792 struct kvm_async_pf *work)
9794 struct x86_exception fault;
9796 trace_kvm_async_pf_not_present(work->arch.token, work->gva);
9797 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
9799 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
9800 (vcpu->arch.apf.send_user_only &&
9801 kvm_x86_ops->get_cpl(vcpu) == 0))
9802 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
9803 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
9804 fault.vector = PF_VECTOR;
9805 fault.error_code_valid = true;
9806 fault.error_code = 0;
9807 fault.nested_page_fault = false;
9808 fault.address = work->arch.token;
9809 fault.async_page_fault = true;
9810 kvm_inject_page_fault(vcpu, &fault);
9814 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
9815 struct kvm_async_pf *work)
9817 struct x86_exception fault;
9820 if (work->wakeup_all)
9821 work->arch.token = ~0; /* broadcast wakeup */
9823 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
9824 trace_kvm_async_pf_ready(work->arch.token, work->gva);
9826 if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
9827 !apf_get_user(vcpu, &val)) {
9828 if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
9829 vcpu->arch.exception.pending &&
9830 vcpu->arch.exception.nr == PF_VECTOR &&
9831 !apf_put_user(vcpu, 0)) {
9832 vcpu->arch.exception.injected = false;
9833 vcpu->arch.exception.pending = false;
9834 vcpu->arch.exception.nr = 0;
9835 vcpu->arch.exception.has_error_code = false;
9836 vcpu->arch.exception.error_code = 0;
9837 vcpu->arch.exception.has_payload = false;
9838 vcpu->arch.exception.payload = 0;
9839 } else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
9840 fault.vector = PF_VECTOR;
9841 fault.error_code_valid = true;
9842 fault.error_code = 0;
9843 fault.nested_page_fault = false;
9844 fault.address = work->arch.token;
9845 fault.async_page_fault = true;
9846 kvm_inject_page_fault(vcpu, &fault);
9849 vcpu->arch.apf.halted = false;
9850 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9853 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
9855 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
9858 return kvm_can_do_async_pf(vcpu);
9861 void kvm_arch_start_assignment(struct kvm *kvm)
9863 atomic_inc(&kvm->arch.assigned_device_count);
9865 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
9867 void kvm_arch_end_assignment(struct kvm *kvm)
9869 atomic_dec(&kvm->arch.assigned_device_count);
9871 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
9873 bool kvm_arch_has_assigned_device(struct kvm *kvm)
9875 return atomic_read(&kvm->arch.assigned_device_count);
9877 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
9879 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
9881 atomic_inc(&kvm->arch.noncoherent_dma_count);
9883 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
9885 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
9887 atomic_dec(&kvm->arch.noncoherent_dma_count);
9889 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
9891 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
9893 return atomic_read(&kvm->arch.noncoherent_dma_count);
9895 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
9897 bool kvm_arch_has_irq_bypass(void)
9899 return kvm_x86_ops->update_pi_irte != NULL;
9902 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
9903 struct irq_bypass_producer *prod)
9905 struct kvm_kernel_irqfd *irqfd =
9906 container_of(cons, struct kvm_kernel_irqfd, consumer);
9908 irqfd->producer = prod;
9910 return kvm_x86_ops->update_pi_irte(irqfd->kvm,
9911 prod->irq, irqfd->gsi, 1);
9914 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
9915 struct irq_bypass_producer *prod)
9918 struct kvm_kernel_irqfd *irqfd =
9919 container_of(cons, struct kvm_kernel_irqfd, consumer);
9921 WARN_ON(irqfd->producer != prod);
9922 irqfd->producer = NULL;
9925 * When producer of consumer is unregistered, we change back to
9926 * remapped mode, so we can re-use the current implementation
9927 * when the irq is masked/disabled or the consumer side (KVM
9928 * int this case doesn't want to receive the interrupts.
9930 ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
9932 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
9933 " fails: %d\n", irqfd->consumer.token, ret);
9936 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
9937 uint32_t guest_irq, bool set)
9939 if (!kvm_x86_ops->update_pi_irte)
9942 return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
9945 bool kvm_vector_hashing_enabled(void)
9947 return vector_hashing;
9949 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
9951 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
9952 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
9953 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
9954 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
9955 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
9956 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
9957 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
9958 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
9959 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
9960 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
9961 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
9962 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
9963 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
9964 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
9965 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
9966 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
9967 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
9968 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
9969 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);