Merge tag 'kvm-x86-selftests-6.6' of https://github.com/kvm-x86/linux into HEAD
[platform/kernel/linux-rpi.git] / arch / x86 / kvm / x86.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/kvm_host.h>
21 #include "irq.h"
22 #include "ioapic.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "kvm_emulate.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "pmu.h"
31 #include "hyperv.h"
32 #include "lapic.h"
33 #include "xen.h"
34 #include "smm.h"
35
36 #include <linux/clocksource.h>
37 #include <linux/interrupt.h>
38 #include <linux/kvm.h>
39 #include <linux/fs.h>
40 #include <linux/vmalloc.h>
41 #include <linux/export.h>
42 #include <linux/moduleparam.h>
43 #include <linux/mman.h>
44 #include <linux/highmem.h>
45 #include <linux/iommu.h>
46 #include <linux/cpufreq.h>
47 #include <linux/user-return-notifier.h>
48 #include <linux/srcu.h>
49 #include <linux/slab.h>
50 #include <linux/perf_event.h>
51 #include <linux/uaccess.h>
52 #include <linux/hash.h>
53 #include <linux/pci.h>
54 #include <linux/timekeeper_internal.h>
55 #include <linux/pvclock_gtod.h>
56 #include <linux/kvm_irqfd.h>
57 #include <linux/irqbypass.h>
58 #include <linux/sched/stat.h>
59 #include <linux/sched/isolation.h>
60 #include <linux/mem_encrypt.h>
61 #include <linux/entry-kvm.h>
62 #include <linux/suspend.h>
63 #include <linux/smp.h>
64
65 #include <trace/events/ipi.h>
66 #include <trace/events/kvm.h>
67
68 #include <asm/debugreg.h>
69 #include <asm/msr.h>
70 #include <asm/desc.h>
71 #include <asm/mce.h>
72 #include <asm/pkru.h>
73 #include <linux/kernel_stat.h>
74 #include <asm/fpu/api.h>
75 #include <asm/fpu/xcr.h>
76 #include <asm/fpu/xstate.h>
77 #include <asm/pvclock.h>
78 #include <asm/div64.h>
79 #include <asm/irq_remapping.h>
80 #include <asm/mshyperv.h>
81 #include <asm/hypervisor.h>
82 #include <asm/tlbflush.h>
83 #include <asm/intel_pt.h>
84 #include <asm/emulate_prefix.h>
85 #include <asm/sgx.h>
86 #include <clocksource/hyperv_timer.h>
87
88 #define CREATE_TRACE_POINTS
89 #include "trace.h"
90
91 #define MAX_IO_MSRS 256
92 #define KVM_MAX_MCE_BANKS 32
93
94 struct kvm_caps kvm_caps __read_mostly = {
95         .supported_mce_cap = MCG_CTL_P | MCG_SER_P,
96 };
97 EXPORT_SYMBOL_GPL(kvm_caps);
98
99 #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
100
101 #define emul_to_vcpu(ctxt) \
102         ((struct kvm_vcpu *)(ctxt)->vcpu)
103
104 /* EFER defaults:
105  * - enable syscall per default because its emulated by KVM
106  * - enable LME and LMA per default on 64 bit KVM
107  */
108 #ifdef CONFIG_X86_64
109 static
110 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
111 #else
112 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
113 #endif
114
115 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
116
117 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
118
119 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
120
121 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
122                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
123
124 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
125 static void process_nmi(struct kvm_vcpu *vcpu);
126 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
127 static void store_regs(struct kvm_vcpu *vcpu);
128 static int sync_regs(struct kvm_vcpu *vcpu);
129 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
130
131 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
132 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
133
134 static DEFINE_MUTEX(vendor_module_lock);
135 struct kvm_x86_ops kvm_x86_ops __read_mostly;
136
137 #define KVM_X86_OP(func)                                             \
138         DEFINE_STATIC_CALL_NULL(kvm_x86_##func,                      \
139                                 *(((struct kvm_x86_ops *)0)->func));
140 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
141 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
142 #include <asm/kvm-x86-ops.h>
143 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
144 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
145
146 static bool __read_mostly ignore_msrs = 0;
147 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
148
149 bool __read_mostly report_ignored_msrs = true;
150 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
151 EXPORT_SYMBOL_GPL(report_ignored_msrs);
152
153 unsigned int min_timer_period_us = 200;
154 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
155
156 static bool __read_mostly kvmclock_periodic_sync = true;
157 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
158
159 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
160 static u32 __read_mostly tsc_tolerance_ppm = 250;
161 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
162
163 /*
164  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
165  * adaptive tuning starting from default advancement of 1000ns.  '0' disables
166  * advancement entirely.  Any other value is used as-is and disables adaptive
167  * tuning, i.e. allows privileged userspace to set an exact advancement time.
168  */
169 static int __read_mostly lapic_timer_advance_ns = -1;
170 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
171
172 static bool __read_mostly vector_hashing = true;
173 module_param(vector_hashing, bool, S_IRUGO);
174
175 bool __read_mostly enable_vmware_backdoor = false;
176 module_param(enable_vmware_backdoor, bool, S_IRUGO);
177 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
178
179 /*
180  * Flags to manipulate forced emulation behavior (any non-zero value will
181  * enable forced emulation).
182  */
183 #define KVM_FEP_CLEAR_RFLAGS_RF BIT(1)
184 static int __read_mostly force_emulation_prefix;
185 module_param(force_emulation_prefix, int, 0644);
186
187 int __read_mostly pi_inject_timer = -1;
188 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
189
190 /* Enable/disable PMU virtualization */
191 bool __read_mostly enable_pmu = true;
192 EXPORT_SYMBOL_GPL(enable_pmu);
193 module_param(enable_pmu, bool, 0444);
194
195 bool __read_mostly eager_page_split = true;
196 module_param(eager_page_split, bool, 0644);
197
198 /* Enable/disable SMT_RSB bug mitigation */
199 static bool __read_mostly mitigate_smt_rsb;
200 module_param(mitigate_smt_rsb, bool, 0444);
201
202 /*
203  * Restoring the host value for MSRs that are only consumed when running in
204  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
205  * returns to userspace, i.e. the kernel can run with the guest's value.
206  */
207 #define KVM_MAX_NR_USER_RETURN_MSRS 16
208
209 struct kvm_user_return_msrs {
210         struct user_return_notifier urn;
211         bool registered;
212         struct kvm_user_return_msr_values {
213                 u64 host;
214                 u64 curr;
215         } values[KVM_MAX_NR_USER_RETURN_MSRS];
216 };
217
218 u32 __read_mostly kvm_nr_uret_msrs;
219 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
220 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
221 static struct kvm_user_return_msrs __percpu *user_return_msrs;
222
223 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
224                                 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
225                                 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
226                                 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
227
228 u64 __read_mostly host_efer;
229 EXPORT_SYMBOL_GPL(host_efer);
230
231 bool __read_mostly allow_smaller_maxphyaddr = 0;
232 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
233
234 bool __read_mostly enable_apicv = true;
235 EXPORT_SYMBOL_GPL(enable_apicv);
236
237 u64 __read_mostly host_xss;
238 EXPORT_SYMBOL_GPL(host_xss);
239
240 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
241         KVM_GENERIC_VM_STATS(),
242         STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
243         STATS_DESC_COUNTER(VM, mmu_pte_write),
244         STATS_DESC_COUNTER(VM, mmu_pde_zapped),
245         STATS_DESC_COUNTER(VM, mmu_flooded),
246         STATS_DESC_COUNTER(VM, mmu_recycled),
247         STATS_DESC_COUNTER(VM, mmu_cache_miss),
248         STATS_DESC_ICOUNTER(VM, mmu_unsync),
249         STATS_DESC_ICOUNTER(VM, pages_4k),
250         STATS_DESC_ICOUNTER(VM, pages_2m),
251         STATS_DESC_ICOUNTER(VM, pages_1g),
252         STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
253         STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
254         STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
255 };
256
257 const struct kvm_stats_header kvm_vm_stats_header = {
258         .name_size = KVM_STATS_NAME_SIZE,
259         .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
260         .id_offset = sizeof(struct kvm_stats_header),
261         .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
262         .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
263                        sizeof(kvm_vm_stats_desc),
264 };
265
266 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
267         KVM_GENERIC_VCPU_STATS(),
268         STATS_DESC_COUNTER(VCPU, pf_taken),
269         STATS_DESC_COUNTER(VCPU, pf_fixed),
270         STATS_DESC_COUNTER(VCPU, pf_emulate),
271         STATS_DESC_COUNTER(VCPU, pf_spurious),
272         STATS_DESC_COUNTER(VCPU, pf_fast),
273         STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created),
274         STATS_DESC_COUNTER(VCPU, pf_guest),
275         STATS_DESC_COUNTER(VCPU, tlb_flush),
276         STATS_DESC_COUNTER(VCPU, invlpg),
277         STATS_DESC_COUNTER(VCPU, exits),
278         STATS_DESC_COUNTER(VCPU, io_exits),
279         STATS_DESC_COUNTER(VCPU, mmio_exits),
280         STATS_DESC_COUNTER(VCPU, signal_exits),
281         STATS_DESC_COUNTER(VCPU, irq_window_exits),
282         STATS_DESC_COUNTER(VCPU, nmi_window_exits),
283         STATS_DESC_COUNTER(VCPU, l1d_flush),
284         STATS_DESC_COUNTER(VCPU, halt_exits),
285         STATS_DESC_COUNTER(VCPU, request_irq_exits),
286         STATS_DESC_COUNTER(VCPU, irq_exits),
287         STATS_DESC_COUNTER(VCPU, host_state_reload),
288         STATS_DESC_COUNTER(VCPU, fpu_reload),
289         STATS_DESC_COUNTER(VCPU, insn_emulation),
290         STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
291         STATS_DESC_COUNTER(VCPU, hypercalls),
292         STATS_DESC_COUNTER(VCPU, irq_injections),
293         STATS_DESC_COUNTER(VCPU, nmi_injections),
294         STATS_DESC_COUNTER(VCPU, req_event),
295         STATS_DESC_COUNTER(VCPU, nested_run),
296         STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
297         STATS_DESC_COUNTER(VCPU, directed_yield_successful),
298         STATS_DESC_COUNTER(VCPU, preemption_reported),
299         STATS_DESC_COUNTER(VCPU, preemption_other),
300         STATS_DESC_IBOOLEAN(VCPU, guest_mode),
301         STATS_DESC_COUNTER(VCPU, notify_window_exits),
302 };
303
304 const struct kvm_stats_header kvm_vcpu_stats_header = {
305         .name_size = KVM_STATS_NAME_SIZE,
306         .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
307         .id_offset = sizeof(struct kvm_stats_header),
308         .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
309         .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
310                        sizeof(kvm_vcpu_stats_desc),
311 };
312
313 u64 __read_mostly host_xcr0;
314
315 static struct kmem_cache *x86_emulator_cache;
316
317 /*
318  * When called, it means the previous get/set msr reached an invalid msr.
319  * Return true if we want to ignore/silent this failed msr access.
320  */
321 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
322 {
323         const char *op = write ? "wrmsr" : "rdmsr";
324
325         if (ignore_msrs) {
326                 if (report_ignored_msrs)
327                         kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
328                                       op, msr, data);
329                 /* Mask the error */
330                 return true;
331         } else {
332                 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
333                                       op, msr, data);
334                 return false;
335         }
336 }
337
338 static struct kmem_cache *kvm_alloc_emulator_cache(void)
339 {
340         unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
341         unsigned int size = sizeof(struct x86_emulate_ctxt);
342
343         return kmem_cache_create_usercopy("x86_emulator", size,
344                                           __alignof__(struct x86_emulate_ctxt),
345                                           SLAB_ACCOUNT, useroffset,
346                                           size - useroffset, NULL);
347 }
348
349 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
350
351 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
352 {
353         int i;
354         for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
355                 vcpu->arch.apf.gfns[i] = ~0;
356 }
357
358 static void kvm_on_user_return(struct user_return_notifier *urn)
359 {
360         unsigned slot;
361         struct kvm_user_return_msrs *msrs
362                 = container_of(urn, struct kvm_user_return_msrs, urn);
363         struct kvm_user_return_msr_values *values;
364         unsigned long flags;
365
366         /*
367          * Disabling irqs at this point since the following code could be
368          * interrupted and executed through kvm_arch_hardware_disable()
369          */
370         local_irq_save(flags);
371         if (msrs->registered) {
372                 msrs->registered = false;
373                 user_return_notifier_unregister(urn);
374         }
375         local_irq_restore(flags);
376         for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
377                 values = &msrs->values[slot];
378                 if (values->host != values->curr) {
379                         wrmsrl(kvm_uret_msrs_list[slot], values->host);
380                         values->curr = values->host;
381                 }
382         }
383 }
384
385 static int kvm_probe_user_return_msr(u32 msr)
386 {
387         u64 val;
388         int ret;
389
390         preempt_disable();
391         ret = rdmsrl_safe(msr, &val);
392         if (ret)
393                 goto out;
394         ret = wrmsrl_safe(msr, val);
395 out:
396         preempt_enable();
397         return ret;
398 }
399
400 int kvm_add_user_return_msr(u32 msr)
401 {
402         BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
403
404         if (kvm_probe_user_return_msr(msr))
405                 return -1;
406
407         kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
408         return kvm_nr_uret_msrs++;
409 }
410 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
411
412 int kvm_find_user_return_msr(u32 msr)
413 {
414         int i;
415
416         for (i = 0; i < kvm_nr_uret_msrs; ++i) {
417                 if (kvm_uret_msrs_list[i] == msr)
418                         return i;
419         }
420         return -1;
421 }
422 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
423
424 static void kvm_user_return_msr_cpu_online(void)
425 {
426         unsigned int cpu = smp_processor_id();
427         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
428         u64 value;
429         int i;
430
431         for (i = 0; i < kvm_nr_uret_msrs; ++i) {
432                 rdmsrl_safe(kvm_uret_msrs_list[i], &value);
433                 msrs->values[i].host = value;
434                 msrs->values[i].curr = value;
435         }
436 }
437
438 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
439 {
440         unsigned int cpu = smp_processor_id();
441         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
442         int err;
443
444         value = (value & mask) | (msrs->values[slot].host & ~mask);
445         if (value == msrs->values[slot].curr)
446                 return 0;
447         err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
448         if (err)
449                 return 1;
450
451         msrs->values[slot].curr = value;
452         if (!msrs->registered) {
453                 msrs->urn.on_user_return = kvm_on_user_return;
454                 user_return_notifier_register(&msrs->urn);
455                 msrs->registered = true;
456         }
457         return 0;
458 }
459 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
460
461 static void drop_user_return_notifiers(void)
462 {
463         unsigned int cpu = smp_processor_id();
464         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
465
466         if (msrs->registered)
467                 kvm_on_user_return(&msrs->urn);
468 }
469
470 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
471 {
472         return vcpu->arch.apic_base;
473 }
474
475 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
476 {
477         return kvm_apic_mode(kvm_get_apic_base(vcpu));
478 }
479 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
480
481 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
482 {
483         enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
484         enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
485         u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
486                 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
487
488         if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
489                 return 1;
490         if (!msr_info->host_initiated) {
491                 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
492                         return 1;
493                 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
494                         return 1;
495         }
496
497         kvm_lapic_set_base(vcpu, msr_info->data);
498         kvm_recalculate_apic_map(vcpu->kvm);
499         return 0;
500 }
501
502 /*
503  * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
504  *
505  * Hardware virtualization extension instructions may fault if a reboot turns
506  * off virtualization while processes are running.  Usually after catching the
507  * fault we just panic; during reboot instead the instruction is ignored.
508  */
509 noinstr void kvm_spurious_fault(void)
510 {
511         /* Fault while not rebooting.  We want the trace. */
512         BUG_ON(!kvm_rebooting);
513 }
514 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
515
516 #define EXCPT_BENIGN            0
517 #define EXCPT_CONTRIBUTORY      1
518 #define EXCPT_PF                2
519
520 static int exception_class(int vector)
521 {
522         switch (vector) {
523         case PF_VECTOR:
524                 return EXCPT_PF;
525         case DE_VECTOR:
526         case TS_VECTOR:
527         case NP_VECTOR:
528         case SS_VECTOR:
529         case GP_VECTOR:
530                 return EXCPT_CONTRIBUTORY;
531         default:
532                 break;
533         }
534         return EXCPT_BENIGN;
535 }
536
537 #define EXCPT_FAULT             0
538 #define EXCPT_TRAP              1
539 #define EXCPT_ABORT             2
540 #define EXCPT_INTERRUPT         3
541 #define EXCPT_DB                4
542
543 static int exception_type(int vector)
544 {
545         unsigned int mask;
546
547         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
548                 return EXCPT_INTERRUPT;
549
550         mask = 1 << vector;
551
552         /*
553          * #DBs can be trap-like or fault-like, the caller must check other CPU
554          * state, e.g. DR6, to determine whether a #DB is a trap or fault.
555          */
556         if (mask & (1 << DB_VECTOR))
557                 return EXCPT_DB;
558
559         if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR)))
560                 return EXCPT_TRAP;
561
562         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
563                 return EXCPT_ABORT;
564
565         /* Reserved exceptions will result in fault */
566         return EXCPT_FAULT;
567 }
568
569 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu,
570                                    struct kvm_queued_exception *ex)
571 {
572         if (!ex->has_payload)
573                 return;
574
575         switch (ex->vector) {
576         case DB_VECTOR:
577                 /*
578                  * "Certain debug exceptions may clear bit 0-3.  The
579                  * remaining contents of the DR6 register are never
580                  * cleared by the processor".
581                  */
582                 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
583                 /*
584                  * In order to reflect the #DB exception payload in guest
585                  * dr6, three components need to be considered: active low
586                  * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
587                  * DR6_BS and DR6_BT)
588                  * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
589                  * In the target guest dr6:
590                  * FIXED_1 bits should always be set.
591                  * Active low bits should be cleared if 1-setting in payload.
592                  * Active high bits should be set if 1-setting in payload.
593                  *
594                  * Note, the payload is compatible with the pending debug
595                  * exceptions/exit qualification under VMX, that active_low bits
596                  * are active high in payload.
597                  * So they need to be flipped for DR6.
598                  */
599                 vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
600                 vcpu->arch.dr6 |= ex->payload;
601                 vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW;
602
603                 /*
604                  * The #DB payload is defined as compatible with the 'pending
605                  * debug exceptions' field under VMX, not DR6. While bit 12 is
606                  * defined in the 'pending debug exceptions' field (enabled
607                  * breakpoint), it is reserved and must be zero in DR6.
608                  */
609                 vcpu->arch.dr6 &= ~BIT(12);
610                 break;
611         case PF_VECTOR:
612                 vcpu->arch.cr2 = ex->payload;
613                 break;
614         }
615
616         ex->has_payload = false;
617         ex->payload = 0;
618 }
619 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
620
621 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector,
622                                        bool has_error_code, u32 error_code,
623                                        bool has_payload, unsigned long payload)
624 {
625         struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
626
627         ex->vector = vector;
628         ex->injected = false;
629         ex->pending = true;
630         ex->has_error_code = has_error_code;
631         ex->error_code = error_code;
632         ex->has_payload = has_payload;
633         ex->payload = payload;
634 }
635
636 /* Forcibly leave the nested mode in cases like a vCPU reset */
637 static void kvm_leave_nested(struct kvm_vcpu *vcpu)
638 {
639         kvm_x86_ops.nested_ops->leave_nested(vcpu);
640 }
641
642 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
643                 unsigned nr, bool has_error, u32 error_code,
644                 bool has_payload, unsigned long payload, bool reinject)
645 {
646         u32 prev_nr;
647         int class1, class2;
648
649         kvm_make_request(KVM_REQ_EVENT, vcpu);
650
651         /*
652          * If the exception is destined for L2 and isn't being reinjected,
653          * morph it to a VM-Exit if L1 wants to intercept the exception.  A
654          * previously injected exception is not checked because it was checked
655          * when it was original queued, and re-checking is incorrect if _L1_
656          * injected the exception, in which case it's exempt from interception.
657          */
658         if (!reinject && is_guest_mode(vcpu) &&
659             kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) {
660                 kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code,
661                                            has_payload, payload);
662                 return;
663         }
664
665         if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
666         queue:
667                 if (reinject) {
668                         /*
669                          * On VM-Entry, an exception can be pending if and only
670                          * if event injection was blocked by nested_run_pending.
671                          * In that case, however, vcpu_enter_guest() requests an
672                          * immediate exit, and the guest shouldn't proceed far
673                          * enough to need reinjection.
674                          */
675                         WARN_ON_ONCE(kvm_is_exception_pending(vcpu));
676                         vcpu->arch.exception.injected = true;
677                         if (WARN_ON_ONCE(has_payload)) {
678                                 /*
679                                  * A reinjected event has already
680                                  * delivered its payload.
681                                  */
682                                 has_payload = false;
683                                 payload = 0;
684                         }
685                 } else {
686                         vcpu->arch.exception.pending = true;
687                         vcpu->arch.exception.injected = false;
688                 }
689                 vcpu->arch.exception.has_error_code = has_error;
690                 vcpu->arch.exception.vector = nr;
691                 vcpu->arch.exception.error_code = error_code;
692                 vcpu->arch.exception.has_payload = has_payload;
693                 vcpu->arch.exception.payload = payload;
694                 if (!is_guest_mode(vcpu))
695                         kvm_deliver_exception_payload(vcpu,
696                                                       &vcpu->arch.exception);
697                 return;
698         }
699
700         /* to check exception */
701         prev_nr = vcpu->arch.exception.vector;
702         if (prev_nr == DF_VECTOR) {
703                 /* triple fault -> shutdown */
704                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
705                 return;
706         }
707         class1 = exception_class(prev_nr);
708         class2 = exception_class(nr);
709         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) ||
710             (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
711                 /*
712                  * Synthesize #DF.  Clear the previously injected or pending
713                  * exception so as not to incorrectly trigger shutdown.
714                  */
715                 vcpu->arch.exception.injected = false;
716                 vcpu->arch.exception.pending = false;
717
718                 kvm_queue_exception_e(vcpu, DF_VECTOR, 0);
719         } else {
720                 /* replace previous exception with a new one in a hope
721                    that instruction re-execution will regenerate lost
722                    exception */
723                 goto queue;
724         }
725 }
726
727 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
728 {
729         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
730 }
731 EXPORT_SYMBOL_GPL(kvm_queue_exception);
732
733 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
734 {
735         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
736 }
737 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
738
739 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
740                            unsigned long payload)
741 {
742         kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
743 }
744 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
745
746 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
747                                     u32 error_code, unsigned long payload)
748 {
749         kvm_multiple_exception(vcpu, nr, true, error_code,
750                                true, payload, false);
751 }
752
753 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
754 {
755         if (err)
756                 kvm_inject_gp(vcpu, 0);
757         else
758                 return kvm_skip_emulated_instruction(vcpu);
759
760         return 1;
761 }
762 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
763
764 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
765 {
766         if (err) {
767                 kvm_inject_gp(vcpu, 0);
768                 return 1;
769         }
770
771         return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
772                                        EMULTYPE_COMPLETE_USER_EXIT);
773 }
774
775 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
776 {
777         ++vcpu->stat.pf_guest;
778
779         /*
780          * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of
781          * whether or not L1 wants to intercept "regular" #PF.
782          */
783         if (is_guest_mode(vcpu) && fault->async_page_fault)
784                 kvm_queue_exception_vmexit(vcpu, PF_VECTOR,
785                                            true, fault->error_code,
786                                            true, fault->address);
787         else
788                 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
789                                         fault->address);
790 }
791
792 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
793                                     struct x86_exception *fault)
794 {
795         struct kvm_mmu *fault_mmu;
796         WARN_ON_ONCE(fault->vector != PF_VECTOR);
797
798         fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
799                                                vcpu->arch.walk_mmu;
800
801         /*
802          * Invalidate the TLB entry for the faulting address, if it exists,
803          * else the access will fault indefinitely (and to emulate hardware).
804          */
805         if ((fault->error_code & PFERR_PRESENT_MASK) &&
806             !(fault->error_code & PFERR_RSVD_MASK))
807                 kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address,
808                                         KVM_MMU_ROOT_CURRENT);
809
810         fault_mmu->inject_page_fault(vcpu, fault);
811 }
812 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
813
814 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
815 {
816         atomic_inc(&vcpu->arch.nmi_queued);
817         kvm_make_request(KVM_REQ_NMI, vcpu);
818 }
819
820 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
821 {
822         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
823 }
824 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
825
826 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
827 {
828         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
829 }
830 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
831
832 /*
833  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
834  * a #GP and return false.
835  */
836 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
837 {
838         if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
839                 return true;
840         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
841         return false;
842 }
843
844 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
845 {
846         if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE))
847                 return true;
848
849         kvm_queue_exception(vcpu, UD_VECTOR);
850         return false;
851 }
852 EXPORT_SYMBOL_GPL(kvm_require_dr);
853
854 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
855 {
856         return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
857 }
858
859 /*
860  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
861  */
862 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
863 {
864         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
865         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
866         gpa_t real_gpa;
867         int i;
868         int ret;
869         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
870
871         /*
872          * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
873          * to an L1 GPA.
874          */
875         real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
876                                      PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
877         if (real_gpa == INVALID_GPA)
878                 return 0;
879
880         /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
881         ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
882                                        cr3 & GENMASK(11, 5), sizeof(pdpte));
883         if (ret < 0)
884                 return 0;
885
886         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
887                 if ((pdpte[i] & PT_PRESENT_MASK) &&
888                     (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
889                         return 0;
890                 }
891         }
892
893         /*
894          * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
895          * Shadow page roots need to be reconstructed instead.
896          */
897         if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
898                 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
899
900         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
901         kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
902         kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
903         vcpu->arch.pdptrs_from_userspace = false;
904
905         return 1;
906 }
907 EXPORT_SYMBOL_GPL(load_pdptrs);
908
909 static bool kvm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
910 {
911 #ifdef CONFIG_X86_64
912         if (cr0 & 0xffffffff00000000UL)
913                 return false;
914 #endif
915
916         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
917                 return false;
918
919         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
920                 return false;
921
922         return static_call(kvm_x86_is_valid_cr0)(vcpu, cr0);
923 }
924
925 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
926 {
927         /*
928          * CR0.WP is incorporated into the MMU role, but only for non-nested,
929          * indirect shadow MMUs.  If paging is disabled, no updates are needed
930          * as there are no permission bits to emulate.  If TDP is enabled, the
931          * MMU's metadata needs to be updated, e.g. so that emulating guest
932          * translations does the right thing, but there's no need to unload the
933          * root as CR0.WP doesn't affect SPTEs.
934          */
935         if ((cr0 ^ old_cr0) == X86_CR0_WP) {
936                 if (!(cr0 & X86_CR0_PG))
937                         return;
938
939                 if (tdp_enabled) {
940                         kvm_init_mmu(vcpu);
941                         return;
942                 }
943         }
944
945         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
946                 kvm_clear_async_pf_completion_queue(vcpu);
947                 kvm_async_pf_hash_reset(vcpu);
948
949                 /*
950                  * Clearing CR0.PG is defined to flush the TLB from the guest's
951                  * perspective.
952                  */
953                 if (!(cr0 & X86_CR0_PG))
954                         kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
955         }
956
957         if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
958                 kvm_mmu_reset_context(vcpu);
959
960         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
961             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
962             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
963                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
964 }
965 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
966
967 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
968 {
969         unsigned long old_cr0 = kvm_read_cr0(vcpu);
970
971         if (!kvm_is_valid_cr0(vcpu, cr0))
972                 return 1;
973
974         cr0 |= X86_CR0_ET;
975
976         /* Write to CR0 reserved bits are ignored, even on Intel. */
977         cr0 &= ~CR0_RESERVED_BITS;
978
979 #ifdef CONFIG_X86_64
980         if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
981             (cr0 & X86_CR0_PG)) {
982                 int cs_db, cs_l;
983
984                 if (!is_pae(vcpu))
985                         return 1;
986                 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
987                 if (cs_l)
988                         return 1;
989         }
990 #endif
991         if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
992             is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
993             !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
994                 return 1;
995
996         if (!(cr0 & X86_CR0_PG) &&
997             (is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)))
998                 return 1;
999
1000         static_call(kvm_x86_set_cr0)(vcpu, cr0);
1001
1002         kvm_post_set_cr0(vcpu, old_cr0, cr0);
1003
1004         return 0;
1005 }
1006 EXPORT_SYMBOL_GPL(kvm_set_cr0);
1007
1008 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
1009 {
1010         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
1011 }
1012 EXPORT_SYMBOL_GPL(kvm_lmsw);
1013
1014 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
1015 {
1016         if (vcpu->arch.guest_state_protected)
1017                 return;
1018
1019         if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1020
1021                 if (vcpu->arch.xcr0 != host_xcr0)
1022                         xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
1023
1024                 if (vcpu->arch.xsaves_enabled &&
1025                     vcpu->arch.ia32_xss != host_xss)
1026                         wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
1027         }
1028
1029         if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1030             vcpu->arch.pkru != vcpu->arch.host_pkru &&
1031             ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1032              kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE)))
1033                 write_pkru(vcpu->arch.pkru);
1034 }
1035 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
1036
1037 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
1038 {
1039         if (vcpu->arch.guest_state_protected)
1040                 return;
1041
1042         if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1043             ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1044              kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) {
1045                 vcpu->arch.pkru = rdpkru();
1046                 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
1047                         write_pkru(vcpu->arch.host_pkru);
1048         }
1049
1050         if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1051
1052                 if (vcpu->arch.xcr0 != host_xcr0)
1053                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
1054
1055                 if (vcpu->arch.xsaves_enabled &&
1056                     vcpu->arch.ia32_xss != host_xss)
1057                         wrmsrl(MSR_IA32_XSS, host_xss);
1058         }
1059
1060 }
1061 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
1062
1063 #ifdef CONFIG_X86_64
1064 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1065 {
1066         return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC;
1067 }
1068 #endif
1069
1070 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1071 {
1072         u64 xcr0 = xcr;
1073         u64 old_xcr0 = vcpu->arch.xcr0;
1074         u64 valid_bits;
1075
1076         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
1077         if (index != XCR_XFEATURE_ENABLED_MASK)
1078                 return 1;
1079         if (!(xcr0 & XFEATURE_MASK_FP))
1080                 return 1;
1081         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1082                 return 1;
1083
1084         /*
1085          * Do not allow the guest to set bits that we do not support
1086          * saving.  However, xcr0 bit 0 is always set, even if the
1087          * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1088          */
1089         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
1090         if (xcr0 & ~valid_bits)
1091                 return 1;
1092
1093         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1094             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1095                 return 1;
1096
1097         if (xcr0 & XFEATURE_MASK_AVX512) {
1098                 if (!(xcr0 & XFEATURE_MASK_YMM))
1099                         return 1;
1100                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1101                         return 1;
1102         }
1103
1104         if ((xcr0 & XFEATURE_MASK_XTILE) &&
1105             ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1106                 return 1;
1107
1108         vcpu->arch.xcr0 = xcr0;
1109
1110         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1111                 kvm_update_cpuid_runtime(vcpu);
1112         return 0;
1113 }
1114
1115 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1116 {
1117         /* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */
1118         if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1119             __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1120                 kvm_inject_gp(vcpu, 0);
1121                 return 1;
1122         }
1123
1124         return kvm_skip_emulated_instruction(vcpu);
1125 }
1126 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1127
1128 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1129 {
1130         if (cr4 & cr4_reserved_bits)
1131                 return false;
1132
1133         if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1134                 return false;
1135
1136         return true;
1137 }
1138 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4);
1139
1140 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1141 {
1142         return __kvm_is_valid_cr4(vcpu, cr4) &&
1143                static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1144 }
1145
1146 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1147 {
1148         if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1149                 kvm_mmu_reset_context(vcpu);
1150
1151         /*
1152          * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1153          * according to the SDM; however, stale prev_roots could be reused
1154          * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1155          * free them all.  This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1156          * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1157          * so fall through.
1158          */
1159         if (!tdp_enabled &&
1160             (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1161                 kvm_mmu_unload(vcpu);
1162
1163         /*
1164          * The TLB has to be flushed for all PCIDs if any of the following
1165          * (architecturally required) changes happen:
1166          * - CR4.PCIDE is changed from 1 to 0
1167          * - CR4.PGE is toggled
1168          *
1169          * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1170          */
1171         if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1172             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1173                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1174
1175         /*
1176          * The TLB has to be flushed for the current PCID if any of the
1177          * following (architecturally required) changes happen:
1178          * - CR4.SMEP is changed from 0 to 1
1179          * - CR4.PAE is toggled
1180          */
1181         else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1182                  ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1183                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1184
1185 }
1186 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1187
1188 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1189 {
1190         unsigned long old_cr4 = kvm_read_cr4(vcpu);
1191
1192         if (!kvm_is_valid_cr4(vcpu, cr4))
1193                 return 1;
1194
1195         if (is_long_mode(vcpu)) {
1196                 if (!(cr4 & X86_CR4_PAE))
1197                         return 1;
1198                 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1199                         return 1;
1200         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1201                    && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1202                    && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1203                 return 1;
1204
1205         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1206                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1207                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1208                         return 1;
1209         }
1210
1211         static_call(kvm_x86_set_cr4)(vcpu, cr4);
1212
1213         kvm_post_set_cr4(vcpu, old_cr4, cr4);
1214
1215         return 0;
1216 }
1217 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1218
1219 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1220 {
1221         struct kvm_mmu *mmu = vcpu->arch.mmu;
1222         unsigned long roots_to_free = 0;
1223         int i;
1224
1225         /*
1226          * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1227          * this is reachable when running EPT=1 and unrestricted_guest=0,  and
1228          * also via the emulator.  KVM's TDP page tables are not in the scope of
1229          * the invalidation, but the guest's TLB entries need to be flushed as
1230          * the CPU may have cached entries in its TLB for the target PCID.
1231          */
1232         if (unlikely(tdp_enabled)) {
1233                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1234                 return;
1235         }
1236
1237         /*
1238          * If neither the current CR3 nor any of the prev_roots use the given
1239          * PCID, then nothing needs to be done here because a resync will
1240          * happen anyway before switching to any other CR3.
1241          */
1242         if (kvm_get_active_pcid(vcpu) == pcid) {
1243                 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1244                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1245         }
1246
1247         /*
1248          * If PCID is disabled, there is no need to free prev_roots even if the
1249          * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1250          * with PCIDE=0.
1251          */
1252         if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))
1253                 return;
1254
1255         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1256                 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1257                         roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1258
1259         kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1260 }
1261
1262 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1263 {
1264         bool skip_tlb_flush = false;
1265         unsigned long pcid = 0;
1266 #ifdef CONFIG_X86_64
1267         if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) {
1268                 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1269                 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1270                 pcid = cr3 & X86_CR3_PCID_MASK;
1271         }
1272 #endif
1273
1274         /* PDPTRs are always reloaded for PAE paging. */
1275         if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1276                 goto handle_tlb_flush;
1277
1278         /*
1279          * Do not condition the GPA check on long mode, this helper is used to
1280          * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1281          * the current vCPU mode is accurate.
1282          */
1283         if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1284                 return 1;
1285
1286         if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1287                 return 1;
1288
1289         if (cr3 != kvm_read_cr3(vcpu))
1290                 kvm_mmu_new_pgd(vcpu, cr3);
1291
1292         vcpu->arch.cr3 = cr3;
1293         kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1294         /* Do not call post_set_cr3, we do not get here for confidential guests.  */
1295
1296 handle_tlb_flush:
1297         /*
1298          * A load of CR3 that flushes the TLB flushes only the current PCID,
1299          * even if PCID is disabled, in which case PCID=0 is flushed.  It's a
1300          * moot point in the end because _disabling_ PCID will flush all PCIDs,
1301          * and it's impossible to use a non-zero PCID when PCID is disabled,
1302          * i.e. only PCID=0 can be relevant.
1303          */
1304         if (!skip_tlb_flush)
1305                 kvm_invalidate_pcid(vcpu, pcid);
1306
1307         return 0;
1308 }
1309 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1310
1311 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1312 {
1313         if (cr8 & CR8_RESERVED_BITS)
1314                 return 1;
1315         if (lapic_in_kernel(vcpu))
1316                 kvm_lapic_set_tpr(vcpu, cr8);
1317         else
1318                 vcpu->arch.cr8 = cr8;
1319         return 0;
1320 }
1321 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1322
1323 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1324 {
1325         if (lapic_in_kernel(vcpu))
1326                 return kvm_lapic_get_cr8(vcpu);
1327         else
1328                 return vcpu->arch.cr8;
1329 }
1330 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1331
1332 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1333 {
1334         int i;
1335
1336         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1337                 for (i = 0; i < KVM_NR_DB_REGS; i++)
1338                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1339         }
1340 }
1341
1342 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1343 {
1344         unsigned long dr7;
1345
1346         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1347                 dr7 = vcpu->arch.guest_debug_dr7;
1348         else
1349                 dr7 = vcpu->arch.dr7;
1350         static_call(kvm_x86_set_dr7)(vcpu, dr7);
1351         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1352         if (dr7 & DR7_BP_EN_MASK)
1353                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1354 }
1355 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1356
1357 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1358 {
1359         u64 fixed = DR6_FIXED_1;
1360
1361         if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1362                 fixed |= DR6_RTM;
1363
1364         if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1365                 fixed |= DR6_BUS_LOCK;
1366         return fixed;
1367 }
1368
1369 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1370 {
1371         size_t size = ARRAY_SIZE(vcpu->arch.db);
1372
1373         switch (dr) {
1374         case 0 ... 3:
1375                 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1376                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1377                         vcpu->arch.eff_db[dr] = val;
1378                 break;
1379         case 4:
1380         case 6:
1381                 if (!kvm_dr6_valid(val))
1382                         return 1; /* #GP */
1383                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1384                 break;
1385         case 5:
1386         default: /* 7 */
1387                 if (!kvm_dr7_valid(val))
1388                         return 1; /* #GP */
1389                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1390                 kvm_update_dr7(vcpu);
1391                 break;
1392         }
1393
1394         return 0;
1395 }
1396 EXPORT_SYMBOL_GPL(kvm_set_dr);
1397
1398 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1399 {
1400         size_t size = ARRAY_SIZE(vcpu->arch.db);
1401
1402         switch (dr) {
1403         case 0 ... 3:
1404                 *val = vcpu->arch.db[array_index_nospec(dr, size)];
1405                 break;
1406         case 4:
1407         case 6:
1408                 *val = vcpu->arch.dr6;
1409                 break;
1410         case 5:
1411         default: /* 7 */
1412                 *val = vcpu->arch.dr7;
1413                 break;
1414         }
1415 }
1416 EXPORT_SYMBOL_GPL(kvm_get_dr);
1417
1418 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1419 {
1420         u32 ecx = kvm_rcx_read(vcpu);
1421         u64 data;
1422
1423         if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1424                 kvm_inject_gp(vcpu, 0);
1425                 return 1;
1426         }
1427
1428         kvm_rax_write(vcpu, (u32)data);
1429         kvm_rdx_write(vcpu, data >> 32);
1430         return kvm_skip_emulated_instruction(vcpu);
1431 }
1432 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1433
1434 /*
1435  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) track
1436  * the set of MSRs that KVM exposes to userspace through KVM_GET_MSRS,
1437  * KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.  msrs_to_save holds MSRs that
1438  * require host support, i.e. should be probed via RDMSR.  emulated_msrs holds
1439  * MSRs that KVM emulates without strictly requiring host support.
1440  * msr_based_features holds MSRs that enumerate features, i.e. are effectively
1441  * CPUID leafs.  Note, msr_based_features isn't mutually exclusive with
1442  * msrs_to_save and emulated_msrs.
1443  */
1444
1445 static const u32 msrs_to_save_base[] = {
1446         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1447         MSR_STAR,
1448 #ifdef CONFIG_X86_64
1449         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1450 #endif
1451         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1452         MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1453         MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL,
1454         MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1455         MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1456         MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1457         MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1458         MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1459         MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1460         MSR_IA32_UMWAIT_CONTROL,
1461
1462         MSR_IA32_XFD, MSR_IA32_XFD_ERR,
1463 };
1464
1465 static const u32 msrs_to_save_pmu[] = {
1466         MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1467         MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1468         MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1469         MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1470         MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG,
1471
1472         /* This part of MSRs should match KVM_INTEL_PMC_MAX_GENERIC. */
1473         MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1474         MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1475         MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1476         MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1477         MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1478         MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1479         MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1480         MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1481
1482         MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1483         MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1484
1485         /* This part of MSRs should match KVM_AMD_PMC_MAX_GENERIC. */
1486         MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1487         MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1488         MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1489         MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1490
1491         MSR_AMD64_PERF_CNTR_GLOBAL_CTL,
1492         MSR_AMD64_PERF_CNTR_GLOBAL_STATUS,
1493         MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR,
1494 };
1495
1496 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) +
1497                         ARRAY_SIZE(msrs_to_save_pmu)];
1498 static unsigned num_msrs_to_save;
1499
1500 static const u32 emulated_msrs_all[] = {
1501         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1502         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1503         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1504         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1505         HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1506         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1507         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1508         HV_X64_MSR_RESET,
1509         HV_X64_MSR_VP_INDEX,
1510         HV_X64_MSR_VP_RUNTIME,
1511         HV_X64_MSR_SCONTROL,
1512         HV_X64_MSR_STIMER0_CONFIG,
1513         HV_X64_MSR_VP_ASSIST_PAGE,
1514         HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1515         HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL,
1516         HV_X64_MSR_SYNDBG_OPTIONS,
1517         HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1518         HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1519         HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1520
1521         MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1522         MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1523
1524         MSR_IA32_TSC_ADJUST,
1525         MSR_IA32_TSC_DEADLINE,
1526         MSR_IA32_ARCH_CAPABILITIES,
1527         MSR_IA32_PERF_CAPABILITIES,
1528         MSR_IA32_MISC_ENABLE,
1529         MSR_IA32_MCG_STATUS,
1530         MSR_IA32_MCG_CTL,
1531         MSR_IA32_MCG_EXT_CTL,
1532         MSR_IA32_SMBASE,
1533         MSR_SMI_COUNT,
1534         MSR_PLATFORM_INFO,
1535         MSR_MISC_FEATURES_ENABLES,
1536         MSR_AMD64_VIRT_SPEC_CTRL,
1537         MSR_AMD64_TSC_RATIO,
1538         MSR_IA32_POWER_CTL,
1539         MSR_IA32_UCODE_REV,
1540
1541         /*
1542          * KVM always supports the "true" VMX control MSRs, even if the host
1543          * does not.  The VMX MSRs as a whole are considered "emulated" as KVM
1544          * doesn't strictly require them to exist in the host (ignoring that
1545          * KVM would refuse to load in the first place if the core set of MSRs
1546          * aren't supported).
1547          */
1548         MSR_IA32_VMX_BASIC,
1549         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1550         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1551         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1552         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1553         MSR_IA32_VMX_MISC,
1554         MSR_IA32_VMX_CR0_FIXED0,
1555         MSR_IA32_VMX_CR4_FIXED0,
1556         MSR_IA32_VMX_VMCS_ENUM,
1557         MSR_IA32_VMX_PROCBASED_CTLS2,
1558         MSR_IA32_VMX_EPT_VPID_CAP,
1559         MSR_IA32_VMX_VMFUNC,
1560
1561         MSR_K7_HWCR,
1562         MSR_KVM_POLL_CONTROL,
1563 };
1564
1565 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1566 static unsigned num_emulated_msrs;
1567
1568 /*
1569  * List of MSRs that control the existence of MSR-based features, i.e. MSRs
1570  * that are effectively CPUID leafs.  VMX MSRs are also included in the set of
1571  * feature MSRs, but are handled separately to allow expedited lookups.
1572  */
1573 static const u32 msr_based_features_all_except_vmx[] = {
1574         MSR_AMD64_DE_CFG,
1575         MSR_IA32_UCODE_REV,
1576         MSR_IA32_ARCH_CAPABILITIES,
1577         MSR_IA32_PERF_CAPABILITIES,
1578 };
1579
1580 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) +
1581                               (KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)];
1582 static unsigned int num_msr_based_features;
1583
1584 /*
1585  * All feature MSRs except uCode revID, which tracks the currently loaded uCode
1586  * patch, are immutable once the vCPU model is defined.
1587  */
1588 static bool kvm_is_immutable_feature_msr(u32 msr)
1589 {
1590         int i;
1591
1592         if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR)
1593                 return true;
1594
1595         for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) {
1596                 if (msr == msr_based_features_all_except_vmx[i])
1597                         return msr != MSR_IA32_UCODE_REV;
1598         }
1599
1600         return false;
1601 }
1602
1603 /*
1604  * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM
1605  * does not yet virtualize. These include:
1606  *   10 - MISC_PACKAGE_CTRLS
1607  *   11 - ENERGY_FILTERING_CTL
1608  *   12 - DOITM
1609  *   18 - FB_CLEAR_CTRL
1610  *   21 - XAPIC_DISABLE_STATUS
1611  *   23 - OVERCLOCKING_STATUS
1612  */
1613
1614 #define KVM_SUPPORTED_ARCH_CAP \
1615         (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \
1616          ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \
1617          ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \
1618          ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \
1619          ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO)
1620
1621 static u64 kvm_get_arch_capabilities(void)
1622 {
1623         u64 data = 0;
1624
1625         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
1626                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1627                 data &= KVM_SUPPORTED_ARCH_CAP;
1628         }
1629
1630         /*
1631          * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1632          * the nested hypervisor runs with NX huge pages.  If it is not,
1633          * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1634          * L1 guests, so it need not worry about its own (L2) guests.
1635          */
1636         data |= ARCH_CAP_PSCHANGE_MC_NO;
1637
1638         /*
1639          * If we're doing cache flushes (either "always" or "cond")
1640          * we will do one whenever the guest does a vmlaunch/vmresume.
1641          * If an outer hypervisor is doing the cache flush for us
1642          * (ARCH_CAP_SKIP_VMENTRY_L1DFLUSH), we can safely pass that
1643          * capability to the guest too, and if EPT is disabled we're not
1644          * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1645          * require a nested hypervisor to do a flush of its own.
1646          */
1647         if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1648                 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1649
1650         if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1651                 data |= ARCH_CAP_RDCL_NO;
1652         if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1653                 data |= ARCH_CAP_SSB_NO;
1654         if (!boot_cpu_has_bug(X86_BUG_MDS))
1655                 data |= ARCH_CAP_MDS_NO;
1656
1657         if (!boot_cpu_has(X86_FEATURE_RTM)) {
1658                 /*
1659                  * If RTM=0 because the kernel has disabled TSX, the host might
1660                  * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1661                  * and therefore knows that there cannot be TAA) but keep
1662                  * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1663                  * and we want to allow migrating those guests to tsx=off hosts.
1664                  */
1665                 data &= ~ARCH_CAP_TAA_NO;
1666         } else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1667                 data |= ARCH_CAP_TAA_NO;
1668         } else {
1669                 /*
1670                  * Nothing to do here; we emulate TSX_CTRL if present on the
1671                  * host so the guest can choose between disabling TSX or
1672                  * using VERW to clear CPU buffers.
1673                  */
1674         }
1675
1676         if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated())
1677                 data |= ARCH_CAP_GDS_NO;
1678
1679         return data;
1680 }
1681
1682 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1683 {
1684         switch (msr->index) {
1685         case MSR_IA32_ARCH_CAPABILITIES:
1686                 msr->data = kvm_get_arch_capabilities();
1687                 break;
1688         case MSR_IA32_PERF_CAPABILITIES:
1689                 msr->data = kvm_caps.supported_perf_cap;
1690                 break;
1691         case MSR_IA32_UCODE_REV:
1692                 rdmsrl_safe(msr->index, &msr->data);
1693                 break;
1694         default:
1695                 return static_call(kvm_x86_get_msr_feature)(msr);
1696         }
1697         return 0;
1698 }
1699
1700 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1701 {
1702         struct kvm_msr_entry msr;
1703         int r;
1704
1705         msr.index = index;
1706         r = kvm_get_msr_feature(&msr);
1707
1708         if (r == KVM_MSR_RET_INVALID) {
1709                 /* Unconditionally clear the output for simplicity */
1710                 *data = 0;
1711                 if (kvm_msr_ignored_check(index, 0, false))
1712                         r = 0;
1713         }
1714
1715         if (r)
1716                 return r;
1717
1718         *data = msr.data;
1719
1720         return 0;
1721 }
1722
1723 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1724 {
1725         if (efer & EFER_AUTOIBRS && !guest_cpuid_has(vcpu, X86_FEATURE_AUTOIBRS))
1726                 return false;
1727
1728         if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1729                 return false;
1730
1731         if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1732                 return false;
1733
1734         if (efer & (EFER_LME | EFER_LMA) &&
1735             !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1736                 return false;
1737
1738         if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1739                 return false;
1740
1741         return true;
1742
1743 }
1744 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1745 {
1746         if (efer & efer_reserved_bits)
1747                 return false;
1748
1749         return __kvm_valid_efer(vcpu, efer);
1750 }
1751 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1752
1753 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1754 {
1755         u64 old_efer = vcpu->arch.efer;
1756         u64 efer = msr_info->data;
1757         int r;
1758
1759         if (efer & efer_reserved_bits)
1760                 return 1;
1761
1762         if (!msr_info->host_initiated) {
1763                 if (!__kvm_valid_efer(vcpu, efer))
1764                         return 1;
1765
1766                 if (is_paging(vcpu) &&
1767                     (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1768                         return 1;
1769         }
1770
1771         efer &= ~EFER_LMA;
1772         efer |= vcpu->arch.efer & EFER_LMA;
1773
1774         r = static_call(kvm_x86_set_efer)(vcpu, efer);
1775         if (r) {
1776                 WARN_ON(r > 0);
1777                 return r;
1778         }
1779
1780         if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1781                 kvm_mmu_reset_context(vcpu);
1782
1783         return 0;
1784 }
1785
1786 void kvm_enable_efer_bits(u64 mask)
1787 {
1788        efer_reserved_bits &= ~mask;
1789 }
1790 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1791
1792 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1793 {
1794         struct kvm_x86_msr_filter *msr_filter;
1795         struct msr_bitmap_range *ranges;
1796         struct kvm *kvm = vcpu->kvm;
1797         bool allowed;
1798         int idx;
1799         u32 i;
1800
1801         /* x2APIC MSRs do not support filtering. */
1802         if (index >= 0x800 && index <= 0x8ff)
1803                 return true;
1804
1805         idx = srcu_read_lock(&kvm->srcu);
1806
1807         msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1808         if (!msr_filter) {
1809                 allowed = true;
1810                 goto out;
1811         }
1812
1813         allowed = msr_filter->default_allow;
1814         ranges = msr_filter->ranges;
1815
1816         for (i = 0; i < msr_filter->count; i++) {
1817                 u32 start = ranges[i].base;
1818                 u32 end = start + ranges[i].nmsrs;
1819                 u32 flags = ranges[i].flags;
1820                 unsigned long *bitmap = ranges[i].bitmap;
1821
1822                 if ((index >= start) && (index < end) && (flags & type)) {
1823                         allowed = test_bit(index - start, bitmap);
1824                         break;
1825                 }
1826         }
1827
1828 out:
1829         srcu_read_unlock(&kvm->srcu, idx);
1830
1831         return allowed;
1832 }
1833 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1834
1835 /*
1836  * Write @data into the MSR specified by @index.  Select MSR specific fault
1837  * checks are bypassed if @host_initiated is %true.
1838  * Returns 0 on success, non-0 otherwise.
1839  * Assumes vcpu_load() was already called.
1840  */
1841 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1842                          bool host_initiated)
1843 {
1844         struct msr_data msr;
1845
1846         switch (index) {
1847         case MSR_FS_BASE:
1848         case MSR_GS_BASE:
1849         case MSR_KERNEL_GS_BASE:
1850         case MSR_CSTAR:
1851         case MSR_LSTAR:
1852                 if (is_noncanonical_address(data, vcpu))
1853                         return 1;
1854                 break;
1855         case MSR_IA32_SYSENTER_EIP:
1856         case MSR_IA32_SYSENTER_ESP:
1857                 /*
1858                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1859                  * non-canonical address is written on Intel but not on
1860                  * AMD (which ignores the top 32-bits, because it does
1861                  * not implement 64-bit SYSENTER).
1862                  *
1863                  * 64-bit code should hence be able to write a non-canonical
1864                  * value on AMD.  Making the address canonical ensures that
1865                  * vmentry does not fail on Intel after writing a non-canonical
1866                  * value, and that something deterministic happens if the guest
1867                  * invokes 64-bit SYSENTER.
1868                  */
1869                 data = __canonical_address(data, vcpu_virt_addr_bits(vcpu));
1870                 break;
1871         case MSR_TSC_AUX:
1872                 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1873                         return 1;
1874
1875                 if (!host_initiated &&
1876                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1877                     !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1878                         return 1;
1879
1880                 /*
1881                  * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1882                  * incomplete and conflicting architectural behavior.  Current
1883                  * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1884                  * reserved and always read as zeros.  Enforce Intel's reserved
1885                  * bits check if and only if the guest CPU is Intel, and clear
1886                  * the bits in all other cases.  This ensures cross-vendor
1887                  * migration will provide consistent behavior for the guest.
1888                  */
1889                 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1890                         return 1;
1891
1892                 data = (u32)data;
1893                 break;
1894         }
1895
1896         msr.data = data;
1897         msr.index = index;
1898         msr.host_initiated = host_initiated;
1899
1900         return static_call(kvm_x86_set_msr)(vcpu, &msr);
1901 }
1902
1903 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1904                                      u32 index, u64 data, bool host_initiated)
1905 {
1906         int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1907
1908         if (ret == KVM_MSR_RET_INVALID)
1909                 if (kvm_msr_ignored_check(index, data, true))
1910                         ret = 0;
1911
1912         return ret;
1913 }
1914
1915 /*
1916  * Read the MSR specified by @index into @data.  Select MSR specific fault
1917  * checks are bypassed if @host_initiated is %true.
1918  * Returns 0 on success, non-0 otherwise.
1919  * Assumes vcpu_load() was already called.
1920  */
1921 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1922                   bool host_initiated)
1923 {
1924         struct msr_data msr;
1925         int ret;
1926
1927         switch (index) {
1928         case MSR_TSC_AUX:
1929                 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1930                         return 1;
1931
1932                 if (!host_initiated &&
1933                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1934                     !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1935                         return 1;
1936                 break;
1937         }
1938
1939         msr.index = index;
1940         msr.host_initiated = host_initiated;
1941
1942         ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1943         if (!ret)
1944                 *data = msr.data;
1945         return ret;
1946 }
1947
1948 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1949                                      u32 index, u64 *data, bool host_initiated)
1950 {
1951         int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1952
1953         if (ret == KVM_MSR_RET_INVALID) {
1954                 /* Unconditionally clear *data for simplicity */
1955                 *data = 0;
1956                 if (kvm_msr_ignored_check(index, 0, false))
1957                         ret = 0;
1958         }
1959
1960         return ret;
1961 }
1962
1963 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1964 {
1965         if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1966                 return KVM_MSR_RET_FILTERED;
1967         return kvm_get_msr_ignored_check(vcpu, index, data, false);
1968 }
1969
1970 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data)
1971 {
1972         if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1973                 return KVM_MSR_RET_FILTERED;
1974         return kvm_set_msr_ignored_check(vcpu, index, data, false);
1975 }
1976
1977 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1978 {
1979         return kvm_get_msr_ignored_check(vcpu, index, data, false);
1980 }
1981 EXPORT_SYMBOL_GPL(kvm_get_msr);
1982
1983 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1984 {
1985         return kvm_set_msr_ignored_check(vcpu, index, data, false);
1986 }
1987 EXPORT_SYMBOL_GPL(kvm_set_msr);
1988
1989 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1990 {
1991         if (!vcpu->run->msr.error) {
1992                 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1993                 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1994         }
1995 }
1996
1997 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
1998 {
1999         return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
2000 }
2001
2002 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
2003 {
2004         complete_userspace_rdmsr(vcpu);
2005         return complete_emulated_msr_access(vcpu);
2006 }
2007
2008 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
2009 {
2010         return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
2011 }
2012
2013 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
2014 {
2015         complete_userspace_rdmsr(vcpu);
2016         return complete_fast_msr_access(vcpu);
2017 }
2018
2019 static u64 kvm_msr_reason(int r)
2020 {
2021         switch (r) {
2022         case KVM_MSR_RET_INVALID:
2023                 return KVM_MSR_EXIT_REASON_UNKNOWN;
2024         case KVM_MSR_RET_FILTERED:
2025                 return KVM_MSR_EXIT_REASON_FILTER;
2026         default:
2027                 return KVM_MSR_EXIT_REASON_INVAL;
2028         }
2029 }
2030
2031 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
2032                               u32 exit_reason, u64 data,
2033                               int (*completion)(struct kvm_vcpu *vcpu),
2034                               int r)
2035 {
2036         u64 msr_reason = kvm_msr_reason(r);
2037
2038         /* Check if the user wanted to know about this MSR fault */
2039         if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
2040                 return 0;
2041
2042         vcpu->run->exit_reason = exit_reason;
2043         vcpu->run->msr.error = 0;
2044         memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
2045         vcpu->run->msr.reason = msr_reason;
2046         vcpu->run->msr.index = index;
2047         vcpu->run->msr.data = data;
2048         vcpu->arch.complete_userspace_io = completion;
2049
2050         return 1;
2051 }
2052
2053 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
2054 {
2055         u32 ecx = kvm_rcx_read(vcpu);
2056         u64 data;
2057         int r;
2058
2059         r = kvm_get_msr_with_filter(vcpu, ecx, &data);
2060
2061         if (!r) {
2062                 trace_kvm_msr_read(ecx, data);
2063
2064                 kvm_rax_write(vcpu, data & -1u);
2065                 kvm_rdx_write(vcpu, (data >> 32) & -1u);
2066         } else {
2067                 /* MSR read failed? See if we should ask user space */
2068                 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
2069                                        complete_fast_rdmsr, r))
2070                         return 0;
2071                 trace_kvm_msr_read_ex(ecx);
2072         }
2073
2074         return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2075 }
2076 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
2077
2078 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
2079 {
2080         u32 ecx = kvm_rcx_read(vcpu);
2081         u64 data = kvm_read_edx_eax(vcpu);
2082         int r;
2083
2084         r = kvm_set_msr_with_filter(vcpu, ecx, data);
2085
2086         if (!r) {
2087                 trace_kvm_msr_write(ecx, data);
2088         } else {
2089                 /* MSR write failed? See if we should ask user space */
2090                 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
2091                                        complete_fast_msr_access, r))
2092                         return 0;
2093                 /* Signal all other negative errors to userspace */
2094                 if (r < 0)
2095                         return r;
2096                 trace_kvm_msr_write_ex(ecx, data);
2097         }
2098
2099         return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2100 }
2101 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
2102
2103 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2104 {
2105         return kvm_skip_emulated_instruction(vcpu);
2106 }
2107
2108 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2109 {
2110         /* Treat an INVD instruction as a NOP and just skip it. */
2111         return kvm_emulate_as_nop(vcpu);
2112 }
2113 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
2114
2115 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2116 {
2117         kvm_queue_exception(vcpu, UD_VECTOR);
2118         return 1;
2119 }
2120 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
2121
2122
2123 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn)
2124 {
2125         if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) &&
2126             !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT))
2127                 return kvm_handle_invalid_op(vcpu);
2128
2129         pr_warn_once("%s instruction emulated as NOP!\n", insn);
2130         return kvm_emulate_as_nop(vcpu);
2131 }
2132 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2133 {
2134         return kvm_emulate_monitor_mwait(vcpu, "MWAIT");
2135 }
2136 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
2137
2138 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2139 {
2140         return kvm_emulate_monitor_mwait(vcpu, "MONITOR");
2141 }
2142 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2143
2144 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2145 {
2146         xfer_to_guest_mode_prepare();
2147         return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
2148                 xfer_to_guest_mode_work_pending();
2149 }
2150
2151 /*
2152  * The fast path for frequent and performance sensitive wrmsr emulation,
2153  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2154  * the latency of virtual IPI by avoiding the expensive bits of transitioning
2155  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2156  * other cases which must be called after interrupts are enabled on the host.
2157  */
2158 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2159 {
2160         if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2161                 return 1;
2162
2163         if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2164             ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2165             ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2166             ((u32)(data >> 32) != X2APIC_BROADCAST))
2167                 return kvm_x2apic_icr_write(vcpu->arch.apic, data);
2168
2169         return 1;
2170 }
2171
2172 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2173 {
2174         if (!kvm_can_use_hv_timer(vcpu))
2175                 return 1;
2176
2177         kvm_set_lapic_tscdeadline_msr(vcpu, data);
2178         return 0;
2179 }
2180
2181 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2182 {
2183         u32 msr = kvm_rcx_read(vcpu);
2184         u64 data;
2185         fastpath_t ret = EXIT_FASTPATH_NONE;
2186
2187         kvm_vcpu_srcu_read_lock(vcpu);
2188
2189         switch (msr) {
2190         case APIC_BASE_MSR + (APIC_ICR >> 4):
2191                 data = kvm_read_edx_eax(vcpu);
2192                 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2193                         kvm_skip_emulated_instruction(vcpu);
2194                         ret = EXIT_FASTPATH_EXIT_HANDLED;
2195                 }
2196                 break;
2197         case MSR_IA32_TSC_DEADLINE:
2198                 data = kvm_read_edx_eax(vcpu);
2199                 if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2200                         kvm_skip_emulated_instruction(vcpu);
2201                         ret = EXIT_FASTPATH_REENTER_GUEST;
2202                 }
2203                 break;
2204         default:
2205                 break;
2206         }
2207
2208         if (ret != EXIT_FASTPATH_NONE)
2209                 trace_kvm_msr_write(msr, data);
2210
2211         kvm_vcpu_srcu_read_unlock(vcpu);
2212
2213         return ret;
2214 }
2215 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2216
2217 /*
2218  * Adapt set_msr() to msr_io()'s calling convention
2219  */
2220 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2221 {
2222         return kvm_get_msr_ignored_check(vcpu, index, data, true);
2223 }
2224
2225 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2226 {
2227         u64 val;
2228
2229         /*
2230          * Disallow writes to immutable feature MSRs after KVM_RUN.  KVM does
2231          * not support modifying the guest vCPU model on the fly, e.g. changing
2232          * the nVMX capabilities while L2 is running is nonsensical.  Ignore
2233          * writes of the same value, e.g. to allow userspace to blindly stuff
2234          * all MSRs when emulating RESET.
2235          */
2236         if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index)) {
2237                 if (do_get_msr(vcpu, index, &val) || *data != val)
2238                         return -EINVAL;
2239
2240                 return 0;
2241         }
2242
2243         return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2244 }
2245
2246 #ifdef CONFIG_X86_64
2247 struct pvclock_clock {
2248         int vclock_mode;
2249         u64 cycle_last;
2250         u64 mask;
2251         u32 mult;
2252         u32 shift;
2253         u64 base_cycles;
2254         u64 offset;
2255 };
2256
2257 struct pvclock_gtod_data {
2258         seqcount_t      seq;
2259
2260         struct pvclock_clock clock; /* extract of a clocksource struct */
2261         struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2262
2263         ktime_t         offs_boot;
2264         u64             wall_time_sec;
2265 };
2266
2267 static struct pvclock_gtod_data pvclock_gtod_data;
2268
2269 static void update_pvclock_gtod(struct timekeeper *tk)
2270 {
2271         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2272
2273         write_seqcount_begin(&vdata->seq);
2274
2275         /* copy pvclock gtod data */
2276         vdata->clock.vclock_mode        = tk->tkr_mono.clock->vdso_clock_mode;
2277         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
2278         vdata->clock.mask               = tk->tkr_mono.mask;
2279         vdata->clock.mult               = tk->tkr_mono.mult;
2280         vdata->clock.shift              = tk->tkr_mono.shift;
2281         vdata->clock.base_cycles        = tk->tkr_mono.xtime_nsec;
2282         vdata->clock.offset             = tk->tkr_mono.base;
2283
2284         vdata->raw_clock.vclock_mode    = tk->tkr_raw.clock->vdso_clock_mode;
2285         vdata->raw_clock.cycle_last     = tk->tkr_raw.cycle_last;
2286         vdata->raw_clock.mask           = tk->tkr_raw.mask;
2287         vdata->raw_clock.mult           = tk->tkr_raw.mult;
2288         vdata->raw_clock.shift          = tk->tkr_raw.shift;
2289         vdata->raw_clock.base_cycles    = tk->tkr_raw.xtime_nsec;
2290         vdata->raw_clock.offset         = tk->tkr_raw.base;
2291
2292         vdata->wall_time_sec            = tk->xtime_sec;
2293
2294         vdata->offs_boot                = tk->offs_boot;
2295
2296         write_seqcount_end(&vdata->seq);
2297 }
2298
2299 static s64 get_kvmclock_base_ns(void)
2300 {
2301         /* Count up from boot time, but with the frequency of the raw clock.  */
2302         return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2303 }
2304 #else
2305 static s64 get_kvmclock_base_ns(void)
2306 {
2307         /* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
2308         return ktime_get_boottime_ns();
2309 }
2310 #endif
2311
2312 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2313 {
2314         int version;
2315         int r;
2316         struct pvclock_wall_clock wc;
2317         u32 wc_sec_hi;
2318         u64 wall_nsec;
2319
2320         if (!wall_clock)
2321                 return;
2322
2323         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2324         if (r)
2325                 return;
2326
2327         if (version & 1)
2328                 ++version;  /* first time write, random junk */
2329
2330         ++version;
2331
2332         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2333                 return;
2334
2335         /*
2336          * The guest calculates current wall clock time by adding
2337          * system time (updated by kvm_guest_time_update below) to the
2338          * wall clock specified here.  We do the reverse here.
2339          */
2340         wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2341
2342         wc.nsec = do_div(wall_nsec, 1000000000);
2343         wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2344         wc.version = version;
2345
2346         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2347
2348         if (sec_hi_ofs) {
2349                 wc_sec_hi = wall_nsec >> 32;
2350                 kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2351                                 &wc_sec_hi, sizeof(wc_sec_hi));
2352         }
2353
2354         version++;
2355         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2356 }
2357
2358 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2359                                   bool old_msr, bool host_initiated)
2360 {
2361         struct kvm_arch *ka = &vcpu->kvm->arch;
2362
2363         if (vcpu->vcpu_id == 0 && !host_initiated) {
2364                 if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2365                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2366
2367                 ka->boot_vcpu_runs_old_kvmclock = old_msr;
2368         }
2369
2370         vcpu->arch.time = system_time;
2371         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2372
2373         /* we verify if the enable bit is set... */
2374         if (system_time & 1)
2375                 kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL,
2376                                  sizeof(struct pvclock_vcpu_time_info));
2377         else
2378                 kvm_gpc_deactivate(&vcpu->arch.pv_time);
2379
2380         return;
2381 }
2382
2383 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2384 {
2385         do_shl32_div32(dividend, divisor);
2386         return dividend;
2387 }
2388
2389 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2390                                s8 *pshift, u32 *pmultiplier)
2391 {
2392         uint64_t scaled64;
2393         int32_t  shift = 0;
2394         uint64_t tps64;
2395         uint32_t tps32;
2396
2397         tps64 = base_hz;
2398         scaled64 = scaled_hz;
2399         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2400                 tps64 >>= 1;
2401                 shift--;
2402         }
2403
2404         tps32 = (uint32_t)tps64;
2405         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2406                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2407                         scaled64 >>= 1;
2408                 else
2409                         tps32 <<= 1;
2410                 shift++;
2411         }
2412
2413         *pshift = shift;
2414         *pmultiplier = div_frac(scaled64, tps32);
2415 }
2416
2417 #ifdef CONFIG_X86_64
2418 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2419 #endif
2420
2421 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2422 static unsigned long max_tsc_khz;
2423
2424 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2425 {
2426         u64 v = (u64)khz * (1000000 + ppm);
2427         do_div(v, 1000000);
2428         return v;
2429 }
2430
2431 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2432
2433 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2434 {
2435         u64 ratio;
2436
2437         /* Guest TSC same frequency as host TSC? */
2438         if (!scale) {
2439                 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2440                 return 0;
2441         }
2442
2443         /* TSC scaling supported? */
2444         if (!kvm_caps.has_tsc_control) {
2445                 if (user_tsc_khz > tsc_khz) {
2446                         vcpu->arch.tsc_catchup = 1;
2447                         vcpu->arch.tsc_always_catchup = 1;
2448                         return 0;
2449                 } else {
2450                         pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2451                         return -1;
2452                 }
2453         }
2454
2455         /* TSC scaling required  - calculate ratio */
2456         ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits,
2457                                 user_tsc_khz, tsc_khz);
2458
2459         if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) {
2460                 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2461                                     user_tsc_khz);
2462                 return -1;
2463         }
2464
2465         kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2466         return 0;
2467 }
2468
2469 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2470 {
2471         u32 thresh_lo, thresh_hi;
2472         int use_scaling = 0;
2473
2474         /* tsc_khz can be zero if TSC calibration fails */
2475         if (user_tsc_khz == 0) {
2476                 /* set tsc_scaling_ratio to a safe value */
2477                 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2478                 return -1;
2479         }
2480
2481         /* Compute a scale to convert nanoseconds in TSC cycles */
2482         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2483                            &vcpu->arch.virtual_tsc_shift,
2484                            &vcpu->arch.virtual_tsc_mult);
2485         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2486
2487         /*
2488          * Compute the variation in TSC rate which is acceptable
2489          * within the range of tolerance and decide if the
2490          * rate being applied is within that bounds of the hardware
2491          * rate.  If so, no scaling or compensation need be done.
2492          */
2493         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2494         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2495         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2496                 pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n",
2497                          user_tsc_khz, thresh_lo, thresh_hi);
2498                 use_scaling = 1;
2499         }
2500         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2501 }
2502
2503 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2504 {
2505         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2506                                       vcpu->arch.virtual_tsc_mult,
2507                                       vcpu->arch.virtual_tsc_shift);
2508         tsc += vcpu->arch.this_tsc_write;
2509         return tsc;
2510 }
2511
2512 #ifdef CONFIG_X86_64
2513 static inline int gtod_is_based_on_tsc(int mode)
2514 {
2515         return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2516 }
2517 #endif
2518
2519 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2520 {
2521 #ifdef CONFIG_X86_64
2522         bool vcpus_matched;
2523         struct kvm_arch *ka = &vcpu->kvm->arch;
2524         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2525
2526         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2527                          atomic_read(&vcpu->kvm->online_vcpus));
2528
2529         /*
2530          * Once the masterclock is enabled, always perform request in
2531          * order to update it.
2532          *
2533          * In order to enable masterclock, the host clocksource must be TSC
2534          * and the vcpus need to have matched TSCs.  When that happens,
2535          * perform request to enable masterclock.
2536          */
2537         if (ka->use_master_clock ||
2538             (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2539                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2540
2541         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2542                             atomic_read(&vcpu->kvm->online_vcpus),
2543                             ka->use_master_clock, gtod->clock.vclock_mode);
2544 #endif
2545 }
2546
2547 /*
2548  * Multiply tsc by a fixed point number represented by ratio.
2549  *
2550  * The most significant 64-N bits (mult) of ratio represent the
2551  * integral part of the fixed point number; the remaining N bits
2552  * (frac) represent the fractional part, ie. ratio represents a fixed
2553  * point number (mult + frac * 2^(-N)).
2554  *
2555  * N equals to kvm_caps.tsc_scaling_ratio_frac_bits.
2556  */
2557 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2558 {
2559         return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits);
2560 }
2561
2562 u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2563 {
2564         u64 _tsc = tsc;
2565
2566         if (ratio != kvm_caps.default_tsc_scaling_ratio)
2567                 _tsc = __scale_tsc(ratio, tsc);
2568
2569         return _tsc;
2570 }
2571
2572 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2573 {
2574         u64 tsc;
2575
2576         tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2577
2578         return target_tsc - tsc;
2579 }
2580
2581 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2582 {
2583         return vcpu->arch.l1_tsc_offset +
2584                 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2585 }
2586 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2587
2588 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2589 {
2590         u64 nested_offset;
2591
2592         if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio)
2593                 nested_offset = l1_offset;
2594         else
2595                 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2596                                                 kvm_caps.tsc_scaling_ratio_frac_bits);
2597
2598         nested_offset += l2_offset;
2599         return nested_offset;
2600 }
2601 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2602
2603 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2604 {
2605         if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio)
2606                 return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2607                                        kvm_caps.tsc_scaling_ratio_frac_bits);
2608
2609         return l1_multiplier;
2610 }
2611 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2612
2613 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2614 {
2615         trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2616                                    vcpu->arch.l1_tsc_offset,
2617                                    l1_offset);
2618
2619         vcpu->arch.l1_tsc_offset = l1_offset;
2620
2621         /*
2622          * If we are here because L1 chose not to trap WRMSR to TSC then
2623          * according to the spec this should set L1's TSC (as opposed to
2624          * setting L1's offset for L2).
2625          */
2626         if (is_guest_mode(vcpu))
2627                 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2628                         l1_offset,
2629                         static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2630                         static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2631         else
2632                 vcpu->arch.tsc_offset = l1_offset;
2633
2634         static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset);
2635 }
2636
2637 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2638 {
2639         vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2640
2641         /* Userspace is changing the multiplier while L2 is active */
2642         if (is_guest_mode(vcpu))
2643                 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2644                         l1_multiplier,
2645                         static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2646         else
2647                 vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2648
2649         if (kvm_caps.has_tsc_control)
2650                 static_call(kvm_x86_write_tsc_multiplier)(
2651                         vcpu, vcpu->arch.tsc_scaling_ratio);
2652 }
2653
2654 static inline bool kvm_check_tsc_unstable(void)
2655 {
2656 #ifdef CONFIG_X86_64
2657         /*
2658          * TSC is marked unstable when we're running on Hyper-V,
2659          * 'TSC page' clocksource is good.
2660          */
2661         if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2662                 return false;
2663 #endif
2664         return check_tsc_unstable();
2665 }
2666
2667 /*
2668  * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2669  * offset for the vcpu and tracks the TSC matching generation that the vcpu
2670  * participates in.
2671  */
2672 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2673                                   u64 ns, bool matched)
2674 {
2675         struct kvm *kvm = vcpu->kvm;
2676
2677         lockdep_assert_held(&kvm->arch.tsc_write_lock);
2678
2679         /*
2680          * We also track th most recent recorded KHZ, write and time to
2681          * allow the matching interval to be extended at each write.
2682          */
2683         kvm->arch.last_tsc_nsec = ns;
2684         kvm->arch.last_tsc_write = tsc;
2685         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2686         kvm->arch.last_tsc_offset = offset;
2687
2688         vcpu->arch.last_guest_tsc = tsc;
2689
2690         kvm_vcpu_write_tsc_offset(vcpu, offset);
2691
2692         if (!matched) {
2693                 /*
2694                  * We split periods of matched TSC writes into generations.
2695                  * For each generation, we track the original measured
2696                  * nanosecond time, offset, and write, so if TSCs are in
2697                  * sync, we can match exact offset, and if not, we can match
2698                  * exact software computation in compute_guest_tsc()
2699                  *
2700                  * These values are tracked in kvm->arch.cur_xxx variables.
2701                  */
2702                 kvm->arch.cur_tsc_generation++;
2703                 kvm->arch.cur_tsc_nsec = ns;
2704                 kvm->arch.cur_tsc_write = tsc;
2705                 kvm->arch.cur_tsc_offset = offset;
2706                 kvm->arch.nr_vcpus_matched_tsc = 0;
2707         } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2708                 kvm->arch.nr_vcpus_matched_tsc++;
2709         }
2710
2711         /* Keep track of which generation this VCPU has synchronized to */
2712         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2713         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2714         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2715
2716         kvm_track_tsc_matching(vcpu);
2717 }
2718
2719 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2720 {
2721         struct kvm *kvm = vcpu->kvm;
2722         u64 offset, ns, elapsed;
2723         unsigned long flags;
2724         bool matched = false;
2725         bool synchronizing = false;
2726
2727         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2728         offset = kvm_compute_l1_tsc_offset(vcpu, data);
2729         ns = get_kvmclock_base_ns();
2730         elapsed = ns - kvm->arch.last_tsc_nsec;
2731
2732         if (vcpu->arch.virtual_tsc_khz) {
2733                 if (data == 0) {
2734                         /*
2735                          * detection of vcpu initialization -- need to sync
2736                          * with other vCPUs. This particularly helps to keep
2737                          * kvm_clock stable after CPU hotplug
2738                          */
2739                         synchronizing = true;
2740                 } else {
2741                         u64 tsc_exp = kvm->arch.last_tsc_write +
2742                                                 nsec_to_cycles(vcpu, elapsed);
2743                         u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2744                         /*
2745                          * Special case: TSC write with a small delta (1 second)
2746                          * of virtual cycle time against real time is
2747                          * interpreted as an attempt to synchronize the CPU.
2748                          */
2749                         synchronizing = data < tsc_exp + tsc_hz &&
2750                                         data + tsc_hz > tsc_exp;
2751                 }
2752         }
2753
2754         /*
2755          * For a reliable TSC, we can match TSC offsets, and for an unstable
2756          * TSC, we add elapsed time in this computation.  We could let the
2757          * compensation code attempt to catch up if we fall behind, but
2758          * it's better to try to match offsets from the beginning.
2759          */
2760         if (synchronizing &&
2761             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2762                 if (!kvm_check_tsc_unstable()) {
2763                         offset = kvm->arch.cur_tsc_offset;
2764                 } else {
2765                         u64 delta = nsec_to_cycles(vcpu, elapsed);
2766                         data += delta;
2767                         offset = kvm_compute_l1_tsc_offset(vcpu, data);
2768                 }
2769                 matched = true;
2770         }
2771
2772         __kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2773         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2774 }
2775
2776 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2777                                            s64 adjustment)
2778 {
2779         u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2780         kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2781 }
2782
2783 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2784 {
2785         if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio)
2786                 WARN_ON(adjustment < 0);
2787         adjustment = kvm_scale_tsc((u64) adjustment,
2788                                    vcpu->arch.l1_tsc_scaling_ratio);
2789         adjust_tsc_offset_guest(vcpu, adjustment);
2790 }
2791
2792 #ifdef CONFIG_X86_64
2793
2794 static u64 read_tsc(void)
2795 {
2796         u64 ret = (u64)rdtsc_ordered();
2797         u64 last = pvclock_gtod_data.clock.cycle_last;
2798
2799         if (likely(ret >= last))
2800                 return ret;
2801
2802         /*
2803          * GCC likes to generate cmov here, but this branch is extremely
2804          * predictable (it's just a function of time and the likely is
2805          * very likely) and there's a data dependence, so force GCC
2806          * to generate a branch instead.  I don't barrier() because
2807          * we don't actually need a barrier, and if this function
2808          * ever gets inlined it will generate worse code.
2809          */
2810         asm volatile ("");
2811         return last;
2812 }
2813
2814 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2815                           int *mode)
2816 {
2817         u64 tsc_pg_val;
2818         long v;
2819
2820         switch (clock->vclock_mode) {
2821         case VDSO_CLOCKMODE_HVCLOCK:
2822                 if (hv_read_tsc_page_tsc(hv_get_tsc_page(),
2823                                          tsc_timestamp, &tsc_pg_val)) {
2824                         /* TSC page valid */
2825                         *mode = VDSO_CLOCKMODE_HVCLOCK;
2826                         v = (tsc_pg_val - clock->cycle_last) &
2827                                 clock->mask;
2828                 } else {
2829                         /* TSC page invalid */
2830                         *mode = VDSO_CLOCKMODE_NONE;
2831                 }
2832                 break;
2833         case VDSO_CLOCKMODE_TSC:
2834                 *mode = VDSO_CLOCKMODE_TSC;
2835                 *tsc_timestamp = read_tsc();
2836                 v = (*tsc_timestamp - clock->cycle_last) &
2837                         clock->mask;
2838                 break;
2839         default:
2840                 *mode = VDSO_CLOCKMODE_NONE;
2841         }
2842
2843         if (*mode == VDSO_CLOCKMODE_NONE)
2844                 *tsc_timestamp = v = 0;
2845
2846         return v * clock->mult;
2847 }
2848
2849 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2850 {
2851         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2852         unsigned long seq;
2853         int mode;
2854         u64 ns;
2855
2856         do {
2857                 seq = read_seqcount_begin(&gtod->seq);
2858                 ns = gtod->raw_clock.base_cycles;
2859                 ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2860                 ns >>= gtod->raw_clock.shift;
2861                 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2862         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2863         *t = ns;
2864
2865         return mode;
2866 }
2867
2868 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2869 {
2870         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2871         unsigned long seq;
2872         int mode;
2873         u64 ns;
2874
2875         do {
2876                 seq = read_seqcount_begin(&gtod->seq);
2877                 ts->tv_sec = gtod->wall_time_sec;
2878                 ns = gtod->clock.base_cycles;
2879                 ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2880                 ns >>= gtod->clock.shift;
2881         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2882
2883         ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2884         ts->tv_nsec = ns;
2885
2886         return mode;
2887 }
2888
2889 /* returns true if host is using TSC based clocksource */
2890 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2891 {
2892         /* checked again under seqlock below */
2893         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2894                 return false;
2895
2896         return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2897                                                       tsc_timestamp));
2898 }
2899
2900 /* returns true if host is using TSC based clocksource */
2901 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2902                                            u64 *tsc_timestamp)
2903 {
2904         /* checked again under seqlock below */
2905         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2906                 return false;
2907
2908         return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2909 }
2910 #endif
2911
2912 /*
2913  *
2914  * Assuming a stable TSC across physical CPUS, and a stable TSC
2915  * across virtual CPUs, the following condition is possible.
2916  * Each numbered line represents an event visible to both
2917  * CPUs at the next numbered event.
2918  *
2919  * "timespecX" represents host monotonic time. "tscX" represents
2920  * RDTSC value.
2921  *
2922  *              VCPU0 on CPU0           |       VCPU1 on CPU1
2923  *
2924  * 1.  read timespec0,tsc0
2925  * 2.                                   | timespec1 = timespec0 + N
2926  *                                      | tsc1 = tsc0 + M
2927  * 3. transition to guest               | transition to guest
2928  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2929  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
2930  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2931  *
2932  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2933  *
2934  *      - ret0 < ret1
2935  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2936  *              ...
2937  *      - 0 < N - M => M < N
2938  *
2939  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2940  * always the case (the difference between two distinct xtime instances
2941  * might be smaller then the difference between corresponding TSC reads,
2942  * when updating guest vcpus pvclock areas).
2943  *
2944  * To avoid that problem, do not allow visibility of distinct
2945  * system_timestamp/tsc_timestamp values simultaneously: use a master
2946  * copy of host monotonic time values. Update that master copy
2947  * in lockstep.
2948  *
2949  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2950  *
2951  */
2952
2953 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2954 {
2955 #ifdef CONFIG_X86_64
2956         struct kvm_arch *ka = &kvm->arch;
2957         int vclock_mode;
2958         bool host_tsc_clocksource, vcpus_matched;
2959
2960         lockdep_assert_held(&kvm->arch.tsc_write_lock);
2961         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2962                         atomic_read(&kvm->online_vcpus));
2963
2964         /*
2965          * If the host uses TSC clock, then passthrough TSC as stable
2966          * to the guest.
2967          */
2968         host_tsc_clocksource = kvm_get_time_and_clockread(
2969                                         &ka->master_kernel_ns,
2970                                         &ka->master_cycle_now);
2971
2972         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2973                                 && !ka->backwards_tsc_observed
2974                                 && !ka->boot_vcpu_runs_old_kvmclock;
2975
2976         if (ka->use_master_clock)
2977                 atomic_set(&kvm_guest_has_master_clock, 1);
2978
2979         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2980         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2981                                         vcpus_matched);
2982 #endif
2983 }
2984
2985 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2986 {
2987         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2988 }
2989
2990 static void __kvm_start_pvclock_update(struct kvm *kvm)
2991 {
2992         raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
2993         write_seqcount_begin(&kvm->arch.pvclock_sc);
2994 }
2995
2996 static void kvm_start_pvclock_update(struct kvm *kvm)
2997 {
2998         kvm_make_mclock_inprogress_request(kvm);
2999
3000         /* no guest entries from this point */
3001         __kvm_start_pvclock_update(kvm);
3002 }
3003
3004 static void kvm_end_pvclock_update(struct kvm *kvm)
3005 {
3006         struct kvm_arch *ka = &kvm->arch;
3007         struct kvm_vcpu *vcpu;
3008         unsigned long i;
3009
3010         write_seqcount_end(&ka->pvclock_sc);
3011         raw_spin_unlock_irq(&ka->tsc_write_lock);
3012         kvm_for_each_vcpu(i, vcpu, kvm)
3013                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3014
3015         /* guest entries allowed */
3016         kvm_for_each_vcpu(i, vcpu, kvm)
3017                 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
3018 }
3019
3020 static void kvm_update_masterclock(struct kvm *kvm)
3021 {
3022         kvm_hv_request_tsc_page_update(kvm);
3023         kvm_start_pvclock_update(kvm);
3024         pvclock_update_vm_gtod_copy(kvm);
3025         kvm_end_pvclock_update(kvm);
3026 }
3027
3028 /*
3029  * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's
3030  * per-CPU value (which may be zero if a CPU is going offline).  Note, tsc_khz
3031  * can change during boot even if the TSC is constant, as it's possible for KVM
3032  * to be loaded before TSC calibration completes.  Ideally, KVM would get a
3033  * notification when calibration completes, but practically speaking calibration
3034  * will complete before userspace is alive enough to create VMs.
3035  */
3036 static unsigned long get_cpu_tsc_khz(void)
3037 {
3038         if (static_cpu_has(X86_FEATURE_CONSTANT_TSC))
3039                 return tsc_khz;
3040         else
3041                 return __this_cpu_read(cpu_tsc_khz);
3042 }
3043
3044 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc.  */
3045 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3046 {
3047         struct kvm_arch *ka = &kvm->arch;
3048         struct pvclock_vcpu_time_info hv_clock;
3049
3050         /* both __this_cpu_read() and rdtsc() should be on the same cpu */
3051         get_cpu();
3052
3053         data->flags = 0;
3054         if (ka->use_master_clock &&
3055             (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) {
3056 #ifdef CONFIG_X86_64
3057                 struct timespec64 ts;
3058
3059                 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
3060                         data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
3061                         data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
3062                 } else
3063 #endif
3064                 data->host_tsc = rdtsc();
3065
3066                 data->flags |= KVM_CLOCK_TSC_STABLE;
3067                 hv_clock.tsc_timestamp = ka->master_cycle_now;
3068                 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3069                 kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL,
3070                                    &hv_clock.tsc_shift,
3071                                    &hv_clock.tsc_to_system_mul);
3072                 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
3073         } else {
3074                 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
3075         }
3076
3077         put_cpu();
3078 }
3079
3080 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3081 {
3082         struct kvm_arch *ka = &kvm->arch;
3083         unsigned seq;
3084
3085         do {
3086                 seq = read_seqcount_begin(&ka->pvclock_sc);
3087                 __get_kvmclock(kvm, data);
3088         } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3089 }
3090
3091 u64 get_kvmclock_ns(struct kvm *kvm)
3092 {
3093         struct kvm_clock_data data;
3094
3095         get_kvmclock(kvm, &data);
3096         return data.clock;
3097 }
3098
3099 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v,
3100                                     struct gfn_to_pfn_cache *gpc,
3101                                     unsigned int offset)
3102 {
3103         struct kvm_vcpu_arch *vcpu = &v->arch;
3104         struct pvclock_vcpu_time_info *guest_hv_clock;
3105         unsigned long flags;
3106
3107         read_lock_irqsave(&gpc->lock, flags);
3108         while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) {
3109                 read_unlock_irqrestore(&gpc->lock, flags);
3110
3111                 if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock)))
3112                         return;
3113
3114                 read_lock_irqsave(&gpc->lock, flags);
3115         }
3116
3117         guest_hv_clock = (void *)(gpc->khva + offset);
3118
3119         /*
3120          * This VCPU is paused, but it's legal for a guest to read another
3121          * VCPU's kvmclock, so we really have to follow the specification where
3122          * it says that version is odd if data is being modified, and even after
3123          * it is consistent.
3124          */
3125
3126         guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1;
3127         smp_wmb();
3128
3129         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3130         vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
3131
3132         if (vcpu->pvclock_set_guest_stopped_request) {
3133                 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3134                 vcpu->pvclock_set_guest_stopped_request = false;
3135         }
3136
3137         memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock));
3138         smp_wmb();
3139
3140         guest_hv_clock->version = ++vcpu->hv_clock.version;
3141
3142         mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT);
3143         read_unlock_irqrestore(&gpc->lock, flags);
3144
3145         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
3146 }
3147
3148 static int kvm_guest_time_update(struct kvm_vcpu *v)
3149 {
3150         unsigned long flags, tgt_tsc_khz;
3151         unsigned seq;
3152         struct kvm_vcpu_arch *vcpu = &v->arch;
3153         struct kvm_arch *ka = &v->kvm->arch;
3154         s64 kernel_ns;
3155         u64 tsc_timestamp, host_tsc;
3156         u8 pvclock_flags;
3157         bool use_master_clock;
3158
3159         kernel_ns = 0;
3160         host_tsc = 0;
3161
3162         /*
3163          * If the host uses TSC clock, then passthrough TSC as stable
3164          * to the guest.
3165          */
3166         do {
3167                 seq = read_seqcount_begin(&ka->pvclock_sc);
3168                 use_master_clock = ka->use_master_clock;
3169                 if (use_master_clock) {
3170                         host_tsc = ka->master_cycle_now;
3171                         kernel_ns = ka->master_kernel_ns;
3172                 }
3173         } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3174
3175         /* Keep irq disabled to prevent changes to the clock */
3176         local_irq_save(flags);
3177         tgt_tsc_khz = get_cpu_tsc_khz();
3178         if (unlikely(tgt_tsc_khz == 0)) {
3179                 local_irq_restore(flags);
3180                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3181                 return 1;
3182         }
3183         if (!use_master_clock) {
3184                 host_tsc = rdtsc();
3185                 kernel_ns = get_kvmclock_base_ns();
3186         }
3187
3188         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3189
3190         /*
3191          * We may have to catch up the TSC to match elapsed wall clock
3192          * time for two reasons, even if kvmclock is used.
3193          *   1) CPU could have been running below the maximum TSC rate
3194          *   2) Broken TSC compensation resets the base at each VCPU
3195          *      entry to avoid unknown leaps of TSC even when running
3196          *      again on the same CPU.  This may cause apparent elapsed
3197          *      time to disappear, and the guest to stand still or run
3198          *      very slowly.
3199          */
3200         if (vcpu->tsc_catchup) {
3201                 u64 tsc = compute_guest_tsc(v, kernel_ns);
3202                 if (tsc > tsc_timestamp) {
3203                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3204                         tsc_timestamp = tsc;
3205                 }
3206         }
3207
3208         local_irq_restore(flags);
3209
3210         /* With all the info we got, fill in the values */
3211
3212         if (kvm_caps.has_tsc_control)
3213                 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3214                                             v->arch.l1_tsc_scaling_ratio);
3215
3216         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3217                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3218                                    &vcpu->hv_clock.tsc_shift,
3219                                    &vcpu->hv_clock.tsc_to_system_mul);
3220                 vcpu->hw_tsc_khz = tgt_tsc_khz;
3221                 kvm_xen_update_tsc_info(v);
3222         }
3223
3224         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3225         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3226         vcpu->last_guest_tsc = tsc_timestamp;
3227
3228         /* If the host uses TSC clocksource, then it is stable */
3229         pvclock_flags = 0;
3230         if (use_master_clock)
3231                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3232
3233         vcpu->hv_clock.flags = pvclock_flags;
3234
3235         if (vcpu->pv_time.active)
3236                 kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0);
3237         if (vcpu->xen.vcpu_info_cache.active)
3238                 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache,
3239                                         offsetof(struct compat_vcpu_info, time));
3240         if (vcpu->xen.vcpu_time_info_cache.active)
3241                 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0);
3242         kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3243         return 0;
3244 }
3245
3246 /*
3247  * kvmclock updates which are isolated to a given vcpu, such as
3248  * vcpu->cpu migration, should not allow system_timestamp from
3249  * the rest of the vcpus to remain static. Otherwise ntp frequency
3250  * correction applies to one vcpu's system_timestamp but not
3251  * the others.
3252  *
3253  * So in those cases, request a kvmclock update for all vcpus.
3254  * We need to rate-limit these requests though, as they can
3255  * considerably slow guests that have a large number of vcpus.
3256  * The time for a remote vcpu to update its kvmclock is bound
3257  * by the delay we use to rate-limit the updates.
3258  */
3259
3260 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3261
3262 static void kvmclock_update_fn(struct work_struct *work)
3263 {
3264         unsigned long i;
3265         struct delayed_work *dwork = to_delayed_work(work);
3266         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3267                                            kvmclock_update_work);
3268         struct kvm *kvm = container_of(ka, struct kvm, arch);
3269         struct kvm_vcpu *vcpu;
3270
3271         kvm_for_each_vcpu(i, vcpu, kvm) {
3272                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3273                 kvm_vcpu_kick(vcpu);
3274         }
3275 }
3276
3277 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3278 {
3279         struct kvm *kvm = v->kvm;
3280
3281         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3282         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3283                                         KVMCLOCK_UPDATE_DELAY);
3284 }
3285
3286 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3287
3288 static void kvmclock_sync_fn(struct work_struct *work)
3289 {
3290         struct delayed_work *dwork = to_delayed_work(work);
3291         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3292                                            kvmclock_sync_work);
3293         struct kvm *kvm = container_of(ka, struct kvm, arch);
3294
3295         if (!kvmclock_periodic_sync)
3296                 return;
3297
3298         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3299         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3300                                         KVMCLOCK_SYNC_PERIOD);
3301 }
3302
3303 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */
3304 static bool is_mci_control_msr(u32 msr)
3305 {
3306         return (msr & 3) == 0;
3307 }
3308 static bool is_mci_status_msr(u32 msr)
3309 {
3310         return (msr & 3) == 1;
3311 }
3312
3313 /*
3314  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3315  */
3316 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3317 {
3318         /* McStatusWrEn enabled? */
3319         if (guest_cpuid_is_amd_or_hygon(vcpu))
3320                 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3321
3322         return false;
3323 }
3324
3325 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3326 {
3327         u64 mcg_cap = vcpu->arch.mcg_cap;
3328         unsigned bank_num = mcg_cap & 0xff;
3329         u32 msr = msr_info->index;
3330         u64 data = msr_info->data;
3331         u32 offset, last_msr;
3332
3333         switch (msr) {
3334         case MSR_IA32_MCG_STATUS:
3335                 vcpu->arch.mcg_status = data;
3336                 break;
3337         case MSR_IA32_MCG_CTL:
3338                 if (!(mcg_cap & MCG_CTL_P) &&
3339                     (data || !msr_info->host_initiated))
3340                         return 1;
3341                 if (data != 0 && data != ~(u64)0)
3342                         return 1;
3343                 vcpu->arch.mcg_ctl = data;
3344                 break;
3345         case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3346                 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3347                 if (msr > last_msr)
3348                         return 1;
3349
3350                 if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated))
3351                         return 1;
3352                 /* An attempt to write a 1 to a reserved bit raises #GP */
3353                 if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK))
3354                         return 1;
3355                 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3356                                             last_msr + 1 - MSR_IA32_MC0_CTL2);
3357                 vcpu->arch.mci_ctl2_banks[offset] = data;
3358                 break;
3359         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3360                 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3361                 if (msr > last_msr)
3362                         return 1;
3363
3364                 /*
3365                  * Only 0 or all 1s can be written to IA32_MCi_CTL, all other
3366                  * values are architecturally undefined.  But, some Linux
3367                  * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB
3368                  * issue on AMD K8s, allow bit 10 to be clear when setting all
3369                  * other bits in order to avoid an uncaught #GP in the guest.
3370                  *
3371                  * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable,
3372                  * single-bit ECC data errors.
3373                  */
3374                 if (is_mci_control_msr(msr) &&
3375                     data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
3376                         return 1;
3377
3378                 /*
3379                  * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR.
3380                  * AMD-based CPUs allow non-zero values, but if and only if
3381                  * HWCR[McStatusWrEn] is set.
3382                  */
3383                 if (!msr_info->host_initiated && is_mci_status_msr(msr) &&
3384                     data != 0 && !can_set_mci_status(vcpu))
3385                         return 1;
3386
3387                 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3388                                             last_msr + 1 - MSR_IA32_MC0_CTL);
3389                 vcpu->arch.mce_banks[offset] = data;
3390                 break;
3391         default:
3392                 return 1;
3393         }
3394         return 0;
3395 }
3396
3397 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3398 {
3399         u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3400
3401         return (vcpu->arch.apf.msr_en_val & mask) == mask;
3402 }
3403
3404 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3405 {
3406         gpa_t gpa = data & ~0x3f;
3407
3408         /* Bits 4:5 are reserved, Should be zero */
3409         if (data & 0x30)
3410                 return 1;
3411
3412         if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3413             (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3414                 return 1;
3415
3416         if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3417             (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3418                 return 1;
3419
3420         if (!lapic_in_kernel(vcpu))
3421                 return data ? 1 : 0;
3422
3423         vcpu->arch.apf.msr_en_val = data;
3424
3425         if (!kvm_pv_async_pf_enabled(vcpu)) {
3426                 kvm_clear_async_pf_completion_queue(vcpu);
3427                 kvm_async_pf_hash_reset(vcpu);
3428                 return 0;
3429         }
3430
3431         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3432                                         sizeof(u64)))
3433                 return 1;
3434
3435         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3436         vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3437
3438         kvm_async_pf_wakeup_all(vcpu);
3439
3440         return 0;
3441 }
3442
3443 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3444 {
3445         /* Bits 8-63 are reserved */
3446         if (data >> 8)
3447                 return 1;
3448
3449         if (!lapic_in_kernel(vcpu))
3450                 return 1;
3451
3452         vcpu->arch.apf.msr_int_val = data;
3453
3454         vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3455
3456         return 0;
3457 }
3458
3459 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3460 {
3461         kvm_gpc_deactivate(&vcpu->arch.pv_time);
3462         vcpu->arch.time = 0;
3463 }
3464
3465 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3466 {
3467         ++vcpu->stat.tlb_flush;
3468         static_call(kvm_x86_flush_tlb_all)(vcpu);
3469
3470         /* Flushing all ASIDs flushes the current ASID... */
3471         kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3472 }
3473
3474 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3475 {
3476         ++vcpu->stat.tlb_flush;
3477
3478         if (!tdp_enabled) {
3479                 /*
3480                  * A TLB flush on behalf of the guest is equivalent to
3481                  * INVPCID(all), toggling CR4.PGE, etc., which requires
3482                  * a forced sync of the shadow page tables.  Ensure all the
3483                  * roots are synced and the guest TLB in hardware is clean.
3484                  */
3485                 kvm_mmu_sync_roots(vcpu);
3486                 kvm_mmu_sync_prev_roots(vcpu);
3487         }
3488
3489         static_call(kvm_x86_flush_tlb_guest)(vcpu);
3490
3491         /*
3492          * Flushing all "guest" TLB is always a superset of Hyper-V's fine
3493          * grained flushing.
3494          */
3495         kvm_hv_vcpu_purge_flush_tlb(vcpu);
3496 }
3497
3498
3499 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3500 {
3501         ++vcpu->stat.tlb_flush;
3502         static_call(kvm_x86_flush_tlb_current)(vcpu);
3503 }
3504
3505 /*
3506  * Service "local" TLB flush requests, which are specific to the current MMU
3507  * context.  In addition to the generic event handling in vcpu_enter_guest(),
3508  * TLB flushes that are targeted at an MMU context also need to be serviced
3509  * prior before nested VM-Enter/VM-Exit.
3510  */
3511 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3512 {
3513         if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3514                 kvm_vcpu_flush_tlb_current(vcpu);
3515
3516         if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3517                 kvm_vcpu_flush_tlb_guest(vcpu);
3518 }
3519 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3520
3521 static void record_steal_time(struct kvm_vcpu *vcpu)
3522 {
3523         struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3524         struct kvm_steal_time __user *st;
3525         struct kvm_memslots *slots;
3526         gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3527         u64 steal;
3528         u32 version;
3529
3530         if (kvm_xen_msr_enabled(vcpu->kvm)) {
3531                 kvm_xen_runstate_set_running(vcpu);
3532                 return;
3533         }
3534
3535         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3536                 return;
3537
3538         if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3539                 return;
3540
3541         slots = kvm_memslots(vcpu->kvm);
3542
3543         if (unlikely(slots->generation != ghc->generation ||
3544                      gpa != ghc->gpa ||
3545                      kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3546                 /* We rely on the fact that it fits in a single page. */
3547                 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3548
3549                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) ||
3550                     kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3551                         return;
3552         }
3553
3554         st = (struct kvm_steal_time __user *)ghc->hva;
3555         /*
3556          * Doing a TLB flush here, on the guest's behalf, can avoid
3557          * expensive IPIs.
3558          */
3559         if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3560                 u8 st_preempted = 0;
3561                 int err = -EFAULT;
3562
3563                 if (!user_access_begin(st, sizeof(*st)))
3564                         return;
3565
3566                 asm volatile("1: xchgb %0, %2\n"
3567                              "xor %1, %1\n"
3568                              "2:\n"
3569                              _ASM_EXTABLE_UA(1b, 2b)
3570                              : "+q" (st_preempted),
3571                                "+&r" (err),
3572                                "+m" (st->preempted));
3573                 if (err)
3574                         goto out;
3575
3576                 user_access_end();
3577
3578                 vcpu->arch.st.preempted = 0;
3579
3580                 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3581                                        st_preempted & KVM_VCPU_FLUSH_TLB);
3582                 if (st_preempted & KVM_VCPU_FLUSH_TLB)
3583                         kvm_vcpu_flush_tlb_guest(vcpu);
3584
3585                 if (!user_access_begin(st, sizeof(*st)))
3586                         goto dirty;
3587         } else {
3588                 if (!user_access_begin(st, sizeof(*st)))
3589                         return;
3590
3591                 unsafe_put_user(0, &st->preempted, out);
3592                 vcpu->arch.st.preempted = 0;
3593         }
3594
3595         unsafe_get_user(version, &st->version, out);
3596         if (version & 1)
3597                 version += 1;  /* first time write, random junk */
3598
3599         version += 1;
3600         unsafe_put_user(version, &st->version, out);
3601
3602         smp_wmb();
3603
3604         unsafe_get_user(steal, &st->steal, out);
3605         steal += current->sched_info.run_delay -
3606                 vcpu->arch.st.last_steal;
3607         vcpu->arch.st.last_steal = current->sched_info.run_delay;
3608         unsafe_put_user(steal, &st->steal, out);
3609
3610         version += 1;
3611         unsafe_put_user(version, &st->version, out);
3612
3613  out:
3614         user_access_end();
3615  dirty:
3616         mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3617 }
3618
3619 static bool kvm_is_msr_to_save(u32 msr_index)
3620 {
3621         unsigned int i;
3622
3623         for (i = 0; i < num_msrs_to_save; i++) {
3624                 if (msrs_to_save[i] == msr_index)
3625                         return true;
3626         }
3627
3628         return false;
3629 }
3630
3631 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3632 {
3633         u32 msr = msr_info->index;
3634         u64 data = msr_info->data;
3635
3636         if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3637                 return kvm_xen_write_hypercall_page(vcpu, data);
3638
3639         switch (msr) {
3640         case MSR_AMD64_NB_CFG:
3641         case MSR_IA32_UCODE_WRITE:
3642         case MSR_VM_HSAVE_PA:
3643         case MSR_AMD64_PATCH_LOADER:
3644         case MSR_AMD64_BU_CFG2:
3645         case MSR_AMD64_DC_CFG:
3646         case MSR_F15H_EX_CFG:
3647                 break;
3648
3649         case MSR_IA32_UCODE_REV:
3650                 if (msr_info->host_initiated)
3651                         vcpu->arch.microcode_version = data;
3652                 break;
3653         case MSR_IA32_ARCH_CAPABILITIES:
3654                 if (!msr_info->host_initiated)
3655                         return 1;
3656                 vcpu->arch.arch_capabilities = data;
3657                 break;
3658         case MSR_IA32_PERF_CAPABILITIES:
3659                 if (!msr_info->host_initiated)
3660                         return 1;
3661                 if (data & ~kvm_caps.supported_perf_cap)
3662                         return 1;
3663
3664                 /*
3665                  * Note, this is not just a performance optimization!  KVM
3666                  * disallows changing feature MSRs after the vCPU has run; PMU
3667                  * refresh will bug the VM if called after the vCPU has run.
3668                  */
3669                 if (vcpu->arch.perf_capabilities == data)
3670                         break;
3671
3672                 vcpu->arch.perf_capabilities = data;
3673                 kvm_pmu_refresh(vcpu);
3674                 break;
3675         case MSR_IA32_PRED_CMD:
3676                 if (!msr_info->host_initiated && !guest_has_pred_cmd_msr(vcpu))
3677                         return 1;
3678
3679                 if (!boot_cpu_has(X86_FEATURE_IBPB) || (data & ~PRED_CMD_IBPB))
3680                         return 1;
3681                 if (!data)
3682                         break;
3683
3684                 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
3685                 break;
3686         case MSR_IA32_FLUSH_CMD:
3687                 if (!msr_info->host_initiated &&
3688                     !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D))
3689                         return 1;
3690
3691                 if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH))
3692                         return 1;
3693                 if (!data)
3694                         break;
3695
3696                 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
3697                 break;
3698         case MSR_EFER:
3699                 return set_efer(vcpu, msr_info);
3700         case MSR_K7_HWCR:
3701                 data &= ~(u64)0x40;     /* ignore flush filter disable */
3702                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
3703                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
3704
3705                 /* Handle McStatusWrEn */
3706                 if (data == BIT_ULL(18)) {
3707                         vcpu->arch.msr_hwcr = data;
3708                 } else if (data != 0) {
3709                         kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3710                         return 1;
3711                 }
3712                 break;
3713         case MSR_FAM10H_MMIO_CONF_BASE:
3714                 if (data != 0) {
3715                         kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3716                         return 1;
3717                 }
3718                 break;
3719         case MSR_IA32_CR_PAT:
3720                 if (!kvm_pat_valid(data))
3721                         return 1;
3722
3723                 vcpu->arch.pat = data;
3724                 break;
3725         case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
3726         case MSR_MTRRdefType:
3727                 return kvm_mtrr_set_msr(vcpu, msr, data);
3728         case MSR_IA32_APICBASE:
3729                 return kvm_set_apic_base(vcpu, msr_info);
3730         case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3731                 return kvm_x2apic_msr_write(vcpu, msr, data);
3732         case MSR_IA32_TSC_DEADLINE:
3733                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
3734                 break;
3735         case MSR_IA32_TSC_ADJUST:
3736                 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3737                         if (!msr_info->host_initiated) {
3738                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3739                                 adjust_tsc_offset_guest(vcpu, adj);
3740                                 /* Before back to guest, tsc_timestamp must be adjusted
3741                                  * as well, otherwise guest's percpu pvclock time could jump.
3742                                  */
3743                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3744                         }
3745                         vcpu->arch.ia32_tsc_adjust_msr = data;
3746                 }
3747                 break;
3748         case MSR_IA32_MISC_ENABLE: {
3749                 u64 old_val = vcpu->arch.ia32_misc_enable_msr;
3750
3751                 if (!msr_info->host_initiated) {
3752                         /* RO bits */
3753                         if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK)
3754                                 return 1;
3755
3756                         /* R bits, i.e. writes are ignored, but don't fault. */
3757                         data = data & ~MSR_IA32_MISC_ENABLE_EMON;
3758                         data |= old_val & MSR_IA32_MISC_ENABLE_EMON;
3759                 }
3760
3761                 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3762                     ((old_val ^ data)  & MSR_IA32_MISC_ENABLE_MWAIT)) {
3763                         if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3764                                 return 1;
3765                         vcpu->arch.ia32_misc_enable_msr = data;
3766                         kvm_update_cpuid_runtime(vcpu);
3767                 } else {
3768                         vcpu->arch.ia32_misc_enable_msr = data;
3769                 }
3770                 break;
3771         }
3772         case MSR_IA32_SMBASE:
3773                 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
3774                         return 1;
3775                 vcpu->arch.smbase = data;
3776                 break;
3777         case MSR_IA32_POWER_CTL:
3778                 vcpu->arch.msr_ia32_power_ctl = data;
3779                 break;
3780         case MSR_IA32_TSC:
3781                 if (msr_info->host_initiated) {
3782                         kvm_synchronize_tsc(vcpu, data);
3783                 } else {
3784                         u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3785                         adjust_tsc_offset_guest(vcpu, adj);
3786                         vcpu->arch.ia32_tsc_adjust_msr += adj;
3787                 }
3788                 break;
3789         case MSR_IA32_XSS:
3790                 if (!msr_info->host_initiated &&
3791                     !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3792                         return 1;
3793                 /*
3794                  * KVM supports exposing PT to the guest, but does not support
3795                  * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3796                  * XSAVES/XRSTORS to save/restore PT MSRs.
3797                  */
3798                 if (data & ~kvm_caps.supported_xss)
3799                         return 1;
3800                 vcpu->arch.ia32_xss = data;
3801                 kvm_update_cpuid_runtime(vcpu);
3802                 break;
3803         case MSR_SMI_COUNT:
3804                 if (!msr_info->host_initiated)
3805                         return 1;
3806                 vcpu->arch.smi_count = data;
3807                 break;
3808         case MSR_KVM_WALL_CLOCK_NEW:
3809                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3810                         return 1;
3811
3812                 vcpu->kvm->arch.wall_clock = data;
3813                 kvm_write_wall_clock(vcpu->kvm, data, 0);
3814                 break;
3815         case MSR_KVM_WALL_CLOCK:
3816                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3817                         return 1;
3818
3819                 vcpu->kvm->arch.wall_clock = data;
3820                 kvm_write_wall_clock(vcpu->kvm, data, 0);
3821                 break;
3822         case MSR_KVM_SYSTEM_TIME_NEW:
3823                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3824                         return 1;
3825
3826                 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3827                 break;
3828         case MSR_KVM_SYSTEM_TIME:
3829                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3830                         return 1;
3831
3832                 kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3833                 break;
3834         case MSR_KVM_ASYNC_PF_EN:
3835                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3836                         return 1;
3837
3838                 if (kvm_pv_enable_async_pf(vcpu, data))
3839                         return 1;
3840                 break;
3841         case MSR_KVM_ASYNC_PF_INT:
3842                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3843                         return 1;
3844
3845                 if (kvm_pv_enable_async_pf_int(vcpu, data))
3846                         return 1;
3847                 break;
3848         case MSR_KVM_ASYNC_PF_ACK:
3849                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3850                         return 1;
3851                 if (data & 0x1) {
3852                         vcpu->arch.apf.pageready_pending = false;
3853                         kvm_check_async_pf_completion(vcpu);
3854                 }
3855                 break;
3856         case MSR_KVM_STEAL_TIME:
3857                 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3858                         return 1;
3859
3860                 if (unlikely(!sched_info_on()))
3861                         return 1;
3862
3863                 if (data & KVM_STEAL_RESERVED_MASK)
3864                         return 1;
3865
3866                 vcpu->arch.st.msr_val = data;
3867
3868                 if (!(data & KVM_MSR_ENABLED))
3869                         break;
3870
3871                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3872
3873                 break;
3874         case MSR_KVM_PV_EOI_EN:
3875                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3876                         return 1;
3877
3878                 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
3879                         return 1;
3880                 break;
3881
3882         case MSR_KVM_POLL_CONTROL:
3883                 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3884                         return 1;
3885
3886                 /* only enable bit supported */
3887                 if (data & (-1ULL << 1))
3888                         return 1;
3889
3890                 vcpu->arch.msr_kvm_poll_control = data;
3891                 break;
3892
3893         case MSR_IA32_MCG_CTL:
3894         case MSR_IA32_MCG_STATUS:
3895         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3896         case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3897                 return set_msr_mce(vcpu, msr_info);
3898
3899         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3900         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3901         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3902         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3903                 if (kvm_pmu_is_valid_msr(vcpu, msr))
3904                         return kvm_pmu_set_msr(vcpu, msr_info);
3905
3906                 if (data)
3907                         kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3908                 break;
3909         case MSR_K7_CLK_CTL:
3910                 /*
3911                  * Ignore all writes to this no longer documented MSR.
3912                  * Writes are only relevant for old K7 processors,
3913                  * all pre-dating SVM, but a recommended workaround from
3914                  * AMD for these chips. It is possible to specify the
3915                  * affected processor models on the command line, hence
3916                  * the need to ignore the workaround.
3917                  */
3918                 break;
3919         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3920         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3921         case HV_X64_MSR_SYNDBG_OPTIONS:
3922         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3923         case HV_X64_MSR_CRASH_CTL:
3924         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3925         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3926         case HV_X64_MSR_TSC_EMULATION_CONTROL:
3927         case HV_X64_MSR_TSC_EMULATION_STATUS:
3928         case HV_X64_MSR_TSC_INVARIANT_CONTROL:
3929                 return kvm_hv_set_msr_common(vcpu, msr, data,
3930                                              msr_info->host_initiated);
3931         case MSR_IA32_BBL_CR_CTL3:
3932                 /* Drop writes to this legacy MSR -- see rdmsr
3933                  * counterpart for further detail.
3934                  */
3935                 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3936                 break;
3937         case MSR_AMD64_OSVW_ID_LENGTH:
3938                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3939                         return 1;
3940                 vcpu->arch.osvw.length = data;
3941                 break;
3942         case MSR_AMD64_OSVW_STATUS:
3943                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3944                         return 1;
3945                 vcpu->arch.osvw.status = data;
3946                 break;
3947         case MSR_PLATFORM_INFO:
3948                 if (!msr_info->host_initiated ||
3949                     (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3950                      cpuid_fault_enabled(vcpu)))
3951                         return 1;
3952                 vcpu->arch.msr_platform_info = data;
3953                 break;
3954         case MSR_MISC_FEATURES_ENABLES:
3955                 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3956                     (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3957                      !supports_cpuid_fault(vcpu)))
3958                         return 1;
3959                 vcpu->arch.msr_misc_features_enables = data;
3960                 break;
3961 #ifdef CONFIG_X86_64
3962         case MSR_IA32_XFD:
3963                 if (!msr_info->host_initiated &&
3964                     !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3965                         return 1;
3966
3967                 if (data & ~kvm_guest_supported_xfd(vcpu))
3968                         return 1;
3969
3970                 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
3971                 break;
3972         case MSR_IA32_XFD_ERR:
3973                 if (!msr_info->host_initiated &&
3974                     !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3975                         return 1;
3976
3977                 if (data & ~kvm_guest_supported_xfd(vcpu))
3978                         return 1;
3979
3980                 vcpu->arch.guest_fpu.xfd_err = data;
3981                 break;
3982 #endif
3983         default:
3984                 if (kvm_pmu_is_valid_msr(vcpu, msr))
3985                         return kvm_pmu_set_msr(vcpu, msr_info);
3986
3987                 /*
3988                  * Userspace is allowed to write '0' to MSRs that KVM reports
3989                  * as to-be-saved, even if an MSRs isn't fully supported.
3990                  */
3991                 if (msr_info->host_initiated && !data &&
3992                     kvm_is_msr_to_save(msr))
3993                         break;
3994
3995                 return KVM_MSR_RET_INVALID;
3996         }
3997         return 0;
3998 }
3999 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
4000
4001 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
4002 {
4003         u64 data;
4004         u64 mcg_cap = vcpu->arch.mcg_cap;
4005         unsigned bank_num = mcg_cap & 0xff;
4006         u32 offset, last_msr;
4007
4008         switch (msr) {
4009         case MSR_IA32_P5_MC_ADDR:
4010         case MSR_IA32_P5_MC_TYPE:
4011                 data = 0;
4012                 break;
4013         case MSR_IA32_MCG_CAP:
4014                 data = vcpu->arch.mcg_cap;
4015                 break;
4016         case MSR_IA32_MCG_CTL:
4017                 if (!(mcg_cap & MCG_CTL_P) && !host)
4018                         return 1;
4019                 data = vcpu->arch.mcg_ctl;
4020                 break;
4021         case MSR_IA32_MCG_STATUS:
4022                 data = vcpu->arch.mcg_status;
4023                 break;
4024         case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4025                 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
4026                 if (msr > last_msr)
4027                         return 1;
4028
4029                 if (!(mcg_cap & MCG_CMCI_P) && !host)
4030                         return 1;
4031                 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
4032                                             last_msr + 1 - MSR_IA32_MC0_CTL2);
4033                 data = vcpu->arch.mci_ctl2_banks[offset];
4034                 break;
4035         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4036                 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
4037                 if (msr > last_msr)
4038                         return 1;
4039
4040                 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
4041                                             last_msr + 1 - MSR_IA32_MC0_CTL);
4042                 data = vcpu->arch.mce_banks[offset];
4043                 break;
4044         default:
4045                 return 1;
4046         }
4047         *pdata = data;
4048         return 0;
4049 }
4050
4051 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4052 {
4053         switch (msr_info->index) {
4054         case MSR_IA32_PLATFORM_ID:
4055         case MSR_IA32_EBL_CR_POWERON:
4056         case MSR_IA32_LASTBRANCHFROMIP:
4057         case MSR_IA32_LASTBRANCHTOIP:
4058         case MSR_IA32_LASTINTFROMIP:
4059         case MSR_IA32_LASTINTTOIP:
4060         case MSR_AMD64_SYSCFG:
4061         case MSR_K8_TSEG_ADDR:
4062         case MSR_K8_TSEG_MASK:
4063         case MSR_VM_HSAVE_PA:
4064         case MSR_K8_INT_PENDING_MSG:
4065         case MSR_AMD64_NB_CFG:
4066         case MSR_FAM10H_MMIO_CONF_BASE:
4067         case MSR_AMD64_BU_CFG2:
4068         case MSR_IA32_PERF_CTL:
4069         case MSR_AMD64_DC_CFG:
4070         case MSR_F15H_EX_CFG:
4071         /*
4072          * Intel Sandy Bridge CPUs must support the RAPL (running average power
4073          * limit) MSRs. Just return 0, as we do not want to expose the host
4074          * data here. Do not conditionalize this on CPUID, as KVM does not do
4075          * so for existing CPU-specific MSRs.
4076          */
4077         case MSR_RAPL_POWER_UNIT:
4078         case MSR_PP0_ENERGY_STATUS:     /* Power plane 0 (core) */
4079         case MSR_PP1_ENERGY_STATUS:     /* Power plane 1 (graphics uncore) */
4080         case MSR_PKG_ENERGY_STATUS:     /* Total package */
4081         case MSR_DRAM_ENERGY_STATUS:    /* DRAM controller */
4082                 msr_info->data = 0;
4083                 break;
4084         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4085         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4086         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4087         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4088                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4089                         return kvm_pmu_get_msr(vcpu, msr_info);
4090                 msr_info->data = 0;
4091                 break;
4092         case MSR_IA32_UCODE_REV:
4093                 msr_info->data = vcpu->arch.microcode_version;
4094                 break;
4095         case MSR_IA32_ARCH_CAPABILITIES:
4096                 if (!msr_info->host_initiated &&
4097                     !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
4098                         return 1;
4099                 msr_info->data = vcpu->arch.arch_capabilities;
4100                 break;
4101         case MSR_IA32_PERF_CAPABILITIES:
4102                 if (!msr_info->host_initiated &&
4103                     !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
4104                         return 1;
4105                 msr_info->data = vcpu->arch.perf_capabilities;
4106                 break;
4107         case MSR_IA32_POWER_CTL:
4108                 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
4109                 break;
4110         case MSR_IA32_TSC: {
4111                 /*
4112                  * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
4113                  * even when not intercepted. AMD manual doesn't explicitly
4114                  * state this but appears to behave the same.
4115                  *
4116                  * On userspace reads and writes, however, we unconditionally
4117                  * return L1's TSC value to ensure backwards-compatible
4118                  * behavior for migration.
4119                  */
4120                 u64 offset, ratio;
4121
4122                 if (msr_info->host_initiated) {
4123                         offset = vcpu->arch.l1_tsc_offset;
4124                         ratio = vcpu->arch.l1_tsc_scaling_ratio;
4125                 } else {
4126                         offset = vcpu->arch.tsc_offset;
4127                         ratio = vcpu->arch.tsc_scaling_ratio;
4128                 }
4129
4130                 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
4131                 break;
4132         }
4133         case MSR_IA32_CR_PAT:
4134                 msr_info->data = vcpu->arch.pat;
4135                 break;
4136         case MSR_MTRRcap:
4137         case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
4138         case MSR_MTRRdefType:
4139                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
4140         case 0xcd: /* fsb frequency */
4141                 msr_info->data = 3;
4142                 break;
4143                 /*
4144                  * MSR_EBC_FREQUENCY_ID
4145                  * Conservative value valid for even the basic CPU models.
4146                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
4147                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
4148                  * and 266MHz for model 3, or 4. Set Core Clock
4149                  * Frequency to System Bus Frequency Ratio to 1 (bits
4150                  * 31:24) even though these are only valid for CPU
4151                  * models > 2, however guests may end up dividing or
4152                  * multiplying by zero otherwise.
4153                  */
4154         case MSR_EBC_FREQUENCY_ID:
4155                 msr_info->data = 1 << 24;
4156                 break;
4157         case MSR_IA32_APICBASE:
4158                 msr_info->data = kvm_get_apic_base(vcpu);
4159                 break;
4160         case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
4161                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
4162         case MSR_IA32_TSC_DEADLINE:
4163                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
4164                 break;
4165         case MSR_IA32_TSC_ADJUST:
4166                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
4167                 break;
4168         case MSR_IA32_MISC_ENABLE:
4169                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
4170                 break;
4171         case MSR_IA32_SMBASE:
4172                 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
4173                         return 1;
4174                 msr_info->data = vcpu->arch.smbase;
4175                 break;
4176         case MSR_SMI_COUNT:
4177                 msr_info->data = vcpu->arch.smi_count;
4178                 break;
4179         case MSR_IA32_PERF_STATUS:
4180                 /* TSC increment by tick */
4181                 msr_info->data = 1000ULL;
4182                 /* CPU multiplier */
4183                 msr_info->data |= (((uint64_t)4ULL) << 40);
4184                 break;
4185         case MSR_EFER:
4186                 msr_info->data = vcpu->arch.efer;
4187                 break;
4188         case MSR_KVM_WALL_CLOCK:
4189                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4190                         return 1;
4191
4192                 msr_info->data = vcpu->kvm->arch.wall_clock;
4193                 break;
4194         case MSR_KVM_WALL_CLOCK_NEW:
4195                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4196                         return 1;
4197
4198                 msr_info->data = vcpu->kvm->arch.wall_clock;
4199                 break;
4200         case MSR_KVM_SYSTEM_TIME:
4201                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4202                         return 1;
4203
4204                 msr_info->data = vcpu->arch.time;
4205                 break;
4206         case MSR_KVM_SYSTEM_TIME_NEW:
4207                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4208                         return 1;
4209
4210                 msr_info->data = vcpu->arch.time;
4211                 break;
4212         case MSR_KVM_ASYNC_PF_EN:
4213                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4214                         return 1;
4215
4216                 msr_info->data = vcpu->arch.apf.msr_en_val;
4217                 break;
4218         case MSR_KVM_ASYNC_PF_INT:
4219                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4220                         return 1;
4221
4222                 msr_info->data = vcpu->arch.apf.msr_int_val;
4223                 break;
4224         case MSR_KVM_ASYNC_PF_ACK:
4225                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4226                         return 1;
4227
4228                 msr_info->data = 0;
4229                 break;
4230         case MSR_KVM_STEAL_TIME:
4231                 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4232                         return 1;
4233
4234                 msr_info->data = vcpu->arch.st.msr_val;
4235                 break;
4236         case MSR_KVM_PV_EOI_EN:
4237                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4238                         return 1;
4239
4240                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
4241                 break;
4242         case MSR_KVM_POLL_CONTROL:
4243                 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4244                         return 1;
4245
4246                 msr_info->data = vcpu->arch.msr_kvm_poll_control;
4247                 break;
4248         case MSR_IA32_P5_MC_ADDR:
4249         case MSR_IA32_P5_MC_TYPE:
4250         case MSR_IA32_MCG_CAP:
4251         case MSR_IA32_MCG_CTL:
4252         case MSR_IA32_MCG_STATUS:
4253         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4254         case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4255                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4256                                    msr_info->host_initiated);
4257         case MSR_IA32_XSS:
4258                 if (!msr_info->host_initiated &&
4259                     !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4260                         return 1;
4261                 msr_info->data = vcpu->arch.ia32_xss;
4262                 break;
4263         case MSR_K7_CLK_CTL:
4264                 /*
4265                  * Provide expected ramp-up count for K7. All other
4266                  * are set to zero, indicating minimum divisors for
4267                  * every field.
4268                  *
4269                  * This prevents guest kernels on AMD host with CPU
4270                  * type 6, model 8 and higher from exploding due to
4271                  * the rdmsr failing.
4272                  */
4273                 msr_info->data = 0x20000000;
4274                 break;
4275         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4276         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4277         case HV_X64_MSR_SYNDBG_OPTIONS:
4278         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4279         case HV_X64_MSR_CRASH_CTL:
4280         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4281         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4282         case HV_X64_MSR_TSC_EMULATION_CONTROL:
4283         case HV_X64_MSR_TSC_EMULATION_STATUS:
4284         case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4285                 return kvm_hv_get_msr_common(vcpu,
4286                                              msr_info->index, &msr_info->data,
4287                                              msr_info->host_initiated);
4288         case MSR_IA32_BBL_CR_CTL3:
4289                 /* This legacy MSR exists but isn't fully documented in current
4290                  * silicon.  It is however accessed by winxp in very narrow
4291                  * scenarios where it sets bit #19, itself documented as
4292                  * a "reserved" bit.  Best effort attempt to source coherent
4293                  * read data here should the balance of the register be
4294                  * interpreted by the guest:
4295                  *
4296                  * L2 cache control register 3: 64GB range, 256KB size,
4297                  * enabled, latency 0x1, configured
4298                  */
4299                 msr_info->data = 0xbe702111;
4300                 break;
4301         case MSR_AMD64_OSVW_ID_LENGTH:
4302                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4303                         return 1;
4304                 msr_info->data = vcpu->arch.osvw.length;
4305                 break;
4306         case MSR_AMD64_OSVW_STATUS:
4307                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4308                         return 1;
4309                 msr_info->data = vcpu->arch.osvw.status;
4310                 break;
4311         case MSR_PLATFORM_INFO:
4312                 if (!msr_info->host_initiated &&
4313                     !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4314                         return 1;
4315                 msr_info->data = vcpu->arch.msr_platform_info;
4316                 break;
4317         case MSR_MISC_FEATURES_ENABLES:
4318                 msr_info->data = vcpu->arch.msr_misc_features_enables;
4319                 break;
4320         case MSR_K7_HWCR:
4321                 msr_info->data = vcpu->arch.msr_hwcr;
4322                 break;
4323 #ifdef CONFIG_X86_64
4324         case MSR_IA32_XFD:
4325                 if (!msr_info->host_initiated &&
4326                     !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4327                         return 1;
4328
4329                 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4330                 break;
4331         case MSR_IA32_XFD_ERR:
4332                 if (!msr_info->host_initiated &&
4333                     !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4334                         return 1;
4335
4336                 msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4337                 break;
4338 #endif
4339         default:
4340                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4341                         return kvm_pmu_get_msr(vcpu, msr_info);
4342
4343                 /*
4344                  * Userspace is allowed to read MSRs that KVM reports as
4345                  * to-be-saved, even if an MSR isn't fully supported.
4346                  */
4347                 if (msr_info->host_initiated &&
4348                     kvm_is_msr_to_save(msr_info->index)) {
4349                         msr_info->data = 0;
4350                         break;
4351                 }
4352
4353                 return KVM_MSR_RET_INVALID;
4354         }
4355         return 0;
4356 }
4357 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4358
4359 /*
4360  * Read or write a bunch of msrs. All parameters are kernel addresses.
4361  *
4362  * @return number of msrs set successfully.
4363  */
4364 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4365                     struct kvm_msr_entry *entries,
4366                     int (*do_msr)(struct kvm_vcpu *vcpu,
4367                                   unsigned index, u64 *data))
4368 {
4369         int i;
4370
4371         for (i = 0; i < msrs->nmsrs; ++i)
4372                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
4373                         break;
4374
4375         return i;
4376 }
4377
4378 /*
4379  * Read or write a bunch of msrs. Parameters are user addresses.
4380  *
4381  * @return number of msrs set successfully.
4382  */
4383 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4384                   int (*do_msr)(struct kvm_vcpu *vcpu,
4385                                 unsigned index, u64 *data),
4386                   int writeback)
4387 {
4388         struct kvm_msrs msrs;
4389         struct kvm_msr_entry *entries;
4390         unsigned size;
4391         int r;
4392
4393         r = -EFAULT;
4394         if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4395                 goto out;
4396
4397         r = -E2BIG;
4398         if (msrs.nmsrs >= MAX_IO_MSRS)
4399                 goto out;
4400
4401         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4402         entries = memdup_user(user_msrs->entries, size);
4403         if (IS_ERR(entries)) {
4404                 r = PTR_ERR(entries);
4405                 goto out;
4406         }
4407
4408         r = __msr_io(vcpu, &msrs, entries, do_msr);
4409
4410         if (writeback && copy_to_user(user_msrs->entries, entries, size))
4411                 r = -EFAULT;
4412
4413         kfree(entries);
4414 out:
4415         return r;
4416 }
4417
4418 static inline bool kvm_can_mwait_in_guest(void)
4419 {
4420         return boot_cpu_has(X86_FEATURE_MWAIT) &&
4421                 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
4422                 boot_cpu_has(X86_FEATURE_ARAT);
4423 }
4424
4425 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4426                                             struct kvm_cpuid2 __user *cpuid_arg)
4427 {
4428         struct kvm_cpuid2 cpuid;
4429         int r;
4430
4431         r = -EFAULT;
4432         if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4433                 return r;
4434
4435         r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4436         if (r)
4437                 return r;
4438
4439         r = -EFAULT;
4440         if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4441                 return r;
4442
4443         return 0;
4444 }
4445
4446 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4447 {
4448         int r = 0;
4449
4450         switch (ext) {
4451         case KVM_CAP_IRQCHIP:
4452         case KVM_CAP_HLT:
4453         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4454         case KVM_CAP_SET_TSS_ADDR:
4455         case KVM_CAP_EXT_CPUID:
4456         case KVM_CAP_EXT_EMUL_CPUID:
4457         case KVM_CAP_CLOCKSOURCE:
4458         case KVM_CAP_PIT:
4459         case KVM_CAP_NOP_IO_DELAY:
4460         case KVM_CAP_MP_STATE:
4461         case KVM_CAP_SYNC_MMU:
4462         case KVM_CAP_USER_NMI:
4463         case KVM_CAP_REINJECT_CONTROL:
4464         case KVM_CAP_IRQ_INJECT_STATUS:
4465         case KVM_CAP_IOEVENTFD:
4466         case KVM_CAP_IOEVENTFD_NO_LENGTH:
4467         case KVM_CAP_PIT2:
4468         case KVM_CAP_PIT_STATE2:
4469         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4470         case KVM_CAP_VCPU_EVENTS:
4471         case KVM_CAP_HYPERV:
4472         case KVM_CAP_HYPERV_VAPIC:
4473         case KVM_CAP_HYPERV_SPIN:
4474         case KVM_CAP_HYPERV_SYNIC:
4475         case KVM_CAP_HYPERV_SYNIC2:
4476         case KVM_CAP_HYPERV_VP_INDEX:
4477         case KVM_CAP_HYPERV_EVENTFD:
4478         case KVM_CAP_HYPERV_TLBFLUSH:
4479         case KVM_CAP_HYPERV_SEND_IPI:
4480         case KVM_CAP_HYPERV_CPUID:
4481         case KVM_CAP_HYPERV_ENFORCE_CPUID:
4482         case KVM_CAP_SYS_HYPERV_CPUID:
4483         case KVM_CAP_PCI_SEGMENT:
4484         case KVM_CAP_DEBUGREGS:
4485         case KVM_CAP_X86_ROBUST_SINGLESTEP:
4486         case KVM_CAP_XSAVE:
4487         case KVM_CAP_ASYNC_PF:
4488         case KVM_CAP_ASYNC_PF_INT:
4489         case KVM_CAP_GET_TSC_KHZ:
4490         case KVM_CAP_KVMCLOCK_CTRL:
4491         case KVM_CAP_READONLY_MEM:
4492         case KVM_CAP_HYPERV_TIME:
4493         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4494         case KVM_CAP_TSC_DEADLINE_TIMER:
4495         case KVM_CAP_DISABLE_QUIRKS:
4496         case KVM_CAP_SET_BOOT_CPU_ID:
4497         case KVM_CAP_SPLIT_IRQCHIP:
4498         case KVM_CAP_IMMEDIATE_EXIT:
4499         case KVM_CAP_PMU_EVENT_FILTER:
4500         case KVM_CAP_PMU_EVENT_MASKED_EVENTS:
4501         case KVM_CAP_GET_MSR_FEATURES:
4502         case KVM_CAP_MSR_PLATFORM_INFO:
4503         case KVM_CAP_EXCEPTION_PAYLOAD:
4504         case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
4505         case KVM_CAP_SET_GUEST_DEBUG:
4506         case KVM_CAP_LAST_CPU:
4507         case KVM_CAP_X86_USER_SPACE_MSR:
4508         case KVM_CAP_X86_MSR_FILTER:
4509         case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4510 #ifdef CONFIG_X86_SGX_KVM
4511         case KVM_CAP_SGX_ATTRIBUTE:
4512 #endif
4513         case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4514         case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4515         case KVM_CAP_SREGS2:
4516         case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4517         case KVM_CAP_VCPU_ATTRIBUTES:
4518         case KVM_CAP_SYS_ATTRIBUTES:
4519         case KVM_CAP_VAPIC:
4520         case KVM_CAP_ENABLE_CAP:
4521         case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
4522         case KVM_CAP_IRQFD_RESAMPLE:
4523                 r = 1;
4524                 break;
4525         case KVM_CAP_EXIT_HYPERCALL:
4526                 r = KVM_EXIT_HYPERCALL_VALID_MASK;
4527                 break;
4528         case KVM_CAP_SET_GUEST_DEBUG2:
4529                 return KVM_GUESTDBG_VALID_MASK;
4530 #ifdef CONFIG_KVM_XEN
4531         case KVM_CAP_XEN_HVM:
4532                 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4533                     KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4534                     KVM_XEN_HVM_CONFIG_SHARED_INFO |
4535                     KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL |
4536                     KVM_XEN_HVM_CONFIG_EVTCHN_SEND;
4537                 if (sched_info_on())
4538                         r |= KVM_XEN_HVM_CONFIG_RUNSTATE |
4539                              KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG;
4540                 break;
4541 #endif
4542         case KVM_CAP_SYNC_REGS:
4543                 r = KVM_SYNC_X86_VALID_FIELDS;
4544                 break;
4545         case KVM_CAP_ADJUST_CLOCK:
4546                 r = KVM_CLOCK_VALID_FLAGS;
4547                 break;
4548         case KVM_CAP_X86_DISABLE_EXITS:
4549                 r = KVM_X86_DISABLE_EXITS_PAUSE;
4550
4551                 if (!mitigate_smt_rsb) {
4552                         r |= KVM_X86_DISABLE_EXITS_HLT |
4553                              KVM_X86_DISABLE_EXITS_CSTATE;
4554
4555                         if (kvm_can_mwait_in_guest())
4556                                 r |= KVM_X86_DISABLE_EXITS_MWAIT;
4557                 }
4558                 break;
4559         case KVM_CAP_X86_SMM:
4560                 if (!IS_ENABLED(CONFIG_KVM_SMM))
4561                         break;
4562
4563                 /* SMBASE is usually relocated above 1M on modern chipsets,
4564                  * and SMM handlers might indeed rely on 4G segment limits,
4565                  * so do not report SMM to be available if real mode is
4566                  * emulated via vm86 mode.  Still, do not go to great lengths
4567                  * to avoid userspace's usage of the feature, because it is a
4568                  * fringe case that is not enabled except via specific settings
4569                  * of the module parameters.
4570                  */
4571                 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4572                 break;
4573         case KVM_CAP_NR_VCPUS:
4574                 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4575                 break;
4576         case KVM_CAP_MAX_VCPUS:
4577                 r = KVM_MAX_VCPUS;
4578                 break;
4579         case KVM_CAP_MAX_VCPU_ID:
4580                 r = KVM_MAX_VCPU_IDS;
4581                 break;
4582         case KVM_CAP_PV_MMU:    /* obsolete */
4583                 r = 0;
4584                 break;
4585         case KVM_CAP_MCE:
4586                 r = KVM_MAX_MCE_BANKS;
4587                 break;
4588         case KVM_CAP_XCRS:
4589                 r = boot_cpu_has(X86_FEATURE_XSAVE);
4590                 break;
4591         case KVM_CAP_TSC_CONTROL:
4592         case KVM_CAP_VM_TSC_CONTROL:
4593                 r = kvm_caps.has_tsc_control;
4594                 break;
4595         case KVM_CAP_X2APIC_API:
4596                 r = KVM_X2APIC_API_VALID_FLAGS;
4597                 break;
4598         case KVM_CAP_NESTED_STATE:
4599                 r = kvm_x86_ops.nested_ops->get_state ?
4600                         kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4601                 break;
4602         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4603                 r = kvm_x86_ops.enable_l2_tlb_flush != NULL;
4604                 break;
4605         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4606                 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4607                 break;
4608         case KVM_CAP_SMALLER_MAXPHYADDR:
4609                 r = (int) allow_smaller_maxphyaddr;
4610                 break;
4611         case KVM_CAP_STEAL_TIME:
4612                 r = sched_info_on();
4613                 break;
4614         case KVM_CAP_X86_BUS_LOCK_EXIT:
4615                 if (kvm_caps.has_bus_lock_exit)
4616                         r = KVM_BUS_LOCK_DETECTION_OFF |
4617                             KVM_BUS_LOCK_DETECTION_EXIT;
4618                 else
4619                         r = 0;
4620                 break;
4621         case KVM_CAP_XSAVE2: {
4622                 r = xstate_required_size(kvm_get_filtered_xcr0(), false);
4623                 if (r < sizeof(struct kvm_xsave))
4624                         r = sizeof(struct kvm_xsave);
4625                 break;
4626         }
4627         case KVM_CAP_PMU_CAPABILITY:
4628                 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4629                 break;
4630         case KVM_CAP_DISABLE_QUIRKS2:
4631                 r = KVM_X86_VALID_QUIRKS;
4632                 break;
4633         case KVM_CAP_X86_NOTIFY_VMEXIT:
4634                 r = kvm_caps.has_notify_vmexit;
4635                 break;
4636         default:
4637                 break;
4638         }
4639         return r;
4640 }
4641
4642 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr)
4643 {
4644         void __user *uaddr = (void __user*)(unsigned long)attr->addr;
4645
4646         if ((u64)(unsigned long)uaddr != attr->addr)
4647                 return ERR_PTR_USR(-EFAULT);
4648         return uaddr;
4649 }
4650
4651 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4652 {
4653         u64 __user *uaddr = kvm_get_attr_addr(attr);
4654
4655         if (attr->group)
4656                 return -ENXIO;
4657
4658         if (IS_ERR(uaddr))
4659                 return PTR_ERR(uaddr);
4660
4661         switch (attr->attr) {
4662         case KVM_X86_XCOMP_GUEST_SUPP:
4663                 if (put_user(kvm_caps.supported_xcr0, uaddr))
4664                         return -EFAULT;
4665                 return 0;
4666         default:
4667                 return -ENXIO;
4668                 break;
4669         }
4670 }
4671
4672 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4673 {
4674         if (attr->group)
4675                 return -ENXIO;
4676
4677         switch (attr->attr) {
4678         case KVM_X86_XCOMP_GUEST_SUPP:
4679                 return 0;
4680         default:
4681                 return -ENXIO;
4682         }
4683 }
4684
4685 long kvm_arch_dev_ioctl(struct file *filp,
4686                         unsigned int ioctl, unsigned long arg)
4687 {
4688         void __user *argp = (void __user *)arg;
4689         long r;
4690
4691         switch (ioctl) {
4692         case KVM_GET_MSR_INDEX_LIST: {
4693                 struct kvm_msr_list __user *user_msr_list = argp;
4694                 struct kvm_msr_list msr_list;
4695                 unsigned n;
4696
4697                 r = -EFAULT;
4698                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4699                         goto out;
4700                 n = msr_list.nmsrs;
4701                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4702                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4703                         goto out;
4704                 r = -E2BIG;
4705                 if (n < msr_list.nmsrs)
4706                         goto out;
4707                 r = -EFAULT;
4708                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4709                                  num_msrs_to_save * sizeof(u32)))
4710                         goto out;
4711                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4712                                  &emulated_msrs,
4713                                  num_emulated_msrs * sizeof(u32)))
4714                         goto out;
4715                 r = 0;
4716                 break;
4717         }
4718         case KVM_GET_SUPPORTED_CPUID:
4719         case KVM_GET_EMULATED_CPUID: {
4720                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4721                 struct kvm_cpuid2 cpuid;
4722
4723                 r = -EFAULT;
4724                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4725                         goto out;
4726
4727                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4728                                             ioctl);
4729                 if (r)
4730                         goto out;
4731
4732                 r = -EFAULT;
4733                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4734                         goto out;
4735                 r = 0;
4736                 break;
4737         }
4738         case KVM_X86_GET_MCE_CAP_SUPPORTED:
4739                 r = -EFAULT;
4740                 if (copy_to_user(argp, &kvm_caps.supported_mce_cap,
4741                                  sizeof(kvm_caps.supported_mce_cap)))
4742                         goto out;
4743                 r = 0;
4744                 break;
4745         case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4746                 struct kvm_msr_list __user *user_msr_list = argp;
4747                 struct kvm_msr_list msr_list;
4748                 unsigned int n;
4749
4750                 r = -EFAULT;
4751                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4752                         goto out;
4753                 n = msr_list.nmsrs;
4754                 msr_list.nmsrs = num_msr_based_features;
4755                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4756                         goto out;
4757                 r = -E2BIG;
4758                 if (n < msr_list.nmsrs)
4759                         goto out;
4760                 r = -EFAULT;
4761                 if (copy_to_user(user_msr_list->indices, &msr_based_features,
4762                                  num_msr_based_features * sizeof(u32)))
4763                         goto out;
4764                 r = 0;
4765                 break;
4766         }
4767         case KVM_GET_MSRS:
4768                 r = msr_io(NULL, argp, do_get_msr_feature, 1);
4769                 break;
4770         case KVM_GET_SUPPORTED_HV_CPUID:
4771                 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4772                 break;
4773         case KVM_GET_DEVICE_ATTR: {
4774                 struct kvm_device_attr attr;
4775                 r = -EFAULT;
4776                 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4777                         break;
4778                 r = kvm_x86_dev_get_attr(&attr);
4779                 break;
4780         }
4781         case KVM_HAS_DEVICE_ATTR: {
4782                 struct kvm_device_attr attr;
4783                 r = -EFAULT;
4784                 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4785                         break;
4786                 r = kvm_x86_dev_has_attr(&attr);
4787                 break;
4788         }
4789         default:
4790                 r = -EINVAL;
4791                 break;
4792         }
4793 out:
4794         return r;
4795 }
4796
4797 static void wbinvd_ipi(void *garbage)
4798 {
4799         wbinvd();
4800 }
4801
4802 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4803 {
4804         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4805 }
4806
4807 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4808 {
4809         /* Address WBINVD may be executed by guest */
4810         if (need_emulate_wbinvd(vcpu)) {
4811                 if (static_call(kvm_x86_has_wbinvd_exit)())
4812                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4813                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4814                         smp_call_function_single(vcpu->cpu,
4815                                         wbinvd_ipi, NULL, 1);
4816         }
4817
4818         static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4819
4820         /* Save host pkru register if supported */
4821         vcpu->arch.host_pkru = read_pkru();
4822
4823         /* Apply any externally detected TSC adjustments (due to suspend) */
4824         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4825                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4826                 vcpu->arch.tsc_offset_adjustment = 0;
4827                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4828         }
4829
4830         if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4831                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4832                                 rdtsc() - vcpu->arch.last_host_tsc;
4833                 if (tsc_delta < 0)
4834                         mark_tsc_unstable("KVM discovered backwards TSC");
4835
4836                 if (kvm_check_tsc_unstable()) {
4837                         u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4838                                                 vcpu->arch.last_guest_tsc);
4839                         kvm_vcpu_write_tsc_offset(vcpu, offset);
4840                         vcpu->arch.tsc_catchup = 1;
4841                 }
4842
4843                 if (kvm_lapic_hv_timer_in_use(vcpu))
4844                         kvm_lapic_restart_hv_timer(vcpu);
4845
4846                 /*
4847                  * On a host with synchronized TSC, there is no need to update
4848                  * kvmclock on vcpu->cpu migration
4849                  */
4850                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4851                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4852                 if (vcpu->cpu != cpu)
4853                         kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4854                 vcpu->cpu = cpu;
4855         }
4856
4857         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4858 }
4859
4860 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4861 {
4862         struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
4863         struct kvm_steal_time __user *st;
4864         struct kvm_memslots *slots;
4865         static const u8 preempted = KVM_VCPU_PREEMPTED;
4866         gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
4867
4868         /*
4869          * The vCPU can be marked preempted if and only if the VM-Exit was on
4870          * an instruction boundary and will not trigger guest emulation of any
4871          * kind (see vcpu_run).  Vendor specific code controls (conservatively)
4872          * when this is true, for example allowing the vCPU to be marked
4873          * preempted if and only if the VM-Exit was due to a host interrupt.
4874          */
4875         if (!vcpu->arch.at_instruction_boundary) {
4876                 vcpu->stat.preemption_other++;
4877                 return;
4878         }
4879
4880         vcpu->stat.preemption_reported++;
4881         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4882                 return;
4883
4884         if (vcpu->arch.st.preempted)
4885                 return;
4886
4887         /* This happens on process exit */
4888         if (unlikely(current->mm != vcpu->kvm->mm))
4889                 return;
4890
4891         slots = kvm_memslots(vcpu->kvm);
4892
4893         if (unlikely(slots->generation != ghc->generation ||
4894                      gpa != ghc->gpa ||
4895                      kvm_is_error_hva(ghc->hva) || !ghc->memslot))
4896                 return;
4897
4898         st = (struct kvm_steal_time __user *)ghc->hva;
4899         BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
4900
4901         if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
4902                 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4903
4904         mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
4905 }
4906
4907 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4908 {
4909         int idx;
4910
4911         if (vcpu->preempted) {
4912                 if (!vcpu->arch.guest_state_protected)
4913                         vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4914
4915                 /*
4916                  * Take the srcu lock as memslots will be accessed to check the gfn
4917                  * cache generation against the memslots generation.
4918                  */
4919                 idx = srcu_read_lock(&vcpu->kvm->srcu);
4920                 if (kvm_xen_msr_enabled(vcpu->kvm))
4921                         kvm_xen_runstate_set_preempted(vcpu);
4922                 else
4923                         kvm_steal_time_set_preempted(vcpu);
4924                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4925         }
4926
4927         static_call(kvm_x86_vcpu_put)(vcpu);
4928         vcpu->arch.last_host_tsc = rdtsc();
4929 }
4930
4931 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4932                                     struct kvm_lapic_state *s)
4933 {
4934         static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
4935
4936         return kvm_apic_get_state(vcpu, s);
4937 }
4938
4939 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4940                                     struct kvm_lapic_state *s)
4941 {
4942         int r;
4943
4944         r = kvm_apic_set_state(vcpu, s);
4945         if (r)
4946                 return r;
4947         update_cr8_intercept(vcpu);
4948
4949         return 0;
4950 }
4951
4952 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4953 {
4954         /*
4955          * We can accept userspace's request for interrupt injection
4956          * as long as we have a place to store the interrupt number.
4957          * The actual injection will happen when the CPU is able to
4958          * deliver the interrupt.
4959          */
4960         if (kvm_cpu_has_extint(vcpu))
4961                 return false;
4962
4963         /* Acknowledging ExtINT does not happen if LINT0 is masked.  */
4964         return (!lapic_in_kernel(vcpu) ||
4965                 kvm_apic_accept_pic_intr(vcpu));
4966 }
4967
4968 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4969 {
4970         /*
4971          * Do not cause an interrupt window exit if an exception
4972          * is pending or an event needs reinjection; userspace
4973          * might want to inject the interrupt manually using KVM_SET_REGS
4974          * or KVM_SET_SREGS.  For that to work, we must be at an
4975          * instruction boundary and with no events half-injected.
4976          */
4977         return (kvm_arch_interrupt_allowed(vcpu) &&
4978                 kvm_cpu_accept_dm_intr(vcpu) &&
4979                 !kvm_event_needs_reinjection(vcpu) &&
4980                 !kvm_is_exception_pending(vcpu));
4981 }
4982
4983 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4984                                     struct kvm_interrupt *irq)
4985 {
4986         if (irq->irq >= KVM_NR_INTERRUPTS)
4987                 return -EINVAL;
4988
4989         if (!irqchip_in_kernel(vcpu->kvm)) {
4990                 kvm_queue_interrupt(vcpu, irq->irq, false);
4991                 kvm_make_request(KVM_REQ_EVENT, vcpu);
4992                 return 0;
4993         }
4994
4995         /*
4996          * With in-kernel LAPIC, we only use this to inject EXTINT, so
4997          * fail for in-kernel 8259.
4998          */
4999         if (pic_in_kernel(vcpu->kvm))
5000                 return -ENXIO;
5001
5002         if (vcpu->arch.pending_external_vector != -1)
5003                 return -EEXIST;
5004
5005         vcpu->arch.pending_external_vector = irq->irq;
5006         kvm_make_request(KVM_REQ_EVENT, vcpu);
5007         return 0;
5008 }
5009
5010 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
5011 {
5012         kvm_inject_nmi(vcpu);
5013
5014         return 0;
5015 }
5016
5017 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
5018                                            struct kvm_tpr_access_ctl *tac)
5019 {
5020         if (tac->flags)
5021                 return -EINVAL;
5022         vcpu->arch.tpr_access_reporting = !!tac->enabled;
5023         return 0;
5024 }
5025
5026 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
5027                                         u64 mcg_cap)
5028 {
5029         int r;
5030         unsigned bank_num = mcg_cap & 0xff, bank;
5031
5032         r = -EINVAL;
5033         if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
5034                 goto out;
5035         if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000))
5036                 goto out;
5037         r = 0;
5038         vcpu->arch.mcg_cap = mcg_cap;
5039         /* Init IA32_MCG_CTL to all 1s */
5040         if (mcg_cap & MCG_CTL_P)
5041                 vcpu->arch.mcg_ctl = ~(u64)0;
5042         /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */
5043         for (bank = 0; bank < bank_num; bank++) {
5044                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
5045                 if (mcg_cap & MCG_CMCI_P)
5046                         vcpu->arch.mci_ctl2_banks[bank] = 0;
5047         }
5048
5049         kvm_apic_after_set_mcg_cap(vcpu);
5050
5051         static_call(kvm_x86_setup_mce)(vcpu);
5052 out:
5053         return r;
5054 }
5055
5056 /*
5057  * Validate this is an UCNA (uncorrectable no action) error by checking the
5058  * MCG_STATUS and MCi_STATUS registers:
5059  * - none of the bits for Machine Check Exceptions are set
5060  * - both the VAL (valid) and UC (uncorrectable) bits are set
5061  * MCI_STATUS_PCC - Processor Context Corrupted
5062  * MCI_STATUS_S - Signaled as a Machine Check Exception
5063  * MCI_STATUS_AR - Software recoverable Action Required
5064  */
5065 static bool is_ucna(struct kvm_x86_mce *mce)
5066 {
5067         return  !mce->mcg_status &&
5068                 !(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) &&
5069                 (mce->status & MCI_STATUS_VAL) &&
5070                 (mce->status & MCI_STATUS_UC);
5071 }
5072
5073 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks)
5074 {
5075         u64 mcg_cap = vcpu->arch.mcg_cap;
5076
5077         banks[1] = mce->status;
5078         banks[2] = mce->addr;
5079         banks[3] = mce->misc;
5080         vcpu->arch.mcg_status = mce->mcg_status;
5081
5082         if (!(mcg_cap & MCG_CMCI_P) ||
5083             !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN))
5084                 return 0;
5085
5086         if (lapic_in_kernel(vcpu))
5087                 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI);
5088
5089         return 0;
5090 }
5091
5092 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
5093                                       struct kvm_x86_mce *mce)
5094 {
5095         u64 mcg_cap = vcpu->arch.mcg_cap;
5096         unsigned bank_num = mcg_cap & 0xff;
5097         u64 *banks = vcpu->arch.mce_banks;
5098
5099         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
5100                 return -EINVAL;
5101
5102         banks += array_index_nospec(4 * mce->bank, 4 * bank_num);
5103
5104         if (is_ucna(mce))
5105                 return kvm_vcpu_x86_set_ucna(vcpu, mce, banks);
5106
5107         /*
5108          * if IA32_MCG_CTL is not all 1s, the uncorrected error
5109          * reporting is disabled
5110          */
5111         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
5112             vcpu->arch.mcg_ctl != ~(u64)0)
5113                 return 0;
5114         /*
5115          * if IA32_MCi_CTL is not all 1s, the uncorrected error
5116          * reporting is disabled for the bank
5117          */
5118         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
5119                 return 0;
5120         if (mce->status & MCI_STATUS_UC) {
5121                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
5122                     !kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) {
5123                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5124                         return 0;
5125                 }
5126                 if (banks[1] & MCI_STATUS_VAL)
5127                         mce->status |= MCI_STATUS_OVER;
5128                 banks[2] = mce->addr;
5129                 banks[3] = mce->misc;
5130                 vcpu->arch.mcg_status = mce->mcg_status;
5131                 banks[1] = mce->status;
5132                 kvm_queue_exception(vcpu, MC_VECTOR);
5133         } else if (!(banks[1] & MCI_STATUS_VAL)
5134                    || !(banks[1] & MCI_STATUS_UC)) {
5135                 if (banks[1] & MCI_STATUS_VAL)
5136                         mce->status |= MCI_STATUS_OVER;
5137                 banks[2] = mce->addr;
5138                 banks[3] = mce->misc;
5139                 banks[1] = mce->status;
5140         } else
5141                 banks[1] |= MCI_STATUS_OVER;
5142         return 0;
5143 }
5144
5145 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
5146                                                struct kvm_vcpu_events *events)
5147 {
5148         struct kvm_queued_exception *ex;
5149
5150         process_nmi(vcpu);
5151
5152 #ifdef CONFIG_KVM_SMM
5153         if (kvm_check_request(KVM_REQ_SMI, vcpu))
5154                 process_smi(vcpu);
5155 #endif
5156
5157         /*
5158          * KVM's ABI only allows for one exception to be migrated.  Luckily,
5159          * the only time there can be two queued exceptions is if there's a
5160          * non-exiting _injected_ exception, and a pending exiting exception.
5161          * In that case, ignore the VM-Exiting exception as it's an extension
5162          * of the injected exception.
5163          */
5164         if (vcpu->arch.exception_vmexit.pending &&
5165             !vcpu->arch.exception.pending &&
5166             !vcpu->arch.exception.injected)
5167                 ex = &vcpu->arch.exception_vmexit;
5168         else
5169                 ex = &vcpu->arch.exception;
5170
5171         /*
5172          * In guest mode, payload delivery should be deferred if the exception
5173          * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1
5174          * intercepts #PF, ditto for DR6 and #DBs.  If the per-VM capability,
5175          * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not
5176          * propagate the payload and so it cannot be safely deferred.  Deliver
5177          * the payload if the capability hasn't been requested.
5178          */
5179         if (!vcpu->kvm->arch.exception_payload_enabled &&
5180             ex->pending && ex->has_payload)
5181                 kvm_deliver_exception_payload(vcpu, ex);
5182
5183         memset(events, 0, sizeof(*events));
5184
5185         /*
5186          * The API doesn't provide the instruction length for software
5187          * exceptions, so don't report them. As long as the guest RIP
5188          * isn't advanced, we should expect to encounter the exception
5189          * again.
5190          */
5191         if (!kvm_exception_is_soft(ex->vector)) {
5192                 events->exception.injected = ex->injected;
5193                 events->exception.pending = ex->pending;
5194                 /*
5195                  * For ABI compatibility, deliberately conflate
5196                  * pending and injected exceptions when
5197                  * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
5198                  */
5199                 if (!vcpu->kvm->arch.exception_payload_enabled)
5200                         events->exception.injected |= ex->pending;
5201         }
5202         events->exception.nr = ex->vector;
5203         events->exception.has_error_code = ex->has_error_code;
5204         events->exception.error_code = ex->error_code;
5205         events->exception_has_payload = ex->has_payload;
5206         events->exception_payload = ex->payload;
5207
5208         events->interrupt.injected =
5209                 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
5210         events->interrupt.nr = vcpu->arch.interrupt.nr;
5211         events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
5212
5213         events->nmi.injected = vcpu->arch.nmi_injected;
5214         events->nmi.pending = kvm_get_nr_pending_nmis(vcpu);
5215         events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
5216
5217         /* events->sipi_vector is never valid when reporting to user space */
5218
5219 #ifdef CONFIG_KVM_SMM
5220         events->smi.smm = is_smm(vcpu);
5221         events->smi.pending = vcpu->arch.smi_pending;
5222         events->smi.smm_inside_nmi =
5223                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
5224 #endif
5225         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
5226
5227         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
5228                          | KVM_VCPUEVENT_VALID_SHADOW
5229                          | KVM_VCPUEVENT_VALID_SMM);
5230         if (vcpu->kvm->arch.exception_payload_enabled)
5231                 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
5232         if (vcpu->kvm->arch.triple_fault_event) {
5233                 events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5234                 events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
5235         }
5236 }
5237
5238 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
5239                                               struct kvm_vcpu_events *events)
5240 {
5241         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
5242                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
5243                               | KVM_VCPUEVENT_VALID_SHADOW
5244                               | KVM_VCPUEVENT_VALID_SMM
5245                               | KVM_VCPUEVENT_VALID_PAYLOAD
5246                               | KVM_VCPUEVENT_VALID_TRIPLE_FAULT))
5247                 return -EINVAL;
5248
5249         if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
5250                 if (!vcpu->kvm->arch.exception_payload_enabled)
5251                         return -EINVAL;
5252                 if (events->exception.pending)
5253                         events->exception.injected = 0;
5254                 else
5255                         events->exception_has_payload = 0;
5256         } else {
5257                 events->exception.pending = 0;
5258                 events->exception_has_payload = 0;
5259         }
5260
5261         if ((events->exception.injected || events->exception.pending) &&
5262             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
5263                 return -EINVAL;
5264
5265         /* INITs are latched while in SMM */
5266         if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
5267             (events->smi.smm || events->smi.pending) &&
5268             vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
5269                 return -EINVAL;
5270
5271         process_nmi(vcpu);
5272
5273         /*
5274          * Flag that userspace is stuffing an exception, the next KVM_RUN will
5275          * morph the exception to a VM-Exit if appropriate.  Do this only for
5276          * pending exceptions, already-injected exceptions are not subject to
5277          * intercpetion.  Note, userspace that conflates pending and injected
5278          * is hosed, and will incorrectly convert an injected exception into a
5279          * pending exception, which in turn may cause a spurious VM-Exit.
5280          */
5281         vcpu->arch.exception_from_userspace = events->exception.pending;
5282
5283         vcpu->arch.exception_vmexit.pending = false;
5284
5285         vcpu->arch.exception.injected = events->exception.injected;
5286         vcpu->arch.exception.pending = events->exception.pending;
5287         vcpu->arch.exception.vector = events->exception.nr;
5288         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
5289         vcpu->arch.exception.error_code = events->exception.error_code;
5290         vcpu->arch.exception.has_payload = events->exception_has_payload;
5291         vcpu->arch.exception.payload = events->exception_payload;
5292
5293         vcpu->arch.interrupt.injected = events->interrupt.injected;
5294         vcpu->arch.interrupt.nr = events->interrupt.nr;
5295         vcpu->arch.interrupt.soft = events->interrupt.soft;
5296         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
5297                 static_call(kvm_x86_set_interrupt_shadow)(vcpu,
5298                                                 events->interrupt.shadow);
5299
5300         vcpu->arch.nmi_injected = events->nmi.injected;
5301         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) {
5302                 vcpu->arch.nmi_pending = 0;
5303                 atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending);
5304                 kvm_make_request(KVM_REQ_NMI, vcpu);
5305         }
5306         static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
5307
5308         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
5309             lapic_in_kernel(vcpu))
5310                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
5311
5312         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
5313 #ifdef CONFIG_KVM_SMM
5314                 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
5315                         kvm_leave_nested(vcpu);
5316                         kvm_smm_changed(vcpu, events->smi.smm);
5317                 }
5318
5319                 vcpu->arch.smi_pending = events->smi.pending;
5320
5321                 if (events->smi.smm) {
5322                         if (events->smi.smm_inside_nmi)
5323                                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
5324                         else
5325                                 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
5326                 }
5327
5328 #else
5329                 if (events->smi.smm || events->smi.pending ||
5330                     events->smi.smm_inside_nmi)
5331                         return -EINVAL;
5332 #endif
5333
5334                 if (lapic_in_kernel(vcpu)) {
5335                         if (events->smi.latched_init)
5336                                 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5337                         else
5338                                 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5339                 }
5340         }
5341
5342         if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
5343                 if (!vcpu->kvm->arch.triple_fault_event)
5344                         return -EINVAL;
5345                 if (events->triple_fault.pending)
5346                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5347                 else
5348                         kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5349         }
5350
5351         kvm_make_request(KVM_REQ_EVENT, vcpu);
5352
5353         return 0;
5354 }
5355
5356 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
5357                                              struct kvm_debugregs *dbgregs)
5358 {
5359         unsigned long val;
5360
5361         memset(dbgregs, 0, sizeof(*dbgregs));
5362         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
5363         kvm_get_dr(vcpu, 6, &val);
5364         dbgregs->dr6 = val;
5365         dbgregs->dr7 = vcpu->arch.dr7;
5366 }
5367
5368 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5369                                             struct kvm_debugregs *dbgregs)
5370 {
5371         if (dbgregs->flags)
5372                 return -EINVAL;
5373
5374         if (!kvm_dr6_valid(dbgregs->dr6))
5375                 return -EINVAL;
5376         if (!kvm_dr7_valid(dbgregs->dr7))
5377                 return -EINVAL;
5378
5379         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
5380         kvm_update_dr0123(vcpu);
5381         vcpu->arch.dr6 = dbgregs->dr6;
5382         vcpu->arch.dr7 = dbgregs->dr7;
5383         kvm_update_dr7(vcpu);
5384
5385         return 0;
5386 }
5387
5388 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5389                                          struct kvm_xsave *guest_xsave)
5390 {
5391         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5392                 return;
5393
5394         fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5395                                        guest_xsave->region,
5396                                        sizeof(guest_xsave->region),
5397                                        vcpu->arch.pkru);
5398 }
5399
5400 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5401                                           u8 *state, unsigned int size)
5402 {
5403         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5404                 return;
5405
5406         fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5407                                        state, size, vcpu->arch.pkru);
5408 }
5409
5410 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5411                                         struct kvm_xsave *guest_xsave)
5412 {
5413         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5414                 return 0;
5415
5416         return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5417                                               guest_xsave->region,
5418                                               kvm_caps.supported_xcr0,
5419                                               &vcpu->arch.pkru);
5420 }
5421
5422 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5423                                         struct kvm_xcrs *guest_xcrs)
5424 {
5425         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5426                 guest_xcrs->nr_xcrs = 0;
5427                 return;
5428         }
5429
5430         guest_xcrs->nr_xcrs = 1;
5431         guest_xcrs->flags = 0;
5432         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5433         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5434 }
5435
5436 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5437                                        struct kvm_xcrs *guest_xcrs)
5438 {
5439         int i, r = 0;
5440
5441         if (!boot_cpu_has(X86_FEATURE_XSAVE))
5442                 return -EINVAL;
5443
5444         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5445                 return -EINVAL;
5446
5447         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5448                 /* Only support XCR0 currently */
5449                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5450                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5451                                 guest_xcrs->xcrs[i].value);
5452                         break;
5453                 }
5454         if (r)
5455                 r = -EINVAL;
5456         return r;
5457 }
5458
5459 /*
5460  * kvm_set_guest_paused() indicates to the guest kernel that it has been
5461  * stopped by the hypervisor.  This function will be called from the host only.
5462  * EINVAL is returned when the host attempts to set the flag for a guest that
5463  * does not support pv clocks.
5464  */
5465 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5466 {
5467         if (!vcpu->arch.pv_time.active)
5468                 return -EINVAL;
5469         vcpu->arch.pvclock_set_guest_stopped_request = true;
5470         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5471         return 0;
5472 }
5473
5474 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5475                                  struct kvm_device_attr *attr)
5476 {
5477         int r;
5478
5479         switch (attr->attr) {
5480         case KVM_VCPU_TSC_OFFSET:
5481                 r = 0;
5482                 break;
5483         default:
5484                 r = -ENXIO;
5485         }
5486
5487         return r;
5488 }
5489
5490 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5491                                  struct kvm_device_attr *attr)
5492 {
5493         u64 __user *uaddr = kvm_get_attr_addr(attr);
5494         int r;
5495
5496         if (IS_ERR(uaddr))
5497                 return PTR_ERR(uaddr);
5498
5499         switch (attr->attr) {
5500         case KVM_VCPU_TSC_OFFSET:
5501                 r = -EFAULT;
5502                 if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5503                         break;
5504                 r = 0;
5505                 break;
5506         default:
5507                 r = -ENXIO;
5508         }
5509
5510         return r;
5511 }
5512
5513 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5514                                  struct kvm_device_attr *attr)
5515 {
5516         u64 __user *uaddr = kvm_get_attr_addr(attr);
5517         struct kvm *kvm = vcpu->kvm;
5518         int r;
5519
5520         if (IS_ERR(uaddr))
5521                 return PTR_ERR(uaddr);
5522
5523         switch (attr->attr) {
5524         case KVM_VCPU_TSC_OFFSET: {
5525                 u64 offset, tsc, ns;
5526                 unsigned long flags;
5527                 bool matched;
5528
5529                 r = -EFAULT;
5530                 if (get_user(offset, uaddr))
5531                         break;
5532
5533                 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5534
5535                 matched = (vcpu->arch.virtual_tsc_khz &&
5536                            kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5537                            kvm->arch.last_tsc_offset == offset);
5538
5539                 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5540                 ns = get_kvmclock_base_ns();
5541
5542                 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5543                 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5544
5545                 r = 0;
5546                 break;
5547         }
5548         default:
5549                 r = -ENXIO;
5550         }
5551
5552         return r;
5553 }
5554
5555 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5556                                       unsigned int ioctl,
5557                                       void __user *argp)
5558 {
5559         struct kvm_device_attr attr;
5560         int r;
5561
5562         if (copy_from_user(&attr, argp, sizeof(attr)))
5563                 return -EFAULT;
5564
5565         if (attr.group != KVM_VCPU_TSC_CTRL)
5566                 return -ENXIO;
5567
5568         switch (ioctl) {
5569         case KVM_HAS_DEVICE_ATTR:
5570                 r = kvm_arch_tsc_has_attr(vcpu, &attr);
5571                 break;
5572         case KVM_GET_DEVICE_ATTR:
5573                 r = kvm_arch_tsc_get_attr(vcpu, &attr);
5574                 break;
5575         case KVM_SET_DEVICE_ATTR:
5576                 r = kvm_arch_tsc_set_attr(vcpu, &attr);
5577                 break;
5578         }
5579
5580         return r;
5581 }
5582
5583 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5584                                      struct kvm_enable_cap *cap)
5585 {
5586         int r;
5587         uint16_t vmcs_version;
5588         void __user *user_ptr;
5589
5590         if (cap->flags)
5591                 return -EINVAL;
5592
5593         switch (cap->cap) {
5594         case KVM_CAP_HYPERV_SYNIC2:
5595                 if (cap->args[0])
5596                         return -EINVAL;
5597                 fallthrough;
5598
5599         case KVM_CAP_HYPERV_SYNIC:
5600                 if (!irqchip_in_kernel(vcpu->kvm))
5601                         return -EINVAL;
5602                 return kvm_hv_activate_synic(vcpu, cap->cap ==
5603                                              KVM_CAP_HYPERV_SYNIC2);
5604         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5605                 if (!kvm_x86_ops.nested_ops->enable_evmcs)
5606                         return -ENOTTY;
5607                 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5608                 if (!r) {
5609                         user_ptr = (void __user *)(uintptr_t)cap->args[0];
5610                         if (copy_to_user(user_ptr, &vmcs_version,
5611                                          sizeof(vmcs_version)))
5612                                 r = -EFAULT;
5613                 }
5614                 return r;
5615         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5616                 if (!kvm_x86_ops.enable_l2_tlb_flush)
5617                         return -ENOTTY;
5618
5619                 return static_call(kvm_x86_enable_l2_tlb_flush)(vcpu);
5620
5621         case KVM_CAP_HYPERV_ENFORCE_CPUID:
5622                 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5623
5624         case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5625                 vcpu->arch.pv_cpuid.enforce = cap->args[0];
5626                 if (vcpu->arch.pv_cpuid.enforce)
5627                         kvm_update_pv_runtime(vcpu);
5628
5629                 return 0;
5630         default:
5631                 return -EINVAL;
5632         }
5633 }
5634
5635 long kvm_arch_vcpu_ioctl(struct file *filp,
5636                          unsigned int ioctl, unsigned long arg)
5637 {
5638         struct kvm_vcpu *vcpu = filp->private_data;
5639         void __user *argp = (void __user *)arg;
5640         int r;
5641         union {
5642                 struct kvm_sregs2 *sregs2;
5643                 struct kvm_lapic_state *lapic;
5644                 struct kvm_xsave *xsave;
5645                 struct kvm_xcrs *xcrs;
5646                 void *buffer;
5647         } u;
5648
5649         vcpu_load(vcpu);
5650
5651         u.buffer = NULL;
5652         switch (ioctl) {
5653         case KVM_GET_LAPIC: {
5654                 r = -EINVAL;
5655                 if (!lapic_in_kernel(vcpu))
5656                         goto out;
5657                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5658                                 GFP_KERNEL_ACCOUNT);
5659
5660                 r = -ENOMEM;
5661                 if (!u.lapic)
5662                         goto out;
5663                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5664                 if (r)
5665                         goto out;
5666                 r = -EFAULT;
5667                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5668                         goto out;
5669                 r = 0;
5670                 break;
5671         }
5672         case KVM_SET_LAPIC: {
5673                 r = -EINVAL;
5674                 if (!lapic_in_kernel(vcpu))
5675                         goto out;
5676                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
5677                 if (IS_ERR(u.lapic)) {
5678                         r = PTR_ERR(u.lapic);
5679                         goto out_nofree;
5680                 }
5681
5682                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5683                 break;
5684         }
5685         case KVM_INTERRUPT: {
5686                 struct kvm_interrupt irq;
5687
5688                 r = -EFAULT;
5689                 if (copy_from_user(&irq, argp, sizeof(irq)))
5690                         goto out;
5691                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5692                 break;
5693         }
5694         case KVM_NMI: {
5695                 r = kvm_vcpu_ioctl_nmi(vcpu);
5696                 break;
5697         }
5698         case KVM_SMI: {
5699                 r = kvm_inject_smi(vcpu);
5700                 break;
5701         }
5702         case KVM_SET_CPUID: {
5703                 struct kvm_cpuid __user *cpuid_arg = argp;
5704                 struct kvm_cpuid cpuid;
5705
5706                 r = -EFAULT;
5707                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5708                         goto out;
5709                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5710                 break;
5711         }
5712         case KVM_SET_CPUID2: {
5713                 struct kvm_cpuid2 __user *cpuid_arg = argp;
5714                 struct kvm_cpuid2 cpuid;
5715
5716                 r = -EFAULT;
5717                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5718                         goto out;
5719                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5720                                               cpuid_arg->entries);
5721                 break;
5722         }
5723         case KVM_GET_CPUID2: {
5724                 struct kvm_cpuid2 __user *cpuid_arg = argp;
5725                 struct kvm_cpuid2 cpuid;
5726
5727                 r = -EFAULT;
5728                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5729                         goto out;
5730                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5731                                               cpuid_arg->entries);
5732                 if (r)
5733                         goto out;
5734                 r = -EFAULT;
5735                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5736                         goto out;
5737                 r = 0;
5738                 break;
5739         }
5740         case KVM_GET_MSRS: {
5741                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5742                 r = msr_io(vcpu, argp, do_get_msr, 1);
5743                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5744                 break;
5745         }
5746         case KVM_SET_MSRS: {
5747                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5748                 r = msr_io(vcpu, argp, do_set_msr, 0);
5749                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5750                 break;
5751         }
5752         case KVM_TPR_ACCESS_REPORTING: {
5753                 struct kvm_tpr_access_ctl tac;
5754
5755                 r = -EFAULT;
5756                 if (copy_from_user(&tac, argp, sizeof(tac)))
5757                         goto out;
5758                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5759                 if (r)
5760                         goto out;
5761                 r = -EFAULT;
5762                 if (copy_to_user(argp, &tac, sizeof(tac)))
5763                         goto out;
5764                 r = 0;
5765                 break;
5766         };
5767         case KVM_SET_VAPIC_ADDR: {
5768                 struct kvm_vapic_addr va;
5769                 int idx;
5770
5771                 r = -EINVAL;
5772                 if (!lapic_in_kernel(vcpu))
5773                         goto out;
5774                 r = -EFAULT;
5775                 if (copy_from_user(&va, argp, sizeof(va)))
5776                         goto out;
5777                 idx = srcu_read_lock(&vcpu->kvm->srcu);
5778                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5779                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5780                 break;
5781         }
5782         case KVM_X86_SETUP_MCE: {
5783                 u64 mcg_cap;
5784
5785                 r = -EFAULT;
5786                 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5787                         goto out;
5788                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5789                 break;
5790         }
5791         case KVM_X86_SET_MCE: {
5792                 struct kvm_x86_mce mce;
5793
5794                 r = -EFAULT;
5795                 if (copy_from_user(&mce, argp, sizeof(mce)))
5796                         goto out;
5797                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5798                 break;
5799         }
5800         case KVM_GET_VCPU_EVENTS: {
5801                 struct kvm_vcpu_events events;
5802
5803                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5804
5805                 r = -EFAULT;
5806                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5807                         break;
5808                 r = 0;
5809                 break;
5810         }
5811         case KVM_SET_VCPU_EVENTS: {
5812                 struct kvm_vcpu_events events;
5813
5814                 r = -EFAULT;
5815                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5816                         break;
5817
5818                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5819                 break;
5820         }
5821         case KVM_GET_DEBUGREGS: {
5822                 struct kvm_debugregs dbgregs;
5823
5824                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5825
5826                 r = -EFAULT;
5827                 if (copy_to_user(argp, &dbgregs,
5828                                  sizeof(struct kvm_debugregs)))
5829                         break;
5830                 r = 0;
5831                 break;
5832         }
5833         case KVM_SET_DEBUGREGS: {
5834                 struct kvm_debugregs dbgregs;
5835
5836                 r = -EFAULT;
5837                 if (copy_from_user(&dbgregs, argp,
5838                                    sizeof(struct kvm_debugregs)))
5839                         break;
5840
5841                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5842                 break;
5843         }
5844         case KVM_GET_XSAVE: {
5845                 r = -EINVAL;
5846                 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
5847                         break;
5848
5849                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5850                 r = -ENOMEM;
5851                 if (!u.xsave)
5852                         break;
5853
5854                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5855
5856                 r = -EFAULT;
5857                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5858                         break;
5859                 r = 0;
5860                 break;
5861         }
5862         case KVM_SET_XSAVE: {
5863                 int size = vcpu->arch.guest_fpu.uabi_size;
5864
5865                 u.xsave = memdup_user(argp, size);
5866                 if (IS_ERR(u.xsave)) {
5867                         r = PTR_ERR(u.xsave);
5868                         goto out_nofree;
5869                 }
5870
5871                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5872                 break;
5873         }
5874
5875         case KVM_GET_XSAVE2: {
5876                 int size = vcpu->arch.guest_fpu.uabi_size;
5877
5878                 u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT);
5879                 r = -ENOMEM;
5880                 if (!u.xsave)
5881                         break;
5882
5883                 kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
5884
5885                 r = -EFAULT;
5886                 if (copy_to_user(argp, u.xsave, size))
5887                         break;
5888
5889                 r = 0;
5890                 break;
5891         }
5892
5893         case KVM_GET_XCRS: {
5894                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5895                 r = -ENOMEM;
5896                 if (!u.xcrs)
5897                         break;
5898
5899                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5900
5901                 r = -EFAULT;
5902                 if (copy_to_user(argp, u.xcrs,
5903                                  sizeof(struct kvm_xcrs)))
5904                         break;
5905                 r = 0;
5906                 break;
5907         }
5908         case KVM_SET_XCRS: {
5909                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5910                 if (IS_ERR(u.xcrs)) {
5911                         r = PTR_ERR(u.xcrs);
5912                         goto out_nofree;
5913                 }
5914
5915                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5916                 break;
5917         }
5918         case KVM_SET_TSC_KHZ: {
5919                 u32 user_tsc_khz;
5920
5921                 r = -EINVAL;
5922                 user_tsc_khz = (u32)arg;
5923
5924                 if (kvm_caps.has_tsc_control &&
5925                     user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
5926                         goto out;
5927
5928                 if (user_tsc_khz == 0)
5929                         user_tsc_khz = tsc_khz;
5930
5931                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5932                         r = 0;
5933
5934                 goto out;
5935         }
5936         case KVM_GET_TSC_KHZ: {
5937                 r = vcpu->arch.virtual_tsc_khz;
5938                 goto out;
5939         }
5940         case KVM_KVMCLOCK_CTRL: {
5941                 r = kvm_set_guest_paused(vcpu);
5942                 goto out;
5943         }
5944         case KVM_ENABLE_CAP: {
5945                 struct kvm_enable_cap cap;
5946
5947                 r = -EFAULT;
5948                 if (copy_from_user(&cap, argp, sizeof(cap)))
5949                         goto out;
5950                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5951                 break;
5952         }
5953         case KVM_GET_NESTED_STATE: {
5954                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5955                 u32 user_data_size;
5956
5957                 r = -EINVAL;
5958                 if (!kvm_x86_ops.nested_ops->get_state)
5959                         break;
5960
5961                 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5962                 r = -EFAULT;
5963                 if (get_user(user_data_size, &user_kvm_nested_state->size))
5964                         break;
5965
5966                 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5967                                                      user_data_size);
5968                 if (r < 0)
5969                         break;
5970
5971                 if (r > user_data_size) {
5972                         if (put_user(r, &user_kvm_nested_state->size))
5973                                 r = -EFAULT;
5974                         else
5975                                 r = -E2BIG;
5976                         break;
5977                 }
5978
5979                 r = 0;
5980                 break;
5981         }
5982         case KVM_SET_NESTED_STATE: {
5983                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5984                 struct kvm_nested_state kvm_state;
5985                 int idx;
5986
5987                 r = -EINVAL;
5988                 if (!kvm_x86_ops.nested_ops->set_state)
5989                         break;
5990
5991                 r = -EFAULT;
5992                 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5993                         break;
5994
5995                 r = -EINVAL;
5996                 if (kvm_state.size < sizeof(kvm_state))
5997                         break;
5998
5999                 if (kvm_state.flags &
6000                     ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
6001                       | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
6002                       | KVM_STATE_NESTED_GIF_SET))
6003                         break;
6004
6005                 /* nested_run_pending implies guest_mode.  */
6006                 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
6007                     && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
6008                         break;
6009
6010                 idx = srcu_read_lock(&vcpu->kvm->srcu);
6011                 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
6012                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6013                 break;
6014         }
6015         case KVM_GET_SUPPORTED_HV_CPUID:
6016                 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
6017                 break;
6018 #ifdef CONFIG_KVM_XEN
6019         case KVM_XEN_VCPU_GET_ATTR: {
6020                 struct kvm_xen_vcpu_attr xva;
6021
6022                 r = -EFAULT;
6023                 if (copy_from_user(&xva, argp, sizeof(xva)))
6024                         goto out;
6025                 r = kvm_xen_vcpu_get_attr(vcpu, &xva);
6026                 if (!r && copy_to_user(argp, &xva, sizeof(xva)))
6027                         r = -EFAULT;
6028                 break;
6029         }
6030         case KVM_XEN_VCPU_SET_ATTR: {
6031                 struct kvm_xen_vcpu_attr xva;
6032
6033                 r = -EFAULT;
6034                 if (copy_from_user(&xva, argp, sizeof(xva)))
6035                         goto out;
6036                 r = kvm_xen_vcpu_set_attr(vcpu, &xva);
6037                 break;
6038         }
6039 #endif
6040         case KVM_GET_SREGS2: {
6041                 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
6042                 r = -ENOMEM;
6043                 if (!u.sregs2)
6044                         goto out;
6045                 __get_sregs2(vcpu, u.sregs2);
6046                 r = -EFAULT;
6047                 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
6048                         goto out;
6049                 r = 0;
6050                 break;
6051         }
6052         case KVM_SET_SREGS2: {
6053                 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
6054                 if (IS_ERR(u.sregs2)) {
6055                         r = PTR_ERR(u.sregs2);
6056                         u.sregs2 = NULL;
6057                         goto out;
6058                 }
6059                 r = __set_sregs2(vcpu, u.sregs2);
6060                 break;
6061         }
6062         case KVM_HAS_DEVICE_ATTR:
6063         case KVM_GET_DEVICE_ATTR:
6064         case KVM_SET_DEVICE_ATTR:
6065                 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
6066                 break;
6067         default:
6068                 r = -EINVAL;
6069         }
6070 out:
6071         kfree(u.buffer);
6072 out_nofree:
6073         vcpu_put(vcpu);
6074         return r;
6075 }
6076
6077 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
6078 {
6079         return VM_FAULT_SIGBUS;
6080 }
6081
6082 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
6083 {
6084         int ret;
6085
6086         if (addr > (unsigned int)(-3 * PAGE_SIZE))
6087                 return -EINVAL;
6088         ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
6089         return ret;
6090 }
6091
6092 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
6093                                               u64 ident_addr)
6094 {
6095         return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
6096 }
6097
6098 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
6099                                          unsigned long kvm_nr_mmu_pages)
6100 {
6101         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
6102                 return -EINVAL;
6103
6104         mutex_lock(&kvm->slots_lock);
6105
6106         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
6107         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
6108
6109         mutex_unlock(&kvm->slots_lock);
6110         return 0;
6111 }
6112
6113 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6114 {
6115         struct kvm_pic *pic = kvm->arch.vpic;
6116         int r;
6117
6118         r = 0;
6119         switch (chip->chip_id) {
6120         case KVM_IRQCHIP_PIC_MASTER:
6121                 memcpy(&chip->chip.pic, &pic->pics[0],
6122                         sizeof(struct kvm_pic_state));
6123                 break;
6124         case KVM_IRQCHIP_PIC_SLAVE:
6125                 memcpy(&chip->chip.pic, &pic->pics[1],
6126                         sizeof(struct kvm_pic_state));
6127                 break;
6128         case KVM_IRQCHIP_IOAPIC:
6129                 kvm_get_ioapic(kvm, &chip->chip.ioapic);
6130                 break;
6131         default:
6132                 r = -EINVAL;
6133                 break;
6134         }
6135         return r;
6136 }
6137
6138 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6139 {
6140         struct kvm_pic *pic = kvm->arch.vpic;
6141         int r;
6142
6143         r = 0;
6144         switch (chip->chip_id) {
6145         case KVM_IRQCHIP_PIC_MASTER:
6146                 spin_lock(&pic->lock);
6147                 memcpy(&pic->pics[0], &chip->chip.pic,
6148                         sizeof(struct kvm_pic_state));
6149                 spin_unlock(&pic->lock);
6150                 break;
6151         case KVM_IRQCHIP_PIC_SLAVE:
6152                 spin_lock(&pic->lock);
6153                 memcpy(&pic->pics[1], &chip->chip.pic,
6154                         sizeof(struct kvm_pic_state));
6155                 spin_unlock(&pic->lock);
6156                 break;
6157         case KVM_IRQCHIP_IOAPIC:
6158                 kvm_set_ioapic(kvm, &chip->chip.ioapic);
6159                 break;
6160         default:
6161                 r = -EINVAL;
6162                 break;
6163         }
6164         kvm_pic_update_irq(pic);
6165         return r;
6166 }
6167
6168 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6169 {
6170         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
6171
6172         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
6173
6174         mutex_lock(&kps->lock);
6175         memcpy(ps, &kps->channels, sizeof(*ps));
6176         mutex_unlock(&kps->lock);
6177         return 0;
6178 }
6179
6180 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6181 {
6182         int i;
6183         struct kvm_pit *pit = kvm->arch.vpit;
6184
6185         mutex_lock(&pit->pit_state.lock);
6186         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
6187         for (i = 0; i < 3; i++)
6188                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
6189         mutex_unlock(&pit->pit_state.lock);
6190         return 0;
6191 }
6192
6193 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6194 {
6195         mutex_lock(&kvm->arch.vpit->pit_state.lock);
6196         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
6197                 sizeof(ps->channels));
6198         ps->flags = kvm->arch.vpit->pit_state.flags;
6199         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
6200         memset(&ps->reserved, 0, sizeof(ps->reserved));
6201         return 0;
6202 }
6203
6204 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6205 {
6206         int start = 0;
6207         int i;
6208         u32 prev_legacy, cur_legacy;
6209         struct kvm_pit *pit = kvm->arch.vpit;
6210
6211         mutex_lock(&pit->pit_state.lock);
6212         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
6213         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
6214         if (!prev_legacy && cur_legacy)
6215                 start = 1;
6216         memcpy(&pit->pit_state.channels, &ps->channels,
6217                sizeof(pit->pit_state.channels));
6218         pit->pit_state.flags = ps->flags;
6219         for (i = 0; i < 3; i++)
6220                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
6221                                    start && i == 0);
6222         mutex_unlock(&pit->pit_state.lock);
6223         return 0;
6224 }
6225
6226 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
6227                                  struct kvm_reinject_control *control)
6228 {
6229         struct kvm_pit *pit = kvm->arch.vpit;
6230
6231         /* pit->pit_state.lock was overloaded to prevent userspace from getting
6232          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
6233          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
6234          */
6235         mutex_lock(&pit->pit_state.lock);
6236         kvm_pit_set_reinject(pit, control->pit_reinject);
6237         mutex_unlock(&pit->pit_state.lock);
6238
6239         return 0;
6240 }
6241
6242 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
6243 {
6244
6245         /*
6246          * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
6247          * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
6248          * on all VM-Exits, thus we only need to kick running vCPUs to force a
6249          * VM-Exit.
6250          */
6251         struct kvm_vcpu *vcpu;
6252         unsigned long i;
6253
6254         kvm_for_each_vcpu(i, vcpu, kvm)
6255                 kvm_vcpu_kick(vcpu);
6256 }
6257
6258 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
6259                         bool line_status)
6260 {
6261         if (!irqchip_in_kernel(kvm))
6262                 return -ENXIO;
6263
6264         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
6265                                         irq_event->irq, irq_event->level,
6266                                         line_status);
6267         return 0;
6268 }
6269
6270 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
6271                             struct kvm_enable_cap *cap)
6272 {
6273         int r;
6274
6275         if (cap->flags)
6276                 return -EINVAL;
6277
6278         switch (cap->cap) {
6279         case KVM_CAP_DISABLE_QUIRKS2:
6280                 r = -EINVAL;
6281                 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS)
6282                         break;
6283                 fallthrough;
6284         case KVM_CAP_DISABLE_QUIRKS:
6285                 kvm->arch.disabled_quirks = cap->args[0];
6286                 r = 0;
6287                 break;
6288         case KVM_CAP_SPLIT_IRQCHIP: {
6289                 mutex_lock(&kvm->lock);
6290                 r = -EINVAL;
6291                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
6292                         goto split_irqchip_unlock;
6293                 r = -EEXIST;
6294                 if (irqchip_in_kernel(kvm))
6295                         goto split_irqchip_unlock;
6296                 if (kvm->created_vcpus)
6297                         goto split_irqchip_unlock;
6298                 r = kvm_setup_empty_irq_routing(kvm);
6299                 if (r)
6300                         goto split_irqchip_unlock;
6301                 /* Pairs with irqchip_in_kernel. */
6302                 smp_wmb();
6303                 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
6304                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
6305                 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6306                 r = 0;
6307 split_irqchip_unlock:
6308                 mutex_unlock(&kvm->lock);
6309                 break;
6310         }
6311         case KVM_CAP_X2APIC_API:
6312                 r = -EINVAL;
6313                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
6314                         break;
6315
6316                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
6317                         kvm->arch.x2apic_format = true;
6318                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
6319                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
6320
6321                 r = 0;
6322                 break;
6323         case KVM_CAP_X86_DISABLE_EXITS:
6324                 r = -EINVAL;
6325                 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
6326                         break;
6327
6328                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
6329                         kvm->arch.pause_in_guest = true;
6330
6331 #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \
6332                     "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests."
6333
6334                 if (!mitigate_smt_rsb) {
6335                         if (boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible() &&
6336                             (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE))
6337                                 pr_warn_once(SMT_RSB_MSG);
6338
6339                         if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
6340                             kvm_can_mwait_in_guest())
6341                                 kvm->arch.mwait_in_guest = true;
6342                         if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
6343                                 kvm->arch.hlt_in_guest = true;
6344                         if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
6345                                 kvm->arch.cstate_in_guest = true;
6346                 }
6347
6348                 r = 0;
6349                 break;
6350         case KVM_CAP_MSR_PLATFORM_INFO:
6351                 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
6352                 r = 0;
6353                 break;
6354         case KVM_CAP_EXCEPTION_PAYLOAD:
6355                 kvm->arch.exception_payload_enabled = cap->args[0];
6356                 r = 0;
6357                 break;
6358         case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
6359                 kvm->arch.triple_fault_event = cap->args[0];
6360                 r = 0;
6361                 break;
6362         case KVM_CAP_X86_USER_SPACE_MSR:
6363                 r = -EINVAL;
6364                 if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK)
6365                         break;
6366                 kvm->arch.user_space_msr_mask = cap->args[0];
6367                 r = 0;
6368                 break;
6369         case KVM_CAP_X86_BUS_LOCK_EXIT:
6370                 r = -EINVAL;
6371                 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
6372                         break;
6373
6374                 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6375                     (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6376                         break;
6377
6378                 if (kvm_caps.has_bus_lock_exit &&
6379                     cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6380                         kvm->arch.bus_lock_detection_enabled = true;
6381                 r = 0;
6382                 break;
6383 #ifdef CONFIG_X86_SGX_KVM
6384         case KVM_CAP_SGX_ATTRIBUTE: {
6385                 unsigned long allowed_attributes = 0;
6386
6387                 r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6388                 if (r)
6389                         break;
6390
6391                 /* KVM only supports the PROVISIONKEY privileged attribute. */
6392                 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6393                     !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6394                         kvm->arch.sgx_provisioning_allowed = true;
6395                 else
6396                         r = -EINVAL;
6397                 break;
6398         }
6399 #endif
6400         case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6401                 r = -EINVAL;
6402                 if (!kvm_x86_ops.vm_copy_enc_context_from)
6403                         break;
6404
6405                 r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]);
6406                 break;
6407         case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6408                 r = -EINVAL;
6409                 if (!kvm_x86_ops.vm_move_enc_context_from)
6410                         break;
6411
6412                 r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]);
6413                 break;
6414         case KVM_CAP_EXIT_HYPERCALL:
6415                 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6416                         r = -EINVAL;
6417                         break;
6418                 }
6419                 kvm->arch.hypercall_exit_enabled = cap->args[0];
6420                 r = 0;
6421                 break;
6422         case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6423                 r = -EINVAL;
6424                 if (cap->args[0] & ~1)
6425                         break;
6426                 kvm->arch.exit_on_emulation_error = cap->args[0];
6427                 r = 0;
6428                 break;
6429         case KVM_CAP_PMU_CAPABILITY:
6430                 r = -EINVAL;
6431                 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6432                         break;
6433
6434                 mutex_lock(&kvm->lock);
6435                 if (!kvm->created_vcpus) {
6436                         kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6437                         r = 0;
6438                 }
6439                 mutex_unlock(&kvm->lock);
6440                 break;
6441         case KVM_CAP_MAX_VCPU_ID:
6442                 r = -EINVAL;
6443                 if (cap->args[0] > KVM_MAX_VCPU_IDS)
6444                         break;
6445
6446                 mutex_lock(&kvm->lock);
6447                 if (kvm->arch.max_vcpu_ids == cap->args[0]) {
6448                         r = 0;
6449                 } else if (!kvm->arch.max_vcpu_ids) {
6450                         kvm->arch.max_vcpu_ids = cap->args[0];
6451                         r = 0;
6452                 }
6453                 mutex_unlock(&kvm->lock);
6454                 break;
6455         case KVM_CAP_X86_NOTIFY_VMEXIT:
6456                 r = -EINVAL;
6457                 if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS)
6458                         break;
6459                 if (!kvm_caps.has_notify_vmexit)
6460                         break;
6461                 if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED))
6462                         break;
6463                 mutex_lock(&kvm->lock);
6464                 if (!kvm->created_vcpus) {
6465                         kvm->arch.notify_window = cap->args[0] >> 32;
6466                         kvm->arch.notify_vmexit_flags = (u32)cap->args[0];
6467                         r = 0;
6468                 }
6469                 mutex_unlock(&kvm->lock);
6470                 break;
6471         case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
6472                 r = -EINVAL;
6473
6474                 /*
6475                  * Since the risk of disabling NX hugepages is a guest crashing
6476                  * the system, ensure the userspace process has permission to
6477                  * reboot the system.
6478                  *
6479                  * Note that unlike the reboot() syscall, the process must have
6480                  * this capability in the root namespace because exposing
6481                  * /dev/kvm into a container does not limit the scope of the
6482                  * iTLB multihit bug to that container. In other words,
6483                  * this must use capable(), not ns_capable().
6484                  */
6485                 if (!capable(CAP_SYS_BOOT)) {
6486                         r = -EPERM;
6487                         break;
6488                 }
6489
6490                 if (cap->args[0])
6491                         break;
6492
6493                 mutex_lock(&kvm->lock);
6494                 if (!kvm->created_vcpus) {
6495                         kvm->arch.disable_nx_huge_pages = true;
6496                         r = 0;
6497                 }
6498                 mutex_unlock(&kvm->lock);
6499                 break;
6500         default:
6501                 r = -EINVAL;
6502                 break;
6503         }
6504         return r;
6505 }
6506
6507 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6508 {
6509         struct kvm_x86_msr_filter *msr_filter;
6510
6511         msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6512         if (!msr_filter)
6513                 return NULL;
6514
6515         msr_filter->default_allow = default_allow;
6516         return msr_filter;
6517 }
6518
6519 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6520 {
6521         u32 i;
6522
6523         if (!msr_filter)
6524                 return;
6525
6526         for (i = 0; i < msr_filter->count; i++)
6527                 kfree(msr_filter->ranges[i].bitmap);
6528
6529         kfree(msr_filter);
6530 }
6531
6532 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6533                               struct kvm_msr_filter_range *user_range)
6534 {
6535         unsigned long *bitmap = NULL;
6536         size_t bitmap_size;
6537
6538         if (!user_range->nmsrs)
6539                 return 0;
6540
6541         if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK)
6542                 return -EINVAL;
6543
6544         if (!user_range->flags)
6545                 return -EINVAL;
6546
6547         bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6548         if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6549                 return -EINVAL;
6550
6551         bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6552         if (IS_ERR(bitmap))
6553                 return PTR_ERR(bitmap);
6554
6555         msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6556                 .flags = user_range->flags,
6557                 .base = user_range->base,
6558                 .nmsrs = user_range->nmsrs,
6559                 .bitmap = bitmap,
6560         };
6561
6562         msr_filter->count++;
6563         return 0;
6564 }
6565
6566 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm,
6567                                        struct kvm_msr_filter *filter)
6568 {
6569         struct kvm_x86_msr_filter *new_filter, *old_filter;
6570         bool default_allow;
6571         bool empty = true;
6572         int r;
6573         u32 i;
6574
6575         if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK)
6576                 return -EINVAL;
6577
6578         for (i = 0; i < ARRAY_SIZE(filter->ranges); i++)
6579                 empty &= !filter->ranges[i].nmsrs;
6580
6581         default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY);
6582         if (empty && !default_allow)
6583                 return -EINVAL;
6584
6585         new_filter = kvm_alloc_msr_filter(default_allow);
6586         if (!new_filter)
6587                 return -ENOMEM;
6588
6589         for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) {
6590                 r = kvm_add_msr_filter(new_filter, &filter->ranges[i]);
6591                 if (r) {
6592                         kvm_free_msr_filter(new_filter);
6593                         return r;
6594                 }
6595         }
6596
6597         mutex_lock(&kvm->lock);
6598         old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter,
6599                                          mutex_is_locked(&kvm->lock));
6600         mutex_unlock(&kvm->lock);
6601         synchronize_srcu(&kvm->srcu);
6602
6603         kvm_free_msr_filter(old_filter);
6604
6605         kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6606
6607         return 0;
6608 }
6609
6610 #ifdef CONFIG_KVM_COMPAT
6611 /* for KVM_X86_SET_MSR_FILTER */
6612 struct kvm_msr_filter_range_compat {
6613         __u32 flags;
6614         __u32 nmsrs;
6615         __u32 base;
6616         __u32 bitmap;
6617 };
6618
6619 struct kvm_msr_filter_compat {
6620         __u32 flags;
6621         struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES];
6622 };
6623
6624 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat)
6625
6626 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
6627                               unsigned long arg)
6628 {
6629         void __user *argp = (void __user *)arg;
6630         struct kvm *kvm = filp->private_data;
6631         long r = -ENOTTY;
6632
6633         switch (ioctl) {
6634         case KVM_X86_SET_MSR_FILTER_COMPAT: {
6635                 struct kvm_msr_filter __user *user_msr_filter = argp;
6636                 struct kvm_msr_filter_compat filter_compat;
6637                 struct kvm_msr_filter filter;
6638                 int i;
6639
6640                 if (copy_from_user(&filter_compat, user_msr_filter,
6641                                    sizeof(filter_compat)))
6642                         return -EFAULT;
6643
6644                 filter.flags = filter_compat.flags;
6645                 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6646                         struct kvm_msr_filter_range_compat *cr;
6647
6648                         cr = &filter_compat.ranges[i];
6649                         filter.ranges[i] = (struct kvm_msr_filter_range) {
6650                                 .flags = cr->flags,
6651                                 .nmsrs = cr->nmsrs,
6652                                 .base = cr->base,
6653                                 .bitmap = (__u8 *)(ulong)cr->bitmap,
6654                         };
6655                 }
6656
6657                 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
6658                 break;
6659         }
6660         }
6661
6662         return r;
6663 }
6664 #endif
6665
6666 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
6667 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6668 {
6669         struct kvm_vcpu *vcpu;
6670         unsigned long i;
6671         int ret = 0;
6672
6673         mutex_lock(&kvm->lock);
6674         kvm_for_each_vcpu(i, vcpu, kvm) {
6675                 if (!vcpu->arch.pv_time.active)
6676                         continue;
6677
6678                 ret = kvm_set_guest_paused(vcpu);
6679                 if (ret) {
6680                         kvm_err("Failed to pause guest VCPU%d: %d\n",
6681                                 vcpu->vcpu_id, ret);
6682                         break;
6683                 }
6684         }
6685         mutex_unlock(&kvm->lock);
6686
6687         return ret ? NOTIFY_BAD : NOTIFY_DONE;
6688 }
6689
6690 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6691 {
6692         switch (state) {
6693         case PM_HIBERNATION_PREPARE:
6694         case PM_SUSPEND_PREPARE:
6695                 return kvm_arch_suspend_notifier(kvm);
6696         }
6697
6698         return NOTIFY_DONE;
6699 }
6700 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6701
6702 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6703 {
6704         struct kvm_clock_data data = { 0 };
6705
6706         get_kvmclock(kvm, &data);
6707         if (copy_to_user(argp, &data, sizeof(data)))
6708                 return -EFAULT;
6709
6710         return 0;
6711 }
6712
6713 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6714 {
6715         struct kvm_arch *ka = &kvm->arch;
6716         struct kvm_clock_data data;
6717         u64 now_raw_ns;
6718
6719         if (copy_from_user(&data, argp, sizeof(data)))
6720                 return -EFAULT;
6721
6722         /*
6723          * Only KVM_CLOCK_REALTIME is used, but allow passing the
6724          * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6725          */
6726         if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6727                 return -EINVAL;
6728
6729         kvm_hv_request_tsc_page_update(kvm);
6730         kvm_start_pvclock_update(kvm);
6731         pvclock_update_vm_gtod_copy(kvm);
6732
6733         /*
6734          * This pairs with kvm_guest_time_update(): when masterclock is
6735          * in use, we use master_kernel_ns + kvmclock_offset to set
6736          * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6737          * is slightly ahead) here we risk going negative on unsigned
6738          * 'system_time' when 'data.clock' is very small.
6739          */
6740         if (data.flags & KVM_CLOCK_REALTIME) {
6741                 u64 now_real_ns = ktime_get_real_ns();
6742
6743                 /*
6744                  * Avoid stepping the kvmclock backwards.
6745                  */
6746                 if (now_real_ns > data.realtime)
6747                         data.clock += now_real_ns - data.realtime;
6748         }
6749
6750         if (ka->use_master_clock)
6751                 now_raw_ns = ka->master_kernel_ns;
6752         else
6753                 now_raw_ns = get_kvmclock_base_ns();
6754         ka->kvmclock_offset = data.clock - now_raw_ns;
6755         kvm_end_pvclock_update(kvm);
6756         return 0;
6757 }
6758
6759 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
6760 {
6761         struct kvm *kvm = filp->private_data;
6762         void __user *argp = (void __user *)arg;
6763         int r = -ENOTTY;
6764         /*
6765          * This union makes it completely explicit to gcc-3.x
6766          * that these two variables' stack usage should be
6767          * combined, not added together.
6768          */
6769         union {
6770                 struct kvm_pit_state ps;
6771                 struct kvm_pit_state2 ps2;
6772                 struct kvm_pit_config pit_config;
6773         } u;
6774
6775         switch (ioctl) {
6776         case KVM_SET_TSS_ADDR:
6777                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
6778                 break;
6779         case KVM_SET_IDENTITY_MAP_ADDR: {
6780                 u64 ident_addr;
6781
6782                 mutex_lock(&kvm->lock);
6783                 r = -EINVAL;
6784                 if (kvm->created_vcpus)
6785                         goto set_identity_unlock;
6786                 r = -EFAULT;
6787                 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
6788                         goto set_identity_unlock;
6789                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
6790 set_identity_unlock:
6791                 mutex_unlock(&kvm->lock);
6792                 break;
6793         }
6794         case KVM_SET_NR_MMU_PAGES:
6795                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
6796                 break;
6797         case KVM_CREATE_IRQCHIP: {
6798                 mutex_lock(&kvm->lock);
6799
6800                 r = -EEXIST;
6801                 if (irqchip_in_kernel(kvm))
6802                         goto create_irqchip_unlock;
6803
6804                 r = -EINVAL;
6805                 if (kvm->created_vcpus)
6806                         goto create_irqchip_unlock;
6807
6808                 r = kvm_pic_init(kvm);
6809                 if (r)
6810                         goto create_irqchip_unlock;
6811
6812                 r = kvm_ioapic_init(kvm);
6813                 if (r) {
6814                         kvm_pic_destroy(kvm);
6815                         goto create_irqchip_unlock;
6816                 }
6817
6818                 r = kvm_setup_default_irq_routing(kvm);
6819                 if (r) {
6820                         kvm_ioapic_destroy(kvm);
6821                         kvm_pic_destroy(kvm);
6822                         goto create_irqchip_unlock;
6823                 }
6824                 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
6825                 smp_wmb();
6826                 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
6827                 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6828         create_irqchip_unlock:
6829                 mutex_unlock(&kvm->lock);
6830                 break;
6831         }
6832         case KVM_CREATE_PIT:
6833                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
6834                 goto create_pit;
6835         case KVM_CREATE_PIT2:
6836                 r = -EFAULT;
6837                 if (copy_from_user(&u.pit_config, argp,
6838                                    sizeof(struct kvm_pit_config)))
6839                         goto out;
6840         create_pit:
6841                 mutex_lock(&kvm->lock);
6842                 r = -EEXIST;
6843                 if (kvm->arch.vpit)
6844                         goto create_pit_unlock;
6845                 r = -ENOMEM;
6846                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
6847                 if (kvm->arch.vpit)
6848                         r = 0;
6849         create_pit_unlock:
6850                 mutex_unlock(&kvm->lock);
6851                 break;
6852         case KVM_GET_IRQCHIP: {
6853                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6854                 struct kvm_irqchip *chip;
6855
6856                 chip = memdup_user(argp, sizeof(*chip));
6857                 if (IS_ERR(chip)) {
6858                         r = PTR_ERR(chip);
6859                         goto out;
6860                 }
6861
6862                 r = -ENXIO;
6863                 if (!irqchip_kernel(kvm))
6864                         goto get_irqchip_out;
6865                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
6866                 if (r)
6867                         goto get_irqchip_out;
6868                 r = -EFAULT;
6869                 if (copy_to_user(argp, chip, sizeof(*chip)))
6870                         goto get_irqchip_out;
6871                 r = 0;
6872         get_irqchip_out:
6873                 kfree(chip);
6874                 break;
6875         }
6876         case KVM_SET_IRQCHIP: {
6877                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6878                 struct kvm_irqchip *chip;
6879
6880                 chip = memdup_user(argp, sizeof(*chip));
6881                 if (IS_ERR(chip)) {
6882                         r = PTR_ERR(chip);
6883                         goto out;
6884                 }
6885
6886                 r = -ENXIO;
6887                 if (!irqchip_kernel(kvm))
6888                         goto set_irqchip_out;
6889                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
6890         set_irqchip_out:
6891                 kfree(chip);
6892                 break;
6893         }
6894         case KVM_GET_PIT: {
6895                 r = -EFAULT;
6896                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
6897                         goto out;
6898                 r = -ENXIO;
6899                 if (!kvm->arch.vpit)
6900                         goto out;
6901                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
6902                 if (r)
6903                         goto out;
6904                 r = -EFAULT;
6905                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
6906                         goto out;
6907                 r = 0;
6908                 break;
6909         }
6910         case KVM_SET_PIT: {
6911                 r = -EFAULT;
6912                 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
6913                         goto out;
6914                 mutex_lock(&kvm->lock);
6915                 r = -ENXIO;
6916                 if (!kvm->arch.vpit)
6917                         goto set_pit_out;
6918                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
6919 set_pit_out:
6920                 mutex_unlock(&kvm->lock);
6921                 break;
6922         }
6923         case KVM_GET_PIT2: {
6924                 r = -ENXIO;
6925                 if (!kvm->arch.vpit)
6926                         goto out;
6927                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
6928                 if (r)
6929                         goto out;
6930                 r = -EFAULT;
6931                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
6932                         goto out;
6933                 r = 0;
6934                 break;
6935         }
6936         case KVM_SET_PIT2: {
6937                 r = -EFAULT;
6938                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
6939                         goto out;
6940                 mutex_lock(&kvm->lock);
6941                 r = -ENXIO;
6942                 if (!kvm->arch.vpit)
6943                         goto set_pit2_out;
6944                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
6945 set_pit2_out:
6946                 mutex_unlock(&kvm->lock);
6947                 break;
6948         }
6949         case KVM_REINJECT_CONTROL: {
6950                 struct kvm_reinject_control control;
6951                 r =  -EFAULT;
6952                 if (copy_from_user(&control, argp, sizeof(control)))
6953                         goto out;
6954                 r = -ENXIO;
6955                 if (!kvm->arch.vpit)
6956                         goto out;
6957                 r = kvm_vm_ioctl_reinject(kvm, &control);
6958                 break;
6959         }
6960         case KVM_SET_BOOT_CPU_ID:
6961                 r = 0;
6962                 mutex_lock(&kvm->lock);
6963                 if (kvm->created_vcpus)
6964                         r = -EBUSY;
6965                 else
6966                         kvm->arch.bsp_vcpu_id = arg;
6967                 mutex_unlock(&kvm->lock);
6968                 break;
6969 #ifdef CONFIG_KVM_XEN
6970         case KVM_XEN_HVM_CONFIG: {
6971                 struct kvm_xen_hvm_config xhc;
6972                 r = -EFAULT;
6973                 if (copy_from_user(&xhc, argp, sizeof(xhc)))
6974                         goto out;
6975                 r = kvm_xen_hvm_config(kvm, &xhc);
6976                 break;
6977         }
6978         case KVM_XEN_HVM_GET_ATTR: {
6979                 struct kvm_xen_hvm_attr xha;
6980
6981                 r = -EFAULT;
6982                 if (copy_from_user(&xha, argp, sizeof(xha)))
6983                         goto out;
6984                 r = kvm_xen_hvm_get_attr(kvm, &xha);
6985                 if (!r && copy_to_user(argp, &xha, sizeof(xha)))
6986                         r = -EFAULT;
6987                 break;
6988         }
6989         case KVM_XEN_HVM_SET_ATTR: {
6990                 struct kvm_xen_hvm_attr xha;
6991
6992                 r = -EFAULT;
6993                 if (copy_from_user(&xha, argp, sizeof(xha)))
6994                         goto out;
6995                 r = kvm_xen_hvm_set_attr(kvm, &xha);
6996                 break;
6997         }
6998         case KVM_XEN_HVM_EVTCHN_SEND: {
6999                 struct kvm_irq_routing_xen_evtchn uxe;
7000
7001                 r = -EFAULT;
7002                 if (copy_from_user(&uxe, argp, sizeof(uxe)))
7003                         goto out;
7004                 r = kvm_xen_hvm_evtchn_send(kvm, &uxe);
7005                 break;
7006         }
7007 #endif
7008         case KVM_SET_CLOCK:
7009                 r = kvm_vm_ioctl_set_clock(kvm, argp);
7010                 break;
7011         case KVM_GET_CLOCK:
7012                 r = kvm_vm_ioctl_get_clock(kvm, argp);
7013                 break;
7014         case KVM_SET_TSC_KHZ: {
7015                 u32 user_tsc_khz;
7016
7017                 r = -EINVAL;
7018                 user_tsc_khz = (u32)arg;
7019
7020                 if (kvm_caps.has_tsc_control &&
7021                     user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
7022                         goto out;
7023
7024                 if (user_tsc_khz == 0)
7025                         user_tsc_khz = tsc_khz;
7026
7027                 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz);
7028                 r = 0;
7029
7030                 goto out;
7031         }
7032         case KVM_GET_TSC_KHZ: {
7033                 r = READ_ONCE(kvm->arch.default_tsc_khz);
7034                 goto out;
7035         }
7036         case KVM_MEMORY_ENCRYPT_OP: {
7037                 r = -ENOTTY;
7038                 if (!kvm_x86_ops.mem_enc_ioctl)
7039                         goto out;
7040
7041                 r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp);
7042                 break;
7043         }
7044         case KVM_MEMORY_ENCRYPT_REG_REGION: {
7045                 struct kvm_enc_region region;
7046
7047                 r = -EFAULT;
7048                 if (copy_from_user(&region, argp, sizeof(region)))
7049                         goto out;
7050
7051                 r = -ENOTTY;
7052                 if (!kvm_x86_ops.mem_enc_register_region)
7053                         goto out;
7054
7055                 r = static_call(kvm_x86_mem_enc_register_region)(kvm, &region);
7056                 break;
7057         }
7058         case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
7059                 struct kvm_enc_region region;
7060
7061                 r = -EFAULT;
7062                 if (copy_from_user(&region, argp, sizeof(region)))
7063                         goto out;
7064
7065                 r = -ENOTTY;
7066                 if (!kvm_x86_ops.mem_enc_unregister_region)
7067                         goto out;
7068
7069                 r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, &region);
7070                 break;
7071         }
7072         case KVM_HYPERV_EVENTFD: {
7073                 struct kvm_hyperv_eventfd hvevfd;
7074
7075                 r = -EFAULT;
7076                 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
7077                         goto out;
7078                 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
7079                 break;
7080         }
7081         case KVM_SET_PMU_EVENT_FILTER:
7082                 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
7083                 break;
7084         case KVM_X86_SET_MSR_FILTER: {
7085                 struct kvm_msr_filter __user *user_msr_filter = argp;
7086                 struct kvm_msr_filter filter;
7087
7088                 if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
7089                         return -EFAULT;
7090
7091                 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
7092                 break;
7093         }
7094         default:
7095                 r = -ENOTTY;
7096         }
7097 out:
7098         return r;
7099 }
7100
7101 static void kvm_probe_feature_msr(u32 msr_index)
7102 {
7103         struct kvm_msr_entry msr = {
7104                 .index = msr_index,
7105         };
7106
7107         if (kvm_get_msr_feature(&msr))
7108                 return;
7109
7110         msr_based_features[num_msr_based_features++] = msr_index;
7111 }
7112
7113 static void kvm_probe_msr_to_save(u32 msr_index)
7114 {
7115         u32 dummy[2];
7116
7117         if (rdmsr_safe(msr_index, &dummy[0], &dummy[1]))
7118                 return;
7119
7120         /*
7121          * Even MSRs that are valid in the host may not be exposed to guests in
7122          * some cases.
7123          */
7124         switch (msr_index) {
7125         case MSR_IA32_BNDCFGS:
7126                 if (!kvm_mpx_supported())
7127                         return;
7128                 break;
7129         case MSR_TSC_AUX:
7130                 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
7131                     !kvm_cpu_cap_has(X86_FEATURE_RDPID))
7132                         return;
7133                 break;
7134         case MSR_IA32_UMWAIT_CONTROL:
7135                 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
7136                         return;
7137                 break;
7138         case MSR_IA32_RTIT_CTL:
7139         case MSR_IA32_RTIT_STATUS:
7140                 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
7141                         return;
7142                 break;
7143         case MSR_IA32_RTIT_CR3_MATCH:
7144                 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7145                     !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
7146                         return;
7147                 break;
7148         case MSR_IA32_RTIT_OUTPUT_BASE:
7149         case MSR_IA32_RTIT_OUTPUT_MASK:
7150                 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7151                     (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
7152                      !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
7153                         return;
7154                 break;
7155         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
7156                 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7157                     (msr_index - MSR_IA32_RTIT_ADDR0_A >=
7158                      intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2))
7159                         return;
7160                 break;
7161         case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR_MAX:
7162                 if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >=
7163                     kvm_pmu_cap.num_counters_gp)
7164                         return;
7165                 break;
7166         case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL_MAX:
7167                 if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >=
7168                     kvm_pmu_cap.num_counters_gp)
7169                         return;
7170                 break;
7171         case MSR_ARCH_PERFMON_FIXED_CTR0 ... MSR_ARCH_PERFMON_FIXED_CTR_MAX:
7172                 if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >=
7173                     kvm_pmu_cap.num_counters_fixed)
7174                         return;
7175                 break;
7176         case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
7177         case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
7178         case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
7179                 if (!kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2))
7180                         return;
7181                 break;
7182         case MSR_IA32_XFD:
7183         case MSR_IA32_XFD_ERR:
7184                 if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
7185                         return;
7186                 break;
7187         case MSR_IA32_TSX_CTRL:
7188                 if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR))
7189                         return;
7190                 break;
7191         default:
7192                 break;
7193         }
7194
7195         msrs_to_save[num_msrs_to_save++] = msr_index;
7196 }
7197
7198 static void kvm_init_msr_lists(void)
7199 {
7200         unsigned i;
7201
7202         BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3,
7203                          "Please update the fixed PMCs in msrs_to_save_pmu[]");
7204
7205         num_msrs_to_save = 0;
7206         num_emulated_msrs = 0;
7207         num_msr_based_features = 0;
7208
7209         for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++)
7210                 kvm_probe_msr_to_save(msrs_to_save_base[i]);
7211
7212         if (enable_pmu) {
7213                 for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++)
7214                         kvm_probe_msr_to_save(msrs_to_save_pmu[i]);
7215         }
7216
7217         for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
7218                 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
7219                         continue;
7220
7221                 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
7222         }
7223
7224         for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++)
7225                 kvm_probe_feature_msr(i);
7226
7227         for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++)
7228                 kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]);
7229 }
7230
7231 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
7232                            const void *v)
7233 {
7234         int handled = 0;
7235         int n;
7236
7237         do {
7238                 n = min(len, 8);
7239                 if (!(lapic_in_kernel(vcpu) &&
7240                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
7241                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
7242                         break;
7243                 handled += n;
7244                 addr += n;
7245                 len -= n;
7246                 v += n;
7247         } while (len);
7248
7249         return handled;
7250 }
7251
7252 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
7253 {
7254         int handled = 0;
7255         int n;
7256
7257         do {
7258                 n = min(len, 8);
7259                 if (!(lapic_in_kernel(vcpu) &&
7260                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
7261                                          addr, n, v))
7262                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
7263                         break;
7264                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
7265                 handled += n;
7266                 addr += n;
7267                 len -= n;
7268                 v += n;
7269         } while (len);
7270
7271         return handled;
7272 }
7273
7274 void kvm_set_segment(struct kvm_vcpu *vcpu,
7275                      struct kvm_segment *var, int seg)
7276 {
7277         static_call(kvm_x86_set_segment)(vcpu, var, seg);
7278 }
7279
7280 void kvm_get_segment(struct kvm_vcpu *vcpu,
7281                      struct kvm_segment *var, int seg)
7282 {
7283         static_call(kvm_x86_get_segment)(vcpu, var, seg);
7284 }
7285
7286 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
7287                            struct x86_exception *exception)
7288 {
7289         struct kvm_mmu *mmu = vcpu->arch.mmu;
7290         gpa_t t_gpa;
7291
7292         BUG_ON(!mmu_is_nested(vcpu));
7293
7294         /* NPT walks are always user-walks */
7295         access |= PFERR_USER_MASK;
7296         t_gpa  = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
7297
7298         return t_gpa;
7299 }
7300
7301 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
7302                               struct x86_exception *exception)
7303 {
7304         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7305
7306         u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7307         return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7308 }
7309 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
7310
7311 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
7312                                struct x86_exception *exception)
7313 {
7314         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7315
7316         u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7317         access |= PFERR_WRITE_MASK;
7318         return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7319 }
7320 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
7321
7322 /* uses this to access any guest's mapped memory without checking CPL */
7323 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
7324                                 struct x86_exception *exception)
7325 {
7326         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7327
7328         return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
7329 }
7330
7331 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7332                                       struct kvm_vcpu *vcpu, u64 access,
7333                                       struct x86_exception *exception)
7334 {
7335         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7336         void *data = val;
7337         int r = X86EMUL_CONTINUE;
7338
7339         while (bytes) {
7340                 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7341                 unsigned offset = addr & (PAGE_SIZE-1);
7342                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
7343                 int ret;
7344
7345                 if (gpa == INVALID_GPA)
7346                         return X86EMUL_PROPAGATE_FAULT;
7347                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
7348                                                offset, toread);
7349                 if (ret < 0) {
7350                         r = X86EMUL_IO_NEEDED;
7351                         goto out;
7352                 }
7353
7354                 bytes -= toread;
7355                 data += toread;
7356                 addr += toread;
7357         }
7358 out:
7359         return r;
7360 }
7361
7362 /* used for instruction fetching */
7363 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
7364                                 gva_t addr, void *val, unsigned int bytes,
7365                                 struct x86_exception *exception)
7366 {
7367         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7368         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7369         u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7370         unsigned offset;
7371         int ret;
7372
7373         /* Inline kvm_read_guest_virt_helper for speed.  */
7374         gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
7375                                     exception);
7376         if (unlikely(gpa == INVALID_GPA))
7377                 return X86EMUL_PROPAGATE_FAULT;
7378
7379         offset = addr & (PAGE_SIZE-1);
7380         if (WARN_ON(offset + bytes > PAGE_SIZE))
7381                 bytes = (unsigned)PAGE_SIZE - offset;
7382         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
7383                                        offset, bytes);
7384         if (unlikely(ret < 0))
7385                 return X86EMUL_IO_NEEDED;
7386
7387         return X86EMUL_CONTINUE;
7388 }
7389
7390 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
7391                                gva_t addr, void *val, unsigned int bytes,
7392                                struct x86_exception *exception)
7393 {
7394         u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7395
7396         /*
7397          * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
7398          * is returned, but our callers are not ready for that and they blindly
7399          * call kvm_inject_page_fault.  Ensure that they at least do not leak
7400          * uninitialized kernel stack memory into cr2 and error code.
7401          */
7402         memset(exception, 0, sizeof(*exception));
7403         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
7404                                           exception);
7405 }
7406 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
7407
7408 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
7409                              gva_t addr, void *val, unsigned int bytes,
7410                              struct x86_exception *exception, bool system)
7411 {
7412         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7413         u64 access = 0;
7414
7415         if (system)
7416                 access |= PFERR_IMPLICIT_ACCESS;
7417         else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7418                 access |= PFERR_USER_MASK;
7419
7420         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
7421 }
7422
7423 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7424                                       struct kvm_vcpu *vcpu, u64 access,
7425                                       struct x86_exception *exception)
7426 {
7427         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7428         void *data = val;
7429         int r = X86EMUL_CONTINUE;
7430
7431         while (bytes) {
7432                 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7433                 unsigned offset = addr & (PAGE_SIZE-1);
7434                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
7435                 int ret;
7436
7437                 if (gpa == INVALID_GPA)
7438                         return X86EMUL_PROPAGATE_FAULT;
7439                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
7440                 if (ret < 0) {
7441                         r = X86EMUL_IO_NEEDED;
7442                         goto out;
7443                 }
7444
7445                 bytes -= towrite;
7446                 data += towrite;
7447                 addr += towrite;
7448         }
7449 out:
7450         return r;
7451 }
7452
7453 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
7454                               unsigned int bytes, struct x86_exception *exception,
7455                               bool system)
7456 {
7457         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7458         u64 access = PFERR_WRITE_MASK;
7459
7460         if (system)
7461                 access |= PFERR_IMPLICIT_ACCESS;
7462         else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7463                 access |= PFERR_USER_MASK;
7464
7465         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7466                                            access, exception);
7467 }
7468
7469 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
7470                                 unsigned int bytes, struct x86_exception *exception)
7471 {
7472         /* kvm_write_guest_virt_system can pull in tons of pages. */
7473         vcpu->arch.l1tf_flush_l1d = true;
7474
7475         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7476                                            PFERR_WRITE_MASK, exception);
7477 }
7478 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
7479
7480 static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
7481                                 void *insn, int insn_len)
7482 {
7483         return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type,
7484                                                             insn, insn_len);
7485 }
7486
7487 int handle_ud(struct kvm_vcpu *vcpu)
7488 {
7489         static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
7490         int fep_flags = READ_ONCE(force_emulation_prefix);
7491         int emul_type = EMULTYPE_TRAP_UD;
7492         char sig[5]; /* ud2; .ascii "kvm" */
7493         struct x86_exception e;
7494
7495         if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0)))
7496                 return 1;
7497
7498         if (fep_flags &&
7499             kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
7500                                 sig, sizeof(sig), &e) == 0 &&
7501             memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
7502                 if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF)
7503                         kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF);
7504                 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
7505                 emul_type = EMULTYPE_TRAP_UD_FORCED;
7506         }
7507
7508         return kvm_emulate_instruction(vcpu, emul_type);
7509 }
7510 EXPORT_SYMBOL_GPL(handle_ud);
7511
7512 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7513                             gpa_t gpa, bool write)
7514 {
7515         /* For APIC access vmexit */
7516         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7517                 return 1;
7518
7519         if (vcpu_match_mmio_gpa(vcpu, gpa)) {
7520                 trace_vcpu_match_mmio(gva, gpa, write, true);
7521                 return 1;
7522         }
7523
7524         return 0;
7525 }
7526
7527 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7528                                 gpa_t *gpa, struct x86_exception *exception,
7529                                 bool write)
7530 {
7531         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7532         u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
7533                 | (write ? PFERR_WRITE_MASK : 0);
7534
7535         /*
7536          * currently PKRU is only applied to ept enabled guest so
7537          * there is no pkey in EPT page table for L1 guest or EPT
7538          * shadow page table for L2 guest.
7539          */
7540         if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
7541             !permission_fault(vcpu, vcpu->arch.walk_mmu,
7542                               vcpu->arch.mmio_access, 0, access))) {
7543                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
7544                                         (gva & (PAGE_SIZE - 1));
7545                 trace_vcpu_match_mmio(gva, *gpa, write, false);
7546                 return 1;
7547         }
7548
7549         *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7550
7551         if (*gpa == INVALID_GPA)
7552                 return -1;
7553
7554         return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
7555 }
7556
7557 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
7558                         const void *val, int bytes)
7559 {
7560         int ret;
7561
7562         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
7563         if (ret < 0)
7564                 return 0;
7565         kvm_page_track_write(vcpu, gpa, val, bytes);
7566         return 1;
7567 }
7568
7569 struct read_write_emulator_ops {
7570         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
7571                                   int bytes);
7572         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
7573                                   void *val, int bytes);
7574         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7575                                int bytes, void *val);
7576         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7577                                     void *val, int bytes);
7578         bool write;
7579 };
7580
7581 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
7582 {
7583         if (vcpu->mmio_read_completed) {
7584                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
7585                                vcpu->mmio_fragments[0].gpa, val);
7586                 vcpu->mmio_read_completed = 0;
7587                 return 1;
7588         }
7589
7590         return 0;
7591 }
7592
7593 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7594                         void *val, int bytes)
7595 {
7596         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
7597 }
7598
7599 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7600                          void *val, int bytes)
7601 {
7602         return emulator_write_phys(vcpu, gpa, val, bytes);
7603 }
7604
7605 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7606 {
7607         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7608         return vcpu_mmio_write(vcpu, gpa, bytes, val);
7609 }
7610
7611 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7612                           void *val, int bytes)
7613 {
7614         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7615         return X86EMUL_IO_NEEDED;
7616 }
7617
7618 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7619                            void *val, int bytes)
7620 {
7621         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7622
7623         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7624         return X86EMUL_CONTINUE;
7625 }
7626
7627 static const struct read_write_emulator_ops read_emultor = {
7628         .read_write_prepare = read_prepare,
7629         .read_write_emulate = read_emulate,
7630         .read_write_mmio = vcpu_mmio_read,
7631         .read_write_exit_mmio = read_exit_mmio,
7632 };
7633
7634 static const struct read_write_emulator_ops write_emultor = {
7635         .read_write_emulate = write_emulate,
7636         .read_write_mmio = write_mmio,
7637         .read_write_exit_mmio = write_exit_mmio,
7638         .write = true,
7639 };
7640
7641 static int emulator_read_write_onepage(unsigned long addr, void *val,
7642                                        unsigned int bytes,
7643                                        struct x86_exception *exception,
7644                                        struct kvm_vcpu *vcpu,
7645                                        const struct read_write_emulator_ops *ops)
7646 {
7647         gpa_t gpa;
7648         int handled, ret;
7649         bool write = ops->write;
7650         struct kvm_mmio_fragment *frag;
7651         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7652
7653         /*
7654          * If the exit was due to a NPF we may already have a GPA.
7655          * If the GPA is present, use it to avoid the GVA to GPA table walk.
7656          * Note, this cannot be used on string operations since string
7657          * operation using rep will only have the initial GPA from the NPF
7658          * occurred.
7659          */
7660         if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7661             (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7662                 gpa = ctxt->gpa_val;
7663                 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7664         } else {
7665                 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7666                 if (ret < 0)
7667                         return X86EMUL_PROPAGATE_FAULT;
7668         }
7669
7670         if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7671                 return X86EMUL_CONTINUE;
7672
7673         /*
7674          * Is this MMIO handled locally?
7675          */
7676         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7677         if (handled == bytes)
7678                 return X86EMUL_CONTINUE;
7679
7680         gpa += handled;
7681         bytes -= handled;
7682         val += handled;
7683
7684         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7685         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7686         frag->gpa = gpa;
7687         frag->data = val;
7688         frag->len = bytes;
7689         return X86EMUL_CONTINUE;
7690 }
7691
7692 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7693                         unsigned long addr,
7694                         void *val, unsigned int bytes,
7695                         struct x86_exception *exception,
7696                         const struct read_write_emulator_ops *ops)
7697 {
7698         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7699         gpa_t gpa;
7700         int rc;
7701
7702         if (ops->read_write_prepare &&
7703                   ops->read_write_prepare(vcpu, val, bytes))
7704                 return X86EMUL_CONTINUE;
7705
7706         vcpu->mmio_nr_fragments = 0;
7707
7708         /* Crossing a page boundary? */
7709         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7710                 int now;
7711
7712                 now = -addr & ~PAGE_MASK;
7713                 rc = emulator_read_write_onepage(addr, val, now, exception,
7714                                                  vcpu, ops);
7715
7716                 if (rc != X86EMUL_CONTINUE)
7717                         return rc;
7718                 addr += now;
7719                 if (ctxt->mode != X86EMUL_MODE_PROT64)
7720                         addr = (u32)addr;
7721                 val += now;
7722                 bytes -= now;
7723         }
7724
7725         rc = emulator_read_write_onepage(addr, val, bytes, exception,
7726                                          vcpu, ops);
7727         if (rc != X86EMUL_CONTINUE)
7728                 return rc;
7729
7730         if (!vcpu->mmio_nr_fragments)
7731                 return rc;
7732
7733         gpa = vcpu->mmio_fragments[0].gpa;
7734
7735         vcpu->mmio_needed = 1;
7736         vcpu->mmio_cur_fragment = 0;
7737
7738         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
7739         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
7740         vcpu->run->exit_reason = KVM_EXIT_MMIO;
7741         vcpu->run->mmio.phys_addr = gpa;
7742
7743         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
7744 }
7745
7746 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
7747                                   unsigned long addr,
7748                                   void *val,
7749                                   unsigned int bytes,
7750                                   struct x86_exception *exception)
7751 {
7752         return emulator_read_write(ctxt, addr, val, bytes,
7753                                    exception, &read_emultor);
7754 }
7755
7756 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
7757                             unsigned long addr,
7758                             const void *val,
7759                             unsigned int bytes,
7760                             struct x86_exception *exception)
7761 {
7762         return emulator_read_write(ctxt, addr, (void *)val, bytes,
7763                                    exception, &write_emultor);
7764 }
7765
7766 #define emulator_try_cmpxchg_user(t, ptr, old, new) \
7767         (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
7768
7769 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
7770                                      unsigned long addr,
7771                                      const void *old,
7772                                      const void *new,
7773                                      unsigned int bytes,
7774                                      struct x86_exception *exception)
7775 {
7776         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7777         u64 page_line_mask;
7778         unsigned long hva;
7779         gpa_t gpa;
7780         int r;
7781
7782         /* guests cmpxchg8b have to be emulated atomically */
7783         if (bytes > 8 || (bytes & (bytes - 1)))
7784                 goto emul_write;
7785
7786         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
7787
7788         if (gpa == INVALID_GPA ||
7789             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7790                 goto emul_write;
7791
7792         /*
7793          * Emulate the atomic as a straight write to avoid #AC if SLD is
7794          * enabled in the host and the access splits a cache line.
7795          */
7796         if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
7797                 page_line_mask = ~(cache_line_size() - 1);
7798         else
7799                 page_line_mask = PAGE_MASK;
7800
7801         if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
7802                 goto emul_write;
7803
7804         hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa));
7805         if (kvm_is_error_hva(hva))
7806                 goto emul_write;
7807
7808         hva += offset_in_page(gpa);
7809
7810         switch (bytes) {
7811         case 1:
7812                 r = emulator_try_cmpxchg_user(u8, hva, old, new);
7813                 break;
7814         case 2:
7815                 r = emulator_try_cmpxchg_user(u16, hva, old, new);
7816                 break;
7817         case 4:
7818                 r = emulator_try_cmpxchg_user(u32, hva, old, new);
7819                 break;
7820         case 8:
7821                 r = emulator_try_cmpxchg_user(u64, hva, old, new);
7822                 break;
7823         default:
7824                 BUG();
7825         }
7826
7827         if (r < 0)
7828                 return X86EMUL_UNHANDLEABLE;
7829         if (r)
7830                 return X86EMUL_CMPXCHG_FAILED;
7831
7832         kvm_page_track_write(vcpu, gpa, new, bytes);
7833
7834         return X86EMUL_CONTINUE;
7835
7836 emul_write:
7837         pr_warn_once("emulating exchange as write\n");
7838
7839         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
7840 }
7841
7842 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
7843                                unsigned short port, void *data,
7844                                unsigned int count, bool in)
7845 {
7846         unsigned i;
7847         int r;
7848
7849         WARN_ON_ONCE(vcpu->arch.pio.count);
7850         for (i = 0; i < count; i++) {
7851                 if (in)
7852                         r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data);
7853                 else
7854                         r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data);
7855
7856                 if (r) {
7857                         if (i == 0)
7858                                 goto userspace_io;
7859
7860                         /*
7861                          * Userspace must have unregistered the device while PIO
7862                          * was running.  Drop writes / read as 0.
7863                          */
7864                         if (in)
7865                                 memset(data, 0, size * (count - i));
7866                         break;
7867                 }
7868
7869                 data += size;
7870         }
7871         return 1;
7872
7873 userspace_io:
7874         vcpu->arch.pio.port = port;
7875         vcpu->arch.pio.in = in;
7876         vcpu->arch.pio.count = count;
7877         vcpu->arch.pio.size = size;
7878
7879         if (in)
7880                 memset(vcpu->arch.pio_data, 0, size * count);
7881         else
7882                 memcpy(vcpu->arch.pio_data, data, size * count);
7883
7884         vcpu->run->exit_reason = KVM_EXIT_IO;
7885         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
7886         vcpu->run->io.size = size;
7887         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
7888         vcpu->run->io.count = count;
7889         vcpu->run->io.port = port;
7890         return 0;
7891 }
7892
7893 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7894                            unsigned short port, void *val, unsigned int count)
7895 {
7896         int r = emulator_pio_in_out(vcpu, size, port, val, count, true);
7897         if (r)
7898                 trace_kvm_pio(KVM_PIO_IN, port, size, count, val);
7899
7900         return r;
7901 }
7902
7903 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
7904 {
7905         int size = vcpu->arch.pio.size;
7906         unsigned int count = vcpu->arch.pio.count;
7907         memcpy(val, vcpu->arch.pio_data, size * count);
7908         trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
7909         vcpu->arch.pio.count = 0;
7910 }
7911
7912 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
7913                                     int size, unsigned short port, void *val,
7914                                     unsigned int count)
7915 {
7916         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7917         if (vcpu->arch.pio.count) {
7918                 /*
7919                  * Complete a previous iteration that required userspace I/O.
7920                  * Note, @count isn't guaranteed to match pio.count as userspace
7921                  * can modify ECX before rerunning the vCPU.  Ignore any such
7922                  * shenanigans as KVM doesn't support modifying the rep count,
7923                  * and the emulator ensures @count doesn't overflow the buffer.
7924                  */
7925                 complete_emulator_pio_in(vcpu, val);
7926                 return 1;
7927         }
7928
7929         return emulator_pio_in(vcpu, size, port, val, count);
7930 }
7931
7932 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
7933                             unsigned short port, const void *val,
7934                             unsigned int count)
7935 {
7936         trace_kvm_pio(KVM_PIO_OUT, port, size, count, val);
7937         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
7938 }
7939
7940 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
7941                                      int size, unsigned short port,
7942                                      const void *val, unsigned int count)
7943 {
7944         return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
7945 }
7946
7947 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
7948 {
7949         return static_call(kvm_x86_get_segment_base)(vcpu, seg);
7950 }
7951
7952 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
7953 {
7954         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
7955 }
7956
7957 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
7958 {
7959         if (!need_emulate_wbinvd(vcpu))
7960                 return X86EMUL_CONTINUE;
7961
7962         if (static_call(kvm_x86_has_wbinvd_exit)()) {
7963                 int cpu = get_cpu();
7964
7965                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
7966                 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
7967                                 wbinvd_ipi, NULL, 1);
7968                 put_cpu();
7969                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
7970         } else
7971                 wbinvd();
7972         return X86EMUL_CONTINUE;
7973 }
7974
7975 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
7976 {
7977         kvm_emulate_wbinvd_noskip(vcpu);
7978         return kvm_skip_emulated_instruction(vcpu);
7979 }
7980 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
7981
7982
7983
7984 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
7985 {
7986         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
7987 }
7988
7989 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
7990                             unsigned long *dest)
7991 {
7992         kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
7993 }
7994
7995 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
7996                            unsigned long value)
7997 {
7998
7999         return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
8000 }
8001
8002 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
8003 {
8004         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
8005 }
8006
8007 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
8008 {
8009         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8010         unsigned long value;
8011
8012         switch (cr) {
8013         case 0:
8014                 value = kvm_read_cr0(vcpu);
8015                 break;
8016         case 2:
8017                 value = vcpu->arch.cr2;
8018                 break;
8019         case 3:
8020                 value = kvm_read_cr3(vcpu);
8021                 break;
8022         case 4:
8023                 value = kvm_read_cr4(vcpu);
8024                 break;
8025         case 8:
8026                 value = kvm_get_cr8(vcpu);
8027                 break;
8028         default:
8029                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
8030                 return 0;
8031         }
8032
8033         return value;
8034 }
8035
8036 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
8037 {
8038         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8039         int res = 0;
8040
8041         switch (cr) {
8042         case 0:
8043                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
8044                 break;
8045         case 2:
8046                 vcpu->arch.cr2 = val;
8047                 break;
8048         case 3:
8049                 res = kvm_set_cr3(vcpu, val);
8050                 break;
8051         case 4:
8052                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
8053                 break;
8054         case 8:
8055                 res = kvm_set_cr8(vcpu, val);
8056                 break;
8057         default:
8058                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
8059                 res = -1;
8060         }
8061
8062         return res;
8063 }
8064
8065 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
8066 {
8067         return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
8068 }
8069
8070 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8071 {
8072         static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
8073 }
8074
8075 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8076 {
8077         static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
8078 }
8079
8080 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8081 {
8082         static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
8083 }
8084
8085 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8086 {
8087         static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
8088 }
8089
8090 static unsigned long emulator_get_cached_segment_base(
8091         struct x86_emulate_ctxt *ctxt, int seg)
8092 {
8093         return get_segment_base(emul_to_vcpu(ctxt), seg);
8094 }
8095
8096 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
8097                                  struct desc_struct *desc, u32 *base3,
8098                                  int seg)
8099 {
8100         struct kvm_segment var;
8101
8102         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
8103         *selector = var.selector;
8104
8105         if (var.unusable) {
8106                 memset(desc, 0, sizeof(*desc));
8107                 if (base3)
8108                         *base3 = 0;
8109                 return false;
8110         }
8111
8112         if (var.g)
8113                 var.limit >>= 12;
8114         set_desc_limit(desc, var.limit);
8115         set_desc_base(desc, (unsigned long)var.base);
8116 #ifdef CONFIG_X86_64
8117         if (base3)
8118                 *base3 = var.base >> 32;
8119 #endif
8120         desc->type = var.type;
8121         desc->s = var.s;
8122         desc->dpl = var.dpl;
8123         desc->p = var.present;
8124         desc->avl = var.avl;
8125         desc->l = var.l;
8126         desc->d = var.db;
8127         desc->g = var.g;
8128
8129         return true;
8130 }
8131
8132 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
8133                                  struct desc_struct *desc, u32 base3,
8134                                  int seg)
8135 {
8136         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8137         struct kvm_segment var;
8138
8139         var.selector = selector;
8140         var.base = get_desc_base(desc);
8141 #ifdef CONFIG_X86_64
8142         var.base |= ((u64)base3) << 32;
8143 #endif
8144         var.limit = get_desc_limit(desc);
8145         if (desc->g)
8146                 var.limit = (var.limit << 12) | 0xfff;
8147         var.type = desc->type;
8148         var.dpl = desc->dpl;
8149         var.db = desc->d;
8150         var.s = desc->s;
8151         var.l = desc->l;
8152         var.g = desc->g;
8153         var.avl = desc->avl;
8154         var.present = desc->p;
8155         var.unusable = !var.present;
8156         var.padding = 0;
8157
8158         kvm_set_segment(vcpu, &var, seg);
8159         return;
8160 }
8161
8162 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8163                                         u32 msr_index, u64 *pdata)
8164 {
8165         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8166         int r;
8167
8168         r = kvm_get_msr_with_filter(vcpu, msr_index, pdata);
8169         if (r < 0)
8170                 return X86EMUL_UNHANDLEABLE;
8171
8172         if (r) {
8173                 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
8174                                        complete_emulated_rdmsr, r))
8175                         return X86EMUL_IO_NEEDED;
8176
8177                 trace_kvm_msr_read_ex(msr_index);
8178                 return X86EMUL_PROPAGATE_FAULT;
8179         }
8180
8181         trace_kvm_msr_read(msr_index, *pdata);
8182         return X86EMUL_CONTINUE;
8183 }
8184
8185 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8186                                         u32 msr_index, u64 data)
8187 {
8188         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8189         int r;
8190
8191         r = kvm_set_msr_with_filter(vcpu, msr_index, data);
8192         if (r < 0)
8193                 return X86EMUL_UNHANDLEABLE;
8194
8195         if (r) {
8196                 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
8197                                        complete_emulated_msr_access, r))
8198                         return X86EMUL_IO_NEEDED;
8199
8200                 trace_kvm_msr_write_ex(msr_index, data);
8201                 return X86EMUL_PROPAGATE_FAULT;
8202         }
8203
8204         trace_kvm_msr_write(msr_index, data);
8205         return X86EMUL_CONTINUE;
8206 }
8207
8208 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
8209                             u32 msr_index, u64 *pdata)
8210 {
8211         return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
8212 }
8213
8214 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
8215                               u32 pmc)
8216 {
8217         if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc))
8218                 return 0;
8219         return -EINVAL;
8220 }
8221
8222 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
8223                              u32 pmc, u64 *pdata)
8224 {
8225         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
8226 }
8227
8228 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
8229 {
8230         emul_to_vcpu(ctxt)->arch.halt_request = 1;
8231 }
8232
8233 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
8234                               struct x86_instruction_info *info,
8235                               enum x86_intercept_stage stage)
8236 {
8237         return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
8238                                             &ctxt->exception);
8239 }
8240
8241 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
8242                               u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
8243                               bool exact_only)
8244 {
8245         return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
8246 }
8247
8248 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
8249 {
8250         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
8251 }
8252
8253 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
8254 {
8255         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
8256 }
8257
8258 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
8259 {
8260         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
8261 }
8262
8263 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
8264 {
8265         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
8266 }
8267
8268 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
8269 {
8270         return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
8271 }
8272
8273 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
8274 {
8275         kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
8276 }
8277
8278 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
8279 {
8280         static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
8281 }
8282
8283 static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt)
8284 {
8285         return is_smm(emul_to_vcpu(ctxt));
8286 }
8287
8288 static bool emulator_is_guest_mode(struct x86_emulate_ctxt *ctxt)
8289 {
8290         return is_guest_mode(emul_to_vcpu(ctxt));
8291 }
8292
8293 #ifndef CONFIG_KVM_SMM
8294 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt)
8295 {
8296         WARN_ON_ONCE(1);
8297         return X86EMUL_UNHANDLEABLE;
8298 }
8299 #endif
8300
8301 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
8302 {
8303         kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
8304 }
8305
8306 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
8307 {
8308         return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
8309 }
8310
8311 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt)
8312 {
8313         struct kvm *kvm = emul_to_vcpu(ctxt)->kvm;
8314
8315         if (!kvm->vm_bugged)
8316                 kvm_vm_bugged(kvm);
8317 }
8318
8319 static const struct x86_emulate_ops emulate_ops = {
8320         .vm_bugged           = emulator_vm_bugged,
8321         .read_gpr            = emulator_read_gpr,
8322         .write_gpr           = emulator_write_gpr,
8323         .read_std            = emulator_read_std,
8324         .write_std           = emulator_write_std,
8325         .fetch               = kvm_fetch_guest_virt,
8326         .read_emulated       = emulator_read_emulated,
8327         .write_emulated      = emulator_write_emulated,
8328         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
8329         .invlpg              = emulator_invlpg,
8330         .pio_in_emulated     = emulator_pio_in_emulated,
8331         .pio_out_emulated    = emulator_pio_out_emulated,
8332         .get_segment         = emulator_get_segment,
8333         .set_segment         = emulator_set_segment,
8334         .get_cached_segment_base = emulator_get_cached_segment_base,
8335         .get_gdt             = emulator_get_gdt,
8336         .get_idt             = emulator_get_idt,
8337         .set_gdt             = emulator_set_gdt,
8338         .set_idt             = emulator_set_idt,
8339         .get_cr              = emulator_get_cr,
8340         .set_cr              = emulator_set_cr,
8341         .cpl                 = emulator_get_cpl,
8342         .get_dr              = emulator_get_dr,
8343         .set_dr              = emulator_set_dr,
8344         .set_msr_with_filter = emulator_set_msr_with_filter,
8345         .get_msr_with_filter = emulator_get_msr_with_filter,
8346         .get_msr             = emulator_get_msr,
8347         .check_pmc           = emulator_check_pmc,
8348         .read_pmc            = emulator_read_pmc,
8349         .halt                = emulator_halt,
8350         .wbinvd              = emulator_wbinvd,
8351         .fix_hypercall       = emulator_fix_hypercall,
8352         .intercept           = emulator_intercept,
8353         .get_cpuid           = emulator_get_cpuid,
8354         .guest_has_long_mode = emulator_guest_has_long_mode,
8355         .guest_has_movbe     = emulator_guest_has_movbe,
8356         .guest_has_fxsr      = emulator_guest_has_fxsr,
8357         .guest_has_rdpid     = emulator_guest_has_rdpid,
8358         .set_nmi_mask        = emulator_set_nmi_mask,
8359         .is_smm              = emulator_is_smm,
8360         .is_guest_mode       = emulator_is_guest_mode,
8361         .leave_smm           = emulator_leave_smm,
8362         .triple_fault        = emulator_triple_fault,
8363         .set_xcr             = emulator_set_xcr,
8364 };
8365
8366 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
8367 {
8368         u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8369         /*
8370          * an sti; sti; sequence only disable interrupts for the first
8371          * instruction. So, if the last instruction, be it emulated or
8372          * not, left the system with the INT_STI flag enabled, it
8373          * means that the last instruction is an sti. We should not
8374          * leave the flag on in this case. The same goes for mov ss
8375          */
8376         if (int_shadow & mask)
8377                 mask = 0;
8378         if (unlikely(int_shadow || mask)) {
8379                 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
8380                 if (!mask)
8381                         kvm_make_request(KVM_REQ_EVENT, vcpu);
8382         }
8383 }
8384
8385 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
8386 {
8387         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8388
8389         if (ctxt->exception.vector == PF_VECTOR)
8390                 kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
8391         else if (ctxt->exception.error_code_valid)
8392                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
8393                                       ctxt->exception.error_code);
8394         else
8395                 kvm_queue_exception(vcpu, ctxt->exception.vector);
8396 }
8397
8398 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
8399 {
8400         struct x86_emulate_ctxt *ctxt;
8401
8402         ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
8403         if (!ctxt) {
8404                 pr_err("failed to allocate vcpu's emulator\n");
8405                 return NULL;
8406         }
8407
8408         ctxt->vcpu = vcpu;
8409         ctxt->ops = &emulate_ops;
8410         vcpu->arch.emulate_ctxt = ctxt;
8411
8412         return ctxt;
8413 }
8414
8415 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
8416 {
8417         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8418         int cs_db, cs_l;
8419
8420         static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
8421
8422         ctxt->gpa_available = false;
8423         ctxt->eflags = kvm_get_rflags(vcpu);
8424         ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
8425
8426         ctxt->eip = kvm_rip_read(vcpu);
8427         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
8428                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
8429                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
8430                      cs_db                              ? X86EMUL_MODE_PROT32 :
8431                                                           X86EMUL_MODE_PROT16;
8432         ctxt->interruptibility = 0;
8433         ctxt->have_exception = false;
8434         ctxt->exception.vector = -1;
8435         ctxt->perm_ok = false;
8436
8437         init_decode_cache(ctxt);
8438         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8439 }
8440
8441 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
8442 {
8443         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8444         int ret;
8445
8446         init_emulate_ctxt(vcpu);
8447
8448         ctxt->op_bytes = 2;
8449         ctxt->ad_bytes = 2;
8450         ctxt->_eip = ctxt->eip + inc_eip;
8451         ret = emulate_int_real(ctxt, irq);
8452
8453         if (ret != X86EMUL_CONTINUE) {
8454                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8455         } else {
8456                 ctxt->eip = ctxt->_eip;
8457                 kvm_rip_write(vcpu, ctxt->eip);
8458                 kvm_set_rflags(vcpu, ctxt->eflags);
8459         }
8460 }
8461 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
8462
8463 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8464                                            u8 ndata, u8 *insn_bytes, u8 insn_size)
8465 {
8466         struct kvm_run *run = vcpu->run;
8467         u64 info[5];
8468         u8 info_start;
8469
8470         /*
8471          * Zero the whole array used to retrieve the exit info, as casting to
8472          * u32 for select entries will leave some chunks uninitialized.
8473          */
8474         memset(&info, 0, sizeof(info));
8475
8476         static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1],
8477                                            &info[2], (u32 *)&info[3],
8478                                            (u32 *)&info[4]);
8479
8480         run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8481         run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
8482
8483         /*
8484          * There's currently space for 13 entries, but 5 are used for the exit
8485          * reason and info.  Restrict to 4 to reduce the maintenance burden
8486          * when expanding kvm_run.emulation_failure in the future.
8487          */
8488         if (WARN_ON_ONCE(ndata > 4))
8489                 ndata = 4;
8490
8491         /* Always include the flags as a 'data' entry. */
8492         info_start = 1;
8493         run->emulation_failure.flags = 0;
8494
8495         if (insn_size) {
8496                 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
8497                               sizeof(run->emulation_failure.insn_bytes) != 16));
8498                 info_start += 2;
8499                 run->emulation_failure.flags |=
8500                         KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
8501                 run->emulation_failure.insn_size = insn_size;
8502                 memset(run->emulation_failure.insn_bytes, 0x90,
8503                        sizeof(run->emulation_failure.insn_bytes));
8504                 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
8505         }
8506
8507         memcpy(&run->internal.data[info_start], info, sizeof(info));
8508         memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
8509                ndata * sizeof(data[0]));
8510
8511         run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
8512 }
8513
8514 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
8515 {
8516         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8517
8518         prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
8519                                        ctxt->fetch.end - ctxt->fetch.data);
8520 }
8521
8522 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8523                                           u8 ndata)
8524 {
8525         prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
8526 }
8527 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
8528
8529 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
8530 {
8531         __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
8532 }
8533 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
8534
8535 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
8536 {
8537         struct kvm *kvm = vcpu->kvm;
8538
8539         ++vcpu->stat.insn_emulation_fail;
8540         trace_kvm_emulate_insn_failed(vcpu);
8541
8542         if (emulation_type & EMULTYPE_VMWARE_GP) {
8543                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8544                 return 1;
8545         }
8546
8547         if (kvm->arch.exit_on_emulation_error ||
8548             (emulation_type & EMULTYPE_SKIP)) {
8549                 prepare_emulation_ctxt_failure_exit(vcpu);
8550                 return 0;
8551         }
8552
8553         kvm_queue_exception(vcpu, UD_VECTOR);
8554
8555         if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
8556                 prepare_emulation_ctxt_failure_exit(vcpu);
8557                 return 0;
8558         }
8559
8560         return 1;
8561 }
8562
8563 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8564                                   int emulation_type)
8565 {
8566         gpa_t gpa = cr2_or_gpa;
8567         kvm_pfn_t pfn;
8568
8569         if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8570                 return false;
8571
8572         if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8573             WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8574                 return false;
8575
8576         if (!vcpu->arch.mmu->root_role.direct) {
8577                 /*
8578                  * Write permission should be allowed since only
8579                  * write access need to be emulated.
8580                  */
8581                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8582
8583                 /*
8584                  * If the mapping is invalid in guest, let cpu retry
8585                  * it to generate fault.
8586                  */
8587                 if (gpa == INVALID_GPA)
8588                         return true;
8589         }
8590
8591         /*
8592          * Do not retry the unhandleable instruction if it faults on the
8593          * readonly host memory, otherwise it will goto a infinite loop:
8594          * retry instruction -> write #PF -> emulation fail -> retry
8595          * instruction -> ...
8596          */
8597         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
8598
8599         /*
8600          * If the instruction failed on the error pfn, it can not be fixed,
8601          * report the error to userspace.
8602          */
8603         if (is_error_noslot_pfn(pfn))
8604                 return false;
8605
8606         kvm_release_pfn_clean(pfn);
8607
8608         /* The instructions are well-emulated on direct mmu. */
8609         if (vcpu->arch.mmu->root_role.direct) {
8610                 unsigned int indirect_shadow_pages;
8611
8612                 write_lock(&vcpu->kvm->mmu_lock);
8613                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
8614                 write_unlock(&vcpu->kvm->mmu_lock);
8615
8616                 if (indirect_shadow_pages)
8617                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8618
8619                 return true;
8620         }
8621
8622         /*
8623          * if emulation was due to access to shadowed page table
8624          * and it failed try to unshadow page and re-enter the
8625          * guest to let CPU execute the instruction.
8626          */
8627         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8628
8629         /*
8630          * If the access faults on its page table, it can not
8631          * be fixed by unprotecting shadow page and it should
8632          * be reported to userspace.
8633          */
8634         return !(emulation_type & EMULTYPE_WRITE_PF_TO_SP);
8635 }
8636
8637 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
8638                               gpa_t cr2_or_gpa,  int emulation_type)
8639 {
8640         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8641         unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
8642
8643         last_retry_eip = vcpu->arch.last_retry_eip;
8644         last_retry_addr = vcpu->arch.last_retry_addr;
8645
8646         /*
8647          * If the emulation is caused by #PF and it is non-page_table
8648          * writing instruction, it means the VM-EXIT is caused by shadow
8649          * page protected, we can zap the shadow page and retry this
8650          * instruction directly.
8651          *
8652          * Note: if the guest uses a non-page-table modifying instruction
8653          * on the PDE that points to the instruction, then we will unmap
8654          * the instruction and go to an infinite loop. So, we cache the
8655          * last retried eip and the last fault address, if we meet the eip
8656          * and the address again, we can break out of the potential infinite
8657          * loop.
8658          */
8659         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
8660
8661         if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8662                 return false;
8663
8664         if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8665             WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8666                 return false;
8667
8668         if (x86_page_table_writing_insn(ctxt))
8669                 return false;
8670
8671         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
8672                 return false;
8673
8674         vcpu->arch.last_retry_eip = ctxt->eip;
8675         vcpu->arch.last_retry_addr = cr2_or_gpa;
8676
8677         if (!vcpu->arch.mmu->root_role.direct)
8678                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8679
8680         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8681
8682         return true;
8683 }
8684
8685 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8686 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8687
8688 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8689                                 unsigned long *db)
8690 {
8691         u32 dr6 = 0;
8692         int i;
8693         u32 enable, rwlen;
8694
8695         enable = dr7;
8696         rwlen = dr7 >> 16;
8697         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8698                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8699                         dr6 |= (1 << i);
8700         return dr6;
8701 }
8702
8703 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8704 {
8705         struct kvm_run *kvm_run = vcpu->run;
8706
8707         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8708                 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8709                 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8710                 kvm_run->debug.arch.exception = DB_VECTOR;
8711                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
8712                 return 0;
8713         }
8714         kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8715         return 1;
8716 }
8717
8718 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8719 {
8720         unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8721         int r;
8722
8723         r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
8724         if (unlikely(!r))
8725                 return 0;
8726
8727         kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8728
8729         /*
8730          * rflags is the old, "raw" value of the flags.  The new value has
8731          * not been saved yet.
8732          *
8733          * This is correct even for TF set by the guest, because "the
8734          * processor will not generate this exception after the instruction
8735          * that sets the TF flag".
8736          */
8737         if (unlikely(rflags & X86_EFLAGS_TF))
8738                 r = kvm_vcpu_do_singlestep(vcpu);
8739         return r;
8740 }
8741 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8742
8743 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu)
8744 {
8745         u32 shadow;
8746
8747         if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF)
8748                 return true;
8749
8750         /*
8751          * Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active,
8752          * but AMD CPUs do not.  MOV/POP SS blocking is rare, check that first
8753          * to avoid the relatively expensive CPUID lookup.
8754          */
8755         shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8756         return (shadow & KVM_X86_SHADOW_INT_MOV_SS) &&
8757                guest_cpuid_is_intel(vcpu);
8758 }
8759
8760 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu,
8761                                            int emulation_type, int *r)
8762 {
8763         WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE);
8764
8765         /*
8766          * Do not check for code breakpoints if hardware has already done the
8767          * checks, as inferred from the emulation type.  On NO_DECODE and SKIP,
8768          * the instruction has passed all exception checks, and all intercepted
8769          * exceptions that trigger emulation have lower priority than code
8770          * breakpoints, i.e. the fact that the intercepted exception occurred
8771          * means any code breakpoints have already been serviced.
8772          *
8773          * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as
8774          * hardware has checked the RIP of the magic prefix, but not the RIP of
8775          * the instruction being emulated.  The intent of forced emulation is
8776          * to behave as if KVM intercepted the instruction without an exception
8777          * and without a prefix.
8778          */
8779         if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
8780                               EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF))
8781                 return false;
8782
8783         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
8784             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
8785                 struct kvm_run *kvm_run = vcpu->run;
8786                 unsigned long eip = kvm_get_linear_rip(vcpu);
8787                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8788                                            vcpu->arch.guest_debug_dr7,
8789                                            vcpu->arch.eff_db);
8790
8791                 if (dr6 != 0) {
8792                         kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
8793                         kvm_run->debug.arch.pc = eip;
8794                         kvm_run->debug.arch.exception = DB_VECTOR;
8795                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
8796                         *r = 0;
8797                         return true;
8798                 }
8799         }
8800
8801         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
8802             !kvm_is_code_breakpoint_inhibited(vcpu)) {
8803                 unsigned long eip = kvm_get_linear_rip(vcpu);
8804                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8805                                            vcpu->arch.dr7,
8806                                            vcpu->arch.db);
8807
8808                 if (dr6 != 0) {
8809                         kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
8810                         *r = 1;
8811                         return true;
8812                 }
8813         }
8814
8815         return false;
8816 }
8817
8818 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
8819 {
8820         switch (ctxt->opcode_len) {
8821         case 1:
8822                 switch (ctxt->b) {
8823                 case 0xe4:      /* IN */
8824                 case 0xe5:
8825                 case 0xec:
8826                 case 0xed:
8827                 case 0xe6:      /* OUT */
8828                 case 0xe7:
8829                 case 0xee:
8830                 case 0xef:
8831                 case 0x6c:      /* INS */
8832                 case 0x6d:
8833                 case 0x6e:      /* OUTS */
8834                 case 0x6f:
8835                         return true;
8836                 }
8837                 break;
8838         case 2:
8839                 switch (ctxt->b) {
8840                 case 0x33:      /* RDPMC */
8841                         return true;
8842                 }
8843                 break;
8844         }
8845
8846         return false;
8847 }
8848
8849 /*
8850  * Decode an instruction for emulation.  The caller is responsible for handling
8851  * code breakpoints.  Note, manually detecting code breakpoints is unnecessary
8852  * (and wrong) when emulating on an intercepted fault-like exception[*], as
8853  * code breakpoints have higher priority and thus have already been done by
8854  * hardware.
8855  *
8856  * [*] Except #MC, which is higher priority, but KVM should never emulate in
8857  *     response to a machine check.
8858  */
8859 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
8860                                     void *insn, int insn_len)
8861 {
8862         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8863         int r;
8864
8865         init_emulate_ctxt(vcpu);
8866
8867         r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
8868
8869         trace_kvm_emulate_insn_start(vcpu);
8870         ++vcpu->stat.insn_emulation;
8871
8872         return r;
8873 }
8874 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
8875
8876 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8877                             int emulation_type, void *insn, int insn_len)
8878 {
8879         int r;
8880         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8881         bool writeback = true;
8882
8883         if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len)))
8884                 return 1;
8885
8886         vcpu->arch.l1tf_flush_l1d = true;
8887
8888         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
8889                 kvm_clear_exception_queue(vcpu);
8890
8891                 /*
8892                  * Return immediately if RIP hits a code breakpoint, such #DBs
8893                  * are fault-like and are higher priority than any faults on
8894                  * the code fetch itself.
8895                  */
8896                 if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r))
8897                         return r;
8898
8899                 r = x86_decode_emulated_instruction(vcpu, emulation_type,
8900                                                     insn, insn_len);
8901                 if (r != EMULATION_OK)  {
8902                         if ((emulation_type & EMULTYPE_TRAP_UD) ||
8903                             (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
8904                                 kvm_queue_exception(vcpu, UD_VECTOR);
8905                                 return 1;
8906                         }
8907                         if (reexecute_instruction(vcpu, cr2_or_gpa,
8908                                                   emulation_type))
8909                                 return 1;
8910
8911                         if (ctxt->have_exception &&
8912                             !(emulation_type & EMULTYPE_SKIP)) {
8913                                 /*
8914                                  * #UD should result in just EMULATION_FAILED, and trap-like
8915                                  * exception should not be encountered during decode.
8916                                  */
8917                                 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
8918                                              exception_type(ctxt->exception.vector) == EXCPT_TRAP);
8919                                 inject_emulated_exception(vcpu);
8920                                 return 1;
8921                         }
8922                         return handle_emulation_failure(vcpu, emulation_type);
8923                 }
8924         }
8925
8926         if ((emulation_type & EMULTYPE_VMWARE_GP) &&
8927             !is_vmware_backdoor_opcode(ctxt)) {
8928                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8929                 return 1;
8930         }
8931
8932         /*
8933          * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
8934          * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
8935          * The caller is responsible for updating interruptibility state and
8936          * injecting single-step #DBs.
8937          */
8938         if (emulation_type & EMULTYPE_SKIP) {
8939                 if (ctxt->mode != X86EMUL_MODE_PROT64)
8940                         ctxt->eip = (u32)ctxt->_eip;
8941                 else
8942                         ctxt->eip = ctxt->_eip;
8943
8944                 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
8945                         r = 1;
8946                         goto writeback;
8947                 }
8948
8949                 kvm_rip_write(vcpu, ctxt->eip);
8950                 if (ctxt->eflags & X86_EFLAGS_RF)
8951                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
8952                 return 1;
8953         }
8954
8955         if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
8956                 return 1;
8957
8958         /* this is needed for vmware backdoor interface to work since it
8959            changes registers values  during IO operation */
8960         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
8961                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8962                 emulator_invalidate_register_cache(ctxt);
8963         }
8964
8965 restart:
8966         if (emulation_type & EMULTYPE_PF) {
8967                 /* Save the faulting GPA (cr2) in the address field */
8968                 ctxt->exception.address = cr2_or_gpa;
8969
8970                 /* With shadow page tables, cr2 contains a GVA or nGPA. */
8971                 if (vcpu->arch.mmu->root_role.direct) {
8972                         ctxt->gpa_available = true;
8973                         ctxt->gpa_val = cr2_or_gpa;
8974                 }
8975         } else {
8976                 /* Sanitize the address out of an abundance of paranoia. */
8977                 ctxt->exception.address = 0;
8978         }
8979
8980         r = x86_emulate_insn(ctxt);
8981
8982         if (r == EMULATION_INTERCEPTED)
8983                 return 1;
8984
8985         if (r == EMULATION_FAILED) {
8986                 if (reexecute_instruction(vcpu, cr2_or_gpa, emulation_type))
8987                         return 1;
8988
8989                 return handle_emulation_failure(vcpu, emulation_type);
8990         }
8991
8992         if (ctxt->have_exception) {
8993                 WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write);
8994                 vcpu->mmio_needed = false;
8995                 r = 1;
8996                 inject_emulated_exception(vcpu);
8997         } else if (vcpu->arch.pio.count) {
8998                 if (!vcpu->arch.pio.in) {
8999                         /* FIXME: return into emulator if single-stepping.  */
9000                         vcpu->arch.pio.count = 0;
9001                 } else {
9002                         writeback = false;
9003                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
9004                 }
9005                 r = 0;
9006         } else if (vcpu->mmio_needed) {
9007                 ++vcpu->stat.mmio_exits;
9008
9009                 if (!vcpu->mmio_is_write)
9010                         writeback = false;
9011                 r = 0;
9012                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9013         } else if (vcpu->arch.complete_userspace_io) {
9014                 writeback = false;
9015                 r = 0;
9016         } else if (r == EMULATION_RESTART)
9017                 goto restart;
9018         else
9019                 r = 1;
9020
9021 writeback:
9022         if (writeback) {
9023                 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
9024                 toggle_interruptibility(vcpu, ctxt->interruptibility);
9025                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9026
9027                 /*
9028                  * Note, EXCPT_DB is assumed to be fault-like as the emulator
9029                  * only supports code breakpoints and general detect #DB, both
9030                  * of which are fault-like.
9031                  */
9032                 if (!ctxt->have_exception ||
9033                     exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
9034                         kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
9035                         if (ctxt->is_branch)
9036                                 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
9037                         kvm_rip_write(vcpu, ctxt->eip);
9038                         if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
9039                                 r = kvm_vcpu_do_singlestep(vcpu);
9040                         static_call_cond(kvm_x86_update_emulated_instruction)(vcpu);
9041                         __kvm_set_rflags(vcpu, ctxt->eflags);
9042                 }
9043
9044                 /*
9045                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
9046                  * do nothing, and it will be requested again as soon as
9047                  * the shadow expires.  But we still need to check here,
9048                  * because POPF has no interrupt shadow.
9049                  */
9050                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
9051                         kvm_make_request(KVM_REQ_EVENT, vcpu);
9052         } else
9053                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
9054
9055         return r;
9056 }
9057
9058 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
9059 {
9060         return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
9061 }
9062 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
9063
9064 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
9065                                         void *insn, int insn_len)
9066 {
9067         return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
9068 }
9069 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
9070
9071 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
9072 {
9073         vcpu->arch.pio.count = 0;
9074         return 1;
9075 }
9076
9077 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
9078 {
9079         vcpu->arch.pio.count = 0;
9080
9081         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
9082                 return 1;
9083
9084         return kvm_skip_emulated_instruction(vcpu);
9085 }
9086
9087 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
9088                             unsigned short port)
9089 {
9090         unsigned long val = kvm_rax_read(vcpu);
9091         int ret = emulator_pio_out(vcpu, size, port, &val, 1);
9092
9093         if (ret)
9094                 return ret;
9095
9096         /*
9097          * Workaround userspace that relies on old KVM behavior of %rip being
9098          * incremented prior to exiting to userspace to handle "OUT 0x7e".
9099          */
9100         if (port == 0x7e &&
9101             kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
9102                 vcpu->arch.complete_userspace_io =
9103                         complete_fast_pio_out_port_0x7e;
9104                 kvm_skip_emulated_instruction(vcpu);
9105         } else {
9106                 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9107                 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
9108         }
9109         return 0;
9110 }
9111
9112 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
9113 {
9114         unsigned long val;
9115
9116         /* We should only ever be called with arch.pio.count equal to 1 */
9117         BUG_ON(vcpu->arch.pio.count != 1);
9118
9119         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
9120                 vcpu->arch.pio.count = 0;
9121                 return 1;
9122         }
9123
9124         /* For size less than 4 we merge, else we zero extend */
9125         val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
9126
9127         complete_emulator_pio_in(vcpu, &val);
9128         kvm_rax_write(vcpu, val);
9129
9130         return kvm_skip_emulated_instruction(vcpu);
9131 }
9132
9133 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
9134                            unsigned short port)
9135 {
9136         unsigned long val;
9137         int ret;
9138
9139         /* For size less than 4 we merge, else we zero extend */
9140         val = (size < 4) ? kvm_rax_read(vcpu) : 0;
9141
9142         ret = emulator_pio_in(vcpu, size, port, &val, 1);
9143         if (ret) {
9144                 kvm_rax_write(vcpu, val);
9145                 return ret;
9146         }
9147
9148         vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9149         vcpu->arch.complete_userspace_io = complete_fast_pio_in;
9150
9151         return 0;
9152 }
9153
9154 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
9155 {
9156         int ret;
9157
9158         if (in)
9159                 ret = kvm_fast_pio_in(vcpu, size, port);
9160         else
9161                 ret = kvm_fast_pio_out(vcpu, size, port);
9162         return ret && kvm_skip_emulated_instruction(vcpu);
9163 }
9164 EXPORT_SYMBOL_GPL(kvm_fast_pio);
9165
9166 static int kvmclock_cpu_down_prep(unsigned int cpu)
9167 {
9168         __this_cpu_write(cpu_tsc_khz, 0);
9169         return 0;
9170 }
9171
9172 static void tsc_khz_changed(void *data)
9173 {
9174         struct cpufreq_freqs *freq = data;
9175         unsigned long khz = 0;
9176
9177         WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC));
9178
9179         if (data)
9180                 khz = freq->new;
9181         else
9182                 khz = cpufreq_quick_get(raw_smp_processor_id());
9183         if (!khz)
9184                 khz = tsc_khz;
9185         __this_cpu_write(cpu_tsc_khz, khz);
9186 }
9187
9188 #ifdef CONFIG_X86_64
9189 static void kvm_hyperv_tsc_notifier(void)
9190 {
9191         struct kvm *kvm;
9192         int cpu;
9193
9194         mutex_lock(&kvm_lock);
9195         list_for_each_entry(kvm, &vm_list, vm_list)
9196                 kvm_make_mclock_inprogress_request(kvm);
9197
9198         /* no guest entries from this point */
9199         hyperv_stop_tsc_emulation();
9200
9201         /* TSC frequency always matches when on Hyper-V */
9202         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9203                 for_each_present_cpu(cpu)
9204                         per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
9205         }
9206         kvm_caps.max_guest_tsc_khz = tsc_khz;
9207
9208         list_for_each_entry(kvm, &vm_list, vm_list) {
9209                 __kvm_start_pvclock_update(kvm);
9210                 pvclock_update_vm_gtod_copy(kvm);
9211                 kvm_end_pvclock_update(kvm);
9212         }
9213
9214         mutex_unlock(&kvm_lock);
9215 }
9216 #endif
9217
9218 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
9219 {
9220         struct kvm *kvm;
9221         struct kvm_vcpu *vcpu;
9222         int send_ipi = 0;
9223         unsigned long i;
9224
9225         /*
9226          * We allow guests to temporarily run on slowing clocks,
9227          * provided we notify them after, or to run on accelerating
9228          * clocks, provided we notify them before.  Thus time never
9229          * goes backwards.
9230          *
9231          * However, we have a problem.  We can't atomically update
9232          * the frequency of a given CPU from this function; it is
9233          * merely a notifier, which can be called from any CPU.
9234          * Changing the TSC frequency at arbitrary points in time
9235          * requires a recomputation of local variables related to
9236          * the TSC for each VCPU.  We must flag these local variables
9237          * to be updated and be sure the update takes place with the
9238          * new frequency before any guests proceed.
9239          *
9240          * Unfortunately, the combination of hotplug CPU and frequency
9241          * change creates an intractable locking scenario; the order
9242          * of when these callouts happen is undefined with respect to
9243          * CPU hotplug, and they can race with each other.  As such,
9244          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
9245          * undefined; you can actually have a CPU frequency change take
9246          * place in between the computation of X and the setting of the
9247          * variable.  To protect against this problem, all updates of
9248          * the per_cpu tsc_khz variable are done in an interrupt
9249          * protected IPI, and all callers wishing to update the value
9250          * must wait for a synchronous IPI to complete (which is trivial
9251          * if the caller is on the CPU already).  This establishes the
9252          * necessary total order on variable updates.
9253          *
9254          * Note that because a guest time update may take place
9255          * anytime after the setting of the VCPU's request bit, the
9256          * correct TSC value must be set before the request.  However,
9257          * to ensure the update actually makes it to any guest which
9258          * starts running in hardware virtualization between the set
9259          * and the acquisition of the spinlock, we must also ping the
9260          * CPU after setting the request bit.
9261          *
9262          */
9263
9264         smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9265
9266         mutex_lock(&kvm_lock);
9267         list_for_each_entry(kvm, &vm_list, vm_list) {
9268                 kvm_for_each_vcpu(i, vcpu, kvm) {
9269                         if (vcpu->cpu != cpu)
9270                                 continue;
9271                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9272                         if (vcpu->cpu != raw_smp_processor_id())
9273                                 send_ipi = 1;
9274                 }
9275         }
9276         mutex_unlock(&kvm_lock);
9277
9278         if (freq->old < freq->new && send_ipi) {
9279                 /*
9280                  * We upscale the frequency.  Must make the guest
9281                  * doesn't see old kvmclock values while running with
9282                  * the new frequency, otherwise we risk the guest sees
9283                  * time go backwards.
9284                  *
9285                  * In case we update the frequency for another cpu
9286                  * (which might be in guest context) send an interrupt
9287                  * to kick the cpu out of guest context.  Next time
9288                  * guest context is entered kvmclock will be updated,
9289                  * so the guest will not see stale values.
9290                  */
9291                 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9292         }
9293 }
9294
9295 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
9296                                      void *data)
9297 {
9298         struct cpufreq_freqs *freq = data;
9299         int cpu;
9300
9301         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
9302                 return 0;
9303         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
9304                 return 0;
9305
9306         for_each_cpu(cpu, freq->policy->cpus)
9307                 __kvmclock_cpufreq_notifier(freq, cpu);
9308
9309         return 0;
9310 }
9311
9312 static struct notifier_block kvmclock_cpufreq_notifier_block = {
9313         .notifier_call  = kvmclock_cpufreq_notifier
9314 };
9315
9316 static int kvmclock_cpu_online(unsigned int cpu)
9317 {
9318         tsc_khz_changed(NULL);
9319         return 0;
9320 }
9321
9322 static void kvm_timer_init(void)
9323 {
9324         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9325                 max_tsc_khz = tsc_khz;
9326
9327                 if (IS_ENABLED(CONFIG_CPU_FREQ)) {
9328                         struct cpufreq_policy *policy;
9329                         int cpu;
9330
9331                         cpu = get_cpu();
9332                         policy = cpufreq_cpu_get(cpu);
9333                         if (policy) {
9334                                 if (policy->cpuinfo.max_freq)
9335                                         max_tsc_khz = policy->cpuinfo.max_freq;
9336                                 cpufreq_cpu_put(policy);
9337                         }
9338                         put_cpu();
9339                 }
9340                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
9341                                           CPUFREQ_TRANSITION_NOTIFIER);
9342
9343                 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
9344                                   kvmclock_cpu_online, kvmclock_cpu_down_prep);
9345         }
9346 }
9347
9348 #ifdef CONFIG_X86_64
9349 static void pvclock_gtod_update_fn(struct work_struct *work)
9350 {
9351         struct kvm *kvm;
9352         struct kvm_vcpu *vcpu;
9353         unsigned long i;
9354
9355         mutex_lock(&kvm_lock);
9356         list_for_each_entry(kvm, &vm_list, vm_list)
9357                 kvm_for_each_vcpu(i, vcpu, kvm)
9358                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9359         atomic_set(&kvm_guest_has_master_clock, 0);
9360         mutex_unlock(&kvm_lock);
9361 }
9362
9363 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
9364
9365 /*
9366  * Indirection to move queue_work() out of the tk_core.seq write held
9367  * region to prevent possible deadlocks against time accessors which
9368  * are invoked with work related locks held.
9369  */
9370 static void pvclock_irq_work_fn(struct irq_work *w)
9371 {
9372         queue_work(system_long_wq, &pvclock_gtod_work);
9373 }
9374
9375 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
9376
9377 /*
9378  * Notification about pvclock gtod data update.
9379  */
9380 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
9381                                void *priv)
9382 {
9383         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
9384         struct timekeeper *tk = priv;
9385
9386         update_pvclock_gtod(tk);
9387
9388         /*
9389          * Disable master clock if host does not trust, or does not use,
9390          * TSC based clocksource. Delegate queue_work() to irq_work as
9391          * this is invoked with tk_core.seq write held.
9392          */
9393         if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
9394             atomic_read(&kvm_guest_has_master_clock) != 0)
9395                 irq_work_queue(&pvclock_irq_work);
9396         return 0;
9397 }
9398
9399 static struct notifier_block pvclock_gtod_notifier = {
9400         .notifier_call = pvclock_gtod_notify,
9401 };
9402 #endif
9403
9404 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops)
9405 {
9406         memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
9407
9408 #define __KVM_X86_OP(func) \
9409         static_call_update(kvm_x86_##func, kvm_x86_ops.func);
9410 #define KVM_X86_OP(func) \
9411         WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func)
9412 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP
9413 #define KVM_X86_OP_OPTIONAL_RET0(func) \
9414         static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \
9415                                            (void *)__static_call_return0);
9416 #include <asm/kvm-x86-ops.h>
9417 #undef __KVM_X86_OP
9418
9419         kvm_pmu_ops_update(ops->pmu_ops);
9420 }
9421
9422 static int kvm_x86_check_processor_compatibility(void)
9423 {
9424         int cpu = smp_processor_id();
9425         struct cpuinfo_x86 *c = &cpu_data(cpu);
9426
9427         /*
9428          * Compatibility checks are done when loading KVM and when enabling
9429          * hardware, e.g. during CPU hotplug, to ensure all online CPUs are
9430          * compatible, i.e. KVM should never perform a compatibility check on
9431          * an offline CPU.
9432          */
9433         WARN_ON(!cpu_online(cpu));
9434
9435         if (__cr4_reserved_bits(cpu_has, c) !=
9436             __cr4_reserved_bits(cpu_has, &boot_cpu_data))
9437                 return -EIO;
9438
9439         return static_call(kvm_x86_check_processor_compatibility)();
9440 }
9441
9442 static void kvm_x86_check_cpu_compat(void *ret)
9443 {
9444         *(int *)ret = kvm_x86_check_processor_compatibility();
9445 }
9446
9447 static int __kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9448 {
9449         u64 host_pat;
9450         int r, cpu;
9451
9452         if (kvm_x86_ops.hardware_enable) {
9453                 pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name);
9454                 return -EEXIST;
9455         }
9456
9457         /*
9458          * KVM explicitly assumes that the guest has an FPU and
9459          * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
9460          * vCPU's FPU state as a fxregs_state struct.
9461          */
9462         if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
9463                 pr_err("inadequate fpu\n");
9464                 return -EOPNOTSUPP;
9465         }
9466
9467         if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9468                 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
9469                 return -EOPNOTSUPP;
9470         }
9471
9472         /*
9473          * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes
9474          * the PAT bits in SPTEs.  Bail if PAT[0] is programmed to something
9475          * other than WB.  Note, EPT doesn't utilize the PAT, but don't bother
9476          * with an exception.  PAT[0] is set to WB on RESET and also by the
9477          * kernel, i.e. failure indicates a kernel bug or broken firmware.
9478          */
9479         if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) ||
9480             (host_pat & GENMASK(2, 0)) != 6) {
9481                 pr_err("host PAT[0] is not WB\n");
9482                 return -EIO;
9483         }
9484
9485         x86_emulator_cache = kvm_alloc_emulator_cache();
9486         if (!x86_emulator_cache) {
9487                 pr_err("failed to allocate cache for x86 emulator\n");
9488                 return -ENOMEM;
9489         }
9490
9491         user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
9492         if (!user_return_msrs) {
9493                 pr_err("failed to allocate percpu kvm_user_return_msrs\n");
9494                 r = -ENOMEM;
9495                 goto out_free_x86_emulator_cache;
9496         }
9497         kvm_nr_uret_msrs = 0;
9498
9499         r = kvm_mmu_vendor_module_init();
9500         if (r)
9501                 goto out_free_percpu;
9502
9503         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
9504                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
9505                 kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
9506         }
9507
9508         rdmsrl_safe(MSR_EFER, &host_efer);
9509
9510         if (boot_cpu_has(X86_FEATURE_XSAVES))
9511                 rdmsrl(MSR_IA32_XSS, host_xss);
9512
9513         kvm_init_pmu_capability(ops->pmu_ops);
9514
9515         r = ops->hardware_setup();
9516         if (r != 0)
9517                 goto out_mmu_exit;
9518
9519         kvm_ops_update(ops);
9520
9521         for_each_online_cpu(cpu) {
9522                 smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1);
9523                 if (r < 0)
9524                         goto out_unwind_ops;
9525         }
9526
9527         /*
9528          * Point of no return!  DO NOT add error paths below this point unless
9529          * absolutely necessary, as most operations from this point forward
9530          * require unwinding.
9531          */
9532         kvm_timer_init();
9533
9534         if (pi_inject_timer == -1)
9535                 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
9536 #ifdef CONFIG_X86_64
9537         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
9538
9539         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9540                 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
9541 #endif
9542
9543         kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
9544
9545         if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
9546                 kvm_caps.supported_xss = 0;
9547
9548 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
9549         cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
9550 #undef __kvm_cpu_cap_has
9551
9552         if (kvm_caps.has_tsc_control) {
9553                 /*
9554                  * Make sure the user can only configure tsc_khz values that
9555                  * fit into a signed integer.
9556                  * A min value is not calculated because it will always
9557                  * be 1 on all machines.
9558                  */
9559                 u64 max = min(0x7fffffffULL,
9560                               __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz));
9561                 kvm_caps.max_guest_tsc_khz = max;
9562         }
9563         kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits;
9564         kvm_init_msr_lists();
9565         return 0;
9566
9567 out_unwind_ops:
9568         kvm_x86_ops.hardware_enable = NULL;
9569         static_call(kvm_x86_hardware_unsetup)();
9570 out_mmu_exit:
9571         kvm_mmu_vendor_module_exit();
9572 out_free_percpu:
9573         free_percpu(user_return_msrs);
9574 out_free_x86_emulator_cache:
9575         kmem_cache_destroy(x86_emulator_cache);
9576         return r;
9577 }
9578
9579 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9580 {
9581         int r;
9582
9583         mutex_lock(&vendor_module_lock);
9584         r = __kvm_x86_vendor_init(ops);
9585         mutex_unlock(&vendor_module_lock);
9586
9587         return r;
9588 }
9589 EXPORT_SYMBOL_GPL(kvm_x86_vendor_init);
9590
9591 void kvm_x86_vendor_exit(void)
9592 {
9593         kvm_unregister_perf_callbacks();
9594
9595 #ifdef CONFIG_X86_64
9596         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9597                 clear_hv_tscchange_cb();
9598 #endif
9599         kvm_lapic_exit();
9600
9601         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9602                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
9603                                             CPUFREQ_TRANSITION_NOTIFIER);
9604                 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
9605         }
9606 #ifdef CONFIG_X86_64
9607         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
9608         irq_work_sync(&pvclock_irq_work);
9609         cancel_work_sync(&pvclock_gtod_work);
9610 #endif
9611         static_call(kvm_x86_hardware_unsetup)();
9612         kvm_mmu_vendor_module_exit();
9613         free_percpu(user_return_msrs);
9614         kmem_cache_destroy(x86_emulator_cache);
9615 #ifdef CONFIG_KVM_XEN
9616         static_key_deferred_flush(&kvm_xen_enabled);
9617         WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
9618 #endif
9619         mutex_lock(&vendor_module_lock);
9620         kvm_x86_ops.hardware_enable = NULL;
9621         mutex_unlock(&vendor_module_lock);
9622 }
9623 EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit);
9624
9625 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
9626 {
9627         /*
9628          * The vCPU has halted, e.g. executed HLT.  Update the run state if the
9629          * local APIC is in-kernel, the run loop will detect the non-runnable
9630          * state and halt the vCPU.  Exit to userspace if the local APIC is
9631          * managed by userspace, in which case userspace is responsible for
9632          * handling wake events.
9633          */
9634         ++vcpu->stat.halt_exits;
9635         if (lapic_in_kernel(vcpu)) {
9636                 vcpu->arch.mp_state = state;
9637                 return 1;
9638         } else {
9639                 vcpu->run->exit_reason = reason;
9640                 return 0;
9641         }
9642 }
9643
9644 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
9645 {
9646         return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
9647 }
9648 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
9649
9650 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
9651 {
9652         int ret = kvm_skip_emulated_instruction(vcpu);
9653         /*
9654          * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
9655          * KVM_EXIT_DEBUG here.
9656          */
9657         return kvm_emulate_halt_noskip(vcpu) && ret;
9658 }
9659 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
9660
9661 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
9662 {
9663         int ret = kvm_skip_emulated_instruction(vcpu);
9664
9665         return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
9666                                         KVM_EXIT_AP_RESET_HOLD) && ret;
9667 }
9668 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
9669
9670 #ifdef CONFIG_X86_64
9671 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
9672                                 unsigned long clock_type)
9673 {
9674         struct kvm_clock_pairing clock_pairing;
9675         struct timespec64 ts;
9676         u64 cycle;
9677         int ret;
9678
9679         if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
9680                 return -KVM_EOPNOTSUPP;
9681
9682         /*
9683          * When tsc is in permanent catchup mode guests won't be able to use
9684          * pvclock_read_retry loop to get consistent view of pvclock
9685          */
9686         if (vcpu->arch.tsc_always_catchup)
9687                 return -KVM_EOPNOTSUPP;
9688
9689         if (!kvm_get_walltime_and_clockread(&ts, &cycle))
9690                 return -KVM_EOPNOTSUPP;
9691
9692         clock_pairing.sec = ts.tv_sec;
9693         clock_pairing.nsec = ts.tv_nsec;
9694         clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
9695         clock_pairing.flags = 0;
9696         memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
9697
9698         ret = 0;
9699         if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
9700                             sizeof(struct kvm_clock_pairing)))
9701                 ret = -KVM_EFAULT;
9702
9703         return ret;
9704 }
9705 #endif
9706
9707 /*
9708  * kvm_pv_kick_cpu_op:  Kick a vcpu.
9709  *
9710  * @apicid - apicid of vcpu to be kicked.
9711  */
9712 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
9713 {
9714         /*
9715          * All other fields are unused for APIC_DM_REMRD, but may be consumed by
9716          * common code, e.g. for tracing. Defer initialization to the compiler.
9717          */
9718         struct kvm_lapic_irq lapic_irq = {
9719                 .delivery_mode = APIC_DM_REMRD,
9720                 .dest_mode = APIC_DEST_PHYSICAL,
9721                 .shorthand = APIC_DEST_NOSHORT,
9722                 .dest_id = apicid,
9723         };
9724
9725         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
9726 }
9727
9728 bool kvm_apicv_activated(struct kvm *kvm)
9729 {
9730         return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
9731 }
9732 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
9733
9734 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
9735 {
9736         ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons);
9737         ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu);
9738
9739         return (vm_reasons | vcpu_reasons) == 0;
9740 }
9741 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated);
9742
9743 static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
9744                                        enum kvm_apicv_inhibit reason, bool set)
9745 {
9746         if (set)
9747                 __set_bit(reason, inhibits);
9748         else
9749                 __clear_bit(reason, inhibits);
9750
9751         trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
9752 }
9753
9754 static void kvm_apicv_init(struct kvm *kvm)
9755 {
9756         unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons;
9757
9758         init_rwsem(&kvm->arch.apicv_update_lock);
9759
9760         set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true);
9761
9762         if (!enable_apicv)
9763                 set_or_clear_apicv_inhibit(inhibits,
9764                                            APICV_INHIBIT_REASON_DISABLE, true);
9765 }
9766
9767 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
9768 {
9769         struct kvm_vcpu *target = NULL;
9770         struct kvm_apic_map *map;
9771
9772         vcpu->stat.directed_yield_attempted++;
9773
9774         if (single_task_running())
9775                 goto no_yield;
9776
9777         rcu_read_lock();
9778         map = rcu_dereference(vcpu->kvm->arch.apic_map);
9779
9780         if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
9781                 target = map->phys_map[dest_id]->vcpu;
9782
9783         rcu_read_unlock();
9784
9785         if (!target || !READ_ONCE(target->ready))
9786                 goto no_yield;
9787
9788         /* Ignore requests to yield to self */
9789         if (vcpu == target)
9790                 goto no_yield;
9791
9792         if (kvm_vcpu_yield_to(target) <= 0)
9793                 goto no_yield;
9794
9795         vcpu->stat.directed_yield_successful++;
9796
9797 no_yield:
9798         return;
9799 }
9800
9801 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
9802 {
9803         u64 ret = vcpu->run->hypercall.ret;
9804
9805         if (!is_64_bit_mode(vcpu))
9806                 ret = (u32)ret;
9807         kvm_rax_write(vcpu, ret);
9808         ++vcpu->stat.hypercalls;
9809         return kvm_skip_emulated_instruction(vcpu);
9810 }
9811
9812 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
9813 {
9814         unsigned long nr, a0, a1, a2, a3, ret;
9815         int op_64_bit;
9816
9817         if (kvm_xen_hypercall_enabled(vcpu->kvm))
9818                 return kvm_xen_hypercall(vcpu);
9819
9820         if (kvm_hv_hypercall_enabled(vcpu))
9821                 return kvm_hv_hypercall(vcpu);
9822
9823         nr = kvm_rax_read(vcpu);
9824         a0 = kvm_rbx_read(vcpu);
9825         a1 = kvm_rcx_read(vcpu);
9826         a2 = kvm_rdx_read(vcpu);
9827         a3 = kvm_rsi_read(vcpu);
9828
9829         trace_kvm_hypercall(nr, a0, a1, a2, a3);
9830
9831         op_64_bit = is_64_bit_hypercall(vcpu);
9832         if (!op_64_bit) {
9833                 nr &= 0xFFFFFFFF;
9834                 a0 &= 0xFFFFFFFF;
9835                 a1 &= 0xFFFFFFFF;
9836                 a2 &= 0xFFFFFFFF;
9837                 a3 &= 0xFFFFFFFF;
9838         }
9839
9840         if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
9841                 ret = -KVM_EPERM;
9842                 goto out;
9843         }
9844
9845         ret = -KVM_ENOSYS;
9846
9847         switch (nr) {
9848         case KVM_HC_VAPIC_POLL_IRQ:
9849                 ret = 0;
9850                 break;
9851         case KVM_HC_KICK_CPU:
9852                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
9853                         break;
9854
9855                 kvm_pv_kick_cpu_op(vcpu->kvm, a1);
9856                 kvm_sched_yield(vcpu, a1);
9857                 ret = 0;
9858                 break;
9859 #ifdef CONFIG_X86_64
9860         case KVM_HC_CLOCK_PAIRING:
9861                 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
9862                 break;
9863 #endif
9864         case KVM_HC_SEND_IPI:
9865                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
9866                         break;
9867
9868                 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
9869                 break;
9870         case KVM_HC_SCHED_YIELD:
9871                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
9872                         break;
9873
9874                 kvm_sched_yield(vcpu, a0);
9875                 ret = 0;
9876                 break;
9877         case KVM_HC_MAP_GPA_RANGE: {
9878                 u64 gpa = a0, npages = a1, attrs = a2;
9879
9880                 ret = -KVM_ENOSYS;
9881                 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
9882                         break;
9883
9884                 if (!PAGE_ALIGNED(gpa) || !npages ||
9885                     gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
9886                         ret = -KVM_EINVAL;
9887                         break;
9888                 }
9889
9890                 vcpu->run->exit_reason        = KVM_EXIT_HYPERCALL;
9891                 vcpu->run->hypercall.nr       = KVM_HC_MAP_GPA_RANGE;
9892                 vcpu->run->hypercall.args[0]  = gpa;
9893                 vcpu->run->hypercall.args[1]  = npages;
9894                 vcpu->run->hypercall.args[2]  = attrs;
9895                 vcpu->run->hypercall.flags    = 0;
9896                 if (op_64_bit)
9897                         vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE;
9898
9899                 WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ);
9900                 vcpu->arch.complete_userspace_io = complete_hypercall_exit;
9901                 return 0;
9902         }
9903         default:
9904                 ret = -KVM_ENOSYS;
9905                 break;
9906         }
9907 out:
9908         if (!op_64_bit)
9909                 ret = (u32)ret;
9910         kvm_rax_write(vcpu, ret);
9911
9912         ++vcpu->stat.hypercalls;
9913         return kvm_skip_emulated_instruction(vcpu);
9914 }
9915 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
9916
9917 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
9918 {
9919         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
9920         char instruction[3];
9921         unsigned long rip = kvm_rip_read(vcpu);
9922
9923         /*
9924          * If the quirk is disabled, synthesize a #UD and let the guest pick up
9925          * the pieces.
9926          */
9927         if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) {
9928                 ctxt->exception.error_code_valid = false;
9929                 ctxt->exception.vector = UD_VECTOR;
9930                 ctxt->have_exception = true;
9931                 return X86EMUL_PROPAGATE_FAULT;
9932         }
9933
9934         static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
9935
9936         return emulator_write_emulated(ctxt, rip, instruction, 3,
9937                 &ctxt->exception);
9938 }
9939
9940 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
9941 {
9942         return vcpu->run->request_interrupt_window &&
9943                 likely(!pic_in_kernel(vcpu->kvm));
9944 }
9945
9946 /* Called within kvm->srcu read side.  */
9947 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
9948 {
9949         struct kvm_run *kvm_run = vcpu->run;
9950
9951         kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu);
9952         kvm_run->cr8 = kvm_get_cr8(vcpu);
9953         kvm_run->apic_base = kvm_get_apic_base(vcpu);
9954
9955         kvm_run->ready_for_interrupt_injection =
9956                 pic_in_kernel(vcpu->kvm) ||
9957                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
9958
9959         if (is_smm(vcpu))
9960                 kvm_run->flags |= KVM_RUN_X86_SMM;
9961 }
9962
9963 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
9964 {
9965         int max_irr, tpr;
9966
9967         if (!kvm_x86_ops.update_cr8_intercept)
9968                 return;
9969
9970         if (!lapic_in_kernel(vcpu))
9971                 return;
9972
9973         if (vcpu->arch.apic->apicv_active)
9974                 return;
9975
9976         if (!vcpu->arch.apic->vapic_addr)
9977                 max_irr = kvm_lapic_find_highest_irr(vcpu);
9978         else
9979                 max_irr = -1;
9980
9981         if (max_irr != -1)
9982                 max_irr >>= 4;
9983
9984         tpr = kvm_lapic_get_cr8(vcpu);
9985
9986         static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
9987 }
9988
9989
9990 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
9991 {
9992         if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9993                 kvm_x86_ops.nested_ops->triple_fault(vcpu);
9994                 return 1;
9995         }
9996
9997         return kvm_x86_ops.nested_ops->check_events(vcpu);
9998 }
9999
10000 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
10001 {
10002         /*
10003          * Suppress the error code if the vCPU is in Real Mode, as Real Mode
10004          * exceptions don't report error codes.  The presence of an error code
10005          * is carried with the exception and only stripped when the exception
10006          * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do
10007          * report an error code despite the CPU being in Real Mode.
10008          */
10009         vcpu->arch.exception.has_error_code &= is_protmode(vcpu);
10010
10011         trace_kvm_inj_exception(vcpu->arch.exception.vector,
10012                                 vcpu->arch.exception.has_error_code,
10013                                 vcpu->arch.exception.error_code,
10014                                 vcpu->arch.exception.injected);
10015
10016         static_call(kvm_x86_inject_exception)(vcpu);
10017 }
10018
10019 /*
10020  * Check for any event (interrupt or exception) that is ready to be injected,
10021  * and if there is at least one event, inject the event with the highest
10022  * priority.  This handles both "pending" events, i.e. events that have never
10023  * been injected into the guest, and "injected" events, i.e. events that were
10024  * injected as part of a previous VM-Enter, but weren't successfully delivered
10025  * and need to be re-injected.
10026  *
10027  * Note, this is not guaranteed to be invoked on a guest instruction boundary,
10028  * i.e. doesn't guarantee that there's an event window in the guest.  KVM must
10029  * be able to inject exceptions in the "middle" of an instruction, and so must
10030  * also be able to re-inject NMIs and IRQs in the middle of an instruction.
10031  * I.e. for exceptions and re-injected events, NOT invoking this on instruction
10032  * boundaries is necessary and correct.
10033  *
10034  * For simplicity, KVM uses a single path to inject all events (except events
10035  * that are injected directly from L1 to L2) and doesn't explicitly track
10036  * instruction boundaries for asynchronous events.  However, because VM-Exits
10037  * that can occur during instruction execution typically result in KVM skipping
10038  * the instruction or injecting an exception, e.g. instruction and exception
10039  * intercepts, and because pending exceptions have higher priority than pending
10040  * interrupts, KVM still honors instruction boundaries in most scenarios.
10041  *
10042  * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip
10043  * the instruction or inject an exception, then KVM can incorrecty inject a new
10044  * asynchrounous event if the event became pending after the CPU fetched the
10045  * instruction (in the guest).  E.g. if a page fault (#PF, #NPF, EPT violation)
10046  * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be
10047  * injected on the restarted instruction instead of being deferred until the
10048  * instruction completes.
10049  *
10050  * In practice, this virtualization hole is unlikely to be observed by the
10051  * guest, and even less likely to cause functional problems.  To detect the
10052  * hole, the guest would have to trigger an event on a side effect of an early
10053  * phase of instruction execution, e.g. on the instruction fetch from memory.
10054  * And for it to be a functional problem, the guest would need to depend on the
10055  * ordering between that side effect, the instruction completing, _and_ the
10056  * delivery of the asynchronous event.
10057  */
10058 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu,
10059                                        bool *req_immediate_exit)
10060 {
10061         bool can_inject;
10062         int r;
10063
10064         /*
10065          * Process nested events first, as nested VM-Exit supercedes event
10066          * re-injection.  If there's an event queued for re-injection, it will
10067          * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit.
10068          */
10069         if (is_guest_mode(vcpu))
10070                 r = kvm_check_nested_events(vcpu);
10071         else
10072                 r = 0;
10073
10074         /*
10075          * Re-inject exceptions and events *especially* if immediate entry+exit
10076          * to/from L2 is needed, as any event that has already been injected
10077          * into L2 needs to complete its lifecycle before injecting a new event.
10078          *
10079          * Don't re-inject an NMI or interrupt if there is a pending exception.
10080          * This collision arises if an exception occurred while vectoring the
10081          * injected event, KVM intercepted said exception, and KVM ultimately
10082          * determined the fault belongs to the guest and queues the exception
10083          * for injection back into the guest.
10084          *
10085          * "Injected" interrupts can also collide with pending exceptions if
10086          * userspace ignores the "ready for injection" flag and blindly queues
10087          * an interrupt.  In that case, prioritizing the exception is correct,
10088          * as the exception "occurred" before the exit to userspace.  Trap-like
10089          * exceptions, e.g. most #DBs, have higher priority than interrupts.
10090          * And while fault-like exceptions, e.g. #GP and #PF, are the lowest
10091          * priority, they're only generated (pended) during instruction
10092          * execution, and interrupts are recognized at instruction boundaries.
10093          * Thus a pending fault-like exception means the fault occurred on the
10094          * *previous* instruction and must be serviced prior to recognizing any
10095          * new events in order to fully complete the previous instruction.
10096          */
10097         if (vcpu->arch.exception.injected)
10098                 kvm_inject_exception(vcpu);
10099         else if (kvm_is_exception_pending(vcpu))
10100                 ; /* see above */
10101         else if (vcpu->arch.nmi_injected)
10102                 static_call(kvm_x86_inject_nmi)(vcpu);
10103         else if (vcpu->arch.interrupt.injected)
10104                 static_call(kvm_x86_inject_irq)(vcpu, true);
10105
10106         /*
10107          * Exceptions that morph to VM-Exits are handled above, and pending
10108          * exceptions on top of injected exceptions that do not VM-Exit should
10109          * either morph to #DF or, sadly, override the injected exception.
10110          */
10111         WARN_ON_ONCE(vcpu->arch.exception.injected &&
10112                      vcpu->arch.exception.pending);
10113
10114         /*
10115          * Bail if immediate entry+exit to/from the guest is needed to complete
10116          * nested VM-Enter or event re-injection so that a different pending
10117          * event can be serviced (or if KVM needs to exit to userspace).
10118          *
10119          * Otherwise, continue processing events even if VM-Exit occurred.  The
10120          * VM-Exit will have cleared exceptions that were meant for L2, but
10121          * there may now be events that can be injected into L1.
10122          */
10123         if (r < 0)
10124                 goto out;
10125
10126         /*
10127          * A pending exception VM-Exit should either result in nested VM-Exit
10128          * or force an immediate re-entry and exit to/from L2, and exception
10129          * VM-Exits cannot be injected (flag should _never_ be set).
10130          */
10131         WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected ||
10132                      vcpu->arch.exception_vmexit.pending);
10133
10134         /*
10135          * New events, other than exceptions, cannot be injected if KVM needs
10136          * to re-inject a previous event.  See above comments on re-injecting
10137          * for why pending exceptions get priority.
10138          */
10139         can_inject = !kvm_event_needs_reinjection(vcpu);
10140
10141         if (vcpu->arch.exception.pending) {
10142                 /*
10143                  * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS
10144                  * value pushed on the stack.  Trap-like exception and all #DBs
10145                  * leave RF as-is (KVM follows Intel's behavior in this regard;
10146                  * AMD states that code breakpoint #DBs excplitly clear RF=0).
10147                  *
10148                  * Note, most versions of Intel's SDM and AMD's APM incorrectly
10149                  * describe the behavior of General Detect #DBs, which are
10150                  * fault-like.  They do _not_ set RF, a la code breakpoints.
10151                  */
10152                 if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT)
10153                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
10154                                              X86_EFLAGS_RF);
10155
10156                 if (vcpu->arch.exception.vector == DB_VECTOR) {
10157                         kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception);
10158                         if (vcpu->arch.dr7 & DR7_GD) {
10159                                 vcpu->arch.dr7 &= ~DR7_GD;
10160                                 kvm_update_dr7(vcpu);
10161                         }
10162                 }
10163
10164                 kvm_inject_exception(vcpu);
10165
10166                 vcpu->arch.exception.pending = false;
10167                 vcpu->arch.exception.injected = true;
10168
10169                 can_inject = false;
10170         }
10171
10172         /* Don't inject interrupts if the user asked to avoid doing so */
10173         if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
10174                 return 0;
10175
10176         /*
10177          * Finally, inject interrupt events.  If an event cannot be injected
10178          * due to architectural conditions (e.g. IF=0) a window-open exit
10179          * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
10180          * and can architecturally be injected, but we cannot do it right now:
10181          * an interrupt could have arrived just now and we have to inject it
10182          * as a vmexit, or there could already an event in the queue, which is
10183          * indicated by can_inject.  In that case we request an immediate exit
10184          * in order to make progress and get back here for another iteration.
10185          * The kvm_x86_ops hooks communicate this by returning -EBUSY.
10186          */
10187 #ifdef CONFIG_KVM_SMM
10188         if (vcpu->arch.smi_pending) {
10189                 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
10190                 if (r < 0)
10191                         goto out;
10192                 if (r) {
10193                         vcpu->arch.smi_pending = false;
10194                         ++vcpu->arch.smi_count;
10195                         enter_smm(vcpu);
10196                         can_inject = false;
10197                 } else
10198                         static_call(kvm_x86_enable_smi_window)(vcpu);
10199         }
10200 #endif
10201
10202         if (vcpu->arch.nmi_pending) {
10203                 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
10204                 if (r < 0)
10205                         goto out;
10206                 if (r) {
10207                         --vcpu->arch.nmi_pending;
10208                         vcpu->arch.nmi_injected = true;
10209                         static_call(kvm_x86_inject_nmi)(vcpu);
10210                         can_inject = false;
10211                         WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
10212                 }
10213                 if (vcpu->arch.nmi_pending)
10214                         static_call(kvm_x86_enable_nmi_window)(vcpu);
10215         }
10216
10217         if (kvm_cpu_has_injectable_intr(vcpu)) {
10218                 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
10219                 if (r < 0)
10220                         goto out;
10221                 if (r) {
10222                         int irq = kvm_cpu_get_interrupt(vcpu);
10223
10224                         if (!WARN_ON_ONCE(irq == -1)) {
10225                                 kvm_queue_interrupt(vcpu, irq, false);
10226                                 static_call(kvm_x86_inject_irq)(vcpu, false);
10227                                 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
10228                         }
10229                 }
10230                 if (kvm_cpu_has_injectable_intr(vcpu))
10231                         static_call(kvm_x86_enable_irq_window)(vcpu);
10232         }
10233
10234         if (is_guest_mode(vcpu) &&
10235             kvm_x86_ops.nested_ops->has_events &&
10236             kvm_x86_ops.nested_ops->has_events(vcpu))
10237                 *req_immediate_exit = true;
10238
10239         /*
10240          * KVM must never queue a new exception while injecting an event; KVM
10241          * is done emulating and should only propagate the to-be-injected event
10242          * to the VMCS/VMCB.  Queueing a new exception can put the vCPU into an
10243          * infinite loop as KVM will bail from VM-Enter to inject the pending
10244          * exception and start the cycle all over.
10245          *
10246          * Exempt triple faults as they have special handling and won't put the
10247          * vCPU into an infinite loop.  Triple fault can be queued when running
10248          * VMX without unrestricted guest, as that requires KVM to emulate Real
10249          * Mode events (see kvm_inject_realmode_interrupt()).
10250          */
10251         WARN_ON_ONCE(vcpu->arch.exception.pending ||
10252                      vcpu->arch.exception_vmexit.pending);
10253         return 0;
10254
10255 out:
10256         if (r == -EBUSY) {
10257                 *req_immediate_exit = true;
10258                 r = 0;
10259         }
10260         return r;
10261 }
10262
10263 static void process_nmi(struct kvm_vcpu *vcpu)
10264 {
10265         unsigned int limit;
10266
10267         /*
10268          * x86 is limited to one NMI pending, but because KVM can't react to
10269          * incoming NMIs as quickly as bare metal, e.g. if the vCPU is
10270          * scheduled out, KVM needs to play nice with two queued NMIs showing
10271          * up at the same time.  To handle this scenario, allow two NMIs to be
10272          * (temporarily) pending so long as NMIs are not blocked and KVM is not
10273          * waiting for a previous NMI injection to complete (which effectively
10274          * blocks NMIs).  KVM will immediately inject one of the two NMIs, and
10275          * will request an NMI window to handle the second NMI.
10276          */
10277         if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
10278                 limit = 1;
10279         else
10280                 limit = 2;
10281
10282         /*
10283          * Adjust the limit to account for pending virtual NMIs, which aren't
10284          * tracked in vcpu->arch.nmi_pending.
10285          */
10286         if (static_call(kvm_x86_is_vnmi_pending)(vcpu))
10287                 limit--;
10288
10289         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
10290         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
10291
10292         if (vcpu->arch.nmi_pending &&
10293             (static_call(kvm_x86_set_vnmi_pending)(vcpu)))
10294                 vcpu->arch.nmi_pending--;
10295
10296         if (vcpu->arch.nmi_pending)
10297                 kvm_make_request(KVM_REQ_EVENT, vcpu);
10298 }
10299
10300 /* Return total number of NMIs pending injection to the VM */
10301 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu)
10302 {
10303         return vcpu->arch.nmi_pending +
10304                static_call(kvm_x86_is_vnmi_pending)(vcpu);
10305 }
10306
10307 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
10308                                        unsigned long *vcpu_bitmap)
10309 {
10310         kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
10311 }
10312
10313 void kvm_make_scan_ioapic_request(struct kvm *kvm)
10314 {
10315         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
10316 }
10317
10318 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10319 {
10320         struct kvm_lapic *apic = vcpu->arch.apic;
10321         bool activate;
10322
10323         if (!lapic_in_kernel(vcpu))
10324                 return;
10325
10326         down_read(&vcpu->kvm->arch.apicv_update_lock);
10327         preempt_disable();
10328
10329         /* Do not activate APICV when APIC is disabled */
10330         activate = kvm_vcpu_apicv_activated(vcpu) &&
10331                    (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED);
10332
10333         if (apic->apicv_active == activate)
10334                 goto out;
10335
10336         apic->apicv_active = activate;
10337         kvm_apic_update_apicv(vcpu);
10338         static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
10339
10340         /*
10341          * When APICv gets disabled, we may still have injected interrupts
10342          * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
10343          * still active when the interrupt got accepted. Make sure
10344          * kvm_check_and_inject_events() is called to check for that.
10345          */
10346         if (!apic->apicv_active)
10347                 kvm_make_request(KVM_REQ_EVENT, vcpu);
10348
10349 out:
10350         preempt_enable();
10351         up_read(&vcpu->kvm->arch.apicv_update_lock);
10352 }
10353 EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv);
10354
10355 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10356 {
10357         if (!lapic_in_kernel(vcpu))
10358                 return;
10359
10360         /*
10361          * Due to sharing page tables across vCPUs, the xAPIC memslot must be
10362          * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but
10363          * and hardware doesn't support x2APIC virtualization.  E.g. some AMD
10364          * CPUs support AVIC but not x2APIC.  KVM still allows enabling AVIC in
10365          * this case so that KVM can the AVIC doorbell to inject interrupts to
10366          * running vCPUs, but KVM must not create SPTEs for the APIC base as
10367          * the vCPU would incorrectly be able to access the vAPIC page via MMIO
10368          * despite being in x2APIC mode.  For simplicity, inhibiting the APIC
10369          * access page is sticky.
10370          */
10371         if (apic_x2apic_mode(vcpu->arch.apic) &&
10372             kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization)
10373                 kvm_inhibit_apic_access_page(vcpu);
10374
10375         __kvm_vcpu_update_apicv(vcpu);
10376 }
10377
10378 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10379                                       enum kvm_apicv_inhibit reason, bool set)
10380 {
10381         unsigned long old, new;
10382
10383         lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
10384
10385         if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason)))
10386                 return;
10387
10388         old = new = kvm->arch.apicv_inhibit_reasons;
10389
10390         set_or_clear_apicv_inhibit(&new, reason, set);
10391
10392         if (!!old != !!new) {
10393                 /*
10394                  * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
10395                  * false positives in the sanity check WARN in svm_vcpu_run().
10396                  * This task will wait for all vCPUs to ack the kick IRQ before
10397                  * updating apicv_inhibit_reasons, and all other vCPUs will
10398                  * block on acquiring apicv_update_lock so that vCPUs can't
10399                  * redo svm_vcpu_run() without seeing the new inhibit state.
10400                  *
10401                  * Note, holding apicv_update_lock and taking it in the read
10402                  * side (handling the request) also prevents other vCPUs from
10403                  * servicing the request with a stale apicv_inhibit_reasons.
10404                  */
10405                 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
10406                 kvm->arch.apicv_inhibit_reasons = new;
10407                 if (new) {
10408                         unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
10409                         int idx = srcu_read_lock(&kvm->srcu);
10410
10411                         kvm_zap_gfn_range(kvm, gfn, gfn+1);
10412                         srcu_read_unlock(&kvm->srcu, idx);
10413                 }
10414         } else {
10415                 kvm->arch.apicv_inhibit_reasons = new;
10416         }
10417 }
10418
10419 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10420                                     enum kvm_apicv_inhibit reason, bool set)
10421 {
10422         if (!enable_apicv)
10423                 return;
10424
10425         down_write(&kvm->arch.apicv_update_lock);
10426         __kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
10427         up_write(&kvm->arch.apicv_update_lock);
10428 }
10429 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit);
10430
10431 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
10432 {
10433         if (!kvm_apic_present(vcpu))
10434                 return;
10435
10436         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
10437
10438         if (irqchip_split(vcpu->kvm))
10439                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
10440         else {
10441                 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10442                 if (ioapic_in_kernel(vcpu->kvm))
10443                         kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
10444         }
10445
10446         if (is_guest_mode(vcpu))
10447                 vcpu->arch.load_eoi_exitmap_pending = true;
10448         else
10449                 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
10450 }
10451
10452 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
10453 {
10454         u64 eoi_exit_bitmap[4];
10455
10456         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
10457                 return;
10458
10459         if (to_hv_vcpu(vcpu)) {
10460                 bitmap_or((ulong *)eoi_exit_bitmap,
10461                           vcpu->arch.ioapic_handled_vectors,
10462                           to_hv_synic(vcpu)->vec_bitmap, 256);
10463                 static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
10464                 return;
10465         }
10466
10467         static_call_cond(kvm_x86_load_eoi_exitmap)(
10468                 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
10469 }
10470
10471 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
10472 {
10473         static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm);
10474 }
10475
10476 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
10477 {
10478         if (!lapic_in_kernel(vcpu))
10479                 return;
10480
10481         static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu);
10482 }
10483
10484 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
10485 {
10486         smp_send_reschedule(vcpu->cpu);
10487 }
10488 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
10489
10490 /*
10491  * Called within kvm->srcu read side.
10492  * Returns 1 to let vcpu_run() continue the guest execution loop without
10493  * exiting to the userspace.  Otherwise, the value will be returned to the
10494  * userspace.
10495  */
10496 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
10497 {
10498         int r;
10499         bool req_int_win =
10500                 dm_request_for_irq_injection(vcpu) &&
10501                 kvm_cpu_accept_dm_intr(vcpu);
10502         fastpath_t exit_fastpath;
10503
10504         bool req_immediate_exit = false;
10505
10506         if (kvm_request_pending(vcpu)) {
10507                 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
10508                         r = -EIO;
10509                         goto out;
10510                 }
10511
10512                 if (kvm_dirty_ring_check_request(vcpu)) {
10513                         r = 0;
10514                         goto out;
10515                 }
10516
10517                 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
10518                         if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
10519                                 r = 0;
10520                                 goto out;
10521                         }
10522                 }
10523                 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
10524                         kvm_mmu_free_obsolete_roots(vcpu);
10525                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
10526                         __kvm_migrate_timers(vcpu);
10527                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
10528                         kvm_update_masterclock(vcpu->kvm);
10529                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
10530                         kvm_gen_kvmclock_update(vcpu);
10531                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
10532                         r = kvm_guest_time_update(vcpu);
10533                         if (unlikely(r))
10534                                 goto out;
10535                 }
10536                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
10537                         kvm_mmu_sync_roots(vcpu);
10538                 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
10539                         kvm_mmu_load_pgd(vcpu);
10540
10541                 /*
10542                  * Note, the order matters here, as flushing "all" TLB entries
10543                  * also flushes the "current" TLB entries, i.e. servicing the
10544                  * flush "all" will clear any request to flush "current".
10545                  */
10546                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
10547                         kvm_vcpu_flush_tlb_all(vcpu);
10548
10549                 kvm_service_local_tlb_flush_requests(vcpu);
10550
10551                 /*
10552                  * Fall back to a "full" guest flush if Hyper-V's precise
10553                  * flushing fails.  Note, Hyper-V's flushing is per-vCPU, but
10554                  * the flushes are considered "remote" and not "local" because
10555                  * the requests can be initiated from other vCPUs.
10556                  */
10557                 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) &&
10558                     kvm_hv_vcpu_flush_tlb(vcpu))
10559                         kvm_vcpu_flush_tlb_guest(vcpu);
10560
10561                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
10562                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
10563                         r = 0;
10564                         goto out;
10565                 }
10566                 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10567                         if (is_guest_mode(vcpu))
10568                                 kvm_x86_ops.nested_ops->triple_fault(vcpu);
10569
10570                         if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10571                                 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
10572                                 vcpu->mmio_needed = 0;
10573                                 r = 0;
10574                                 goto out;
10575                         }
10576                 }
10577                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
10578                         /* Page is swapped out. Do synthetic halt */
10579                         vcpu->arch.apf.halted = true;
10580                         r = 1;
10581                         goto out;
10582                 }
10583                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
10584                         record_steal_time(vcpu);
10585 #ifdef CONFIG_KVM_SMM
10586                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
10587                         process_smi(vcpu);
10588 #endif
10589                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
10590                         process_nmi(vcpu);
10591                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
10592                         kvm_pmu_handle_event(vcpu);
10593                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
10594                         kvm_pmu_deliver_pmi(vcpu);
10595                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
10596                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
10597                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
10598                                      vcpu->arch.ioapic_handled_vectors)) {
10599                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
10600                                 vcpu->run->eoi.vector =
10601                                                 vcpu->arch.pending_ioapic_eoi;
10602                                 r = 0;
10603                                 goto out;
10604                         }
10605                 }
10606                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
10607                         vcpu_scan_ioapic(vcpu);
10608                 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
10609                         vcpu_load_eoi_exitmap(vcpu);
10610                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
10611                         kvm_vcpu_reload_apic_access_page(vcpu);
10612                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
10613                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10614                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
10615                         vcpu->run->system_event.ndata = 0;
10616                         r = 0;
10617                         goto out;
10618                 }
10619                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
10620                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10621                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
10622                         vcpu->run->system_event.ndata = 0;
10623                         r = 0;
10624                         goto out;
10625                 }
10626                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
10627                         struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
10628
10629                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
10630                         vcpu->run->hyperv = hv_vcpu->exit;
10631                         r = 0;
10632                         goto out;
10633                 }
10634
10635                 /*
10636                  * KVM_REQ_HV_STIMER has to be processed after
10637                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
10638                  * depend on the guest clock being up-to-date
10639                  */
10640                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
10641                         kvm_hv_process_stimers(vcpu);
10642                 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
10643                         kvm_vcpu_update_apicv(vcpu);
10644                 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
10645                         kvm_check_async_pf_completion(vcpu);
10646                 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
10647                         static_call(kvm_x86_msr_filter_changed)(vcpu);
10648
10649                 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
10650                         static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
10651         }
10652
10653         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
10654             kvm_xen_has_interrupt(vcpu)) {
10655                 ++vcpu->stat.req_event;
10656                 r = kvm_apic_accept_events(vcpu);
10657                 if (r < 0) {
10658                         r = 0;
10659                         goto out;
10660                 }
10661                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
10662                         r = 1;
10663                         goto out;
10664                 }
10665
10666                 r = kvm_check_and_inject_events(vcpu, &req_immediate_exit);
10667                 if (r < 0) {
10668                         r = 0;
10669                         goto out;
10670                 }
10671                 if (req_int_win)
10672                         static_call(kvm_x86_enable_irq_window)(vcpu);
10673
10674                 if (kvm_lapic_enabled(vcpu)) {
10675                         update_cr8_intercept(vcpu);
10676                         kvm_lapic_sync_to_vapic(vcpu);
10677                 }
10678         }
10679
10680         r = kvm_mmu_reload(vcpu);
10681         if (unlikely(r)) {
10682                 goto cancel_injection;
10683         }
10684
10685         preempt_disable();
10686
10687         static_call(kvm_x86_prepare_switch_to_guest)(vcpu);
10688
10689         /*
10690          * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
10691          * IPI are then delayed after guest entry, which ensures that they
10692          * result in virtual interrupt delivery.
10693          */
10694         local_irq_disable();
10695
10696         /* Store vcpu->apicv_active before vcpu->mode.  */
10697         smp_store_release(&vcpu->mode, IN_GUEST_MODE);
10698
10699         kvm_vcpu_srcu_read_unlock(vcpu);
10700
10701         /*
10702          * 1) We should set ->mode before checking ->requests.  Please see
10703          * the comment in kvm_vcpu_exiting_guest_mode().
10704          *
10705          * 2) For APICv, we should set ->mode before checking PID.ON. This
10706          * pairs with the memory barrier implicit in pi_test_and_set_on
10707          * (see vmx_deliver_posted_interrupt).
10708          *
10709          * 3) This also orders the write to mode from any reads to the page
10710          * tables done while the VCPU is running.  Please see the comment
10711          * in kvm_flush_remote_tlbs.
10712          */
10713         smp_mb__after_srcu_read_unlock();
10714
10715         /*
10716          * Process pending posted interrupts to handle the case where the
10717          * notification IRQ arrived in the host, or was never sent (because the
10718          * target vCPU wasn't running).  Do this regardless of the vCPU's APICv
10719          * status, KVM doesn't update assigned devices when APICv is inhibited,
10720          * i.e. they can post interrupts even if APICv is temporarily disabled.
10721          */
10722         if (kvm_lapic_enabled(vcpu))
10723                 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10724
10725         if (kvm_vcpu_exit_request(vcpu)) {
10726                 vcpu->mode = OUTSIDE_GUEST_MODE;
10727                 smp_wmb();
10728                 local_irq_enable();
10729                 preempt_enable();
10730                 kvm_vcpu_srcu_read_lock(vcpu);
10731                 r = 1;
10732                 goto cancel_injection;
10733         }
10734
10735         if (req_immediate_exit) {
10736                 kvm_make_request(KVM_REQ_EVENT, vcpu);
10737                 static_call(kvm_x86_request_immediate_exit)(vcpu);
10738         }
10739
10740         fpregs_assert_state_consistent();
10741         if (test_thread_flag(TIF_NEED_FPU_LOAD))
10742                 switch_fpu_return();
10743
10744         if (vcpu->arch.guest_fpu.xfd_err)
10745                 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
10746
10747         if (unlikely(vcpu->arch.switch_db_regs)) {
10748                 set_debugreg(0, 7);
10749                 set_debugreg(vcpu->arch.eff_db[0], 0);
10750                 set_debugreg(vcpu->arch.eff_db[1], 1);
10751                 set_debugreg(vcpu->arch.eff_db[2], 2);
10752                 set_debugreg(vcpu->arch.eff_db[3], 3);
10753         } else if (unlikely(hw_breakpoint_active())) {
10754                 set_debugreg(0, 7);
10755         }
10756
10757         guest_timing_enter_irqoff();
10758
10759         for (;;) {
10760                 /*
10761                  * Assert that vCPU vs. VM APICv state is consistent.  An APICv
10762                  * update must kick and wait for all vCPUs before toggling the
10763                  * per-VM state, and responsing vCPUs must wait for the update
10764                  * to complete before servicing KVM_REQ_APICV_UPDATE.
10765                  */
10766                 WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) &&
10767                              (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED));
10768
10769                 exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu);
10770                 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
10771                         break;
10772
10773                 if (kvm_lapic_enabled(vcpu))
10774                         static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10775
10776                 if (unlikely(kvm_vcpu_exit_request(vcpu))) {
10777                         exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
10778                         break;
10779                 }
10780
10781                 /* Note, VM-Exits that go down the "slow" path are accounted below. */
10782                 ++vcpu->stat.exits;
10783         }
10784
10785         /*
10786          * Do this here before restoring debug registers on the host.  And
10787          * since we do this before handling the vmexit, a DR access vmexit
10788          * can (a) read the correct value of the debug registers, (b) set
10789          * KVM_DEBUGREG_WONT_EXIT again.
10790          */
10791         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
10792                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
10793                 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
10794                 kvm_update_dr0123(vcpu);
10795                 kvm_update_dr7(vcpu);
10796         }
10797
10798         /*
10799          * If the guest has used debug registers, at least dr7
10800          * will be disabled while returning to the host.
10801          * If we don't have active breakpoints in the host, we don't
10802          * care about the messed up debug address registers. But if
10803          * we have some of them active, restore the old state.
10804          */
10805         if (hw_breakpoint_active())
10806                 hw_breakpoint_restore();
10807
10808         vcpu->arch.last_vmentry_cpu = vcpu->cpu;
10809         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
10810
10811         vcpu->mode = OUTSIDE_GUEST_MODE;
10812         smp_wmb();
10813
10814         /*
10815          * Sync xfd before calling handle_exit_irqoff() which may
10816          * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
10817          * in #NM irqoff handler).
10818          */
10819         if (vcpu->arch.xfd_no_write_intercept)
10820                 fpu_sync_guest_vmexit_xfd_state();
10821
10822         static_call(kvm_x86_handle_exit_irqoff)(vcpu);
10823
10824         if (vcpu->arch.guest_fpu.xfd_err)
10825                 wrmsrl(MSR_IA32_XFD_ERR, 0);
10826
10827         /*
10828          * Consume any pending interrupts, including the possible source of
10829          * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
10830          * An instruction is required after local_irq_enable() to fully unblock
10831          * interrupts on processors that implement an interrupt shadow, the
10832          * stat.exits increment will do nicely.
10833          */
10834         kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
10835         local_irq_enable();
10836         ++vcpu->stat.exits;
10837         local_irq_disable();
10838         kvm_after_interrupt(vcpu);
10839
10840         /*
10841          * Wait until after servicing IRQs to account guest time so that any
10842          * ticks that occurred while running the guest are properly accounted
10843          * to the guest.  Waiting until IRQs are enabled degrades the accuracy
10844          * of accounting via context tracking, but the loss of accuracy is
10845          * acceptable for all known use cases.
10846          */
10847         guest_timing_exit_irqoff();
10848
10849         local_irq_enable();
10850         preempt_enable();
10851
10852         kvm_vcpu_srcu_read_lock(vcpu);
10853
10854         /*
10855          * Profile KVM exit RIPs:
10856          */
10857         if (unlikely(prof_on == KVM_PROFILING)) {
10858                 unsigned long rip = kvm_rip_read(vcpu);
10859                 profile_hit(KVM_PROFILING, (void *)rip);
10860         }
10861
10862         if (unlikely(vcpu->arch.tsc_always_catchup))
10863                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10864
10865         if (vcpu->arch.apic_attention)
10866                 kvm_lapic_sync_from_vapic(vcpu);
10867
10868         r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
10869         return r;
10870
10871 cancel_injection:
10872         if (req_immediate_exit)
10873                 kvm_make_request(KVM_REQ_EVENT, vcpu);
10874         static_call(kvm_x86_cancel_injection)(vcpu);
10875         if (unlikely(vcpu->arch.apic_attention))
10876                 kvm_lapic_sync_from_vapic(vcpu);
10877 out:
10878         return r;
10879 }
10880
10881 /* Called within kvm->srcu read side.  */
10882 static inline int vcpu_block(struct kvm_vcpu *vcpu)
10883 {
10884         bool hv_timer;
10885
10886         if (!kvm_arch_vcpu_runnable(vcpu)) {
10887                 /*
10888                  * Switch to the software timer before halt-polling/blocking as
10889                  * the guest's timer may be a break event for the vCPU, and the
10890                  * hypervisor timer runs only when the CPU is in guest mode.
10891                  * Switch before halt-polling so that KVM recognizes an expired
10892                  * timer before blocking.
10893                  */
10894                 hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
10895                 if (hv_timer)
10896                         kvm_lapic_switch_to_sw_timer(vcpu);
10897
10898                 kvm_vcpu_srcu_read_unlock(vcpu);
10899                 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10900                         kvm_vcpu_halt(vcpu);
10901                 else
10902                         kvm_vcpu_block(vcpu);
10903                 kvm_vcpu_srcu_read_lock(vcpu);
10904
10905                 if (hv_timer)
10906                         kvm_lapic_switch_to_hv_timer(vcpu);
10907
10908                 /*
10909                  * If the vCPU is not runnable, a signal or another host event
10910                  * of some kind is pending; service it without changing the
10911                  * vCPU's activity state.
10912                  */
10913                 if (!kvm_arch_vcpu_runnable(vcpu))
10914                         return 1;
10915         }
10916
10917         /*
10918          * Evaluate nested events before exiting the halted state.  This allows
10919          * the halt state to be recorded properly in the VMCS12's activity
10920          * state field (AMD does not have a similar field and a VM-Exit always
10921          * causes a spurious wakeup from HLT).
10922          */
10923         if (is_guest_mode(vcpu)) {
10924                 if (kvm_check_nested_events(vcpu) < 0)
10925                         return 0;
10926         }
10927
10928         if (kvm_apic_accept_events(vcpu) < 0)
10929                 return 0;
10930         switch(vcpu->arch.mp_state) {
10931         case KVM_MP_STATE_HALTED:
10932         case KVM_MP_STATE_AP_RESET_HOLD:
10933                 vcpu->arch.pv.pv_unhalted = false;
10934                 vcpu->arch.mp_state =
10935                         KVM_MP_STATE_RUNNABLE;
10936                 fallthrough;
10937         case KVM_MP_STATE_RUNNABLE:
10938                 vcpu->arch.apf.halted = false;
10939                 break;
10940         case KVM_MP_STATE_INIT_RECEIVED:
10941                 break;
10942         default:
10943                 WARN_ON_ONCE(1);
10944                 break;
10945         }
10946         return 1;
10947 }
10948
10949 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
10950 {
10951         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
10952                 !vcpu->arch.apf.halted);
10953 }
10954
10955 /* Called within kvm->srcu read side.  */
10956 static int vcpu_run(struct kvm_vcpu *vcpu)
10957 {
10958         int r;
10959
10960         vcpu->arch.l1tf_flush_l1d = true;
10961
10962         for (;;) {
10963                 /*
10964                  * If another guest vCPU requests a PV TLB flush in the middle
10965                  * of instruction emulation, the rest of the emulation could
10966                  * use a stale page translation. Assume that any code after
10967                  * this point can start executing an instruction.
10968                  */
10969                 vcpu->arch.at_instruction_boundary = false;
10970                 if (kvm_vcpu_running(vcpu)) {
10971                         r = vcpu_enter_guest(vcpu);
10972                 } else {
10973                         r = vcpu_block(vcpu);
10974                 }
10975
10976                 if (r <= 0)
10977                         break;
10978
10979                 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
10980                 if (kvm_xen_has_pending_events(vcpu))
10981                         kvm_xen_inject_pending_events(vcpu);
10982
10983                 if (kvm_cpu_has_pending_timer(vcpu))
10984                         kvm_inject_pending_timer_irqs(vcpu);
10985
10986                 if (dm_request_for_irq_injection(vcpu) &&
10987                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
10988                         r = 0;
10989                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
10990                         ++vcpu->stat.request_irq_exits;
10991                         break;
10992                 }
10993
10994                 if (__xfer_to_guest_mode_work_pending()) {
10995                         kvm_vcpu_srcu_read_unlock(vcpu);
10996                         r = xfer_to_guest_mode_handle_work(vcpu);
10997                         kvm_vcpu_srcu_read_lock(vcpu);
10998                         if (r)
10999                                 return r;
11000                 }
11001         }
11002
11003         return r;
11004 }
11005
11006 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
11007 {
11008         return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
11009 }
11010
11011 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
11012 {
11013         BUG_ON(!vcpu->arch.pio.count);
11014
11015         return complete_emulated_io(vcpu);
11016 }
11017
11018 /*
11019  * Implements the following, as a state machine:
11020  *
11021  * read:
11022  *   for each fragment
11023  *     for each mmio piece in the fragment
11024  *       write gpa, len
11025  *       exit
11026  *       copy data
11027  *   execute insn
11028  *
11029  * write:
11030  *   for each fragment
11031  *     for each mmio piece in the fragment
11032  *       write gpa, len
11033  *       copy data
11034  *       exit
11035  */
11036 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
11037 {
11038         struct kvm_run *run = vcpu->run;
11039         struct kvm_mmio_fragment *frag;
11040         unsigned len;
11041
11042         BUG_ON(!vcpu->mmio_needed);
11043
11044         /* Complete previous fragment */
11045         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
11046         len = min(8u, frag->len);
11047         if (!vcpu->mmio_is_write)
11048                 memcpy(frag->data, run->mmio.data, len);
11049
11050         if (frag->len <= 8) {
11051                 /* Switch to the next fragment. */
11052                 frag++;
11053                 vcpu->mmio_cur_fragment++;
11054         } else {
11055                 /* Go forward to the next mmio piece. */
11056                 frag->data += len;
11057                 frag->gpa += len;
11058                 frag->len -= len;
11059         }
11060
11061         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
11062                 vcpu->mmio_needed = 0;
11063
11064                 /* FIXME: return into emulator if single-stepping.  */
11065                 if (vcpu->mmio_is_write)
11066                         return 1;
11067                 vcpu->mmio_read_completed = 1;
11068                 return complete_emulated_io(vcpu);
11069         }
11070
11071         run->exit_reason = KVM_EXIT_MMIO;
11072         run->mmio.phys_addr = frag->gpa;
11073         if (vcpu->mmio_is_write)
11074                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
11075         run->mmio.len = min(8u, frag->len);
11076         run->mmio.is_write = vcpu->mmio_is_write;
11077         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
11078         return 0;
11079 }
11080
11081 /* Swap (qemu) user FPU context for the guest FPU context. */
11082 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
11083 {
11084         /* Exclude PKRU, it's restored separately immediately after VM-Exit. */
11085         fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
11086         trace_kvm_fpu(1);
11087 }
11088
11089 /* When vcpu_run ends, restore user space FPU context. */
11090 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
11091 {
11092         fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
11093         ++vcpu->stat.fpu_reload;
11094         trace_kvm_fpu(0);
11095 }
11096
11097 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
11098 {
11099         struct kvm_queued_exception *ex = &vcpu->arch.exception;
11100         struct kvm_run *kvm_run = vcpu->run;
11101         int r;
11102
11103         vcpu_load(vcpu);
11104         kvm_sigset_activate(vcpu);
11105         kvm_run->flags = 0;
11106         kvm_load_guest_fpu(vcpu);
11107
11108         kvm_vcpu_srcu_read_lock(vcpu);
11109         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
11110                 if (kvm_run->immediate_exit) {
11111                         r = -EINTR;
11112                         goto out;
11113                 }
11114                 /*
11115                  * It should be impossible for the hypervisor timer to be in
11116                  * use before KVM has ever run the vCPU.
11117                  */
11118                 WARN_ON_ONCE(kvm_lapic_hv_timer_in_use(vcpu));
11119
11120                 kvm_vcpu_srcu_read_unlock(vcpu);
11121                 kvm_vcpu_block(vcpu);
11122                 kvm_vcpu_srcu_read_lock(vcpu);
11123
11124                 if (kvm_apic_accept_events(vcpu) < 0) {
11125                         r = 0;
11126                         goto out;
11127                 }
11128                 r = -EAGAIN;
11129                 if (signal_pending(current)) {
11130                         r = -EINTR;
11131                         kvm_run->exit_reason = KVM_EXIT_INTR;
11132                         ++vcpu->stat.signal_exits;
11133                 }
11134                 goto out;
11135         }
11136
11137         if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
11138             (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
11139                 r = -EINVAL;
11140                 goto out;
11141         }
11142
11143         if (kvm_run->kvm_dirty_regs) {
11144                 r = sync_regs(vcpu);
11145                 if (r != 0)
11146                         goto out;
11147         }
11148
11149         /* re-sync apic's tpr */
11150         if (!lapic_in_kernel(vcpu)) {
11151                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
11152                         r = -EINVAL;
11153                         goto out;
11154                 }
11155         }
11156
11157         /*
11158          * If userspace set a pending exception and L2 is active, convert it to
11159          * a pending VM-Exit if L1 wants to intercept the exception.
11160          */
11161         if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) &&
11162             kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector,
11163                                                         ex->error_code)) {
11164                 kvm_queue_exception_vmexit(vcpu, ex->vector,
11165                                            ex->has_error_code, ex->error_code,
11166                                            ex->has_payload, ex->payload);
11167                 ex->injected = false;
11168                 ex->pending = false;
11169         }
11170         vcpu->arch.exception_from_userspace = false;
11171
11172         if (unlikely(vcpu->arch.complete_userspace_io)) {
11173                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
11174                 vcpu->arch.complete_userspace_io = NULL;
11175                 r = cui(vcpu);
11176                 if (r <= 0)
11177                         goto out;
11178         } else {
11179                 WARN_ON_ONCE(vcpu->arch.pio.count);
11180                 WARN_ON_ONCE(vcpu->mmio_needed);
11181         }
11182
11183         if (kvm_run->immediate_exit) {
11184                 r = -EINTR;
11185                 goto out;
11186         }
11187
11188         r = static_call(kvm_x86_vcpu_pre_run)(vcpu);
11189         if (r <= 0)
11190                 goto out;
11191
11192         r = vcpu_run(vcpu);
11193
11194 out:
11195         kvm_put_guest_fpu(vcpu);
11196         if (kvm_run->kvm_valid_regs)
11197                 store_regs(vcpu);
11198         post_kvm_run_save(vcpu);
11199         kvm_vcpu_srcu_read_unlock(vcpu);
11200
11201         kvm_sigset_deactivate(vcpu);
11202         vcpu_put(vcpu);
11203         return r;
11204 }
11205
11206 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11207 {
11208         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
11209                 /*
11210                  * We are here if userspace calls get_regs() in the middle of
11211                  * instruction emulation. Registers state needs to be copied
11212                  * back from emulation context to vcpu. Userspace shouldn't do
11213                  * that usually, but some bad designed PV devices (vmware
11214                  * backdoor interface) need this to work
11215                  */
11216                 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
11217                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11218         }
11219         regs->rax = kvm_rax_read(vcpu);
11220         regs->rbx = kvm_rbx_read(vcpu);
11221         regs->rcx = kvm_rcx_read(vcpu);
11222         regs->rdx = kvm_rdx_read(vcpu);
11223         regs->rsi = kvm_rsi_read(vcpu);
11224         regs->rdi = kvm_rdi_read(vcpu);
11225         regs->rsp = kvm_rsp_read(vcpu);
11226         regs->rbp = kvm_rbp_read(vcpu);
11227 #ifdef CONFIG_X86_64
11228         regs->r8 = kvm_r8_read(vcpu);
11229         regs->r9 = kvm_r9_read(vcpu);
11230         regs->r10 = kvm_r10_read(vcpu);
11231         regs->r11 = kvm_r11_read(vcpu);
11232         regs->r12 = kvm_r12_read(vcpu);
11233         regs->r13 = kvm_r13_read(vcpu);
11234         regs->r14 = kvm_r14_read(vcpu);
11235         regs->r15 = kvm_r15_read(vcpu);
11236 #endif
11237
11238         regs->rip = kvm_rip_read(vcpu);
11239         regs->rflags = kvm_get_rflags(vcpu);
11240 }
11241
11242 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11243 {
11244         vcpu_load(vcpu);
11245         __get_regs(vcpu, regs);
11246         vcpu_put(vcpu);
11247         return 0;
11248 }
11249
11250 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11251 {
11252         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
11253         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11254
11255         kvm_rax_write(vcpu, regs->rax);
11256         kvm_rbx_write(vcpu, regs->rbx);
11257         kvm_rcx_write(vcpu, regs->rcx);
11258         kvm_rdx_write(vcpu, regs->rdx);
11259         kvm_rsi_write(vcpu, regs->rsi);
11260         kvm_rdi_write(vcpu, regs->rdi);
11261         kvm_rsp_write(vcpu, regs->rsp);
11262         kvm_rbp_write(vcpu, regs->rbp);
11263 #ifdef CONFIG_X86_64
11264         kvm_r8_write(vcpu, regs->r8);
11265         kvm_r9_write(vcpu, regs->r9);
11266         kvm_r10_write(vcpu, regs->r10);
11267         kvm_r11_write(vcpu, regs->r11);
11268         kvm_r12_write(vcpu, regs->r12);
11269         kvm_r13_write(vcpu, regs->r13);
11270         kvm_r14_write(vcpu, regs->r14);
11271         kvm_r15_write(vcpu, regs->r15);
11272 #endif
11273
11274         kvm_rip_write(vcpu, regs->rip);
11275         kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
11276
11277         vcpu->arch.exception.pending = false;
11278         vcpu->arch.exception_vmexit.pending = false;
11279
11280         kvm_make_request(KVM_REQ_EVENT, vcpu);
11281 }
11282
11283 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11284 {
11285         vcpu_load(vcpu);
11286         __set_regs(vcpu, regs);
11287         vcpu_put(vcpu);
11288         return 0;
11289 }
11290
11291 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11292 {
11293         struct desc_ptr dt;
11294
11295         if (vcpu->arch.guest_state_protected)
11296                 goto skip_protected_regs;
11297
11298         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11299         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11300         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11301         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11302         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11303         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11304
11305         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11306         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11307
11308         static_call(kvm_x86_get_idt)(vcpu, &dt);
11309         sregs->idt.limit = dt.size;
11310         sregs->idt.base = dt.address;
11311         static_call(kvm_x86_get_gdt)(vcpu, &dt);
11312         sregs->gdt.limit = dt.size;
11313         sregs->gdt.base = dt.address;
11314
11315         sregs->cr2 = vcpu->arch.cr2;
11316         sregs->cr3 = kvm_read_cr3(vcpu);
11317
11318 skip_protected_regs:
11319         sregs->cr0 = kvm_read_cr0(vcpu);
11320         sregs->cr4 = kvm_read_cr4(vcpu);
11321         sregs->cr8 = kvm_get_cr8(vcpu);
11322         sregs->efer = vcpu->arch.efer;
11323         sregs->apic_base = kvm_get_apic_base(vcpu);
11324 }
11325
11326 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11327 {
11328         __get_sregs_common(vcpu, sregs);
11329
11330         if (vcpu->arch.guest_state_protected)
11331                 return;
11332
11333         if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
11334                 set_bit(vcpu->arch.interrupt.nr,
11335                         (unsigned long *)sregs->interrupt_bitmap);
11336 }
11337
11338 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11339 {
11340         int i;
11341
11342         __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
11343
11344         if (vcpu->arch.guest_state_protected)
11345                 return;
11346
11347         if (is_pae_paging(vcpu)) {
11348                 for (i = 0 ; i < 4 ; i++)
11349                         sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
11350                 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
11351         }
11352 }
11353
11354 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
11355                                   struct kvm_sregs *sregs)
11356 {
11357         vcpu_load(vcpu);
11358         __get_sregs(vcpu, sregs);
11359         vcpu_put(vcpu);
11360         return 0;
11361 }
11362
11363 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
11364                                     struct kvm_mp_state *mp_state)
11365 {
11366         int r;
11367
11368         vcpu_load(vcpu);
11369         if (kvm_mpx_supported())
11370                 kvm_load_guest_fpu(vcpu);
11371
11372         r = kvm_apic_accept_events(vcpu);
11373         if (r < 0)
11374                 goto out;
11375         r = 0;
11376
11377         if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
11378              vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
11379             vcpu->arch.pv.pv_unhalted)
11380                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
11381         else
11382                 mp_state->mp_state = vcpu->arch.mp_state;
11383
11384 out:
11385         if (kvm_mpx_supported())
11386                 kvm_put_guest_fpu(vcpu);
11387         vcpu_put(vcpu);
11388         return r;
11389 }
11390
11391 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
11392                                     struct kvm_mp_state *mp_state)
11393 {
11394         int ret = -EINVAL;
11395
11396         vcpu_load(vcpu);
11397
11398         switch (mp_state->mp_state) {
11399         case KVM_MP_STATE_UNINITIALIZED:
11400         case KVM_MP_STATE_HALTED:
11401         case KVM_MP_STATE_AP_RESET_HOLD:
11402         case KVM_MP_STATE_INIT_RECEIVED:
11403         case KVM_MP_STATE_SIPI_RECEIVED:
11404                 if (!lapic_in_kernel(vcpu))
11405                         goto out;
11406                 break;
11407
11408         case KVM_MP_STATE_RUNNABLE:
11409                 break;
11410
11411         default:
11412                 goto out;
11413         }
11414
11415         /*
11416          * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow
11417          * forcing the guest into INIT/SIPI if those events are supposed to be
11418          * blocked.  KVM prioritizes SMI over INIT, so reject INIT/SIPI state
11419          * if an SMI is pending as well.
11420          */
11421         if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) &&
11422             (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
11423              mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
11424                 goto out;
11425
11426         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
11427                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
11428                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
11429         } else
11430                 vcpu->arch.mp_state = mp_state->mp_state;
11431         kvm_make_request(KVM_REQ_EVENT, vcpu);
11432
11433         ret = 0;
11434 out:
11435         vcpu_put(vcpu);
11436         return ret;
11437 }
11438
11439 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
11440                     int reason, bool has_error_code, u32 error_code)
11441 {
11442         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
11443         int ret;
11444
11445         init_emulate_ctxt(vcpu);
11446
11447         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
11448                                    has_error_code, error_code);
11449         if (ret) {
11450                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11451                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11452                 vcpu->run->internal.ndata = 0;
11453                 return 0;
11454         }
11455
11456         kvm_rip_write(vcpu, ctxt->eip);
11457         kvm_set_rflags(vcpu, ctxt->eflags);
11458         return 1;
11459 }
11460 EXPORT_SYMBOL_GPL(kvm_task_switch);
11461
11462 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11463 {
11464         if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
11465                 /*
11466                  * When EFER.LME and CR0.PG are set, the processor is in
11467                  * 64-bit mode (though maybe in a 32-bit code segment).
11468                  * CR4.PAE and EFER.LMA must be set.
11469                  */
11470                 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
11471                         return false;
11472                 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
11473                         return false;
11474         } else {
11475                 /*
11476                  * Not in 64-bit mode: EFER.LMA is clear and the code
11477                  * segment cannot be 64-bit.
11478                  */
11479                 if (sregs->efer & EFER_LMA || sregs->cs.l)
11480                         return false;
11481         }
11482
11483         return kvm_is_valid_cr4(vcpu, sregs->cr4) &&
11484                kvm_is_valid_cr0(vcpu, sregs->cr0);
11485 }
11486
11487 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
11488                 int *mmu_reset_needed, bool update_pdptrs)
11489 {
11490         struct msr_data apic_base_msr;
11491         int idx;
11492         struct desc_ptr dt;
11493
11494         if (!kvm_is_valid_sregs(vcpu, sregs))
11495                 return -EINVAL;
11496
11497         apic_base_msr.data = sregs->apic_base;
11498         apic_base_msr.host_initiated = true;
11499         if (kvm_set_apic_base(vcpu, &apic_base_msr))
11500                 return -EINVAL;
11501
11502         if (vcpu->arch.guest_state_protected)
11503                 return 0;
11504
11505         dt.size = sregs->idt.limit;
11506         dt.address = sregs->idt.base;
11507         static_call(kvm_x86_set_idt)(vcpu, &dt);
11508         dt.size = sregs->gdt.limit;
11509         dt.address = sregs->gdt.base;
11510         static_call(kvm_x86_set_gdt)(vcpu, &dt);
11511
11512         vcpu->arch.cr2 = sregs->cr2;
11513         *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
11514         vcpu->arch.cr3 = sregs->cr3;
11515         kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11516         static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3);
11517
11518         kvm_set_cr8(vcpu, sregs->cr8);
11519
11520         *mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
11521         static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
11522
11523         *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
11524         static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
11525         vcpu->arch.cr0 = sregs->cr0;
11526
11527         *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
11528         static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
11529
11530         if (update_pdptrs) {
11531                 idx = srcu_read_lock(&vcpu->kvm->srcu);
11532                 if (is_pae_paging(vcpu)) {
11533                         load_pdptrs(vcpu, kvm_read_cr3(vcpu));
11534                         *mmu_reset_needed = 1;
11535                 }
11536                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
11537         }
11538
11539         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11540         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11541         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11542         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11543         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11544         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11545
11546         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11547         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11548
11549         update_cr8_intercept(vcpu);
11550
11551         /* Older userspace won't unhalt the vcpu on reset. */
11552         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
11553             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
11554             !is_protmode(vcpu))
11555                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11556
11557         return 0;
11558 }
11559
11560 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11561 {
11562         int pending_vec, max_bits;
11563         int mmu_reset_needed = 0;
11564         int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
11565
11566         if (ret)
11567                 return ret;
11568
11569         if (mmu_reset_needed)
11570                 kvm_mmu_reset_context(vcpu);
11571
11572         max_bits = KVM_NR_INTERRUPTS;
11573         pending_vec = find_first_bit(
11574                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
11575
11576         if (pending_vec < max_bits) {
11577                 kvm_queue_interrupt(vcpu, pending_vec, false);
11578                 pr_debug("Set back pending irq %d\n", pending_vec);
11579                 kvm_make_request(KVM_REQ_EVENT, vcpu);
11580         }
11581         return 0;
11582 }
11583
11584 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11585 {
11586         int mmu_reset_needed = 0;
11587         bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
11588         bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
11589                 !(sregs2->efer & EFER_LMA);
11590         int i, ret;
11591
11592         if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
11593                 return -EINVAL;
11594
11595         if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
11596                 return -EINVAL;
11597
11598         ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
11599                                  &mmu_reset_needed, !valid_pdptrs);
11600         if (ret)
11601                 return ret;
11602
11603         if (valid_pdptrs) {
11604                 for (i = 0; i < 4 ; i++)
11605                         kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
11606
11607                 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
11608                 mmu_reset_needed = 1;
11609                 vcpu->arch.pdptrs_from_userspace = true;
11610         }
11611         if (mmu_reset_needed)
11612                 kvm_mmu_reset_context(vcpu);
11613         return 0;
11614 }
11615
11616 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
11617                                   struct kvm_sregs *sregs)
11618 {
11619         int ret;
11620
11621         vcpu_load(vcpu);
11622         ret = __set_sregs(vcpu, sregs);
11623         vcpu_put(vcpu);
11624         return ret;
11625 }
11626
11627 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
11628 {
11629         bool set = false;
11630         struct kvm_vcpu *vcpu;
11631         unsigned long i;
11632
11633         if (!enable_apicv)
11634                 return;
11635
11636         down_write(&kvm->arch.apicv_update_lock);
11637
11638         kvm_for_each_vcpu(i, vcpu, kvm) {
11639                 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
11640                         set = true;
11641                         break;
11642                 }
11643         }
11644         __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
11645         up_write(&kvm->arch.apicv_update_lock);
11646 }
11647
11648 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
11649                                         struct kvm_guest_debug *dbg)
11650 {
11651         unsigned long rflags;
11652         int i, r;
11653
11654         if (vcpu->arch.guest_state_protected)
11655                 return -EINVAL;
11656
11657         vcpu_load(vcpu);
11658
11659         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
11660                 r = -EBUSY;
11661                 if (kvm_is_exception_pending(vcpu))
11662                         goto out;
11663                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
11664                         kvm_queue_exception(vcpu, DB_VECTOR);
11665                 else
11666                         kvm_queue_exception(vcpu, BP_VECTOR);
11667         }
11668
11669         /*
11670          * Read rflags as long as potentially injected trace flags are still
11671          * filtered out.
11672          */
11673         rflags = kvm_get_rflags(vcpu);
11674
11675         vcpu->guest_debug = dbg->control;
11676         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
11677                 vcpu->guest_debug = 0;
11678
11679         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
11680                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
11681                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
11682                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
11683         } else {
11684                 for (i = 0; i < KVM_NR_DB_REGS; i++)
11685                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
11686         }
11687         kvm_update_dr7(vcpu);
11688
11689         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11690                 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
11691
11692         /*
11693          * Trigger an rflags update that will inject or remove the trace
11694          * flags.
11695          */
11696         kvm_set_rflags(vcpu, rflags);
11697
11698         static_call(kvm_x86_update_exception_bitmap)(vcpu);
11699
11700         kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
11701
11702         r = 0;
11703
11704 out:
11705         vcpu_put(vcpu);
11706         return r;
11707 }
11708
11709 /*
11710  * Translate a guest virtual address to a guest physical address.
11711  */
11712 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
11713                                     struct kvm_translation *tr)
11714 {
11715         unsigned long vaddr = tr->linear_address;
11716         gpa_t gpa;
11717         int idx;
11718
11719         vcpu_load(vcpu);
11720
11721         idx = srcu_read_lock(&vcpu->kvm->srcu);
11722         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
11723         srcu_read_unlock(&vcpu->kvm->srcu, idx);
11724         tr->physical_address = gpa;
11725         tr->valid = gpa != INVALID_GPA;
11726         tr->writeable = 1;
11727         tr->usermode = 0;
11728
11729         vcpu_put(vcpu);
11730         return 0;
11731 }
11732
11733 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11734 {
11735         struct fxregs_state *fxsave;
11736
11737         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11738                 return 0;
11739
11740         vcpu_load(vcpu);
11741
11742         fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11743         memcpy(fpu->fpr, fxsave->st_space, 128);
11744         fpu->fcw = fxsave->cwd;
11745         fpu->fsw = fxsave->swd;
11746         fpu->ftwx = fxsave->twd;
11747         fpu->last_opcode = fxsave->fop;
11748         fpu->last_ip = fxsave->rip;
11749         fpu->last_dp = fxsave->rdp;
11750         memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
11751
11752         vcpu_put(vcpu);
11753         return 0;
11754 }
11755
11756 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11757 {
11758         struct fxregs_state *fxsave;
11759
11760         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11761                 return 0;
11762
11763         vcpu_load(vcpu);
11764
11765         fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11766
11767         memcpy(fxsave->st_space, fpu->fpr, 128);
11768         fxsave->cwd = fpu->fcw;
11769         fxsave->swd = fpu->fsw;
11770         fxsave->twd = fpu->ftwx;
11771         fxsave->fop = fpu->last_opcode;
11772         fxsave->rip = fpu->last_ip;
11773         fxsave->rdp = fpu->last_dp;
11774         memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
11775
11776         vcpu_put(vcpu);
11777         return 0;
11778 }
11779
11780 static void store_regs(struct kvm_vcpu *vcpu)
11781 {
11782         BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
11783
11784         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
11785                 __get_regs(vcpu, &vcpu->run->s.regs.regs);
11786
11787         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
11788                 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
11789
11790         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
11791                 kvm_vcpu_ioctl_x86_get_vcpu_events(
11792                                 vcpu, &vcpu->run->s.regs.events);
11793 }
11794
11795 static int sync_regs(struct kvm_vcpu *vcpu)
11796 {
11797         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
11798                 __set_regs(vcpu, &vcpu->run->s.regs.regs);
11799                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
11800         }
11801
11802         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
11803                 struct kvm_sregs sregs = vcpu->run->s.regs.sregs;
11804
11805                 if (__set_sregs(vcpu, &sregs))
11806                         return -EINVAL;
11807
11808                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
11809         }
11810
11811         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
11812                 struct kvm_vcpu_events events = vcpu->run->s.regs.events;
11813
11814                 if (kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events))
11815                         return -EINVAL;
11816
11817                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
11818         }
11819
11820         return 0;
11821 }
11822
11823 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
11824 {
11825         if (kvm_check_tsc_unstable() && kvm->created_vcpus)
11826                 pr_warn_once("SMP vm created on host with unstable TSC; "
11827                              "guest TSC will not be reliable\n");
11828
11829         if (!kvm->arch.max_vcpu_ids)
11830                 kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS;
11831
11832         if (id >= kvm->arch.max_vcpu_ids)
11833                 return -EINVAL;
11834
11835         return static_call(kvm_x86_vcpu_precreate)(kvm);
11836 }
11837
11838 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
11839 {
11840         struct page *page;
11841         int r;
11842
11843         vcpu->arch.last_vmentry_cpu = -1;
11844         vcpu->arch.regs_avail = ~0;
11845         vcpu->arch.regs_dirty = ~0;
11846
11847         kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm, vcpu, KVM_HOST_USES_PFN);
11848
11849         if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
11850                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11851         else
11852                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
11853
11854         r = kvm_mmu_create(vcpu);
11855         if (r < 0)
11856                 return r;
11857
11858         if (irqchip_in_kernel(vcpu->kvm)) {
11859                 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
11860                 if (r < 0)
11861                         goto fail_mmu_destroy;
11862
11863                 /*
11864                  * Defer evaluating inhibits until the vCPU is first run, as
11865                  * this vCPU will not get notified of any changes until this
11866                  * vCPU is visible to other vCPUs (marked online and added to
11867                  * the set of vCPUs).  Opportunistically mark APICv active as
11868                  * VMX in particularly is highly unlikely to have inhibits.
11869                  * Ignore the current per-VM APICv state so that vCPU creation
11870                  * is guaranteed to run with a deterministic value, the request
11871                  * will ensure the vCPU gets the correct state before VM-Entry.
11872                  */
11873                 if (enable_apicv) {
11874                         vcpu->arch.apic->apicv_active = true;
11875                         kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
11876                 }
11877         } else
11878                 static_branch_inc(&kvm_has_noapic_vcpu);
11879
11880         r = -ENOMEM;
11881
11882         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
11883         if (!page)
11884                 goto fail_free_lapic;
11885         vcpu->arch.pio_data = page_address(page);
11886
11887         vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64),
11888                                        GFP_KERNEL_ACCOUNT);
11889         vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64),
11890                                             GFP_KERNEL_ACCOUNT);
11891         if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks)
11892                 goto fail_free_mce_banks;
11893         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
11894
11895         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
11896                                 GFP_KERNEL_ACCOUNT))
11897                 goto fail_free_mce_banks;
11898
11899         if (!alloc_emulate_ctxt(vcpu))
11900                 goto free_wbinvd_dirty_mask;
11901
11902         if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
11903                 pr_err("failed to allocate vcpu's fpu\n");
11904                 goto free_emulate_ctxt;
11905         }
11906
11907         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
11908         vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
11909
11910         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
11911
11912         kvm_async_pf_hash_reset(vcpu);
11913
11914         vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap;
11915         kvm_pmu_init(vcpu);
11916
11917         vcpu->arch.pending_external_vector = -1;
11918         vcpu->arch.preempted_in_kernel = false;
11919
11920 #if IS_ENABLED(CONFIG_HYPERV)
11921         vcpu->arch.hv_root_tdp = INVALID_PAGE;
11922 #endif
11923
11924         r = static_call(kvm_x86_vcpu_create)(vcpu);
11925         if (r)
11926                 goto free_guest_fpu;
11927
11928         vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
11929         vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
11930         kvm_xen_init_vcpu(vcpu);
11931         kvm_vcpu_mtrr_init(vcpu);
11932         vcpu_load(vcpu);
11933         kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz);
11934         kvm_vcpu_reset(vcpu, false);
11935         kvm_init_mmu(vcpu);
11936         vcpu_put(vcpu);
11937         return 0;
11938
11939 free_guest_fpu:
11940         fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11941 free_emulate_ctxt:
11942         kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11943 free_wbinvd_dirty_mask:
11944         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11945 fail_free_mce_banks:
11946         kfree(vcpu->arch.mce_banks);
11947         kfree(vcpu->arch.mci_ctl2_banks);
11948         free_page((unsigned long)vcpu->arch.pio_data);
11949 fail_free_lapic:
11950         kvm_free_lapic(vcpu);
11951 fail_mmu_destroy:
11952         kvm_mmu_destroy(vcpu);
11953         return r;
11954 }
11955
11956 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
11957 {
11958         struct kvm *kvm = vcpu->kvm;
11959
11960         if (mutex_lock_killable(&vcpu->mutex))
11961                 return;
11962         vcpu_load(vcpu);
11963         kvm_synchronize_tsc(vcpu, 0);
11964         vcpu_put(vcpu);
11965
11966         /* poll control enabled by default */
11967         vcpu->arch.msr_kvm_poll_control = 1;
11968
11969         mutex_unlock(&vcpu->mutex);
11970
11971         if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
11972                 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
11973                                                 KVMCLOCK_SYNC_PERIOD);
11974 }
11975
11976 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
11977 {
11978         int idx;
11979
11980         kvmclock_reset(vcpu);
11981
11982         static_call(kvm_x86_vcpu_free)(vcpu);
11983
11984         kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11985         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11986         fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11987
11988         kvm_xen_destroy_vcpu(vcpu);
11989         kvm_hv_vcpu_uninit(vcpu);
11990         kvm_pmu_destroy(vcpu);
11991         kfree(vcpu->arch.mce_banks);
11992         kfree(vcpu->arch.mci_ctl2_banks);
11993         kvm_free_lapic(vcpu);
11994         idx = srcu_read_lock(&vcpu->kvm->srcu);
11995         kvm_mmu_destroy(vcpu);
11996         srcu_read_unlock(&vcpu->kvm->srcu, idx);
11997         free_page((unsigned long)vcpu->arch.pio_data);
11998         kvfree(vcpu->arch.cpuid_entries);
11999         if (!lapic_in_kernel(vcpu))
12000                 static_branch_dec(&kvm_has_noapic_vcpu);
12001 }
12002
12003 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
12004 {
12005         struct kvm_cpuid_entry2 *cpuid_0x1;
12006         unsigned long old_cr0 = kvm_read_cr0(vcpu);
12007         unsigned long new_cr0;
12008
12009         /*
12010          * Several of the "set" flows, e.g. ->set_cr0(), read other registers
12011          * to handle side effects.  RESET emulation hits those flows and relies
12012          * on emulated/virtualized registers, including those that are loaded
12013          * into hardware, to be zeroed at vCPU creation.  Use CRs as a sentinel
12014          * to detect improper or missing initialization.
12015          */
12016         WARN_ON_ONCE(!init_event &&
12017                      (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
12018
12019         /*
12020          * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's
12021          * possible to INIT the vCPU while L2 is active.  Force the vCPU back
12022          * into L1 as EFER.SVME is cleared on INIT (along with all other EFER
12023          * bits), i.e. virtualization is disabled.
12024          */
12025         if (is_guest_mode(vcpu))
12026                 kvm_leave_nested(vcpu);
12027
12028         kvm_lapic_reset(vcpu, init_event);
12029
12030         WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu));
12031         vcpu->arch.hflags = 0;
12032
12033         vcpu->arch.smi_pending = 0;
12034         vcpu->arch.smi_count = 0;
12035         atomic_set(&vcpu->arch.nmi_queued, 0);
12036         vcpu->arch.nmi_pending = 0;
12037         vcpu->arch.nmi_injected = false;
12038         kvm_clear_interrupt_queue(vcpu);
12039         kvm_clear_exception_queue(vcpu);
12040
12041         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
12042         kvm_update_dr0123(vcpu);
12043         vcpu->arch.dr6 = DR6_ACTIVE_LOW;
12044         vcpu->arch.dr7 = DR7_FIXED_1;
12045         kvm_update_dr7(vcpu);
12046
12047         vcpu->arch.cr2 = 0;
12048
12049         kvm_make_request(KVM_REQ_EVENT, vcpu);
12050         vcpu->arch.apf.msr_en_val = 0;
12051         vcpu->arch.apf.msr_int_val = 0;
12052         vcpu->arch.st.msr_val = 0;
12053
12054         kvmclock_reset(vcpu);
12055
12056         kvm_clear_async_pf_completion_queue(vcpu);
12057         kvm_async_pf_hash_reset(vcpu);
12058         vcpu->arch.apf.halted = false;
12059
12060         if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
12061                 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
12062
12063                 /*
12064                  * All paths that lead to INIT are required to load the guest's
12065                  * FPU state (because most paths are buried in KVM_RUN).
12066                  */
12067                 if (init_event)
12068                         kvm_put_guest_fpu(vcpu);
12069
12070                 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
12071                 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
12072
12073                 if (init_event)
12074                         kvm_load_guest_fpu(vcpu);
12075         }
12076
12077         if (!init_event) {
12078                 kvm_pmu_reset(vcpu);
12079                 vcpu->arch.smbase = 0x30000;
12080
12081                 vcpu->arch.msr_misc_features_enables = 0;
12082                 vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL |
12083                                                   MSR_IA32_MISC_ENABLE_BTS_UNAVAIL;
12084
12085                 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
12086                 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
12087         }
12088
12089         /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
12090         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
12091         kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
12092
12093         /*
12094          * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
12095          * if no CPUID match is found.  Note, it's impossible to get a match at
12096          * RESET since KVM emulates RESET before exposing the vCPU to userspace,
12097          * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
12098          * on RESET.  But, go through the motions in case that's ever remedied.
12099          */
12100         cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1);
12101         kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
12102
12103         static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
12104
12105         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
12106         kvm_rip_write(vcpu, 0xfff0);
12107
12108         vcpu->arch.cr3 = 0;
12109         kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
12110
12111         /*
12112          * CR0.CD/NW are set on RESET, preserved on INIT.  Note, some versions
12113          * of Intel's SDM list CD/NW as being set on INIT, but they contradict
12114          * (or qualify) that with a footnote stating that CD/NW are preserved.
12115          */
12116         new_cr0 = X86_CR0_ET;
12117         if (init_event)
12118                 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
12119         else
12120                 new_cr0 |= X86_CR0_NW | X86_CR0_CD;
12121
12122         static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
12123         static_call(kvm_x86_set_cr4)(vcpu, 0);
12124         static_call(kvm_x86_set_efer)(vcpu, 0);
12125         static_call(kvm_x86_update_exception_bitmap)(vcpu);
12126
12127         /*
12128          * On the standard CR0/CR4/EFER modification paths, there are several
12129          * complex conditions determining whether the MMU has to be reset and/or
12130          * which PCIDs have to be flushed.  However, CR0.WP and the paging-related
12131          * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
12132          * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
12133          * CR0 will be '0' prior to RESET).  So we only need to check CR0.PG here.
12134          */
12135         if (old_cr0 & X86_CR0_PG) {
12136                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12137                 kvm_mmu_reset_context(vcpu);
12138         }
12139
12140         /*
12141          * Intel's SDM states that all TLB entries are flushed on INIT.  AMD's
12142          * APM states the TLBs are untouched by INIT, but it also states that
12143          * the TLBs are flushed on "External initialization of the processor."
12144          * Flush the guest TLB regardless of vendor, there is no meaningful
12145          * benefit in relying on the guest to flush the TLB immediately after
12146          * INIT.  A spurious TLB flush is benign and likely negligible from a
12147          * performance perspective.
12148          */
12149         if (init_event)
12150                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12151 }
12152 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
12153
12154 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
12155 {
12156         struct kvm_segment cs;
12157
12158         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
12159         cs.selector = vector << 8;
12160         cs.base = vector << 12;
12161         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
12162         kvm_rip_write(vcpu, 0);
12163 }
12164 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
12165
12166 int kvm_arch_hardware_enable(void)
12167 {
12168         struct kvm *kvm;
12169         struct kvm_vcpu *vcpu;
12170         unsigned long i;
12171         int ret;
12172         u64 local_tsc;
12173         u64 max_tsc = 0;
12174         bool stable, backwards_tsc = false;
12175
12176         kvm_user_return_msr_cpu_online();
12177
12178         ret = kvm_x86_check_processor_compatibility();
12179         if (ret)
12180                 return ret;
12181
12182         ret = static_call(kvm_x86_hardware_enable)();
12183         if (ret != 0)
12184                 return ret;
12185
12186         local_tsc = rdtsc();
12187         stable = !kvm_check_tsc_unstable();
12188         list_for_each_entry(kvm, &vm_list, vm_list) {
12189                 kvm_for_each_vcpu(i, vcpu, kvm) {
12190                         if (!stable && vcpu->cpu == smp_processor_id())
12191                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
12192                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
12193                                 backwards_tsc = true;
12194                                 if (vcpu->arch.last_host_tsc > max_tsc)
12195                                         max_tsc = vcpu->arch.last_host_tsc;
12196                         }
12197                 }
12198         }
12199
12200         /*
12201          * Sometimes, even reliable TSCs go backwards.  This happens on
12202          * platforms that reset TSC during suspend or hibernate actions, but
12203          * maintain synchronization.  We must compensate.  Fortunately, we can
12204          * detect that condition here, which happens early in CPU bringup,
12205          * before any KVM threads can be running.  Unfortunately, we can't
12206          * bring the TSCs fully up to date with real time, as we aren't yet far
12207          * enough into CPU bringup that we know how much real time has actually
12208          * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
12209          * variables that haven't been updated yet.
12210          *
12211          * So we simply find the maximum observed TSC above, then record the
12212          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
12213          * the adjustment will be applied.  Note that we accumulate
12214          * adjustments, in case multiple suspend cycles happen before some VCPU
12215          * gets a chance to run again.  In the event that no KVM threads get a
12216          * chance to run, we will miss the entire elapsed period, as we'll have
12217          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
12218          * loose cycle time.  This isn't too big a deal, since the loss will be
12219          * uniform across all VCPUs (not to mention the scenario is extremely
12220          * unlikely). It is possible that a second hibernate recovery happens
12221          * much faster than a first, causing the observed TSC here to be
12222          * smaller; this would require additional padding adjustment, which is
12223          * why we set last_host_tsc to the local tsc observed here.
12224          *
12225          * N.B. - this code below runs only on platforms with reliable TSC,
12226          * as that is the only way backwards_tsc is set above.  Also note
12227          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
12228          * have the same delta_cyc adjustment applied if backwards_tsc
12229          * is detected.  Note further, this adjustment is only done once,
12230          * as we reset last_host_tsc on all VCPUs to stop this from being
12231          * called multiple times (one for each physical CPU bringup).
12232          *
12233          * Platforms with unreliable TSCs don't have to deal with this, they
12234          * will be compensated by the logic in vcpu_load, which sets the TSC to
12235          * catchup mode.  This will catchup all VCPUs to real time, but cannot
12236          * guarantee that they stay in perfect synchronization.
12237          */
12238         if (backwards_tsc) {
12239                 u64 delta_cyc = max_tsc - local_tsc;
12240                 list_for_each_entry(kvm, &vm_list, vm_list) {
12241                         kvm->arch.backwards_tsc_observed = true;
12242                         kvm_for_each_vcpu(i, vcpu, kvm) {
12243                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
12244                                 vcpu->arch.last_host_tsc = local_tsc;
12245                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
12246                         }
12247
12248                         /*
12249                          * We have to disable TSC offset matching.. if you were
12250                          * booting a VM while issuing an S4 host suspend....
12251                          * you may have some problem.  Solving this issue is
12252                          * left as an exercise to the reader.
12253                          */
12254                         kvm->arch.last_tsc_nsec = 0;
12255                         kvm->arch.last_tsc_write = 0;
12256                 }
12257
12258         }
12259         return 0;
12260 }
12261
12262 void kvm_arch_hardware_disable(void)
12263 {
12264         static_call(kvm_x86_hardware_disable)();
12265         drop_user_return_notifiers();
12266 }
12267
12268 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
12269 {
12270         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
12271 }
12272
12273 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
12274 {
12275         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
12276 }
12277
12278 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
12279 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
12280
12281 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
12282 {
12283         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
12284
12285         vcpu->arch.l1tf_flush_l1d = true;
12286         if (pmu->version && unlikely(pmu->event_count)) {
12287                 pmu->need_cleanup = true;
12288                 kvm_make_request(KVM_REQ_PMU, vcpu);
12289         }
12290         static_call(kvm_x86_sched_in)(vcpu, cpu);
12291 }
12292
12293 void kvm_arch_free_vm(struct kvm *kvm)
12294 {
12295         kfree(to_kvm_hv(kvm)->hv_pa_pg);
12296         __kvm_arch_free_vm(kvm);
12297 }
12298
12299
12300 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
12301 {
12302         int ret;
12303         unsigned long flags;
12304
12305         if (type)
12306                 return -EINVAL;
12307
12308         ret = kvm_page_track_init(kvm);
12309         if (ret)
12310                 goto out;
12311
12312         ret = kvm_mmu_init_vm(kvm);
12313         if (ret)
12314                 goto out_page_track;
12315
12316         ret = static_call(kvm_x86_vm_init)(kvm);
12317         if (ret)
12318                 goto out_uninit_mmu;
12319
12320         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
12321         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
12322         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
12323
12324         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
12325         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
12326         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
12327         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
12328                 &kvm->arch.irq_sources_bitmap);
12329
12330         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
12331         mutex_init(&kvm->arch.apic_map_lock);
12332         seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
12333         kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
12334
12335         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
12336         pvclock_update_vm_gtod_copy(kvm);
12337         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
12338
12339         kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz;
12340         kvm->arch.guest_can_read_msr_platform_info = true;
12341         kvm->arch.enable_pmu = enable_pmu;
12342
12343 #if IS_ENABLED(CONFIG_HYPERV)
12344         spin_lock_init(&kvm->arch.hv_root_tdp_lock);
12345         kvm->arch.hv_root_tdp = INVALID_PAGE;
12346 #endif
12347
12348         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
12349         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
12350
12351         kvm_apicv_init(kvm);
12352         kvm_hv_init_vm(kvm);
12353         kvm_xen_init_vm(kvm);
12354
12355         return 0;
12356
12357 out_uninit_mmu:
12358         kvm_mmu_uninit_vm(kvm);
12359 out_page_track:
12360         kvm_page_track_cleanup(kvm);
12361 out:
12362         return ret;
12363 }
12364
12365 int kvm_arch_post_init_vm(struct kvm *kvm)
12366 {
12367         return kvm_mmu_post_init_vm(kvm);
12368 }
12369
12370 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
12371 {
12372         vcpu_load(vcpu);
12373         kvm_mmu_unload(vcpu);
12374         vcpu_put(vcpu);
12375 }
12376
12377 static void kvm_unload_vcpu_mmus(struct kvm *kvm)
12378 {
12379         unsigned long i;
12380         struct kvm_vcpu *vcpu;
12381
12382         kvm_for_each_vcpu(i, vcpu, kvm) {
12383                 kvm_clear_async_pf_completion_queue(vcpu);
12384                 kvm_unload_vcpu_mmu(vcpu);
12385         }
12386 }
12387
12388 void kvm_arch_sync_events(struct kvm *kvm)
12389 {
12390         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
12391         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
12392         kvm_free_pit(kvm);
12393 }
12394
12395 /**
12396  * __x86_set_memory_region: Setup KVM internal memory slot
12397  *
12398  * @kvm: the kvm pointer to the VM.
12399  * @id: the slot ID to setup.
12400  * @gpa: the GPA to install the slot (unused when @size == 0).
12401  * @size: the size of the slot. Set to zero to uninstall a slot.
12402  *
12403  * This function helps to setup a KVM internal memory slot.  Specify
12404  * @size > 0 to install a new slot, while @size == 0 to uninstall a
12405  * slot.  The return code can be one of the following:
12406  *
12407  *   HVA:           on success (uninstall will return a bogus HVA)
12408  *   -errno:        on error
12409  *
12410  * The caller should always use IS_ERR() to check the return value
12411  * before use.  Note, the KVM internal memory slots are guaranteed to
12412  * remain valid and unchanged until the VM is destroyed, i.e., the
12413  * GPA->HVA translation will not change.  However, the HVA is a user
12414  * address, i.e. its accessibility is not guaranteed, and must be
12415  * accessed via __copy_{to,from}_user().
12416  */
12417 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
12418                                       u32 size)
12419 {
12420         int i, r;
12421         unsigned long hva, old_npages;
12422         struct kvm_memslots *slots = kvm_memslots(kvm);
12423         struct kvm_memory_slot *slot;
12424
12425         /* Called with kvm->slots_lock held.  */
12426         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
12427                 return ERR_PTR_USR(-EINVAL);
12428
12429         slot = id_to_memslot(slots, id);
12430         if (size) {
12431                 if (slot && slot->npages)
12432                         return ERR_PTR_USR(-EEXIST);
12433
12434                 /*
12435                  * MAP_SHARED to prevent internal slot pages from being moved
12436                  * by fork()/COW.
12437                  */
12438                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
12439                               MAP_SHARED | MAP_ANONYMOUS, 0);
12440                 if (IS_ERR_VALUE(hva))
12441                         return (void __user *)hva;
12442         } else {
12443                 if (!slot || !slot->npages)
12444                         return NULL;
12445
12446                 old_npages = slot->npages;
12447                 hva = slot->userspace_addr;
12448         }
12449
12450         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
12451                 struct kvm_userspace_memory_region m;
12452
12453                 m.slot = id | (i << 16);
12454                 m.flags = 0;
12455                 m.guest_phys_addr = gpa;
12456                 m.userspace_addr = hva;
12457                 m.memory_size = size;
12458                 r = __kvm_set_memory_region(kvm, &m);
12459                 if (r < 0)
12460                         return ERR_PTR_USR(r);
12461         }
12462
12463         if (!size)
12464                 vm_munmap(hva, old_npages * PAGE_SIZE);
12465
12466         return (void __user *)hva;
12467 }
12468 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
12469
12470 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
12471 {
12472         kvm_mmu_pre_destroy_vm(kvm);
12473 }
12474
12475 void kvm_arch_destroy_vm(struct kvm *kvm)
12476 {
12477         if (current->mm == kvm->mm) {
12478                 /*
12479                  * Free memory regions allocated on behalf of userspace,
12480                  * unless the memory map has changed due to process exit
12481                  * or fd copying.
12482                  */
12483                 mutex_lock(&kvm->slots_lock);
12484                 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
12485                                         0, 0);
12486                 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
12487                                         0, 0);
12488                 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
12489                 mutex_unlock(&kvm->slots_lock);
12490         }
12491         kvm_unload_vcpu_mmus(kvm);
12492         static_call_cond(kvm_x86_vm_destroy)(kvm);
12493         kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
12494         kvm_pic_destroy(kvm);
12495         kvm_ioapic_destroy(kvm);
12496         kvm_destroy_vcpus(kvm);
12497         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
12498         kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
12499         kvm_mmu_uninit_vm(kvm);
12500         kvm_page_track_cleanup(kvm);
12501         kvm_xen_destroy_vm(kvm);
12502         kvm_hv_destroy_vm(kvm);
12503 }
12504
12505 static void memslot_rmap_free(struct kvm_memory_slot *slot)
12506 {
12507         int i;
12508
12509         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12510                 kvfree(slot->arch.rmap[i]);
12511                 slot->arch.rmap[i] = NULL;
12512         }
12513 }
12514
12515 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
12516 {
12517         int i;
12518
12519         memslot_rmap_free(slot);
12520
12521         for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12522                 kvfree(slot->arch.lpage_info[i - 1]);
12523                 slot->arch.lpage_info[i - 1] = NULL;
12524         }
12525
12526         kvm_page_track_free_memslot(slot);
12527 }
12528
12529 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
12530 {
12531         const int sz = sizeof(*slot->arch.rmap[0]);
12532         int i;
12533
12534         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12535                 int level = i + 1;
12536                 int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12537
12538                 if (slot->arch.rmap[i])
12539                         continue;
12540
12541                 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
12542                 if (!slot->arch.rmap[i]) {
12543                         memslot_rmap_free(slot);
12544                         return -ENOMEM;
12545                 }
12546         }
12547
12548         return 0;
12549 }
12550
12551 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
12552                                       struct kvm_memory_slot *slot)
12553 {
12554         unsigned long npages = slot->npages;
12555         int i, r;
12556
12557         /*
12558          * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
12559          * old arrays will be freed by __kvm_set_memory_region() if installing
12560          * the new memslot is successful.
12561          */
12562         memset(&slot->arch, 0, sizeof(slot->arch));
12563
12564         if (kvm_memslots_have_rmaps(kvm)) {
12565                 r = memslot_rmap_alloc(slot, npages);
12566                 if (r)
12567                         return r;
12568         }
12569
12570         for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12571                 struct kvm_lpage_info *linfo;
12572                 unsigned long ugfn;
12573                 int lpages;
12574                 int level = i + 1;
12575
12576                 lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12577
12578                 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
12579                 if (!linfo)
12580                         goto out_free;
12581
12582                 slot->arch.lpage_info[i - 1] = linfo;
12583
12584                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
12585                         linfo[0].disallow_lpage = 1;
12586                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
12587                         linfo[lpages - 1].disallow_lpage = 1;
12588                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
12589                 /*
12590                  * If the gfn and userspace address are not aligned wrt each
12591                  * other, disable large page support for this slot.
12592                  */
12593                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
12594                         unsigned long j;
12595
12596                         for (j = 0; j < lpages; ++j)
12597                                 linfo[j].disallow_lpage = 1;
12598                 }
12599         }
12600
12601         if (kvm_page_track_create_memslot(kvm, slot, npages))
12602                 goto out_free;
12603
12604         return 0;
12605
12606 out_free:
12607         memslot_rmap_free(slot);
12608
12609         for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12610                 kvfree(slot->arch.lpage_info[i - 1]);
12611                 slot->arch.lpage_info[i - 1] = NULL;
12612         }
12613         return -ENOMEM;
12614 }
12615
12616 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
12617 {
12618         struct kvm_vcpu *vcpu;
12619         unsigned long i;
12620
12621         /*
12622          * memslots->generation has been incremented.
12623          * mmio generation may have reached its maximum value.
12624          */
12625         kvm_mmu_invalidate_mmio_sptes(kvm, gen);
12626
12627         /* Force re-initialization of steal_time cache */
12628         kvm_for_each_vcpu(i, vcpu, kvm)
12629                 kvm_vcpu_kick(vcpu);
12630 }
12631
12632 int kvm_arch_prepare_memory_region(struct kvm *kvm,
12633                                    const struct kvm_memory_slot *old,
12634                                    struct kvm_memory_slot *new,
12635                                    enum kvm_mr_change change)
12636 {
12637         if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
12638                 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
12639                         return -EINVAL;
12640
12641                 return kvm_alloc_memslot_metadata(kvm, new);
12642         }
12643
12644         if (change == KVM_MR_FLAGS_ONLY)
12645                 memcpy(&new->arch, &old->arch, sizeof(old->arch));
12646         else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
12647                 return -EIO;
12648
12649         return 0;
12650 }
12651
12652
12653 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
12654 {
12655         int nr_slots;
12656
12657         if (!kvm_x86_ops.cpu_dirty_log_size)
12658                 return;
12659
12660         nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging);
12661         if ((enable && nr_slots == 1) || !nr_slots)
12662                 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
12663 }
12664
12665 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
12666                                      struct kvm_memory_slot *old,
12667                                      const struct kvm_memory_slot *new,
12668                                      enum kvm_mr_change change)
12669 {
12670         u32 old_flags = old ? old->flags : 0;
12671         u32 new_flags = new ? new->flags : 0;
12672         bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
12673
12674         /*
12675          * Update CPU dirty logging if dirty logging is being toggled.  This
12676          * applies to all operations.
12677          */
12678         if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
12679                 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
12680
12681         /*
12682          * Nothing more to do for RO slots (which can't be dirtied and can't be
12683          * made writable) or CREATE/MOVE/DELETE of a slot.
12684          *
12685          * For a memslot with dirty logging disabled:
12686          * CREATE:      No dirty mappings will already exist.
12687          * MOVE/DELETE: The old mappings will already have been cleaned up by
12688          *              kvm_arch_flush_shadow_memslot()
12689          *
12690          * For a memslot with dirty logging enabled:
12691          * CREATE:      No shadow pages exist, thus nothing to write-protect
12692          *              and no dirty bits to clear.
12693          * MOVE/DELETE: The old mappings will already have been cleaned up by
12694          *              kvm_arch_flush_shadow_memslot().
12695          */
12696         if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
12697                 return;
12698
12699         /*
12700          * READONLY and non-flags changes were filtered out above, and the only
12701          * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
12702          * logging isn't being toggled on or off.
12703          */
12704         if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
12705                 return;
12706
12707         if (!log_dirty_pages) {
12708                 /*
12709                  * Dirty logging tracks sptes in 4k granularity, meaning that
12710                  * large sptes have to be split.  If live migration succeeds,
12711                  * the guest in the source machine will be destroyed and large
12712                  * sptes will be created in the destination.  However, if the
12713                  * guest continues to run in the source machine (for example if
12714                  * live migration fails), small sptes will remain around and
12715                  * cause bad performance.
12716                  *
12717                  * Scan sptes if dirty logging has been stopped, dropping those
12718                  * which can be collapsed into a single large-page spte.  Later
12719                  * page faults will create the large-page sptes.
12720                  */
12721                 kvm_mmu_zap_collapsible_sptes(kvm, new);
12722         } else {
12723                 /*
12724                  * Initially-all-set does not require write protecting any page,
12725                  * because they're all assumed to be dirty.
12726                  */
12727                 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
12728                         return;
12729
12730                 if (READ_ONCE(eager_page_split))
12731                         kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
12732
12733                 if (kvm_x86_ops.cpu_dirty_log_size) {
12734                         kvm_mmu_slot_leaf_clear_dirty(kvm, new);
12735                         kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
12736                 } else {
12737                         kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
12738                 }
12739
12740                 /*
12741                  * Unconditionally flush the TLBs after enabling dirty logging.
12742                  * A flush is almost always going to be necessary (see below),
12743                  * and unconditionally flushing allows the helpers to omit
12744                  * the subtly complex checks when removing write access.
12745                  *
12746                  * Do the flush outside of mmu_lock to reduce the amount of
12747                  * time mmu_lock is held.  Flushing after dropping mmu_lock is
12748                  * safe as KVM only needs to guarantee the slot is fully
12749                  * write-protected before returning to userspace, i.e. before
12750                  * userspace can consume the dirty status.
12751                  *
12752                  * Flushing outside of mmu_lock requires KVM to be careful when
12753                  * making decisions based on writable status of an SPTE, e.g. a
12754                  * !writable SPTE doesn't guarantee a CPU can't perform writes.
12755                  *
12756                  * Specifically, KVM also write-protects guest page tables to
12757                  * monitor changes when using shadow paging, and must guarantee
12758                  * no CPUs can write to those page before mmu_lock is dropped.
12759                  * Because CPUs may have stale TLB entries at this point, a
12760                  * !writable SPTE doesn't guarantee CPUs can't perform writes.
12761                  *
12762                  * KVM also allows making SPTES writable outside of mmu_lock,
12763                  * e.g. to allow dirty logging without taking mmu_lock.
12764                  *
12765                  * To handle these scenarios, KVM uses a separate software-only
12766                  * bit (MMU-writable) to track if a SPTE is !writable due to
12767                  * a guest page table being write-protected (KVM clears the
12768                  * MMU-writable flag when write-protecting for shadow paging).
12769                  *
12770                  * The use of MMU-writable is also the primary motivation for
12771                  * the unconditional flush.  Because KVM must guarantee that a
12772                  * CPU doesn't contain stale, writable TLB entries for a
12773                  * !MMU-writable SPTE, KVM must flush if it encounters any
12774                  * MMU-writable SPTE regardless of whether the actual hardware
12775                  * writable bit was set.  I.e. KVM is almost guaranteed to need
12776                  * to flush, while unconditionally flushing allows the "remove
12777                  * write access" helpers to ignore MMU-writable entirely.
12778                  *
12779                  * See is_writable_pte() for more details (the case involving
12780                  * access-tracked SPTEs is particularly relevant).
12781                  */
12782                 kvm_flush_remote_tlbs_memslot(kvm, new);
12783         }
12784 }
12785
12786 void kvm_arch_commit_memory_region(struct kvm *kvm,
12787                                 struct kvm_memory_slot *old,
12788                                 const struct kvm_memory_slot *new,
12789                                 enum kvm_mr_change change)
12790 {
12791         if (!kvm->arch.n_requested_mmu_pages &&
12792             (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
12793                 unsigned long nr_mmu_pages;
12794
12795                 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
12796                 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
12797                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
12798         }
12799
12800         kvm_mmu_slot_apply_flags(kvm, old, new, change);
12801
12802         /* Free the arrays associated with the old memslot. */
12803         if (change == KVM_MR_MOVE)
12804                 kvm_arch_free_memslot(kvm, old);
12805 }
12806
12807 void kvm_arch_flush_shadow_all(struct kvm *kvm)
12808 {
12809         kvm_mmu_zap_all(kvm);
12810 }
12811
12812 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
12813                                    struct kvm_memory_slot *slot)
12814 {
12815         kvm_page_track_flush_slot(kvm, slot);
12816 }
12817
12818 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
12819 {
12820         return (is_guest_mode(vcpu) &&
12821                 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
12822 }
12823
12824 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
12825 {
12826         if (!list_empty_careful(&vcpu->async_pf.done))
12827                 return true;
12828
12829         if (kvm_apic_has_pending_init_or_sipi(vcpu) &&
12830             kvm_apic_init_sipi_allowed(vcpu))
12831                 return true;
12832
12833         if (vcpu->arch.pv.pv_unhalted)
12834                 return true;
12835
12836         if (kvm_is_exception_pending(vcpu))
12837                 return true;
12838
12839         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12840             (vcpu->arch.nmi_pending &&
12841              static_call(kvm_x86_nmi_allowed)(vcpu, false)))
12842                 return true;
12843
12844 #ifdef CONFIG_KVM_SMM
12845         if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
12846             (vcpu->arch.smi_pending &&
12847              static_call(kvm_x86_smi_allowed)(vcpu, false)))
12848                 return true;
12849 #endif
12850
12851         if (kvm_arch_interrupt_allowed(vcpu) &&
12852             (kvm_cpu_has_interrupt(vcpu) ||
12853             kvm_guest_apic_has_interrupt(vcpu)))
12854                 return true;
12855
12856         if (kvm_hv_has_stimer_pending(vcpu))
12857                 return true;
12858
12859         if (is_guest_mode(vcpu) &&
12860             kvm_x86_ops.nested_ops->has_events &&
12861             kvm_x86_ops.nested_ops->has_events(vcpu))
12862                 return true;
12863
12864         if (kvm_xen_has_pending_events(vcpu))
12865                 return true;
12866
12867         return false;
12868 }
12869
12870 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
12871 {
12872         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
12873 }
12874
12875 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
12876 {
12877         if (kvm_vcpu_apicv_active(vcpu) &&
12878             static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
12879                 return true;
12880
12881         return false;
12882 }
12883
12884 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
12885 {
12886         if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
12887                 return true;
12888
12889         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12890 #ifdef CONFIG_KVM_SMM
12891                 kvm_test_request(KVM_REQ_SMI, vcpu) ||
12892 #endif
12893                  kvm_test_request(KVM_REQ_EVENT, vcpu))
12894                 return true;
12895
12896         return kvm_arch_dy_has_pending_interrupt(vcpu);
12897 }
12898
12899 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
12900 {
12901         if (vcpu->arch.guest_state_protected)
12902                 return true;
12903
12904         return vcpu->arch.preempted_in_kernel;
12905 }
12906
12907 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
12908 {
12909         return kvm_rip_read(vcpu);
12910 }
12911
12912 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
12913 {
12914         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
12915 }
12916
12917 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
12918 {
12919         return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
12920 }
12921
12922 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
12923 {
12924         /* Can't read the RIP when guest state is protected, just return 0 */
12925         if (vcpu->arch.guest_state_protected)
12926                 return 0;
12927
12928         if (is_64_bit_mode(vcpu))
12929                 return kvm_rip_read(vcpu);
12930         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
12931                      kvm_rip_read(vcpu));
12932 }
12933 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
12934
12935 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
12936 {
12937         return kvm_get_linear_rip(vcpu) == linear_rip;
12938 }
12939 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
12940
12941 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
12942 {
12943         unsigned long rflags;
12944
12945         rflags = static_call(kvm_x86_get_rflags)(vcpu);
12946         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
12947                 rflags &= ~X86_EFLAGS_TF;
12948         return rflags;
12949 }
12950 EXPORT_SYMBOL_GPL(kvm_get_rflags);
12951
12952 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12953 {
12954         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
12955             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
12956                 rflags |= X86_EFLAGS_TF;
12957         static_call(kvm_x86_set_rflags)(vcpu, rflags);
12958 }
12959
12960 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12961 {
12962         __kvm_set_rflags(vcpu, rflags);
12963         kvm_make_request(KVM_REQ_EVENT, vcpu);
12964 }
12965 EXPORT_SYMBOL_GPL(kvm_set_rflags);
12966
12967 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
12968 {
12969         BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
12970
12971         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
12972 }
12973
12974 static inline u32 kvm_async_pf_next_probe(u32 key)
12975 {
12976         return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
12977 }
12978
12979 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12980 {
12981         u32 key = kvm_async_pf_hash_fn(gfn);
12982
12983         while (vcpu->arch.apf.gfns[key] != ~0)
12984                 key = kvm_async_pf_next_probe(key);
12985
12986         vcpu->arch.apf.gfns[key] = gfn;
12987 }
12988
12989 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
12990 {
12991         int i;
12992         u32 key = kvm_async_pf_hash_fn(gfn);
12993
12994         for (i = 0; i < ASYNC_PF_PER_VCPU &&
12995                      (vcpu->arch.apf.gfns[key] != gfn &&
12996                       vcpu->arch.apf.gfns[key] != ~0); i++)
12997                 key = kvm_async_pf_next_probe(key);
12998
12999         return key;
13000 }
13001
13002 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13003 {
13004         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
13005 }
13006
13007 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13008 {
13009         u32 i, j, k;
13010
13011         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
13012
13013         if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
13014                 return;
13015
13016         while (true) {
13017                 vcpu->arch.apf.gfns[i] = ~0;
13018                 do {
13019                         j = kvm_async_pf_next_probe(j);
13020                         if (vcpu->arch.apf.gfns[j] == ~0)
13021                                 return;
13022                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
13023                         /*
13024                          * k lies cyclically in ]i,j]
13025                          * |    i.k.j |
13026                          * |....j i.k.| or  |.k..j i...|
13027                          */
13028                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
13029                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
13030                 i = j;
13031         }
13032 }
13033
13034 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
13035 {
13036         u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
13037
13038         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
13039                                       sizeof(reason));
13040 }
13041
13042 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
13043 {
13044         unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13045
13046         return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13047                                              &token, offset, sizeof(token));
13048 }
13049
13050 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
13051 {
13052         unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13053         u32 val;
13054
13055         if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13056                                          &val, offset, sizeof(val)))
13057                 return false;
13058
13059         return !val;
13060 }
13061
13062 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
13063 {
13064
13065         if (!kvm_pv_async_pf_enabled(vcpu))
13066                 return false;
13067
13068         if (vcpu->arch.apf.send_user_only &&
13069             static_call(kvm_x86_get_cpl)(vcpu) == 0)
13070                 return false;
13071
13072         if (is_guest_mode(vcpu)) {
13073                 /*
13074                  * L1 needs to opt into the special #PF vmexits that are
13075                  * used to deliver async page faults.
13076                  */
13077                 return vcpu->arch.apf.delivery_as_pf_vmexit;
13078         } else {
13079                 /*
13080                  * Play it safe in case the guest temporarily disables paging.
13081                  * The real mode IDT in particular is unlikely to have a #PF
13082                  * exception setup.
13083                  */
13084                 return is_paging(vcpu);
13085         }
13086 }
13087
13088 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
13089 {
13090         if (unlikely(!lapic_in_kernel(vcpu) ||
13091                      kvm_event_needs_reinjection(vcpu) ||
13092                      kvm_is_exception_pending(vcpu)))
13093                 return false;
13094
13095         if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
13096                 return false;
13097
13098         /*
13099          * If interrupts are off we cannot even use an artificial
13100          * halt state.
13101          */
13102         return kvm_arch_interrupt_allowed(vcpu);
13103 }
13104
13105 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
13106                                      struct kvm_async_pf *work)
13107 {
13108         struct x86_exception fault;
13109
13110         trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
13111         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
13112
13113         if (kvm_can_deliver_async_pf(vcpu) &&
13114             !apf_put_user_notpresent(vcpu)) {
13115                 fault.vector = PF_VECTOR;
13116                 fault.error_code_valid = true;
13117                 fault.error_code = 0;
13118                 fault.nested_page_fault = false;
13119                 fault.address = work->arch.token;
13120                 fault.async_page_fault = true;
13121                 kvm_inject_page_fault(vcpu, &fault);
13122                 return true;
13123         } else {
13124                 /*
13125                  * It is not possible to deliver a paravirtualized asynchronous
13126                  * page fault, but putting the guest in an artificial halt state
13127                  * can be beneficial nevertheless: if an interrupt arrives, we
13128                  * can deliver it timely and perhaps the guest will schedule
13129                  * another process.  When the instruction that triggered a page
13130                  * fault is retried, hopefully the page will be ready in the host.
13131                  */
13132                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
13133                 return false;
13134         }
13135 }
13136
13137 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
13138                                  struct kvm_async_pf *work)
13139 {
13140         struct kvm_lapic_irq irq = {
13141                 .delivery_mode = APIC_DM_FIXED,
13142                 .vector = vcpu->arch.apf.vec
13143         };
13144
13145         if (work->wakeup_all)
13146                 work->arch.token = ~0; /* broadcast wakeup */
13147         else
13148                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
13149         trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
13150
13151         if ((work->wakeup_all || work->notpresent_injected) &&
13152             kvm_pv_async_pf_enabled(vcpu) &&
13153             !apf_put_user_ready(vcpu, work->arch.token)) {
13154                 vcpu->arch.apf.pageready_pending = true;
13155                 kvm_apic_set_irq(vcpu, &irq, NULL);
13156         }
13157
13158         vcpu->arch.apf.halted = false;
13159         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
13160 }
13161
13162 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
13163 {
13164         kvm_make_request(KVM_REQ_APF_READY, vcpu);
13165         if (!vcpu->arch.apf.pageready_pending)
13166                 kvm_vcpu_kick(vcpu);
13167 }
13168
13169 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
13170 {
13171         if (!kvm_pv_async_pf_enabled(vcpu))
13172                 return true;
13173         else
13174                 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
13175 }
13176
13177 void kvm_arch_start_assignment(struct kvm *kvm)
13178 {
13179         if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
13180                 static_call_cond(kvm_x86_pi_start_assignment)(kvm);
13181 }
13182 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
13183
13184 void kvm_arch_end_assignment(struct kvm *kvm)
13185 {
13186         atomic_dec(&kvm->arch.assigned_device_count);
13187 }
13188 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
13189
13190 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm)
13191 {
13192         return raw_atomic_read(&kvm->arch.assigned_device_count);
13193 }
13194 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
13195
13196 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
13197 {
13198         atomic_inc(&kvm->arch.noncoherent_dma_count);
13199 }
13200 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
13201
13202 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
13203 {
13204         atomic_dec(&kvm->arch.noncoherent_dma_count);
13205 }
13206 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
13207
13208 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
13209 {
13210         return atomic_read(&kvm->arch.noncoherent_dma_count);
13211 }
13212 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
13213
13214 bool kvm_arch_has_irq_bypass(void)
13215 {
13216         return enable_apicv && irq_remapping_cap(IRQ_POSTING_CAP);
13217 }
13218
13219 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
13220                                       struct irq_bypass_producer *prod)
13221 {
13222         struct kvm_kernel_irqfd *irqfd =
13223                 container_of(cons, struct kvm_kernel_irqfd, consumer);
13224         int ret;
13225
13226         irqfd->producer = prod;
13227         kvm_arch_start_assignment(irqfd->kvm);
13228         ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm,
13229                                          prod->irq, irqfd->gsi, 1);
13230
13231         if (ret)
13232                 kvm_arch_end_assignment(irqfd->kvm);
13233
13234         return ret;
13235 }
13236
13237 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
13238                                       struct irq_bypass_producer *prod)
13239 {
13240         int ret;
13241         struct kvm_kernel_irqfd *irqfd =
13242                 container_of(cons, struct kvm_kernel_irqfd, consumer);
13243
13244         WARN_ON(irqfd->producer != prod);
13245         irqfd->producer = NULL;
13246
13247         /*
13248          * When producer of consumer is unregistered, we change back to
13249          * remapped mode, so we can re-use the current implementation
13250          * when the irq is masked/disabled or the consumer side (KVM
13251          * int this case doesn't want to receive the interrupts.
13252         */
13253         ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
13254         if (ret)
13255                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
13256                        " fails: %d\n", irqfd->consumer.token, ret);
13257
13258         kvm_arch_end_assignment(irqfd->kvm);
13259 }
13260
13261 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
13262                                    uint32_t guest_irq, bool set)
13263 {
13264         return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set);
13265 }
13266
13267 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
13268                                   struct kvm_kernel_irq_routing_entry *new)
13269 {
13270         if (new->type != KVM_IRQ_ROUTING_MSI)
13271                 return true;
13272
13273         return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
13274 }
13275
13276 bool kvm_vector_hashing_enabled(void)
13277 {
13278         return vector_hashing;
13279 }
13280
13281 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
13282 {
13283         return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
13284 }
13285 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
13286
13287
13288 int kvm_spec_ctrl_test_value(u64 value)
13289 {
13290         /*
13291          * test that setting IA32_SPEC_CTRL to given value
13292          * is allowed by the host processor
13293          */
13294
13295         u64 saved_value;
13296         unsigned long flags;
13297         int ret = 0;
13298
13299         local_irq_save(flags);
13300
13301         if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
13302                 ret = 1;
13303         else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
13304                 ret = 1;
13305         else
13306                 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
13307
13308         local_irq_restore(flags);
13309
13310         return ret;
13311 }
13312 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
13313
13314 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
13315 {
13316         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
13317         struct x86_exception fault;
13318         u64 access = error_code &
13319                 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
13320
13321         if (!(error_code & PFERR_PRESENT_MASK) ||
13322             mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) {
13323                 /*
13324                  * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
13325                  * tables probably do not match the TLB.  Just proceed
13326                  * with the error code that the processor gave.
13327                  */
13328                 fault.vector = PF_VECTOR;
13329                 fault.error_code_valid = true;
13330                 fault.error_code = error_code;
13331                 fault.nested_page_fault = false;
13332                 fault.address = gva;
13333                 fault.async_page_fault = false;
13334         }
13335         vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
13336 }
13337 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
13338
13339 /*
13340  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
13341  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
13342  * indicates whether exit to userspace is needed.
13343  */
13344 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
13345                               struct x86_exception *e)
13346 {
13347         if (r == X86EMUL_PROPAGATE_FAULT) {
13348                 if (KVM_BUG_ON(!e, vcpu->kvm))
13349                         return -EIO;
13350
13351                 kvm_inject_emulated_page_fault(vcpu, e);
13352                 return 1;
13353         }
13354
13355         /*
13356          * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
13357          * while handling a VMX instruction KVM could've handled the request
13358          * correctly by exiting to userspace and performing I/O but there
13359          * doesn't seem to be a real use-case behind such requests, just return
13360          * KVM_EXIT_INTERNAL_ERROR for now.
13361          */
13362         kvm_prepare_emulation_failure_exit(vcpu);
13363
13364         return 0;
13365 }
13366 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
13367
13368 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
13369 {
13370         bool pcid_enabled;
13371         struct x86_exception e;
13372         struct {
13373                 u64 pcid;
13374                 u64 gla;
13375         } operand;
13376         int r;
13377
13378         r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
13379         if (r != X86EMUL_CONTINUE)
13380                 return kvm_handle_memory_failure(vcpu, r, &e);
13381
13382         if (operand.pcid >> 12 != 0) {
13383                 kvm_inject_gp(vcpu, 0);
13384                 return 1;
13385         }
13386
13387         pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE);
13388
13389         switch (type) {
13390         case INVPCID_TYPE_INDIV_ADDR:
13391                 if ((!pcid_enabled && (operand.pcid != 0)) ||
13392                     is_noncanonical_address(operand.gla, vcpu)) {
13393                         kvm_inject_gp(vcpu, 0);
13394                         return 1;
13395                 }
13396                 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
13397                 return kvm_skip_emulated_instruction(vcpu);
13398
13399         case INVPCID_TYPE_SINGLE_CTXT:
13400                 if (!pcid_enabled && (operand.pcid != 0)) {
13401                         kvm_inject_gp(vcpu, 0);
13402                         return 1;
13403                 }
13404
13405                 kvm_invalidate_pcid(vcpu, operand.pcid);
13406                 return kvm_skip_emulated_instruction(vcpu);
13407
13408         case INVPCID_TYPE_ALL_NON_GLOBAL:
13409                 /*
13410                  * Currently, KVM doesn't mark global entries in the shadow
13411                  * page tables, so a non-global flush just degenerates to a
13412                  * global flush. If needed, we could optimize this later by
13413                  * keeping track of global entries in shadow page tables.
13414                  */
13415
13416                 fallthrough;
13417         case INVPCID_TYPE_ALL_INCL_GLOBAL:
13418                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
13419                 return kvm_skip_emulated_instruction(vcpu);
13420
13421         default:
13422                 kvm_inject_gp(vcpu, 0);
13423                 return 1;
13424         }
13425 }
13426 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
13427
13428 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
13429 {
13430         struct kvm_run *run = vcpu->run;
13431         struct kvm_mmio_fragment *frag;
13432         unsigned int len;
13433
13434         BUG_ON(!vcpu->mmio_needed);
13435
13436         /* Complete previous fragment */
13437         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
13438         len = min(8u, frag->len);
13439         if (!vcpu->mmio_is_write)
13440                 memcpy(frag->data, run->mmio.data, len);
13441
13442         if (frag->len <= 8) {
13443                 /* Switch to the next fragment. */
13444                 frag++;
13445                 vcpu->mmio_cur_fragment++;
13446         } else {
13447                 /* Go forward to the next mmio piece. */
13448                 frag->data += len;
13449                 frag->gpa += len;
13450                 frag->len -= len;
13451         }
13452
13453         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
13454                 vcpu->mmio_needed = 0;
13455
13456                 // VMG change, at this point, we're always done
13457                 // RIP has already been advanced
13458                 return 1;
13459         }
13460
13461         // More MMIO is needed
13462         run->mmio.phys_addr = frag->gpa;
13463         run->mmio.len = min(8u, frag->len);
13464         run->mmio.is_write = vcpu->mmio_is_write;
13465         if (run->mmio.is_write)
13466                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
13467         run->exit_reason = KVM_EXIT_MMIO;
13468
13469         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13470
13471         return 0;
13472 }
13473
13474 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13475                           void *data)
13476 {
13477         int handled;
13478         struct kvm_mmio_fragment *frag;
13479
13480         if (!data)
13481                 return -EINVAL;
13482
13483         handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13484         if (handled == bytes)
13485                 return 1;
13486
13487         bytes -= handled;
13488         gpa += handled;
13489         data += handled;
13490
13491         /*TODO: Check if need to increment number of frags */
13492         frag = vcpu->mmio_fragments;
13493         vcpu->mmio_nr_fragments = 1;
13494         frag->len = bytes;
13495         frag->gpa = gpa;
13496         frag->data = data;
13497
13498         vcpu->mmio_needed = 1;
13499         vcpu->mmio_cur_fragment = 0;
13500
13501         vcpu->run->mmio.phys_addr = gpa;
13502         vcpu->run->mmio.len = min(8u, frag->len);
13503         vcpu->run->mmio.is_write = 1;
13504         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
13505         vcpu->run->exit_reason = KVM_EXIT_MMIO;
13506
13507         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13508
13509         return 0;
13510 }
13511 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
13512
13513 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13514                          void *data)
13515 {
13516         int handled;
13517         struct kvm_mmio_fragment *frag;
13518
13519         if (!data)
13520                 return -EINVAL;
13521
13522         handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13523         if (handled == bytes)
13524                 return 1;
13525
13526         bytes -= handled;
13527         gpa += handled;
13528         data += handled;
13529
13530         /*TODO: Check if need to increment number of frags */
13531         frag = vcpu->mmio_fragments;
13532         vcpu->mmio_nr_fragments = 1;
13533         frag->len = bytes;
13534         frag->gpa = gpa;
13535         frag->data = data;
13536
13537         vcpu->mmio_needed = 1;
13538         vcpu->mmio_cur_fragment = 0;
13539
13540         vcpu->run->mmio.phys_addr = gpa;
13541         vcpu->run->mmio.len = min(8u, frag->len);
13542         vcpu->run->mmio.is_write = 0;
13543         vcpu->run->exit_reason = KVM_EXIT_MMIO;
13544
13545         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13546
13547         return 0;
13548 }
13549 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
13550
13551 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size)
13552 {
13553         vcpu->arch.sev_pio_count -= count;
13554         vcpu->arch.sev_pio_data += count * size;
13555 }
13556
13557 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13558                            unsigned int port);
13559
13560 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
13561 {
13562         int size = vcpu->arch.pio.size;
13563         int port = vcpu->arch.pio.port;
13564
13565         vcpu->arch.pio.count = 0;
13566         if (vcpu->arch.sev_pio_count)
13567                 return kvm_sev_es_outs(vcpu, size, port);
13568         return 1;
13569 }
13570
13571 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13572                            unsigned int port)
13573 {
13574         for (;;) {
13575                 unsigned int count =
13576                         min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13577                 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
13578
13579                 /* memcpy done already by emulator_pio_out.  */
13580                 advance_sev_es_emulated_pio(vcpu, count, size);
13581                 if (!ret)
13582                         break;
13583
13584                 /* Emulation done by the kernel.  */
13585                 if (!vcpu->arch.sev_pio_count)
13586                         return 1;
13587         }
13588
13589         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
13590         return 0;
13591 }
13592
13593 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13594                           unsigned int port);
13595
13596 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
13597 {
13598         unsigned count = vcpu->arch.pio.count;
13599         int size = vcpu->arch.pio.size;
13600         int port = vcpu->arch.pio.port;
13601
13602         complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
13603         advance_sev_es_emulated_pio(vcpu, count, size);
13604         if (vcpu->arch.sev_pio_count)
13605                 return kvm_sev_es_ins(vcpu, size, port);
13606         return 1;
13607 }
13608
13609 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13610                           unsigned int port)
13611 {
13612         for (;;) {
13613                 unsigned int count =
13614                         min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13615                 if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count))
13616                         break;
13617
13618                 /* Emulation done by the kernel.  */
13619                 advance_sev_es_emulated_pio(vcpu, count, size);
13620                 if (!vcpu->arch.sev_pio_count)
13621                         return 1;
13622         }
13623
13624         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
13625         return 0;
13626 }
13627
13628 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
13629                          unsigned int port, void *data,  unsigned int count,
13630                          int in)
13631 {
13632         vcpu->arch.sev_pio_data = data;
13633         vcpu->arch.sev_pio_count = count;
13634         return in ? kvm_sev_es_ins(vcpu, size, port)
13635                   : kvm_sev_es_outs(vcpu, size, port);
13636 }
13637 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
13638
13639 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
13640 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
13641 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
13642 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
13643 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
13644 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
13645 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
13646 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter);
13647 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
13648 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
13649 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
13650 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
13651 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
13652 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
13653 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
13654 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
13655 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
13656 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
13657 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
13658 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
13659 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
13660 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
13661 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath);
13662 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell);
13663 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
13664 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
13665 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
13666 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
13667 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
13668
13669 static int __init kvm_x86_init(void)
13670 {
13671         kvm_mmu_x86_module_init();
13672         mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible();
13673         return 0;
13674 }
13675 module_init(kvm_x86_init);
13676
13677 static void __exit kvm_x86_exit(void)
13678 {
13679         /*
13680          * If module_init() is implemented, module_exit() must also be
13681          * implemented to allow module unload.
13682          */
13683 }
13684 module_exit(kvm_x86_exit);