1 // SPDX-License-Identifier: GPL-2.0-only
3 * Kernel-based Virtual Machine driver for Linux
5 * derived from drivers/kvm/kvm_main.c
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright (C) 2008 Qumranet, Inc.
9 * Copyright IBM Corporation, 2008
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
13 * Avi Kivity <avi@qumranet.com>
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Amit Shah <amit.shah@qumranet.com>
16 * Ben-Ami Yassour <benami@il.ibm.com>
19 #include <linux/kvm_host.h>
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/intel-iommu.h>
45 #include <linux/cpufreq.h>
46 #include <linux/user-return-notifier.h>
47 #include <linux/srcu.h>
48 #include <linux/slab.h>
49 #include <linux/perf_event.h>
50 #include <linux/uaccess.h>
51 #include <linux/hash.h>
52 #include <linux/pci.h>
53 #include <linux/timekeeper_internal.h>
54 #include <linux/pvclock_gtod.h>
55 #include <linux/kvm_irqfd.h>
56 #include <linux/irqbypass.h>
57 #include <linux/sched/stat.h>
58 #include <linux/sched/isolation.h>
59 #include <linux/mem_encrypt.h>
60 #include <linux/entry-kvm.h>
61 #include <linux/suspend.h>
63 #include <trace/events/kvm.h>
65 #include <asm/debugreg.h>
70 #include <linux/kernel_stat.h>
71 #include <asm/fpu/internal.h> /* Ugh! */
72 #include <asm/pvclock.h>
73 #include <asm/div64.h>
74 #include <asm/irq_remapping.h>
75 #include <asm/mshyperv.h>
76 #include <asm/hypervisor.h>
77 #include <asm/tlbflush.h>
78 #include <asm/intel_pt.h>
79 #include <asm/emulate_prefix.h>
81 #include <clocksource/hyperv_timer.h>
83 #define CREATE_TRACE_POINTS
86 #define MAX_IO_MSRS 256
87 #define KVM_MAX_MCE_BANKS 32
88 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
89 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
91 #define emul_to_vcpu(ctxt) \
92 ((struct kvm_vcpu *)(ctxt)->vcpu)
95 * - enable syscall per default because its emulated by KVM
96 * - enable LME and LMA per default on 64 bit KVM
100 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
102 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
105 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
107 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
109 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
110 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
112 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
113 static void process_nmi(struct kvm_vcpu *vcpu);
114 static void process_smi(struct kvm_vcpu *vcpu);
115 static void enter_smm(struct kvm_vcpu *vcpu);
116 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
117 static void store_regs(struct kvm_vcpu *vcpu);
118 static int sync_regs(struct kvm_vcpu *vcpu);
120 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
121 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
123 struct kvm_x86_ops kvm_x86_ops __read_mostly;
124 EXPORT_SYMBOL_GPL(kvm_x86_ops);
126 #define KVM_X86_OP(func) \
127 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \
128 *(((struct kvm_x86_ops *)0)->func));
129 #define KVM_X86_OP_NULL KVM_X86_OP
130 #include <asm/kvm-x86-ops.h>
131 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
132 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
133 EXPORT_STATIC_CALL_GPL(kvm_x86_tlb_flush_current);
135 static bool __read_mostly ignore_msrs = 0;
136 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
138 bool __read_mostly report_ignored_msrs = true;
139 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
140 EXPORT_SYMBOL_GPL(report_ignored_msrs);
142 unsigned int min_timer_period_us = 200;
143 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
145 static bool __read_mostly kvmclock_periodic_sync = true;
146 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
148 bool __read_mostly kvm_has_tsc_control;
149 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
150 u32 __read_mostly kvm_max_guest_tsc_khz;
151 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
152 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits;
153 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
154 u64 __read_mostly kvm_max_tsc_scaling_ratio;
155 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
156 u64 __read_mostly kvm_default_tsc_scaling_ratio;
157 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
158 bool __read_mostly kvm_has_bus_lock_exit;
159 EXPORT_SYMBOL_GPL(kvm_has_bus_lock_exit);
161 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
162 static u32 __read_mostly tsc_tolerance_ppm = 250;
163 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
166 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables
167 * adaptive tuning starting from default advancement of 1000ns. '0' disables
168 * advancement entirely. Any other value is used as-is and disables adaptive
169 * tuning, i.e. allows privileged userspace to set an exact advancement time.
171 static int __read_mostly lapic_timer_advance_ns = -1;
172 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
174 static bool __read_mostly vector_hashing = true;
175 module_param(vector_hashing, bool, S_IRUGO);
177 bool __read_mostly enable_vmware_backdoor = false;
178 module_param(enable_vmware_backdoor, bool, S_IRUGO);
179 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
181 static bool __read_mostly force_emulation_prefix = false;
182 module_param(force_emulation_prefix, bool, S_IRUGO);
184 int __read_mostly pi_inject_timer = -1;
185 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
188 * Restoring the host value for MSRs that are only consumed when running in
189 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
190 * returns to userspace, i.e. the kernel can run with the guest's value.
192 #define KVM_MAX_NR_USER_RETURN_MSRS 16
194 struct kvm_user_return_msrs {
195 struct user_return_notifier urn;
197 struct kvm_user_return_msr_values {
200 } values[KVM_MAX_NR_USER_RETURN_MSRS];
203 u32 __read_mostly kvm_nr_uret_msrs;
204 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
205 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
206 static struct kvm_user_return_msrs __percpu *user_return_msrs;
208 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
209 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
210 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
211 | XFEATURE_MASK_PKRU)
213 u64 __read_mostly host_efer;
214 EXPORT_SYMBOL_GPL(host_efer);
216 bool __read_mostly allow_smaller_maxphyaddr = 0;
217 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
219 bool __read_mostly enable_apicv = true;
220 EXPORT_SYMBOL_GPL(enable_apicv);
222 u64 __read_mostly host_xss;
223 EXPORT_SYMBOL_GPL(host_xss);
224 u64 __read_mostly supported_xss;
225 EXPORT_SYMBOL_GPL(supported_xss);
227 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
228 KVM_GENERIC_VM_STATS(),
229 STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
230 STATS_DESC_COUNTER(VM, mmu_pte_write),
231 STATS_DESC_COUNTER(VM, mmu_pde_zapped),
232 STATS_DESC_COUNTER(VM, mmu_flooded),
233 STATS_DESC_COUNTER(VM, mmu_recycled),
234 STATS_DESC_COUNTER(VM, mmu_cache_miss),
235 STATS_DESC_ICOUNTER(VM, mmu_unsync),
236 STATS_DESC_ICOUNTER(VM, lpages),
237 STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
238 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
240 static_assert(ARRAY_SIZE(kvm_vm_stats_desc) ==
241 sizeof(struct kvm_vm_stat) / sizeof(u64));
243 const struct kvm_stats_header kvm_vm_stats_header = {
244 .name_size = KVM_STATS_NAME_SIZE,
245 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
246 .id_offset = sizeof(struct kvm_stats_header),
247 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
248 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
249 sizeof(kvm_vm_stats_desc),
252 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
253 KVM_GENERIC_VCPU_STATS(),
254 STATS_DESC_COUNTER(VCPU, pf_fixed),
255 STATS_DESC_COUNTER(VCPU, pf_guest),
256 STATS_DESC_COUNTER(VCPU, tlb_flush),
257 STATS_DESC_COUNTER(VCPU, invlpg),
258 STATS_DESC_COUNTER(VCPU, exits),
259 STATS_DESC_COUNTER(VCPU, io_exits),
260 STATS_DESC_COUNTER(VCPU, mmio_exits),
261 STATS_DESC_COUNTER(VCPU, signal_exits),
262 STATS_DESC_COUNTER(VCPU, irq_window_exits),
263 STATS_DESC_COUNTER(VCPU, nmi_window_exits),
264 STATS_DESC_COUNTER(VCPU, l1d_flush),
265 STATS_DESC_COUNTER(VCPU, halt_exits),
266 STATS_DESC_COUNTER(VCPU, request_irq_exits),
267 STATS_DESC_COUNTER(VCPU, irq_exits),
268 STATS_DESC_COUNTER(VCPU, host_state_reload),
269 STATS_DESC_COUNTER(VCPU, fpu_reload),
270 STATS_DESC_COUNTER(VCPU, insn_emulation),
271 STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
272 STATS_DESC_COUNTER(VCPU, hypercalls),
273 STATS_DESC_COUNTER(VCPU, irq_injections),
274 STATS_DESC_COUNTER(VCPU, nmi_injections),
275 STATS_DESC_COUNTER(VCPU, req_event),
276 STATS_DESC_COUNTER(VCPU, nested_run),
277 STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
278 STATS_DESC_COUNTER(VCPU, directed_yield_successful),
279 STATS_DESC_ICOUNTER(VCPU, guest_mode)
281 static_assert(ARRAY_SIZE(kvm_vcpu_stats_desc) ==
282 sizeof(struct kvm_vcpu_stat) / sizeof(u64));
284 const struct kvm_stats_header kvm_vcpu_stats_header = {
285 .name_size = KVM_STATS_NAME_SIZE,
286 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
287 .id_offset = sizeof(struct kvm_stats_header),
288 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
289 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
290 sizeof(kvm_vcpu_stats_desc),
293 u64 __read_mostly host_xcr0;
294 u64 __read_mostly supported_xcr0;
295 EXPORT_SYMBOL_GPL(supported_xcr0);
297 static struct kmem_cache *x86_fpu_cache;
299 static struct kmem_cache *x86_emulator_cache;
302 * When called, it means the previous get/set msr reached an invalid msr.
303 * Return true if we want to ignore/silent this failed msr access.
305 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
307 const char *op = write ? "wrmsr" : "rdmsr";
310 if (report_ignored_msrs)
311 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
316 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
322 static struct kmem_cache *kvm_alloc_emulator_cache(void)
324 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
325 unsigned int size = sizeof(struct x86_emulate_ctxt);
327 return kmem_cache_create_usercopy("x86_emulator", size,
328 __alignof__(struct x86_emulate_ctxt),
329 SLAB_ACCOUNT, useroffset,
330 size - useroffset, NULL);
333 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
335 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
338 for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
339 vcpu->arch.apf.gfns[i] = ~0;
342 static void kvm_on_user_return(struct user_return_notifier *urn)
345 struct kvm_user_return_msrs *msrs
346 = container_of(urn, struct kvm_user_return_msrs, urn);
347 struct kvm_user_return_msr_values *values;
351 * Disabling irqs at this point since the following code could be
352 * interrupted and executed through kvm_arch_hardware_disable()
354 local_irq_save(flags);
355 if (msrs->registered) {
356 msrs->registered = false;
357 user_return_notifier_unregister(urn);
359 local_irq_restore(flags);
360 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
361 values = &msrs->values[slot];
362 if (values->host != values->curr) {
363 wrmsrl(kvm_uret_msrs_list[slot], values->host);
364 values->curr = values->host;
369 static int kvm_probe_user_return_msr(u32 msr)
375 ret = rdmsrl_safe(msr, &val);
378 ret = wrmsrl_safe(msr, val);
384 int kvm_add_user_return_msr(u32 msr)
386 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
388 if (kvm_probe_user_return_msr(msr))
391 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
392 return kvm_nr_uret_msrs++;
394 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
396 int kvm_find_user_return_msr(u32 msr)
400 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
401 if (kvm_uret_msrs_list[i] == msr)
406 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
408 static void kvm_user_return_msr_cpu_online(void)
410 unsigned int cpu = smp_processor_id();
411 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
415 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
416 rdmsrl_safe(kvm_uret_msrs_list[i], &value);
417 msrs->values[i].host = value;
418 msrs->values[i].curr = value;
422 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
424 unsigned int cpu = smp_processor_id();
425 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
428 value = (value & mask) | (msrs->values[slot].host & ~mask);
429 if (value == msrs->values[slot].curr)
431 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
435 msrs->values[slot].curr = value;
436 if (!msrs->registered) {
437 msrs->urn.on_user_return = kvm_on_user_return;
438 user_return_notifier_register(&msrs->urn);
439 msrs->registered = true;
443 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
445 static void drop_user_return_notifiers(void)
447 unsigned int cpu = smp_processor_id();
448 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
450 if (msrs->registered)
451 kvm_on_user_return(&msrs->urn);
454 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
456 return vcpu->arch.apic_base;
458 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
460 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
462 return kvm_apic_mode(kvm_get_apic_base(vcpu));
464 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
466 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
468 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
469 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
470 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
471 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
473 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
475 if (!msr_info->host_initiated) {
476 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
478 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
482 kvm_lapic_set_base(vcpu, msr_info->data);
483 kvm_recalculate_apic_map(vcpu->kvm);
486 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
488 asmlinkage __visible noinstr void kvm_spurious_fault(void)
490 /* Fault while not rebooting. We want the trace. */
491 BUG_ON(!kvm_rebooting);
493 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
495 #define EXCPT_BENIGN 0
496 #define EXCPT_CONTRIBUTORY 1
499 static int exception_class(int vector)
509 return EXCPT_CONTRIBUTORY;
516 #define EXCPT_FAULT 0
518 #define EXCPT_ABORT 2
519 #define EXCPT_INTERRUPT 3
521 static int exception_type(int vector)
525 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
526 return EXCPT_INTERRUPT;
530 /* #DB is trap, as instruction watchpoints are handled elsewhere */
531 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
534 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
537 /* Reserved exceptions will result in fault */
541 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
543 unsigned nr = vcpu->arch.exception.nr;
544 bool has_payload = vcpu->arch.exception.has_payload;
545 unsigned long payload = vcpu->arch.exception.payload;
553 * "Certain debug exceptions may clear bit 0-3. The
554 * remaining contents of the DR6 register are never
555 * cleared by the processor".
557 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
559 * In order to reflect the #DB exception payload in guest
560 * dr6, three components need to be considered: active low
561 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
563 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
564 * In the target guest dr6:
565 * FIXED_1 bits should always be set.
566 * Active low bits should be cleared if 1-setting in payload.
567 * Active high bits should be set if 1-setting in payload.
569 * Note, the payload is compatible with the pending debug
570 * exceptions/exit qualification under VMX, that active_low bits
571 * are active high in payload.
572 * So they need to be flipped for DR6.
574 vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
575 vcpu->arch.dr6 |= payload;
576 vcpu->arch.dr6 ^= payload & DR6_ACTIVE_LOW;
579 * The #DB payload is defined as compatible with the 'pending
580 * debug exceptions' field under VMX, not DR6. While bit 12 is
581 * defined in the 'pending debug exceptions' field (enabled
582 * breakpoint), it is reserved and must be zero in DR6.
584 vcpu->arch.dr6 &= ~BIT(12);
587 vcpu->arch.cr2 = payload;
591 vcpu->arch.exception.has_payload = false;
592 vcpu->arch.exception.payload = 0;
594 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
596 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
597 unsigned nr, bool has_error, u32 error_code,
598 bool has_payload, unsigned long payload, bool reinject)
603 kvm_make_request(KVM_REQ_EVENT, vcpu);
605 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
609 * On vmentry, vcpu->arch.exception.pending is only
610 * true if an event injection was blocked by
611 * nested_run_pending. In that case, however,
612 * vcpu_enter_guest requests an immediate exit,
613 * and the guest shouldn't proceed far enough to
616 WARN_ON_ONCE(vcpu->arch.exception.pending);
617 vcpu->arch.exception.injected = true;
618 if (WARN_ON_ONCE(has_payload)) {
620 * A reinjected event has already
621 * delivered its payload.
627 vcpu->arch.exception.pending = true;
628 vcpu->arch.exception.injected = false;
630 vcpu->arch.exception.has_error_code = has_error;
631 vcpu->arch.exception.nr = nr;
632 vcpu->arch.exception.error_code = error_code;
633 vcpu->arch.exception.has_payload = has_payload;
634 vcpu->arch.exception.payload = payload;
635 if (!is_guest_mode(vcpu))
636 kvm_deliver_exception_payload(vcpu);
640 /* to check exception */
641 prev_nr = vcpu->arch.exception.nr;
642 if (prev_nr == DF_VECTOR) {
643 /* triple fault -> shutdown */
644 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
647 class1 = exception_class(prev_nr);
648 class2 = exception_class(nr);
649 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
650 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
652 * Generate double fault per SDM Table 5-5. Set
653 * exception.pending = true so that the double fault
654 * can trigger a nested vmexit.
656 vcpu->arch.exception.pending = true;
657 vcpu->arch.exception.injected = false;
658 vcpu->arch.exception.has_error_code = true;
659 vcpu->arch.exception.nr = DF_VECTOR;
660 vcpu->arch.exception.error_code = 0;
661 vcpu->arch.exception.has_payload = false;
662 vcpu->arch.exception.payload = 0;
664 /* replace previous exception with a new one in a hope
665 that instruction re-execution will regenerate lost
670 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
672 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
674 EXPORT_SYMBOL_GPL(kvm_queue_exception);
676 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
678 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
680 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
682 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
683 unsigned long payload)
685 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
687 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
689 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
690 u32 error_code, unsigned long payload)
692 kvm_multiple_exception(vcpu, nr, true, error_code,
693 true, payload, false);
696 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
699 kvm_inject_gp(vcpu, 0);
701 return kvm_skip_emulated_instruction(vcpu);
705 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
707 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
709 ++vcpu->stat.pf_guest;
710 vcpu->arch.exception.nested_apf =
711 is_guest_mode(vcpu) && fault->async_page_fault;
712 if (vcpu->arch.exception.nested_apf) {
713 vcpu->arch.apf.nested_apf_token = fault->address;
714 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
716 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
720 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
722 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
723 struct x86_exception *fault)
725 struct kvm_mmu *fault_mmu;
726 WARN_ON_ONCE(fault->vector != PF_VECTOR);
728 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
732 * Invalidate the TLB entry for the faulting address, if it exists,
733 * else the access will fault indefinitely (and to emulate hardware).
735 if ((fault->error_code & PFERR_PRESENT_MASK) &&
736 !(fault->error_code & PFERR_RSVD_MASK))
737 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
738 fault_mmu->root_hpa);
740 fault_mmu->inject_page_fault(vcpu, fault);
741 return fault->nested_page_fault;
743 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
745 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
747 atomic_inc(&vcpu->arch.nmi_queued);
748 kvm_make_request(KVM_REQ_NMI, vcpu);
750 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
752 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
754 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
756 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
758 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
760 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
762 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
765 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
766 * a #GP and return false.
768 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
770 if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
772 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
775 EXPORT_SYMBOL_GPL(kvm_require_cpl);
777 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
779 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
782 kvm_queue_exception(vcpu, UD_VECTOR);
785 EXPORT_SYMBOL_GPL(kvm_require_dr);
788 * This function will be used to read from the physical memory of the currently
789 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
790 * can read from guest physical or from the guest's guest physical memory.
792 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
793 gfn_t ngfn, void *data, int offset, int len,
796 struct x86_exception exception;
800 ngpa = gfn_to_gpa(ngfn);
801 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
802 if (real_gfn == UNMAPPED_GVA)
805 real_gfn = gpa_to_gfn(real_gfn);
807 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
809 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
811 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
813 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
817 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise.
819 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
821 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
822 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
825 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
827 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
828 offset * sizeof(u64), sizeof(pdpte),
829 PFERR_USER_MASK|PFERR_WRITE_MASK);
834 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
835 if ((pdpte[i] & PT_PRESENT_MASK) &&
836 (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
843 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
844 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
845 vcpu->arch.pdptrs_from_userspace = false;
851 EXPORT_SYMBOL_GPL(load_pdptrs);
853 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
855 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
856 kvm_clear_async_pf_completion_queue(vcpu);
857 kvm_async_pf_hash_reset(vcpu);
860 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
861 kvm_mmu_reset_context(vcpu);
863 if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
864 kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
865 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
866 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
868 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
870 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
872 unsigned long old_cr0 = kvm_read_cr0(vcpu);
873 unsigned long pdptr_bits = X86_CR0_CD | X86_CR0_NW | X86_CR0_PG;
878 if (cr0 & 0xffffffff00000000UL)
882 cr0 &= ~CR0_RESERVED_BITS;
884 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
887 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
891 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
892 (cr0 & X86_CR0_PG)) {
897 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
902 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
903 is_pae(vcpu) && ((cr0 ^ old_cr0) & pdptr_bits) &&
904 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)))
907 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
910 static_call(kvm_x86_set_cr0)(vcpu, cr0);
912 kvm_post_set_cr0(vcpu, old_cr0, cr0);
916 EXPORT_SYMBOL_GPL(kvm_set_cr0);
918 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
920 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
922 EXPORT_SYMBOL_GPL(kvm_lmsw);
924 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
926 if (vcpu->arch.guest_state_protected)
929 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
931 if (vcpu->arch.xcr0 != host_xcr0)
932 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
934 if (vcpu->arch.xsaves_enabled &&
935 vcpu->arch.ia32_xss != host_xss)
936 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
939 if (static_cpu_has(X86_FEATURE_PKU) &&
940 (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
941 (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) &&
942 vcpu->arch.pkru != vcpu->arch.host_pkru)
943 write_pkru(vcpu->arch.pkru);
945 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
947 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
949 if (vcpu->arch.guest_state_protected)
952 if (static_cpu_has(X86_FEATURE_PKU) &&
953 (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
954 (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) {
955 vcpu->arch.pkru = rdpkru();
956 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
957 write_pkru(vcpu->arch.host_pkru);
960 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
962 if (vcpu->arch.xcr0 != host_xcr0)
963 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
965 if (vcpu->arch.xsaves_enabled &&
966 vcpu->arch.ia32_xss != host_xss)
967 wrmsrl(MSR_IA32_XSS, host_xss);
971 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
973 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
976 u64 old_xcr0 = vcpu->arch.xcr0;
979 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
980 if (index != XCR_XFEATURE_ENABLED_MASK)
982 if (!(xcr0 & XFEATURE_MASK_FP))
984 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
988 * Do not allow the guest to set bits that we do not support
989 * saving. However, xcr0 bit 0 is always set, even if the
990 * emulated CPU does not support XSAVE (see fx_init).
992 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
993 if (xcr0 & ~valid_bits)
996 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
997 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1000 if (xcr0 & XFEATURE_MASK_AVX512) {
1001 if (!(xcr0 & XFEATURE_MASK_YMM))
1003 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1006 vcpu->arch.xcr0 = xcr0;
1008 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1009 kvm_update_cpuid_runtime(vcpu);
1013 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1015 if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1016 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1017 kvm_inject_gp(vcpu, 0);
1021 return kvm_skip_emulated_instruction(vcpu);
1023 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1025 bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1027 if (cr4 & cr4_reserved_bits)
1030 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1033 return static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1035 EXPORT_SYMBOL_GPL(kvm_is_valid_cr4);
1037 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1039 if (((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS) ||
1040 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1041 kvm_mmu_reset_context(vcpu);
1043 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1045 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1047 unsigned long old_cr4 = kvm_read_cr4(vcpu);
1048 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
1051 if (!kvm_is_valid_cr4(vcpu, cr4))
1054 if (is_long_mode(vcpu)) {
1055 if (!(cr4 & X86_CR4_PAE))
1057 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1059 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1060 && ((cr4 ^ old_cr4) & pdptr_bits)
1061 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
1062 kvm_read_cr3(vcpu)))
1065 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1066 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1069 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1070 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1074 static_call(kvm_x86_set_cr4)(vcpu, cr4);
1076 kvm_post_set_cr4(vcpu, old_cr4, cr4);
1080 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1082 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1084 struct kvm_mmu *mmu = vcpu->arch.mmu;
1085 unsigned long roots_to_free = 0;
1089 * If neither the current CR3 nor any of the prev_roots use the given
1090 * PCID, then nothing needs to be done here because a resync will
1091 * happen anyway before switching to any other CR3.
1093 if (kvm_get_active_pcid(vcpu) == pcid) {
1094 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1095 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1098 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1099 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1100 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1102 kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
1105 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1107 bool skip_tlb_flush = false;
1108 unsigned long pcid = 0;
1109 #ifdef CONFIG_X86_64
1110 bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1113 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1114 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1115 pcid = cr3 & X86_CR3_PCID_MASK;
1119 /* PDPTRs are always reloaded for PAE paging. */
1120 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1121 goto handle_tlb_flush;
1124 * Do not condition the GPA check on long mode, this helper is used to
1125 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1126 * the current vCPU mode is accurate.
1128 if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1131 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
1134 if (cr3 != kvm_read_cr3(vcpu))
1135 kvm_mmu_new_pgd(vcpu, cr3);
1137 vcpu->arch.cr3 = cr3;
1138 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1142 * A load of CR3 that flushes the TLB flushes only the current PCID,
1143 * even if PCID is disabled, in which case PCID=0 is flushed. It's a
1144 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1145 * and it's impossible to use a non-zero PCID when PCID is disabled,
1146 * i.e. only PCID=0 can be relevant.
1148 if (!skip_tlb_flush)
1149 kvm_invalidate_pcid(vcpu, pcid);
1153 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1155 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1157 if (cr8 & CR8_RESERVED_BITS)
1159 if (lapic_in_kernel(vcpu))
1160 kvm_lapic_set_tpr(vcpu, cr8);
1162 vcpu->arch.cr8 = cr8;
1165 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1167 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1169 if (lapic_in_kernel(vcpu))
1170 return kvm_lapic_get_cr8(vcpu);
1172 return vcpu->arch.cr8;
1174 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1176 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1180 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1181 for (i = 0; i < KVM_NR_DB_REGS; i++)
1182 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1183 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
1187 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1191 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1192 dr7 = vcpu->arch.guest_debug_dr7;
1194 dr7 = vcpu->arch.dr7;
1195 static_call(kvm_x86_set_dr7)(vcpu, dr7);
1196 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1197 if (dr7 & DR7_BP_EN_MASK)
1198 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1200 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1202 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1204 u64 fixed = DR6_FIXED_1;
1206 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1209 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1210 fixed |= DR6_BUS_LOCK;
1214 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1216 size_t size = ARRAY_SIZE(vcpu->arch.db);
1220 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1221 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1222 vcpu->arch.eff_db[dr] = val;
1226 if (!kvm_dr6_valid(val))
1228 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1232 if (!kvm_dr7_valid(val))
1234 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1235 kvm_update_dr7(vcpu);
1241 EXPORT_SYMBOL_GPL(kvm_set_dr);
1243 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1245 size_t size = ARRAY_SIZE(vcpu->arch.db);
1249 *val = vcpu->arch.db[array_index_nospec(dr, size)];
1253 *val = vcpu->arch.dr6;
1257 *val = vcpu->arch.dr7;
1261 EXPORT_SYMBOL_GPL(kvm_get_dr);
1263 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1265 u32 ecx = kvm_rcx_read(vcpu);
1268 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1269 kvm_inject_gp(vcpu, 0);
1273 kvm_rax_write(vcpu, (u32)data);
1274 kvm_rdx_write(vcpu, data >> 32);
1275 return kvm_skip_emulated_instruction(vcpu);
1277 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1280 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1281 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1283 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1284 * extract the supported MSRs from the related const lists.
1285 * msrs_to_save is selected from the msrs_to_save_all to reflect the
1286 * capabilities of the host cpu. This capabilities test skips MSRs that are
1287 * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1288 * may depend on host virtualization features rather than host cpu features.
1291 static const u32 msrs_to_save_all[] = {
1292 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1294 #ifdef CONFIG_X86_64
1295 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1297 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1298 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1300 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1301 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1302 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1303 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1304 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1305 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1306 MSR_IA32_UMWAIT_CONTROL,
1308 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1309 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, MSR_ARCH_PERFMON_FIXED_CTR0 + 3,
1310 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1311 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1312 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1313 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1314 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1315 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1316 MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1317 MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1318 MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1319 MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1320 MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1321 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1322 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1323 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1324 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1325 MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1326 MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1327 MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1328 MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1329 MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1332 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1333 static unsigned num_msrs_to_save;
1335 static const u32 emulated_msrs_all[] = {
1336 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1337 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1338 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1339 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1340 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1341 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1342 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1344 HV_X64_MSR_VP_INDEX,
1345 HV_X64_MSR_VP_RUNTIME,
1346 HV_X64_MSR_SCONTROL,
1347 HV_X64_MSR_STIMER0_CONFIG,
1348 HV_X64_MSR_VP_ASSIST_PAGE,
1349 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1350 HV_X64_MSR_TSC_EMULATION_STATUS,
1351 HV_X64_MSR_SYNDBG_OPTIONS,
1352 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1353 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1354 HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1356 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1357 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1359 MSR_IA32_TSC_ADJUST,
1360 MSR_IA32_TSC_DEADLINE,
1361 MSR_IA32_ARCH_CAPABILITIES,
1362 MSR_IA32_PERF_CAPABILITIES,
1363 MSR_IA32_MISC_ENABLE,
1364 MSR_IA32_MCG_STATUS,
1366 MSR_IA32_MCG_EXT_CTL,
1370 MSR_MISC_FEATURES_ENABLES,
1371 MSR_AMD64_VIRT_SPEC_CTRL,
1376 * The following list leaves out MSRs whose values are determined
1377 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1378 * We always support the "true" VMX control MSRs, even if the host
1379 * processor does not, so I am putting these registers here rather
1380 * than in msrs_to_save_all.
1383 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1384 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1385 MSR_IA32_VMX_TRUE_EXIT_CTLS,
1386 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1388 MSR_IA32_VMX_CR0_FIXED0,
1389 MSR_IA32_VMX_CR4_FIXED0,
1390 MSR_IA32_VMX_VMCS_ENUM,
1391 MSR_IA32_VMX_PROCBASED_CTLS2,
1392 MSR_IA32_VMX_EPT_VPID_CAP,
1393 MSR_IA32_VMX_VMFUNC,
1396 MSR_KVM_POLL_CONTROL,
1399 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1400 static unsigned num_emulated_msrs;
1403 * List of msr numbers which are used to expose MSR-based features that
1404 * can be used by a hypervisor to validate requested CPU features.
1406 static const u32 msr_based_features_all[] = {
1408 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1409 MSR_IA32_VMX_PINBASED_CTLS,
1410 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1411 MSR_IA32_VMX_PROCBASED_CTLS,
1412 MSR_IA32_VMX_TRUE_EXIT_CTLS,
1413 MSR_IA32_VMX_EXIT_CTLS,
1414 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1415 MSR_IA32_VMX_ENTRY_CTLS,
1417 MSR_IA32_VMX_CR0_FIXED0,
1418 MSR_IA32_VMX_CR0_FIXED1,
1419 MSR_IA32_VMX_CR4_FIXED0,
1420 MSR_IA32_VMX_CR4_FIXED1,
1421 MSR_IA32_VMX_VMCS_ENUM,
1422 MSR_IA32_VMX_PROCBASED_CTLS2,
1423 MSR_IA32_VMX_EPT_VPID_CAP,
1424 MSR_IA32_VMX_VMFUNC,
1428 MSR_IA32_ARCH_CAPABILITIES,
1429 MSR_IA32_PERF_CAPABILITIES,
1432 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1433 static unsigned int num_msr_based_features;
1435 static u64 kvm_get_arch_capabilities(void)
1439 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1440 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1443 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1444 * the nested hypervisor runs with NX huge pages. If it is not,
1445 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1446 * L1 guests, so it need not worry about its own (L2) guests.
1448 data |= ARCH_CAP_PSCHANGE_MC_NO;
1451 * If we're doing cache flushes (either "always" or "cond")
1452 * we will do one whenever the guest does a vmlaunch/vmresume.
1453 * If an outer hypervisor is doing the cache flush for us
1454 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1455 * capability to the guest too, and if EPT is disabled we're not
1456 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will
1457 * require a nested hypervisor to do a flush of its own.
1459 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1460 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1462 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1463 data |= ARCH_CAP_RDCL_NO;
1464 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1465 data |= ARCH_CAP_SSB_NO;
1466 if (!boot_cpu_has_bug(X86_BUG_MDS))
1467 data |= ARCH_CAP_MDS_NO;
1469 if (!boot_cpu_has(X86_FEATURE_RTM)) {
1471 * If RTM=0 because the kernel has disabled TSX, the host might
1472 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0
1473 * and therefore knows that there cannot be TAA) but keep
1474 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1475 * and we want to allow migrating those guests to tsx=off hosts.
1477 data &= ~ARCH_CAP_TAA_NO;
1478 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1479 data |= ARCH_CAP_TAA_NO;
1482 * Nothing to do here; we emulate TSX_CTRL if present on the
1483 * host so the guest can choose between disabling TSX or
1484 * using VERW to clear CPU buffers.
1491 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1493 switch (msr->index) {
1494 case MSR_IA32_ARCH_CAPABILITIES:
1495 msr->data = kvm_get_arch_capabilities();
1497 case MSR_IA32_UCODE_REV:
1498 rdmsrl_safe(msr->index, &msr->data);
1501 return static_call(kvm_x86_get_msr_feature)(msr);
1506 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1508 struct kvm_msr_entry msr;
1512 r = kvm_get_msr_feature(&msr);
1514 if (r == KVM_MSR_RET_INVALID) {
1515 /* Unconditionally clear the output for simplicity */
1517 if (kvm_msr_ignored_check(index, 0, false))
1529 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1531 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1534 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1537 if (efer & (EFER_LME | EFER_LMA) &&
1538 !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1541 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1547 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1549 if (efer & efer_reserved_bits)
1552 return __kvm_valid_efer(vcpu, efer);
1554 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1556 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1558 u64 old_efer = vcpu->arch.efer;
1559 u64 efer = msr_info->data;
1562 if (efer & efer_reserved_bits)
1565 if (!msr_info->host_initiated) {
1566 if (!__kvm_valid_efer(vcpu, efer))
1569 if (is_paging(vcpu) &&
1570 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1575 efer |= vcpu->arch.efer & EFER_LMA;
1577 r = static_call(kvm_x86_set_efer)(vcpu, efer);
1583 /* Update reserved bits */
1584 if ((efer ^ old_efer) & EFER_NX)
1585 kvm_mmu_reset_context(vcpu);
1590 void kvm_enable_efer_bits(u64 mask)
1592 efer_reserved_bits &= ~mask;
1594 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1596 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1598 struct kvm_x86_msr_filter *msr_filter;
1599 struct msr_bitmap_range *ranges;
1600 struct kvm *kvm = vcpu->kvm;
1605 /* x2APIC MSRs do not support filtering. */
1606 if (index >= 0x800 && index <= 0x8ff)
1609 idx = srcu_read_lock(&kvm->srcu);
1611 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1617 allowed = msr_filter->default_allow;
1618 ranges = msr_filter->ranges;
1620 for (i = 0; i < msr_filter->count; i++) {
1621 u32 start = ranges[i].base;
1622 u32 end = start + ranges[i].nmsrs;
1623 u32 flags = ranges[i].flags;
1624 unsigned long *bitmap = ranges[i].bitmap;
1626 if ((index >= start) && (index < end) && (flags & type)) {
1627 allowed = !!test_bit(index - start, bitmap);
1633 srcu_read_unlock(&kvm->srcu, idx);
1637 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1640 * Write @data into the MSR specified by @index. Select MSR specific fault
1641 * checks are bypassed if @host_initiated is %true.
1642 * Returns 0 on success, non-0 otherwise.
1643 * Assumes vcpu_load() was already called.
1645 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1646 bool host_initiated)
1648 struct msr_data msr;
1650 if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1651 return KVM_MSR_RET_FILTERED;
1656 case MSR_KERNEL_GS_BASE:
1659 if (is_noncanonical_address(data, vcpu))
1662 case MSR_IA32_SYSENTER_EIP:
1663 case MSR_IA32_SYSENTER_ESP:
1665 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1666 * non-canonical address is written on Intel but not on
1667 * AMD (which ignores the top 32-bits, because it does
1668 * not implement 64-bit SYSENTER).
1670 * 64-bit code should hence be able to write a non-canonical
1671 * value on AMD. Making the address canonical ensures that
1672 * vmentry does not fail on Intel after writing a non-canonical
1673 * value, and that something deterministic happens if the guest
1674 * invokes 64-bit SYSENTER.
1676 data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1679 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1682 if (!host_initiated &&
1683 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1684 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1688 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1689 * incomplete and conflicting architectural behavior. Current
1690 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1691 * reserved and always read as zeros. Enforce Intel's reserved
1692 * bits check if and only if the guest CPU is Intel, and clear
1693 * the bits in all other cases. This ensures cross-vendor
1694 * migration will provide consistent behavior for the guest.
1696 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1705 msr.host_initiated = host_initiated;
1707 return static_call(kvm_x86_set_msr)(vcpu, &msr);
1710 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1711 u32 index, u64 data, bool host_initiated)
1713 int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1715 if (ret == KVM_MSR_RET_INVALID)
1716 if (kvm_msr_ignored_check(index, data, true))
1723 * Read the MSR specified by @index into @data. Select MSR specific fault
1724 * checks are bypassed if @host_initiated is %true.
1725 * Returns 0 on success, non-0 otherwise.
1726 * Assumes vcpu_load() was already called.
1728 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1729 bool host_initiated)
1731 struct msr_data msr;
1734 if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1735 return KVM_MSR_RET_FILTERED;
1739 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1742 if (!host_initiated &&
1743 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1744 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1750 msr.host_initiated = host_initiated;
1752 ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1758 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1759 u32 index, u64 *data, bool host_initiated)
1761 int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1763 if (ret == KVM_MSR_RET_INVALID) {
1764 /* Unconditionally clear *data for simplicity */
1766 if (kvm_msr_ignored_check(index, 0, false))
1773 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1775 return kvm_get_msr_ignored_check(vcpu, index, data, false);
1777 EXPORT_SYMBOL_GPL(kvm_get_msr);
1779 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1781 return kvm_set_msr_ignored_check(vcpu, index, data, false);
1783 EXPORT_SYMBOL_GPL(kvm_set_msr);
1785 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1787 int err = vcpu->run->msr.error;
1789 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1790 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1793 return static_call(kvm_x86_complete_emulated_msr)(vcpu, err);
1796 static int complete_emulated_wrmsr(struct kvm_vcpu *vcpu)
1798 return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1801 static u64 kvm_msr_reason(int r)
1804 case KVM_MSR_RET_INVALID:
1805 return KVM_MSR_EXIT_REASON_UNKNOWN;
1806 case KVM_MSR_RET_FILTERED:
1807 return KVM_MSR_EXIT_REASON_FILTER;
1809 return KVM_MSR_EXIT_REASON_INVAL;
1813 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1814 u32 exit_reason, u64 data,
1815 int (*completion)(struct kvm_vcpu *vcpu),
1818 u64 msr_reason = kvm_msr_reason(r);
1820 /* Check if the user wanted to know about this MSR fault */
1821 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1824 vcpu->run->exit_reason = exit_reason;
1825 vcpu->run->msr.error = 0;
1826 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1827 vcpu->run->msr.reason = msr_reason;
1828 vcpu->run->msr.index = index;
1829 vcpu->run->msr.data = data;
1830 vcpu->arch.complete_userspace_io = completion;
1835 static int kvm_get_msr_user_space(struct kvm_vcpu *vcpu, u32 index, int r)
1837 return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_RDMSR, 0,
1838 complete_emulated_rdmsr, r);
1841 static int kvm_set_msr_user_space(struct kvm_vcpu *vcpu, u32 index, u64 data, int r)
1843 return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_WRMSR, data,
1844 complete_emulated_wrmsr, r);
1847 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1849 u32 ecx = kvm_rcx_read(vcpu);
1853 r = kvm_get_msr(vcpu, ecx, &data);
1855 /* MSR read failed? See if we should ask user space */
1856 if (r && kvm_get_msr_user_space(vcpu, ecx, r)) {
1857 /* Bounce to user space */
1862 trace_kvm_msr_read(ecx, data);
1864 kvm_rax_write(vcpu, data & -1u);
1865 kvm_rdx_write(vcpu, (data >> 32) & -1u);
1867 trace_kvm_msr_read_ex(ecx);
1870 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1872 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1874 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1876 u32 ecx = kvm_rcx_read(vcpu);
1877 u64 data = kvm_read_edx_eax(vcpu);
1880 r = kvm_set_msr(vcpu, ecx, data);
1882 /* MSR write failed? See if we should ask user space */
1883 if (r && kvm_set_msr_user_space(vcpu, ecx, data, r))
1884 /* Bounce to user space */
1887 /* Signal all other negative errors to userspace */
1892 trace_kvm_msr_write(ecx, data);
1894 trace_kvm_msr_write_ex(ecx, data);
1896 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1898 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1900 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
1902 return kvm_skip_emulated_instruction(vcpu);
1904 EXPORT_SYMBOL_GPL(kvm_emulate_as_nop);
1906 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
1908 /* Treat an INVD instruction as a NOP and just skip it. */
1909 return kvm_emulate_as_nop(vcpu);
1911 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
1913 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
1915 pr_warn_once("kvm: MWAIT instruction emulated as NOP!\n");
1916 return kvm_emulate_as_nop(vcpu);
1918 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
1920 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
1922 kvm_queue_exception(vcpu, UD_VECTOR);
1925 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
1927 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
1929 pr_warn_once("kvm: MONITOR instruction emulated as NOP!\n");
1930 return kvm_emulate_as_nop(vcpu);
1932 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
1934 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
1936 xfer_to_guest_mode_prepare();
1937 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
1938 xfer_to_guest_mode_work_pending();
1942 * The fast path for frequent and performance sensitive wrmsr emulation,
1943 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
1944 * the latency of virtual IPI by avoiding the expensive bits of transitioning
1945 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
1946 * other cases which must be called after interrupts are enabled on the host.
1948 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
1950 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
1953 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
1954 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
1955 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
1956 ((u32)(data >> 32) != X2APIC_BROADCAST)) {
1959 kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32));
1960 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
1961 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data);
1962 trace_kvm_apic_write(APIC_ICR, (u32)data);
1969 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
1971 if (!kvm_can_use_hv_timer(vcpu))
1974 kvm_set_lapic_tscdeadline_msr(vcpu, data);
1978 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
1980 u32 msr = kvm_rcx_read(vcpu);
1982 fastpath_t ret = EXIT_FASTPATH_NONE;
1985 case APIC_BASE_MSR + (APIC_ICR >> 4):
1986 data = kvm_read_edx_eax(vcpu);
1987 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
1988 kvm_skip_emulated_instruction(vcpu);
1989 ret = EXIT_FASTPATH_EXIT_HANDLED;
1992 case MSR_IA32_TSC_DEADLINE:
1993 data = kvm_read_edx_eax(vcpu);
1994 if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
1995 kvm_skip_emulated_instruction(vcpu);
1996 ret = EXIT_FASTPATH_REENTER_GUEST;
2003 if (ret != EXIT_FASTPATH_NONE)
2004 trace_kvm_msr_write(msr, data);
2008 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2011 * Adapt set_msr() to msr_io()'s calling convention
2013 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2015 return kvm_get_msr_ignored_check(vcpu, index, data, true);
2018 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2020 return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2023 #ifdef CONFIG_X86_64
2024 struct pvclock_clock {
2034 struct pvclock_gtod_data {
2037 struct pvclock_clock clock; /* extract of a clocksource struct */
2038 struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2044 static struct pvclock_gtod_data pvclock_gtod_data;
2046 static void update_pvclock_gtod(struct timekeeper *tk)
2048 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2050 write_seqcount_begin(&vdata->seq);
2052 /* copy pvclock gtod data */
2053 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode;
2054 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
2055 vdata->clock.mask = tk->tkr_mono.mask;
2056 vdata->clock.mult = tk->tkr_mono.mult;
2057 vdata->clock.shift = tk->tkr_mono.shift;
2058 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec;
2059 vdata->clock.offset = tk->tkr_mono.base;
2061 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode;
2062 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last;
2063 vdata->raw_clock.mask = tk->tkr_raw.mask;
2064 vdata->raw_clock.mult = tk->tkr_raw.mult;
2065 vdata->raw_clock.shift = tk->tkr_raw.shift;
2066 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec;
2067 vdata->raw_clock.offset = tk->tkr_raw.base;
2069 vdata->wall_time_sec = tk->xtime_sec;
2071 vdata->offs_boot = tk->offs_boot;
2073 write_seqcount_end(&vdata->seq);
2076 static s64 get_kvmclock_base_ns(void)
2078 /* Count up from boot time, but with the frequency of the raw clock. */
2079 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2082 static s64 get_kvmclock_base_ns(void)
2084 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */
2085 return ktime_get_boottime_ns();
2089 void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2093 struct pvclock_wall_clock wc;
2100 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2105 ++version; /* first time write, random junk */
2109 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2113 * The guest calculates current wall clock time by adding
2114 * system time (updated by kvm_guest_time_update below) to the
2115 * wall clock specified here. We do the reverse here.
2117 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2119 wc.nsec = do_div(wall_nsec, 1000000000);
2120 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2121 wc.version = version;
2123 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2126 wc_sec_hi = wall_nsec >> 32;
2127 kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2128 &wc_sec_hi, sizeof(wc_sec_hi));
2132 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2135 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2136 bool old_msr, bool host_initiated)
2138 struct kvm_arch *ka = &vcpu->kvm->arch;
2140 if (vcpu->vcpu_id == 0 && !host_initiated) {
2141 if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2142 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2144 ka->boot_vcpu_runs_old_kvmclock = old_msr;
2147 vcpu->arch.time = system_time;
2148 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2150 /* we verify if the enable bit is set... */
2151 vcpu->arch.pv_time_enabled = false;
2152 if (!(system_time & 1))
2155 if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2156 &vcpu->arch.pv_time, system_time & ~1ULL,
2157 sizeof(struct pvclock_vcpu_time_info)))
2158 vcpu->arch.pv_time_enabled = true;
2163 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2165 do_shl32_div32(dividend, divisor);
2169 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2170 s8 *pshift, u32 *pmultiplier)
2178 scaled64 = scaled_hz;
2179 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2184 tps32 = (uint32_t)tps64;
2185 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2186 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2194 *pmultiplier = div_frac(scaled64, tps32);
2197 #ifdef CONFIG_X86_64
2198 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2201 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2202 static unsigned long max_tsc_khz;
2204 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2206 u64 v = (u64)khz * (1000000 + ppm);
2211 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2213 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2217 /* Guest TSC same frequency as host TSC? */
2219 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2223 /* TSC scaling supported? */
2224 if (!kvm_has_tsc_control) {
2225 if (user_tsc_khz > tsc_khz) {
2226 vcpu->arch.tsc_catchup = 1;
2227 vcpu->arch.tsc_always_catchup = 1;
2230 pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2235 /* TSC scaling required - calculate ratio */
2236 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
2237 user_tsc_khz, tsc_khz);
2239 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
2240 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2245 kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2249 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2251 u32 thresh_lo, thresh_hi;
2252 int use_scaling = 0;
2254 /* tsc_khz can be zero if TSC calibration fails */
2255 if (user_tsc_khz == 0) {
2256 /* set tsc_scaling_ratio to a safe value */
2257 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2261 /* Compute a scale to convert nanoseconds in TSC cycles */
2262 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2263 &vcpu->arch.virtual_tsc_shift,
2264 &vcpu->arch.virtual_tsc_mult);
2265 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2268 * Compute the variation in TSC rate which is acceptable
2269 * within the range of tolerance and decide if the
2270 * rate being applied is within that bounds of the hardware
2271 * rate. If so, no scaling or compensation need be done.
2273 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2274 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2275 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2276 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2279 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2282 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2284 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2285 vcpu->arch.virtual_tsc_mult,
2286 vcpu->arch.virtual_tsc_shift);
2287 tsc += vcpu->arch.this_tsc_write;
2291 static inline int gtod_is_based_on_tsc(int mode)
2293 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2296 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2298 #ifdef CONFIG_X86_64
2300 struct kvm_arch *ka = &vcpu->kvm->arch;
2301 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2303 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2304 atomic_read(&vcpu->kvm->online_vcpus));
2307 * Once the masterclock is enabled, always perform request in
2308 * order to update it.
2310 * In order to enable masterclock, the host clocksource must be TSC
2311 * and the vcpus need to have matched TSCs. When that happens,
2312 * perform request to enable masterclock.
2314 if (ka->use_master_clock ||
2315 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2316 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2318 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2319 atomic_read(&vcpu->kvm->online_vcpus),
2320 ka->use_master_clock, gtod->clock.vclock_mode);
2325 * Multiply tsc by a fixed point number represented by ratio.
2327 * The most significant 64-N bits (mult) of ratio represent the
2328 * integral part of the fixed point number; the remaining N bits
2329 * (frac) represent the fractional part, ie. ratio represents a fixed
2330 * point number (mult + frac * 2^(-N)).
2332 * N equals to kvm_tsc_scaling_ratio_frac_bits.
2334 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2336 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
2339 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc, u64 ratio)
2343 if (ratio != kvm_default_tsc_scaling_ratio)
2344 _tsc = __scale_tsc(ratio, tsc);
2348 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2350 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2354 tsc = kvm_scale_tsc(vcpu, rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2356 return target_tsc - tsc;
2359 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2361 return vcpu->arch.l1_tsc_offset +
2362 kvm_scale_tsc(vcpu, host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2364 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2366 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2370 if (l2_multiplier == kvm_default_tsc_scaling_ratio)
2371 nested_offset = l1_offset;
2373 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2374 kvm_tsc_scaling_ratio_frac_bits);
2376 nested_offset += l2_offset;
2377 return nested_offset;
2379 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2381 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2383 if (l2_multiplier != kvm_default_tsc_scaling_ratio)
2384 return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2385 kvm_tsc_scaling_ratio_frac_bits);
2387 return l1_multiplier;
2389 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2391 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2393 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2394 vcpu->arch.l1_tsc_offset,
2397 vcpu->arch.l1_tsc_offset = l1_offset;
2400 * If we are here because L1 chose not to trap WRMSR to TSC then
2401 * according to the spec this should set L1's TSC (as opposed to
2402 * setting L1's offset for L2).
2404 if (is_guest_mode(vcpu))
2405 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2407 static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2408 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2410 vcpu->arch.tsc_offset = l1_offset;
2412 static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset);
2415 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2417 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2419 /* Userspace is changing the multiplier while L2 is active */
2420 if (is_guest_mode(vcpu))
2421 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2423 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2425 vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2427 if (kvm_has_tsc_control)
2428 static_call(kvm_x86_write_tsc_multiplier)(
2429 vcpu, vcpu->arch.tsc_scaling_ratio);
2432 static inline bool kvm_check_tsc_unstable(void)
2434 #ifdef CONFIG_X86_64
2436 * TSC is marked unstable when we're running on Hyper-V,
2437 * 'TSC page' clocksource is good.
2439 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2442 return check_tsc_unstable();
2445 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2447 struct kvm *kvm = vcpu->kvm;
2448 u64 offset, ns, elapsed;
2449 unsigned long flags;
2451 bool already_matched;
2452 bool synchronizing = false;
2454 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2455 offset = kvm_compute_l1_tsc_offset(vcpu, data);
2456 ns = get_kvmclock_base_ns();
2457 elapsed = ns - kvm->arch.last_tsc_nsec;
2459 if (vcpu->arch.virtual_tsc_khz) {
2462 * detection of vcpu initialization -- need to sync
2463 * with other vCPUs. This particularly helps to keep
2464 * kvm_clock stable after CPU hotplug
2466 synchronizing = true;
2468 u64 tsc_exp = kvm->arch.last_tsc_write +
2469 nsec_to_cycles(vcpu, elapsed);
2470 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2472 * Special case: TSC write with a small delta (1 second)
2473 * of virtual cycle time against real time is
2474 * interpreted as an attempt to synchronize the CPU.
2476 synchronizing = data < tsc_exp + tsc_hz &&
2477 data + tsc_hz > tsc_exp;
2482 * For a reliable TSC, we can match TSC offsets, and for an unstable
2483 * TSC, we add elapsed time in this computation. We could let the
2484 * compensation code attempt to catch up if we fall behind, but
2485 * it's better to try to match offsets from the beginning.
2487 if (synchronizing &&
2488 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2489 if (!kvm_check_tsc_unstable()) {
2490 offset = kvm->arch.cur_tsc_offset;
2492 u64 delta = nsec_to_cycles(vcpu, elapsed);
2494 offset = kvm_compute_l1_tsc_offset(vcpu, data);
2497 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
2500 * We split periods of matched TSC writes into generations.
2501 * For each generation, we track the original measured
2502 * nanosecond time, offset, and write, so if TSCs are in
2503 * sync, we can match exact offset, and if not, we can match
2504 * exact software computation in compute_guest_tsc()
2506 * These values are tracked in kvm->arch.cur_xxx variables.
2508 kvm->arch.cur_tsc_generation++;
2509 kvm->arch.cur_tsc_nsec = ns;
2510 kvm->arch.cur_tsc_write = data;
2511 kvm->arch.cur_tsc_offset = offset;
2516 * We also track th most recent recorded KHZ, write and time to
2517 * allow the matching interval to be extended at each write.
2519 kvm->arch.last_tsc_nsec = ns;
2520 kvm->arch.last_tsc_write = data;
2521 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2523 vcpu->arch.last_guest_tsc = data;
2525 /* Keep track of which generation this VCPU has synchronized to */
2526 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2527 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2528 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2530 kvm_vcpu_write_tsc_offset(vcpu, offset);
2531 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2533 spin_lock_irqsave(&kvm->arch.pvclock_gtod_sync_lock, flags);
2535 kvm->arch.nr_vcpus_matched_tsc = 0;
2536 } else if (!already_matched) {
2537 kvm->arch.nr_vcpus_matched_tsc++;
2540 kvm_track_tsc_matching(vcpu);
2541 spin_unlock_irqrestore(&kvm->arch.pvclock_gtod_sync_lock, flags);
2544 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2547 u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2548 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2551 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2553 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2554 WARN_ON(adjustment < 0);
2555 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment,
2556 vcpu->arch.l1_tsc_scaling_ratio);
2557 adjust_tsc_offset_guest(vcpu, adjustment);
2560 #ifdef CONFIG_X86_64
2562 static u64 read_tsc(void)
2564 u64 ret = (u64)rdtsc_ordered();
2565 u64 last = pvclock_gtod_data.clock.cycle_last;
2567 if (likely(ret >= last))
2571 * GCC likes to generate cmov here, but this branch is extremely
2572 * predictable (it's just a function of time and the likely is
2573 * very likely) and there's a data dependence, so force GCC
2574 * to generate a branch instead. I don't barrier() because
2575 * we don't actually need a barrier, and if this function
2576 * ever gets inlined it will generate worse code.
2582 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2588 switch (clock->vclock_mode) {
2589 case VDSO_CLOCKMODE_HVCLOCK:
2590 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2592 if (tsc_pg_val != U64_MAX) {
2593 /* TSC page valid */
2594 *mode = VDSO_CLOCKMODE_HVCLOCK;
2595 v = (tsc_pg_val - clock->cycle_last) &
2598 /* TSC page invalid */
2599 *mode = VDSO_CLOCKMODE_NONE;
2602 case VDSO_CLOCKMODE_TSC:
2603 *mode = VDSO_CLOCKMODE_TSC;
2604 *tsc_timestamp = read_tsc();
2605 v = (*tsc_timestamp - clock->cycle_last) &
2609 *mode = VDSO_CLOCKMODE_NONE;
2612 if (*mode == VDSO_CLOCKMODE_NONE)
2613 *tsc_timestamp = v = 0;
2615 return v * clock->mult;
2618 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2620 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2626 seq = read_seqcount_begin(>od->seq);
2627 ns = gtod->raw_clock.base_cycles;
2628 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode);
2629 ns >>= gtod->raw_clock.shift;
2630 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2631 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
2637 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2639 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2645 seq = read_seqcount_begin(>od->seq);
2646 ts->tv_sec = gtod->wall_time_sec;
2647 ns = gtod->clock.base_cycles;
2648 ns += vgettsc(>od->clock, tsc_timestamp, &mode);
2649 ns >>= gtod->clock.shift;
2650 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
2652 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2658 /* returns true if host is using TSC based clocksource */
2659 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2661 /* checked again under seqlock below */
2662 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2665 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2669 /* returns true if host is using TSC based clocksource */
2670 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2673 /* checked again under seqlock below */
2674 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2677 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2683 * Assuming a stable TSC across physical CPUS, and a stable TSC
2684 * across virtual CPUs, the following condition is possible.
2685 * Each numbered line represents an event visible to both
2686 * CPUs at the next numbered event.
2688 * "timespecX" represents host monotonic time. "tscX" represents
2691 * VCPU0 on CPU0 | VCPU1 on CPU1
2693 * 1. read timespec0,tsc0
2694 * 2. | timespec1 = timespec0 + N
2696 * 3. transition to guest | transition to guest
2697 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2698 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
2699 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2701 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2704 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2706 * - 0 < N - M => M < N
2708 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2709 * always the case (the difference between two distinct xtime instances
2710 * might be smaller then the difference between corresponding TSC reads,
2711 * when updating guest vcpus pvclock areas).
2713 * To avoid that problem, do not allow visibility of distinct
2714 * system_timestamp/tsc_timestamp values simultaneously: use a master
2715 * copy of host monotonic time values. Update that master copy
2718 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2722 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2724 #ifdef CONFIG_X86_64
2725 struct kvm_arch *ka = &kvm->arch;
2727 bool host_tsc_clocksource, vcpus_matched;
2729 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2730 atomic_read(&kvm->online_vcpus));
2733 * If the host uses TSC clock, then passthrough TSC as stable
2736 host_tsc_clocksource = kvm_get_time_and_clockread(
2737 &ka->master_kernel_ns,
2738 &ka->master_cycle_now);
2740 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2741 && !ka->backwards_tsc_observed
2742 && !ka->boot_vcpu_runs_old_kvmclock;
2744 if (ka->use_master_clock)
2745 atomic_set(&kvm_guest_has_master_clock, 1);
2747 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2748 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2753 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2755 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2758 static void kvm_gen_update_masterclock(struct kvm *kvm)
2760 #ifdef CONFIG_X86_64
2762 struct kvm_vcpu *vcpu;
2763 struct kvm_arch *ka = &kvm->arch;
2764 unsigned long flags;
2766 kvm_hv_invalidate_tsc_page(kvm);
2768 kvm_make_mclock_inprogress_request(kvm);
2770 /* no guest entries from this point */
2771 spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
2772 pvclock_update_vm_gtod_copy(kvm);
2773 spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2775 kvm_for_each_vcpu(i, vcpu, kvm)
2776 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2778 /* guest entries allowed */
2779 kvm_for_each_vcpu(i, vcpu, kvm)
2780 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2784 u64 get_kvmclock_ns(struct kvm *kvm)
2786 struct kvm_arch *ka = &kvm->arch;
2787 struct pvclock_vcpu_time_info hv_clock;
2788 unsigned long flags;
2791 spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
2792 if (!ka->use_master_clock) {
2793 spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2794 return get_kvmclock_base_ns() + ka->kvmclock_offset;
2797 hv_clock.tsc_timestamp = ka->master_cycle_now;
2798 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2799 spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2801 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2804 if (__this_cpu_read(cpu_tsc_khz)) {
2805 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2806 &hv_clock.tsc_shift,
2807 &hv_clock.tsc_to_system_mul);
2808 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2810 ret = get_kvmclock_base_ns() + ka->kvmclock_offset;
2817 static void kvm_setup_pvclock_page(struct kvm_vcpu *v,
2818 struct gfn_to_hva_cache *cache,
2819 unsigned int offset)
2821 struct kvm_vcpu_arch *vcpu = &v->arch;
2822 struct pvclock_vcpu_time_info guest_hv_clock;
2824 if (unlikely(kvm_read_guest_offset_cached(v->kvm, cache,
2825 &guest_hv_clock, offset, sizeof(guest_hv_clock))))
2828 /* This VCPU is paused, but it's legal for a guest to read another
2829 * VCPU's kvmclock, so we really have to follow the specification where
2830 * it says that version is odd if data is being modified, and even after
2833 * Version field updates must be kept separate. This is because
2834 * kvm_write_guest_cached might use a "rep movs" instruction, and
2835 * writes within a string instruction are weakly ordered. So there
2836 * are three writes overall.
2838 * As a small optimization, only write the version field in the first
2839 * and third write. The vcpu->pv_time cache is still valid, because the
2840 * version field is the first in the struct.
2842 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2844 if (guest_hv_clock.version & 1)
2845 ++guest_hv_clock.version; /* first time write, random junk */
2847 vcpu->hv_clock.version = guest_hv_clock.version + 1;
2848 kvm_write_guest_offset_cached(v->kvm, cache,
2849 &vcpu->hv_clock, offset,
2850 sizeof(vcpu->hv_clock.version));
2854 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2855 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2857 if (vcpu->pvclock_set_guest_stopped_request) {
2858 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2859 vcpu->pvclock_set_guest_stopped_request = false;
2862 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2864 kvm_write_guest_offset_cached(v->kvm, cache,
2865 &vcpu->hv_clock, offset,
2866 sizeof(vcpu->hv_clock));
2870 vcpu->hv_clock.version++;
2871 kvm_write_guest_offset_cached(v->kvm, cache,
2872 &vcpu->hv_clock, offset,
2873 sizeof(vcpu->hv_clock.version));
2876 static int kvm_guest_time_update(struct kvm_vcpu *v)
2878 unsigned long flags, tgt_tsc_khz;
2879 struct kvm_vcpu_arch *vcpu = &v->arch;
2880 struct kvm_arch *ka = &v->kvm->arch;
2882 u64 tsc_timestamp, host_tsc;
2884 bool use_master_clock;
2890 * If the host uses TSC clock, then passthrough TSC as stable
2893 spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
2894 use_master_clock = ka->use_master_clock;
2895 if (use_master_clock) {
2896 host_tsc = ka->master_cycle_now;
2897 kernel_ns = ka->master_kernel_ns;
2899 spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2901 /* Keep irq disabled to prevent changes to the clock */
2902 local_irq_save(flags);
2903 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2904 if (unlikely(tgt_tsc_khz == 0)) {
2905 local_irq_restore(flags);
2906 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2909 if (!use_master_clock) {
2911 kernel_ns = get_kvmclock_base_ns();
2914 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2917 * We may have to catch up the TSC to match elapsed wall clock
2918 * time for two reasons, even if kvmclock is used.
2919 * 1) CPU could have been running below the maximum TSC rate
2920 * 2) Broken TSC compensation resets the base at each VCPU
2921 * entry to avoid unknown leaps of TSC even when running
2922 * again on the same CPU. This may cause apparent elapsed
2923 * time to disappear, and the guest to stand still or run
2926 if (vcpu->tsc_catchup) {
2927 u64 tsc = compute_guest_tsc(v, kernel_ns);
2928 if (tsc > tsc_timestamp) {
2929 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2930 tsc_timestamp = tsc;
2934 local_irq_restore(flags);
2936 /* With all the info we got, fill in the values */
2938 if (kvm_has_tsc_control)
2939 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz,
2940 v->arch.l1_tsc_scaling_ratio);
2942 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2943 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2944 &vcpu->hv_clock.tsc_shift,
2945 &vcpu->hv_clock.tsc_to_system_mul);
2946 vcpu->hw_tsc_khz = tgt_tsc_khz;
2949 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2950 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2951 vcpu->last_guest_tsc = tsc_timestamp;
2953 /* If the host uses TSC clocksource, then it is stable */
2955 if (use_master_clock)
2956 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2958 vcpu->hv_clock.flags = pvclock_flags;
2960 if (vcpu->pv_time_enabled)
2961 kvm_setup_pvclock_page(v, &vcpu->pv_time, 0);
2962 if (vcpu->xen.vcpu_info_set)
2963 kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_info_cache,
2964 offsetof(struct compat_vcpu_info, time));
2965 if (vcpu->xen.vcpu_time_info_set)
2966 kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_time_info_cache, 0);
2967 if (v == kvm_get_vcpu(v->kvm, 0))
2968 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2973 * kvmclock updates which are isolated to a given vcpu, such as
2974 * vcpu->cpu migration, should not allow system_timestamp from
2975 * the rest of the vcpus to remain static. Otherwise ntp frequency
2976 * correction applies to one vcpu's system_timestamp but not
2979 * So in those cases, request a kvmclock update for all vcpus.
2980 * We need to rate-limit these requests though, as they can
2981 * considerably slow guests that have a large number of vcpus.
2982 * The time for a remote vcpu to update its kvmclock is bound
2983 * by the delay we use to rate-limit the updates.
2986 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2988 static void kvmclock_update_fn(struct work_struct *work)
2991 struct delayed_work *dwork = to_delayed_work(work);
2992 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2993 kvmclock_update_work);
2994 struct kvm *kvm = container_of(ka, struct kvm, arch);
2995 struct kvm_vcpu *vcpu;
2997 kvm_for_each_vcpu(i, vcpu, kvm) {
2998 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2999 kvm_vcpu_kick(vcpu);
3003 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3005 struct kvm *kvm = v->kvm;
3007 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3008 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3009 KVMCLOCK_UPDATE_DELAY);
3012 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3014 static void kvmclock_sync_fn(struct work_struct *work)
3016 struct delayed_work *dwork = to_delayed_work(work);
3017 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3018 kvmclock_sync_work);
3019 struct kvm *kvm = container_of(ka, struct kvm, arch);
3021 if (!kvmclock_periodic_sync)
3024 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3025 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3026 KVMCLOCK_SYNC_PERIOD);
3030 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3032 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3034 /* McStatusWrEn enabled? */
3035 if (guest_cpuid_is_amd_or_hygon(vcpu))
3036 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3041 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3043 u64 mcg_cap = vcpu->arch.mcg_cap;
3044 unsigned bank_num = mcg_cap & 0xff;
3045 u32 msr = msr_info->index;
3046 u64 data = msr_info->data;
3049 case MSR_IA32_MCG_STATUS:
3050 vcpu->arch.mcg_status = data;
3052 case MSR_IA32_MCG_CTL:
3053 if (!(mcg_cap & MCG_CTL_P) &&
3054 (data || !msr_info->host_initiated))
3056 if (data != 0 && data != ~(u64)0)
3058 vcpu->arch.mcg_ctl = data;
3061 if (msr >= MSR_IA32_MC0_CTL &&
3062 msr < MSR_IA32_MCx_CTL(bank_num)) {
3063 u32 offset = array_index_nospec(
3064 msr - MSR_IA32_MC0_CTL,
3065 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3067 /* only 0 or all 1s can be written to IA32_MCi_CTL
3068 * some Linux kernels though clear bit 10 in bank 4 to
3069 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
3070 * this to avoid an uncatched #GP in the guest
3072 if ((offset & 0x3) == 0 &&
3073 data != 0 && (data | (1 << 10)) != ~(u64)0)
3077 if (!msr_info->host_initiated &&
3078 (offset & 0x3) == 1 && data != 0) {
3079 if (!can_set_mci_status(vcpu))
3083 vcpu->arch.mce_banks[offset] = data;
3091 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3093 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3095 return (vcpu->arch.apf.msr_en_val & mask) == mask;
3098 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3100 gpa_t gpa = data & ~0x3f;
3102 /* Bits 4:5 are reserved, Should be zero */
3106 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3107 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3110 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3111 (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3114 if (!lapic_in_kernel(vcpu))
3115 return data ? 1 : 0;
3117 vcpu->arch.apf.msr_en_val = data;
3119 if (!kvm_pv_async_pf_enabled(vcpu)) {
3120 kvm_clear_async_pf_completion_queue(vcpu);
3121 kvm_async_pf_hash_reset(vcpu);
3125 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3129 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3130 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3132 kvm_async_pf_wakeup_all(vcpu);
3137 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3139 /* Bits 8-63 are reserved */
3143 if (!lapic_in_kernel(vcpu))
3146 vcpu->arch.apf.msr_int_val = data;
3148 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3153 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3155 vcpu->arch.pv_time_enabled = false;
3156 vcpu->arch.time = 0;
3159 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3161 ++vcpu->stat.tlb_flush;
3162 static_call(kvm_x86_tlb_flush_all)(vcpu);
3165 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3167 ++vcpu->stat.tlb_flush;
3171 * A TLB flush on behalf of the guest is equivalent to
3172 * INVPCID(all), toggling CR4.PGE, etc., which requires
3173 * a forced sync of the shadow page tables. Unload the
3174 * entire MMU here and the subsequent load will sync the
3175 * shadow page tables, and also flush the TLB.
3177 kvm_mmu_unload(vcpu);
3181 static_call(kvm_x86_tlb_flush_guest)(vcpu);
3184 static void record_steal_time(struct kvm_vcpu *vcpu)
3186 struct kvm_host_map map;
3187 struct kvm_steal_time *st;
3189 if (kvm_xen_msr_enabled(vcpu->kvm)) {
3190 kvm_xen_runstate_set_running(vcpu);
3194 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3197 /* -EAGAIN is returned in atomic context so we can just return. */
3198 if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT,
3199 &map, &vcpu->arch.st.cache, false))
3203 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
3206 * Doing a TLB flush here, on the guest's behalf, can avoid
3209 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3210 u8 st_preempted = xchg(&st->preempted, 0);
3212 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3213 st_preempted & KVM_VCPU_FLUSH_TLB);
3214 if (st_preempted & KVM_VCPU_FLUSH_TLB)
3215 kvm_vcpu_flush_tlb_guest(vcpu);
3220 vcpu->arch.st.preempted = 0;
3222 if (st->version & 1)
3223 st->version += 1; /* first time write, random junk */
3229 st->steal += current->sched_info.run_delay -
3230 vcpu->arch.st.last_steal;
3231 vcpu->arch.st.last_steal = current->sched_info.run_delay;
3237 kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, false);
3240 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3243 u32 msr = msr_info->index;
3244 u64 data = msr_info->data;
3246 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3247 return kvm_xen_write_hypercall_page(vcpu, data);
3250 case MSR_AMD64_NB_CFG:
3251 case MSR_IA32_UCODE_WRITE:
3252 case MSR_VM_HSAVE_PA:
3253 case MSR_AMD64_PATCH_LOADER:
3254 case MSR_AMD64_BU_CFG2:
3255 case MSR_AMD64_DC_CFG:
3256 case MSR_F15H_EX_CFG:
3259 case MSR_IA32_UCODE_REV:
3260 if (msr_info->host_initiated)
3261 vcpu->arch.microcode_version = data;
3263 case MSR_IA32_ARCH_CAPABILITIES:
3264 if (!msr_info->host_initiated)
3266 vcpu->arch.arch_capabilities = data;
3268 case MSR_IA32_PERF_CAPABILITIES: {
3269 struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3271 if (!msr_info->host_initiated)
3273 if (guest_cpuid_has(vcpu, X86_FEATURE_PDCM) && kvm_get_msr_feature(&msr_ent))
3275 if (data & ~msr_ent.data)
3278 vcpu->arch.perf_capabilities = data;
3283 return set_efer(vcpu, msr_info);
3285 data &= ~(u64)0x40; /* ignore flush filter disable */
3286 data &= ~(u64)0x100; /* ignore ignne emulation enable */
3287 data &= ~(u64)0x8; /* ignore TLB cache disable */
3289 /* Handle McStatusWrEn */
3290 if (data == BIT_ULL(18)) {
3291 vcpu->arch.msr_hwcr = data;
3292 } else if (data != 0) {
3293 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3298 case MSR_FAM10H_MMIO_CONF_BASE:
3300 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3305 case 0x200 ... 0x2ff:
3306 return kvm_mtrr_set_msr(vcpu, msr, data);
3307 case MSR_IA32_APICBASE:
3308 return kvm_set_apic_base(vcpu, msr_info);
3309 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3310 return kvm_x2apic_msr_write(vcpu, msr, data);
3311 case MSR_IA32_TSC_DEADLINE:
3312 kvm_set_lapic_tscdeadline_msr(vcpu, data);
3314 case MSR_IA32_TSC_ADJUST:
3315 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3316 if (!msr_info->host_initiated) {
3317 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3318 adjust_tsc_offset_guest(vcpu, adj);
3320 vcpu->arch.ia32_tsc_adjust_msr = data;
3323 case MSR_IA32_MISC_ENABLE:
3324 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3325 ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3326 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3328 vcpu->arch.ia32_misc_enable_msr = data;
3329 kvm_update_cpuid_runtime(vcpu);
3331 vcpu->arch.ia32_misc_enable_msr = data;
3334 case MSR_IA32_SMBASE:
3335 if (!msr_info->host_initiated)
3337 vcpu->arch.smbase = data;
3339 case MSR_IA32_POWER_CTL:
3340 vcpu->arch.msr_ia32_power_ctl = data;
3343 if (msr_info->host_initiated) {
3344 kvm_synchronize_tsc(vcpu, data);
3346 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3347 adjust_tsc_offset_guest(vcpu, adj);
3348 vcpu->arch.ia32_tsc_adjust_msr += adj;
3352 if (!msr_info->host_initiated &&
3353 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3356 * KVM supports exposing PT to the guest, but does not support
3357 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3358 * XSAVES/XRSTORS to save/restore PT MSRs.
3360 if (data & ~supported_xss)
3362 vcpu->arch.ia32_xss = data;
3365 if (!msr_info->host_initiated)
3367 vcpu->arch.smi_count = data;
3369 case MSR_KVM_WALL_CLOCK_NEW:
3370 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3373 vcpu->kvm->arch.wall_clock = data;
3374 kvm_write_wall_clock(vcpu->kvm, data, 0);
3376 case MSR_KVM_WALL_CLOCK:
3377 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3380 vcpu->kvm->arch.wall_clock = data;
3381 kvm_write_wall_clock(vcpu->kvm, data, 0);
3383 case MSR_KVM_SYSTEM_TIME_NEW:
3384 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3387 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3389 case MSR_KVM_SYSTEM_TIME:
3390 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3393 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated);
3395 case MSR_KVM_ASYNC_PF_EN:
3396 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3399 if (kvm_pv_enable_async_pf(vcpu, data))
3402 case MSR_KVM_ASYNC_PF_INT:
3403 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3406 if (kvm_pv_enable_async_pf_int(vcpu, data))
3409 case MSR_KVM_ASYNC_PF_ACK:
3410 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3413 vcpu->arch.apf.pageready_pending = false;
3414 kvm_check_async_pf_completion(vcpu);
3417 case MSR_KVM_STEAL_TIME:
3418 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3421 if (unlikely(!sched_info_on()))
3424 if (data & KVM_STEAL_RESERVED_MASK)
3427 vcpu->arch.st.msr_val = data;
3429 if (!(data & KVM_MSR_ENABLED))
3432 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3435 case MSR_KVM_PV_EOI_EN:
3436 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3439 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
3443 case MSR_KVM_POLL_CONTROL:
3444 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3447 /* only enable bit supported */
3448 if (data & (-1ULL << 1))
3451 vcpu->arch.msr_kvm_poll_control = data;
3454 case MSR_IA32_MCG_CTL:
3455 case MSR_IA32_MCG_STATUS:
3456 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3457 return set_msr_mce(vcpu, msr_info);
3459 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3460 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3463 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3464 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3465 if (kvm_pmu_is_valid_msr(vcpu, msr))
3466 return kvm_pmu_set_msr(vcpu, msr_info);
3468 if (pr || data != 0)
3469 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3470 "0x%x data 0x%llx\n", msr, data);
3472 case MSR_K7_CLK_CTL:
3474 * Ignore all writes to this no longer documented MSR.
3475 * Writes are only relevant for old K7 processors,
3476 * all pre-dating SVM, but a recommended workaround from
3477 * AMD for these chips. It is possible to specify the
3478 * affected processor models on the command line, hence
3479 * the need to ignore the workaround.
3482 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3483 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3484 case HV_X64_MSR_SYNDBG_OPTIONS:
3485 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3486 case HV_X64_MSR_CRASH_CTL:
3487 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3488 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3489 case HV_X64_MSR_TSC_EMULATION_CONTROL:
3490 case HV_X64_MSR_TSC_EMULATION_STATUS:
3491 return kvm_hv_set_msr_common(vcpu, msr, data,
3492 msr_info->host_initiated);
3493 case MSR_IA32_BBL_CR_CTL3:
3494 /* Drop writes to this legacy MSR -- see rdmsr
3495 * counterpart for further detail.
3497 if (report_ignored_msrs)
3498 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3501 case MSR_AMD64_OSVW_ID_LENGTH:
3502 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3504 vcpu->arch.osvw.length = data;
3506 case MSR_AMD64_OSVW_STATUS:
3507 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3509 vcpu->arch.osvw.status = data;
3511 case MSR_PLATFORM_INFO:
3512 if (!msr_info->host_initiated ||
3513 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3514 cpuid_fault_enabled(vcpu)))
3516 vcpu->arch.msr_platform_info = data;
3518 case MSR_MISC_FEATURES_ENABLES:
3519 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3520 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3521 !supports_cpuid_fault(vcpu)))
3523 vcpu->arch.msr_misc_features_enables = data;
3526 if (kvm_pmu_is_valid_msr(vcpu, msr))
3527 return kvm_pmu_set_msr(vcpu, msr_info);
3528 return KVM_MSR_RET_INVALID;
3532 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3534 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3537 u64 mcg_cap = vcpu->arch.mcg_cap;
3538 unsigned bank_num = mcg_cap & 0xff;
3541 case MSR_IA32_P5_MC_ADDR:
3542 case MSR_IA32_P5_MC_TYPE:
3545 case MSR_IA32_MCG_CAP:
3546 data = vcpu->arch.mcg_cap;
3548 case MSR_IA32_MCG_CTL:
3549 if (!(mcg_cap & MCG_CTL_P) && !host)
3551 data = vcpu->arch.mcg_ctl;
3553 case MSR_IA32_MCG_STATUS:
3554 data = vcpu->arch.mcg_status;
3557 if (msr >= MSR_IA32_MC0_CTL &&
3558 msr < MSR_IA32_MCx_CTL(bank_num)) {
3559 u32 offset = array_index_nospec(
3560 msr - MSR_IA32_MC0_CTL,
3561 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3563 data = vcpu->arch.mce_banks[offset];
3572 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3574 switch (msr_info->index) {
3575 case MSR_IA32_PLATFORM_ID:
3576 case MSR_IA32_EBL_CR_POWERON:
3577 case MSR_IA32_LASTBRANCHFROMIP:
3578 case MSR_IA32_LASTBRANCHTOIP:
3579 case MSR_IA32_LASTINTFROMIP:
3580 case MSR_IA32_LASTINTTOIP:
3581 case MSR_AMD64_SYSCFG:
3582 case MSR_K8_TSEG_ADDR:
3583 case MSR_K8_TSEG_MASK:
3584 case MSR_VM_HSAVE_PA:
3585 case MSR_K8_INT_PENDING_MSG:
3586 case MSR_AMD64_NB_CFG:
3587 case MSR_FAM10H_MMIO_CONF_BASE:
3588 case MSR_AMD64_BU_CFG2:
3589 case MSR_IA32_PERF_CTL:
3590 case MSR_AMD64_DC_CFG:
3591 case MSR_F15H_EX_CFG:
3593 * Intel Sandy Bridge CPUs must support the RAPL (running average power
3594 * limit) MSRs. Just return 0, as we do not want to expose the host
3595 * data here. Do not conditionalize this on CPUID, as KVM does not do
3596 * so for existing CPU-specific MSRs.
3598 case MSR_RAPL_POWER_UNIT:
3599 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */
3600 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */
3601 case MSR_PKG_ENERGY_STATUS: /* Total package */
3602 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */
3605 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3606 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3607 return kvm_pmu_get_msr(vcpu, msr_info);
3608 if (!msr_info->host_initiated)
3612 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3613 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3614 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3615 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3616 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3617 return kvm_pmu_get_msr(vcpu, msr_info);
3620 case MSR_IA32_UCODE_REV:
3621 msr_info->data = vcpu->arch.microcode_version;
3623 case MSR_IA32_ARCH_CAPABILITIES:
3624 if (!msr_info->host_initiated &&
3625 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3627 msr_info->data = vcpu->arch.arch_capabilities;
3629 case MSR_IA32_PERF_CAPABILITIES:
3630 if (!msr_info->host_initiated &&
3631 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3633 msr_info->data = vcpu->arch.perf_capabilities;
3635 case MSR_IA32_POWER_CTL:
3636 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3638 case MSR_IA32_TSC: {
3640 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3641 * even when not intercepted. AMD manual doesn't explicitly
3642 * state this but appears to behave the same.
3644 * On userspace reads and writes, however, we unconditionally
3645 * return L1's TSC value to ensure backwards-compatible
3646 * behavior for migration.
3650 if (msr_info->host_initiated) {
3651 offset = vcpu->arch.l1_tsc_offset;
3652 ratio = vcpu->arch.l1_tsc_scaling_ratio;
3654 offset = vcpu->arch.tsc_offset;
3655 ratio = vcpu->arch.tsc_scaling_ratio;
3658 msr_info->data = kvm_scale_tsc(vcpu, rdtsc(), ratio) + offset;
3662 case 0x200 ... 0x2ff:
3663 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3664 case 0xcd: /* fsb frequency */
3668 * MSR_EBC_FREQUENCY_ID
3669 * Conservative value valid for even the basic CPU models.
3670 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3671 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3672 * and 266MHz for model 3, or 4. Set Core Clock
3673 * Frequency to System Bus Frequency Ratio to 1 (bits
3674 * 31:24) even though these are only valid for CPU
3675 * models > 2, however guests may end up dividing or
3676 * multiplying by zero otherwise.
3678 case MSR_EBC_FREQUENCY_ID:
3679 msr_info->data = 1 << 24;
3681 case MSR_IA32_APICBASE:
3682 msr_info->data = kvm_get_apic_base(vcpu);
3684 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3685 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3686 case MSR_IA32_TSC_DEADLINE:
3687 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3689 case MSR_IA32_TSC_ADJUST:
3690 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3692 case MSR_IA32_MISC_ENABLE:
3693 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3695 case MSR_IA32_SMBASE:
3696 if (!msr_info->host_initiated)
3698 msr_info->data = vcpu->arch.smbase;
3701 msr_info->data = vcpu->arch.smi_count;
3703 case MSR_IA32_PERF_STATUS:
3704 /* TSC increment by tick */
3705 msr_info->data = 1000ULL;
3706 /* CPU multiplier */
3707 msr_info->data |= (((uint64_t)4ULL) << 40);
3710 msr_info->data = vcpu->arch.efer;
3712 case MSR_KVM_WALL_CLOCK:
3713 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3716 msr_info->data = vcpu->kvm->arch.wall_clock;
3718 case MSR_KVM_WALL_CLOCK_NEW:
3719 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3722 msr_info->data = vcpu->kvm->arch.wall_clock;
3724 case MSR_KVM_SYSTEM_TIME:
3725 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3728 msr_info->data = vcpu->arch.time;
3730 case MSR_KVM_SYSTEM_TIME_NEW:
3731 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3734 msr_info->data = vcpu->arch.time;
3736 case MSR_KVM_ASYNC_PF_EN:
3737 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3740 msr_info->data = vcpu->arch.apf.msr_en_val;
3742 case MSR_KVM_ASYNC_PF_INT:
3743 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3746 msr_info->data = vcpu->arch.apf.msr_int_val;
3748 case MSR_KVM_ASYNC_PF_ACK:
3749 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3754 case MSR_KVM_STEAL_TIME:
3755 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3758 msr_info->data = vcpu->arch.st.msr_val;
3760 case MSR_KVM_PV_EOI_EN:
3761 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3764 msr_info->data = vcpu->arch.pv_eoi.msr_val;
3766 case MSR_KVM_POLL_CONTROL:
3767 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3770 msr_info->data = vcpu->arch.msr_kvm_poll_control;
3772 case MSR_IA32_P5_MC_ADDR:
3773 case MSR_IA32_P5_MC_TYPE:
3774 case MSR_IA32_MCG_CAP:
3775 case MSR_IA32_MCG_CTL:
3776 case MSR_IA32_MCG_STATUS:
3777 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3778 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3779 msr_info->host_initiated);
3781 if (!msr_info->host_initiated &&
3782 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3784 msr_info->data = vcpu->arch.ia32_xss;
3786 case MSR_K7_CLK_CTL:
3788 * Provide expected ramp-up count for K7. All other
3789 * are set to zero, indicating minimum divisors for
3792 * This prevents guest kernels on AMD host with CPU
3793 * type 6, model 8 and higher from exploding due to
3794 * the rdmsr failing.
3796 msr_info->data = 0x20000000;
3798 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3799 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3800 case HV_X64_MSR_SYNDBG_OPTIONS:
3801 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3802 case HV_X64_MSR_CRASH_CTL:
3803 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3804 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3805 case HV_X64_MSR_TSC_EMULATION_CONTROL:
3806 case HV_X64_MSR_TSC_EMULATION_STATUS:
3807 return kvm_hv_get_msr_common(vcpu,
3808 msr_info->index, &msr_info->data,
3809 msr_info->host_initiated);
3810 case MSR_IA32_BBL_CR_CTL3:
3811 /* This legacy MSR exists but isn't fully documented in current
3812 * silicon. It is however accessed by winxp in very narrow
3813 * scenarios where it sets bit #19, itself documented as
3814 * a "reserved" bit. Best effort attempt to source coherent
3815 * read data here should the balance of the register be
3816 * interpreted by the guest:
3818 * L2 cache control register 3: 64GB range, 256KB size,
3819 * enabled, latency 0x1, configured
3821 msr_info->data = 0xbe702111;
3823 case MSR_AMD64_OSVW_ID_LENGTH:
3824 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3826 msr_info->data = vcpu->arch.osvw.length;
3828 case MSR_AMD64_OSVW_STATUS:
3829 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3831 msr_info->data = vcpu->arch.osvw.status;
3833 case MSR_PLATFORM_INFO:
3834 if (!msr_info->host_initiated &&
3835 !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3837 msr_info->data = vcpu->arch.msr_platform_info;
3839 case MSR_MISC_FEATURES_ENABLES:
3840 msr_info->data = vcpu->arch.msr_misc_features_enables;
3843 msr_info->data = vcpu->arch.msr_hwcr;
3846 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3847 return kvm_pmu_get_msr(vcpu, msr_info);
3848 return KVM_MSR_RET_INVALID;
3852 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3855 * Read or write a bunch of msrs. All parameters are kernel addresses.
3857 * @return number of msrs set successfully.
3859 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3860 struct kvm_msr_entry *entries,
3861 int (*do_msr)(struct kvm_vcpu *vcpu,
3862 unsigned index, u64 *data))
3866 for (i = 0; i < msrs->nmsrs; ++i)
3867 if (do_msr(vcpu, entries[i].index, &entries[i].data))
3874 * Read or write a bunch of msrs. Parameters are user addresses.
3876 * @return number of msrs set successfully.
3878 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3879 int (*do_msr)(struct kvm_vcpu *vcpu,
3880 unsigned index, u64 *data),
3883 struct kvm_msrs msrs;
3884 struct kvm_msr_entry *entries;
3889 if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3893 if (msrs.nmsrs >= MAX_IO_MSRS)
3896 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3897 entries = memdup_user(user_msrs->entries, size);
3898 if (IS_ERR(entries)) {
3899 r = PTR_ERR(entries);
3903 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3908 if (writeback && copy_to_user(user_msrs->entries, entries, size))
3919 static inline bool kvm_can_mwait_in_guest(void)
3921 return boot_cpu_has(X86_FEATURE_MWAIT) &&
3922 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
3923 boot_cpu_has(X86_FEATURE_ARAT);
3926 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
3927 struct kvm_cpuid2 __user *cpuid_arg)
3929 struct kvm_cpuid2 cpuid;
3933 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3936 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3941 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3947 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
3952 case KVM_CAP_IRQCHIP:
3954 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3955 case KVM_CAP_SET_TSS_ADDR:
3956 case KVM_CAP_EXT_CPUID:
3957 case KVM_CAP_EXT_EMUL_CPUID:
3958 case KVM_CAP_CLOCKSOURCE:
3960 case KVM_CAP_NOP_IO_DELAY:
3961 case KVM_CAP_MP_STATE:
3962 case KVM_CAP_SYNC_MMU:
3963 case KVM_CAP_USER_NMI:
3964 case KVM_CAP_REINJECT_CONTROL:
3965 case KVM_CAP_IRQ_INJECT_STATUS:
3966 case KVM_CAP_IOEVENTFD:
3967 case KVM_CAP_IOEVENTFD_NO_LENGTH:
3969 case KVM_CAP_PIT_STATE2:
3970 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3971 case KVM_CAP_VCPU_EVENTS:
3972 case KVM_CAP_HYPERV:
3973 case KVM_CAP_HYPERV_VAPIC:
3974 case KVM_CAP_HYPERV_SPIN:
3975 case KVM_CAP_HYPERV_SYNIC:
3976 case KVM_CAP_HYPERV_SYNIC2:
3977 case KVM_CAP_HYPERV_VP_INDEX:
3978 case KVM_CAP_HYPERV_EVENTFD:
3979 case KVM_CAP_HYPERV_TLBFLUSH:
3980 case KVM_CAP_HYPERV_SEND_IPI:
3981 case KVM_CAP_HYPERV_CPUID:
3982 case KVM_CAP_HYPERV_ENFORCE_CPUID:
3983 case KVM_CAP_SYS_HYPERV_CPUID:
3984 case KVM_CAP_PCI_SEGMENT:
3985 case KVM_CAP_DEBUGREGS:
3986 case KVM_CAP_X86_ROBUST_SINGLESTEP:
3988 case KVM_CAP_ASYNC_PF:
3989 case KVM_CAP_ASYNC_PF_INT:
3990 case KVM_CAP_GET_TSC_KHZ:
3991 case KVM_CAP_KVMCLOCK_CTRL:
3992 case KVM_CAP_READONLY_MEM:
3993 case KVM_CAP_HYPERV_TIME:
3994 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3995 case KVM_CAP_TSC_DEADLINE_TIMER:
3996 case KVM_CAP_DISABLE_QUIRKS:
3997 case KVM_CAP_SET_BOOT_CPU_ID:
3998 case KVM_CAP_SPLIT_IRQCHIP:
3999 case KVM_CAP_IMMEDIATE_EXIT:
4000 case KVM_CAP_PMU_EVENT_FILTER:
4001 case KVM_CAP_GET_MSR_FEATURES:
4002 case KVM_CAP_MSR_PLATFORM_INFO:
4003 case KVM_CAP_EXCEPTION_PAYLOAD:
4004 case KVM_CAP_SET_GUEST_DEBUG:
4005 case KVM_CAP_LAST_CPU:
4006 case KVM_CAP_X86_USER_SPACE_MSR:
4007 case KVM_CAP_X86_MSR_FILTER:
4008 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4009 #ifdef CONFIG_X86_SGX_KVM
4010 case KVM_CAP_SGX_ATTRIBUTE:
4012 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4013 case KVM_CAP_SREGS2:
4014 case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4017 case KVM_CAP_EXIT_HYPERCALL:
4018 r = KVM_EXIT_HYPERCALL_VALID_MASK;
4020 case KVM_CAP_SET_GUEST_DEBUG2:
4021 return KVM_GUESTDBG_VALID_MASK;
4022 #ifdef CONFIG_KVM_XEN
4023 case KVM_CAP_XEN_HVM:
4024 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4025 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4026 KVM_XEN_HVM_CONFIG_SHARED_INFO;
4027 if (sched_info_on())
4028 r |= KVM_XEN_HVM_CONFIG_RUNSTATE;
4031 case KVM_CAP_SYNC_REGS:
4032 r = KVM_SYNC_X86_VALID_FIELDS;
4034 case KVM_CAP_ADJUST_CLOCK:
4035 r = KVM_CLOCK_TSC_STABLE;
4037 case KVM_CAP_X86_DISABLE_EXITS:
4038 r |= KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
4039 KVM_X86_DISABLE_EXITS_CSTATE;
4040 if(kvm_can_mwait_in_guest())
4041 r |= KVM_X86_DISABLE_EXITS_MWAIT;
4043 case KVM_CAP_X86_SMM:
4044 /* SMBASE is usually relocated above 1M on modern chipsets,
4045 * and SMM handlers might indeed rely on 4G segment limits,
4046 * so do not report SMM to be available if real mode is
4047 * emulated via vm86 mode. Still, do not go to great lengths
4048 * to avoid userspace's usage of the feature, because it is a
4049 * fringe case that is not enabled except via specific settings
4050 * of the module parameters.
4052 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4055 r = !static_call(kvm_x86_cpu_has_accelerated_tpr)();
4057 case KVM_CAP_NR_VCPUS:
4058 r = KVM_SOFT_MAX_VCPUS;
4060 case KVM_CAP_MAX_VCPUS:
4063 case KVM_CAP_MAX_VCPU_ID:
4064 r = KVM_MAX_VCPU_ID;
4066 case KVM_CAP_PV_MMU: /* obsolete */
4070 r = KVM_MAX_MCE_BANKS;
4073 r = boot_cpu_has(X86_FEATURE_XSAVE);
4075 case KVM_CAP_TSC_CONTROL:
4076 r = kvm_has_tsc_control;
4078 case KVM_CAP_X2APIC_API:
4079 r = KVM_X2APIC_API_VALID_FLAGS;
4081 case KVM_CAP_NESTED_STATE:
4082 r = kvm_x86_ops.nested_ops->get_state ?
4083 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4085 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4086 r = kvm_x86_ops.enable_direct_tlbflush != NULL;
4088 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4089 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4091 case KVM_CAP_SMALLER_MAXPHYADDR:
4092 r = (int) allow_smaller_maxphyaddr;
4094 case KVM_CAP_STEAL_TIME:
4095 r = sched_info_on();
4097 case KVM_CAP_X86_BUS_LOCK_EXIT:
4098 if (kvm_has_bus_lock_exit)
4099 r = KVM_BUS_LOCK_DETECTION_OFF |
4100 KVM_BUS_LOCK_DETECTION_EXIT;
4111 long kvm_arch_dev_ioctl(struct file *filp,
4112 unsigned int ioctl, unsigned long arg)
4114 void __user *argp = (void __user *)arg;
4118 case KVM_GET_MSR_INDEX_LIST: {
4119 struct kvm_msr_list __user *user_msr_list = argp;
4120 struct kvm_msr_list msr_list;
4124 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4127 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4128 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4131 if (n < msr_list.nmsrs)
4134 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4135 num_msrs_to_save * sizeof(u32)))
4137 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4139 num_emulated_msrs * sizeof(u32)))
4144 case KVM_GET_SUPPORTED_CPUID:
4145 case KVM_GET_EMULATED_CPUID: {
4146 struct kvm_cpuid2 __user *cpuid_arg = argp;
4147 struct kvm_cpuid2 cpuid;
4150 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4153 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4159 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4164 case KVM_X86_GET_MCE_CAP_SUPPORTED:
4166 if (copy_to_user(argp, &kvm_mce_cap_supported,
4167 sizeof(kvm_mce_cap_supported)))
4171 case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4172 struct kvm_msr_list __user *user_msr_list = argp;
4173 struct kvm_msr_list msr_list;
4177 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4180 msr_list.nmsrs = num_msr_based_features;
4181 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4184 if (n < msr_list.nmsrs)
4187 if (copy_to_user(user_msr_list->indices, &msr_based_features,
4188 num_msr_based_features * sizeof(u32)))
4194 r = msr_io(NULL, argp, do_get_msr_feature, 1);
4196 case KVM_GET_SUPPORTED_HV_CPUID:
4197 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4207 static void wbinvd_ipi(void *garbage)
4212 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4214 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4217 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4219 /* Address WBINVD may be executed by guest */
4220 if (need_emulate_wbinvd(vcpu)) {
4221 if (static_call(kvm_x86_has_wbinvd_exit)())
4222 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4223 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4224 smp_call_function_single(vcpu->cpu,
4225 wbinvd_ipi, NULL, 1);
4228 static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4230 /* Save host pkru register if supported */
4231 vcpu->arch.host_pkru = read_pkru();
4233 /* Apply any externally detected TSC adjustments (due to suspend) */
4234 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4235 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4236 vcpu->arch.tsc_offset_adjustment = 0;
4237 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4240 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4241 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4242 rdtsc() - vcpu->arch.last_host_tsc;
4244 mark_tsc_unstable("KVM discovered backwards TSC");
4246 if (kvm_check_tsc_unstable()) {
4247 u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4248 vcpu->arch.last_guest_tsc);
4249 kvm_vcpu_write_tsc_offset(vcpu, offset);
4250 vcpu->arch.tsc_catchup = 1;
4253 if (kvm_lapic_hv_timer_in_use(vcpu))
4254 kvm_lapic_restart_hv_timer(vcpu);
4257 * On a host with synchronized TSC, there is no need to update
4258 * kvmclock on vcpu->cpu migration
4260 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4261 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4262 if (vcpu->cpu != cpu)
4263 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4267 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4270 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4272 struct kvm_host_map map;
4273 struct kvm_steal_time *st;
4275 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4278 if (vcpu->arch.st.preempted)
4281 if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT, &map,
4282 &vcpu->arch.st.cache, true))
4286 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
4288 st->preempted = vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4290 kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, true);
4293 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4297 if (vcpu->preempted && !vcpu->arch.guest_state_protected)
4298 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4301 * Take the srcu lock as memslots will be accessed to check the gfn
4302 * cache generation against the memslots generation.
4304 idx = srcu_read_lock(&vcpu->kvm->srcu);
4305 if (kvm_xen_msr_enabled(vcpu->kvm))
4306 kvm_xen_runstate_set_preempted(vcpu);
4308 kvm_steal_time_set_preempted(vcpu);
4309 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4311 static_call(kvm_x86_vcpu_put)(vcpu);
4312 vcpu->arch.last_host_tsc = rdtsc();
4314 * If userspace has set any breakpoints or watchpoints, dr6 is restored
4315 * on every vmexit, but if not, we might have a stale dr6 from the
4316 * guest. do_debug expects dr6 to be cleared after it runs, do the same.
4321 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4322 struct kvm_lapic_state *s)
4324 if (vcpu->arch.apicv_active)
4325 static_call(kvm_x86_sync_pir_to_irr)(vcpu);
4327 return kvm_apic_get_state(vcpu, s);
4330 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4331 struct kvm_lapic_state *s)
4335 r = kvm_apic_set_state(vcpu, s);
4338 update_cr8_intercept(vcpu);
4343 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4346 * We can accept userspace's request for interrupt injection
4347 * as long as we have a place to store the interrupt number.
4348 * The actual injection will happen when the CPU is able to
4349 * deliver the interrupt.
4351 if (kvm_cpu_has_extint(vcpu))
4354 /* Acknowledging ExtINT does not happen if LINT0 is masked. */
4355 return (!lapic_in_kernel(vcpu) ||
4356 kvm_apic_accept_pic_intr(vcpu));
4359 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4361 return kvm_arch_interrupt_allowed(vcpu) &&
4362 kvm_cpu_accept_dm_intr(vcpu);
4365 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4366 struct kvm_interrupt *irq)
4368 if (irq->irq >= KVM_NR_INTERRUPTS)
4371 if (!irqchip_in_kernel(vcpu->kvm)) {
4372 kvm_queue_interrupt(vcpu, irq->irq, false);
4373 kvm_make_request(KVM_REQ_EVENT, vcpu);
4378 * With in-kernel LAPIC, we only use this to inject EXTINT, so
4379 * fail for in-kernel 8259.
4381 if (pic_in_kernel(vcpu->kvm))
4384 if (vcpu->arch.pending_external_vector != -1)
4387 vcpu->arch.pending_external_vector = irq->irq;
4388 kvm_make_request(KVM_REQ_EVENT, vcpu);
4392 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4394 kvm_inject_nmi(vcpu);
4399 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4401 kvm_make_request(KVM_REQ_SMI, vcpu);
4406 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4407 struct kvm_tpr_access_ctl *tac)
4411 vcpu->arch.tpr_access_reporting = !!tac->enabled;
4415 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4419 unsigned bank_num = mcg_cap & 0xff, bank;
4422 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4424 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
4427 vcpu->arch.mcg_cap = mcg_cap;
4428 /* Init IA32_MCG_CTL to all 1s */
4429 if (mcg_cap & MCG_CTL_P)
4430 vcpu->arch.mcg_ctl = ~(u64)0;
4431 /* Init IA32_MCi_CTL to all 1s */
4432 for (bank = 0; bank < bank_num; bank++)
4433 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4435 static_call(kvm_x86_setup_mce)(vcpu);
4440 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4441 struct kvm_x86_mce *mce)
4443 u64 mcg_cap = vcpu->arch.mcg_cap;
4444 unsigned bank_num = mcg_cap & 0xff;
4445 u64 *banks = vcpu->arch.mce_banks;
4447 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4450 * if IA32_MCG_CTL is not all 1s, the uncorrected error
4451 * reporting is disabled
4453 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
4454 vcpu->arch.mcg_ctl != ~(u64)0)
4456 banks += 4 * mce->bank;
4458 * if IA32_MCi_CTL is not all 1s, the uncorrected error
4459 * reporting is disabled for the bank
4461 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
4463 if (mce->status & MCI_STATUS_UC) {
4464 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
4465 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
4466 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4469 if (banks[1] & MCI_STATUS_VAL)
4470 mce->status |= MCI_STATUS_OVER;
4471 banks[2] = mce->addr;
4472 banks[3] = mce->misc;
4473 vcpu->arch.mcg_status = mce->mcg_status;
4474 banks[1] = mce->status;
4475 kvm_queue_exception(vcpu, MC_VECTOR);
4476 } else if (!(banks[1] & MCI_STATUS_VAL)
4477 || !(banks[1] & MCI_STATUS_UC)) {
4478 if (banks[1] & MCI_STATUS_VAL)
4479 mce->status |= MCI_STATUS_OVER;
4480 banks[2] = mce->addr;
4481 banks[3] = mce->misc;
4482 banks[1] = mce->status;
4484 banks[1] |= MCI_STATUS_OVER;
4488 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
4489 struct kvm_vcpu_events *events)
4493 if (kvm_check_request(KVM_REQ_SMI, vcpu))
4497 * In guest mode, payload delivery should be deferred,
4498 * so that the L1 hypervisor can intercept #PF before
4499 * CR2 is modified (or intercept #DB before DR6 is
4500 * modified under nVMX). Unless the per-VM capability,
4501 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
4502 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
4503 * opportunistically defer the exception payload, deliver it if the
4504 * capability hasn't been requested before processing a
4505 * KVM_GET_VCPU_EVENTS.
4507 if (!vcpu->kvm->arch.exception_payload_enabled &&
4508 vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
4509 kvm_deliver_exception_payload(vcpu);
4512 * The API doesn't provide the instruction length for software
4513 * exceptions, so don't report them. As long as the guest RIP
4514 * isn't advanced, we should expect to encounter the exception
4517 if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
4518 events->exception.injected = 0;
4519 events->exception.pending = 0;
4521 events->exception.injected = vcpu->arch.exception.injected;
4522 events->exception.pending = vcpu->arch.exception.pending;
4524 * For ABI compatibility, deliberately conflate
4525 * pending and injected exceptions when
4526 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
4528 if (!vcpu->kvm->arch.exception_payload_enabled)
4529 events->exception.injected |=
4530 vcpu->arch.exception.pending;
4532 events->exception.nr = vcpu->arch.exception.nr;
4533 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
4534 events->exception.error_code = vcpu->arch.exception.error_code;
4535 events->exception_has_payload = vcpu->arch.exception.has_payload;
4536 events->exception_payload = vcpu->arch.exception.payload;
4538 events->interrupt.injected =
4539 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
4540 events->interrupt.nr = vcpu->arch.interrupt.nr;
4541 events->interrupt.soft = 0;
4542 events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
4544 events->nmi.injected = vcpu->arch.nmi_injected;
4545 events->nmi.pending = vcpu->arch.nmi_pending != 0;
4546 events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
4547 events->nmi.pad = 0;
4549 events->sipi_vector = 0; /* never valid when reporting to user space */
4551 events->smi.smm = is_smm(vcpu);
4552 events->smi.pending = vcpu->arch.smi_pending;
4553 events->smi.smm_inside_nmi =
4554 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
4555 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
4557 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
4558 | KVM_VCPUEVENT_VALID_SHADOW
4559 | KVM_VCPUEVENT_VALID_SMM);
4560 if (vcpu->kvm->arch.exception_payload_enabled)
4561 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4563 memset(&events->reserved, 0, sizeof(events->reserved));
4566 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm);
4568 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
4569 struct kvm_vcpu_events *events)
4571 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4572 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4573 | KVM_VCPUEVENT_VALID_SHADOW
4574 | KVM_VCPUEVENT_VALID_SMM
4575 | KVM_VCPUEVENT_VALID_PAYLOAD))
4578 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4579 if (!vcpu->kvm->arch.exception_payload_enabled)
4581 if (events->exception.pending)
4582 events->exception.injected = 0;
4584 events->exception_has_payload = 0;
4586 events->exception.pending = 0;
4587 events->exception_has_payload = 0;
4590 if ((events->exception.injected || events->exception.pending) &&
4591 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
4594 /* INITs are latched while in SMM */
4595 if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4596 (events->smi.smm || events->smi.pending) &&
4597 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4601 vcpu->arch.exception.injected = events->exception.injected;
4602 vcpu->arch.exception.pending = events->exception.pending;
4603 vcpu->arch.exception.nr = events->exception.nr;
4604 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4605 vcpu->arch.exception.error_code = events->exception.error_code;
4606 vcpu->arch.exception.has_payload = events->exception_has_payload;
4607 vcpu->arch.exception.payload = events->exception_payload;
4609 vcpu->arch.interrupt.injected = events->interrupt.injected;
4610 vcpu->arch.interrupt.nr = events->interrupt.nr;
4611 vcpu->arch.interrupt.soft = events->interrupt.soft;
4612 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
4613 static_call(kvm_x86_set_interrupt_shadow)(vcpu,
4614 events->interrupt.shadow);
4616 vcpu->arch.nmi_injected = events->nmi.injected;
4617 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
4618 vcpu->arch.nmi_pending = events->nmi.pending;
4619 static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
4621 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
4622 lapic_in_kernel(vcpu))
4623 vcpu->arch.apic->sipi_vector = events->sipi_vector;
4625 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
4626 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm)
4627 kvm_smm_changed(vcpu, events->smi.smm);
4629 vcpu->arch.smi_pending = events->smi.pending;
4631 if (events->smi.smm) {
4632 if (events->smi.smm_inside_nmi)
4633 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
4635 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
4638 if (lapic_in_kernel(vcpu)) {
4639 if (events->smi.latched_init)
4640 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4642 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4646 kvm_make_request(KVM_REQ_EVENT, vcpu);
4651 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
4652 struct kvm_debugregs *dbgregs)
4656 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
4657 kvm_get_dr(vcpu, 6, &val);
4659 dbgregs->dr7 = vcpu->arch.dr7;
4661 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
4664 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
4665 struct kvm_debugregs *dbgregs)
4670 if (!kvm_dr6_valid(dbgregs->dr6))
4672 if (!kvm_dr7_valid(dbgregs->dr7))
4675 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
4676 kvm_update_dr0123(vcpu);
4677 vcpu->arch.dr6 = dbgregs->dr6;
4678 vcpu->arch.dr7 = dbgregs->dr7;
4679 kvm_update_dr7(vcpu);
4684 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
4686 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
4688 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4689 u64 xstate_bv = xsave->header.xfeatures;
4693 * Copy legacy XSAVE area, to avoid complications with CPUID
4694 * leaves 0 and 1 in the loop below.
4696 memcpy(dest, xsave, XSAVE_HDR_OFFSET);
4699 xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
4700 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
4703 * Copy each region from the possibly compacted offset to the
4704 * non-compacted offset.
4706 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4708 u32 size, offset, ecx, edx;
4709 u64 xfeature_mask = valid & -valid;
4710 int xfeature_nr = fls64(xfeature_mask) - 1;
4713 cpuid_count(XSTATE_CPUID, xfeature_nr,
4714 &size, &offset, &ecx, &edx);
4716 if (xfeature_nr == XFEATURE_PKRU) {
4717 memcpy(dest + offset, &vcpu->arch.pkru,
4718 sizeof(vcpu->arch.pkru));
4720 src = get_xsave_addr(xsave, xfeature_nr);
4722 memcpy(dest + offset, src, size);
4725 valid -= xfeature_mask;
4729 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
4731 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4732 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
4736 * Copy legacy XSAVE area, to avoid complications with CPUID
4737 * leaves 0 and 1 in the loop below.
4739 memcpy(xsave, src, XSAVE_HDR_OFFSET);
4741 /* Set XSTATE_BV and possibly XCOMP_BV. */
4742 xsave->header.xfeatures = xstate_bv;
4743 if (boot_cpu_has(X86_FEATURE_XSAVES))
4744 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
4747 * Copy each region from the non-compacted offset to the
4748 * possibly compacted offset.
4750 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4752 u32 size, offset, ecx, edx;
4753 u64 xfeature_mask = valid & -valid;
4754 int xfeature_nr = fls64(xfeature_mask) - 1;
4756 cpuid_count(XSTATE_CPUID, xfeature_nr,
4757 &size, &offset, &ecx, &edx);
4759 if (xfeature_nr == XFEATURE_PKRU) {
4760 memcpy(&vcpu->arch.pkru, src + offset,
4761 sizeof(vcpu->arch.pkru));
4763 void *dest = get_xsave_addr(xsave, xfeature_nr);
4766 memcpy(dest, src + offset, size);
4769 valid -= xfeature_mask;
4773 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4774 struct kvm_xsave *guest_xsave)
4776 if (!vcpu->arch.guest_fpu)
4779 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4780 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
4781 fill_xsave((u8 *) guest_xsave->region, vcpu);
4783 memcpy(guest_xsave->region,
4784 &vcpu->arch.guest_fpu->state.fxsave,
4785 sizeof(struct fxregs_state));
4786 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
4787 XFEATURE_MASK_FPSSE;
4791 #define XSAVE_MXCSR_OFFSET 24
4793 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
4794 struct kvm_xsave *guest_xsave)
4799 if (!vcpu->arch.guest_fpu)
4802 xstate_bv = *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
4803 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
4805 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4807 * Here we allow setting states that are not present in
4808 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
4809 * with old userspace.
4811 if (xstate_bv & ~supported_xcr0 || mxcsr & ~mxcsr_feature_mask)
4813 load_xsave(vcpu, (u8 *)guest_xsave->region);
4815 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
4816 mxcsr & ~mxcsr_feature_mask)
4818 memcpy(&vcpu->arch.guest_fpu->state.fxsave,
4819 guest_xsave->region, sizeof(struct fxregs_state));
4824 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
4825 struct kvm_xcrs *guest_xcrs)
4827 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
4828 guest_xcrs->nr_xcrs = 0;
4832 guest_xcrs->nr_xcrs = 1;
4833 guest_xcrs->flags = 0;
4834 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
4835 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
4838 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
4839 struct kvm_xcrs *guest_xcrs)
4843 if (!boot_cpu_has(X86_FEATURE_XSAVE))
4846 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
4849 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
4850 /* Only support XCR0 currently */
4851 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
4852 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
4853 guest_xcrs->xcrs[i].value);
4862 * kvm_set_guest_paused() indicates to the guest kernel that it has been
4863 * stopped by the hypervisor. This function will be called from the host only.
4864 * EINVAL is returned when the host attempts to set the flag for a guest that
4865 * does not support pv clocks.
4867 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
4869 if (!vcpu->arch.pv_time_enabled)
4871 vcpu->arch.pvclock_set_guest_stopped_request = true;
4872 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4876 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
4877 struct kvm_enable_cap *cap)
4880 uint16_t vmcs_version;
4881 void __user *user_ptr;
4887 case KVM_CAP_HYPERV_SYNIC2:
4892 case KVM_CAP_HYPERV_SYNIC:
4893 if (!irqchip_in_kernel(vcpu->kvm))
4895 return kvm_hv_activate_synic(vcpu, cap->cap ==
4896 KVM_CAP_HYPERV_SYNIC2);
4897 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4898 if (!kvm_x86_ops.nested_ops->enable_evmcs)
4900 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
4902 user_ptr = (void __user *)(uintptr_t)cap->args[0];
4903 if (copy_to_user(user_ptr, &vmcs_version,
4904 sizeof(vmcs_version)))
4908 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4909 if (!kvm_x86_ops.enable_direct_tlbflush)
4912 return static_call(kvm_x86_enable_direct_tlbflush)(vcpu);
4914 case KVM_CAP_HYPERV_ENFORCE_CPUID:
4915 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
4917 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4918 vcpu->arch.pv_cpuid.enforce = cap->args[0];
4919 if (vcpu->arch.pv_cpuid.enforce)
4920 kvm_update_pv_runtime(vcpu);
4928 long kvm_arch_vcpu_ioctl(struct file *filp,
4929 unsigned int ioctl, unsigned long arg)
4931 struct kvm_vcpu *vcpu = filp->private_data;
4932 void __user *argp = (void __user *)arg;
4935 struct kvm_sregs2 *sregs2;
4936 struct kvm_lapic_state *lapic;
4937 struct kvm_xsave *xsave;
4938 struct kvm_xcrs *xcrs;
4946 case KVM_GET_LAPIC: {
4948 if (!lapic_in_kernel(vcpu))
4950 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
4951 GFP_KERNEL_ACCOUNT);
4956 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
4960 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
4965 case KVM_SET_LAPIC: {
4967 if (!lapic_in_kernel(vcpu))
4969 u.lapic = memdup_user(argp, sizeof(*u.lapic));
4970 if (IS_ERR(u.lapic)) {
4971 r = PTR_ERR(u.lapic);
4975 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
4978 case KVM_INTERRUPT: {
4979 struct kvm_interrupt irq;
4982 if (copy_from_user(&irq, argp, sizeof(irq)))
4984 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
4988 r = kvm_vcpu_ioctl_nmi(vcpu);
4992 r = kvm_vcpu_ioctl_smi(vcpu);
4995 case KVM_SET_CPUID: {
4996 struct kvm_cpuid __user *cpuid_arg = argp;
4997 struct kvm_cpuid cpuid;
5000 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5002 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5005 case KVM_SET_CPUID2: {
5006 struct kvm_cpuid2 __user *cpuid_arg = argp;
5007 struct kvm_cpuid2 cpuid;
5010 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5012 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5013 cpuid_arg->entries);
5016 case KVM_GET_CPUID2: {
5017 struct kvm_cpuid2 __user *cpuid_arg = argp;
5018 struct kvm_cpuid2 cpuid;
5021 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5023 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5024 cpuid_arg->entries);
5028 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5033 case KVM_GET_MSRS: {
5034 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5035 r = msr_io(vcpu, argp, do_get_msr, 1);
5036 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5039 case KVM_SET_MSRS: {
5040 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5041 r = msr_io(vcpu, argp, do_set_msr, 0);
5042 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5045 case KVM_TPR_ACCESS_REPORTING: {
5046 struct kvm_tpr_access_ctl tac;
5049 if (copy_from_user(&tac, argp, sizeof(tac)))
5051 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5055 if (copy_to_user(argp, &tac, sizeof(tac)))
5060 case KVM_SET_VAPIC_ADDR: {
5061 struct kvm_vapic_addr va;
5065 if (!lapic_in_kernel(vcpu))
5068 if (copy_from_user(&va, argp, sizeof(va)))
5070 idx = srcu_read_lock(&vcpu->kvm->srcu);
5071 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5072 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5075 case KVM_X86_SETUP_MCE: {
5079 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5081 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5084 case KVM_X86_SET_MCE: {
5085 struct kvm_x86_mce mce;
5088 if (copy_from_user(&mce, argp, sizeof(mce)))
5090 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5093 case KVM_GET_VCPU_EVENTS: {
5094 struct kvm_vcpu_events events;
5096 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5099 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5104 case KVM_SET_VCPU_EVENTS: {
5105 struct kvm_vcpu_events events;
5108 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5111 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5114 case KVM_GET_DEBUGREGS: {
5115 struct kvm_debugregs dbgregs;
5117 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5120 if (copy_to_user(argp, &dbgregs,
5121 sizeof(struct kvm_debugregs)))
5126 case KVM_SET_DEBUGREGS: {
5127 struct kvm_debugregs dbgregs;
5130 if (copy_from_user(&dbgregs, argp,
5131 sizeof(struct kvm_debugregs)))
5134 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5137 case KVM_GET_XSAVE: {
5138 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5143 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5146 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5151 case KVM_SET_XSAVE: {
5152 u.xsave = memdup_user(argp, sizeof(*u.xsave));
5153 if (IS_ERR(u.xsave)) {
5154 r = PTR_ERR(u.xsave);
5158 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5161 case KVM_GET_XCRS: {
5162 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5167 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5170 if (copy_to_user(argp, u.xcrs,
5171 sizeof(struct kvm_xcrs)))
5176 case KVM_SET_XCRS: {
5177 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5178 if (IS_ERR(u.xcrs)) {
5179 r = PTR_ERR(u.xcrs);
5183 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5186 case KVM_SET_TSC_KHZ: {
5190 user_tsc_khz = (u32)arg;
5192 if (kvm_has_tsc_control &&
5193 user_tsc_khz >= kvm_max_guest_tsc_khz)
5196 if (user_tsc_khz == 0)
5197 user_tsc_khz = tsc_khz;
5199 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5204 case KVM_GET_TSC_KHZ: {
5205 r = vcpu->arch.virtual_tsc_khz;
5208 case KVM_KVMCLOCK_CTRL: {
5209 r = kvm_set_guest_paused(vcpu);
5212 case KVM_ENABLE_CAP: {
5213 struct kvm_enable_cap cap;
5216 if (copy_from_user(&cap, argp, sizeof(cap)))
5218 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5221 case KVM_GET_NESTED_STATE: {
5222 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5226 if (!kvm_x86_ops.nested_ops->get_state)
5229 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5231 if (get_user(user_data_size, &user_kvm_nested_state->size))
5234 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5239 if (r > user_data_size) {
5240 if (put_user(r, &user_kvm_nested_state->size))
5250 case KVM_SET_NESTED_STATE: {
5251 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5252 struct kvm_nested_state kvm_state;
5256 if (!kvm_x86_ops.nested_ops->set_state)
5260 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5264 if (kvm_state.size < sizeof(kvm_state))
5267 if (kvm_state.flags &
5268 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5269 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5270 | KVM_STATE_NESTED_GIF_SET))
5273 /* nested_run_pending implies guest_mode. */
5274 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5275 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5278 idx = srcu_read_lock(&vcpu->kvm->srcu);
5279 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5280 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5283 case KVM_GET_SUPPORTED_HV_CPUID:
5284 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5286 #ifdef CONFIG_KVM_XEN
5287 case KVM_XEN_VCPU_GET_ATTR: {
5288 struct kvm_xen_vcpu_attr xva;
5291 if (copy_from_user(&xva, argp, sizeof(xva)))
5293 r = kvm_xen_vcpu_get_attr(vcpu, &xva);
5294 if (!r && copy_to_user(argp, &xva, sizeof(xva)))
5298 case KVM_XEN_VCPU_SET_ATTR: {
5299 struct kvm_xen_vcpu_attr xva;
5302 if (copy_from_user(&xva, argp, sizeof(xva)))
5304 r = kvm_xen_vcpu_set_attr(vcpu, &xva);
5308 case KVM_GET_SREGS2: {
5309 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
5313 __get_sregs2(vcpu, u.sregs2);
5315 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
5320 case KVM_SET_SREGS2: {
5321 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
5322 if (IS_ERR(u.sregs2)) {
5323 r = PTR_ERR(u.sregs2);
5327 r = __set_sregs2(vcpu, u.sregs2);
5340 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5342 return VM_FAULT_SIGBUS;
5345 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5349 if (addr > (unsigned int)(-3 * PAGE_SIZE))
5351 ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
5355 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5358 return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
5361 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5362 unsigned long kvm_nr_mmu_pages)
5364 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5367 mutex_lock(&kvm->slots_lock);
5369 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5370 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5372 mutex_unlock(&kvm->slots_lock);
5376 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5378 return kvm->arch.n_max_mmu_pages;
5381 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5383 struct kvm_pic *pic = kvm->arch.vpic;
5387 switch (chip->chip_id) {
5388 case KVM_IRQCHIP_PIC_MASTER:
5389 memcpy(&chip->chip.pic, &pic->pics[0],
5390 sizeof(struct kvm_pic_state));
5392 case KVM_IRQCHIP_PIC_SLAVE:
5393 memcpy(&chip->chip.pic, &pic->pics[1],
5394 sizeof(struct kvm_pic_state));
5396 case KVM_IRQCHIP_IOAPIC:
5397 kvm_get_ioapic(kvm, &chip->chip.ioapic);
5406 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5408 struct kvm_pic *pic = kvm->arch.vpic;
5412 switch (chip->chip_id) {
5413 case KVM_IRQCHIP_PIC_MASTER:
5414 spin_lock(&pic->lock);
5415 memcpy(&pic->pics[0], &chip->chip.pic,
5416 sizeof(struct kvm_pic_state));
5417 spin_unlock(&pic->lock);
5419 case KVM_IRQCHIP_PIC_SLAVE:
5420 spin_lock(&pic->lock);
5421 memcpy(&pic->pics[1], &chip->chip.pic,
5422 sizeof(struct kvm_pic_state));
5423 spin_unlock(&pic->lock);
5425 case KVM_IRQCHIP_IOAPIC:
5426 kvm_set_ioapic(kvm, &chip->chip.ioapic);
5432 kvm_pic_update_irq(pic);
5436 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5438 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
5440 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
5442 mutex_lock(&kps->lock);
5443 memcpy(ps, &kps->channels, sizeof(*ps));
5444 mutex_unlock(&kps->lock);
5448 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5451 struct kvm_pit *pit = kvm->arch.vpit;
5453 mutex_lock(&pit->pit_state.lock);
5454 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
5455 for (i = 0; i < 3; i++)
5456 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
5457 mutex_unlock(&pit->pit_state.lock);
5461 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5463 mutex_lock(&kvm->arch.vpit->pit_state.lock);
5464 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
5465 sizeof(ps->channels));
5466 ps->flags = kvm->arch.vpit->pit_state.flags;
5467 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
5468 memset(&ps->reserved, 0, sizeof(ps->reserved));
5472 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5476 u32 prev_legacy, cur_legacy;
5477 struct kvm_pit *pit = kvm->arch.vpit;
5479 mutex_lock(&pit->pit_state.lock);
5480 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
5481 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
5482 if (!prev_legacy && cur_legacy)
5484 memcpy(&pit->pit_state.channels, &ps->channels,
5485 sizeof(pit->pit_state.channels));
5486 pit->pit_state.flags = ps->flags;
5487 for (i = 0; i < 3; i++)
5488 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
5490 mutex_unlock(&pit->pit_state.lock);
5494 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
5495 struct kvm_reinject_control *control)
5497 struct kvm_pit *pit = kvm->arch.vpit;
5499 /* pit->pit_state.lock was overloaded to prevent userspace from getting
5500 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
5501 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
5503 mutex_lock(&pit->pit_state.lock);
5504 kvm_pit_set_reinject(pit, control->pit_reinject);
5505 mutex_unlock(&pit->pit_state.lock);
5510 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
5514 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called
5515 * before reporting dirty_bitmap to userspace. KVM flushes the buffers
5516 * on all VM-Exits, thus we only need to kick running vCPUs to force a
5519 struct kvm_vcpu *vcpu;
5522 kvm_for_each_vcpu(i, vcpu, kvm)
5523 kvm_vcpu_kick(vcpu);
5526 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
5529 if (!irqchip_in_kernel(kvm))
5532 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
5533 irq_event->irq, irq_event->level,
5538 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
5539 struct kvm_enable_cap *cap)
5547 case KVM_CAP_DISABLE_QUIRKS:
5548 kvm->arch.disabled_quirks = cap->args[0];
5551 case KVM_CAP_SPLIT_IRQCHIP: {
5552 mutex_lock(&kvm->lock);
5554 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
5555 goto split_irqchip_unlock;
5557 if (irqchip_in_kernel(kvm))
5558 goto split_irqchip_unlock;
5559 if (kvm->created_vcpus)
5560 goto split_irqchip_unlock;
5561 r = kvm_setup_empty_irq_routing(kvm);
5563 goto split_irqchip_unlock;
5564 /* Pairs with irqchip_in_kernel. */
5566 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
5567 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
5569 split_irqchip_unlock:
5570 mutex_unlock(&kvm->lock);
5573 case KVM_CAP_X2APIC_API:
5575 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
5578 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
5579 kvm->arch.x2apic_format = true;
5580 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
5581 kvm->arch.x2apic_broadcast_quirk_disabled = true;
5585 case KVM_CAP_X86_DISABLE_EXITS:
5587 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
5590 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
5591 kvm_can_mwait_in_guest())
5592 kvm->arch.mwait_in_guest = true;
5593 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
5594 kvm->arch.hlt_in_guest = true;
5595 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
5596 kvm->arch.pause_in_guest = true;
5597 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
5598 kvm->arch.cstate_in_guest = true;
5601 case KVM_CAP_MSR_PLATFORM_INFO:
5602 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
5605 case KVM_CAP_EXCEPTION_PAYLOAD:
5606 kvm->arch.exception_payload_enabled = cap->args[0];
5609 case KVM_CAP_X86_USER_SPACE_MSR:
5610 kvm->arch.user_space_msr_mask = cap->args[0];
5613 case KVM_CAP_X86_BUS_LOCK_EXIT:
5615 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
5618 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
5619 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
5622 if (kvm_has_bus_lock_exit &&
5623 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
5624 kvm->arch.bus_lock_detection_enabled = true;
5627 #ifdef CONFIG_X86_SGX_KVM
5628 case KVM_CAP_SGX_ATTRIBUTE: {
5629 unsigned long allowed_attributes = 0;
5631 r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
5635 /* KVM only supports the PROVISIONKEY privileged attribute. */
5636 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
5637 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
5638 kvm->arch.sgx_provisioning_allowed = true;
5644 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
5646 if (kvm_x86_ops.vm_copy_enc_context_from)
5647 r = kvm_x86_ops.vm_copy_enc_context_from(kvm, cap->args[0]);
5649 case KVM_CAP_EXIT_HYPERCALL:
5650 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
5654 kvm->arch.hypercall_exit_enabled = cap->args[0];
5657 case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
5659 if (cap->args[0] & ~1)
5661 kvm->arch.exit_on_emulation_error = cap->args[0];
5671 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
5673 struct kvm_x86_msr_filter *msr_filter;
5675 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
5679 msr_filter->default_allow = default_allow;
5683 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
5690 for (i = 0; i < msr_filter->count; i++)
5691 kfree(msr_filter->ranges[i].bitmap);
5696 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
5697 struct kvm_msr_filter_range *user_range)
5699 unsigned long *bitmap = NULL;
5702 if (!user_range->nmsrs)
5705 if (user_range->flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE))
5708 if (!user_range->flags)
5711 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
5712 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
5715 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
5717 return PTR_ERR(bitmap);
5719 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
5720 .flags = user_range->flags,
5721 .base = user_range->base,
5722 .nmsrs = user_range->nmsrs,
5726 msr_filter->count++;
5730 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp)
5732 struct kvm_msr_filter __user *user_msr_filter = argp;
5733 struct kvm_x86_msr_filter *new_filter, *old_filter;
5734 struct kvm_msr_filter filter;
5740 if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
5743 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++)
5744 empty &= !filter.ranges[i].nmsrs;
5746 default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY);
5747 if (empty && !default_allow)
5750 new_filter = kvm_alloc_msr_filter(default_allow);
5754 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
5755 r = kvm_add_msr_filter(new_filter, &filter.ranges[i]);
5757 kvm_free_msr_filter(new_filter);
5762 mutex_lock(&kvm->lock);
5764 /* The per-VM filter is protected by kvm->lock... */
5765 old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1);
5767 rcu_assign_pointer(kvm->arch.msr_filter, new_filter);
5768 synchronize_srcu(&kvm->srcu);
5770 kvm_free_msr_filter(old_filter);
5772 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
5773 mutex_unlock(&kvm->lock);
5778 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
5779 static int kvm_arch_suspend_notifier(struct kvm *kvm)
5781 struct kvm_vcpu *vcpu;
5784 mutex_lock(&kvm->lock);
5785 kvm_for_each_vcpu(i, vcpu, kvm) {
5786 if (!vcpu->arch.pv_time_enabled)
5789 ret = kvm_set_guest_paused(vcpu);
5791 kvm_err("Failed to pause guest VCPU%d: %d\n",
5792 vcpu->vcpu_id, ret);
5796 mutex_unlock(&kvm->lock);
5798 return ret ? NOTIFY_BAD : NOTIFY_DONE;
5801 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
5804 case PM_HIBERNATION_PREPARE:
5805 case PM_SUSPEND_PREPARE:
5806 return kvm_arch_suspend_notifier(kvm);
5811 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
5813 long kvm_arch_vm_ioctl(struct file *filp,
5814 unsigned int ioctl, unsigned long arg)
5816 struct kvm *kvm = filp->private_data;
5817 void __user *argp = (void __user *)arg;
5820 * This union makes it completely explicit to gcc-3.x
5821 * that these two variables' stack usage should be
5822 * combined, not added together.
5825 struct kvm_pit_state ps;
5826 struct kvm_pit_state2 ps2;
5827 struct kvm_pit_config pit_config;
5831 case KVM_SET_TSS_ADDR:
5832 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
5834 case KVM_SET_IDENTITY_MAP_ADDR: {
5837 mutex_lock(&kvm->lock);
5839 if (kvm->created_vcpus)
5840 goto set_identity_unlock;
5842 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
5843 goto set_identity_unlock;
5844 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
5845 set_identity_unlock:
5846 mutex_unlock(&kvm->lock);
5849 case KVM_SET_NR_MMU_PAGES:
5850 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
5852 case KVM_GET_NR_MMU_PAGES:
5853 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
5855 case KVM_CREATE_IRQCHIP: {
5856 mutex_lock(&kvm->lock);
5859 if (irqchip_in_kernel(kvm))
5860 goto create_irqchip_unlock;
5863 if (kvm->created_vcpus)
5864 goto create_irqchip_unlock;
5866 r = kvm_pic_init(kvm);
5868 goto create_irqchip_unlock;
5870 r = kvm_ioapic_init(kvm);
5872 kvm_pic_destroy(kvm);
5873 goto create_irqchip_unlock;
5876 r = kvm_setup_default_irq_routing(kvm);
5878 kvm_ioapic_destroy(kvm);
5879 kvm_pic_destroy(kvm);
5880 goto create_irqchip_unlock;
5882 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
5884 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
5885 create_irqchip_unlock:
5886 mutex_unlock(&kvm->lock);
5889 case KVM_CREATE_PIT:
5890 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
5892 case KVM_CREATE_PIT2:
5894 if (copy_from_user(&u.pit_config, argp,
5895 sizeof(struct kvm_pit_config)))
5898 mutex_lock(&kvm->lock);
5901 goto create_pit_unlock;
5903 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
5907 mutex_unlock(&kvm->lock);
5909 case KVM_GET_IRQCHIP: {
5910 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5911 struct kvm_irqchip *chip;
5913 chip = memdup_user(argp, sizeof(*chip));
5920 if (!irqchip_kernel(kvm))
5921 goto get_irqchip_out;
5922 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
5924 goto get_irqchip_out;
5926 if (copy_to_user(argp, chip, sizeof(*chip)))
5927 goto get_irqchip_out;
5933 case KVM_SET_IRQCHIP: {
5934 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5935 struct kvm_irqchip *chip;
5937 chip = memdup_user(argp, sizeof(*chip));
5944 if (!irqchip_kernel(kvm))
5945 goto set_irqchip_out;
5946 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
5953 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
5956 if (!kvm->arch.vpit)
5958 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
5962 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
5969 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
5971 mutex_lock(&kvm->lock);
5973 if (!kvm->arch.vpit)
5975 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
5977 mutex_unlock(&kvm->lock);
5980 case KVM_GET_PIT2: {
5982 if (!kvm->arch.vpit)
5984 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
5988 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
5993 case KVM_SET_PIT2: {
5995 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
5997 mutex_lock(&kvm->lock);
5999 if (!kvm->arch.vpit)
6001 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
6003 mutex_unlock(&kvm->lock);
6006 case KVM_REINJECT_CONTROL: {
6007 struct kvm_reinject_control control;
6009 if (copy_from_user(&control, argp, sizeof(control)))
6012 if (!kvm->arch.vpit)
6014 r = kvm_vm_ioctl_reinject(kvm, &control);
6017 case KVM_SET_BOOT_CPU_ID:
6019 mutex_lock(&kvm->lock);
6020 if (kvm->created_vcpus)
6023 kvm->arch.bsp_vcpu_id = arg;
6024 mutex_unlock(&kvm->lock);
6026 #ifdef CONFIG_KVM_XEN
6027 case KVM_XEN_HVM_CONFIG: {
6028 struct kvm_xen_hvm_config xhc;
6030 if (copy_from_user(&xhc, argp, sizeof(xhc)))
6032 r = kvm_xen_hvm_config(kvm, &xhc);
6035 case KVM_XEN_HVM_GET_ATTR: {
6036 struct kvm_xen_hvm_attr xha;
6039 if (copy_from_user(&xha, argp, sizeof(xha)))
6041 r = kvm_xen_hvm_get_attr(kvm, &xha);
6042 if (!r && copy_to_user(argp, &xha, sizeof(xha)))
6046 case KVM_XEN_HVM_SET_ATTR: {
6047 struct kvm_xen_hvm_attr xha;
6050 if (copy_from_user(&xha, argp, sizeof(xha)))
6052 r = kvm_xen_hvm_set_attr(kvm, &xha);
6056 case KVM_SET_CLOCK: {
6057 struct kvm_arch *ka = &kvm->arch;
6058 struct kvm_clock_data user_ns;
6062 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
6071 * TODO: userspace has to take care of races with VCPU_RUN, so
6072 * kvm_gen_update_masterclock() can be cut down to locked
6073 * pvclock_update_vm_gtod_copy().
6075 kvm_gen_update_masterclock(kvm);
6078 * This pairs with kvm_guest_time_update(): when masterclock is
6079 * in use, we use master_kernel_ns + kvmclock_offset to set
6080 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6081 * is slightly ahead) here we risk going negative on unsigned
6082 * 'system_time' when 'user_ns.clock' is very small.
6084 spin_lock_irq(&ka->pvclock_gtod_sync_lock);
6085 if (kvm->arch.use_master_clock)
6086 now_ns = ka->master_kernel_ns;
6088 now_ns = get_kvmclock_base_ns();
6089 ka->kvmclock_offset = user_ns.clock - now_ns;
6090 spin_unlock_irq(&ka->pvclock_gtod_sync_lock);
6092 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
6095 case KVM_GET_CLOCK: {
6096 struct kvm_clock_data user_ns;
6099 now_ns = get_kvmclock_ns(kvm);
6100 user_ns.clock = now_ns;
6101 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
6102 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
6105 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
6110 case KVM_MEMORY_ENCRYPT_OP: {
6112 if (kvm_x86_ops.mem_enc_op)
6113 r = static_call(kvm_x86_mem_enc_op)(kvm, argp);
6116 case KVM_MEMORY_ENCRYPT_REG_REGION: {
6117 struct kvm_enc_region region;
6120 if (copy_from_user(®ion, argp, sizeof(region)))
6124 if (kvm_x86_ops.mem_enc_reg_region)
6125 r = static_call(kvm_x86_mem_enc_reg_region)(kvm, ®ion);
6128 case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
6129 struct kvm_enc_region region;
6132 if (copy_from_user(®ion, argp, sizeof(region)))
6136 if (kvm_x86_ops.mem_enc_unreg_region)
6137 r = static_call(kvm_x86_mem_enc_unreg_region)(kvm, ®ion);
6140 case KVM_HYPERV_EVENTFD: {
6141 struct kvm_hyperv_eventfd hvevfd;
6144 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
6146 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
6149 case KVM_SET_PMU_EVENT_FILTER:
6150 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
6152 case KVM_X86_SET_MSR_FILTER:
6153 r = kvm_vm_ioctl_set_msr_filter(kvm, argp);
6162 static void kvm_init_msr_list(void)
6164 struct x86_pmu_capability x86_pmu;
6168 BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
6169 "Please update the fixed PMCs in msrs_to_saved_all[]");
6171 perf_get_x86_pmu_capability(&x86_pmu);
6173 num_msrs_to_save = 0;
6174 num_emulated_msrs = 0;
6175 num_msr_based_features = 0;
6177 for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
6178 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
6182 * Even MSRs that are valid in the host may not be exposed
6183 * to the guests in some cases.
6185 switch (msrs_to_save_all[i]) {
6186 case MSR_IA32_BNDCFGS:
6187 if (!kvm_mpx_supported())
6191 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
6192 !kvm_cpu_cap_has(X86_FEATURE_RDPID))
6195 case MSR_IA32_UMWAIT_CONTROL:
6196 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
6199 case MSR_IA32_RTIT_CTL:
6200 case MSR_IA32_RTIT_STATUS:
6201 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
6204 case MSR_IA32_RTIT_CR3_MATCH:
6205 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6206 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
6209 case MSR_IA32_RTIT_OUTPUT_BASE:
6210 case MSR_IA32_RTIT_OUTPUT_MASK:
6211 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6212 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
6213 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
6216 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
6217 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6218 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
6219 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
6222 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
6223 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
6224 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6227 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
6228 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
6229 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6236 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
6239 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
6240 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
6243 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
6246 for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
6247 struct kvm_msr_entry msr;
6249 msr.index = msr_based_features_all[i];
6250 if (kvm_get_msr_feature(&msr))
6253 msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
6257 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
6265 if (!(lapic_in_kernel(vcpu) &&
6266 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
6267 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
6278 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
6285 if (!(lapic_in_kernel(vcpu) &&
6286 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
6288 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
6290 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
6300 static void kvm_set_segment(struct kvm_vcpu *vcpu,
6301 struct kvm_segment *var, int seg)
6303 static_call(kvm_x86_set_segment)(vcpu, var, seg);
6306 void kvm_get_segment(struct kvm_vcpu *vcpu,
6307 struct kvm_segment *var, int seg)
6309 static_call(kvm_x86_get_segment)(vcpu, var, seg);
6312 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
6313 struct x86_exception *exception)
6317 BUG_ON(!mmu_is_nested(vcpu));
6319 /* NPT walks are always user-walks */
6320 access |= PFERR_USER_MASK;
6321 t_gpa = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
6326 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
6327 struct x86_exception *exception)
6329 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6330 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6332 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
6334 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
6335 struct x86_exception *exception)
6337 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6338 access |= PFERR_FETCH_MASK;
6339 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6342 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
6343 struct x86_exception *exception)
6345 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6346 access |= PFERR_WRITE_MASK;
6347 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6349 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
6351 /* uses this to access any guest's mapped memory without checking CPL */
6352 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
6353 struct x86_exception *exception)
6355 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
6358 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6359 struct kvm_vcpu *vcpu, u32 access,
6360 struct x86_exception *exception)
6363 int r = X86EMUL_CONTINUE;
6366 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
6368 unsigned offset = addr & (PAGE_SIZE-1);
6369 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
6372 if (gpa == UNMAPPED_GVA)
6373 return X86EMUL_PROPAGATE_FAULT;
6374 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
6377 r = X86EMUL_IO_NEEDED;
6389 /* used for instruction fetching */
6390 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
6391 gva_t addr, void *val, unsigned int bytes,
6392 struct x86_exception *exception)
6394 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6395 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6399 /* Inline kvm_read_guest_virt_helper for speed. */
6400 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
6402 if (unlikely(gpa == UNMAPPED_GVA))
6403 return X86EMUL_PROPAGATE_FAULT;
6405 offset = addr & (PAGE_SIZE-1);
6406 if (WARN_ON(offset + bytes > PAGE_SIZE))
6407 bytes = (unsigned)PAGE_SIZE - offset;
6408 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
6410 if (unlikely(ret < 0))
6411 return X86EMUL_IO_NEEDED;
6413 return X86EMUL_CONTINUE;
6416 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
6417 gva_t addr, void *val, unsigned int bytes,
6418 struct x86_exception *exception)
6420 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6423 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
6424 * is returned, but our callers are not ready for that and they blindly
6425 * call kvm_inject_page_fault. Ensure that they at least do not leak
6426 * uninitialized kernel stack memory into cr2 and error code.
6428 memset(exception, 0, sizeof(*exception));
6429 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
6432 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
6434 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
6435 gva_t addr, void *val, unsigned int bytes,
6436 struct x86_exception *exception, bool system)
6438 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6441 if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6442 access |= PFERR_USER_MASK;
6444 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
6447 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
6448 unsigned long addr, void *val, unsigned int bytes)
6450 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6451 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
6453 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
6456 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6457 struct kvm_vcpu *vcpu, u32 access,
6458 struct x86_exception *exception)
6461 int r = X86EMUL_CONTINUE;
6464 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
6467 unsigned offset = addr & (PAGE_SIZE-1);
6468 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
6471 if (gpa == UNMAPPED_GVA)
6472 return X86EMUL_PROPAGATE_FAULT;
6473 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
6475 r = X86EMUL_IO_NEEDED;
6487 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
6488 unsigned int bytes, struct x86_exception *exception,
6491 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6492 u32 access = PFERR_WRITE_MASK;
6494 if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6495 access |= PFERR_USER_MASK;
6497 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6501 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
6502 unsigned int bytes, struct x86_exception *exception)
6504 /* kvm_write_guest_virt_system can pull in tons of pages. */
6505 vcpu->arch.l1tf_flush_l1d = true;
6507 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6508 PFERR_WRITE_MASK, exception);
6510 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
6512 int handle_ud(struct kvm_vcpu *vcpu)
6514 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
6515 int emul_type = EMULTYPE_TRAP_UD;
6516 char sig[5]; /* ud2; .ascii "kvm" */
6517 struct x86_exception e;
6519 if (unlikely(!static_call(kvm_x86_can_emulate_instruction)(vcpu, NULL, 0)))
6522 if (force_emulation_prefix &&
6523 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
6524 sig, sizeof(sig), &e) == 0 &&
6525 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
6526 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
6527 emul_type = EMULTYPE_TRAP_UD_FORCED;
6530 return kvm_emulate_instruction(vcpu, emul_type);
6532 EXPORT_SYMBOL_GPL(handle_ud);
6534 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6535 gpa_t gpa, bool write)
6537 /* For APIC access vmexit */
6538 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6541 if (vcpu_match_mmio_gpa(vcpu, gpa)) {
6542 trace_vcpu_match_mmio(gva, gpa, write, true);
6549 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6550 gpa_t *gpa, struct x86_exception *exception,
6553 u32 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
6554 | (write ? PFERR_WRITE_MASK : 0);
6557 * currently PKRU is only applied to ept enabled guest so
6558 * there is no pkey in EPT page table for L1 guest or EPT
6559 * shadow page table for L2 guest.
6561 if (vcpu_match_mmio_gva(vcpu, gva)
6562 && !permission_fault(vcpu, vcpu->arch.walk_mmu,
6563 vcpu->arch.mmio_access, 0, access)) {
6564 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
6565 (gva & (PAGE_SIZE - 1));
6566 trace_vcpu_match_mmio(gva, *gpa, write, false);
6570 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6572 if (*gpa == UNMAPPED_GVA)
6575 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
6578 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
6579 const void *val, int bytes)
6583 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
6586 kvm_page_track_write(vcpu, gpa, val, bytes);
6590 struct read_write_emulator_ops {
6591 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
6593 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
6594 void *val, int bytes);
6595 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6596 int bytes, void *val);
6597 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6598 void *val, int bytes);
6602 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
6604 if (vcpu->mmio_read_completed) {
6605 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
6606 vcpu->mmio_fragments[0].gpa, val);
6607 vcpu->mmio_read_completed = 0;
6614 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6615 void *val, int bytes)
6617 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
6620 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6621 void *val, int bytes)
6623 return emulator_write_phys(vcpu, gpa, val, bytes);
6626 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
6628 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
6629 return vcpu_mmio_write(vcpu, gpa, bytes, val);
6632 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6633 void *val, int bytes)
6635 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
6636 return X86EMUL_IO_NEEDED;
6639 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6640 void *val, int bytes)
6642 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
6644 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
6645 return X86EMUL_CONTINUE;
6648 static const struct read_write_emulator_ops read_emultor = {
6649 .read_write_prepare = read_prepare,
6650 .read_write_emulate = read_emulate,
6651 .read_write_mmio = vcpu_mmio_read,
6652 .read_write_exit_mmio = read_exit_mmio,
6655 static const struct read_write_emulator_ops write_emultor = {
6656 .read_write_emulate = write_emulate,
6657 .read_write_mmio = write_mmio,
6658 .read_write_exit_mmio = write_exit_mmio,
6662 static int emulator_read_write_onepage(unsigned long addr, void *val,
6664 struct x86_exception *exception,
6665 struct kvm_vcpu *vcpu,
6666 const struct read_write_emulator_ops *ops)
6670 bool write = ops->write;
6671 struct kvm_mmio_fragment *frag;
6672 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6675 * If the exit was due to a NPF we may already have a GPA.
6676 * If the GPA is present, use it to avoid the GVA to GPA table walk.
6677 * Note, this cannot be used on string operations since string
6678 * operation using rep will only have the initial GPA from the NPF
6681 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
6682 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
6683 gpa = ctxt->gpa_val;
6684 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
6686 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
6688 return X86EMUL_PROPAGATE_FAULT;
6691 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
6692 return X86EMUL_CONTINUE;
6695 * Is this MMIO handled locally?
6697 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
6698 if (handled == bytes)
6699 return X86EMUL_CONTINUE;
6705 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
6706 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
6710 return X86EMUL_CONTINUE;
6713 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
6715 void *val, unsigned int bytes,
6716 struct x86_exception *exception,
6717 const struct read_write_emulator_ops *ops)
6719 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6723 if (ops->read_write_prepare &&
6724 ops->read_write_prepare(vcpu, val, bytes))
6725 return X86EMUL_CONTINUE;
6727 vcpu->mmio_nr_fragments = 0;
6729 /* Crossing a page boundary? */
6730 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
6733 now = -addr & ~PAGE_MASK;
6734 rc = emulator_read_write_onepage(addr, val, now, exception,
6737 if (rc != X86EMUL_CONTINUE)
6740 if (ctxt->mode != X86EMUL_MODE_PROT64)
6746 rc = emulator_read_write_onepage(addr, val, bytes, exception,
6748 if (rc != X86EMUL_CONTINUE)
6751 if (!vcpu->mmio_nr_fragments)
6754 gpa = vcpu->mmio_fragments[0].gpa;
6756 vcpu->mmio_needed = 1;
6757 vcpu->mmio_cur_fragment = 0;
6759 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
6760 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
6761 vcpu->run->exit_reason = KVM_EXIT_MMIO;
6762 vcpu->run->mmio.phys_addr = gpa;
6764 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
6767 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
6771 struct x86_exception *exception)
6773 return emulator_read_write(ctxt, addr, val, bytes,
6774 exception, &read_emultor);
6777 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
6781 struct x86_exception *exception)
6783 return emulator_read_write(ctxt, addr, (void *)val, bytes,
6784 exception, &write_emultor);
6787 #define CMPXCHG_TYPE(t, ptr, old, new) \
6788 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
6790 #ifdef CONFIG_X86_64
6791 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
6793 # define CMPXCHG64(ptr, old, new) \
6794 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
6797 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
6802 struct x86_exception *exception)
6804 struct kvm_host_map map;
6805 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6811 /* guests cmpxchg8b have to be emulated atomically */
6812 if (bytes > 8 || (bytes & (bytes - 1)))
6815 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
6817 if (gpa == UNMAPPED_GVA ||
6818 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6822 * Emulate the atomic as a straight write to avoid #AC if SLD is
6823 * enabled in the host and the access splits a cache line.
6825 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
6826 page_line_mask = ~(cache_line_size() - 1);
6828 page_line_mask = PAGE_MASK;
6830 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
6833 if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
6836 kaddr = map.hva + offset_in_page(gpa);
6840 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
6843 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
6846 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
6849 exchanged = CMPXCHG64(kaddr, old, new);
6855 kvm_vcpu_unmap(vcpu, &map, true);
6858 return X86EMUL_CMPXCHG_FAILED;
6860 kvm_page_track_write(vcpu, gpa, new, bytes);
6862 return X86EMUL_CONTINUE;
6865 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
6867 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
6870 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
6874 for (i = 0; i < vcpu->arch.pio.count; i++) {
6875 if (vcpu->arch.pio.in)
6876 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
6877 vcpu->arch.pio.size, pd);
6879 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
6880 vcpu->arch.pio.port, vcpu->arch.pio.size,
6884 pd += vcpu->arch.pio.size;
6889 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
6890 unsigned short port, void *val,
6891 unsigned int count, bool in)
6893 vcpu->arch.pio.port = port;
6894 vcpu->arch.pio.in = in;
6895 vcpu->arch.pio.count = count;
6896 vcpu->arch.pio.size = size;
6898 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
6899 vcpu->arch.pio.count = 0;
6903 vcpu->run->exit_reason = KVM_EXIT_IO;
6904 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
6905 vcpu->run->io.size = size;
6906 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
6907 vcpu->run->io.count = count;
6908 vcpu->run->io.port = port;
6913 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
6914 unsigned short port, void *val, unsigned int count)
6918 if (vcpu->arch.pio.count)
6921 memset(vcpu->arch.pio_data, 0, size * count);
6923 ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
6926 memcpy(val, vcpu->arch.pio_data, size * count);
6927 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
6928 vcpu->arch.pio.count = 0;
6935 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
6936 int size, unsigned short port, void *val,
6939 return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
6943 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
6944 unsigned short port, const void *val,
6947 memcpy(vcpu->arch.pio_data, val, size * count);
6948 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
6949 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
6952 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
6953 int size, unsigned short port,
6954 const void *val, unsigned int count)
6956 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
6959 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
6961 return static_call(kvm_x86_get_segment_base)(vcpu, seg);
6964 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
6966 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
6969 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
6971 if (!need_emulate_wbinvd(vcpu))
6972 return X86EMUL_CONTINUE;
6974 if (static_call(kvm_x86_has_wbinvd_exit)()) {
6975 int cpu = get_cpu();
6977 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
6978 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
6979 wbinvd_ipi, NULL, 1);
6981 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
6984 return X86EMUL_CONTINUE;
6987 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
6989 kvm_emulate_wbinvd_noskip(vcpu);
6990 return kvm_skip_emulated_instruction(vcpu);
6992 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
6996 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
6998 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
7001 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
7002 unsigned long *dest)
7004 kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
7007 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
7008 unsigned long value)
7011 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
7014 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
7016 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
7019 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
7021 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7022 unsigned long value;
7026 value = kvm_read_cr0(vcpu);
7029 value = vcpu->arch.cr2;
7032 value = kvm_read_cr3(vcpu);
7035 value = kvm_read_cr4(vcpu);
7038 value = kvm_get_cr8(vcpu);
7041 kvm_err("%s: unexpected cr %u\n", __func__, cr);
7048 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
7050 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7055 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
7058 vcpu->arch.cr2 = val;
7061 res = kvm_set_cr3(vcpu, val);
7064 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
7067 res = kvm_set_cr8(vcpu, val);
7070 kvm_err("%s: unexpected cr %u\n", __func__, cr);
7077 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
7079 return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
7082 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7084 static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
7087 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7089 static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
7092 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7094 static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
7097 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7099 static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
7102 static unsigned long emulator_get_cached_segment_base(
7103 struct x86_emulate_ctxt *ctxt, int seg)
7105 return get_segment_base(emul_to_vcpu(ctxt), seg);
7108 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
7109 struct desc_struct *desc, u32 *base3,
7112 struct kvm_segment var;
7114 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
7115 *selector = var.selector;
7118 memset(desc, 0, sizeof(*desc));
7126 set_desc_limit(desc, var.limit);
7127 set_desc_base(desc, (unsigned long)var.base);
7128 #ifdef CONFIG_X86_64
7130 *base3 = var.base >> 32;
7132 desc->type = var.type;
7134 desc->dpl = var.dpl;
7135 desc->p = var.present;
7136 desc->avl = var.avl;
7144 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
7145 struct desc_struct *desc, u32 base3,
7148 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7149 struct kvm_segment var;
7151 var.selector = selector;
7152 var.base = get_desc_base(desc);
7153 #ifdef CONFIG_X86_64
7154 var.base |= ((u64)base3) << 32;
7156 var.limit = get_desc_limit(desc);
7158 var.limit = (var.limit << 12) | 0xfff;
7159 var.type = desc->type;
7160 var.dpl = desc->dpl;
7165 var.avl = desc->avl;
7166 var.present = desc->p;
7167 var.unusable = !var.present;
7170 kvm_set_segment(vcpu, &var, seg);
7174 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
7175 u32 msr_index, u64 *pdata)
7177 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7180 r = kvm_get_msr(vcpu, msr_index, pdata);
7182 if (r && kvm_get_msr_user_space(vcpu, msr_index, r)) {
7183 /* Bounce to user space */
7184 return X86EMUL_IO_NEEDED;
7190 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
7191 u32 msr_index, u64 data)
7193 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7196 r = kvm_set_msr(vcpu, msr_index, data);
7198 if (r && kvm_set_msr_user_space(vcpu, msr_index, data, r)) {
7199 /* Bounce to user space */
7200 return X86EMUL_IO_NEEDED;
7206 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
7208 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7210 return vcpu->arch.smbase;
7213 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
7215 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7217 vcpu->arch.smbase = smbase;
7220 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
7223 return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc);
7226 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
7227 u32 pmc, u64 *pdata)
7229 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
7232 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
7234 emul_to_vcpu(ctxt)->arch.halt_request = 1;
7237 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
7238 struct x86_instruction_info *info,
7239 enum x86_intercept_stage stage)
7241 return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
7245 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
7246 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
7249 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
7252 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
7254 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
7257 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
7259 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
7262 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
7264 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
7267 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
7269 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
7272 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
7274 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
7277 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
7279 static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
7282 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
7284 return emul_to_vcpu(ctxt)->arch.hflags;
7287 static void emulator_exiting_smm(struct x86_emulate_ctxt *ctxt)
7289 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7291 kvm_smm_changed(vcpu, false);
7294 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt,
7295 const char *smstate)
7297 return static_call(kvm_x86_leave_smm)(emul_to_vcpu(ctxt), smstate);
7300 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
7302 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
7305 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
7307 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
7310 static const struct x86_emulate_ops emulate_ops = {
7311 .read_gpr = emulator_read_gpr,
7312 .write_gpr = emulator_write_gpr,
7313 .read_std = emulator_read_std,
7314 .write_std = emulator_write_std,
7315 .read_phys = kvm_read_guest_phys_system,
7316 .fetch = kvm_fetch_guest_virt,
7317 .read_emulated = emulator_read_emulated,
7318 .write_emulated = emulator_write_emulated,
7319 .cmpxchg_emulated = emulator_cmpxchg_emulated,
7320 .invlpg = emulator_invlpg,
7321 .pio_in_emulated = emulator_pio_in_emulated,
7322 .pio_out_emulated = emulator_pio_out_emulated,
7323 .get_segment = emulator_get_segment,
7324 .set_segment = emulator_set_segment,
7325 .get_cached_segment_base = emulator_get_cached_segment_base,
7326 .get_gdt = emulator_get_gdt,
7327 .get_idt = emulator_get_idt,
7328 .set_gdt = emulator_set_gdt,
7329 .set_idt = emulator_set_idt,
7330 .get_cr = emulator_get_cr,
7331 .set_cr = emulator_set_cr,
7332 .cpl = emulator_get_cpl,
7333 .get_dr = emulator_get_dr,
7334 .set_dr = emulator_set_dr,
7335 .get_smbase = emulator_get_smbase,
7336 .set_smbase = emulator_set_smbase,
7337 .set_msr = emulator_set_msr,
7338 .get_msr = emulator_get_msr,
7339 .check_pmc = emulator_check_pmc,
7340 .read_pmc = emulator_read_pmc,
7341 .halt = emulator_halt,
7342 .wbinvd = emulator_wbinvd,
7343 .fix_hypercall = emulator_fix_hypercall,
7344 .intercept = emulator_intercept,
7345 .get_cpuid = emulator_get_cpuid,
7346 .guest_has_long_mode = emulator_guest_has_long_mode,
7347 .guest_has_movbe = emulator_guest_has_movbe,
7348 .guest_has_fxsr = emulator_guest_has_fxsr,
7349 .set_nmi_mask = emulator_set_nmi_mask,
7350 .get_hflags = emulator_get_hflags,
7351 .exiting_smm = emulator_exiting_smm,
7352 .leave_smm = emulator_leave_smm,
7353 .triple_fault = emulator_triple_fault,
7354 .set_xcr = emulator_set_xcr,
7357 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
7359 u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
7361 * an sti; sti; sequence only disable interrupts for the first
7362 * instruction. So, if the last instruction, be it emulated or
7363 * not, left the system with the INT_STI flag enabled, it
7364 * means that the last instruction is an sti. We should not
7365 * leave the flag on in this case. The same goes for mov ss
7367 if (int_shadow & mask)
7369 if (unlikely(int_shadow || mask)) {
7370 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
7372 kvm_make_request(KVM_REQ_EVENT, vcpu);
7376 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
7378 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7379 if (ctxt->exception.vector == PF_VECTOR)
7380 return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
7382 if (ctxt->exception.error_code_valid)
7383 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
7384 ctxt->exception.error_code);
7386 kvm_queue_exception(vcpu, ctxt->exception.vector);
7390 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
7392 struct x86_emulate_ctxt *ctxt;
7394 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
7396 pr_err("kvm: failed to allocate vcpu's emulator\n");
7401 ctxt->ops = &emulate_ops;
7402 vcpu->arch.emulate_ctxt = ctxt;
7407 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
7409 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7412 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
7414 ctxt->gpa_available = false;
7415 ctxt->eflags = kvm_get_rflags(vcpu);
7416 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
7418 ctxt->eip = kvm_rip_read(vcpu);
7419 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
7420 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
7421 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
7422 cs_db ? X86EMUL_MODE_PROT32 :
7423 X86EMUL_MODE_PROT16;
7424 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
7425 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
7426 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
7428 ctxt->interruptibility = 0;
7429 ctxt->have_exception = false;
7430 ctxt->exception.vector = -1;
7431 ctxt->perm_ok = false;
7433 init_decode_cache(ctxt);
7434 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7437 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
7439 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7442 init_emulate_ctxt(vcpu);
7446 ctxt->_eip = ctxt->eip + inc_eip;
7447 ret = emulate_int_real(ctxt, irq);
7449 if (ret != X86EMUL_CONTINUE) {
7450 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7452 ctxt->eip = ctxt->_eip;
7453 kvm_rip_write(vcpu, ctxt->eip);
7454 kvm_set_rflags(vcpu, ctxt->eflags);
7457 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
7459 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
7461 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7462 u32 insn_size = ctxt->fetch.end - ctxt->fetch.data;
7463 struct kvm_run *run = vcpu->run;
7465 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7466 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
7467 run->emulation_failure.ndata = 0;
7468 run->emulation_failure.flags = 0;
7471 run->emulation_failure.ndata = 3;
7472 run->emulation_failure.flags |=
7473 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
7474 run->emulation_failure.insn_size = insn_size;
7475 memset(run->emulation_failure.insn_bytes, 0x90,
7476 sizeof(run->emulation_failure.insn_bytes));
7477 memcpy(run->emulation_failure.insn_bytes,
7478 ctxt->fetch.data, insn_size);
7482 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
7484 struct kvm *kvm = vcpu->kvm;
7486 ++vcpu->stat.insn_emulation_fail;
7487 trace_kvm_emulate_insn_failed(vcpu);
7489 if (emulation_type & EMULTYPE_VMWARE_GP) {
7490 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7494 if (kvm->arch.exit_on_emulation_error ||
7495 (emulation_type & EMULTYPE_SKIP)) {
7496 prepare_emulation_failure_exit(vcpu);
7500 kvm_queue_exception(vcpu, UD_VECTOR);
7502 if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
7503 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7504 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7505 vcpu->run->internal.ndata = 0;
7512 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7513 bool write_fault_to_shadow_pgtable,
7516 gpa_t gpa = cr2_or_gpa;
7519 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7522 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7523 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7526 if (!vcpu->arch.mmu->direct_map) {
7528 * Write permission should be allowed since only
7529 * write access need to be emulated.
7531 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7534 * If the mapping is invalid in guest, let cpu retry
7535 * it to generate fault.
7537 if (gpa == UNMAPPED_GVA)
7542 * Do not retry the unhandleable instruction if it faults on the
7543 * readonly host memory, otherwise it will goto a infinite loop:
7544 * retry instruction -> write #PF -> emulation fail -> retry
7545 * instruction -> ...
7547 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
7550 * If the instruction failed on the error pfn, it can not be fixed,
7551 * report the error to userspace.
7553 if (is_error_noslot_pfn(pfn))
7556 kvm_release_pfn_clean(pfn);
7558 /* The instructions are well-emulated on direct mmu. */
7559 if (vcpu->arch.mmu->direct_map) {
7560 unsigned int indirect_shadow_pages;
7562 write_lock(&vcpu->kvm->mmu_lock);
7563 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
7564 write_unlock(&vcpu->kvm->mmu_lock);
7566 if (indirect_shadow_pages)
7567 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7573 * if emulation was due to access to shadowed page table
7574 * and it failed try to unshadow page and re-enter the
7575 * guest to let CPU execute the instruction.
7577 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7580 * If the access faults on its page table, it can not
7581 * be fixed by unprotecting shadow page and it should
7582 * be reported to userspace.
7584 return !write_fault_to_shadow_pgtable;
7587 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
7588 gpa_t cr2_or_gpa, int emulation_type)
7590 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7591 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
7593 last_retry_eip = vcpu->arch.last_retry_eip;
7594 last_retry_addr = vcpu->arch.last_retry_addr;
7597 * If the emulation is caused by #PF and it is non-page_table
7598 * writing instruction, it means the VM-EXIT is caused by shadow
7599 * page protected, we can zap the shadow page and retry this
7600 * instruction directly.
7602 * Note: if the guest uses a non-page-table modifying instruction
7603 * on the PDE that points to the instruction, then we will unmap
7604 * the instruction and go to an infinite loop. So, we cache the
7605 * last retried eip and the last fault address, if we meet the eip
7606 * and the address again, we can break out of the potential infinite
7609 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
7611 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7614 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7615 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7618 if (x86_page_table_writing_insn(ctxt))
7621 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
7624 vcpu->arch.last_retry_eip = ctxt->eip;
7625 vcpu->arch.last_retry_addr = cr2_or_gpa;
7627 if (!vcpu->arch.mmu->direct_map)
7628 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7630 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7635 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
7636 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
7638 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm)
7640 trace_kvm_smm_transition(vcpu->vcpu_id, vcpu->arch.smbase, entering_smm);
7643 vcpu->arch.hflags |= HF_SMM_MASK;
7645 vcpu->arch.hflags &= ~(HF_SMM_MASK | HF_SMM_INSIDE_NMI_MASK);
7647 /* Process a latched INIT or SMI, if any. */
7648 kvm_make_request(KVM_REQ_EVENT, vcpu);
7651 kvm_mmu_reset_context(vcpu);
7654 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
7663 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
7664 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
7669 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
7671 struct kvm_run *kvm_run = vcpu->run;
7673 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
7674 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
7675 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
7676 kvm_run->debug.arch.exception = DB_VECTOR;
7677 kvm_run->exit_reason = KVM_EXIT_DEBUG;
7680 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
7684 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
7686 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
7689 r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
7694 * rflags is the old, "raw" value of the flags. The new value has
7695 * not been saved yet.
7697 * This is correct even for TF set by the guest, because "the
7698 * processor will not generate this exception after the instruction
7699 * that sets the TF flag".
7701 if (unlikely(rflags & X86_EFLAGS_TF))
7702 r = kvm_vcpu_do_singlestep(vcpu);
7705 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
7707 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
7709 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
7710 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
7711 struct kvm_run *kvm_run = vcpu->run;
7712 unsigned long eip = kvm_get_linear_rip(vcpu);
7713 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7714 vcpu->arch.guest_debug_dr7,
7718 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
7719 kvm_run->debug.arch.pc = eip;
7720 kvm_run->debug.arch.exception = DB_VECTOR;
7721 kvm_run->exit_reason = KVM_EXIT_DEBUG;
7727 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
7728 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
7729 unsigned long eip = kvm_get_linear_rip(vcpu);
7730 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7735 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
7744 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
7746 switch (ctxt->opcode_len) {
7753 case 0xe6: /* OUT */
7757 case 0x6c: /* INS */
7759 case 0x6e: /* OUTS */
7766 case 0x33: /* RDPMC */
7776 * Decode to be emulated instruction. Return EMULATION_OK if success.
7778 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
7779 void *insn, int insn_len)
7781 int r = EMULATION_OK;
7782 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7784 init_emulate_ctxt(vcpu);
7787 * We will reenter on the same instruction since we do not set
7788 * complete_userspace_io. This does not handle watchpoints yet,
7789 * those would be handled in the emulate_ops.
7791 if (!(emulation_type & EMULTYPE_SKIP) &&
7792 kvm_vcpu_check_breakpoint(vcpu, &r))
7795 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
7797 trace_kvm_emulate_insn_start(vcpu);
7798 ++vcpu->stat.insn_emulation;
7802 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
7804 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7805 int emulation_type, void *insn, int insn_len)
7808 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7809 bool writeback = true;
7810 bool write_fault_to_spt;
7812 if (unlikely(!static_call(kvm_x86_can_emulate_instruction)(vcpu, insn, insn_len)))
7815 vcpu->arch.l1tf_flush_l1d = true;
7818 * Clear write_fault_to_shadow_pgtable here to ensure it is
7821 write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
7822 vcpu->arch.write_fault_to_shadow_pgtable = false;
7824 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
7825 kvm_clear_exception_queue(vcpu);
7827 r = x86_decode_emulated_instruction(vcpu, emulation_type,
7829 if (r != EMULATION_OK) {
7830 if ((emulation_type & EMULTYPE_TRAP_UD) ||
7831 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
7832 kvm_queue_exception(vcpu, UD_VECTOR);
7835 if (reexecute_instruction(vcpu, cr2_or_gpa,
7839 if (ctxt->have_exception) {
7841 * #UD should result in just EMULATION_FAILED, and trap-like
7842 * exception should not be encountered during decode.
7844 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
7845 exception_type(ctxt->exception.vector) == EXCPT_TRAP);
7846 inject_emulated_exception(vcpu);
7849 return handle_emulation_failure(vcpu, emulation_type);
7853 if ((emulation_type & EMULTYPE_VMWARE_GP) &&
7854 !is_vmware_backdoor_opcode(ctxt)) {
7855 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7860 * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
7861 * for kvm_skip_emulated_instruction(). The caller is responsible for
7862 * updating interruptibility state and injecting single-step #DBs.
7864 if (emulation_type & EMULTYPE_SKIP) {
7865 kvm_rip_write(vcpu, ctxt->_eip);
7866 if (ctxt->eflags & X86_EFLAGS_RF)
7867 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
7871 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
7874 /* this is needed for vmware backdoor interface to work since it
7875 changes registers values during IO operation */
7876 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
7877 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7878 emulator_invalidate_register_cache(ctxt);
7882 if (emulation_type & EMULTYPE_PF) {
7883 /* Save the faulting GPA (cr2) in the address field */
7884 ctxt->exception.address = cr2_or_gpa;
7886 /* With shadow page tables, cr2 contains a GVA or nGPA. */
7887 if (vcpu->arch.mmu->direct_map) {
7888 ctxt->gpa_available = true;
7889 ctxt->gpa_val = cr2_or_gpa;
7892 /* Sanitize the address out of an abundance of paranoia. */
7893 ctxt->exception.address = 0;
7896 r = x86_emulate_insn(ctxt);
7898 if (r == EMULATION_INTERCEPTED)
7901 if (r == EMULATION_FAILED) {
7902 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
7906 return handle_emulation_failure(vcpu, emulation_type);
7909 if (ctxt->have_exception) {
7911 if (inject_emulated_exception(vcpu))
7913 } else if (vcpu->arch.pio.count) {
7914 if (!vcpu->arch.pio.in) {
7915 /* FIXME: return into emulator if single-stepping. */
7916 vcpu->arch.pio.count = 0;
7919 vcpu->arch.complete_userspace_io = complete_emulated_pio;
7922 } else if (vcpu->mmio_needed) {
7923 ++vcpu->stat.mmio_exits;
7925 if (!vcpu->mmio_is_write)
7928 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7929 } else if (r == EMULATION_RESTART)
7935 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
7936 toggle_interruptibility(vcpu, ctxt->interruptibility);
7937 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7938 if (!ctxt->have_exception ||
7939 exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
7940 kvm_rip_write(vcpu, ctxt->eip);
7941 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
7942 r = kvm_vcpu_do_singlestep(vcpu);
7943 if (kvm_x86_ops.update_emulated_instruction)
7944 static_call(kvm_x86_update_emulated_instruction)(vcpu);
7945 __kvm_set_rflags(vcpu, ctxt->eflags);
7949 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
7950 * do nothing, and it will be requested again as soon as
7951 * the shadow expires. But we still need to check here,
7952 * because POPF has no interrupt shadow.
7954 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
7955 kvm_make_request(KVM_REQ_EVENT, vcpu);
7957 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
7962 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
7964 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
7966 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
7968 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
7969 void *insn, int insn_len)
7971 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
7973 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
7975 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
7977 vcpu->arch.pio.count = 0;
7981 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
7983 vcpu->arch.pio.count = 0;
7985 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
7988 return kvm_skip_emulated_instruction(vcpu);
7991 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
7992 unsigned short port)
7994 unsigned long val = kvm_rax_read(vcpu);
7995 int ret = emulator_pio_out(vcpu, size, port, &val, 1);
8001 * Workaround userspace that relies on old KVM behavior of %rip being
8002 * incremented prior to exiting to userspace to handle "OUT 0x7e".
8005 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
8006 vcpu->arch.complete_userspace_io =
8007 complete_fast_pio_out_port_0x7e;
8008 kvm_skip_emulated_instruction(vcpu);
8010 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8011 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
8016 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
8020 /* We should only ever be called with arch.pio.count equal to 1 */
8021 BUG_ON(vcpu->arch.pio.count != 1);
8023 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
8024 vcpu->arch.pio.count = 0;
8028 /* For size less than 4 we merge, else we zero extend */
8029 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
8032 * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
8033 * the copy and tracing
8035 emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
8036 kvm_rax_write(vcpu, val);
8038 return kvm_skip_emulated_instruction(vcpu);
8041 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
8042 unsigned short port)
8047 /* For size less than 4 we merge, else we zero extend */
8048 val = (size < 4) ? kvm_rax_read(vcpu) : 0;
8050 ret = emulator_pio_in(vcpu, size, port, &val, 1);
8052 kvm_rax_write(vcpu, val);
8056 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8057 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
8062 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
8067 ret = kvm_fast_pio_in(vcpu, size, port);
8069 ret = kvm_fast_pio_out(vcpu, size, port);
8070 return ret && kvm_skip_emulated_instruction(vcpu);
8072 EXPORT_SYMBOL_GPL(kvm_fast_pio);
8074 static int kvmclock_cpu_down_prep(unsigned int cpu)
8076 __this_cpu_write(cpu_tsc_khz, 0);
8080 static void tsc_khz_changed(void *data)
8082 struct cpufreq_freqs *freq = data;
8083 unsigned long khz = 0;
8087 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8088 khz = cpufreq_quick_get(raw_smp_processor_id());
8091 __this_cpu_write(cpu_tsc_khz, khz);
8094 #ifdef CONFIG_X86_64
8095 static void kvm_hyperv_tsc_notifier(void)
8098 struct kvm_vcpu *vcpu;
8100 unsigned long flags;
8102 mutex_lock(&kvm_lock);
8103 list_for_each_entry(kvm, &vm_list, vm_list)
8104 kvm_make_mclock_inprogress_request(kvm);
8106 hyperv_stop_tsc_emulation();
8108 /* TSC frequency always matches when on Hyper-V */
8109 for_each_present_cpu(cpu)
8110 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
8111 kvm_max_guest_tsc_khz = tsc_khz;
8113 list_for_each_entry(kvm, &vm_list, vm_list) {
8114 struct kvm_arch *ka = &kvm->arch;
8116 spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
8117 pvclock_update_vm_gtod_copy(kvm);
8118 spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
8120 kvm_for_each_vcpu(cpu, vcpu, kvm)
8121 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8123 kvm_for_each_vcpu(cpu, vcpu, kvm)
8124 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
8126 mutex_unlock(&kvm_lock);
8130 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
8133 struct kvm_vcpu *vcpu;
8134 int i, send_ipi = 0;
8137 * We allow guests to temporarily run on slowing clocks,
8138 * provided we notify them after, or to run on accelerating
8139 * clocks, provided we notify them before. Thus time never
8142 * However, we have a problem. We can't atomically update
8143 * the frequency of a given CPU from this function; it is
8144 * merely a notifier, which can be called from any CPU.
8145 * Changing the TSC frequency at arbitrary points in time
8146 * requires a recomputation of local variables related to
8147 * the TSC for each VCPU. We must flag these local variables
8148 * to be updated and be sure the update takes place with the
8149 * new frequency before any guests proceed.
8151 * Unfortunately, the combination of hotplug CPU and frequency
8152 * change creates an intractable locking scenario; the order
8153 * of when these callouts happen is undefined with respect to
8154 * CPU hotplug, and they can race with each other. As such,
8155 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
8156 * undefined; you can actually have a CPU frequency change take
8157 * place in between the computation of X and the setting of the
8158 * variable. To protect against this problem, all updates of
8159 * the per_cpu tsc_khz variable are done in an interrupt
8160 * protected IPI, and all callers wishing to update the value
8161 * must wait for a synchronous IPI to complete (which is trivial
8162 * if the caller is on the CPU already). This establishes the
8163 * necessary total order on variable updates.
8165 * Note that because a guest time update may take place
8166 * anytime after the setting of the VCPU's request bit, the
8167 * correct TSC value must be set before the request. However,
8168 * to ensure the update actually makes it to any guest which
8169 * starts running in hardware virtualization between the set
8170 * and the acquisition of the spinlock, we must also ping the
8171 * CPU after setting the request bit.
8175 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8177 mutex_lock(&kvm_lock);
8178 list_for_each_entry(kvm, &vm_list, vm_list) {
8179 kvm_for_each_vcpu(i, vcpu, kvm) {
8180 if (vcpu->cpu != cpu)
8182 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8183 if (vcpu->cpu != raw_smp_processor_id())
8187 mutex_unlock(&kvm_lock);
8189 if (freq->old < freq->new && send_ipi) {
8191 * We upscale the frequency. Must make the guest
8192 * doesn't see old kvmclock values while running with
8193 * the new frequency, otherwise we risk the guest sees
8194 * time go backwards.
8196 * In case we update the frequency for another cpu
8197 * (which might be in guest context) send an interrupt
8198 * to kick the cpu out of guest context. Next time
8199 * guest context is entered kvmclock will be updated,
8200 * so the guest will not see stale values.
8202 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8206 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
8209 struct cpufreq_freqs *freq = data;
8212 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
8214 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
8217 for_each_cpu(cpu, freq->policy->cpus)
8218 __kvmclock_cpufreq_notifier(freq, cpu);
8223 static struct notifier_block kvmclock_cpufreq_notifier_block = {
8224 .notifier_call = kvmclock_cpufreq_notifier
8227 static int kvmclock_cpu_online(unsigned int cpu)
8229 tsc_khz_changed(NULL);
8233 static void kvm_timer_init(void)
8235 max_tsc_khz = tsc_khz;
8237 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
8238 #ifdef CONFIG_CPU_FREQ
8239 struct cpufreq_policy *policy;
8243 policy = cpufreq_cpu_get(cpu);
8245 if (policy->cpuinfo.max_freq)
8246 max_tsc_khz = policy->cpuinfo.max_freq;
8247 cpufreq_cpu_put(policy);
8251 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
8252 CPUFREQ_TRANSITION_NOTIFIER);
8255 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
8256 kvmclock_cpu_online, kvmclock_cpu_down_prep);
8259 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
8260 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
8262 int kvm_is_in_guest(void)
8264 return __this_cpu_read(current_vcpu) != NULL;
8267 static int kvm_is_user_mode(void)
8271 if (__this_cpu_read(current_vcpu))
8272 user_mode = static_call(kvm_x86_get_cpl)(__this_cpu_read(current_vcpu));
8274 return user_mode != 0;
8277 static unsigned long kvm_get_guest_ip(void)
8279 unsigned long ip = 0;
8281 if (__this_cpu_read(current_vcpu))
8282 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
8287 static void kvm_handle_intel_pt_intr(void)
8289 struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
8291 kvm_make_request(KVM_REQ_PMI, vcpu);
8292 __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
8293 (unsigned long *)&vcpu->arch.pmu.global_status);
8296 static struct perf_guest_info_callbacks kvm_guest_cbs = {
8297 .is_in_guest = kvm_is_in_guest,
8298 .is_user_mode = kvm_is_user_mode,
8299 .get_guest_ip = kvm_get_guest_ip,
8300 .handle_intel_pt_intr = kvm_handle_intel_pt_intr,
8303 #ifdef CONFIG_X86_64
8304 static void pvclock_gtod_update_fn(struct work_struct *work)
8308 struct kvm_vcpu *vcpu;
8311 mutex_lock(&kvm_lock);
8312 list_for_each_entry(kvm, &vm_list, vm_list)
8313 kvm_for_each_vcpu(i, vcpu, kvm)
8314 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8315 atomic_set(&kvm_guest_has_master_clock, 0);
8316 mutex_unlock(&kvm_lock);
8319 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
8322 * Indirection to move queue_work() out of the tk_core.seq write held
8323 * region to prevent possible deadlocks against time accessors which
8324 * are invoked with work related locks held.
8326 static void pvclock_irq_work_fn(struct irq_work *w)
8328 queue_work(system_long_wq, &pvclock_gtod_work);
8331 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
8334 * Notification about pvclock gtod data update.
8336 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
8339 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
8340 struct timekeeper *tk = priv;
8342 update_pvclock_gtod(tk);
8345 * Disable master clock if host does not trust, or does not use,
8346 * TSC based clocksource. Delegate queue_work() to irq_work as
8347 * this is invoked with tk_core.seq write held.
8349 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
8350 atomic_read(&kvm_guest_has_master_clock) != 0)
8351 irq_work_queue(&pvclock_irq_work);
8355 static struct notifier_block pvclock_gtod_notifier = {
8356 .notifier_call = pvclock_gtod_notify,
8360 int kvm_arch_init(void *opaque)
8362 struct kvm_x86_init_ops *ops = opaque;
8365 if (kvm_x86_ops.hardware_enable) {
8366 printk(KERN_ERR "kvm: already loaded the other module\n");
8371 if (!ops->cpu_has_kvm_support()) {
8372 pr_err_ratelimited("kvm: no hardware support\n");
8376 if (ops->disabled_by_bios()) {
8377 pr_err_ratelimited("kvm: disabled by bios\n");
8383 * KVM explicitly assumes that the guest has an FPU and
8384 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
8385 * vCPU's FPU state as a fxregs_state struct.
8387 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
8388 printk(KERN_ERR "kvm: inadequate fpu\n");
8394 x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
8395 __alignof__(struct fpu), SLAB_ACCOUNT,
8397 if (!x86_fpu_cache) {
8398 printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
8402 x86_emulator_cache = kvm_alloc_emulator_cache();
8403 if (!x86_emulator_cache) {
8404 pr_err("kvm: failed to allocate cache for x86 emulator\n");
8405 goto out_free_x86_fpu_cache;
8408 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
8409 if (!user_return_msrs) {
8410 printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
8411 goto out_free_x86_emulator_cache;
8413 kvm_nr_uret_msrs = 0;
8415 r = kvm_mmu_module_init();
8417 goto out_free_percpu;
8421 perf_register_guest_info_callbacks(&kvm_guest_cbs);
8423 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
8424 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
8425 supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
8428 if (pi_inject_timer == -1)
8429 pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
8430 #ifdef CONFIG_X86_64
8431 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
8433 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8434 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
8440 free_percpu(user_return_msrs);
8441 out_free_x86_emulator_cache:
8442 kmem_cache_destroy(x86_emulator_cache);
8443 out_free_x86_fpu_cache:
8444 kmem_cache_destroy(x86_fpu_cache);
8449 void kvm_arch_exit(void)
8451 #ifdef CONFIG_X86_64
8452 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8453 clear_hv_tscchange_cb();
8456 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
8458 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8459 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
8460 CPUFREQ_TRANSITION_NOTIFIER);
8461 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
8462 #ifdef CONFIG_X86_64
8463 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
8464 irq_work_sync(&pvclock_irq_work);
8465 cancel_work_sync(&pvclock_gtod_work);
8467 kvm_x86_ops.hardware_enable = NULL;
8468 kvm_mmu_module_exit();
8469 free_percpu(user_return_msrs);
8470 kmem_cache_destroy(x86_emulator_cache);
8471 kmem_cache_destroy(x86_fpu_cache);
8472 #ifdef CONFIG_KVM_XEN
8473 static_key_deferred_flush(&kvm_xen_enabled);
8474 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
8478 static int __kvm_vcpu_halt(struct kvm_vcpu *vcpu, int state, int reason)
8480 ++vcpu->stat.halt_exits;
8481 if (lapic_in_kernel(vcpu)) {
8482 vcpu->arch.mp_state = state;
8485 vcpu->run->exit_reason = reason;
8490 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
8492 return __kvm_vcpu_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
8494 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
8496 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
8498 int ret = kvm_skip_emulated_instruction(vcpu);
8500 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
8501 * KVM_EXIT_DEBUG here.
8503 return kvm_vcpu_halt(vcpu) && ret;
8505 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
8507 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
8509 int ret = kvm_skip_emulated_instruction(vcpu);
8511 return __kvm_vcpu_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, KVM_EXIT_AP_RESET_HOLD) && ret;
8513 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
8515 #ifdef CONFIG_X86_64
8516 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
8517 unsigned long clock_type)
8519 struct kvm_clock_pairing clock_pairing;
8520 struct timespec64 ts;
8524 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
8525 return -KVM_EOPNOTSUPP;
8527 if (!kvm_get_walltime_and_clockread(&ts, &cycle))
8528 return -KVM_EOPNOTSUPP;
8530 clock_pairing.sec = ts.tv_sec;
8531 clock_pairing.nsec = ts.tv_nsec;
8532 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
8533 clock_pairing.flags = 0;
8534 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
8537 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
8538 sizeof(struct kvm_clock_pairing)))
8546 * kvm_pv_kick_cpu_op: Kick a vcpu.
8548 * @apicid - apicid of vcpu to be kicked.
8550 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
8552 struct kvm_lapic_irq lapic_irq;
8554 lapic_irq.shorthand = APIC_DEST_NOSHORT;
8555 lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
8556 lapic_irq.level = 0;
8557 lapic_irq.dest_id = apicid;
8558 lapic_irq.msi_redir_hint = false;
8560 lapic_irq.delivery_mode = APIC_DM_REMRD;
8561 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
8564 bool kvm_apicv_activated(struct kvm *kvm)
8566 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
8568 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
8570 static void kvm_apicv_init(struct kvm *kvm)
8573 clear_bit(APICV_INHIBIT_REASON_DISABLE,
8574 &kvm->arch.apicv_inhibit_reasons);
8576 set_bit(APICV_INHIBIT_REASON_DISABLE,
8577 &kvm->arch.apicv_inhibit_reasons);
8580 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
8582 struct kvm_vcpu *target = NULL;
8583 struct kvm_apic_map *map;
8585 vcpu->stat.directed_yield_attempted++;
8587 if (single_task_running())
8591 map = rcu_dereference(vcpu->kvm->arch.apic_map);
8593 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
8594 target = map->phys_map[dest_id]->vcpu;
8598 if (!target || !READ_ONCE(target->ready))
8601 /* Ignore requests to yield to self */
8605 if (kvm_vcpu_yield_to(target) <= 0)
8608 vcpu->stat.directed_yield_successful++;
8614 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
8616 u64 ret = vcpu->run->hypercall.ret;
8618 if (!is_64_bit_mode(vcpu))
8620 kvm_rax_write(vcpu, ret);
8621 ++vcpu->stat.hypercalls;
8622 return kvm_skip_emulated_instruction(vcpu);
8625 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
8627 unsigned long nr, a0, a1, a2, a3, ret;
8630 if (kvm_xen_hypercall_enabled(vcpu->kvm))
8631 return kvm_xen_hypercall(vcpu);
8633 if (kvm_hv_hypercall_enabled(vcpu))
8634 return kvm_hv_hypercall(vcpu);
8636 nr = kvm_rax_read(vcpu);
8637 a0 = kvm_rbx_read(vcpu);
8638 a1 = kvm_rcx_read(vcpu);
8639 a2 = kvm_rdx_read(vcpu);
8640 a3 = kvm_rsi_read(vcpu);
8642 trace_kvm_hypercall(nr, a0, a1, a2, a3);
8644 op_64_bit = is_64_bit_mode(vcpu);
8653 if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
8661 case KVM_HC_VAPIC_POLL_IRQ:
8664 case KVM_HC_KICK_CPU:
8665 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
8668 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
8669 kvm_sched_yield(vcpu, a1);
8672 #ifdef CONFIG_X86_64
8673 case KVM_HC_CLOCK_PAIRING:
8674 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
8677 case KVM_HC_SEND_IPI:
8678 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
8681 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
8683 case KVM_HC_SCHED_YIELD:
8684 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
8687 kvm_sched_yield(vcpu, a0);
8690 case KVM_HC_MAP_GPA_RANGE: {
8691 u64 gpa = a0, npages = a1, attrs = a2;
8694 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
8697 if (!PAGE_ALIGNED(gpa) || !npages ||
8698 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
8703 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL;
8704 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE;
8705 vcpu->run->hypercall.args[0] = gpa;
8706 vcpu->run->hypercall.args[1] = npages;
8707 vcpu->run->hypercall.args[2] = attrs;
8708 vcpu->run->hypercall.longmode = op_64_bit;
8709 vcpu->arch.complete_userspace_io = complete_hypercall_exit;
8719 kvm_rax_write(vcpu, ret);
8721 ++vcpu->stat.hypercalls;
8722 return kvm_skip_emulated_instruction(vcpu);
8724 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
8726 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
8728 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8729 char instruction[3];
8730 unsigned long rip = kvm_rip_read(vcpu);
8732 static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
8734 return emulator_write_emulated(ctxt, rip, instruction, 3,
8738 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
8740 return vcpu->run->request_interrupt_window &&
8741 likely(!pic_in_kernel(vcpu->kvm));
8744 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
8746 struct kvm_run *kvm_run = vcpu->run;
8749 * if_flag is obsolete and useless, so do not bother
8750 * setting it for SEV-ES guests. Userspace can just
8751 * use kvm_run->ready_for_interrupt_injection.
8753 kvm_run->if_flag = !vcpu->arch.guest_state_protected
8754 && (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
8756 kvm_run->cr8 = kvm_get_cr8(vcpu);
8757 kvm_run->apic_base = kvm_get_apic_base(vcpu);
8758 kvm_run->ready_for_interrupt_injection =
8759 pic_in_kernel(vcpu->kvm) ||
8760 kvm_vcpu_ready_for_interrupt_injection(vcpu);
8763 kvm_run->flags |= KVM_RUN_X86_SMM;
8766 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
8770 if (!kvm_x86_ops.update_cr8_intercept)
8773 if (!lapic_in_kernel(vcpu))
8776 if (vcpu->arch.apicv_active)
8779 if (!vcpu->arch.apic->vapic_addr)
8780 max_irr = kvm_lapic_find_highest_irr(vcpu);
8787 tpr = kvm_lapic_get_cr8(vcpu);
8789 static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
8793 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
8795 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
8796 kvm_x86_ops.nested_ops->triple_fault(vcpu);
8800 return kvm_x86_ops.nested_ops->check_events(vcpu);
8803 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
8805 if (vcpu->arch.exception.error_code && !is_protmode(vcpu))
8806 vcpu->arch.exception.error_code = false;
8807 static_call(kvm_x86_queue_exception)(vcpu);
8810 static int inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
8813 bool can_inject = true;
8815 /* try to reinject previous events if any */
8817 if (vcpu->arch.exception.injected) {
8818 kvm_inject_exception(vcpu);
8822 * Do not inject an NMI or interrupt if there is a pending
8823 * exception. Exceptions and interrupts are recognized at
8824 * instruction boundaries, i.e. the start of an instruction.
8825 * Trap-like exceptions, e.g. #DB, have higher priority than
8826 * NMIs and interrupts, i.e. traps are recognized before an
8827 * NMI/interrupt that's pending on the same instruction.
8828 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
8829 * priority, but are only generated (pended) during instruction
8830 * execution, i.e. a pending fault-like exception means the
8831 * fault occurred on the *previous* instruction and must be
8832 * serviced prior to recognizing any new events in order to
8833 * fully complete the previous instruction.
8835 else if (!vcpu->arch.exception.pending) {
8836 if (vcpu->arch.nmi_injected) {
8837 static_call(kvm_x86_set_nmi)(vcpu);
8839 } else if (vcpu->arch.interrupt.injected) {
8840 static_call(kvm_x86_set_irq)(vcpu);
8845 WARN_ON_ONCE(vcpu->arch.exception.injected &&
8846 vcpu->arch.exception.pending);
8849 * Call check_nested_events() even if we reinjected a previous event
8850 * in order for caller to determine if it should require immediate-exit
8851 * from L2 to L1 due to pending L1 events which require exit
8854 if (is_guest_mode(vcpu)) {
8855 r = kvm_check_nested_events(vcpu);
8860 /* try to inject new event if pending */
8861 if (vcpu->arch.exception.pending) {
8862 trace_kvm_inj_exception(vcpu->arch.exception.nr,
8863 vcpu->arch.exception.has_error_code,
8864 vcpu->arch.exception.error_code);
8866 vcpu->arch.exception.pending = false;
8867 vcpu->arch.exception.injected = true;
8869 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
8870 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
8873 if (vcpu->arch.exception.nr == DB_VECTOR) {
8874 kvm_deliver_exception_payload(vcpu);
8875 if (vcpu->arch.dr7 & DR7_GD) {
8876 vcpu->arch.dr7 &= ~DR7_GD;
8877 kvm_update_dr7(vcpu);
8881 kvm_inject_exception(vcpu);
8886 * Finally, inject interrupt events. If an event cannot be injected
8887 * due to architectural conditions (e.g. IF=0) a window-open exit
8888 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending
8889 * and can architecturally be injected, but we cannot do it right now:
8890 * an interrupt could have arrived just now and we have to inject it
8891 * as a vmexit, or there could already an event in the queue, which is
8892 * indicated by can_inject. In that case we request an immediate exit
8893 * in order to make progress and get back here for another iteration.
8894 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
8896 if (vcpu->arch.smi_pending) {
8897 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
8901 vcpu->arch.smi_pending = false;
8902 ++vcpu->arch.smi_count;
8906 static_call(kvm_x86_enable_smi_window)(vcpu);
8909 if (vcpu->arch.nmi_pending) {
8910 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
8914 --vcpu->arch.nmi_pending;
8915 vcpu->arch.nmi_injected = true;
8916 static_call(kvm_x86_set_nmi)(vcpu);
8918 WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
8920 if (vcpu->arch.nmi_pending)
8921 static_call(kvm_x86_enable_nmi_window)(vcpu);
8924 if (kvm_cpu_has_injectable_intr(vcpu)) {
8925 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
8929 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
8930 static_call(kvm_x86_set_irq)(vcpu);
8931 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
8933 if (kvm_cpu_has_injectable_intr(vcpu))
8934 static_call(kvm_x86_enable_irq_window)(vcpu);
8937 if (is_guest_mode(vcpu) &&
8938 kvm_x86_ops.nested_ops->hv_timer_pending &&
8939 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
8940 *req_immediate_exit = true;
8942 WARN_ON(vcpu->arch.exception.pending);
8947 *req_immediate_exit = true;
8953 static void process_nmi(struct kvm_vcpu *vcpu)
8958 * x86 is limited to one NMI running, and one NMI pending after it.
8959 * If an NMI is already in progress, limit further NMIs to just one.
8960 * Otherwise, allow two (and we'll inject the first one immediately).
8962 if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
8965 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
8966 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
8967 kvm_make_request(KVM_REQ_EVENT, vcpu);
8970 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
8973 flags |= seg->g << 23;
8974 flags |= seg->db << 22;
8975 flags |= seg->l << 21;
8976 flags |= seg->avl << 20;
8977 flags |= seg->present << 15;
8978 flags |= seg->dpl << 13;
8979 flags |= seg->s << 12;
8980 flags |= seg->type << 8;
8984 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
8986 struct kvm_segment seg;
8989 kvm_get_segment(vcpu, &seg, n);
8990 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
8993 offset = 0x7f84 + n * 12;
8995 offset = 0x7f2c + (n - 3) * 12;
8997 put_smstate(u32, buf, offset + 8, seg.base);
8998 put_smstate(u32, buf, offset + 4, seg.limit);
8999 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
9002 #ifdef CONFIG_X86_64
9003 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
9005 struct kvm_segment seg;
9009 kvm_get_segment(vcpu, &seg, n);
9010 offset = 0x7e00 + n * 16;
9012 flags = enter_smm_get_segment_flags(&seg) >> 8;
9013 put_smstate(u16, buf, offset, seg.selector);
9014 put_smstate(u16, buf, offset + 2, flags);
9015 put_smstate(u32, buf, offset + 4, seg.limit);
9016 put_smstate(u64, buf, offset + 8, seg.base);
9020 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
9023 struct kvm_segment seg;
9027 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
9028 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
9029 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
9030 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
9032 for (i = 0; i < 8; i++)
9033 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read_raw(vcpu, i));
9035 kvm_get_dr(vcpu, 6, &val);
9036 put_smstate(u32, buf, 0x7fcc, (u32)val);
9037 kvm_get_dr(vcpu, 7, &val);
9038 put_smstate(u32, buf, 0x7fc8, (u32)val);
9040 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9041 put_smstate(u32, buf, 0x7fc4, seg.selector);
9042 put_smstate(u32, buf, 0x7f64, seg.base);
9043 put_smstate(u32, buf, 0x7f60, seg.limit);
9044 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
9046 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9047 put_smstate(u32, buf, 0x7fc0, seg.selector);
9048 put_smstate(u32, buf, 0x7f80, seg.base);
9049 put_smstate(u32, buf, 0x7f7c, seg.limit);
9050 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
9052 static_call(kvm_x86_get_gdt)(vcpu, &dt);
9053 put_smstate(u32, buf, 0x7f74, dt.address);
9054 put_smstate(u32, buf, 0x7f70, dt.size);
9056 static_call(kvm_x86_get_idt)(vcpu, &dt);
9057 put_smstate(u32, buf, 0x7f58, dt.address);
9058 put_smstate(u32, buf, 0x7f54, dt.size);
9060 for (i = 0; i < 6; i++)
9061 enter_smm_save_seg_32(vcpu, buf, i);
9063 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
9066 put_smstate(u32, buf, 0x7efc, 0x00020000);
9067 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
9070 #ifdef CONFIG_X86_64
9071 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
9074 struct kvm_segment seg;
9078 for (i = 0; i < 16; i++)
9079 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read_raw(vcpu, i));
9081 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
9082 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
9084 kvm_get_dr(vcpu, 6, &val);
9085 put_smstate(u64, buf, 0x7f68, val);
9086 kvm_get_dr(vcpu, 7, &val);
9087 put_smstate(u64, buf, 0x7f60, val);
9089 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
9090 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
9091 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
9093 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
9096 put_smstate(u32, buf, 0x7efc, 0x00020064);
9098 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
9100 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9101 put_smstate(u16, buf, 0x7e90, seg.selector);
9102 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
9103 put_smstate(u32, buf, 0x7e94, seg.limit);
9104 put_smstate(u64, buf, 0x7e98, seg.base);
9106 static_call(kvm_x86_get_idt)(vcpu, &dt);
9107 put_smstate(u32, buf, 0x7e84, dt.size);
9108 put_smstate(u64, buf, 0x7e88, dt.address);
9110 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9111 put_smstate(u16, buf, 0x7e70, seg.selector);
9112 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
9113 put_smstate(u32, buf, 0x7e74, seg.limit);
9114 put_smstate(u64, buf, 0x7e78, seg.base);
9116 static_call(kvm_x86_get_gdt)(vcpu, &dt);
9117 put_smstate(u32, buf, 0x7e64, dt.size);
9118 put_smstate(u64, buf, 0x7e68, dt.address);
9120 for (i = 0; i < 6; i++)
9121 enter_smm_save_seg_64(vcpu, buf, i);
9125 static void enter_smm(struct kvm_vcpu *vcpu)
9127 struct kvm_segment cs, ds;
9132 memset(buf, 0, 512);
9133 #ifdef CONFIG_X86_64
9134 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9135 enter_smm_save_state_64(vcpu, buf);
9138 enter_smm_save_state_32(vcpu, buf);
9141 * Give enter_smm() a chance to make ISA-specific changes to the vCPU
9142 * state (e.g. leave guest mode) after we've saved the state into the
9143 * SMM state-save area.
9145 static_call(kvm_x86_enter_smm)(vcpu, buf);
9147 kvm_smm_changed(vcpu, true);
9148 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
9150 if (static_call(kvm_x86_get_nmi_mask)(vcpu))
9151 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
9153 static_call(kvm_x86_set_nmi_mask)(vcpu, true);
9155 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
9156 kvm_rip_write(vcpu, 0x8000);
9158 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
9159 static_call(kvm_x86_set_cr0)(vcpu, cr0);
9160 vcpu->arch.cr0 = cr0;
9162 static_call(kvm_x86_set_cr4)(vcpu, 0);
9164 /* Undocumented: IDT limit is set to zero on entry to SMM. */
9165 dt.address = dt.size = 0;
9166 static_call(kvm_x86_set_idt)(vcpu, &dt);
9168 kvm_set_dr(vcpu, 7, DR7_FIXED_1);
9170 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
9171 cs.base = vcpu->arch.smbase;
9176 cs.limit = ds.limit = 0xffffffff;
9177 cs.type = ds.type = 0x3;
9178 cs.dpl = ds.dpl = 0;
9183 cs.avl = ds.avl = 0;
9184 cs.present = ds.present = 1;
9185 cs.unusable = ds.unusable = 0;
9186 cs.padding = ds.padding = 0;
9188 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
9189 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
9190 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
9191 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
9192 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
9193 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
9195 #ifdef CONFIG_X86_64
9196 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9197 static_call(kvm_x86_set_efer)(vcpu, 0);
9200 kvm_update_cpuid_runtime(vcpu);
9201 kvm_mmu_reset_context(vcpu);
9204 static void process_smi(struct kvm_vcpu *vcpu)
9206 vcpu->arch.smi_pending = true;
9207 kvm_make_request(KVM_REQ_EVENT, vcpu);
9210 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
9211 unsigned long *vcpu_bitmap)
9215 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
9217 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC,
9218 NULL, vcpu_bitmap, cpus);
9220 free_cpumask_var(cpus);
9223 void kvm_make_scan_ioapic_request(struct kvm *kvm)
9225 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
9228 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
9230 if (!lapic_in_kernel(vcpu))
9233 vcpu->arch.apicv_active = kvm_apicv_activated(vcpu->kvm);
9234 kvm_apic_update_apicv(vcpu);
9235 static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
9238 * When APICv gets disabled, we may still have injected interrupts
9239 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
9240 * still active when the interrupt got accepted. Make sure
9241 * inject_pending_event() is called to check for that.
9243 if (!vcpu->arch.apicv_active)
9244 kvm_make_request(KVM_REQ_EVENT, vcpu);
9246 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
9249 * NOTE: Do not hold any lock prior to calling this.
9251 * In particular, kvm_request_apicv_update() expects kvm->srcu not to be
9252 * locked, because it calls __x86_set_memory_region() which does
9253 * synchronize_srcu(&kvm->srcu).
9255 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
9257 struct kvm_vcpu *except;
9258 unsigned long old, new, expected;
9260 if (!kvm_x86_ops.check_apicv_inhibit_reasons ||
9261 !static_call(kvm_x86_check_apicv_inhibit_reasons)(bit))
9264 old = READ_ONCE(kvm->arch.apicv_inhibit_reasons);
9266 expected = new = old;
9268 __clear_bit(bit, &new);
9270 __set_bit(bit, &new);
9273 old = cmpxchg(&kvm->arch.apicv_inhibit_reasons, expected, new);
9274 } while (old != expected);
9279 trace_kvm_apicv_update_request(activate, bit);
9280 if (kvm_x86_ops.pre_update_apicv_exec_ctrl)
9281 static_call(kvm_x86_pre_update_apicv_exec_ctrl)(kvm, activate);
9284 * Sending request to update APICV for all other vcpus,
9285 * while update the calling vcpu immediately instead of
9286 * waiting for another #VMEXIT to handle the request.
9288 except = kvm_get_running_vcpu();
9289 kvm_make_all_cpus_request_except(kvm, KVM_REQ_APICV_UPDATE,
9292 kvm_vcpu_update_apicv(except);
9294 EXPORT_SYMBOL_GPL(kvm_request_apicv_update);
9296 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
9298 if (!kvm_apic_present(vcpu))
9301 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
9303 if (irqchip_split(vcpu->kvm))
9304 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
9306 if (vcpu->arch.apicv_active)
9307 static_call(kvm_x86_sync_pir_to_irr)(vcpu);
9308 if (ioapic_in_kernel(vcpu->kvm))
9309 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
9312 if (is_guest_mode(vcpu))
9313 vcpu->arch.load_eoi_exitmap_pending = true;
9315 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
9318 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
9320 u64 eoi_exit_bitmap[4];
9322 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
9325 if (to_hv_vcpu(vcpu))
9326 bitmap_or((ulong *)eoi_exit_bitmap,
9327 vcpu->arch.ioapic_handled_vectors,
9328 to_hv_synic(vcpu)->vec_bitmap, 256);
9330 static_call(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
9333 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
9334 unsigned long start, unsigned long end)
9336 unsigned long apic_address;
9339 * The physical address of apic access page is stored in the VMCS.
9340 * Update it when it becomes invalid.
9342 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
9343 if (start <= apic_address && apic_address < end)
9344 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
9347 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
9349 if (!lapic_in_kernel(vcpu))
9352 if (!kvm_x86_ops.set_apic_access_page_addr)
9355 static_call(kvm_x86_set_apic_access_page_addr)(vcpu);
9358 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
9360 smp_send_reschedule(vcpu->cpu);
9362 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
9365 * Returns 1 to let vcpu_run() continue the guest execution loop without
9366 * exiting to the userspace. Otherwise, the value will be returned to the
9369 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
9373 dm_request_for_irq_injection(vcpu) &&
9374 kvm_cpu_accept_dm_intr(vcpu);
9375 fastpath_t exit_fastpath;
9377 bool req_immediate_exit = false;
9379 /* Forbid vmenter if vcpu dirty ring is soft-full */
9380 if (unlikely(vcpu->kvm->dirty_ring_size &&
9381 kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) {
9382 vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL;
9383 trace_kvm_dirty_ring_exit(vcpu);
9388 if (kvm_request_pending(vcpu)) {
9389 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
9390 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
9395 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
9396 kvm_mmu_unload(vcpu);
9397 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
9398 __kvm_migrate_timers(vcpu);
9399 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
9400 kvm_gen_update_masterclock(vcpu->kvm);
9401 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
9402 kvm_gen_kvmclock_update(vcpu);
9403 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
9404 r = kvm_guest_time_update(vcpu);
9408 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
9409 kvm_mmu_sync_roots(vcpu);
9410 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
9411 kvm_mmu_load_pgd(vcpu);
9412 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
9413 kvm_vcpu_flush_tlb_all(vcpu);
9415 /* Flushing all ASIDs flushes the current ASID... */
9416 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
9418 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
9419 kvm_vcpu_flush_tlb_current(vcpu);
9420 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
9421 kvm_vcpu_flush_tlb_guest(vcpu);
9423 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
9424 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
9428 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9429 if (is_guest_mode(vcpu)) {
9430 kvm_x86_ops.nested_ops->triple_fault(vcpu);
9432 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
9433 vcpu->mmio_needed = 0;
9438 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
9439 /* Page is swapped out. Do synthetic halt */
9440 vcpu->arch.apf.halted = true;
9444 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
9445 record_steal_time(vcpu);
9446 if (kvm_check_request(KVM_REQ_SMI, vcpu))
9448 if (kvm_check_request(KVM_REQ_NMI, vcpu))
9450 if (kvm_check_request(KVM_REQ_PMU, vcpu))
9451 kvm_pmu_handle_event(vcpu);
9452 if (kvm_check_request(KVM_REQ_PMI, vcpu))
9453 kvm_pmu_deliver_pmi(vcpu);
9454 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
9455 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
9456 if (test_bit(vcpu->arch.pending_ioapic_eoi,
9457 vcpu->arch.ioapic_handled_vectors)) {
9458 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
9459 vcpu->run->eoi.vector =
9460 vcpu->arch.pending_ioapic_eoi;
9465 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
9466 vcpu_scan_ioapic(vcpu);
9467 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
9468 vcpu_load_eoi_exitmap(vcpu);
9469 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
9470 kvm_vcpu_reload_apic_access_page(vcpu);
9471 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
9472 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9473 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
9477 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
9478 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9479 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
9483 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
9484 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
9486 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
9487 vcpu->run->hyperv = hv_vcpu->exit;
9493 * KVM_REQ_HV_STIMER has to be processed after
9494 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
9495 * depend on the guest clock being up-to-date
9497 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
9498 kvm_hv_process_stimers(vcpu);
9499 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
9500 kvm_vcpu_update_apicv(vcpu);
9501 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
9502 kvm_check_async_pf_completion(vcpu);
9503 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
9504 static_call(kvm_x86_msr_filter_changed)(vcpu);
9506 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
9507 static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
9510 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
9511 kvm_xen_has_interrupt(vcpu)) {
9512 ++vcpu->stat.req_event;
9513 r = kvm_apic_accept_events(vcpu);
9518 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
9523 r = inject_pending_event(vcpu, &req_immediate_exit);
9529 static_call(kvm_x86_enable_irq_window)(vcpu);
9531 if (kvm_lapic_enabled(vcpu)) {
9532 update_cr8_intercept(vcpu);
9533 kvm_lapic_sync_to_vapic(vcpu);
9537 r = kvm_mmu_reload(vcpu);
9539 goto cancel_injection;
9544 static_call(kvm_x86_prepare_guest_switch)(vcpu);
9547 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
9548 * IPI are then delayed after guest entry, which ensures that they
9549 * result in virtual interrupt delivery.
9551 local_irq_disable();
9552 vcpu->mode = IN_GUEST_MODE;
9554 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9557 * 1) We should set ->mode before checking ->requests. Please see
9558 * the comment in kvm_vcpu_exiting_guest_mode().
9560 * 2) For APICv, we should set ->mode before checking PID.ON. This
9561 * pairs with the memory barrier implicit in pi_test_and_set_on
9562 * (see vmx_deliver_posted_interrupt).
9564 * 3) This also orders the write to mode from any reads to the page
9565 * tables done while the VCPU is running. Please see the comment
9566 * in kvm_flush_remote_tlbs.
9568 smp_mb__after_srcu_read_unlock();
9571 * This handles the case where a posted interrupt was
9572 * notified with kvm_vcpu_kick.
9574 if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
9575 static_call(kvm_x86_sync_pir_to_irr)(vcpu);
9577 if (kvm_vcpu_exit_request(vcpu)) {
9578 vcpu->mode = OUTSIDE_GUEST_MODE;
9582 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9584 goto cancel_injection;
9587 if (req_immediate_exit) {
9588 kvm_make_request(KVM_REQ_EVENT, vcpu);
9589 static_call(kvm_x86_request_immediate_exit)(vcpu);
9592 fpregs_assert_state_consistent();
9593 if (test_thread_flag(TIF_NEED_FPU_LOAD))
9594 switch_fpu_return();
9596 if (unlikely(vcpu->arch.switch_db_regs)) {
9598 set_debugreg(vcpu->arch.eff_db[0], 0);
9599 set_debugreg(vcpu->arch.eff_db[1], 1);
9600 set_debugreg(vcpu->arch.eff_db[2], 2);
9601 set_debugreg(vcpu->arch.eff_db[3], 3);
9602 set_debugreg(vcpu->arch.dr6, 6);
9603 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
9604 } else if (unlikely(hw_breakpoint_active())) {
9609 exit_fastpath = static_call(kvm_x86_run)(vcpu);
9610 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
9613 if (unlikely(kvm_vcpu_exit_request(vcpu))) {
9614 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
9618 if (vcpu->arch.apicv_active)
9619 static_call(kvm_x86_sync_pir_to_irr)(vcpu);
9623 * Do this here before restoring debug registers on the host. And
9624 * since we do this before handling the vmexit, a DR access vmexit
9625 * can (a) read the correct value of the debug registers, (b) set
9626 * KVM_DEBUGREG_WONT_EXIT again.
9628 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
9629 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
9630 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
9631 kvm_update_dr0123(vcpu);
9632 kvm_update_dr7(vcpu);
9633 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
9637 * If the guest has used debug registers, at least dr7
9638 * will be disabled while returning to the host.
9639 * If we don't have active breakpoints in the host, we don't
9640 * care about the messed up debug address registers. But if
9641 * we have some of them active, restore the old state.
9643 if (hw_breakpoint_active())
9644 hw_breakpoint_restore();
9646 vcpu->arch.last_vmentry_cpu = vcpu->cpu;
9647 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
9649 vcpu->mode = OUTSIDE_GUEST_MODE;
9652 static_call(kvm_x86_handle_exit_irqoff)(vcpu);
9655 * Consume any pending interrupts, including the possible source of
9656 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
9657 * An instruction is required after local_irq_enable() to fully unblock
9658 * interrupts on processors that implement an interrupt shadow, the
9659 * stat.exits increment will do nicely.
9661 kvm_before_interrupt(vcpu);
9664 local_irq_disable();
9665 kvm_after_interrupt(vcpu);
9668 * Wait until after servicing IRQs to account guest time so that any
9669 * ticks that occurred while running the guest are properly accounted
9670 * to the guest. Waiting until IRQs are enabled degrades the accuracy
9671 * of accounting via context tracking, but the loss of accuracy is
9672 * acceptable for all known use cases.
9674 vtime_account_guest_exit();
9676 if (lapic_in_kernel(vcpu)) {
9677 s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
9678 if (delta != S64_MIN) {
9679 trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
9680 vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
9687 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9690 * Profile KVM exit RIPs:
9692 if (unlikely(prof_on == KVM_PROFILING)) {
9693 unsigned long rip = kvm_rip_read(vcpu);
9694 profile_hit(KVM_PROFILING, (void *)rip);
9697 if (unlikely(vcpu->arch.tsc_always_catchup))
9698 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9700 if (vcpu->arch.apic_attention)
9701 kvm_lapic_sync_from_vapic(vcpu);
9703 r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
9707 if (req_immediate_exit)
9708 kvm_make_request(KVM_REQ_EVENT, vcpu);
9709 static_call(kvm_x86_cancel_injection)(vcpu);
9710 if (unlikely(vcpu->arch.apic_attention))
9711 kvm_lapic_sync_from_vapic(vcpu);
9716 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
9718 if (!kvm_arch_vcpu_runnable(vcpu) &&
9719 (!kvm_x86_ops.pre_block || static_call(kvm_x86_pre_block)(vcpu) == 0)) {
9720 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9721 kvm_vcpu_block(vcpu);
9722 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9724 if (kvm_x86_ops.post_block)
9725 static_call(kvm_x86_post_block)(vcpu);
9727 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
9731 if (kvm_apic_accept_events(vcpu) < 0)
9733 switch(vcpu->arch.mp_state) {
9734 case KVM_MP_STATE_HALTED:
9735 case KVM_MP_STATE_AP_RESET_HOLD:
9736 vcpu->arch.pv.pv_unhalted = false;
9737 vcpu->arch.mp_state =
9738 KVM_MP_STATE_RUNNABLE;
9740 case KVM_MP_STATE_RUNNABLE:
9741 vcpu->arch.apf.halted = false;
9743 case KVM_MP_STATE_INIT_RECEIVED:
9751 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
9753 if (is_guest_mode(vcpu))
9754 kvm_check_nested_events(vcpu);
9756 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
9757 !vcpu->arch.apf.halted);
9760 static int vcpu_run(struct kvm_vcpu *vcpu)
9763 struct kvm *kvm = vcpu->kvm;
9765 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9766 vcpu->arch.l1tf_flush_l1d = true;
9769 if (kvm_vcpu_running(vcpu)) {
9770 r = vcpu_enter_guest(vcpu);
9772 r = vcpu_block(kvm, vcpu);
9778 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
9779 if (kvm_cpu_has_pending_timer(vcpu))
9780 kvm_inject_pending_timer_irqs(vcpu);
9782 if (dm_request_for_irq_injection(vcpu) &&
9783 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
9785 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
9786 ++vcpu->stat.request_irq_exits;
9790 if (__xfer_to_guest_mode_work_pending()) {
9791 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9792 r = xfer_to_guest_mode_handle_work(vcpu);
9795 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9799 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9804 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
9808 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9809 r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
9810 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9814 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
9816 BUG_ON(!vcpu->arch.pio.count);
9818 return complete_emulated_io(vcpu);
9822 * Implements the following, as a state machine:
9826 * for each mmio piece in the fragment
9834 * for each mmio piece in the fragment
9839 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
9841 struct kvm_run *run = vcpu->run;
9842 struct kvm_mmio_fragment *frag;
9845 BUG_ON(!vcpu->mmio_needed);
9847 /* Complete previous fragment */
9848 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
9849 len = min(8u, frag->len);
9850 if (!vcpu->mmio_is_write)
9851 memcpy(frag->data, run->mmio.data, len);
9853 if (frag->len <= 8) {
9854 /* Switch to the next fragment. */
9856 vcpu->mmio_cur_fragment++;
9858 /* Go forward to the next mmio piece. */
9864 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
9865 vcpu->mmio_needed = 0;
9867 /* FIXME: return into emulator if single-stepping. */
9868 if (vcpu->mmio_is_write)
9870 vcpu->mmio_read_completed = 1;
9871 return complete_emulated_io(vcpu);
9874 run->exit_reason = KVM_EXIT_MMIO;
9875 run->mmio.phys_addr = frag->gpa;
9876 if (vcpu->mmio_is_write)
9877 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
9878 run->mmio.len = min(8u, frag->len);
9879 run->mmio.is_write = vcpu->mmio_is_write;
9880 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9884 static void kvm_save_current_fpu(struct fpu *fpu)
9887 * If the target FPU state is not resident in the CPU registers, just
9888 * memcpy() from current, else save CPU state directly to the target.
9890 if (test_thread_flag(TIF_NEED_FPU_LOAD))
9891 memcpy(&fpu->state, ¤t->thread.fpu.state,
9892 fpu_kernel_xstate_size);
9894 save_fpregs_to_fpstate(fpu);
9897 /* Swap (qemu) user FPU context for the guest FPU context. */
9898 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
9902 kvm_save_current_fpu(vcpu->arch.user_fpu);
9905 * Guests with protected state can't have it set by the hypervisor,
9906 * so skip trying to set it.
9908 if (vcpu->arch.guest_fpu)
9909 /* PKRU is separately restored in kvm_x86_ops.run. */
9910 __restore_fpregs_from_fpstate(&vcpu->arch.guest_fpu->state,
9911 ~XFEATURE_MASK_PKRU);
9913 fpregs_mark_activate();
9919 /* When vcpu_run ends, restore user space FPU context. */
9920 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
9925 * Guests with protected state can't have it read by the hypervisor,
9926 * so skip trying to save it.
9928 if (vcpu->arch.guest_fpu)
9929 kvm_save_current_fpu(vcpu->arch.guest_fpu);
9931 restore_fpregs_from_fpstate(&vcpu->arch.user_fpu->state);
9933 fpregs_mark_activate();
9936 ++vcpu->stat.fpu_reload;
9940 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
9942 struct kvm_run *kvm_run = vcpu->run;
9946 kvm_sigset_activate(vcpu);
9948 kvm_load_guest_fpu(vcpu);
9950 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
9951 if (kvm_run->immediate_exit) {
9955 kvm_vcpu_block(vcpu);
9956 if (kvm_apic_accept_events(vcpu) < 0) {
9960 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
9962 if (signal_pending(current)) {
9964 kvm_run->exit_reason = KVM_EXIT_INTR;
9965 ++vcpu->stat.signal_exits;
9970 if (kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
9975 if (kvm_run->kvm_dirty_regs) {
9976 r = sync_regs(vcpu);
9981 /* re-sync apic's tpr */
9982 if (!lapic_in_kernel(vcpu)) {
9983 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
9989 if (unlikely(vcpu->arch.complete_userspace_io)) {
9990 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
9991 vcpu->arch.complete_userspace_io = NULL;
9996 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
9998 if (kvm_run->immediate_exit)
10001 r = vcpu_run(vcpu);
10004 kvm_put_guest_fpu(vcpu);
10005 if (kvm_run->kvm_valid_regs)
10007 post_kvm_run_save(vcpu);
10008 kvm_sigset_deactivate(vcpu);
10014 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10016 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
10018 * We are here if userspace calls get_regs() in the middle of
10019 * instruction emulation. Registers state needs to be copied
10020 * back from emulation context to vcpu. Userspace shouldn't do
10021 * that usually, but some bad designed PV devices (vmware
10022 * backdoor interface) need this to work
10024 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
10025 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10027 regs->rax = kvm_rax_read(vcpu);
10028 regs->rbx = kvm_rbx_read(vcpu);
10029 regs->rcx = kvm_rcx_read(vcpu);
10030 regs->rdx = kvm_rdx_read(vcpu);
10031 regs->rsi = kvm_rsi_read(vcpu);
10032 regs->rdi = kvm_rdi_read(vcpu);
10033 regs->rsp = kvm_rsp_read(vcpu);
10034 regs->rbp = kvm_rbp_read(vcpu);
10035 #ifdef CONFIG_X86_64
10036 regs->r8 = kvm_r8_read(vcpu);
10037 regs->r9 = kvm_r9_read(vcpu);
10038 regs->r10 = kvm_r10_read(vcpu);
10039 regs->r11 = kvm_r11_read(vcpu);
10040 regs->r12 = kvm_r12_read(vcpu);
10041 regs->r13 = kvm_r13_read(vcpu);
10042 regs->r14 = kvm_r14_read(vcpu);
10043 regs->r15 = kvm_r15_read(vcpu);
10046 regs->rip = kvm_rip_read(vcpu);
10047 regs->rflags = kvm_get_rflags(vcpu);
10050 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10053 __get_regs(vcpu, regs);
10058 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10060 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
10061 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10063 kvm_rax_write(vcpu, regs->rax);
10064 kvm_rbx_write(vcpu, regs->rbx);
10065 kvm_rcx_write(vcpu, regs->rcx);
10066 kvm_rdx_write(vcpu, regs->rdx);
10067 kvm_rsi_write(vcpu, regs->rsi);
10068 kvm_rdi_write(vcpu, regs->rdi);
10069 kvm_rsp_write(vcpu, regs->rsp);
10070 kvm_rbp_write(vcpu, regs->rbp);
10071 #ifdef CONFIG_X86_64
10072 kvm_r8_write(vcpu, regs->r8);
10073 kvm_r9_write(vcpu, regs->r9);
10074 kvm_r10_write(vcpu, regs->r10);
10075 kvm_r11_write(vcpu, regs->r11);
10076 kvm_r12_write(vcpu, regs->r12);
10077 kvm_r13_write(vcpu, regs->r13);
10078 kvm_r14_write(vcpu, regs->r14);
10079 kvm_r15_write(vcpu, regs->r15);
10082 kvm_rip_write(vcpu, regs->rip);
10083 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
10085 vcpu->arch.exception.pending = false;
10087 kvm_make_request(KVM_REQ_EVENT, vcpu);
10090 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10093 __set_regs(vcpu, regs);
10098 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
10100 struct kvm_segment cs;
10102 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
10106 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
10108 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10110 struct desc_ptr dt;
10112 if (vcpu->arch.guest_state_protected)
10113 goto skip_protected_regs;
10115 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10116 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10117 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10118 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10119 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10120 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10122 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10123 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10125 static_call(kvm_x86_get_idt)(vcpu, &dt);
10126 sregs->idt.limit = dt.size;
10127 sregs->idt.base = dt.address;
10128 static_call(kvm_x86_get_gdt)(vcpu, &dt);
10129 sregs->gdt.limit = dt.size;
10130 sregs->gdt.base = dt.address;
10132 sregs->cr2 = vcpu->arch.cr2;
10133 sregs->cr3 = kvm_read_cr3(vcpu);
10135 skip_protected_regs:
10136 sregs->cr0 = kvm_read_cr0(vcpu);
10137 sregs->cr4 = kvm_read_cr4(vcpu);
10138 sregs->cr8 = kvm_get_cr8(vcpu);
10139 sregs->efer = vcpu->arch.efer;
10140 sregs->apic_base = kvm_get_apic_base(vcpu);
10143 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10145 __get_sregs_common(vcpu, sregs);
10147 if (vcpu->arch.guest_state_protected)
10150 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
10151 set_bit(vcpu->arch.interrupt.nr,
10152 (unsigned long *)sregs->interrupt_bitmap);
10155 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
10159 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
10161 if (vcpu->arch.guest_state_protected)
10164 if (is_pae_paging(vcpu)) {
10165 for (i = 0 ; i < 4 ; i++)
10166 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
10167 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
10171 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
10172 struct kvm_sregs *sregs)
10175 __get_sregs(vcpu, sregs);
10180 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
10181 struct kvm_mp_state *mp_state)
10186 if (kvm_mpx_supported())
10187 kvm_load_guest_fpu(vcpu);
10189 r = kvm_apic_accept_events(vcpu);
10194 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
10195 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
10196 vcpu->arch.pv.pv_unhalted)
10197 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
10199 mp_state->mp_state = vcpu->arch.mp_state;
10202 if (kvm_mpx_supported())
10203 kvm_put_guest_fpu(vcpu);
10208 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
10209 struct kvm_mp_state *mp_state)
10215 if (!lapic_in_kernel(vcpu) &&
10216 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
10220 * KVM_MP_STATE_INIT_RECEIVED means the processor is in
10221 * INIT state; latched init should be reported using
10222 * KVM_SET_VCPU_EVENTS, so reject it here.
10224 if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
10225 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
10226 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
10229 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
10230 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
10231 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
10233 vcpu->arch.mp_state = mp_state->mp_state;
10234 kvm_make_request(KVM_REQ_EVENT, vcpu);
10242 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
10243 int reason, bool has_error_code, u32 error_code)
10245 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
10248 init_emulate_ctxt(vcpu);
10250 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
10251 has_error_code, error_code);
10253 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
10254 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
10255 vcpu->run->internal.ndata = 0;
10259 kvm_rip_write(vcpu, ctxt->eip);
10260 kvm_set_rflags(vcpu, ctxt->eflags);
10263 EXPORT_SYMBOL_GPL(kvm_task_switch);
10265 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10267 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
10269 * When EFER.LME and CR0.PG are set, the processor is in
10270 * 64-bit mode (though maybe in a 32-bit code segment).
10271 * CR4.PAE and EFER.LMA must be set.
10273 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
10275 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
10279 * Not in 64-bit mode: EFER.LMA is clear and the code
10280 * segment cannot be 64-bit.
10282 if (sregs->efer & EFER_LMA || sregs->cs.l)
10286 return kvm_is_valid_cr4(vcpu, sregs->cr4);
10289 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
10290 int *mmu_reset_needed, bool update_pdptrs)
10292 struct msr_data apic_base_msr;
10294 struct desc_ptr dt;
10296 if (!kvm_is_valid_sregs(vcpu, sregs))
10299 apic_base_msr.data = sregs->apic_base;
10300 apic_base_msr.host_initiated = true;
10301 if (kvm_set_apic_base(vcpu, &apic_base_msr))
10304 if (vcpu->arch.guest_state_protected)
10307 dt.size = sregs->idt.limit;
10308 dt.address = sregs->idt.base;
10309 static_call(kvm_x86_set_idt)(vcpu, &dt);
10310 dt.size = sregs->gdt.limit;
10311 dt.address = sregs->gdt.base;
10312 static_call(kvm_x86_set_gdt)(vcpu, &dt);
10314 vcpu->arch.cr2 = sregs->cr2;
10315 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
10316 vcpu->arch.cr3 = sregs->cr3;
10317 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
10319 kvm_set_cr8(vcpu, sregs->cr8);
10321 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
10322 static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
10324 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
10325 static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
10326 vcpu->arch.cr0 = sregs->cr0;
10328 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
10329 static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
10331 if (update_pdptrs) {
10332 idx = srcu_read_lock(&vcpu->kvm->srcu);
10333 if (is_pae_paging(vcpu)) {
10334 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
10335 *mmu_reset_needed = 1;
10337 srcu_read_unlock(&vcpu->kvm->srcu, idx);
10340 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10341 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10342 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10343 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10344 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10345 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10347 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10348 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10350 update_cr8_intercept(vcpu);
10352 /* Older userspace won't unhalt the vcpu on reset. */
10353 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
10354 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
10355 !is_protmode(vcpu))
10356 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10361 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10363 int pending_vec, max_bits;
10364 int mmu_reset_needed = 0;
10365 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
10370 if (mmu_reset_needed)
10371 kvm_mmu_reset_context(vcpu);
10373 max_bits = KVM_NR_INTERRUPTS;
10374 pending_vec = find_first_bit(
10375 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
10377 if (pending_vec < max_bits) {
10378 kvm_queue_interrupt(vcpu, pending_vec, false);
10379 pr_debug("Set back pending irq %d\n", pending_vec);
10380 kvm_make_request(KVM_REQ_EVENT, vcpu);
10385 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
10387 int mmu_reset_needed = 0;
10388 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
10389 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
10390 !(sregs2->efer & EFER_LMA);
10393 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
10396 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
10399 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
10400 &mmu_reset_needed, !valid_pdptrs);
10404 if (valid_pdptrs) {
10405 for (i = 0; i < 4 ; i++)
10406 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
10408 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
10409 mmu_reset_needed = 1;
10410 vcpu->arch.pdptrs_from_userspace = true;
10412 if (mmu_reset_needed)
10413 kvm_mmu_reset_context(vcpu);
10417 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
10418 struct kvm_sregs *sregs)
10423 ret = __set_sregs(vcpu, sregs);
10428 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
10429 struct kvm_guest_debug *dbg)
10431 unsigned long rflags;
10434 if (vcpu->arch.guest_state_protected)
10439 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
10441 if (vcpu->arch.exception.pending)
10443 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
10444 kvm_queue_exception(vcpu, DB_VECTOR);
10446 kvm_queue_exception(vcpu, BP_VECTOR);
10450 * Read rflags as long as potentially injected trace flags are still
10453 rflags = kvm_get_rflags(vcpu);
10455 vcpu->guest_debug = dbg->control;
10456 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
10457 vcpu->guest_debug = 0;
10459 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
10460 for (i = 0; i < KVM_NR_DB_REGS; ++i)
10461 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
10462 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
10464 for (i = 0; i < KVM_NR_DB_REGS; i++)
10465 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
10467 kvm_update_dr7(vcpu);
10469 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
10470 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
10473 * Trigger an rflags update that will inject or remove the trace
10476 kvm_set_rflags(vcpu, rflags);
10478 static_call(kvm_x86_update_exception_bitmap)(vcpu);
10488 * Translate a guest virtual address to a guest physical address.
10490 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
10491 struct kvm_translation *tr)
10493 unsigned long vaddr = tr->linear_address;
10499 idx = srcu_read_lock(&vcpu->kvm->srcu);
10500 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
10501 srcu_read_unlock(&vcpu->kvm->srcu, idx);
10502 tr->physical_address = gpa;
10503 tr->valid = gpa != UNMAPPED_GVA;
10511 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
10513 struct fxregs_state *fxsave;
10515 if (!vcpu->arch.guest_fpu)
10520 fxsave = &vcpu->arch.guest_fpu->state.fxsave;
10521 memcpy(fpu->fpr, fxsave->st_space, 128);
10522 fpu->fcw = fxsave->cwd;
10523 fpu->fsw = fxsave->swd;
10524 fpu->ftwx = fxsave->twd;
10525 fpu->last_opcode = fxsave->fop;
10526 fpu->last_ip = fxsave->rip;
10527 fpu->last_dp = fxsave->rdp;
10528 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
10534 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
10536 struct fxregs_state *fxsave;
10538 if (!vcpu->arch.guest_fpu)
10543 fxsave = &vcpu->arch.guest_fpu->state.fxsave;
10545 memcpy(fxsave->st_space, fpu->fpr, 128);
10546 fxsave->cwd = fpu->fcw;
10547 fxsave->swd = fpu->fsw;
10548 fxsave->twd = fpu->ftwx;
10549 fxsave->fop = fpu->last_opcode;
10550 fxsave->rip = fpu->last_ip;
10551 fxsave->rdp = fpu->last_dp;
10552 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
10558 static void store_regs(struct kvm_vcpu *vcpu)
10560 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
10562 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
10563 __get_regs(vcpu, &vcpu->run->s.regs.regs);
10565 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
10566 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
10568 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
10569 kvm_vcpu_ioctl_x86_get_vcpu_events(
10570 vcpu, &vcpu->run->s.regs.events);
10573 static int sync_regs(struct kvm_vcpu *vcpu)
10575 if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
10578 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
10579 __set_regs(vcpu, &vcpu->run->s.regs.regs);
10580 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
10582 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
10583 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
10585 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
10587 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
10588 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
10589 vcpu, &vcpu->run->s.regs.events))
10591 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
10597 static void fx_init(struct kvm_vcpu *vcpu)
10599 if (!vcpu->arch.guest_fpu)
10602 fpstate_init(&vcpu->arch.guest_fpu->state);
10603 if (boot_cpu_has(X86_FEATURE_XSAVES))
10604 vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
10605 host_xcr0 | XSTATE_COMPACTION_ENABLED;
10608 * Ensure guest xcr0 is valid for loading
10610 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
10612 vcpu->arch.cr0 |= X86_CR0_ET;
10615 void kvm_free_guest_fpu(struct kvm_vcpu *vcpu)
10617 if (vcpu->arch.guest_fpu) {
10618 kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
10619 vcpu->arch.guest_fpu = NULL;
10622 EXPORT_SYMBOL_GPL(kvm_free_guest_fpu);
10624 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
10626 if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
10627 pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
10628 "guest TSC will not be reliable\n");
10633 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
10638 vcpu->arch.last_vmentry_cpu = -1;
10640 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
10641 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10643 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
10645 r = kvm_mmu_create(vcpu);
10649 if (irqchip_in_kernel(vcpu->kvm)) {
10650 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
10652 goto fail_mmu_destroy;
10653 if (kvm_apicv_activated(vcpu->kvm))
10654 vcpu->arch.apicv_active = true;
10656 static_branch_inc(&kvm_has_noapic_vcpu);
10660 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
10662 goto fail_free_lapic;
10663 vcpu->arch.pio_data = page_address(page);
10665 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
10666 GFP_KERNEL_ACCOUNT);
10667 if (!vcpu->arch.mce_banks)
10668 goto fail_free_pio_data;
10669 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
10671 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
10672 GFP_KERNEL_ACCOUNT))
10673 goto fail_free_mce_banks;
10675 if (!alloc_emulate_ctxt(vcpu))
10676 goto free_wbinvd_dirty_mask;
10678 vcpu->arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
10679 GFP_KERNEL_ACCOUNT);
10680 if (!vcpu->arch.user_fpu) {
10681 pr_err("kvm: failed to allocate userspace's fpu\n");
10682 goto free_emulate_ctxt;
10685 vcpu->arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
10686 GFP_KERNEL_ACCOUNT);
10687 if (!vcpu->arch.guest_fpu) {
10688 pr_err("kvm: failed to allocate vcpu's fpu\n");
10689 goto free_user_fpu;
10693 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
10694 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
10696 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
10698 kvm_async_pf_hash_reset(vcpu);
10699 kvm_pmu_init(vcpu);
10701 vcpu->arch.pending_external_vector = -1;
10702 vcpu->arch.preempted_in_kernel = false;
10704 #if IS_ENABLED(CONFIG_HYPERV)
10705 vcpu->arch.hv_root_tdp = INVALID_PAGE;
10708 r = static_call(kvm_x86_vcpu_create)(vcpu);
10710 goto free_guest_fpu;
10712 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
10713 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
10714 kvm_vcpu_mtrr_init(vcpu);
10716 kvm_set_tsc_khz(vcpu, max_tsc_khz);
10717 kvm_vcpu_reset(vcpu, false);
10718 kvm_init_mmu(vcpu);
10723 kvm_free_guest_fpu(vcpu);
10725 kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
10727 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10728 free_wbinvd_dirty_mask:
10729 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10730 fail_free_mce_banks:
10731 kfree(vcpu->arch.mce_banks);
10732 fail_free_pio_data:
10733 free_page((unsigned long)vcpu->arch.pio_data);
10735 kvm_free_lapic(vcpu);
10737 kvm_mmu_destroy(vcpu);
10741 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
10743 struct kvm *kvm = vcpu->kvm;
10745 if (mutex_lock_killable(&vcpu->mutex))
10748 kvm_synchronize_tsc(vcpu, 0);
10751 /* poll control enabled by default */
10752 vcpu->arch.msr_kvm_poll_control = 1;
10754 mutex_unlock(&vcpu->mutex);
10756 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
10757 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
10758 KVMCLOCK_SYNC_PERIOD);
10761 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
10763 struct gfn_to_pfn_cache *cache = &vcpu->arch.st.cache;
10766 kvm_release_pfn(cache->pfn, cache->dirty, cache);
10768 kvmclock_reset(vcpu);
10770 static_call(kvm_x86_vcpu_free)(vcpu);
10772 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10773 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10774 kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
10775 kvm_free_guest_fpu(vcpu);
10777 kvm_hv_vcpu_uninit(vcpu);
10778 kvm_pmu_destroy(vcpu);
10779 kfree(vcpu->arch.mce_banks);
10780 kvm_free_lapic(vcpu);
10781 idx = srcu_read_lock(&vcpu->kvm->srcu);
10782 kvm_mmu_destroy(vcpu);
10783 srcu_read_unlock(&vcpu->kvm->srcu, idx);
10784 free_page((unsigned long)vcpu->arch.pio_data);
10785 kvfree(vcpu->arch.cpuid_entries);
10786 if (!lapic_in_kernel(vcpu))
10787 static_branch_dec(&kvm_has_noapic_vcpu);
10790 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
10792 unsigned long old_cr0 = kvm_read_cr0(vcpu);
10794 kvm_lapic_reset(vcpu, init_event);
10796 vcpu->arch.hflags = 0;
10798 vcpu->arch.smi_pending = 0;
10799 vcpu->arch.smi_count = 0;
10800 atomic_set(&vcpu->arch.nmi_queued, 0);
10801 vcpu->arch.nmi_pending = 0;
10802 vcpu->arch.nmi_injected = false;
10803 kvm_clear_interrupt_queue(vcpu);
10804 kvm_clear_exception_queue(vcpu);
10806 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
10807 kvm_update_dr0123(vcpu);
10808 vcpu->arch.dr6 = DR6_ACTIVE_LOW;
10809 vcpu->arch.dr7 = DR7_FIXED_1;
10810 kvm_update_dr7(vcpu);
10812 vcpu->arch.cr2 = 0;
10814 kvm_make_request(KVM_REQ_EVENT, vcpu);
10815 vcpu->arch.apf.msr_en_val = 0;
10816 vcpu->arch.apf.msr_int_val = 0;
10817 vcpu->arch.st.msr_val = 0;
10819 kvmclock_reset(vcpu);
10821 kvm_clear_async_pf_completion_queue(vcpu);
10822 kvm_async_pf_hash_reset(vcpu);
10823 vcpu->arch.apf.halted = false;
10825 if (vcpu->arch.guest_fpu && kvm_mpx_supported()) {
10826 void *mpx_state_buffer;
10829 * To avoid have the INIT path from kvm_apic_has_events() that be
10830 * called with loaded FPU and does not let userspace fix the state.
10833 kvm_put_guest_fpu(vcpu);
10834 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10836 if (mpx_state_buffer)
10837 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
10838 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10840 if (mpx_state_buffer)
10841 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
10843 kvm_load_guest_fpu(vcpu);
10847 kvm_pmu_reset(vcpu);
10848 vcpu->arch.smbase = 0x30000;
10850 vcpu->arch.msr_misc_features_enables = 0;
10852 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
10855 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
10856 vcpu->arch.regs_avail = ~0;
10857 vcpu->arch.regs_dirty = ~0;
10859 vcpu->arch.ia32_xss = 0;
10861 static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
10864 * Reset the MMU context if paging was enabled prior to INIT (which is
10865 * implied if CR0.PG=1 as CR0 will be '0' prior to RESET). Unlike the
10866 * standard CR0/CR4/EFER modification paths, only CR0.PG needs to be
10867 * checked because it is unconditionally cleared on INIT and all other
10868 * paging related bits are ignored if paging is disabled, i.e. CR0.WP,
10869 * CR4, and EFER changes are all irrelevant if CR0.PG was '0'.
10871 if (old_cr0 & X86_CR0_PG)
10872 kvm_mmu_reset_context(vcpu);
10875 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
10877 struct kvm_segment cs;
10879 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
10880 cs.selector = vector << 8;
10881 cs.base = vector << 12;
10882 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
10883 kvm_rip_write(vcpu, 0);
10885 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
10887 int kvm_arch_hardware_enable(void)
10890 struct kvm_vcpu *vcpu;
10895 bool stable, backwards_tsc = false;
10897 kvm_user_return_msr_cpu_online();
10898 ret = static_call(kvm_x86_hardware_enable)();
10902 local_tsc = rdtsc();
10903 stable = !kvm_check_tsc_unstable();
10904 list_for_each_entry(kvm, &vm_list, vm_list) {
10905 kvm_for_each_vcpu(i, vcpu, kvm) {
10906 if (!stable && vcpu->cpu == smp_processor_id())
10907 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10908 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
10909 backwards_tsc = true;
10910 if (vcpu->arch.last_host_tsc > max_tsc)
10911 max_tsc = vcpu->arch.last_host_tsc;
10917 * Sometimes, even reliable TSCs go backwards. This happens on
10918 * platforms that reset TSC during suspend or hibernate actions, but
10919 * maintain synchronization. We must compensate. Fortunately, we can
10920 * detect that condition here, which happens early in CPU bringup,
10921 * before any KVM threads can be running. Unfortunately, we can't
10922 * bring the TSCs fully up to date with real time, as we aren't yet far
10923 * enough into CPU bringup that we know how much real time has actually
10924 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
10925 * variables that haven't been updated yet.
10927 * So we simply find the maximum observed TSC above, then record the
10928 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
10929 * the adjustment will be applied. Note that we accumulate
10930 * adjustments, in case multiple suspend cycles happen before some VCPU
10931 * gets a chance to run again. In the event that no KVM threads get a
10932 * chance to run, we will miss the entire elapsed period, as we'll have
10933 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
10934 * loose cycle time. This isn't too big a deal, since the loss will be
10935 * uniform across all VCPUs (not to mention the scenario is extremely
10936 * unlikely). It is possible that a second hibernate recovery happens
10937 * much faster than a first, causing the observed TSC here to be
10938 * smaller; this would require additional padding adjustment, which is
10939 * why we set last_host_tsc to the local tsc observed here.
10941 * N.B. - this code below runs only on platforms with reliable TSC,
10942 * as that is the only way backwards_tsc is set above. Also note
10943 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
10944 * have the same delta_cyc adjustment applied if backwards_tsc
10945 * is detected. Note further, this adjustment is only done once,
10946 * as we reset last_host_tsc on all VCPUs to stop this from being
10947 * called multiple times (one for each physical CPU bringup).
10949 * Platforms with unreliable TSCs don't have to deal with this, they
10950 * will be compensated by the logic in vcpu_load, which sets the TSC to
10951 * catchup mode. This will catchup all VCPUs to real time, but cannot
10952 * guarantee that they stay in perfect synchronization.
10954 if (backwards_tsc) {
10955 u64 delta_cyc = max_tsc - local_tsc;
10956 list_for_each_entry(kvm, &vm_list, vm_list) {
10957 kvm->arch.backwards_tsc_observed = true;
10958 kvm_for_each_vcpu(i, vcpu, kvm) {
10959 vcpu->arch.tsc_offset_adjustment += delta_cyc;
10960 vcpu->arch.last_host_tsc = local_tsc;
10961 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
10965 * We have to disable TSC offset matching.. if you were
10966 * booting a VM while issuing an S4 host suspend....
10967 * you may have some problem. Solving this issue is
10968 * left as an exercise to the reader.
10970 kvm->arch.last_tsc_nsec = 0;
10971 kvm->arch.last_tsc_write = 0;
10978 void kvm_arch_hardware_disable(void)
10980 static_call(kvm_x86_hardware_disable)();
10981 drop_user_return_notifiers();
10984 int kvm_arch_hardware_setup(void *opaque)
10986 struct kvm_x86_init_ops *ops = opaque;
10989 rdmsrl_safe(MSR_EFER, &host_efer);
10991 if (boot_cpu_has(X86_FEATURE_XSAVES))
10992 rdmsrl(MSR_IA32_XSS, host_xss);
10994 r = ops->hardware_setup();
10998 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
10999 kvm_ops_static_call_update();
11001 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
11004 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
11005 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
11006 #undef __kvm_cpu_cap_has
11008 if (kvm_has_tsc_control) {
11010 * Make sure the user can only configure tsc_khz values that
11011 * fit into a signed integer.
11012 * A min value is not calculated because it will always
11013 * be 1 on all machines.
11015 u64 max = min(0x7fffffffULL,
11016 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
11017 kvm_max_guest_tsc_khz = max;
11019 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
11022 kvm_init_msr_list();
11026 void kvm_arch_hardware_unsetup(void)
11028 static_call(kvm_x86_hardware_unsetup)();
11031 int kvm_arch_check_processor_compat(void *opaque)
11033 struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
11034 struct kvm_x86_init_ops *ops = opaque;
11036 WARN_ON(!irqs_disabled());
11038 if (__cr4_reserved_bits(cpu_has, c) !=
11039 __cr4_reserved_bits(cpu_has, &boot_cpu_data))
11042 return ops->check_processor_compatibility();
11045 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
11047 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
11049 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
11051 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
11053 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
11056 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
11057 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
11059 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
11061 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
11063 vcpu->arch.l1tf_flush_l1d = true;
11064 if (pmu->version && unlikely(pmu->event_count)) {
11065 pmu->need_cleanup = true;
11066 kvm_make_request(KVM_REQ_PMU, vcpu);
11068 static_call(kvm_x86_sched_in)(vcpu, cpu);
11071 void kvm_arch_free_vm(struct kvm *kvm)
11073 kfree(to_kvm_hv(kvm)->hv_pa_pg);
11078 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
11083 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
11084 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
11085 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
11086 INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
11087 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
11088 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
11090 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
11091 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
11092 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
11093 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
11094 &kvm->arch.irq_sources_bitmap);
11096 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
11097 mutex_init(&kvm->arch.apic_map_lock);
11098 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
11100 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
11101 pvclock_update_vm_gtod_copy(kvm);
11103 kvm->arch.guest_can_read_msr_platform_info = true;
11105 #if IS_ENABLED(CONFIG_HYPERV)
11106 spin_lock_init(&kvm->arch.hv_root_tdp_lock);
11107 kvm->arch.hv_root_tdp = INVALID_PAGE;
11110 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
11111 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
11113 kvm_apicv_init(kvm);
11114 kvm_hv_init_vm(kvm);
11115 kvm_page_track_init(kvm);
11116 kvm_mmu_init_vm(kvm);
11118 return static_call(kvm_x86_vm_init)(kvm);
11121 int kvm_arch_post_init_vm(struct kvm *kvm)
11123 return kvm_mmu_post_init_vm(kvm);
11126 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
11129 kvm_mmu_unload(vcpu);
11133 static void kvm_free_vcpus(struct kvm *kvm)
11136 struct kvm_vcpu *vcpu;
11139 * Unpin any mmu pages first.
11141 kvm_for_each_vcpu(i, vcpu, kvm) {
11142 kvm_clear_async_pf_completion_queue(vcpu);
11143 kvm_unload_vcpu_mmu(vcpu);
11145 kvm_for_each_vcpu(i, vcpu, kvm)
11146 kvm_vcpu_destroy(vcpu);
11148 mutex_lock(&kvm->lock);
11149 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
11150 kvm->vcpus[i] = NULL;
11152 atomic_set(&kvm->online_vcpus, 0);
11153 mutex_unlock(&kvm->lock);
11156 void kvm_arch_sync_events(struct kvm *kvm)
11158 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
11159 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
11163 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e))
11166 * __x86_set_memory_region: Setup KVM internal memory slot
11168 * @kvm: the kvm pointer to the VM.
11169 * @id: the slot ID to setup.
11170 * @gpa: the GPA to install the slot (unused when @size == 0).
11171 * @size: the size of the slot. Set to zero to uninstall a slot.
11173 * This function helps to setup a KVM internal memory slot. Specify
11174 * @size > 0 to install a new slot, while @size == 0 to uninstall a
11175 * slot. The return code can be one of the following:
11177 * HVA: on success (uninstall will return a bogus HVA)
11180 * The caller should always use IS_ERR() to check the return value
11181 * before use. Note, the KVM internal memory slots are guaranteed to
11182 * remain valid and unchanged until the VM is destroyed, i.e., the
11183 * GPA->HVA translation will not change. However, the HVA is a user
11184 * address, i.e. its accessibility is not guaranteed, and must be
11185 * accessed via __copy_{to,from}_user().
11187 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
11191 unsigned long hva, old_npages;
11192 struct kvm_memslots *slots = kvm_memslots(kvm);
11193 struct kvm_memory_slot *slot;
11195 /* Called with kvm->slots_lock held. */
11196 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
11197 return ERR_PTR_USR(-EINVAL);
11199 slot = id_to_memslot(slots, id);
11201 if (slot && slot->npages)
11202 return ERR_PTR_USR(-EEXIST);
11205 * MAP_SHARED to prevent internal slot pages from being moved
11208 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
11209 MAP_SHARED | MAP_ANONYMOUS, 0);
11210 if (IS_ERR((void *)hva))
11211 return (void __user *)hva;
11213 if (!slot || !slot->npages)
11216 old_npages = slot->npages;
11217 hva = slot->userspace_addr;
11220 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
11221 struct kvm_userspace_memory_region m;
11223 m.slot = id | (i << 16);
11225 m.guest_phys_addr = gpa;
11226 m.userspace_addr = hva;
11227 m.memory_size = size;
11228 r = __kvm_set_memory_region(kvm, &m);
11230 return ERR_PTR_USR(r);
11234 vm_munmap(hva, old_npages * PAGE_SIZE);
11236 return (void __user *)hva;
11238 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
11240 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
11242 kvm_mmu_pre_destroy_vm(kvm);
11245 void kvm_arch_destroy_vm(struct kvm *kvm)
11247 if (current->mm == kvm->mm) {
11249 * Free memory regions allocated on behalf of userspace,
11250 * unless the the memory map has changed due to process exit
11253 mutex_lock(&kvm->slots_lock);
11254 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
11256 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
11258 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
11259 mutex_unlock(&kvm->slots_lock);
11261 static_call_cond(kvm_x86_vm_destroy)(kvm);
11262 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
11263 kvm_pic_destroy(kvm);
11264 kvm_ioapic_destroy(kvm);
11265 kvm_free_vcpus(kvm);
11266 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
11267 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
11268 kvm_mmu_uninit_vm(kvm);
11269 kvm_page_track_cleanup(kvm);
11270 kvm_xen_destroy_vm(kvm);
11271 kvm_hv_destroy_vm(kvm);
11274 static void memslot_rmap_free(struct kvm_memory_slot *slot)
11278 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
11279 kvfree(slot->arch.rmap[i]);
11280 slot->arch.rmap[i] = NULL;
11284 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
11288 memslot_rmap_free(slot);
11290 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11291 kvfree(slot->arch.lpage_info[i - 1]);
11292 slot->arch.lpage_info[i - 1] = NULL;
11295 kvm_page_track_free_memslot(slot);
11298 static int memslot_rmap_alloc(struct kvm_memory_slot *slot,
11299 unsigned long npages)
11301 const int sz = sizeof(*slot->arch.rmap[0]);
11304 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
11306 int lpages = gfn_to_index(slot->base_gfn + npages - 1,
11307 slot->base_gfn, level) + 1;
11309 WARN_ON(slot->arch.rmap[i]);
11311 slot->arch.rmap[i] = kvcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
11312 if (!slot->arch.rmap[i]) {
11313 memslot_rmap_free(slot);
11321 int alloc_all_memslots_rmaps(struct kvm *kvm)
11323 struct kvm_memslots *slots;
11324 struct kvm_memory_slot *slot;
11328 * Check if memslots alreday have rmaps early before acquiring
11329 * the slots_arch_lock below.
11331 if (kvm_memslots_have_rmaps(kvm))
11334 mutex_lock(&kvm->slots_arch_lock);
11337 * Read memslots_have_rmaps again, under the slots arch lock,
11338 * before allocating the rmaps
11340 if (kvm_memslots_have_rmaps(kvm)) {
11341 mutex_unlock(&kvm->slots_arch_lock);
11345 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
11346 slots = __kvm_memslots(kvm, i);
11347 kvm_for_each_memslot(slot, slots) {
11348 r = memslot_rmap_alloc(slot, slot->npages);
11350 mutex_unlock(&kvm->slots_arch_lock);
11357 * Ensure that memslots_have_rmaps becomes true strictly after
11358 * all the rmap pointers are set.
11360 smp_store_release(&kvm->arch.memslots_have_rmaps, true);
11361 mutex_unlock(&kvm->slots_arch_lock);
11365 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
11366 struct kvm_memory_slot *slot,
11367 unsigned long npages)
11372 * Clear out the previous array pointers for the KVM_MR_MOVE case. The
11373 * old arrays will be freed by __kvm_set_memory_region() if installing
11374 * the new memslot is successful.
11376 memset(&slot->arch, 0, sizeof(slot->arch));
11378 if (kvm_memslots_have_rmaps(kvm)) {
11379 r = memslot_rmap_alloc(slot, npages);
11384 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11385 struct kvm_lpage_info *linfo;
11386 unsigned long ugfn;
11390 lpages = gfn_to_index(slot->base_gfn + npages - 1,
11391 slot->base_gfn, level) + 1;
11393 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
11397 slot->arch.lpage_info[i - 1] = linfo;
11399 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
11400 linfo[0].disallow_lpage = 1;
11401 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
11402 linfo[lpages - 1].disallow_lpage = 1;
11403 ugfn = slot->userspace_addr >> PAGE_SHIFT;
11405 * If the gfn and userspace address are not aligned wrt each
11406 * other, disable large page support for this slot.
11408 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
11411 for (j = 0; j < lpages; ++j)
11412 linfo[j].disallow_lpage = 1;
11416 if (kvm_page_track_create_memslot(slot, npages))
11422 memslot_rmap_free(slot);
11424 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11425 kvfree(slot->arch.lpage_info[i - 1]);
11426 slot->arch.lpage_info[i - 1] = NULL;
11431 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
11433 struct kvm_vcpu *vcpu;
11437 * memslots->generation has been incremented.
11438 * mmio generation may have reached its maximum value.
11440 kvm_mmu_invalidate_mmio_sptes(kvm, gen);
11442 /* Force re-initialization of steal_time cache */
11443 kvm_for_each_vcpu(i, vcpu, kvm)
11444 kvm_vcpu_kick(vcpu);
11447 int kvm_arch_prepare_memory_region(struct kvm *kvm,
11448 struct kvm_memory_slot *memslot,
11449 const struct kvm_userspace_memory_region *mem,
11450 enum kvm_mr_change change)
11452 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE)
11453 return kvm_alloc_memslot_metadata(kvm, memslot,
11454 mem->memory_size >> PAGE_SHIFT);
11459 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
11461 struct kvm_arch *ka = &kvm->arch;
11463 if (!kvm_x86_ops.cpu_dirty_log_size)
11466 if ((enable && ++ka->cpu_dirty_logging_count == 1) ||
11467 (!enable && --ka->cpu_dirty_logging_count == 0))
11468 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
11470 WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0);
11473 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
11474 struct kvm_memory_slot *old,
11475 struct kvm_memory_slot *new,
11476 enum kvm_mr_change change)
11478 bool log_dirty_pages = new->flags & KVM_MEM_LOG_DIRTY_PAGES;
11481 * Update CPU dirty logging if dirty logging is being toggled. This
11482 * applies to all operations.
11484 if ((old->flags ^ new->flags) & KVM_MEM_LOG_DIRTY_PAGES)
11485 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
11488 * Nothing more to do for RO slots (which can't be dirtied and can't be
11489 * made writable) or CREATE/MOVE/DELETE of a slot.
11491 * For a memslot with dirty logging disabled:
11492 * CREATE: No dirty mappings will already exist.
11493 * MOVE/DELETE: The old mappings will already have been cleaned up by
11494 * kvm_arch_flush_shadow_memslot()
11496 * For a memslot with dirty logging enabled:
11497 * CREATE: No shadow pages exist, thus nothing to write-protect
11498 * and no dirty bits to clear.
11499 * MOVE/DELETE: The old mappings will already have been cleaned up by
11500 * kvm_arch_flush_shadow_memslot().
11502 if ((change != KVM_MR_FLAGS_ONLY) || (new->flags & KVM_MEM_READONLY))
11506 * READONLY and non-flags changes were filtered out above, and the only
11507 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
11508 * logging isn't being toggled on or off.
11510 if (WARN_ON_ONCE(!((old->flags ^ new->flags) & KVM_MEM_LOG_DIRTY_PAGES)))
11513 if (!log_dirty_pages) {
11515 * Dirty logging tracks sptes in 4k granularity, meaning that
11516 * large sptes have to be split. If live migration succeeds,
11517 * the guest in the source machine will be destroyed and large
11518 * sptes will be created in the destination. However, if the
11519 * guest continues to run in the source machine (for example if
11520 * live migration fails), small sptes will remain around and
11521 * cause bad performance.
11523 * Scan sptes if dirty logging has been stopped, dropping those
11524 * which can be collapsed into a single large-page spte. Later
11525 * page faults will create the large-page sptes.
11527 kvm_mmu_zap_collapsible_sptes(kvm, new);
11530 * Initially-all-set does not require write protecting any page,
11531 * because they're all assumed to be dirty.
11533 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
11536 if (kvm_x86_ops.cpu_dirty_log_size) {
11537 kvm_mmu_slot_leaf_clear_dirty(kvm, new);
11538 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
11540 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
11545 void kvm_arch_commit_memory_region(struct kvm *kvm,
11546 const struct kvm_userspace_memory_region *mem,
11547 struct kvm_memory_slot *old,
11548 const struct kvm_memory_slot *new,
11549 enum kvm_mr_change change)
11551 if (!kvm->arch.n_requested_mmu_pages)
11552 kvm_mmu_change_mmu_pages(kvm,
11553 kvm_mmu_calculate_default_mmu_pages(kvm));
11556 * FIXME: const-ify all uses of struct kvm_memory_slot.
11558 kvm_mmu_slot_apply_flags(kvm, old, (struct kvm_memory_slot *) new, change);
11560 /* Free the arrays associated with the old memslot. */
11561 if (change == KVM_MR_MOVE)
11562 kvm_arch_free_memslot(kvm, old);
11565 void kvm_arch_flush_shadow_all(struct kvm *kvm)
11567 kvm_mmu_zap_all(kvm);
11570 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
11571 struct kvm_memory_slot *slot)
11573 kvm_page_track_flush_slot(kvm, slot);
11576 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
11578 return (is_guest_mode(vcpu) &&
11579 kvm_x86_ops.guest_apic_has_interrupt &&
11580 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
11583 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
11585 if (!list_empty_careful(&vcpu->async_pf.done))
11588 if (kvm_apic_has_events(vcpu))
11591 if (vcpu->arch.pv.pv_unhalted)
11594 if (vcpu->arch.exception.pending)
11597 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11598 (vcpu->arch.nmi_pending &&
11599 static_call(kvm_x86_nmi_allowed)(vcpu, false)))
11602 if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
11603 (vcpu->arch.smi_pending &&
11604 static_call(kvm_x86_smi_allowed)(vcpu, false)))
11607 if (kvm_arch_interrupt_allowed(vcpu) &&
11608 (kvm_cpu_has_interrupt(vcpu) ||
11609 kvm_guest_apic_has_interrupt(vcpu)))
11612 if (kvm_hv_has_stimer_pending(vcpu))
11615 if (is_guest_mode(vcpu) &&
11616 kvm_x86_ops.nested_ops->hv_timer_pending &&
11617 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
11623 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
11625 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
11628 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
11630 if (vcpu->arch.apicv_active && static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
11636 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
11638 if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
11641 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11642 kvm_test_request(KVM_REQ_SMI, vcpu) ||
11643 kvm_test_request(KVM_REQ_EVENT, vcpu))
11646 return kvm_arch_dy_has_pending_interrupt(vcpu);
11649 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
11651 if (vcpu->arch.guest_state_protected)
11654 return vcpu->arch.preempted_in_kernel;
11657 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
11659 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
11662 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
11664 return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
11667 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
11669 /* Can't read the RIP when guest state is protected, just return 0 */
11670 if (vcpu->arch.guest_state_protected)
11673 if (is_64_bit_mode(vcpu))
11674 return kvm_rip_read(vcpu);
11675 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
11676 kvm_rip_read(vcpu));
11678 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
11680 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
11682 return kvm_get_linear_rip(vcpu) == linear_rip;
11684 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
11686 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
11688 unsigned long rflags;
11690 rflags = static_call(kvm_x86_get_rflags)(vcpu);
11691 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11692 rflags &= ~X86_EFLAGS_TF;
11695 EXPORT_SYMBOL_GPL(kvm_get_rflags);
11697 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
11699 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
11700 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
11701 rflags |= X86_EFLAGS_TF;
11702 static_call(kvm_x86_set_rflags)(vcpu, rflags);
11705 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
11707 __kvm_set_rflags(vcpu, rflags);
11708 kvm_make_request(KVM_REQ_EVENT, vcpu);
11710 EXPORT_SYMBOL_GPL(kvm_set_rflags);
11712 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
11716 if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
11720 r = kvm_mmu_reload(vcpu);
11724 if (!vcpu->arch.mmu->direct_map &&
11725 work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
11728 kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
11731 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
11733 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
11735 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
11738 static inline u32 kvm_async_pf_next_probe(u32 key)
11740 return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
11743 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11745 u32 key = kvm_async_pf_hash_fn(gfn);
11747 while (vcpu->arch.apf.gfns[key] != ~0)
11748 key = kvm_async_pf_next_probe(key);
11750 vcpu->arch.apf.gfns[key] = gfn;
11753 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
11756 u32 key = kvm_async_pf_hash_fn(gfn);
11758 for (i = 0; i < ASYNC_PF_PER_VCPU &&
11759 (vcpu->arch.apf.gfns[key] != gfn &&
11760 vcpu->arch.apf.gfns[key] != ~0); i++)
11761 key = kvm_async_pf_next_probe(key);
11766 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11768 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
11771 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11775 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
11777 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
11781 vcpu->arch.apf.gfns[i] = ~0;
11783 j = kvm_async_pf_next_probe(j);
11784 if (vcpu->arch.apf.gfns[j] == ~0)
11786 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
11788 * k lies cyclically in ]i,j]
11790 * |....j i.k.| or |.k..j i...|
11792 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
11793 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
11798 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
11800 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
11802 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
11806 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
11808 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
11810 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
11811 &token, offset, sizeof(token));
11814 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
11816 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
11819 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
11820 &val, offset, sizeof(val)))
11826 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
11828 if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
11831 if (!kvm_pv_async_pf_enabled(vcpu) ||
11832 (vcpu->arch.apf.send_user_only && static_call(kvm_x86_get_cpl)(vcpu) == 0))
11838 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
11840 if (unlikely(!lapic_in_kernel(vcpu) ||
11841 kvm_event_needs_reinjection(vcpu) ||
11842 vcpu->arch.exception.pending))
11845 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
11849 * If interrupts are off we cannot even use an artificial
11852 return kvm_arch_interrupt_allowed(vcpu);
11855 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
11856 struct kvm_async_pf *work)
11858 struct x86_exception fault;
11860 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
11861 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
11863 if (kvm_can_deliver_async_pf(vcpu) &&
11864 !apf_put_user_notpresent(vcpu)) {
11865 fault.vector = PF_VECTOR;
11866 fault.error_code_valid = true;
11867 fault.error_code = 0;
11868 fault.nested_page_fault = false;
11869 fault.address = work->arch.token;
11870 fault.async_page_fault = true;
11871 kvm_inject_page_fault(vcpu, &fault);
11875 * It is not possible to deliver a paravirtualized asynchronous
11876 * page fault, but putting the guest in an artificial halt state
11877 * can be beneficial nevertheless: if an interrupt arrives, we
11878 * can deliver it timely and perhaps the guest will schedule
11879 * another process. When the instruction that triggered a page
11880 * fault is retried, hopefully the page will be ready in the host.
11882 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
11887 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
11888 struct kvm_async_pf *work)
11890 struct kvm_lapic_irq irq = {
11891 .delivery_mode = APIC_DM_FIXED,
11892 .vector = vcpu->arch.apf.vec
11895 if (work->wakeup_all)
11896 work->arch.token = ~0; /* broadcast wakeup */
11898 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
11899 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
11901 if ((work->wakeup_all || work->notpresent_injected) &&
11902 kvm_pv_async_pf_enabled(vcpu) &&
11903 !apf_put_user_ready(vcpu, work->arch.token)) {
11904 vcpu->arch.apf.pageready_pending = true;
11905 kvm_apic_set_irq(vcpu, &irq, NULL);
11908 vcpu->arch.apf.halted = false;
11909 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11912 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
11914 kvm_make_request(KVM_REQ_APF_READY, vcpu);
11915 if (!vcpu->arch.apf.pageready_pending)
11916 kvm_vcpu_kick(vcpu);
11919 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
11921 if (!kvm_pv_async_pf_enabled(vcpu))
11924 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
11927 void kvm_arch_start_assignment(struct kvm *kvm)
11929 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
11930 static_call_cond(kvm_x86_start_assignment)(kvm);
11932 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
11934 void kvm_arch_end_assignment(struct kvm *kvm)
11936 atomic_dec(&kvm->arch.assigned_device_count);
11938 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
11940 bool kvm_arch_has_assigned_device(struct kvm *kvm)
11942 return atomic_read(&kvm->arch.assigned_device_count);
11944 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
11946 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
11948 atomic_inc(&kvm->arch.noncoherent_dma_count);
11950 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
11952 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
11954 atomic_dec(&kvm->arch.noncoherent_dma_count);
11956 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
11958 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
11960 return atomic_read(&kvm->arch.noncoherent_dma_count);
11962 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
11964 bool kvm_arch_has_irq_bypass(void)
11969 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
11970 struct irq_bypass_producer *prod)
11972 struct kvm_kernel_irqfd *irqfd =
11973 container_of(cons, struct kvm_kernel_irqfd, consumer);
11976 irqfd->producer = prod;
11977 kvm_arch_start_assignment(irqfd->kvm);
11978 ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm,
11979 prod->irq, irqfd->gsi, 1);
11982 kvm_arch_end_assignment(irqfd->kvm);
11987 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
11988 struct irq_bypass_producer *prod)
11991 struct kvm_kernel_irqfd *irqfd =
11992 container_of(cons, struct kvm_kernel_irqfd, consumer);
11994 WARN_ON(irqfd->producer != prod);
11995 irqfd->producer = NULL;
11998 * When producer of consumer is unregistered, we change back to
11999 * remapped mode, so we can re-use the current implementation
12000 * when the irq is masked/disabled or the consumer side (KVM
12001 * int this case doesn't want to receive the interrupts.
12003 ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
12005 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
12006 " fails: %d\n", irqfd->consumer.token, ret);
12008 kvm_arch_end_assignment(irqfd->kvm);
12011 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
12012 uint32_t guest_irq, bool set)
12014 return static_call(kvm_x86_update_pi_irte)(kvm, host_irq, guest_irq, set);
12017 bool kvm_vector_hashing_enabled(void)
12019 return vector_hashing;
12022 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
12024 return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
12026 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
12029 int kvm_spec_ctrl_test_value(u64 value)
12032 * test that setting IA32_SPEC_CTRL to given value
12033 * is allowed by the host processor
12037 unsigned long flags;
12040 local_irq_save(flags);
12042 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
12044 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
12047 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
12049 local_irq_restore(flags);
12053 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
12055 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
12057 struct x86_exception fault;
12058 u32 access = error_code &
12059 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
12061 if (!(error_code & PFERR_PRESENT_MASK) ||
12062 vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, &fault) != UNMAPPED_GVA) {
12064 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
12065 * tables probably do not match the TLB. Just proceed
12066 * with the error code that the processor gave.
12068 fault.vector = PF_VECTOR;
12069 fault.error_code_valid = true;
12070 fault.error_code = error_code;
12071 fault.nested_page_fault = false;
12072 fault.address = gva;
12074 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
12076 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
12079 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
12080 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
12081 * indicates whether exit to userspace is needed.
12083 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
12084 struct x86_exception *e)
12086 if (r == X86EMUL_PROPAGATE_FAULT) {
12087 kvm_inject_emulated_page_fault(vcpu, e);
12092 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
12093 * while handling a VMX instruction KVM could've handled the request
12094 * correctly by exiting to userspace and performing I/O but there
12095 * doesn't seem to be a real use-case behind such requests, just return
12096 * KVM_EXIT_INTERNAL_ERROR for now.
12098 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
12099 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
12100 vcpu->run->internal.ndata = 0;
12104 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
12106 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
12109 struct x86_exception e;
12116 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
12117 if (r != X86EMUL_CONTINUE)
12118 return kvm_handle_memory_failure(vcpu, r, &e);
12120 if (operand.pcid >> 12 != 0) {
12121 kvm_inject_gp(vcpu, 0);
12125 pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
12128 case INVPCID_TYPE_INDIV_ADDR:
12129 if ((!pcid_enabled && (operand.pcid != 0)) ||
12130 is_noncanonical_address(operand.gla, vcpu)) {
12131 kvm_inject_gp(vcpu, 0);
12134 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
12135 return kvm_skip_emulated_instruction(vcpu);
12137 case INVPCID_TYPE_SINGLE_CTXT:
12138 if (!pcid_enabled && (operand.pcid != 0)) {
12139 kvm_inject_gp(vcpu, 0);
12143 kvm_invalidate_pcid(vcpu, operand.pcid);
12144 return kvm_skip_emulated_instruction(vcpu);
12146 case INVPCID_TYPE_ALL_NON_GLOBAL:
12148 * Currently, KVM doesn't mark global entries in the shadow
12149 * page tables, so a non-global flush just degenerates to a
12150 * global flush. If needed, we could optimize this later by
12151 * keeping track of global entries in shadow page tables.
12155 case INVPCID_TYPE_ALL_INCL_GLOBAL:
12156 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12157 return kvm_skip_emulated_instruction(vcpu);
12160 BUG(); /* We have already checked above that type <= 3 */
12163 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
12165 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
12167 struct kvm_run *run = vcpu->run;
12168 struct kvm_mmio_fragment *frag;
12171 BUG_ON(!vcpu->mmio_needed);
12173 /* Complete previous fragment */
12174 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
12175 len = min(8u, frag->len);
12176 if (!vcpu->mmio_is_write)
12177 memcpy(frag->data, run->mmio.data, len);
12179 if (frag->len <= 8) {
12180 /* Switch to the next fragment. */
12182 vcpu->mmio_cur_fragment++;
12184 /* Go forward to the next mmio piece. */
12190 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
12191 vcpu->mmio_needed = 0;
12193 // VMG change, at this point, we're always done
12194 // RIP has already been advanced
12198 // More MMIO is needed
12199 run->mmio.phys_addr = frag->gpa;
12200 run->mmio.len = min(8u, frag->len);
12201 run->mmio.is_write = vcpu->mmio_is_write;
12202 if (run->mmio.is_write)
12203 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
12204 run->exit_reason = KVM_EXIT_MMIO;
12206 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12211 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12215 struct kvm_mmio_fragment *frag;
12220 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12221 if (handled == bytes)
12228 /*TODO: Check if need to increment number of frags */
12229 frag = vcpu->mmio_fragments;
12230 vcpu->mmio_nr_fragments = 1;
12235 vcpu->mmio_needed = 1;
12236 vcpu->mmio_cur_fragment = 0;
12238 vcpu->run->mmio.phys_addr = gpa;
12239 vcpu->run->mmio.len = min(8u, frag->len);
12240 vcpu->run->mmio.is_write = 1;
12241 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
12242 vcpu->run->exit_reason = KVM_EXIT_MMIO;
12244 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12248 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
12250 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12254 struct kvm_mmio_fragment *frag;
12259 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12260 if (handled == bytes)
12267 /*TODO: Check if need to increment number of frags */
12268 frag = vcpu->mmio_fragments;
12269 vcpu->mmio_nr_fragments = 1;
12274 vcpu->mmio_needed = 1;
12275 vcpu->mmio_cur_fragment = 0;
12277 vcpu->run->mmio.phys_addr = gpa;
12278 vcpu->run->mmio.len = min(8u, frag->len);
12279 vcpu->run->mmio.is_write = 0;
12280 vcpu->run->exit_reason = KVM_EXIT_MMIO;
12282 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12286 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
12288 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
12290 memcpy(vcpu->arch.guest_ins_data, vcpu->arch.pio_data,
12291 vcpu->arch.pio.count * vcpu->arch.pio.size);
12292 vcpu->arch.pio.count = 0;
12297 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
12298 unsigned int port, void *data, unsigned int count)
12302 ret = emulator_pio_out_emulated(vcpu->arch.emulate_ctxt, size, port,
12307 vcpu->arch.pio.count = 0;
12312 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
12313 unsigned int port, void *data, unsigned int count)
12317 ret = emulator_pio_in_emulated(vcpu->arch.emulate_ctxt, size, port,
12320 vcpu->arch.pio.count = 0;
12322 vcpu->arch.guest_ins_data = data;
12323 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
12329 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
12330 unsigned int port, void *data, unsigned int count,
12333 return in ? kvm_sev_es_ins(vcpu, size, port, data, count)
12334 : kvm_sev_es_outs(vcpu, size, port, data, count);
12336 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
12338 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
12339 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
12340 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
12341 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
12342 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
12343 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
12344 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
12345 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
12346 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
12347 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
12348 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
12349 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
12350 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
12351 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
12352 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
12353 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
12354 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
12355 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
12356 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
12357 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
12358 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
12359 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
12360 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request);
12361 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
12362 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
12363 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
12364 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);