1 // SPDX-License-Identifier: GPL-2.0-only
3 * Kernel-based Virtual Machine driver for Linux
5 * derived from drivers/kvm/kvm_main.c
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright (C) 2008 Qumranet, Inc.
9 * Copyright IBM Corporation, 2008
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
13 * Avi Kivity <avi@qumranet.com>
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Amit Shah <amit.shah@qumranet.com>
16 * Ben-Ami Yassour <benami@il.ibm.com>
19 #include <linux/kvm_host.h>
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/intel-iommu.h>
45 #include <linux/cpufreq.h>
46 #include <linux/user-return-notifier.h>
47 #include <linux/srcu.h>
48 #include <linux/slab.h>
49 #include <linux/perf_event.h>
50 #include <linux/uaccess.h>
51 #include <linux/hash.h>
52 #include <linux/pci.h>
53 #include <linux/timekeeper_internal.h>
54 #include <linux/pvclock_gtod.h>
55 #include <linux/kvm_irqfd.h>
56 #include <linux/irqbypass.h>
57 #include <linux/sched/stat.h>
58 #include <linux/sched/isolation.h>
59 #include <linux/mem_encrypt.h>
60 #include <linux/entry-kvm.h>
61 #include <linux/suspend.h>
63 #include <trace/events/kvm.h>
65 #include <asm/debugreg.h>
70 #include <linux/kernel_stat.h>
71 #include <asm/fpu/api.h>
72 #include <asm/fpu/xcr.h>
73 #include <asm/fpu/xstate.h>
74 #include <asm/pvclock.h>
75 #include <asm/div64.h>
76 #include <asm/irq_remapping.h>
77 #include <asm/mshyperv.h>
78 #include <asm/hypervisor.h>
79 #include <asm/tlbflush.h>
80 #include <asm/intel_pt.h>
81 #include <asm/emulate_prefix.h>
83 #include <clocksource/hyperv_timer.h>
85 #define CREATE_TRACE_POINTS
88 #define MAX_IO_MSRS 256
89 #define KVM_MAX_MCE_BANKS 32
90 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
91 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
93 #define emul_to_vcpu(ctxt) \
94 ((struct kvm_vcpu *)(ctxt)->vcpu)
97 * - enable syscall per default because its emulated by KVM
98 * - enable LME and LMA per default on 64 bit KVM
102 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
104 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
107 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
109 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
111 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
112 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
114 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
115 static void process_nmi(struct kvm_vcpu *vcpu);
116 static void process_smi(struct kvm_vcpu *vcpu);
117 static void enter_smm(struct kvm_vcpu *vcpu);
118 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
119 static void store_regs(struct kvm_vcpu *vcpu);
120 static int sync_regs(struct kvm_vcpu *vcpu);
121 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
123 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
124 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
126 struct kvm_x86_ops kvm_x86_ops __read_mostly;
127 EXPORT_SYMBOL_GPL(kvm_x86_ops);
129 #define KVM_X86_OP(func) \
130 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \
131 *(((struct kvm_x86_ops *)0)->func));
132 #define KVM_X86_OP_NULL KVM_X86_OP
133 #include <asm/kvm-x86-ops.h>
134 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
135 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
136 EXPORT_STATIC_CALL_GPL(kvm_x86_tlb_flush_current);
138 static bool __read_mostly ignore_msrs = 0;
139 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
141 bool __read_mostly report_ignored_msrs = true;
142 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
143 EXPORT_SYMBOL_GPL(report_ignored_msrs);
145 unsigned int min_timer_period_us = 200;
146 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
148 static bool __read_mostly kvmclock_periodic_sync = true;
149 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
151 bool __read_mostly kvm_has_tsc_control;
152 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
153 u32 __read_mostly kvm_max_guest_tsc_khz;
154 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
155 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits;
156 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
157 u64 __read_mostly kvm_max_tsc_scaling_ratio;
158 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
159 u64 __read_mostly kvm_default_tsc_scaling_ratio;
160 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
161 bool __read_mostly kvm_has_bus_lock_exit;
162 EXPORT_SYMBOL_GPL(kvm_has_bus_lock_exit);
164 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
165 static u32 __read_mostly tsc_tolerance_ppm = 250;
166 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
169 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables
170 * adaptive tuning starting from default advancement of 1000ns. '0' disables
171 * advancement entirely. Any other value is used as-is and disables adaptive
172 * tuning, i.e. allows privileged userspace to set an exact advancement time.
174 static int __read_mostly lapic_timer_advance_ns = -1;
175 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
177 static bool __read_mostly vector_hashing = true;
178 module_param(vector_hashing, bool, S_IRUGO);
180 bool __read_mostly enable_vmware_backdoor = false;
181 module_param(enable_vmware_backdoor, bool, S_IRUGO);
182 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
184 static bool __read_mostly force_emulation_prefix = false;
185 module_param(force_emulation_prefix, bool, S_IRUGO);
187 int __read_mostly pi_inject_timer = -1;
188 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
191 * Restoring the host value for MSRs that are only consumed when running in
192 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
193 * returns to userspace, i.e. the kernel can run with the guest's value.
195 #define KVM_MAX_NR_USER_RETURN_MSRS 16
197 struct kvm_user_return_msrs {
198 struct user_return_notifier urn;
200 struct kvm_user_return_msr_values {
203 } values[KVM_MAX_NR_USER_RETURN_MSRS];
206 u32 __read_mostly kvm_nr_uret_msrs;
207 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
208 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
209 static struct kvm_user_return_msrs __percpu *user_return_msrs;
211 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
212 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
213 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
214 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
216 u64 __read_mostly host_efer;
217 EXPORT_SYMBOL_GPL(host_efer);
219 bool __read_mostly allow_smaller_maxphyaddr = 0;
220 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
222 bool __read_mostly enable_apicv = true;
223 EXPORT_SYMBOL_GPL(enable_apicv);
225 u64 __read_mostly host_xss;
226 EXPORT_SYMBOL_GPL(host_xss);
227 u64 __read_mostly supported_xss;
228 EXPORT_SYMBOL_GPL(supported_xss);
230 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
231 KVM_GENERIC_VM_STATS(),
232 STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
233 STATS_DESC_COUNTER(VM, mmu_pte_write),
234 STATS_DESC_COUNTER(VM, mmu_pde_zapped),
235 STATS_DESC_COUNTER(VM, mmu_flooded),
236 STATS_DESC_COUNTER(VM, mmu_recycled),
237 STATS_DESC_COUNTER(VM, mmu_cache_miss),
238 STATS_DESC_ICOUNTER(VM, mmu_unsync),
239 STATS_DESC_ICOUNTER(VM, pages_4k),
240 STATS_DESC_ICOUNTER(VM, pages_2m),
241 STATS_DESC_ICOUNTER(VM, pages_1g),
242 STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
243 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
244 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
247 const struct kvm_stats_header kvm_vm_stats_header = {
248 .name_size = KVM_STATS_NAME_SIZE,
249 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
250 .id_offset = sizeof(struct kvm_stats_header),
251 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
252 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
253 sizeof(kvm_vm_stats_desc),
256 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
257 KVM_GENERIC_VCPU_STATS(),
258 STATS_DESC_COUNTER(VCPU, pf_fixed),
259 STATS_DESC_COUNTER(VCPU, pf_guest),
260 STATS_DESC_COUNTER(VCPU, tlb_flush),
261 STATS_DESC_COUNTER(VCPU, invlpg),
262 STATS_DESC_COUNTER(VCPU, exits),
263 STATS_DESC_COUNTER(VCPU, io_exits),
264 STATS_DESC_COUNTER(VCPU, mmio_exits),
265 STATS_DESC_COUNTER(VCPU, signal_exits),
266 STATS_DESC_COUNTER(VCPU, irq_window_exits),
267 STATS_DESC_COUNTER(VCPU, nmi_window_exits),
268 STATS_DESC_COUNTER(VCPU, l1d_flush),
269 STATS_DESC_COUNTER(VCPU, halt_exits),
270 STATS_DESC_COUNTER(VCPU, request_irq_exits),
271 STATS_DESC_COUNTER(VCPU, irq_exits),
272 STATS_DESC_COUNTER(VCPU, host_state_reload),
273 STATS_DESC_COUNTER(VCPU, fpu_reload),
274 STATS_DESC_COUNTER(VCPU, insn_emulation),
275 STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
276 STATS_DESC_COUNTER(VCPU, hypercalls),
277 STATS_DESC_COUNTER(VCPU, irq_injections),
278 STATS_DESC_COUNTER(VCPU, nmi_injections),
279 STATS_DESC_COUNTER(VCPU, req_event),
280 STATS_DESC_COUNTER(VCPU, nested_run),
281 STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
282 STATS_DESC_COUNTER(VCPU, directed_yield_successful),
283 STATS_DESC_ICOUNTER(VCPU, guest_mode)
286 const struct kvm_stats_header kvm_vcpu_stats_header = {
287 .name_size = KVM_STATS_NAME_SIZE,
288 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
289 .id_offset = sizeof(struct kvm_stats_header),
290 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
291 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
292 sizeof(kvm_vcpu_stats_desc),
295 u64 __read_mostly host_xcr0;
296 u64 __read_mostly supported_xcr0;
297 EXPORT_SYMBOL_GPL(supported_xcr0);
299 static struct kmem_cache *x86_emulator_cache;
302 * When called, it means the previous get/set msr reached an invalid msr.
303 * Return true if we want to ignore/silent this failed msr access.
305 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
307 const char *op = write ? "wrmsr" : "rdmsr";
310 if (report_ignored_msrs)
311 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
316 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
322 static struct kmem_cache *kvm_alloc_emulator_cache(void)
324 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
325 unsigned int size = sizeof(struct x86_emulate_ctxt);
327 return kmem_cache_create_usercopy("x86_emulator", size,
328 __alignof__(struct x86_emulate_ctxt),
329 SLAB_ACCOUNT, useroffset,
330 size - useroffset, NULL);
333 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
335 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
338 for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
339 vcpu->arch.apf.gfns[i] = ~0;
342 static void kvm_on_user_return(struct user_return_notifier *urn)
345 struct kvm_user_return_msrs *msrs
346 = container_of(urn, struct kvm_user_return_msrs, urn);
347 struct kvm_user_return_msr_values *values;
351 * Disabling irqs at this point since the following code could be
352 * interrupted and executed through kvm_arch_hardware_disable()
354 local_irq_save(flags);
355 if (msrs->registered) {
356 msrs->registered = false;
357 user_return_notifier_unregister(urn);
359 local_irq_restore(flags);
360 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
361 values = &msrs->values[slot];
362 if (values->host != values->curr) {
363 wrmsrl(kvm_uret_msrs_list[slot], values->host);
364 values->curr = values->host;
369 static int kvm_probe_user_return_msr(u32 msr)
375 ret = rdmsrl_safe(msr, &val);
378 ret = wrmsrl_safe(msr, val);
384 int kvm_add_user_return_msr(u32 msr)
386 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
388 if (kvm_probe_user_return_msr(msr))
391 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
392 return kvm_nr_uret_msrs++;
394 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
396 int kvm_find_user_return_msr(u32 msr)
400 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
401 if (kvm_uret_msrs_list[i] == msr)
406 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
408 static void kvm_user_return_msr_cpu_online(void)
410 unsigned int cpu = smp_processor_id();
411 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
415 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
416 rdmsrl_safe(kvm_uret_msrs_list[i], &value);
417 msrs->values[i].host = value;
418 msrs->values[i].curr = value;
422 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
424 unsigned int cpu = smp_processor_id();
425 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
428 value = (value & mask) | (msrs->values[slot].host & ~mask);
429 if (value == msrs->values[slot].curr)
431 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
435 msrs->values[slot].curr = value;
436 if (!msrs->registered) {
437 msrs->urn.on_user_return = kvm_on_user_return;
438 user_return_notifier_register(&msrs->urn);
439 msrs->registered = true;
443 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
445 static void drop_user_return_notifiers(void)
447 unsigned int cpu = smp_processor_id();
448 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
450 if (msrs->registered)
451 kvm_on_user_return(&msrs->urn);
454 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
456 return vcpu->arch.apic_base;
458 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
460 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
462 return kvm_apic_mode(kvm_get_apic_base(vcpu));
464 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
466 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
468 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
469 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
470 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
471 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
473 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
475 if (!msr_info->host_initiated) {
476 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
478 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
482 kvm_lapic_set_base(vcpu, msr_info->data);
483 kvm_recalculate_apic_map(vcpu->kvm);
486 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
489 * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
491 * Hardware virtualization extension instructions may fault if a reboot turns
492 * off virtualization while processes are running. Usually after catching the
493 * fault we just panic; during reboot instead the instruction is ignored.
495 noinstr void kvm_spurious_fault(void)
497 /* Fault while not rebooting. We want the trace. */
498 BUG_ON(!kvm_rebooting);
500 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
502 #define EXCPT_BENIGN 0
503 #define EXCPT_CONTRIBUTORY 1
506 static int exception_class(int vector)
516 return EXCPT_CONTRIBUTORY;
523 #define EXCPT_FAULT 0
525 #define EXCPT_ABORT 2
526 #define EXCPT_INTERRUPT 3
528 static int exception_type(int vector)
532 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
533 return EXCPT_INTERRUPT;
537 /* #DB is trap, as instruction watchpoints are handled elsewhere */
538 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
541 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
544 /* Reserved exceptions will result in fault */
548 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
550 unsigned nr = vcpu->arch.exception.nr;
551 bool has_payload = vcpu->arch.exception.has_payload;
552 unsigned long payload = vcpu->arch.exception.payload;
560 * "Certain debug exceptions may clear bit 0-3. The
561 * remaining contents of the DR6 register are never
562 * cleared by the processor".
564 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
566 * In order to reflect the #DB exception payload in guest
567 * dr6, three components need to be considered: active low
568 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
570 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
571 * In the target guest dr6:
572 * FIXED_1 bits should always be set.
573 * Active low bits should be cleared if 1-setting in payload.
574 * Active high bits should be set if 1-setting in payload.
576 * Note, the payload is compatible with the pending debug
577 * exceptions/exit qualification under VMX, that active_low bits
578 * are active high in payload.
579 * So they need to be flipped for DR6.
581 vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
582 vcpu->arch.dr6 |= payload;
583 vcpu->arch.dr6 ^= payload & DR6_ACTIVE_LOW;
586 * The #DB payload is defined as compatible with the 'pending
587 * debug exceptions' field under VMX, not DR6. While bit 12 is
588 * defined in the 'pending debug exceptions' field (enabled
589 * breakpoint), it is reserved and must be zero in DR6.
591 vcpu->arch.dr6 &= ~BIT(12);
594 vcpu->arch.cr2 = payload;
598 vcpu->arch.exception.has_payload = false;
599 vcpu->arch.exception.payload = 0;
601 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
603 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
604 unsigned nr, bool has_error, u32 error_code,
605 bool has_payload, unsigned long payload, bool reinject)
610 kvm_make_request(KVM_REQ_EVENT, vcpu);
612 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
616 * On vmentry, vcpu->arch.exception.pending is only
617 * true if an event injection was blocked by
618 * nested_run_pending. In that case, however,
619 * vcpu_enter_guest requests an immediate exit,
620 * and the guest shouldn't proceed far enough to
623 WARN_ON_ONCE(vcpu->arch.exception.pending);
624 vcpu->arch.exception.injected = true;
625 if (WARN_ON_ONCE(has_payload)) {
627 * A reinjected event has already
628 * delivered its payload.
634 vcpu->arch.exception.pending = true;
635 vcpu->arch.exception.injected = false;
637 vcpu->arch.exception.has_error_code = has_error;
638 vcpu->arch.exception.nr = nr;
639 vcpu->arch.exception.error_code = error_code;
640 vcpu->arch.exception.has_payload = has_payload;
641 vcpu->arch.exception.payload = payload;
642 if (!is_guest_mode(vcpu))
643 kvm_deliver_exception_payload(vcpu);
647 /* to check exception */
648 prev_nr = vcpu->arch.exception.nr;
649 if (prev_nr == DF_VECTOR) {
650 /* triple fault -> shutdown */
651 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
654 class1 = exception_class(prev_nr);
655 class2 = exception_class(nr);
656 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
657 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
659 * Generate double fault per SDM Table 5-5. Set
660 * exception.pending = true so that the double fault
661 * can trigger a nested vmexit.
663 vcpu->arch.exception.pending = true;
664 vcpu->arch.exception.injected = false;
665 vcpu->arch.exception.has_error_code = true;
666 vcpu->arch.exception.nr = DF_VECTOR;
667 vcpu->arch.exception.error_code = 0;
668 vcpu->arch.exception.has_payload = false;
669 vcpu->arch.exception.payload = 0;
671 /* replace previous exception with a new one in a hope
672 that instruction re-execution will regenerate lost
677 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
679 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
681 EXPORT_SYMBOL_GPL(kvm_queue_exception);
683 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
685 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
687 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
689 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
690 unsigned long payload)
692 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
694 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
696 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
697 u32 error_code, unsigned long payload)
699 kvm_multiple_exception(vcpu, nr, true, error_code,
700 true, payload, false);
703 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
706 kvm_inject_gp(vcpu, 0);
708 return kvm_skip_emulated_instruction(vcpu);
712 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
714 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
717 kvm_inject_gp(vcpu, 0);
721 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
722 EMULTYPE_COMPLETE_USER_EXIT);
725 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
727 ++vcpu->stat.pf_guest;
728 vcpu->arch.exception.nested_apf =
729 is_guest_mode(vcpu) && fault->async_page_fault;
730 if (vcpu->arch.exception.nested_apf) {
731 vcpu->arch.apf.nested_apf_token = fault->address;
732 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
734 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
738 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
740 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
741 struct x86_exception *fault)
743 struct kvm_mmu *fault_mmu;
744 WARN_ON_ONCE(fault->vector != PF_VECTOR);
746 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
750 * Invalidate the TLB entry for the faulting address, if it exists,
751 * else the access will fault indefinitely (and to emulate hardware).
753 if ((fault->error_code & PFERR_PRESENT_MASK) &&
754 !(fault->error_code & PFERR_RSVD_MASK))
755 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
756 fault_mmu->root_hpa);
758 fault_mmu->inject_page_fault(vcpu, fault);
759 return fault->nested_page_fault;
761 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
763 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
765 atomic_inc(&vcpu->arch.nmi_queued);
766 kvm_make_request(KVM_REQ_NMI, vcpu);
768 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
770 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
772 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
774 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
776 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
778 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
780 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
783 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
784 * a #GP and return false.
786 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
788 if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
790 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
793 EXPORT_SYMBOL_GPL(kvm_require_cpl);
795 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
797 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
800 kvm_queue_exception(vcpu, UD_VECTOR);
803 EXPORT_SYMBOL_GPL(kvm_require_dr);
805 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
807 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
811 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise.
813 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
815 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
816 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
820 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
823 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
826 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
827 PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
828 if (real_gpa == UNMAPPED_GVA)
831 /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
832 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
833 cr3 & GENMASK(11, 5), sizeof(pdpte));
837 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
838 if ((pdpte[i] & PT_PRESENT_MASK) &&
839 (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
845 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
846 * Shadow page roots need to be reconstructed instead.
848 if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
849 kvm_mmu_free_roots(vcpu, mmu, KVM_MMU_ROOT_CURRENT);
851 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
852 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
853 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
854 vcpu->arch.pdptrs_from_userspace = false;
858 EXPORT_SYMBOL_GPL(load_pdptrs);
860 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
862 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
863 kvm_clear_async_pf_completion_queue(vcpu);
864 kvm_async_pf_hash_reset(vcpu);
867 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
868 kvm_mmu_reset_context(vcpu);
870 if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
871 kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
872 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
873 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
875 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
877 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
879 unsigned long old_cr0 = kvm_read_cr0(vcpu);
884 if (cr0 & 0xffffffff00000000UL)
888 cr0 &= ~CR0_RESERVED_BITS;
890 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
893 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
897 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
898 (cr0 & X86_CR0_PG)) {
903 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
908 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
909 is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
910 !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
913 if (!(cr0 & X86_CR0_PG) &&
914 (is_64_bit_mode(vcpu) || kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)))
917 static_call(kvm_x86_set_cr0)(vcpu, cr0);
919 kvm_post_set_cr0(vcpu, old_cr0, cr0);
923 EXPORT_SYMBOL_GPL(kvm_set_cr0);
925 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
927 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
929 EXPORT_SYMBOL_GPL(kvm_lmsw);
931 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
933 if (vcpu->arch.guest_state_protected)
936 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
938 if (vcpu->arch.xcr0 != host_xcr0)
939 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
941 if (vcpu->arch.xsaves_enabled &&
942 vcpu->arch.ia32_xss != host_xss)
943 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
946 if (static_cpu_has(X86_FEATURE_PKU) &&
947 (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
948 (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) &&
949 vcpu->arch.pkru != vcpu->arch.host_pkru)
950 write_pkru(vcpu->arch.pkru);
952 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
954 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
956 if (vcpu->arch.guest_state_protected)
959 if (static_cpu_has(X86_FEATURE_PKU) &&
960 (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
961 (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) {
962 vcpu->arch.pkru = rdpkru();
963 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
964 write_pkru(vcpu->arch.host_pkru);
967 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
969 if (vcpu->arch.xcr0 != host_xcr0)
970 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
972 if (vcpu->arch.xsaves_enabled &&
973 vcpu->arch.ia32_xss != host_xss)
974 wrmsrl(MSR_IA32_XSS, host_xss);
978 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
980 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
983 u64 old_xcr0 = vcpu->arch.xcr0;
986 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
987 if (index != XCR_XFEATURE_ENABLED_MASK)
989 if (!(xcr0 & XFEATURE_MASK_FP))
991 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
995 * Do not allow the guest to set bits that we do not support
996 * saving. However, xcr0 bit 0 is always set, even if the
997 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
999 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
1000 if (xcr0 & ~valid_bits)
1003 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1004 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1007 if (xcr0 & XFEATURE_MASK_AVX512) {
1008 if (!(xcr0 & XFEATURE_MASK_YMM))
1010 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1014 if ((xcr0 & XFEATURE_MASK_XTILE) &&
1015 ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1018 vcpu->arch.xcr0 = xcr0;
1020 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1021 kvm_update_cpuid_runtime(vcpu);
1025 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1027 if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1028 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1029 kvm_inject_gp(vcpu, 0);
1033 return kvm_skip_emulated_instruction(vcpu);
1035 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1037 bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1039 if (cr4 & cr4_reserved_bits)
1042 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1045 return static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1047 EXPORT_SYMBOL_GPL(kvm_is_valid_cr4);
1049 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1052 * If any role bit is changed, the MMU needs to be reset.
1054 * If CR4.PCIDE is changed 1 -> 0, the guest TLB must be flushed.
1055 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1056 * according to the SDM; however, stale prev_roots could be reused
1057 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1058 * free them all. KVM_REQ_MMU_RELOAD is fit for the both cases; it
1059 * is slow, but changing CR4.PCIDE is a rare case.
1061 * If CR4.PGE is changed, the guest TLB must be flushed.
1063 * Note: resetting MMU is a superset of KVM_REQ_MMU_RELOAD and
1064 * KVM_REQ_MMU_RELOAD is a superset of KVM_REQ_TLB_FLUSH_GUEST, hence
1065 * the usage of "else if".
1067 if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1068 kvm_mmu_reset_context(vcpu);
1069 else if ((cr4 ^ old_cr4) & X86_CR4_PCIDE)
1070 kvm_make_request(KVM_REQ_MMU_RELOAD, vcpu);
1071 else if ((cr4 ^ old_cr4) & X86_CR4_PGE)
1072 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1074 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1076 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1078 unsigned long old_cr4 = kvm_read_cr4(vcpu);
1080 if (!kvm_is_valid_cr4(vcpu, cr4))
1083 if (is_long_mode(vcpu)) {
1084 if (!(cr4 & X86_CR4_PAE))
1086 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1088 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1089 && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1090 && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1093 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1094 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1097 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1098 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1102 static_call(kvm_x86_set_cr4)(vcpu, cr4);
1104 kvm_post_set_cr4(vcpu, old_cr4, cr4);
1108 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1110 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1112 struct kvm_mmu *mmu = vcpu->arch.mmu;
1113 unsigned long roots_to_free = 0;
1117 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1118 * this is reachable when running EPT=1 and unrestricted_guest=0, and
1119 * also via the emulator. KVM's TDP page tables are not in the scope of
1120 * the invalidation, but the guest's TLB entries need to be flushed as
1121 * the CPU may have cached entries in its TLB for the target PCID.
1123 if (unlikely(tdp_enabled)) {
1124 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1129 * If neither the current CR3 nor any of the prev_roots use the given
1130 * PCID, then nothing needs to be done here because a resync will
1131 * happen anyway before switching to any other CR3.
1133 if (kvm_get_active_pcid(vcpu) == pcid) {
1134 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1135 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1139 * If PCID is disabled, there is no need to free prev_roots even if the
1140 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1143 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
1146 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1147 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1148 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1150 kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
1153 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1155 bool skip_tlb_flush = false;
1156 unsigned long pcid = 0;
1157 #ifdef CONFIG_X86_64
1158 bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1161 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1162 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1163 pcid = cr3 & X86_CR3_PCID_MASK;
1167 /* PDPTRs are always reloaded for PAE paging. */
1168 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1169 goto handle_tlb_flush;
1172 * Do not condition the GPA check on long mode, this helper is used to
1173 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1174 * the current vCPU mode is accurate.
1176 if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1179 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1182 if (cr3 != kvm_read_cr3(vcpu))
1183 kvm_mmu_new_pgd(vcpu, cr3);
1185 vcpu->arch.cr3 = cr3;
1186 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1187 /* Do not call post_set_cr3, we do not get here for confidential guests. */
1191 * A load of CR3 that flushes the TLB flushes only the current PCID,
1192 * even if PCID is disabled, in which case PCID=0 is flushed. It's a
1193 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1194 * and it's impossible to use a non-zero PCID when PCID is disabled,
1195 * i.e. only PCID=0 can be relevant.
1197 if (!skip_tlb_flush)
1198 kvm_invalidate_pcid(vcpu, pcid);
1202 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1204 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1206 if (cr8 & CR8_RESERVED_BITS)
1208 if (lapic_in_kernel(vcpu))
1209 kvm_lapic_set_tpr(vcpu, cr8);
1211 vcpu->arch.cr8 = cr8;
1214 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1216 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1218 if (lapic_in_kernel(vcpu))
1219 return kvm_lapic_get_cr8(vcpu);
1221 return vcpu->arch.cr8;
1223 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1225 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1229 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1230 for (i = 0; i < KVM_NR_DB_REGS; i++)
1231 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1235 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1239 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1240 dr7 = vcpu->arch.guest_debug_dr7;
1242 dr7 = vcpu->arch.dr7;
1243 static_call(kvm_x86_set_dr7)(vcpu, dr7);
1244 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1245 if (dr7 & DR7_BP_EN_MASK)
1246 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1248 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1250 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1252 u64 fixed = DR6_FIXED_1;
1254 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1257 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1258 fixed |= DR6_BUS_LOCK;
1262 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1264 size_t size = ARRAY_SIZE(vcpu->arch.db);
1268 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1269 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1270 vcpu->arch.eff_db[dr] = val;
1274 if (!kvm_dr6_valid(val))
1276 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1280 if (!kvm_dr7_valid(val))
1282 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1283 kvm_update_dr7(vcpu);
1289 EXPORT_SYMBOL_GPL(kvm_set_dr);
1291 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1293 size_t size = ARRAY_SIZE(vcpu->arch.db);
1297 *val = vcpu->arch.db[array_index_nospec(dr, size)];
1301 *val = vcpu->arch.dr6;
1305 *val = vcpu->arch.dr7;
1309 EXPORT_SYMBOL_GPL(kvm_get_dr);
1311 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1313 u32 ecx = kvm_rcx_read(vcpu);
1316 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1317 kvm_inject_gp(vcpu, 0);
1321 kvm_rax_write(vcpu, (u32)data);
1322 kvm_rdx_write(vcpu, data >> 32);
1323 return kvm_skip_emulated_instruction(vcpu);
1325 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1328 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1329 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1331 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1332 * extract the supported MSRs from the related const lists.
1333 * msrs_to_save is selected from the msrs_to_save_all to reflect the
1334 * capabilities of the host cpu. This capabilities test skips MSRs that are
1335 * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1336 * may depend on host virtualization features rather than host cpu features.
1339 static const u32 msrs_to_save_all[] = {
1340 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1342 #ifdef CONFIG_X86_64
1343 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1345 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1346 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1348 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1349 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1350 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1351 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1352 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1353 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1354 MSR_IA32_UMWAIT_CONTROL,
1356 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1357 MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1358 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1359 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1360 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1361 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1362 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1363 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1364 MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1365 MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1366 MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1367 MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1368 MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1369 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1370 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1371 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1372 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1373 MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1374 MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1375 MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1376 MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1377 MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1379 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1380 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1381 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1382 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1383 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1384 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1385 MSR_IA32_XFD, MSR_IA32_XFD_ERR,
1388 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1389 static unsigned num_msrs_to_save;
1391 static const u32 emulated_msrs_all[] = {
1392 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1393 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1394 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1395 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1396 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1397 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1398 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1400 HV_X64_MSR_VP_INDEX,
1401 HV_X64_MSR_VP_RUNTIME,
1402 HV_X64_MSR_SCONTROL,
1403 HV_X64_MSR_STIMER0_CONFIG,
1404 HV_X64_MSR_VP_ASSIST_PAGE,
1405 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1406 HV_X64_MSR_TSC_EMULATION_STATUS,
1407 HV_X64_MSR_SYNDBG_OPTIONS,
1408 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1409 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1410 HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1412 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1413 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1415 MSR_IA32_TSC_ADJUST,
1416 MSR_IA32_TSC_DEADLINE,
1417 MSR_IA32_ARCH_CAPABILITIES,
1418 MSR_IA32_PERF_CAPABILITIES,
1419 MSR_IA32_MISC_ENABLE,
1420 MSR_IA32_MCG_STATUS,
1422 MSR_IA32_MCG_EXT_CTL,
1426 MSR_MISC_FEATURES_ENABLES,
1427 MSR_AMD64_VIRT_SPEC_CTRL,
1428 MSR_AMD64_TSC_RATIO,
1433 * The following list leaves out MSRs whose values are determined
1434 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1435 * We always support the "true" VMX control MSRs, even if the host
1436 * processor does not, so I am putting these registers here rather
1437 * than in msrs_to_save_all.
1440 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1441 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1442 MSR_IA32_VMX_TRUE_EXIT_CTLS,
1443 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1445 MSR_IA32_VMX_CR0_FIXED0,
1446 MSR_IA32_VMX_CR4_FIXED0,
1447 MSR_IA32_VMX_VMCS_ENUM,
1448 MSR_IA32_VMX_PROCBASED_CTLS2,
1449 MSR_IA32_VMX_EPT_VPID_CAP,
1450 MSR_IA32_VMX_VMFUNC,
1453 MSR_KVM_POLL_CONTROL,
1456 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1457 static unsigned num_emulated_msrs;
1460 * List of msr numbers which are used to expose MSR-based features that
1461 * can be used by a hypervisor to validate requested CPU features.
1463 static const u32 msr_based_features_all[] = {
1465 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1466 MSR_IA32_VMX_PINBASED_CTLS,
1467 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1468 MSR_IA32_VMX_PROCBASED_CTLS,
1469 MSR_IA32_VMX_TRUE_EXIT_CTLS,
1470 MSR_IA32_VMX_EXIT_CTLS,
1471 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1472 MSR_IA32_VMX_ENTRY_CTLS,
1474 MSR_IA32_VMX_CR0_FIXED0,
1475 MSR_IA32_VMX_CR0_FIXED1,
1476 MSR_IA32_VMX_CR4_FIXED0,
1477 MSR_IA32_VMX_CR4_FIXED1,
1478 MSR_IA32_VMX_VMCS_ENUM,
1479 MSR_IA32_VMX_PROCBASED_CTLS2,
1480 MSR_IA32_VMX_EPT_VPID_CAP,
1481 MSR_IA32_VMX_VMFUNC,
1485 MSR_IA32_ARCH_CAPABILITIES,
1486 MSR_IA32_PERF_CAPABILITIES,
1489 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1490 static unsigned int num_msr_based_features;
1492 static u64 kvm_get_arch_capabilities(void)
1496 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1497 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1500 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1501 * the nested hypervisor runs with NX huge pages. If it is not,
1502 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1503 * L1 guests, so it need not worry about its own (L2) guests.
1505 data |= ARCH_CAP_PSCHANGE_MC_NO;
1508 * If we're doing cache flushes (either "always" or "cond")
1509 * we will do one whenever the guest does a vmlaunch/vmresume.
1510 * If an outer hypervisor is doing the cache flush for us
1511 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1512 * capability to the guest too, and if EPT is disabled we're not
1513 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will
1514 * require a nested hypervisor to do a flush of its own.
1516 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1517 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1519 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1520 data |= ARCH_CAP_RDCL_NO;
1521 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1522 data |= ARCH_CAP_SSB_NO;
1523 if (!boot_cpu_has_bug(X86_BUG_MDS))
1524 data |= ARCH_CAP_MDS_NO;
1526 if (!boot_cpu_has(X86_FEATURE_RTM)) {
1528 * If RTM=0 because the kernel has disabled TSX, the host might
1529 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0
1530 * and therefore knows that there cannot be TAA) but keep
1531 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1532 * and we want to allow migrating those guests to tsx=off hosts.
1534 data &= ~ARCH_CAP_TAA_NO;
1535 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1536 data |= ARCH_CAP_TAA_NO;
1539 * Nothing to do here; we emulate TSX_CTRL if present on the
1540 * host so the guest can choose between disabling TSX or
1541 * using VERW to clear CPU buffers.
1548 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1550 switch (msr->index) {
1551 case MSR_IA32_ARCH_CAPABILITIES:
1552 msr->data = kvm_get_arch_capabilities();
1554 case MSR_IA32_UCODE_REV:
1555 rdmsrl_safe(msr->index, &msr->data);
1558 return static_call(kvm_x86_get_msr_feature)(msr);
1563 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1565 struct kvm_msr_entry msr;
1569 r = kvm_get_msr_feature(&msr);
1571 if (r == KVM_MSR_RET_INVALID) {
1572 /* Unconditionally clear the output for simplicity */
1574 if (kvm_msr_ignored_check(index, 0, false))
1586 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1588 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1591 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1594 if (efer & (EFER_LME | EFER_LMA) &&
1595 !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1598 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1604 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1606 if (efer & efer_reserved_bits)
1609 return __kvm_valid_efer(vcpu, efer);
1611 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1613 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1615 u64 old_efer = vcpu->arch.efer;
1616 u64 efer = msr_info->data;
1619 if (efer & efer_reserved_bits)
1622 if (!msr_info->host_initiated) {
1623 if (!__kvm_valid_efer(vcpu, efer))
1626 if (is_paging(vcpu) &&
1627 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1632 efer |= vcpu->arch.efer & EFER_LMA;
1634 r = static_call(kvm_x86_set_efer)(vcpu, efer);
1640 /* Update reserved bits */
1641 if ((efer ^ old_efer) & EFER_NX)
1642 kvm_mmu_reset_context(vcpu);
1647 void kvm_enable_efer_bits(u64 mask)
1649 efer_reserved_bits &= ~mask;
1651 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1653 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1655 struct kvm_x86_msr_filter *msr_filter;
1656 struct msr_bitmap_range *ranges;
1657 struct kvm *kvm = vcpu->kvm;
1662 /* x2APIC MSRs do not support filtering. */
1663 if (index >= 0x800 && index <= 0x8ff)
1666 idx = srcu_read_lock(&kvm->srcu);
1668 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1674 allowed = msr_filter->default_allow;
1675 ranges = msr_filter->ranges;
1677 for (i = 0; i < msr_filter->count; i++) {
1678 u32 start = ranges[i].base;
1679 u32 end = start + ranges[i].nmsrs;
1680 u32 flags = ranges[i].flags;
1681 unsigned long *bitmap = ranges[i].bitmap;
1683 if ((index >= start) && (index < end) && (flags & type)) {
1684 allowed = !!test_bit(index - start, bitmap);
1690 srcu_read_unlock(&kvm->srcu, idx);
1694 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1697 * Write @data into the MSR specified by @index. Select MSR specific fault
1698 * checks are bypassed if @host_initiated is %true.
1699 * Returns 0 on success, non-0 otherwise.
1700 * Assumes vcpu_load() was already called.
1702 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1703 bool host_initiated)
1705 struct msr_data msr;
1707 if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1708 return KVM_MSR_RET_FILTERED;
1713 case MSR_KERNEL_GS_BASE:
1716 if (is_noncanonical_address(data, vcpu))
1719 case MSR_IA32_SYSENTER_EIP:
1720 case MSR_IA32_SYSENTER_ESP:
1722 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1723 * non-canonical address is written on Intel but not on
1724 * AMD (which ignores the top 32-bits, because it does
1725 * not implement 64-bit SYSENTER).
1727 * 64-bit code should hence be able to write a non-canonical
1728 * value on AMD. Making the address canonical ensures that
1729 * vmentry does not fail on Intel after writing a non-canonical
1730 * value, and that something deterministic happens if the guest
1731 * invokes 64-bit SYSENTER.
1733 data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1736 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1739 if (!host_initiated &&
1740 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1741 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1745 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1746 * incomplete and conflicting architectural behavior. Current
1747 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1748 * reserved and always read as zeros. Enforce Intel's reserved
1749 * bits check if and only if the guest CPU is Intel, and clear
1750 * the bits in all other cases. This ensures cross-vendor
1751 * migration will provide consistent behavior for the guest.
1753 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1762 msr.host_initiated = host_initiated;
1764 return static_call(kvm_x86_set_msr)(vcpu, &msr);
1767 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1768 u32 index, u64 data, bool host_initiated)
1770 int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1772 if (ret == KVM_MSR_RET_INVALID)
1773 if (kvm_msr_ignored_check(index, data, true))
1780 * Read the MSR specified by @index into @data. Select MSR specific fault
1781 * checks are bypassed if @host_initiated is %true.
1782 * Returns 0 on success, non-0 otherwise.
1783 * Assumes vcpu_load() was already called.
1785 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1786 bool host_initiated)
1788 struct msr_data msr;
1791 if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1792 return KVM_MSR_RET_FILTERED;
1796 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1799 if (!host_initiated &&
1800 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1801 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1807 msr.host_initiated = host_initiated;
1809 ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1815 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1816 u32 index, u64 *data, bool host_initiated)
1818 int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1820 if (ret == KVM_MSR_RET_INVALID) {
1821 /* Unconditionally clear *data for simplicity */
1823 if (kvm_msr_ignored_check(index, 0, false))
1830 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1832 return kvm_get_msr_ignored_check(vcpu, index, data, false);
1834 EXPORT_SYMBOL_GPL(kvm_get_msr);
1836 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1838 return kvm_set_msr_ignored_check(vcpu, index, data, false);
1840 EXPORT_SYMBOL_GPL(kvm_set_msr);
1842 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1844 if (!vcpu->run->msr.error) {
1845 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1846 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1850 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
1852 return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
1855 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1857 complete_userspace_rdmsr(vcpu);
1858 return complete_emulated_msr_access(vcpu);
1861 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
1863 return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1866 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
1868 complete_userspace_rdmsr(vcpu);
1869 return complete_fast_msr_access(vcpu);
1872 static u64 kvm_msr_reason(int r)
1875 case KVM_MSR_RET_INVALID:
1876 return KVM_MSR_EXIT_REASON_UNKNOWN;
1877 case KVM_MSR_RET_FILTERED:
1878 return KVM_MSR_EXIT_REASON_FILTER;
1880 return KVM_MSR_EXIT_REASON_INVAL;
1884 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1885 u32 exit_reason, u64 data,
1886 int (*completion)(struct kvm_vcpu *vcpu),
1889 u64 msr_reason = kvm_msr_reason(r);
1891 /* Check if the user wanted to know about this MSR fault */
1892 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1895 vcpu->run->exit_reason = exit_reason;
1896 vcpu->run->msr.error = 0;
1897 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1898 vcpu->run->msr.reason = msr_reason;
1899 vcpu->run->msr.index = index;
1900 vcpu->run->msr.data = data;
1901 vcpu->arch.complete_userspace_io = completion;
1906 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1908 u32 ecx = kvm_rcx_read(vcpu);
1912 r = kvm_get_msr(vcpu, ecx, &data);
1915 trace_kvm_msr_read(ecx, data);
1917 kvm_rax_write(vcpu, data & -1u);
1918 kvm_rdx_write(vcpu, (data >> 32) & -1u);
1920 /* MSR read failed? See if we should ask user space */
1921 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
1922 complete_fast_rdmsr, r))
1924 trace_kvm_msr_read_ex(ecx);
1927 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1929 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1931 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1933 u32 ecx = kvm_rcx_read(vcpu);
1934 u64 data = kvm_read_edx_eax(vcpu);
1937 r = kvm_set_msr(vcpu, ecx, data);
1940 trace_kvm_msr_write(ecx, data);
1942 /* MSR write failed? See if we should ask user space */
1943 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
1944 complete_fast_msr_access, r))
1946 /* Signal all other negative errors to userspace */
1949 trace_kvm_msr_write_ex(ecx, data);
1952 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1954 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1956 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
1958 return kvm_skip_emulated_instruction(vcpu);
1960 EXPORT_SYMBOL_GPL(kvm_emulate_as_nop);
1962 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
1964 /* Treat an INVD instruction as a NOP and just skip it. */
1965 return kvm_emulate_as_nop(vcpu);
1967 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
1969 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
1971 pr_warn_once("kvm: MWAIT instruction emulated as NOP!\n");
1972 return kvm_emulate_as_nop(vcpu);
1974 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
1976 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
1978 kvm_queue_exception(vcpu, UD_VECTOR);
1981 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
1983 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
1985 pr_warn_once("kvm: MONITOR instruction emulated as NOP!\n");
1986 return kvm_emulate_as_nop(vcpu);
1988 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
1990 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
1992 xfer_to_guest_mode_prepare();
1993 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
1994 xfer_to_guest_mode_work_pending();
1998 * The fast path for frequent and performance sensitive wrmsr emulation,
1999 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2000 * the latency of virtual IPI by avoiding the expensive bits of transitioning
2001 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2002 * other cases which must be called after interrupts are enabled on the host.
2004 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2006 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2009 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2010 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2011 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2012 ((u32)(data >> 32) != X2APIC_BROADCAST)) {
2015 kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32));
2016 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
2017 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data);
2018 trace_kvm_apic_write(APIC_ICR, (u32)data);
2025 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2027 if (!kvm_can_use_hv_timer(vcpu))
2030 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2034 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2036 u32 msr = kvm_rcx_read(vcpu);
2038 fastpath_t ret = EXIT_FASTPATH_NONE;
2041 case APIC_BASE_MSR + (APIC_ICR >> 4):
2042 data = kvm_read_edx_eax(vcpu);
2043 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2044 kvm_skip_emulated_instruction(vcpu);
2045 ret = EXIT_FASTPATH_EXIT_HANDLED;
2048 case MSR_IA32_TSC_DEADLINE:
2049 data = kvm_read_edx_eax(vcpu);
2050 if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2051 kvm_skip_emulated_instruction(vcpu);
2052 ret = EXIT_FASTPATH_REENTER_GUEST;
2059 if (ret != EXIT_FASTPATH_NONE)
2060 trace_kvm_msr_write(msr, data);
2064 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2067 * Adapt set_msr() to msr_io()'s calling convention
2069 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2071 return kvm_get_msr_ignored_check(vcpu, index, data, true);
2074 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2076 return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2079 #ifdef CONFIG_X86_64
2080 struct pvclock_clock {
2090 struct pvclock_gtod_data {
2093 struct pvclock_clock clock; /* extract of a clocksource struct */
2094 struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2100 static struct pvclock_gtod_data pvclock_gtod_data;
2102 static void update_pvclock_gtod(struct timekeeper *tk)
2104 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2106 write_seqcount_begin(&vdata->seq);
2108 /* copy pvclock gtod data */
2109 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode;
2110 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
2111 vdata->clock.mask = tk->tkr_mono.mask;
2112 vdata->clock.mult = tk->tkr_mono.mult;
2113 vdata->clock.shift = tk->tkr_mono.shift;
2114 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec;
2115 vdata->clock.offset = tk->tkr_mono.base;
2117 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode;
2118 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last;
2119 vdata->raw_clock.mask = tk->tkr_raw.mask;
2120 vdata->raw_clock.mult = tk->tkr_raw.mult;
2121 vdata->raw_clock.shift = tk->tkr_raw.shift;
2122 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec;
2123 vdata->raw_clock.offset = tk->tkr_raw.base;
2125 vdata->wall_time_sec = tk->xtime_sec;
2127 vdata->offs_boot = tk->offs_boot;
2129 write_seqcount_end(&vdata->seq);
2132 static s64 get_kvmclock_base_ns(void)
2134 /* Count up from boot time, but with the frequency of the raw clock. */
2135 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2138 static s64 get_kvmclock_base_ns(void)
2140 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */
2141 return ktime_get_boottime_ns();
2145 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2149 struct pvclock_wall_clock wc;
2156 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2161 ++version; /* first time write, random junk */
2165 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2169 * The guest calculates current wall clock time by adding
2170 * system time (updated by kvm_guest_time_update below) to the
2171 * wall clock specified here. We do the reverse here.
2173 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2175 wc.nsec = do_div(wall_nsec, 1000000000);
2176 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2177 wc.version = version;
2179 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2182 wc_sec_hi = wall_nsec >> 32;
2183 kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2184 &wc_sec_hi, sizeof(wc_sec_hi));
2188 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2191 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2192 bool old_msr, bool host_initiated)
2194 struct kvm_arch *ka = &vcpu->kvm->arch;
2196 if (vcpu->vcpu_id == 0 && !host_initiated) {
2197 if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2198 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2200 ka->boot_vcpu_runs_old_kvmclock = old_msr;
2203 vcpu->arch.time = system_time;
2204 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2206 /* we verify if the enable bit is set... */
2207 vcpu->arch.pv_time_enabled = false;
2208 if (!(system_time & 1))
2211 if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2212 &vcpu->arch.pv_time, system_time & ~1ULL,
2213 sizeof(struct pvclock_vcpu_time_info)))
2214 vcpu->arch.pv_time_enabled = true;
2219 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2221 do_shl32_div32(dividend, divisor);
2225 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2226 s8 *pshift, u32 *pmultiplier)
2234 scaled64 = scaled_hz;
2235 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2240 tps32 = (uint32_t)tps64;
2241 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2242 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2250 *pmultiplier = div_frac(scaled64, tps32);
2253 #ifdef CONFIG_X86_64
2254 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2257 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2258 static unsigned long max_tsc_khz;
2260 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2262 u64 v = (u64)khz * (1000000 + ppm);
2267 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2269 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2273 /* Guest TSC same frequency as host TSC? */
2275 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2279 /* TSC scaling supported? */
2280 if (!kvm_has_tsc_control) {
2281 if (user_tsc_khz > tsc_khz) {
2282 vcpu->arch.tsc_catchup = 1;
2283 vcpu->arch.tsc_always_catchup = 1;
2286 pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2291 /* TSC scaling required - calculate ratio */
2292 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
2293 user_tsc_khz, tsc_khz);
2295 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
2296 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2301 kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2305 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2307 u32 thresh_lo, thresh_hi;
2308 int use_scaling = 0;
2310 /* tsc_khz can be zero if TSC calibration fails */
2311 if (user_tsc_khz == 0) {
2312 /* set tsc_scaling_ratio to a safe value */
2313 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2317 /* Compute a scale to convert nanoseconds in TSC cycles */
2318 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2319 &vcpu->arch.virtual_tsc_shift,
2320 &vcpu->arch.virtual_tsc_mult);
2321 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2324 * Compute the variation in TSC rate which is acceptable
2325 * within the range of tolerance and decide if the
2326 * rate being applied is within that bounds of the hardware
2327 * rate. If so, no scaling or compensation need be done.
2329 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2330 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2331 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2332 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2335 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2338 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2340 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2341 vcpu->arch.virtual_tsc_mult,
2342 vcpu->arch.virtual_tsc_shift);
2343 tsc += vcpu->arch.this_tsc_write;
2347 static inline int gtod_is_based_on_tsc(int mode)
2349 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2352 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2354 #ifdef CONFIG_X86_64
2356 struct kvm_arch *ka = &vcpu->kvm->arch;
2357 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2359 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2360 atomic_read(&vcpu->kvm->online_vcpus));
2363 * Once the masterclock is enabled, always perform request in
2364 * order to update it.
2366 * In order to enable masterclock, the host clocksource must be TSC
2367 * and the vcpus need to have matched TSCs. When that happens,
2368 * perform request to enable masterclock.
2370 if (ka->use_master_clock ||
2371 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2372 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2374 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2375 atomic_read(&vcpu->kvm->online_vcpus),
2376 ka->use_master_clock, gtod->clock.vclock_mode);
2381 * Multiply tsc by a fixed point number represented by ratio.
2383 * The most significant 64-N bits (mult) of ratio represent the
2384 * integral part of the fixed point number; the remaining N bits
2385 * (frac) represent the fractional part, ie. ratio represents a fixed
2386 * point number (mult + frac * 2^(-N)).
2388 * N equals to kvm_tsc_scaling_ratio_frac_bits.
2390 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2392 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
2395 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc, u64 ratio)
2399 if (ratio != kvm_default_tsc_scaling_ratio)
2400 _tsc = __scale_tsc(ratio, tsc);
2404 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2406 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2410 tsc = kvm_scale_tsc(vcpu, rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2412 return target_tsc - tsc;
2415 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2417 return vcpu->arch.l1_tsc_offset +
2418 kvm_scale_tsc(vcpu, host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2420 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2422 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2426 if (l2_multiplier == kvm_default_tsc_scaling_ratio)
2427 nested_offset = l1_offset;
2429 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2430 kvm_tsc_scaling_ratio_frac_bits);
2432 nested_offset += l2_offset;
2433 return nested_offset;
2435 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2437 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2439 if (l2_multiplier != kvm_default_tsc_scaling_ratio)
2440 return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2441 kvm_tsc_scaling_ratio_frac_bits);
2443 return l1_multiplier;
2445 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2447 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2449 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2450 vcpu->arch.l1_tsc_offset,
2453 vcpu->arch.l1_tsc_offset = l1_offset;
2456 * If we are here because L1 chose not to trap WRMSR to TSC then
2457 * according to the spec this should set L1's TSC (as opposed to
2458 * setting L1's offset for L2).
2460 if (is_guest_mode(vcpu))
2461 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2463 static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2464 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2466 vcpu->arch.tsc_offset = l1_offset;
2468 static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset);
2471 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2473 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2475 /* Userspace is changing the multiplier while L2 is active */
2476 if (is_guest_mode(vcpu))
2477 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2479 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2481 vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2483 if (kvm_has_tsc_control)
2484 static_call(kvm_x86_write_tsc_multiplier)(
2485 vcpu, vcpu->arch.tsc_scaling_ratio);
2488 static inline bool kvm_check_tsc_unstable(void)
2490 #ifdef CONFIG_X86_64
2492 * TSC is marked unstable when we're running on Hyper-V,
2493 * 'TSC page' clocksource is good.
2495 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2498 return check_tsc_unstable();
2502 * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2503 * offset for the vcpu and tracks the TSC matching generation that the vcpu
2506 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2507 u64 ns, bool matched)
2509 struct kvm *kvm = vcpu->kvm;
2511 lockdep_assert_held(&kvm->arch.tsc_write_lock);
2514 * We also track th most recent recorded KHZ, write and time to
2515 * allow the matching interval to be extended at each write.
2517 kvm->arch.last_tsc_nsec = ns;
2518 kvm->arch.last_tsc_write = tsc;
2519 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2520 kvm->arch.last_tsc_offset = offset;
2522 vcpu->arch.last_guest_tsc = tsc;
2524 kvm_vcpu_write_tsc_offset(vcpu, offset);
2528 * We split periods of matched TSC writes into generations.
2529 * For each generation, we track the original measured
2530 * nanosecond time, offset, and write, so if TSCs are in
2531 * sync, we can match exact offset, and if not, we can match
2532 * exact software computation in compute_guest_tsc()
2534 * These values are tracked in kvm->arch.cur_xxx variables.
2536 kvm->arch.cur_tsc_generation++;
2537 kvm->arch.cur_tsc_nsec = ns;
2538 kvm->arch.cur_tsc_write = tsc;
2539 kvm->arch.cur_tsc_offset = offset;
2540 kvm->arch.nr_vcpus_matched_tsc = 0;
2541 } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2542 kvm->arch.nr_vcpus_matched_tsc++;
2545 /* Keep track of which generation this VCPU has synchronized to */
2546 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2547 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2548 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2550 kvm_track_tsc_matching(vcpu);
2553 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2555 struct kvm *kvm = vcpu->kvm;
2556 u64 offset, ns, elapsed;
2557 unsigned long flags;
2558 bool matched = false;
2559 bool synchronizing = false;
2561 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2562 offset = kvm_compute_l1_tsc_offset(vcpu, data);
2563 ns = get_kvmclock_base_ns();
2564 elapsed = ns - kvm->arch.last_tsc_nsec;
2566 if (vcpu->arch.virtual_tsc_khz) {
2569 * detection of vcpu initialization -- need to sync
2570 * with other vCPUs. This particularly helps to keep
2571 * kvm_clock stable after CPU hotplug
2573 synchronizing = true;
2575 u64 tsc_exp = kvm->arch.last_tsc_write +
2576 nsec_to_cycles(vcpu, elapsed);
2577 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2579 * Special case: TSC write with a small delta (1 second)
2580 * of virtual cycle time against real time is
2581 * interpreted as an attempt to synchronize the CPU.
2583 synchronizing = data < tsc_exp + tsc_hz &&
2584 data + tsc_hz > tsc_exp;
2589 * For a reliable TSC, we can match TSC offsets, and for an unstable
2590 * TSC, we add elapsed time in this computation. We could let the
2591 * compensation code attempt to catch up if we fall behind, but
2592 * it's better to try to match offsets from the beginning.
2594 if (synchronizing &&
2595 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2596 if (!kvm_check_tsc_unstable()) {
2597 offset = kvm->arch.cur_tsc_offset;
2599 u64 delta = nsec_to_cycles(vcpu, elapsed);
2601 offset = kvm_compute_l1_tsc_offset(vcpu, data);
2606 __kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2607 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2610 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2613 u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2614 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2617 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2619 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2620 WARN_ON(adjustment < 0);
2621 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment,
2622 vcpu->arch.l1_tsc_scaling_ratio);
2623 adjust_tsc_offset_guest(vcpu, adjustment);
2626 #ifdef CONFIG_X86_64
2628 static u64 read_tsc(void)
2630 u64 ret = (u64)rdtsc_ordered();
2631 u64 last = pvclock_gtod_data.clock.cycle_last;
2633 if (likely(ret >= last))
2637 * GCC likes to generate cmov here, but this branch is extremely
2638 * predictable (it's just a function of time and the likely is
2639 * very likely) and there's a data dependence, so force GCC
2640 * to generate a branch instead. I don't barrier() because
2641 * we don't actually need a barrier, and if this function
2642 * ever gets inlined it will generate worse code.
2648 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2654 switch (clock->vclock_mode) {
2655 case VDSO_CLOCKMODE_HVCLOCK:
2656 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2658 if (tsc_pg_val != U64_MAX) {
2659 /* TSC page valid */
2660 *mode = VDSO_CLOCKMODE_HVCLOCK;
2661 v = (tsc_pg_val - clock->cycle_last) &
2664 /* TSC page invalid */
2665 *mode = VDSO_CLOCKMODE_NONE;
2668 case VDSO_CLOCKMODE_TSC:
2669 *mode = VDSO_CLOCKMODE_TSC;
2670 *tsc_timestamp = read_tsc();
2671 v = (*tsc_timestamp - clock->cycle_last) &
2675 *mode = VDSO_CLOCKMODE_NONE;
2678 if (*mode == VDSO_CLOCKMODE_NONE)
2679 *tsc_timestamp = v = 0;
2681 return v * clock->mult;
2684 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2686 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2692 seq = read_seqcount_begin(>od->seq);
2693 ns = gtod->raw_clock.base_cycles;
2694 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode);
2695 ns >>= gtod->raw_clock.shift;
2696 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2697 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
2703 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2705 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2711 seq = read_seqcount_begin(>od->seq);
2712 ts->tv_sec = gtod->wall_time_sec;
2713 ns = gtod->clock.base_cycles;
2714 ns += vgettsc(>od->clock, tsc_timestamp, &mode);
2715 ns >>= gtod->clock.shift;
2716 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
2718 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2724 /* returns true if host is using TSC based clocksource */
2725 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2727 /* checked again under seqlock below */
2728 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2731 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2735 /* returns true if host is using TSC based clocksource */
2736 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2739 /* checked again under seqlock below */
2740 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2743 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2749 * Assuming a stable TSC across physical CPUS, and a stable TSC
2750 * across virtual CPUs, the following condition is possible.
2751 * Each numbered line represents an event visible to both
2752 * CPUs at the next numbered event.
2754 * "timespecX" represents host monotonic time. "tscX" represents
2757 * VCPU0 on CPU0 | VCPU1 on CPU1
2759 * 1. read timespec0,tsc0
2760 * 2. | timespec1 = timespec0 + N
2762 * 3. transition to guest | transition to guest
2763 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2764 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
2765 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2767 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2770 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2772 * - 0 < N - M => M < N
2774 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2775 * always the case (the difference between two distinct xtime instances
2776 * might be smaller then the difference between corresponding TSC reads,
2777 * when updating guest vcpus pvclock areas).
2779 * To avoid that problem, do not allow visibility of distinct
2780 * system_timestamp/tsc_timestamp values simultaneously: use a master
2781 * copy of host monotonic time values. Update that master copy
2784 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2788 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2790 #ifdef CONFIG_X86_64
2791 struct kvm_arch *ka = &kvm->arch;
2793 bool host_tsc_clocksource, vcpus_matched;
2795 lockdep_assert_held(&kvm->arch.tsc_write_lock);
2796 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2797 atomic_read(&kvm->online_vcpus));
2800 * If the host uses TSC clock, then passthrough TSC as stable
2803 host_tsc_clocksource = kvm_get_time_and_clockread(
2804 &ka->master_kernel_ns,
2805 &ka->master_cycle_now);
2807 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2808 && !ka->backwards_tsc_observed
2809 && !ka->boot_vcpu_runs_old_kvmclock;
2811 if (ka->use_master_clock)
2812 atomic_set(&kvm_guest_has_master_clock, 1);
2814 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2815 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2820 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2822 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2825 static void __kvm_start_pvclock_update(struct kvm *kvm)
2827 raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
2828 write_seqcount_begin(&kvm->arch.pvclock_sc);
2831 static void kvm_start_pvclock_update(struct kvm *kvm)
2833 kvm_make_mclock_inprogress_request(kvm);
2835 /* no guest entries from this point */
2836 __kvm_start_pvclock_update(kvm);
2839 static void kvm_end_pvclock_update(struct kvm *kvm)
2841 struct kvm_arch *ka = &kvm->arch;
2842 struct kvm_vcpu *vcpu;
2845 write_seqcount_end(&ka->pvclock_sc);
2846 raw_spin_unlock_irq(&ka->tsc_write_lock);
2847 kvm_for_each_vcpu(i, vcpu, kvm)
2848 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2850 /* guest entries allowed */
2851 kvm_for_each_vcpu(i, vcpu, kvm)
2852 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2855 static void kvm_update_masterclock(struct kvm *kvm)
2857 kvm_hv_invalidate_tsc_page(kvm);
2858 kvm_start_pvclock_update(kvm);
2859 pvclock_update_vm_gtod_copy(kvm);
2860 kvm_end_pvclock_update(kvm);
2863 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */
2864 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
2866 struct kvm_arch *ka = &kvm->arch;
2867 struct pvclock_vcpu_time_info hv_clock;
2869 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2873 if (ka->use_master_clock && __this_cpu_read(cpu_tsc_khz)) {
2874 #ifdef CONFIG_X86_64
2875 struct timespec64 ts;
2877 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
2878 data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
2879 data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
2882 data->host_tsc = rdtsc();
2884 data->flags |= KVM_CLOCK_TSC_STABLE;
2885 hv_clock.tsc_timestamp = ka->master_cycle_now;
2886 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2887 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2888 &hv_clock.tsc_shift,
2889 &hv_clock.tsc_to_system_mul);
2890 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
2892 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
2898 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
2900 struct kvm_arch *ka = &kvm->arch;
2904 seq = read_seqcount_begin(&ka->pvclock_sc);
2905 __get_kvmclock(kvm, data);
2906 } while (read_seqcount_retry(&ka->pvclock_sc, seq));
2909 u64 get_kvmclock_ns(struct kvm *kvm)
2911 struct kvm_clock_data data;
2913 get_kvmclock(kvm, &data);
2917 static void kvm_setup_pvclock_page(struct kvm_vcpu *v,
2918 struct gfn_to_hva_cache *cache,
2919 unsigned int offset)
2921 struct kvm_vcpu_arch *vcpu = &v->arch;
2922 struct pvclock_vcpu_time_info guest_hv_clock;
2924 if (unlikely(kvm_read_guest_offset_cached(v->kvm, cache,
2925 &guest_hv_clock, offset, sizeof(guest_hv_clock))))
2928 /* This VCPU is paused, but it's legal for a guest to read another
2929 * VCPU's kvmclock, so we really have to follow the specification where
2930 * it says that version is odd if data is being modified, and even after
2933 * Version field updates must be kept separate. This is because
2934 * kvm_write_guest_cached might use a "rep movs" instruction, and
2935 * writes within a string instruction are weakly ordered. So there
2936 * are three writes overall.
2938 * As a small optimization, only write the version field in the first
2939 * and third write. The vcpu->pv_time cache is still valid, because the
2940 * version field is the first in the struct.
2942 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2944 if (guest_hv_clock.version & 1)
2945 ++guest_hv_clock.version; /* first time write, random junk */
2947 vcpu->hv_clock.version = guest_hv_clock.version + 1;
2948 kvm_write_guest_offset_cached(v->kvm, cache,
2949 &vcpu->hv_clock, offset,
2950 sizeof(vcpu->hv_clock.version));
2954 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2955 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2957 if (vcpu->pvclock_set_guest_stopped_request) {
2958 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2959 vcpu->pvclock_set_guest_stopped_request = false;
2962 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2964 kvm_write_guest_offset_cached(v->kvm, cache,
2965 &vcpu->hv_clock, offset,
2966 sizeof(vcpu->hv_clock));
2970 vcpu->hv_clock.version++;
2971 kvm_write_guest_offset_cached(v->kvm, cache,
2972 &vcpu->hv_clock, offset,
2973 sizeof(vcpu->hv_clock.version));
2976 static int kvm_guest_time_update(struct kvm_vcpu *v)
2978 unsigned long flags, tgt_tsc_khz;
2980 struct kvm_vcpu_arch *vcpu = &v->arch;
2981 struct kvm_arch *ka = &v->kvm->arch;
2983 u64 tsc_timestamp, host_tsc;
2985 bool use_master_clock;
2991 * If the host uses TSC clock, then passthrough TSC as stable
2995 seq = read_seqcount_begin(&ka->pvclock_sc);
2996 use_master_clock = ka->use_master_clock;
2997 if (use_master_clock) {
2998 host_tsc = ka->master_cycle_now;
2999 kernel_ns = ka->master_kernel_ns;
3001 } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3003 /* Keep irq disabled to prevent changes to the clock */
3004 local_irq_save(flags);
3005 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
3006 if (unlikely(tgt_tsc_khz == 0)) {
3007 local_irq_restore(flags);
3008 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3011 if (!use_master_clock) {
3013 kernel_ns = get_kvmclock_base_ns();
3016 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3019 * We may have to catch up the TSC to match elapsed wall clock
3020 * time for two reasons, even if kvmclock is used.
3021 * 1) CPU could have been running below the maximum TSC rate
3022 * 2) Broken TSC compensation resets the base at each VCPU
3023 * entry to avoid unknown leaps of TSC even when running
3024 * again on the same CPU. This may cause apparent elapsed
3025 * time to disappear, and the guest to stand still or run
3028 if (vcpu->tsc_catchup) {
3029 u64 tsc = compute_guest_tsc(v, kernel_ns);
3030 if (tsc > tsc_timestamp) {
3031 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3032 tsc_timestamp = tsc;
3036 local_irq_restore(flags);
3038 /* With all the info we got, fill in the values */
3040 if (kvm_has_tsc_control)
3041 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz,
3042 v->arch.l1_tsc_scaling_ratio);
3044 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3045 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3046 &vcpu->hv_clock.tsc_shift,
3047 &vcpu->hv_clock.tsc_to_system_mul);
3048 vcpu->hw_tsc_khz = tgt_tsc_khz;
3051 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3052 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3053 vcpu->last_guest_tsc = tsc_timestamp;
3055 /* If the host uses TSC clocksource, then it is stable */
3057 if (use_master_clock)
3058 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3060 vcpu->hv_clock.flags = pvclock_flags;
3062 if (vcpu->pv_time_enabled)
3063 kvm_setup_pvclock_page(v, &vcpu->pv_time, 0);
3064 if (vcpu->xen.vcpu_info_set)
3065 kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_info_cache,
3066 offsetof(struct compat_vcpu_info, time));
3067 if (vcpu->xen.vcpu_time_info_set)
3068 kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_time_info_cache, 0);
3070 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3075 * kvmclock updates which are isolated to a given vcpu, such as
3076 * vcpu->cpu migration, should not allow system_timestamp from
3077 * the rest of the vcpus to remain static. Otherwise ntp frequency
3078 * correction applies to one vcpu's system_timestamp but not
3081 * So in those cases, request a kvmclock update for all vcpus.
3082 * We need to rate-limit these requests though, as they can
3083 * considerably slow guests that have a large number of vcpus.
3084 * The time for a remote vcpu to update its kvmclock is bound
3085 * by the delay we use to rate-limit the updates.
3088 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3090 static void kvmclock_update_fn(struct work_struct *work)
3093 struct delayed_work *dwork = to_delayed_work(work);
3094 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3095 kvmclock_update_work);
3096 struct kvm *kvm = container_of(ka, struct kvm, arch);
3097 struct kvm_vcpu *vcpu;
3099 kvm_for_each_vcpu(i, vcpu, kvm) {
3100 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3101 kvm_vcpu_kick(vcpu);
3105 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3107 struct kvm *kvm = v->kvm;
3109 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3110 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3111 KVMCLOCK_UPDATE_DELAY);
3114 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3116 static void kvmclock_sync_fn(struct work_struct *work)
3118 struct delayed_work *dwork = to_delayed_work(work);
3119 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3120 kvmclock_sync_work);
3121 struct kvm *kvm = container_of(ka, struct kvm, arch);
3123 if (!kvmclock_periodic_sync)
3126 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3127 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3128 KVMCLOCK_SYNC_PERIOD);
3132 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3134 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3136 /* McStatusWrEn enabled? */
3137 if (guest_cpuid_is_amd_or_hygon(vcpu))
3138 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3143 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3145 u64 mcg_cap = vcpu->arch.mcg_cap;
3146 unsigned bank_num = mcg_cap & 0xff;
3147 u32 msr = msr_info->index;
3148 u64 data = msr_info->data;
3151 case MSR_IA32_MCG_STATUS:
3152 vcpu->arch.mcg_status = data;
3154 case MSR_IA32_MCG_CTL:
3155 if (!(mcg_cap & MCG_CTL_P) &&
3156 (data || !msr_info->host_initiated))
3158 if (data != 0 && data != ~(u64)0)
3160 vcpu->arch.mcg_ctl = data;
3163 if (msr >= MSR_IA32_MC0_CTL &&
3164 msr < MSR_IA32_MCx_CTL(bank_num)) {
3165 u32 offset = array_index_nospec(
3166 msr - MSR_IA32_MC0_CTL,
3167 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3169 /* only 0 or all 1s can be written to IA32_MCi_CTL
3170 * some Linux kernels though clear bit 10 in bank 4 to
3171 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
3172 * this to avoid an uncatched #GP in the guest
3174 if ((offset & 0x3) == 0 &&
3175 data != 0 && (data | (1 << 10)) != ~(u64)0)
3179 if (!msr_info->host_initiated &&
3180 (offset & 0x3) == 1 && data != 0) {
3181 if (!can_set_mci_status(vcpu))
3185 vcpu->arch.mce_banks[offset] = data;
3193 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3195 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3197 return (vcpu->arch.apf.msr_en_val & mask) == mask;
3200 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3202 gpa_t gpa = data & ~0x3f;
3204 /* Bits 4:5 are reserved, Should be zero */
3208 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3209 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3212 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3213 (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3216 if (!lapic_in_kernel(vcpu))
3217 return data ? 1 : 0;
3219 vcpu->arch.apf.msr_en_val = data;
3221 if (!kvm_pv_async_pf_enabled(vcpu)) {
3222 kvm_clear_async_pf_completion_queue(vcpu);
3223 kvm_async_pf_hash_reset(vcpu);
3227 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3231 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3232 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3234 kvm_async_pf_wakeup_all(vcpu);
3239 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3241 /* Bits 8-63 are reserved */
3245 if (!lapic_in_kernel(vcpu))
3248 vcpu->arch.apf.msr_int_val = data;
3250 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3255 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3257 vcpu->arch.pv_time_enabled = false;
3258 vcpu->arch.time = 0;
3261 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3263 ++vcpu->stat.tlb_flush;
3264 static_call(kvm_x86_tlb_flush_all)(vcpu);
3267 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3269 ++vcpu->stat.tlb_flush;
3273 * A TLB flush on behalf of the guest is equivalent to
3274 * INVPCID(all), toggling CR4.PGE, etc., which requires
3275 * a forced sync of the shadow page tables. Ensure all the
3276 * roots are synced and the guest TLB in hardware is clean.
3278 kvm_mmu_sync_roots(vcpu);
3279 kvm_mmu_sync_prev_roots(vcpu);
3282 static_call(kvm_x86_tlb_flush_guest)(vcpu);
3286 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3288 ++vcpu->stat.tlb_flush;
3289 static_call(kvm_x86_tlb_flush_current)(vcpu);
3293 * Service "local" TLB flush requests, which are specific to the current MMU
3294 * context. In addition to the generic event handling in vcpu_enter_guest(),
3295 * TLB flushes that are targeted at an MMU context also need to be serviced
3296 * prior before nested VM-Enter/VM-Exit.
3298 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3300 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3301 kvm_vcpu_flush_tlb_current(vcpu);
3303 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3304 kvm_vcpu_flush_tlb_guest(vcpu);
3306 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3308 static void record_steal_time(struct kvm_vcpu *vcpu)
3310 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3311 struct kvm_steal_time __user *st;
3312 struct kvm_memslots *slots;
3316 if (kvm_xen_msr_enabled(vcpu->kvm)) {
3317 kvm_xen_runstate_set_running(vcpu);
3321 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3324 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3327 slots = kvm_memslots(vcpu->kvm);
3329 if (unlikely(slots->generation != ghc->generation ||
3330 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3331 gfn_t gfn = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3333 /* We rely on the fact that it fits in a single page. */
3334 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3336 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gfn, sizeof(*st)) ||
3337 kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3341 st = (struct kvm_steal_time __user *)ghc->hva;
3343 * Doing a TLB flush here, on the guest's behalf, can avoid
3346 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3347 u8 st_preempted = 0;
3350 if (!user_access_begin(st, sizeof(*st)))
3353 asm volatile("1: xchgb %0, %2\n"
3356 _ASM_EXTABLE_UA(1b, 2b)
3357 : "+q" (st_preempted),
3359 "+m" (st->preempted));
3365 vcpu->arch.st.preempted = 0;
3367 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3368 st_preempted & KVM_VCPU_FLUSH_TLB);
3369 if (st_preempted & KVM_VCPU_FLUSH_TLB)
3370 kvm_vcpu_flush_tlb_guest(vcpu);
3372 if (!user_access_begin(st, sizeof(*st)))
3375 if (!user_access_begin(st, sizeof(*st)))
3378 unsafe_put_user(0, &st->preempted, out);
3379 vcpu->arch.st.preempted = 0;
3382 unsafe_get_user(version, &st->version, out);
3384 version += 1; /* first time write, random junk */
3387 unsafe_put_user(version, &st->version, out);
3391 unsafe_get_user(steal, &st->steal, out);
3392 steal += current->sched_info.run_delay -
3393 vcpu->arch.st.last_steal;
3394 vcpu->arch.st.last_steal = current->sched_info.run_delay;
3395 unsafe_put_user(steal, &st->steal, out);
3398 unsafe_put_user(version, &st->version, out);
3403 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3406 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3409 u32 msr = msr_info->index;
3410 u64 data = msr_info->data;
3412 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3413 return kvm_xen_write_hypercall_page(vcpu, data);
3416 case MSR_AMD64_NB_CFG:
3417 case MSR_IA32_UCODE_WRITE:
3418 case MSR_VM_HSAVE_PA:
3419 case MSR_AMD64_PATCH_LOADER:
3420 case MSR_AMD64_BU_CFG2:
3421 case MSR_AMD64_DC_CFG:
3422 case MSR_F15H_EX_CFG:
3425 case MSR_IA32_UCODE_REV:
3426 if (msr_info->host_initiated)
3427 vcpu->arch.microcode_version = data;
3429 case MSR_IA32_ARCH_CAPABILITIES:
3430 if (!msr_info->host_initiated)
3432 vcpu->arch.arch_capabilities = data;
3434 case MSR_IA32_PERF_CAPABILITIES: {
3435 struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3437 if (!msr_info->host_initiated)
3439 if (kvm_get_msr_feature(&msr_ent))
3441 if (data & ~msr_ent.data)
3444 vcpu->arch.perf_capabilities = data;
3449 return set_efer(vcpu, msr_info);
3451 data &= ~(u64)0x40; /* ignore flush filter disable */
3452 data &= ~(u64)0x100; /* ignore ignne emulation enable */
3453 data &= ~(u64)0x8; /* ignore TLB cache disable */
3455 /* Handle McStatusWrEn */
3456 if (data == BIT_ULL(18)) {
3457 vcpu->arch.msr_hwcr = data;
3458 } else if (data != 0) {
3459 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3464 case MSR_FAM10H_MMIO_CONF_BASE:
3466 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3471 case 0x200 ... 0x2ff:
3472 return kvm_mtrr_set_msr(vcpu, msr, data);
3473 case MSR_IA32_APICBASE:
3474 return kvm_set_apic_base(vcpu, msr_info);
3475 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3476 return kvm_x2apic_msr_write(vcpu, msr, data);
3477 case MSR_IA32_TSC_DEADLINE:
3478 kvm_set_lapic_tscdeadline_msr(vcpu, data);
3480 case MSR_IA32_TSC_ADJUST:
3481 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3482 if (!msr_info->host_initiated) {
3483 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3484 adjust_tsc_offset_guest(vcpu, adj);
3485 /* Before back to guest, tsc_timestamp must be adjusted
3486 * as well, otherwise guest's percpu pvclock time could jump.
3488 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3490 vcpu->arch.ia32_tsc_adjust_msr = data;
3493 case MSR_IA32_MISC_ENABLE:
3494 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3495 ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3496 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3498 vcpu->arch.ia32_misc_enable_msr = data;
3499 kvm_update_cpuid_runtime(vcpu);
3501 vcpu->arch.ia32_misc_enable_msr = data;
3504 case MSR_IA32_SMBASE:
3505 if (!msr_info->host_initiated)
3507 vcpu->arch.smbase = data;
3509 case MSR_IA32_POWER_CTL:
3510 vcpu->arch.msr_ia32_power_ctl = data;
3513 if (msr_info->host_initiated) {
3514 kvm_synchronize_tsc(vcpu, data);
3516 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3517 adjust_tsc_offset_guest(vcpu, adj);
3518 vcpu->arch.ia32_tsc_adjust_msr += adj;
3522 if (!msr_info->host_initiated &&
3523 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3526 * KVM supports exposing PT to the guest, but does not support
3527 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3528 * XSAVES/XRSTORS to save/restore PT MSRs.
3530 if (data & ~supported_xss)
3532 vcpu->arch.ia32_xss = data;
3535 if (!msr_info->host_initiated)
3537 vcpu->arch.smi_count = data;
3539 case MSR_KVM_WALL_CLOCK_NEW:
3540 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3543 vcpu->kvm->arch.wall_clock = data;
3544 kvm_write_wall_clock(vcpu->kvm, data, 0);
3546 case MSR_KVM_WALL_CLOCK:
3547 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3550 vcpu->kvm->arch.wall_clock = data;
3551 kvm_write_wall_clock(vcpu->kvm, data, 0);
3553 case MSR_KVM_SYSTEM_TIME_NEW:
3554 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3557 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3559 case MSR_KVM_SYSTEM_TIME:
3560 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3563 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated);
3565 case MSR_KVM_ASYNC_PF_EN:
3566 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3569 if (kvm_pv_enable_async_pf(vcpu, data))
3572 case MSR_KVM_ASYNC_PF_INT:
3573 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3576 if (kvm_pv_enable_async_pf_int(vcpu, data))
3579 case MSR_KVM_ASYNC_PF_ACK:
3580 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3583 vcpu->arch.apf.pageready_pending = false;
3584 kvm_check_async_pf_completion(vcpu);
3587 case MSR_KVM_STEAL_TIME:
3588 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3591 if (unlikely(!sched_info_on()))
3594 if (data & KVM_STEAL_RESERVED_MASK)
3597 vcpu->arch.st.msr_val = data;
3599 if (!(data & KVM_MSR_ENABLED))
3602 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3605 case MSR_KVM_PV_EOI_EN:
3606 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3609 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
3613 case MSR_KVM_POLL_CONTROL:
3614 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3617 /* only enable bit supported */
3618 if (data & (-1ULL << 1))
3621 vcpu->arch.msr_kvm_poll_control = data;
3624 case MSR_IA32_MCG_CTL:
3625 case MSR_IA32_MCG_STATUS:
3626 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3627 return set_msr_mce(vcpu, msr_info);
3629 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3630 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3633 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3634 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3635 if (kvm_pmu_is_valid_msr(vcpu, msr))
3636 return kvm_pmu_set_msr(vcpu, msr_info);
3638 if (pr || data != 0)
3639 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3640 "0x%x data 0x%llx\n", msr, data);
3642 case MSR_K7_CLK_CTL:
3644 * Ignore all writes to this no longer documented MSR.
3645 * Writes are only relevant for old K7 processors,
3646 * all pre-dating SVM, but a recommended workaround from
3647 * AMD for these chips. It is possible to specify the
3648 * affected processor models on the command line, hence
3649 * the need to ignore the workaround.
3652 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3653 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3654 case HV_X64_MSR_SYNDBG_OPTIONS:
3655 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3656 case HV_X64_MSR_CRASH_CTL:
3657 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3658 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3659 case HV_X64_MSR_TSC_EMULATION_CONTROL:
3660 case HV_X64_MSR_TSC_EMULATION_STATUS:
3661 return kvm_hv_set_msr_common(vcpu, msr, data,
3662 msr_info->host_initiated);
3663 case MSR_IA32_BBL_CR_CTL3:
3664 /* Drop writes to this legacy MSR -- see rdmsr
3665 * counterpart for further detail.
3667 if (report_ignored_msrs)
3668 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3671 case MSR_AMD64_OSVW_ID_LENGTH:
3672 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3674 vcpu->arch.osvw.length = data;
3676 case MSR_AMD64_OSVW_STATUS:
3677 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3679 vcpu->arch.osvw.status = data;
3681 case MSR_PLATFORM_INFO:
3682 if (!msr_info->host_initiated ||
3683 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3684 cpuid_fault_enabled(vcpu)))
3686 vcpu->arch.msr_platform_info = data;
3688 case MSR_MISC_FEATURES_ENABLES:
3689 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3690 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3691 !supports_cpuid_fault(vcpu)))
3693 vcpu->arch.msr_misc_features_enables = data;
3695 #ifdef CONFIG_X86_64
3697 if (!msr_info->host_initiated &&
3698 !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3701 if (data & ~(XFEATURE_MASK_USER_DYNAMIC &
3702 vcpu->arch.guest_supported_xcr0))
3705 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
3707 case MSR_IA32_XFD_ERR:
3708 if (!msr_info->host_initiated &&
3709 !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3712 if (data & ~(XFEATURE_MASK_USER_DYNAMIC &
3713 vcpu->arch.guest_supported_xcr0))
3716 vcpu->arch.guest_fpu.xfd_err = data;
3720 if (kvm_pmu_is_valid_msr(vcpu, msr))
3721 return kvm_pmu_set_msr(vcpu, msr_info);
3722 return KVM_MSR_RET_INVALID;
3726 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3728 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3731 u64 mcg_cap = vcpu->arch.mcg_cap;
3732 unsigned bank_num = mcg_cap & 0xff;
3735 case MSR_IA32_P5_MC_ADDR:
3736 case MSR_IA32_P5_MC_TYPE:
3739 case MSR_IA32_MCG_CAP:
3740 data = vcpu->arch.mcg_cap;
3742 case MSR_IA32_MCG_CTL:
3743 if (!(mcg_cap & MCG_CTL_P) && !host)
3745 data = vcpu->arch.mcg_ctl;
3747 case MSR_IA32_MCG_STATUS:
3748 data = vcpu->arch.mcg_status;
3751 if (msr >= MSR_IA32_MC0_CTL &&
3752 msr < MSR_IA32_MCx_CTL(bank_num)) {
3753 u32 offset = array_index_nospec(
3754 msr - MSR_IA32_MC0_CTL,
3755 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3757 data = vcpu->arch.mce_banks[offset];
3766 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3768 switch (msr_info->index) {
3769 case MSR_IA32_PLATFORM_ID:
3770 case MSR_IA32_EBL_CR_POWERON:
3771 case MSR_IA32_LASTBRANCHFROMIP:
3772 case MSR_IA32_LASTBRANCHTOIP:
3773 case MSR_IA32_LASTINTFROMIP:
3774 case MSR_IA32_LASTINTTOIP:
3775 case MSR_AMD64_SYSCFG:
3776 case MSR_K8_TSEG_ADDR:
3777 case MSR_K8_TSEG_MASK:
3778 case MSR_VM_HSAVE_PA:
3779 case MSR_K8_INT_PENDING_MSG:
3780 case MSR_AMD64_NB_CFG:
3781 case MSR_FAM10H_MMIO_CONF_BASE:
3782 case MSR_AMD64_BU_CFG2:
3783 case MSR_IA32_PERF_CTL:
3784 case MSR_AMD64_DC_CFG:
3785 case MSR_F15H_EX_CFG:
3787 * Intel Sandy Bridge CPUs must support the RAPL (running average power
3788 * limit) MSRs. Just return 0, as we do not want to expose the host
3789 * data here. Do not conditionalize this on CPUID, as KVM does not do
3790 * so for existing CPU-specific MSRs.
3792 case MSR_RAPL_POWER_UNIT:
3793 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */
3794 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */
3795 case MSR_PKG_ENERGY_STATUS: /* Total package */
3796 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */
3799 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3800 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3801 return kvm_pmu_get_msr(vcpu, msr_info);
3802 if (!msr_info->host_initiated)
3806 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3807 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3808 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3809 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3810 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3811 return kvm_pmu_get_msr(vcpu, msr_info);
3814 case MSR_IA32_UCODE_REV:
3815 msr_info->data = vcpu->arch.microcode_version;
3817 case MSR_IA32_ARCH_CAPABILITIES:
3818 if (!msr_info->host_initiated &&
3819 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3821 msr_info->data = vcpu->arch.arch_capabilities;
3823 case MSR_IA32_PERF_CAPABILITIES:
3824 if (!msr_info->host_initiated &&
3825 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3827 msr_info->data = vcpu->arch.perf_capabilities;
3829 case MSR_IA32_POWER_CTL:
3830 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3832 case MSR_IA32_TSC: {
3834 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3835 * even when not intercepted. AMD manual doesn't explicitly
3836 * state this but appears to behave the same.
3838 * On userspace reads and writes, however, we unconditionally
3839 * return L1's TSC value to ensure backwards-compatible
3840 * behavior for migration.
3844 if (msr_info->host_initiated) {
3845 offset = vcpu->arch.l1_tsc_offset;
3846 ratio = vcpu->arch.l1_tsc_scaling_ratio;
3848 offset = vcpu->arch.tsc_offset;
3849 ratio = vcpu->arch.tsc_scaling_ratio;
3852 msr_info->data = kvm_scale_tsc(vcpu, rdtsc(), ratio) + offset;
3856 case 0x200 ... 0x2ff:
3857 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3858 case 0xcd: /* fsb frequency */
3862 * MSR_EBC_FREQUENCY_ID
3863 * Conservative value valid for even the basic CPU models.
3864 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3865 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3866 * and 266MHz for model 3, or 4. Set Core Clock
3867 * Frequency to System Bus Frequency Ratio to 1 (bits
3868 * 31:24) even though these are only valid for CPU
3869 * models > 2, however guests may end up dividing or
3870 * multiplying by zero otherwise.
3872 case MSR_EBC_FREQUENCY_ID:
3873 msr_info->data = 1 << 24;
3875 case MSR_IA32_APICBASE:
3876 msr_info->data = kvm_get_apic_base(vcpu);
3878 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3879 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3880 case MSR_IA32_TSC_DEADLINE:
3881 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3883 case MSR_IA32_TSC_ADJUST:
3884 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3886 case MSR_IA32_MISC_ENABLE:
3887 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3889 case MSR_IA32_SMBASE:
3890 if (!msr_info->host_initiated)
3892 msr_info->data = vcpu->arch.smbase;
3895 msr_info->data = vcpu->arch.smi_count;
3897 case MSR_IA32_PERF_STATUS:
3898 /* TSC increment by tick */
3899 msr_info->data = 1000ULL;
3900 /* CPU multiplier */
3901 msr_info->data |= (((uint64_t)4ULL) << 40);
3904 msr_info->data = vcpu->arch.efer;
3906 case MSR_KVM_WALL_CLOCK:
3907 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3910 msr_info->data = vcpu->kvm->arch.wall_clock;
3912 case MSR_KVM_WALL_CLOCK_NEW:
3913 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3916 msr_info->data = vcpu->kvm->arch.wall_clock;
3918 case MSR_KVM_SYSTEM_TIME:
3919 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3922 msr_info->data = vcpu->arch.time;
3924 case MSR_KVM_SYSTEM_TIME_NEW:
3925 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3928 msr_info->data = vcpu->arch.time;
3930 case MSR_KVM_ASYNC_PF_EN:
3931 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3934 msr_info->data = vcpu->arch.apf.msr_en_val;
3936 case MSR_KVM_ASYNC_PF_INT:
3937 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3940 msr_info->data = vcpu->arch.apf.msr_int_val;
3942 case MSR_KVM_ASYNC_PF_ACK:
3943 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3948 case MSR_KVM_STEAL_TIME:
3949 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3952 msr_info->data = vcpu->arch.st.msr_val;
3954 case MSR_KVM_PV_EOI_EN:
3955 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3958 msr_info->data = vcpu->arch.pv_eoi.msr_val;
3960 case MSR_KVM_POLL_CONTROL:
3961 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3964 msr_info->data = vcpu->arch.msr_kvm_poll_control;
3966 case MSR_IA32_P5_MC_ADDR:
3967 case MSR_IA32_P5_MC_TYPE:
3968 case MSR_IA32_MCG_CAP:
3969 case MSR_IA32_MCG_CTL:
3970 case MSR_IA32_MCG_STATUS:
3971 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3972 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3973 msr_info->host_initiated);
3975 if (!msr_info->host_initiated &&
3976 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3978 msr_info->data = vcpu->arch.ia32_xss;
3980 case MSR_K7_CLK_CTL:
3982 * Provide expected ramp-up count for K7. All other
3983 * are set to zero, indicating minimum divisors for
3986 * This prevents guest kernels on AMD host with CPU
3987 * type 6, model 8 and higher from exploding due to
3988 * the rdmsr failing.
3990 msr_info->data = 0x20000000;
3992 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3993 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3994 case HV_X64_MSR_SYNDBG_OPTIONS:
3995 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3996 case HV_X64_MSR_CRASH_CTL:
3997 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3998 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3999 case HV_X64_MSR_TSC_EMULATION_CONTROL:
4000 case HV_X64_MSR_TSC_EMULATION_STATUS:
4001 return kvm_hv_get_msr_common(vcpu,
4002 msr_info->index, &msr_info->data,
4003 msr_info->host_initiated);
4004 case MSR_IA32_BBL_CR_CTL3:
4005 /* This legacy MSR exists but isn't fully documented in current
4006 * silicon. It is however accessed by winxp in very narrow
4007 * scenarios where it sets bit #19, itself documented as
4008 * a "reserved" bit. Best effort attempt to source coherent
4009 * read data here should the balance of the register be
4010 * interpreted by the guest:
4012 * L2 cache control register 3: 64GB range, 256KB size,
4013 * enabled, latency 0x1, configured
4015 msr_info->data = 0xbe702111;
4017 case MSR_AMD64_OSVW_ID_LENGTH:
4018 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4020 msr_info->data = vcpu->arch.osvw.length;
4022 case MSR_AMD64_OSVW_STATUS:
4023 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4025 msr_info->data = vcpu->arch.osvw.status;
4027 case MSR_PLATFORM_INFO:
4028 if (!msr_info->host_initiated &&
4029 !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4031 msr_info->data = vcpu->arch.msr_platform_info;
4033 case MSR_MISC_FEATURES_ENABLES:
4034 msr_info->data = vcpu->arch.msr_misc_features_enables;
4037 msr_info->data = vcpu->arch.msr_hwcr;
4039 #ifdef CONFIG_X86_64
4041 if (!msr_info->host_initiated &&
4042 !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4045 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4047 case MSR_IA32_XFD_ERR:
4048 if (!msr_info->host_initiated &&
4049 !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4052 msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4056 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4057 return kvm_pmu_get_msr(vcpu, msr_info);
4058 return KVM_MSR_RET_INVALID;
4062 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4065 * Read or write a bunch of msrs. All parameters are kernel addresses.
4067 * @return number of msrs set successfully.
4069 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4070 struct kvm_msr_entry *entries,
4071 int (*do_msr)(struct kvm_vcpu *vcpu,
4072 unsigned index, u64 *data))
4076 for (i = 0; i < msrs->nmsrs; ++i)
4077 if (do_msr(vcpu, entries[i].index, &entries[i].data))
4084 * Read or write a bunch of msrs. Parameters are user addresses.
4086 * @return number of msrs set successfully.
4088 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4089 int (*do_msr)(struct kvm_vcpu *vcpu,
4090 unsigned index, u64 *data),
4093 struct kvm_msrs msrs;
4094 struct kvm_msr_entry *entries;
4099 if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4103 if (msrs.nmsrs >= MAX_IO_MSRS)
4106 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4107 entries = memdup_user(user_msrs->entries, size);
4108 if (IS_ERR(entries)) {
4109 r = PTR_ERR(entries);
4113 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
4118 if (writeback && copy_to_user(user_msrs->entries, entries, size))
4129 static inline bool kvm_can_mwait_in_guest(void)
4131 return boot_cpu_has(X86_FEATURE_MWAIT) &&
4132 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
4133 boot_cpu_has(X86_FEATURE_ARAT);
4136 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4137 struct kvm_cpuid2 __user *cpuid_arg)
4139 struct kvm_cpuid2 cpuid;
4143 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4146 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4151 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4157 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4162 case KVM_CAP_IRQCHIP:
4164 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4165 case KVM_CAP_SET_TSS_ADDR:
4166 case KVM_CAP_EXT_CPUID:
4167 case KVM_CAP_EXT_EMUL_CPUID:
4168 case KVM_CAP_CLOCKSOURCE:
4170 case KVM_CAP_NOP_IO_DELAY:
4171 case KVM_CAP_MP_STATE:
4172 case KVM_CAP_SYNC_MMU:
4173 case KVM_CAP_USER_NMI:
4174 case KVM_CAP_REINJECT_CONTROL:
4175 case KVM_CAP_IRQ_INJECT_STATUS:
4176 case KVM_CAP_IOEVENTFD:
4177 case KVM_CAP_IOEVENTFD_NO_LENGTH:
4179 case KVM_CAP_PIT_STATE2:
4180 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4181 case KVM_CAP_VCPU_EVENTS:
4182 case KVM_CAP_HYPERV:
4183 case KVM_CAP_HYPERV_VAPIC:
4184 case KVM_CAP_HYPERV_SPIN:
4185 case KVM_CAP_HYPERV_SYNIC:
4186 case KVM_CAP_HYPERV_SYNIC2:
4187 case KVM_CAP_HYPERV_VP_INDEX:
4188 case KVM_CAP_HYPERV_EVENTFD:
4189 case KVM_CAP_HYPERV_TLBFLUSH:
4190 case KVM_CAP_HYPERV_SEND_IPI:
4191 case KVM_CAP_HYPERV_CPUID:
4192 case KVM_CAP_HYPERV_ENFORCE_CPUID:
4193 case KVM_CAP_SYS_HYPERV_CPUID:
4194 case KVM_CAP_PCI_SEGMENT:
4195 case KVM_CAP_DEBUGREGS:
4196 case KVM_CAP_X86_ROBUST_SINGLESTEP:
4198 case KVM_CAP_ASYNC_PF:
4199 case KVM_CAP_ASYNC_PF_INT:
4200 case KVM_CAP_GET_TSC_KHZ:
4201 case KVM_CAP_KVMCLOCK_CTRL:
4202 case KVM_CAP_READONLY_MEM:
4203 case KVM_CAP_HYPERV_TIME:
4204 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4205 case KVM_CAP_TSC_DEADLINE_TIMER:
4206 case KVM_CAP_DISABLE_QUIRKS:
4207 case KVM_CAP_SET_BOOT_CPU_ID:
4208 case KVM_CAP_SPLIT_IRQCHIP:
4209 case KVM_CAP_IMMEDIATE_EXIT:
4210 case KVM_CAP_PMU_EVENT_FILTER:
4211 case KVM_CAP_GET_MSR_FEATURES:
4212 case KVM_CAP_MSR_PLATFORM_INFO:
4213 case KVM_CAP_EXCEPTION_PAYLOAD:
4214 case KVM_CAP_SET_GUEST_DEBUG:
4215 case KVM_CAP_LAST_CPU:
4216 case KVM_CAP_X86_USER_SPACE_MSR:
4217 case KVM_CAP_X86_MSR_FILTER:
4218 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4219 #ifdef CONFIG_X86_SGX_KVM
4220 case KVM_CAP_SGX_ATTRIBUTE:
4222 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4223 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4224 case KVM_CAP_SREGS2:
4225 case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4226 case KVM_CAP_VCPU_ATTRIBUTES:
4229 case KVM_CAP_EXIT_HYPERCALL:
4230 r = KVM_EXIT_HYPERCALL_VALID_MASK;
4232 case KVM_CAP_SET_GUEST_DEBUG2:
4233 return KVM_GUESTDBG_VALID_MASK;
4234 #ifdef CONFIG_KVM_XEN
4235 case KVM_CAP_XEN_HVM:
4236 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4237 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4238 KVM_XEN_HVM_CONFIG_SHARED_INFO |
4239 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL;
4240 if (sched_info_on())
4241 r |= KVM_XEN_HVM_CONFIG_RUNSTATE;
4244 case KVM_CAP_SYNC_REGS:
4245 r = KVM_SYNC_X86_VALID_FIELDS;
4247 case KVM_CAP_ADJUST_CLOCK:
4248 r = KVM_CLOCK_VALID_FLAGS;
4250 case KVM_CAP_X86_DISABLE_EXITS:
4251 r |= KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
4252 KVM_X86_DISABLE_EXITS_CSTATE;
4253 if(kvm_can_mwait_in_guest())
4254 r |= KVM_X86_DISABLE_EXITS_MWAIT;
4256 case KVM_CAP_X86_SMM:
4257 /* SMBASE is usually relocated above 1M on modern chipsets,
4258 * and SMM handlers might indeed rely on 4G segment limits,
4259 * so do not report SMM to be available if real mode is
4260 * emulated via vm86 mode. Still, do not go to great lengths
4261 * to avoid userspace's usage of the feature, because it is a
4262 * fringe case that is not enabled except via specific settings
4263 * of the module parameters.
4265 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4268 r = !static_call(kvm_x86_cpu_has_accelerated_tpr)();
4270 case KVM_CAP_NR_VCPUS:
4271 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4273 case KVM_CAP_MAX_VCPUS:
4276 case KVM_CAP_MAX_VCPU_ID:
4277 r = KVM_MAX_VCPU_IDS;
4279 case KVM_CAP_PV_MMU: /* obsolete */
4283 r = KVM_MAX_MCE_BANKS;
4286 r = boot_cpu_has(X86_FEATURE_XSAVE);
4288 case KVM_CAP_TSC_CONTROL:
4289 r = kvm_has_tsc_control;
4291 case KVM_CAP_X2APIC_API:
4292 r = KVM_X2APIC_API_VALID_FLAGS;
4294 case KVM_CAP_NESTED_STATE:
4295 r = kvm_x86_ops.nested_ops->get_state ?
4296 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4298 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4299 r = kvm_x86_ops.enable_direct_tlbflush != NULL;
4301 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4302 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4304 case KVM_CAP_SMALLER_MAXPHYADDR:
4305 r = (int) allow_smaller_maxphyaddr;
4307 case KVM_CAP_STEAL_TIME:
4308 r = sched_info_on();
4310 case KVM_CAP_X86_BUS_LOCK_EXIT:
4311 if (kvm_has_bus_lock_exit)
4312 r = KVM_BUS_LOCK_DETECTION_OFF |
4313 KVM_BUS_LOCK_DETECTION_EXIT;
4317 case KVM_CAP_XSAVE2: {
4318 u64 guest_perm = xstate_get_guest_group_perm();
4320 r = xstate_required_size(supported_xcr0 & guest_perm, false);
4321 if (r < sizeof(struct kvm_xsave))
4322 r = sizeof(struct kvm_xsave);
4332 long kvm_arch_dev_ioctl(struct file *filp,
4333 unsigned int ioctl, unsigned long arg)
4335 void __user *argp = (void __user *)arg;
4339 case KVM_GET_MSR_INDEX_LIST: {
4340 struct kvm_msr_list __user *user_msr_list = argp;
4341 struct kvm_msr_list msr_list;
4345 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4348 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4349 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4352 if (n < msr_list.nmsrs)
4355 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4356 num_msrs_to_save * sizeof(u32)))
4358 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4360 num_emulated_msrs * sizeof(u32)))
4365 case KVM_GET_SUPPORTED_CPUID:
4366 case KVM_GET_EMULATED_CPUID: {
4367 struct kvm_cpuid2 __user *cpuid_arg = argp;
4368 struct kvm_cpuid2 cpuid;
4371 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4374 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4380 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4385 case KVM_X86_GET_MCE_CAP_SUPPORTED:
4387 if (copy_to_user(argp, &kvm_mce_cap_supported,
4388 sizeof(kvm_mce_cap_supported)))
4392 case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4393 struct kvm_msr_list __user *user_msr_list = argp;
4394 struct kvm_msr_list msr_list;
4398 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4401 msr_list.nmsrs = num_msr_based_features;
4402 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4405 if (n < msr_list.nmsrs)
4408 if (copy_to_user(user_msr_list->indices, &msr_based_features,
4409 num_msr_based_features * sizeof(u32)))
4415 r = msr_io(NULL, argp, do_get_msr_feature, 1);
4417 case KVM_GET_SUPPORTED_HV_CPUID:
4418 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4428 static void wbinvd_ipi(void *garbage)
4433 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4435 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4438 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4440 /* Address WBINVD may be executed by guest */
4441 if (need_emulate_wbinvd(vcpu)) {
4442 if (static_call(kvm_x86_has_wbinvd_exit)())
4443 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4444 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4445 smp_call_function_single(vcpu->cpu,
4446 wbinvd_ipi, NULL, 1);
4449 static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4451 /* Save host pkru register if supported */
4452 vcpu->arch.host_pkru = read_pkru();
4454 /* Apply any externally detected TSC adjustments (due to suspend) */
4455 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4456 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4457 vcpu->arch.tsc_offset_adjustment = 0;
4458 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4461 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4462 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4463 rdtsc() - vcpu->arch.last_host_tsc;
4465 mark_tsc_unstable("KVM discovered backwards TSC");
4467 if (kvm_check_tsc_unstable()) {
4468 u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4469 vcpu->arch.last_guest_tsc);
4470 kvm_vcpu_write_tsc_offset(vcpu, offset);
4471 vcpu->arch.tsc_catchup = 1;
4474 if (kvm_lapic_hv_timer_in_use(vcpu))
4475 kvm_lapic_restart_hv_timer(vcpu);
4478 * On a host with synchronized TSC, there is no need to update
4479 * kvmclock on vcpu->cpu migration
4481 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4482 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4483 if (vcpu->cpu != cpu)
4484 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4488 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4491 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4493 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
4494 struct kvm_steal_time __user *st;
4495 struct kvm_memslots *slots;
4496 static const u8 preempted = KVM_VCPU_PREEMPTED;
4498 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4501 if (vcpu->arch.st.preempted)
4504 /* This happens on process exit */
4505 if (unlikely(current->mm != vcpu->kvm->mm))
4508 slots = kvm_memslots(vcpu->kvm);
4510 if (unlikely(slots->generation != ghc->generation ||
4511 kvm_is_error_hva(ghc->hva) || !ghc->memslot))
4514 st = (struct kvm_steal_time __user *)ghc->hva;
4515 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
4517 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
4518 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4520 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
4523 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4527 if (vcpu->preempted && !vcpu->arch.guest_state_protected)
4528 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4531 * Take the srcu lock as memslots will be accessed to check the gfn
4532 * cache generation against the memslots generation.
4534 idx = srcu_read_lock(&vcpu->kvm->srcu);
4535 if (kvm_xen_msr_enabled(vcpu->kvm))
4536 kvm_xen_runstate_set_preempted(vcpu);
4538 kvm_steal_time_set_preempted(vcpu);
4539 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4541 static_call(kvm_x86_vcpu_put)(vcpu);
4542 vcpu->arch.last_host_tsc = rdtsc();
4545 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4546 struct kvm_lapic_state *s)
4548 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
4550 return kvm_apic_get_state(vcpu, s);
4553 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4554 struct kvm_lapic_state *s)
4558 r = kvm_apic_set_state(vcpu, s);
4561 update_cr8_intercept(vcpu);
4566 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4569 * We can accept userspace's request for interrupt injection
4570 * as long as we have a place to store the interrupt number.
4571 * The actual injection will happen when the CPU is able to
4572 * deliver the interrupt.
4574 if (kvm_cpu_has_extint(vcpu))
4577 /* Acknowledging ExtINT does not happen if LINT0 is masked. */
4578 return (!lapic_in_kernel(vcpu) ||
4579 kvm_apic_accept_pic_intr(vcpu));
4582 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4585 * Do not cause an interrupt window exit if an exception
4586 * is pending or an event needs reinjection; userspace
4587 * might want to inject the interrupt manually using KVM_SET_REGS
4588 * or KVM_SET_SREGS. For that to work, we must be at an
4589 * instruction boundary and with no events half-injected.
4591 return (kvm_arch_interrupt_allowed(vcpu) &&
4592 kvm_cpu_accept_dm_intr(vcpu) &&
4593 !kvm_event_needs_reinjection(vcpu) &&
4594 !vcpu->arch.exception.pending);
4597 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4598 struct kvm_interrupt *irq)
4600 if (irq->irq >= KVM_NR_INTERRUPTS)
4603 if (!irqchip_in_kernel(vcpu->kvm)) {
4604 kvm_queue_interrupt(vcpu, irq->irq, false);
4605 kvm_make_request(KVM_REQ_EVENT, vcpu);
4610 * With in-kernel LAPIC, we only use this to inject EXTINT, so
4611 * fail for in-kernel 8259.
4613 if (pic_in_kernel(vcpu->kvm))
4616 if (vcpu->arch.pending_external_vector != -1)
4619 vcpu->arch.pending_external_vector = irq->irq;
4620 kvm_make_request(KVM_REQ_EVENT, vcpu);
4624 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4626 kvm_inject_nmi(vcpu);
4631 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4633 kvm_make_request(KVM_REQ_SMI, vcpu);
4638 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4639 struct kvm_tpr_access_ctl *tac)
4643 vcpu->arch.tpr_access_reporting = !!tac->enabled;
4647 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4651 unsigned bank_num = mcg_cap & 0xff, bank;
4654 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4656 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
4659 vcpu->arch.mcg_cap = mcg_cap;
4660 /* Init IA32_MCG_CTL to all 1s */
4661 if (mcg_cap & MCG_CTL_P)
4662 vcpu->arch.mcg_ctl = ~(u64)0;
4663 /* Init IA32_MCi_CTL to all 1s */
4664 for (bank = 0; bank < bank_num; bank++)
4665 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4667 static_call(kvm_x86_setup_mce)(vcpu);
4672 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4673 struct kvm_x86_mce *mce)
4675 u64 mcg_cap = vcpu->arch.mcg_cap;
4676 unsigned bank_num = mcg_cap & 0xff;
4677 u64 *banks = vcpu->arch.mce_banks;
4679 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4682 * if IA32_MCG_CTL is not all 1s, the uncorrected error
4683 * reporting is disabled
4685 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
4686 vcpu->arch.mcg_ctl != ~(u64)0)
4688 banks += 4 * mce->bank;
4690 * if IA32_MCi_CTL is not all 1s, the uncorrected error
4691 * reporting is disabled for the bank
4693 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
4695 if (mce->status & MCI_STATUS_UC) {
4696 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
4697 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
4698 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4701 if (banks[1] & MCI_STATUS_VAL)
4702 mce->status |= MCI_STATUS_OVER;
4703 banks[2] = mce->addr;
4704 banks[3] = mce->misc;
4705 vcpu->arch.mcg_status = mce->mcg_status;
4706 banks[1] = mce->status;
4707 kvm_queue_exception(vcpu, MC_VECTOR);
4708 } else if (!(banks[1] & MCI_STATUS_VAL)
4709 || !(banks[1] & MCI_STATUS_UC)) {
4710 if (banks[1] & MCI_STATUS_VAL)
4711 mce->status |= MCI_STATUS_OVER;
4712 banks[2] = mce->addr;
4713 banks[3] = mce->misc;
4714 banks[1] = mce->status;
4716 banks[1] |= MCI_STATUS_OVER;
4720 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
4721 struct kvm_vcpu_events *events)
4725 if (kvm_check_request(KVM_REQ_SMI, vcpu))
4729 * In guest mode, payload delivery should be deferred,
4730 * so that the L1 hypervisor can intercept #PF before
4731 * CR2 is modified (or intercept #DB before DR6 is
4732 * modified under nVMX). Unless the per-VM capability,
4733 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
4734 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
4735 * opportunistically defer the exception payload, deliver it if the
4736 * capability hasn't been requested before processing a
4737 * KVM_GET_VCPU_EVENTS.
4739 if (!vcpu->kvm->arch.exception_payload_enabled &&
4740 vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
4741 kvm_deliver_exception_payload(vcpu);
4744 * The API doesn't provide the instruction length for software
4745 * exceptions, so don't report them. As long as the guest RIP
4746 * isn't advanced, we should expect to encounter the exception
4749 if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
4750 events->exception.injected = 0;
4751 events->exception.pending = 0;
4753 events->exception.injected = vcpu->arch.exception.injected;
4754 events->exception.pending = vcpu->arch.exception.pending;
4756 * For ABI compatibility, deliberately conflate
4757 * pending and injected exceptions when
4758 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
4760 if (!vcpu->kvm->arch.exception_payload_enabled)
4761 events->exception.injected |=
4762 vcpu->arch.exception.pending;
4764 events->exception.nr = vcpu->arch.exception.nr;
4765 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
4766 events->exception.error_code = vcpu->arch.exception.error_code;
4767 events->exception_has_payload = vcpu->arch.exception.has_payload;
4768 events->exception_payload = vcpu->arch.exception.payload;
4770 events->interrupt.injected =
4771 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
4772 events->interrupt.nr = vcpu->arch.interrupt.nr;
4773 events->interrupt.soft = 0;
4774 events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
4776 events->nmi.injected = vcpu->arch.nmi_injected;
4777 events->nmi.pending = vcpu->arch.nmi_pending != 0;
4778 events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
4779 events->nmi.pad = 0;
4781 events->sipi_vector = 0; /* never valid when reporting to user space */
4783 events->smi.smm = is_smm(vcpu);
4784 events->smi.pending = vcpu->arch.smi_pending;
4785 events->smi.smm_inside_nmi =
4786 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
4787 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
4789 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
4790 | KVM_VCPUEVENT_VALID_SHADOW
4791 | KVM_VCPUEVENT_VALID_SMM);
4792 if (vcpu->kvm->arch.exception_payload_enabled)
4793 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4795 memset(&events->reserved, 0, sizeof(events->reserved));
4798 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm);
4800 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
4801 struct kvm_vcpu_events *events)
4803 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4804 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4805 | KVM_VCPUEVENT_VALID_SHADOW
4806 | KVM_VCPUEVENT_VALID_SMM
4807 | KVM_VCPUEVENT_VALID_PAYLOAD))
4810 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4811 if (!vcpu->kvm->arch.exception_payload_enabled)
4813 if (events->exception.pending)
4814 events->exception.injected = 0;
4816 events->exception_has_payload = 0;
4818 events->exception.pending = 0;
4819 events->exception_has_payload = 0;
4822 if ((events->exception.injected || events->exception.pending) &&
4823 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
4826 /* INITs are latched while in SMM */
4827 if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4828 (events->smi.smm || events->smi.pending) &&
4829 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4833 vcpu->arch.exception.injected = events->exception.injected;
4834 vcpu->arch.exception.pending = events->exception.pending;
4835 vcpu->arch.exception.nr = events->exception.nr;
4836 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4837 vcpu->arch.exception.error_code = events->exception.error_code;
4838 vcpu->arch.exception.has_payload = events->exception_has_payload;
4839 vcpu->arch.exception.payload = events->exception_payload;
4841 vcpu->arch.interrupt.injected = events->interrupt.injected;
4842 vcpu->arch.interrupt.nr = events->interrupt.nr;
4843 vcpu->arch.interrupt.soft = events->interrupt.soft;
4844 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
4845 static_call(kvm_x86_set_interrupt_shadow)(vcpu,
4846 events->interrupt.shadow);
4848 vcpu->arch.nmi_injected = events->nmi.injected;
4849 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
4850 vcpu->arch.nmi_pending = events->nmi.pending;
4851 static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
4853 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
4854 lapic_in_kernel(vcpu))
4855 vcpu->arch.apic->sipi_vector = events->sipi_vector;
4857 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
4858 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm)
4859 kvm_smm_changed(vcpu, events->smi.smm);
4861 vcpu->arch.smi_pending = events->smi.pending;
4863 if (events->smi.smm) {
4864 if (events->smi.smm_inside_nmi)
4865 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
4867 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
4870 if (lapic_in_kernel(vcpu)) {
4871 if (events->smi.latched_init)
4872 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4874 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4878 kvm_make_request(KVM_REQ_EVENT, vcpu);
4883 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
4884 struct kvm_debugregs *dbgregs)
4888 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
4889 kvm_get_dr(vcpu, 6, &val);
4891 dbgregs->dr7 = vcpu->arch.dr7;
4893 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
4896 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
4897 struct kvm_debugregs *dbgregs)
4902 if (!kvm_dr6_valid(dbgregs->dr6))
4904 if (!kvm_dr7_valid(dbgregs->dr7))
4907 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
4908 kvm_update_dr0123(vcpu);
4909 vcpu->arch.dr6 = dbgregs->dr6;
4910 vcpu->arch.dr7 = dbgregs->dr7;
4911 kvm_update_dr7(vcpu);
4916 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4917 struct kvm_xsave *guest_xsave)
4919 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
4922 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
4923 guest_xsave->region,
4924 sizeof(guest_xsave->region),
4928 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
4929 u8 *state, unsigned int size)
4931 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
4934 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
4935 state, size, vcpu->arch.pkru);
4938 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
4939 struct kvm_xsave *guest_xsave)
4941 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
4944 return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
4945 guest_xsave->region,
4946 supported_xcr0, &vcpu->arch.pkru);
4949 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
4950 struct kvm_xcrs *guest_xcrs)
4952 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
4953 guest_xcrs->nr_xcrs = 0;
4957 guest_xcrs->nr_xcrs = 1;
4958 guest_xcrs->flags = 0;
4959 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
4960 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
4963 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
4964 struct kvm_xcrs *guest_xcrs)
4968 if (!boot_cpu_has(X86_FEATURE_XSAVE))
4971 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
4974 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
4975 /* Only support XCR0 currently */
4976 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
4977 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
4978 guest_xcrs->xcrs[i].value);
4987 * kvm_set_guest_paused() indicates to the guest kernel that it has been
4988 * stopped by the hypervisor. This function will be called from the host only.
4989 * EINVAL is returned when the host attempts to set the flag for a guest that
4990 * does not support pv clocks.
4992 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
4994 if (!vcpu->arch.pv_time_enabled)
4996 vcpu->arch.pvclock_set_guest_stopped_request = true;
4997 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5001 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5002 struct kvm_device_attr *attr)
5006 switch (attr->attr) {
5007 case KVM_VCPU_TSC_OFFSET:
5017 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5018 struct kvm_device_attr *attr)
5020 u64 __user *uaddr = (u64 __user *)(unsigned long)attr->addr;
5023 if ((u64)(unsigned long)uaddr != attr->addr)
5026 switch (attr->attr) {
5027 case KVM_VCPU_TSC_OFFSET:
5029 if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5040 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5041 struct kvm_device_attr *attr)
5043 u64 __user *uaddr = (u64 __user *)(unsigned long)attr->addr;
5044 struct kvm *kvm = vcpu->kvm;
5047 if ((u64)(unsigned long)uaddr != attr->addr)
5050 switch (attr->attr) {
5051 case KVM_VCPU_TSC_OFFSET: {
5052 u64 offset, tsc, ns;
5053 unsigned long flags;
5057 if (get_user(offset, uaddr))
5060 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5062 matched = (vcpu->arch.virtual_tsc_khz &&
5063 kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5064 kvm->arch.last_tsc_offset == offset);
5066 tsc = kvm_scale_tsc(vcpu, rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5067 ns = get_kvmclock_base_ns();
5069 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5070 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5082 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5086 struct kvm_device_attr attr;
5089 if (copy_from_user(&attr, argp, sizeof(attr)))
5092 if (attr.group != KVM_VCPU_TSC_CTRL)
5096 case KVM_HAS_DEVICE_ATTR:
5097 r = kvm_arch_tsc_has_attr(vcpu, &attr);
5099 case KVM_GET_DEVICE_ATTR:
5100 r = kvm_arch_tsc_get_attr(vcpu, &attr);
5102 case KVM_SET_DEVICE_ATTR:
5103 r = kvm_arch_tsc_set_attr(vcpu, &attr);
5110 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5111 struct kvm_enable_cap *cap)
5114 uint16_t vmcs_version;
5115 void __user *user_ptr;
5121 case KVM_CAP_HYPERV_SYNIC2:
5126 case KVM_CAP_HYPERV_SYNIC:
5127 if (!irqchip_in_kernel(vcpu->kvm))
5129 return kvm_hv_activate_synic(vcpu, cap->cap ==
5130 KVM_CAP_HYPERV_SYNIC2);
5131 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5132 if (!kvm_x86_ops.nested_ops->enable_evmcs)
5134 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5136 user_ptr = (void __user *)(uintptr_t)cap->args[0];
5137 if (copy_to_user(user_ptr, &vmcs_version,
5138 sizeof(vmcs_version)))
5142 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5143 if (!kvm_x86_ops.enable_direct_tlbflush)
5146 return static_call(kvm_x86_enable_direct_tlbflush)(vcpu);
5148 case KVM_CAP_HYPERV_ENFORCE_CPUID:
5149 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5151 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5152 vcpu->arch.pv_cpuid.enforce = cap->args[0];
5153 if (vcpu->arch.pv_cpuid.enforce)
5154 kvm_update_pv_runtime(vcpu);
5162 long kvm_arch_vcpu_ioctl(struct file *filp,
5163 unsigned int ioctl, unsigned long arg)
5165 struct kvm_vcpu *vcpu = filp->private_data;
5166 void __user *argp = (void __user *)arg;
5169 struct kvm_sregs2 *sregs2;
5170 struct kvm_lapic_state *lapic;
5171 struct kvm_xsave *xsave;
5172 struct kvm_xcrs *xcrs;
5180 case KVM_GET_LAPIC: {
5182 if (!lapic_in_kernel(vcpu))
5184 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5185 GFP_KERNEL_ACCOUNT);
5190 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5194 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5199 case KVM_SET_LAPIC: {
5201 if (!lapic_in_kernel(vcpu))
5203 u.lapic = memdup_user(argp, sizeof(*u.lapic));
5204 if (IS_ERR(u.lapic)) {
5205 r = PTR_ERR(u.lapic);
5209 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5212 case KVM_INTERRUPT: {
5213 struct kvm_interrupt irq;
5216 if (copy_from_user(&irq, argp, sizeof(irq)))
5218 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5222 r = kvm_vcpu_ioctl_nmi(vcpu);
5226 r = kvm_vcpu_ioctl_smi(vcpu);
5229 case KVM_SET_CPUID: {
5230 struct kvm_cpuid __user *cpuid_arg = argp;
5231 struct kvm_cpuid cpuid;
5234 * KVM does not correctly handle changing guest CPUID after KVM_RUN, as
5235 * MAXPHYADDR, GBPAGES support, AMD reserved bit behavior, etc.. aren't
5236 * tracked in kvm_mmu_page_role. As a result, KVM may miss guest page
5237 * faults due to reusing SPs/SPTEs. In practice no sane VMM mucks with
5238 * the core vCPU model on the fly, so fail.
5241 if (vcpu->arch.last_vmentry_cpu != -1)
5245 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5247 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5250 case KVM_SET_CPUID2: {
5251 struct kvm_cpuid2 __user *cpuid_arg = argp;
5252 struct kvm_cpuid2 cpuid;
5255 * KVM_SET_CPUID{,2} after KVM_RUN is forbidded, see the comment in
5256 * KVM_SET_CPUID case above.
5259 if (vcpu->arch.last_vmentry_cpu != -1)
5263 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5265 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5266 cpuid_arg->entries);
5269 case KVM_GET_CPUID2: {
5270 struct kvm_cpuid2 __user *cpuid_arg = argp;
5271 struct kvm_cpuid2 cpuid;
5274 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5276 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5277 cpuid_arg->entries);
5281 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5286 case KVM_GET_MSRS: {
5287 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5288 r = msr_io(vcpu, argp, do_get_msr, 1);
5289 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5292 case KVM_SET_MSRS: {
5293 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5294 r = msr_io(vcpu, argp, do_set_msr, 0);
5295 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5298 case KVM_TPR_ACCESS_REPORTING: {
5299 struct kvm_tpr_access_ctl tac;
5302 if (copy_from_user(&tac, argp, sizeof(tac)))
5304 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5308 if (copy_to_user(argp, &tac, sizeof(tac)))
5313 case KVM_SET_VAPIC_ADDR: {
5314 struct kvm_vapic_addr va;
5318 if (!lapic_in_kernel(vcpu))
5321 if (copy_from_user(&va, argp, sizeof(va)))
5323 idx = srcu_read_lock(&vcpu->kvm->srcu);
5324 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5325 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5328 case KVM_X86_SETUP_MCE: {
5332 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5334 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5337 case KVM_X86_SET_MCE: {
5338 struct kvm_x86_mce mce;
5341 if (copy_from_user(&mce, argp, sizeof(mce)))
5343 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5346 case KVM_GET_VCPU_EVENTS: {
5347 struct kvm_vcpu_events events;
5349 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5352 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5357 case KVM_SET_VCPU_EVENTS: {
5358 struct kvm_vcpu_events events;
5361 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5364 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5367 case KVM_GET_DEBUGREGS: {
5368 struct kvm_debugregs dbgregs;
5370 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5373 if (copy_to_user(argp, &dbgregs,
5374 sizeof(struct kvm_debugregs)))
5379 case KVM_SET_DEBUGREGS: {
5380 struct kvm_debugregs dbgregs;
5383 if (copy_from_user(&dbgregs, argp,
5384 sizeof(struct kvm_debugregs)))
5387 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5390 case KVM_GET_XSAVE: {
5392 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
5395 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5400 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5403 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5408 case KVM_SET_XSAVE: {
5409 int size = vcpu->arch.guest_fpu.uabi_size;
5411 u.xsave = memdup_user(argp, size);
5412 if (IS_ERR(u.xsave)) {
5413 r = PTR_ERR(u.xsave);
5417 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5421 case KVM_GET_XSAVE2: {
5422 int size = vcpu->arch.guest_fpu.uabi_size;
5424 u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT);
5429 kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
5432 if (copy_to_user(argp, u.xsave, size))
5439 case KVM_GET_XCRS: {
5440 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5445 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5448 if (copy_to_user(argp, u.xcrs,
5449 sizeof(struct kvm_xcrs)))
5454 case KVM_SET_XCRS: {
5455 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5456 if (IS_ERR(u.xcrs)) {
5457 r = PTR_ERR(u.xcrs);
5461 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5464 case KVM_SET_TSC_KHZ: {
5468 user_tsc_khz = (u32)arg;
5470 if (kvm_has_tsc_control &&
5471 user_tsc_khz >= kvm_max_guest_tsc_khz)
5474 if (user_tsc_khz == 0)
5475 user_tsc_khz = tsc_khz;
5477 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5482 case KVM_GET_TSC_KHZ: {
5483 r = vcpu->arch.virtual_tsc_khz;
5486 case KVM_KVMCLOCK_CTRL: {
5487 r = kvm_set_guest_paused(vcpu);
5490 case KVM_ENABLE_CAP: {
5491 struct kvm_enable_cap cap;
5494 if (copy_from_user(&cap, argp, sizeof(cap)))
5496 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5499 case KVM_GET_NESTED_STATE: {
5500 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5504 if (!kvm_x86_ops.nested_ops->get_state)
5507 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5509 if (get_user(user_data_size, &user_kvm_nested_state->size))
5512 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5517 if (r > user_data_size) {
5518 if (put_user(r, &user_kvm_nested_state->size))
5528 case KVM_SET_NESTED_STATE: {
5529 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5530 struct kvm_nested_state kvm_state;
5534 if (!kvm_x86_ops.nested_ops->set_state)
5538 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5542 if (kvm_state.size < sizeof(kvm_state))
5545 if (kvm_state.flags &
5546 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5547 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5548 | KVM_STATE_NESTED_GIF_SET))
5551 /* nested_run_pending implies guest_mode. */
5552 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5553 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5556 idx = srcu_read_lock(&vcpu->kvm->srcu);
5557 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5558 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5561 case KVM_GET_SUPPORTED_HV_CPUID:
5562 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5564 #ifdef CONFIG_KVM_XEN
5565 case KVM_XEN_VCPU_GET_ATTR: {
5566 struct kvm_xen_vcpu_attr xva;
5569 if (copy_from_user(&xva, argp, sizeof(xva)))
5571 r = kvm_xen_vcpu_get_attr(vcpu, &xva);
5572 if (!r && copy_to_user(argp, &xva, sizeof(xva)))
5576 case KVM_XEN_VCPU_SET_ATTR: {
5577 struct kvm_xen_vcpu_attr xva;
5580 if (copy_from_user(&xva, argp, sizeof(xva)))
5582 r = kvm_xen_vcpu_set_attr(vcpu, &xva);
5586 case KVM_GET_SREGS2: {
5587 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
5591 __get_sregs2(vcpu, u.sregs2);
5593 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
5598 case KVM_SET_SREGS2: {
5599 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
5600 if (IS_ERR(u.sregs2)) {
5601 r = PTR_ERR(u.sregs2);
5605 r = __set_sregs2(vcpu, u.sregs2);
5608 case KVM_HAS_DEVICE_ATTR:
5609 case KVM_GET_DEVICE_ATTR:
5610 case KVM_SET_DEVICE_ATTR:
5611 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
5623 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5625 return VM_FAULT_SIGBUS;
5628 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5632 if (addr > (unsigned int)(-3 * PAGE_SIZE))
5634 ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
5638 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5641 return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
5644 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5645 unsigned long kvm_nr_mmu_pages)
5647 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5650 mutex_lock(&kvm->slots_lock);
5652 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5653 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5655 mutex_unlock(&kvm->slots_lock);
5659 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5661 return kvm->arch.n_max_mmu_pages;
5664 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5666 struct kvm_pic *pic = kvm->arch.vpic;
5670 switch (chip->chip_id) {
5671 case KVM_IRQCHIP_PIC_MASTER:
5672 memcpy(&chip->chip.pic, &pic->pics[0],
5673 sizeof(struct kvm_pic_state));
5675 case KVM_IRQCHIP_PIC_SLAVE:
5676 memcpy(&chip->chip.pic, &pic->pics[1],
5677 sizeof(struct kvm_pic_state));
5679 case KVM_IRQCHIP_IOAPIC:
5680 kvm_get_ioapic(kvm, &chip->chip.ioapic);
5689 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5691 struct kvm_pic *pic = kvm->arch.vpic;
5695 switch (chip->chip_id) {
5696 case KVM_IRQCHIP_PIC_MASTER:
5697 spin_lock(&pic->lock);
5698 memcpy(&pic->pics[0], &chip->chip.pic,
5699 sizeof(struct kvm_pic_state));
5700 spin_unlock(&pic->lock);
5702 case KVM_IRQCHIP_PIC_SLAVE:
5703 spin_lock(&pic->lock);
5704 memcpy(&pic->pics[1], &chip->chip.pic,
5705 sizeof(struct kvm_pic_state));
5706 spin_unlock(&pic->lock);
5708 case KVM_IRQCHIP_IOAPIC:
5709 kvm_set_ioapic(kvm, &chip->chip.ioapic);
5715 kvm_pic_update_irq(pic);
5719 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5721 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
5723 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
5725 mutex_lock(&kps->lock);
5726 memcpy(ps, &kps->channels, sizeof(*ps));
5727 mutex_unlock(&kps->lock);
5731 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5734 struct kvm_pit *pit = kvm->arch.vpit;
5736 mutex_lock(&pit->pit_state.lock);
5737 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
5738 for (i = 0; i < 3; i++)
5739 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
5740 mutex_unlock(&pit->pit_state.lock);
5744 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5746 mutex_lock(&kvm->arch.vpit->pit_state.lock);
5747 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
5748 sizeof(ps->channels));
5749 ps->flags = kvm->arch.vpit->pit_state.flags;
5750 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
5751 memset(&ps->reserved, 0, sizeof(ps->reserved));
5755 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5759 u32 prev_legacy, cur_legacy;
5760 struct kvm_pit *pit = kvm->arch.vpit;
5762 mutex_lock(&pit->pit_state.lock);
5763 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
5764 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
5765 if (!prev_legacy && cur_legacy)
5767 memcpy(&pit->pit_state.channels, &ps->channels,
5768 sizeof(pit->pit_state.channels));
5769 pit->pit_state.flags = ps->flags;
5770 for (i = 0; i < 3; i++)
5771 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
5773 mutex_unlock(&pit->pit_state.lock);
5777 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
5778 struct kvm_reinject_control *control)
5780 struct kvm_pit *pit = kvm->arch.vpit;
5782 /* pit->pit_state.lock was overloaded to prevent userspace from getting
5783 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
5784 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
5786 mutex_lock(&pit->pit_state.lock);
5787 kvm_pit_set_reinject(pit, control->pit_reinject);
5788 mutex_unlock(&pit->pit_state.lock);
5793 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
5797 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called
5798 * before reporting dirty_bitmap to userspace. KVM flushes the buffers
5799 * on all VM-Exits, thus we only need to kick running vCPUs to force a
5802 struct kvm_vcpu *vcpu;
5805 kvm_for_each_vcpu(i, vcpu, kvm)
5806 kvm_vcpu_kick(vcpu);
5809 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
5812 if (!irqchip_in_kernel(kvm))
5815 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
5816 irq_event->irq, irq_event->level,
5821 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
5822 struct kvm_enable_cap *cap)
5830 case KVM_CAP_DISABLE_QUIRKS:
5831 kvm->arch.disabled_quirks = cap->args[0];
5834 case KVM_CAP_SPLIT_IRQCHIP: {
5835 mutex_lock(&kvm->lock);
5837 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
5838 goto split_irqchip_unlock;
5840 if (irqchip_in_kernel(kvm))
5841 goto split_irqchip_unlock;
5842 if (kvm->created_vcpus)
5843 goto split_irqchip_unlock;
5844 r = kvm_setup_empty_irq_routing(kvm);
5846 goto split_irqchip_unlock;
5847 /* Pairs with irqchip_in_kernel. */
5849 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
5850 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
5851 kvm_request_apicv_update(kvm, true, APICV_INHIBIT_REASON_ABSENT);
5853 split_irqchip_unlock:
5854 mutex_unlock(&kvm->lock);
5857 case KVM_CAP_X2APIC_API:
5859 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
5862 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
5863 kvm->arch.x2apic_format = true;
5864 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
5865 kvm->arch.x2apic_broadcast_quirk_disabled = true;
5869 case KVM_CAP_X86_DISABLE_EXITS:
5871 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
5874 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
5875 kvm_can_mwait_in_guest())
5876 kvm->arch.mwait_in_guest = true;
5877 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
5878 kvm->arch.hlt_in_guest = true;
5879 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
5880 kvm->arch.pause_in_guest = true;
5881 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
5882 kvm->arch.cstate_in_guest = true;
5885 case KVM_CAP_MSR_PLATFORM_INFO:
5886 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
5889 case KVM_CAP_EXCEPTION_PAYLOAD:
5890 kvm->arch.exception_payload_enabled = cap->args[0];
5893 case KVM_CAP_X86_USER_SPACE_MSR:
5894 kvm->arch.user_space_msr_mask = cap->args[0];
5897 case KVM_CAP_X86_BUS_LOCK_EXIT:
5899 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
5902 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
5903 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
5906 if (kvm_has_bus_lock_exit &&
5907 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
5908 kvm->arch.bus_lock_detection_enabled = true;
5911 #ifdef CONFIG_X86_SGX_KVM
5912 case KVM_CAP_SGX_ATTRIBUTE: {
5913 unsigned long allowed_attributes = 0;
5915 r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
5919 /* KVM only supports the PROVISIONKEY privileged attribute. */
5920 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
5921 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
5922 kvm->arch.sgx_provisioning_allowed = true;
5928 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
5930 if (kvm_x86_ops.vm_copy_enc_context_from)
5931 r = kvm_x86_ops.vm_copy_enc_context_from(kvm, cap->args[0]);
5933 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
5935 if (kvm_x86_ops.vm_move_enc_context_from)
5936 r = kvm_x86_ops.vm_move_enc_context_from(
5939 case KVM_CAP_EXIT_HYPERCALL:
5940 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
5944 kvm->arch.hypercall_exit_enabled = cap->args[0];
5947 case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
5949 if (cap->args[0] & ~1)
5951 kvm->arch.exit_on_emulation_error = cap->args[0];
5961 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
5963 struct kvm_x86_msr_filter *msr_filter;
5965 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
5969 msr_filter->default_allow = default_allow;
5973 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
5980 for (i = 0; i < msr_filter->count; i++)
5981 kfree(msr_filter->ranges[i].bitmap);
5986 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
5987 struct kvm_msr_filter_range *user_range)
5989 unsigned long *bitmap = NULL;
5992 if (!user_range->nmsrs)
5995 if (user_range->flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE))
5998 if (!user_range->flags)
6001 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6002 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6005 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6007 return PTR_ERR(bitmap);
6009 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6010 .flags = user_range->flags,
6011 .base = user_range->base,
6012 .nmsrs = user_range->nmsrs,
6016 msr_filter->count++;
6020 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp)
6022 struct kvm_msr_filter __user *user_msr_filter = argp;
6023 struct kvm_x86_msr_filter *new_filter, *old_filter;
6024 struct kvm_msr_filter filter;
6030 if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
6033 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++)
6034 empty &= !filter.ranges[i].nmsrs;
6036 default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY);
6037 if (empty && !default_allow)
6040 new_filter = kvm_alloc_msr_filter(default_allow);
6044 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6045 r = kvm_add_msr_filter(new_filter, &filter.ranges[i]);
6047 kvm_free_msr_filter(new_filter);
6052 mutex_lock(&kvm->lock);
6054 /* The per-VM filter is protected by kvm->lock... */
6055 old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1);
6057 rcu_assign_pointer(kvm->arch.msr_filter, new_filter);
6058 synchronize_srcu(&kvm->srcu);
6060 kvm_free_msr_filter(old_filter);
6062 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6063 mutex_unlock(&kvm->lock);
6068 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
6069 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6071 struct kvm_vcpu *vcpu;
6075 mutex_lock(&kvm->lock);
6076 kvm_for_each_vcpu(i, vcpu, kvm) {
6077 if (!vcpu->arch.pv_time_enabled)
6080 ret = kvm_set_guest_paused(vcpu);
6082 kvm_err("Failed to pause guest VCPU%d: %d\n",
6083 vcpu->vcpu_id, ret);
6087 mutex_unlock(&kvm->lock);
6089 return ret ? NOTIFY_BAD : NOTIFY_DONE;
6092 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6095 case PM_HIBERNATION_PREPARE:
6096 case PM_SUSPEND_PREPARE:
6097 return kvm_arch_suspend_notifier(kvm);
6102 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6104 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6106 struct kvm_clock_data data = { 0 };
6108 get_kvmclock(kvm, &data);
6109 if (copy_to_user(argp, &data, sizeof(data)))
6115 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6117 struct kvm_arch *ka = &kvm->arch;
6118 struct kvm_clock_data data;
6121 if (copy_from_user(&data, argp, sizeof(data)))
6125 * Only KVM_CLOCK_REALTIME is used, but allow passing the
6126 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6128 if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6131 kvm_hv_invalidate_tsc_page(kvm);
6132 kvm_start_pvclock_update(kvm);
6133 pvclock_update_vm_gtod_copy(kvm);
6136 * This pairs with kvm_guest_time_update(): when masterclock is
6137 * in use, we use master_kernel_ns + kvmclock_offset to set
6138 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6139 * is slightly ahead) here we risk going negative on unsigned
6140 * 'system_time' when 'data.clock' is very small.
6142 if (data.flags & KVM_CLOCK_REALTIME) {
6143 u64 now_real_ns = ktime_get_real_ns();
6146 * Avoid stepping the kvmclock backwards.
6148 if (now_real_ns > data.realtime)
6149 data.clock += now_real_ns - data.realtime;
6152 if (ka->use_master_clock)
6153 now_raw_ns = ka->master_kernel_ns;
6155 now_raw_ns = get_kvmclock_base_ns();
6156 ka->kvmclock_offset = data.clock - now_raw_ns;
6157 kvm_end_pvclock_update(kvm);
6161 long kvm_arch_vm_ioctl(struct file *filp,
6162 unsigned int ioctl, unsigned long arg)
6164 struct kvm *kvm = filp->private_data;
6165 void __user *argp = (void __user *)arg;
6168 * This union makes it completely explicit to gcc-3.x
6169 * that these two variables' stack usage should be
6170 * combined, not added together.
6173 struct kvm_pit_state ps;
6174 struct kvm_pit_state2 ps2;
6175 struct kvm_pit_config pit_config;
6179 case KVM_SET_TSS_ADDR:
6180 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
6182 case KVM_SET_IDENTITY_MAP_ADDR: {
6185 mutex_lock(&kvm->lock);
6187 if (kvm->created_vcpus)
6188 goto set_identity_unlock;
6190 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
6191 goto set_identity_unlock;
6192 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
6193 set_identity_unlock:
6194 mutex_unlock(&kvm->lock);
6197 case KVM_SET_NR_MMU_PAGES:
6198 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
6200 case KVM_GET_NR_MMU_PAGES:
6201 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
6203 case KVM_CREATE_IRQCHIP: {
6204 mutex_lock(&kvm->lock);
6207 if (irqchip_in_kernel(kvm))
6208 goto create_irqchip_unlock;
6211 if (kvm->created_vcpus)
6212 goto create_irqchip_unlock;
6214 r = kvm_pic_init(kvm);
6216 goto create_irqchip_unlock;
6218 r = kvm_ioapic_init(kvm);
6220 kvm_pic_destroy(kvm);
6221 goto create_irqchip_unlock;
6224 r = kvm_setup_default_irq_routing(kvm);
6226 kvm_ioapic_destroy(kvm);
6227 kvm_pic_destroy(kvm);
6228 goto create_irqchip_unlock;
6230 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
6232 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
6233 kvm_request_apicv_update(kvm, true, APICV_INHIBIT_REASON_ABSENT);
6234 create_irqchip_unlock:
6235 mutex_unlock(&kvm->lock);
6238 case KVM_CREATE_PIT:
6239 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
6241 case KVM_CREATE_PIT2:
6243 if (copy_from_user(&u.pit_config, argp,
6244 sizeof(struct kvm_pit_config)))
6247 mutex_lock(&kvm->lock);
6250 goto create_pit_unlock;
6252 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
6256 mutex_unlock(&kvm->lock);
6258 case KVM_GET_IRQCHIP: {
6259 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6260 struct kvm_irqchip *chip;
6262 chip = memdup_user(argp, sizeof(*chip));
6269 if (!irqchip_kernel(kvm))
6270 goto get_irqchip_out;
6271 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
6273 goto get_irqchip_out;
6275 if (copy_to_user(argp, chip, sizeof(*chip)))
6276 goto get_irqchip_out;
6282 case KVM_SET_IRQCHIP: {
6283 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6284 struct kvm_irqchip *chip;
6286 chip = memdup_user(argp, sizeof(*chip));
6293 if (!irqchip_kernel(kvm))
6294 goto set_irqchip_out;
6295 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
6302 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
6305 if (!kvm->arch.vpit)
6307 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
6311 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
6318 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
6320 mutex_lock(&kvm->lock);
6322 if (!kvm->arch.vpit)
6324 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
6326 mutex_unlock(&kvm->lock);
6329 case KVM_GET_PIT2: {
6331 if (!kvm->arch.vpit)
6333 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
6337 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
6342 case KVM_SET_PIT2: {
6344 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
6346 mutex_lock(&kvm->lock);
6348 if (!kvm->arch.vpit)
6350 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
6352 mutex_unlock(&kvm->lock);
6355 case KVM_REINJECT_CONTROL: {
6356 struct kvm_reinject_control control;
6358 if (copy_from_user(&control, argp, sizeof(control)))
6361 if (!kvm->arch.vpit)
6363 r = kvm_vm_ioctl_reinject(kvm, &control);
6366 case KVM_SET_BOOT_CPU_ID:
6368 mutex_lock(&kvm->lock);
6369 if (kvm->created_vcpus)
6372 kvm->arch.bsp_vcpu_id = arg;
6373 mutex_unlock(&kvm->lock);
6375 #ifdef CONFIG_KVM_XEN
6376 case KVM_XEN_HVM_CONFIG: {
6377 struct kvm_xen_hvm_config xhc;
6379 if (copy_from_user(&xhc, argp, sizeof(xhc)))
6381 r = kvm_xen_hvm_config(kvm, &xhc);
6384 case KVM_XEN_HVM_GET_ATTR: {
6385 struct kvm_xen_hvm_attr xha;
6388 if (copy_from_user(&xha, argp, sizeof(xha)))
6390 r = kvm_xen_hvm_get_attr(kvm, &xha);
6391 if (!r && copy_to_user(argp, &xha, sizeof(xha)))
6395 case KVM_XEN_HVM_SET_ATTR: {
6396 struct kvm_xen_hvm_attr xha;
6399 if (copy_from_user(&xha, argp, sizeof(xha)))
6401 r = kvm_xen_hvm_set_attr(kvm, &xha);
6406 r = kvm_vm_ioctl_set_clock(kvm, argp);
6409 r = kvm_vm_ioctl_get_clock(kvm, argp);
6411 case KVM_MEMORY_ENCRYPT_OP: {
6413 if (kvm_x86_ops.mem_enc_op)
6414 r = static_call(kvm_x86_mem_enc_op)(kvm, argp);
6417 case KVM_MEMORY_ENCRYPT_REG_REGION: {
6418 struct kvm_enc_region region;
6421 if (copy_from_user(®ion, argp, sizeof(region)))
6425 if (kvm_x86_ops.mem_enc_reg_region)
6426 r = static_call(kvm_x86_mem_enc_reg_region)(kvm, ®ion);
6429 case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
6430 struct kvm_enc_region region;
6433 if (copy_from_user(®ion, argp, sizeof(region)))
6437 if (kvm_x86_ops.mem_enc_unreg_region)
6438 r = static_call(kvm_x86_mem_enc_unreg_region)(kvm, ®ion);
6441 case KVM_HYPERV_EVENTFD: {
6442 struct kvm_hyperv_eventfd hvevfd;
6445 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
6447 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
6450 case KVM_SET_PMU_EVENT_FILTER:
6451 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
6453 case KVM_X86_SET_MSR_FILTER:
6454 r = kvm_vm_ioctl_set_msr_filter(kvm, argp);
6463 static void kvm_init_msr_list(void)
6465 struct x86_pmu_capability x86_pmu;
6469 BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
6470 "Please update the fixed PMCs in msrs_to_saved_all[]");
6472 perf_get_x86_pmu_capability(&x86_pmu);
6474 num_msrs_to_save = 0;
6475 num_emulated_msrs = 0;
6476 num_msr_based_features = 0;
6478 for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
6479 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
6483 * Even MSRs that are valid in the host may not be exposed
6484 * to the guests in some cases.
6486 switch (msrs_to_save_all[i]) {
6487 case MSR_IA32_BNDCFGS:
6488 if (!kvm_mpx_supported())
6492 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
6493 !kvm_cpu_cap_has(X86_FEATURE_RDPID))
6496 case MSR_IA32_UMWAIT_CONTROL:
6497 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
6500 case MSR_IA32_RTIT_CTL:
6501 case MSR_IA32_RTIT_STATUS:
6502 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
6505 case MSR_IA32_RTIT_CR3_MATCH:
6506 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6507 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
6510 case MSR_IA32_RTIT_OUTPUT_BASE:
6511 case MSR_IA32_RTIT_OUTPUT_MASK:
6512 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6513 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
6514 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
6517 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
6518 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6519 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
6520 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
6523 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
6524 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
6525 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6528 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
6529 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
6530 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6534 case MSR_IA32_XFD_ERR:
6535 if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
6542 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
6545 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
6546 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
6549 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
6552 for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
6553 struct kvm_msr_entry msr;
6555 msr.index = msr_based_features_all[i];
6556 if (kvm_get_msr_feature(&msr))
6559 msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
6563 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
6571 if (!(lapic_in_kernel(vcpu) &&
6572 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
6573 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
6584 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
6591 if (!(lapic_in_kernel(vcpu) &&
6592 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
6594 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
6596 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
6606 static void kvm_set_segment(struct kvm_vcpu *vcpu,
6607 struct kvm_segment *var, int seg)
6609 static_call(kvm_x86_set_segment)(vcpu, var, seg);
6612 void kvm_get_segment(struct kvm_vcpu *vcpu,
6613 struct kvm_segment *var, int seg)
6615 static_call(kvm_x86_get_segment)(vcpu, var, seg);
6618 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
6619 struct x86_exception *exception)
6621 struct kvm_mmu *mmu = vcpu->arch.mmu;
6624 BUG_ON(!mmu_is_nested(vcpu));
6626 /* NPT walks are always user-walks */
6627 access |= PFERR_USER_MASK;
6628 t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
6633 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
6634 struct x86_exception *exception)
6636 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6638 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6639 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
6641 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
6643 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
6644 struct x86_exception *exception)
6646 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6648 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6649 access |= PFERR_FETCH_MASK;
6650 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
6653 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
6654 struct x86_exception *exception)
6656 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6658 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6659 access |= PFERR_WRITE_MASK;
6660 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
6662 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
6664 /* uses this to access any guest's mapped memory without checking CPL */
6665 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
6666 struct x86_exception *exception)
6668 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6670 return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
6673 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6674 struct kvm_vcpu *vcpu, u32 access,
6675 struct x86_exception *exception)
6677 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6679 int r = X86EMUL_CONTINUE;
6682 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
6683 unsigned offset = addr & (PAGE_SIZE-1);
6684 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
6687 if (gpa == UNMAPPED_GVA)
6688 return X86EMUL_PROPAGATE_FAULT;
6689 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
6692 r = X86EMUL_IO_NEEDED;
6704 /* used for instruction fetching */
6705 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
6706 gva_t addr, void *val, unsigned int bytes,
6707 struct x86_exception *exception)
6709 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6710 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6711 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6715 /* Inline kvm_read_guest_virt_helper for speed. */
6716 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
6718 if (unlikely(gpa == UNMAPPED_GVA))
6719 return X86EMUL_PROPAGATE_FAULT;
6721 offset = addr & (PAGE_SIZE-1);
6722 if (WARN_ON(offset + bytes > PAGE_SIZE))
6723 bytes = (unsigned)PAGE_SIZE - offset;
6724 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
6726 if (unlikely(ret < 0))
6727 return X86EMUL_IO_NEEDED;
6729 return X86EMUL_CONTINUE;
6732 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
6733 gva_t addr, void *val, unsigned int bytes,
6734 struct x86_exception *exception)
6736 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6739 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
6740 * is returned, but our callers are not ready for that and they blindly
6741 * call kvm_inject_page_fault. Ensure that they at least do not leak
6742 * uninitialized kernel stack memory into cr2 and error code.
6744 memset(exception, 0, sizeof(*exception));
6745 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
6748 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
6750 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
6751 gva_t addr, void *val, unsigned int bytes,
6752 struct x86_exception *exception, bool system)
6754 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6757 if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6758 access |= PFERR_USER_MASK;
6760 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
6763 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
6764 unsigned long addr, void *val, unsigned int bytes)
6766 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6767 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
6769 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
6772 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6773 struct kvm_vcpu *vcpu, u32 access,
6774 struct x86_exception *exception)
6776 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6778 int r = X86EMUL_CONTINUE;
6781 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
6782 unsigned offset = addr & (PAGE_SIZE-1);
6783 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
6786 if (gpa == UNMAPPED_GVA)
6787 return X86EMUL_PROPAGATE_FAULT;
6788 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
6790 r = X86EMUL_IO_NEEDED;
6802 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
6803 unsigned int bytes, struct x86_exception *exception,
6806 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6807 u32 access = PFERR_WRITE_MASK;
6809 if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6810 access |= PFERR_USER_MASK;
6812 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6816 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
6817 unsigned int bytes, struct x86_exception *exception)
6819 /* kvm_write_guest_virt_system can pull in tons of pages. */
6820 vcpu->arch.l1tf_flush_l1d = true;
6822 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6823 PFERR_WRITE_MASK, exception);
6825 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
6827 int handle_ud(struct kvm_vcpu *vcpu)
6829 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
6830 int emul_type = EMULTYPE_TRAP_UD;
6831 char sig[5]; /* ud2; .ascii "kvm" */
6832 struct x86_exception e;
6834 if (unlikely(!static_call(kvm_x86_can_emulate_instruction)(vcpu, NULL, 0)))
6837 if (force_emulation_prefix &&
6838 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
6839 sig, sizeof(sig), &e) == 0 &&
6840 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
6841 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
6842 emul_type = EMULTYPE_TRAP_UD_FORCED;
6845 return kvm_emulate_instruction(vcpu, emul_type);
6847 EXPORT_SYMBOL_GPL(handle_ud);
6849 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6850 gpa_t gpa, bool write)
6852 /* For APIC access vmexit */
6853 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6856 if (vcpu_match_mmio_gpa(vcpu, gpa)) {
6857 trace_vcpu_match_mmio(gva, gpa, write, true);
6864 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6865 gpa_t *gpa, struct x86_exception *exception,
6868 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6869 u32 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
6870 | (write ? PFERR_WRITE_MASK : 0);
6873 * currently PKRU is only applied to ept enabled guest so
6874 * there is no pkey in EPT page table for L1 guest or EPT
6875 * shadow page table for L2 guest.
6877 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
6878 !permission_fault(vcpu, vcpu->arch.walk_mmu,
6879 vcpu->arch.mmio_access, 0, access))) {
6880 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
6881 (gva & (PAGE_SIZE - 1));
6882 trace_vcpu_match_mmio(gva, *gpa, write, false);
6886 *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
6888 if (*gpa == UNMAPPED_GVA)
6891 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
6894 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
6895 const void *val, int bytes)
6899 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
6902 kvm_page_track_write(vcpu, gpa, val, bytes);
6906 struct read_write_emulator_ops {
6907 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
6909 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
6910 void *val, int bytes);
6911 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6912 int bytes, void *val);
6913 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6914 void *val, int bytes);
6918 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
6920 if (vcpu->mmio_read_completed) {
6921 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
6922 vcpu->mmio_fragments[0].gpa, val);
6923 vcpu->mmio_read_completed = 0;
6930 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6931 void *val, int bytes)
6933 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
6936 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6937 void *val, int bytes)
6939 return emulator_write_phys(vcpu, gpa, val, bytes);
6942 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
6944 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
6945 return vcpu_mmio_write(vcpu, gpa, bytes, val);
6948 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6949 void *val, int bytes)
6951 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
6952 return X86EMUL_IO_NEEDED;
6955 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6956 void *val, int bytes)
6958 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
6960 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
6961 return X86EMUL_CONTINUE;
6964 static const struct read_write_emulator_ops read_emultor = {
6965 .read_write_prepare = read_prepare,
6966 .read_write_emulate = read_emulate,
6967 .read_write_mmio = vcpu_mmio_read,
6968 .read_write_exit_mmio = read_exit_mmio,
6971 static const struct read_write_emulator_ops write_emultor = {
6972 .read_write_emulate = write_emulate,
6973 .read_write_mmio = write_mmio,
6974 .read_write_exit_mmio = write_exit_mmio,
6978 static int emulator_read_write_onepage(unsigned long addr, void *val,
6980 struct x86_exception *exception,
6981 struct kvm_vcpu *vcpu,
6982 const struct read_write_emulator_ops *ops)
6986 bool write = ops->write;
6987 struct kvm_mmio_fragment *frag;
6988 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6991 * If the exit was due to a NPF we may already have a GPA.
6992 * If the GPA is present, use it to avoid the GVA to GPA table walk.
6993 * Note, this cannot be used on string operations since string
6994 * operation using rep will only have the initial GPA from the NPF
6997 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
6998 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
6999 gpa = ctxt->gpa_val;
7000 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7002 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7004 return X86EMUL_PROPAGATE_FAULT;
7007 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7008 return X86EMUL_CONTINUE;
7011 * Is this MMIO handled locally?
7013 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7014 if (handled == bytes)
7015 return X86EMUL_CONTINUE;
7021 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7022 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7026 return X86EMUL_CONTINUE;
7029 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7031 void *val, unsigned int bytes,
7032 struct x86_exception *exception,
7033 const struct read_write_emulator_ops *ops)
7035 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7039 if (ops->read_write_prepare &&
7040 ops->read_write_prepare(vcpu, val, bytes))
7041 return X86EMUL_CONTINUE;
7043 vcpu->mmio_nr_fragments = 0;
7045 /* Crossing a page boundary? */
7046 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7049 now = -addr & ~PAGE_MASK;
7050 rc = emulator_read_write_onepage(addr, val, now, exception,
7053 if (rc != X86EMUL_CONTINUE)
7056 if (ctxt->mode != X86EMUL_MODE_PROT64)
7062 rc = emulator_read_write_onepage(addr, val, bytes, exception,
7064 if (rc != X86EMUL_CONTINUE)
7067 if (!vcpu->mmio_nr_fragments)
7070 gpa = vcpu->mmio_fragments[0].gpa;
7072 vcpu->mmio_needed = 1;
7073 vcpu->mmio_cur_fragment = 0;
7075 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
7076 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
7077 vcpu->run->exit_reason = KVM_EXIT_MMIO;
7078 vcpu->run->mmio.phys_addr = gpa;
7080 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
7083 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
7087 struct x86_exception *exception)
7089 return emulator_read_write(ctxt, addr, val, bytes,
7090 exception, &read_emultor);
7093 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
7097 struct x86_exception *exception)
7099 return emulator_read_write(ctxt, addr, (void *)val, bytes,
7100 exception, &write_emultor);
7103 #define CMPXCHG_TYPE(t, ptr, old, new) \
7104 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
7106 #ifdef CONFIG_X86_64
7107 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
7109 # define CMPXCHG64(ptr, old, new) \
7110 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
7113 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
7118 struct x86_exception *exception)
7120 struct kvm_host_map map;
7121 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7127 /* guests cmpxchg8b have to be emulated atomically */
7128 if (bytes > 8 || (bytes & (bytes - 1)))
7131 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
7133 if (gpa == UNMAPPED_GVA ||
7134 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7138 * Emulate the atomic as a straight write to avoid #AC if SLD is
7139 * enabled in the host and the access splits a cache line.
7141 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
7142 page_line_mask = ~(cache_line_size() - 1);
7144 page_line_mask = PAGE_MASK;
7146 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
7149 if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
7152 kaddr = map.hva + offset_in_page(gpa);
7156 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
7159 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
7162 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
7165 exchanged = CMPXCHG64(kaddr, old, new);
7171 kvm_vcpu_unmap(vcpu, &map, true);
7174 return X86EMUL_CMPXCHG_FAILED;
7176 kvm_page_track_write(vcpu, gpa, new, bytes);
7178 return X86EMUL_CONTINUE;
7181 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
7183 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
7186 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
7190 for (i = 0; i < vcpu->arch.pio.count; i++) {
7191 if (vcpu->arch.pio.in)
7192 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
7193 vcpu->arch.pio.size, pd);
7195 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
7196 vcpu->arch.pio.port, vcpu->arch.pio.size,
7200 pd += vcpu->arch.pio.size;
7205 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
7206 unsigned short port,
7207 unsigned int count, bool in)
7209 vcpu->arch.pio.port = port;
7210 vcpu->arch.pio.in = in;
7211 vcpu->arch.pio.count = count;
7212 vcpu->arch.pio.size = size;
7214 if (!kernel_pio(vcpu, vcpu->arch.pio_data))
7217 vcpu->run->exit_reason = KVM_EXIT_IO;
7218 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
7219 vcpu->run->io.size = size;
7220 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
7221 vcpu->run->io.count = count;
7222 vcpu->run->io.port = port;
7227 static int __emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7228 unsigned short port, unsigned int count)
7230 WARN_ON(vcpu->arch.pio.count);
7231 memset(vcpu->arch.pio_data, 0, size * count);
7232 return emulator_pio_in_out(vcpu, size, port, count, true);
7235 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
7237 int size = vcpu->arch.pio.size;
7238 unsigned count = vcpu->arch.pio.count;
7239 memcpy(val, vcpu->arch.pio_data, size * count);
7240 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
7241 vcpu->arch.pio.count = 0;
7244 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7245 unsigned short port, void *val, unsigned int count)
7247 if (vcpu->arch.pio.count) {
7249 * Complete a previous iteration that required userspace I/O.
7250 * Note, @count isn't guaranteed to match pio.count as userspace
7251 * can modify ECX before rerunning the vCPU. Ignore any such
7252 * shenanigans as KVM doesn't support modifying the rep count,
7253 * and the emulator ensures @count doesn't overflow the buffer.
7256 int r = __emulator_pio_in(vcpu, size, port, count);
7260 /* Results already available, fall through. */
7263 complete_emulator_pio_in(vcpu, val);
7267 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
7268 int size, unsigned short port, void *val,
7271 return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
7275 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
7276 unsigned short port, const void *val,
7281 memcpy(vcpu->arch.pio_data, val, size * count);
7282 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
7283 ret = emulator_pio_in_out(vcpu, size, port, count, false);
7285 vcpu->arch.pio.count = 0;
7290 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
7291 int size, unsigned short port,
7292 const void *val, unsigned int count)
7294 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
7297 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
7299 return static_call(kvm_x86_get_segment_base)(vcpu, seg);
7302 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
7304 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
7307 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
7309 if (!need_emulate_wbinvd(vcpu))
7310 return X86EMUL_CONTINUE;
7312 if (static_call(kvm_x86_has_wbinvd_exit)()) {
7313 int cpu = get_cpu();
7315 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
7316 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
7317 wbinvd_ipi, NULL, 1);
7319 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
7322 return X86EMUL_CONTINUE;
7325 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
7327 kvm_emulate_wbinvd_noskip(vcpu);
7328 return kvm_skip_emulated_instruction(vcpu);
7330 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
7334 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
7336 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
7339 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
7340 unsigned long *dest)
7342 kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
7345 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
7346 unsigned long value)
7349 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
7352 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
7354 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
7357 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
7359 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7360 unsigned long value;
7364 value = kvm_read_cr0(vcpu);
7367 value = vcpu->arch.cr2;
7370 value = kvm_read_cr3(vcpu);
7373 value = kvm_read_cr4(vcpu);
7376 value = kvm_get_cr8(vcpu);
7379 kvm_err("%s: unexpected cr %u\n", __func__, cr);
7386 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
7388 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7393 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
7396 vcpu->arch.cr2 = val;
7399 res = kvm_set_cr3(vcpu, val);
7402 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
7405 res = kvm_set_cr8(vcpu, val);
7408 kvm_err("%s: unexpected cr %u\n", __func__, cr);
7415 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
7417 return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
7420 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7422 static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
7425 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7427 static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
7430 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7432 static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
7435 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7437 static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
7440 static unsigned long emulator_get_cached_segment_base(
7441 struct x86_emulate_ctxt *ctxt, int seg)
7443 return get_segment_base(emul_to_vcpu(ctxt), seg);
7446 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
7447 struct desc_struct *desc, u32 *base3,
7450 struct kvm_segment var;
7452 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
7453 *selector = var.selector;
7456 memset(desc, 0, sizeof(*desc));
7464 set_desc_limit(desc, var.limit);
7465 set_desc_base(desc, (unsigned long)var.base);
7466 #ifdef CONFIG_X86_64
7468 *base3 = var.base >> 32;
7470 desc->type = var.type;
7472 desc->dpl = var.dpl;
7473 desc->p = var.present;
7474 desc->avl = var.avl;
7482 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
7483 struct desc_struct *desc, u32 base3,
7486 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7487 struct kvm_segment var;
7489 var.selector = selector;
7490 var.base = get_desc_base(desc);
7491 #ifdef CONFIG_X86_64
7492 var.base |= ((u64)base3) << 32;
7494 var.limit = get_desc_limit(desc);
7496 var.limit = (var.limit << 12) | 0xfff;
7497 var.type = desc->type;
7498 var.dpl = desc->dpl;
7503 var.avl = desc->avl;
7504 var.present = desc->p;
7505 var.unusable = !var.present;
7508 kvm_set_segment(vcpu, &var, seg);
7512 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
7513 u32 msr_index, u64 *pdata)
7515 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7518 r = kvm_get_msr(vcpu, msr_index, pdata);
7520 if (r && kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
7521 complete_emulated_rdmsr, r)) {
7522 /* Bounce to user space */
7523 return X86EMUL_IO_NEEDED;
7529 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
7530 u32 msr_index, u64 data)
7532 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7535 r = kvm_set_msr(vcpu, msr_index, data);
7537 if (r && kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
7538 complete_emulated_msr_access, r)) {
7539 /* Bounce to user space */
7540 return X86EMUL_IO_NEEDED;
7546 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
7548 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7550 return vcpu->arch.smbase;
7553 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
7555 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7557 vcpu->arch.smbase = smbase;
7560 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
7563 if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc))
7568 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
7569 u32 pmc, u64 *pdata)
7571 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
7574 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
7576 emul_to_vcpu(ctxt)->arch.halt_request = 1;
7579 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
7580 struct x86_instruction_info *info,
7581 enum x86_intercept_stage stage)
7583 return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
7587 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
7588 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
7591 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
7594 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
7596 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
7599 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
7601 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
7604 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
7606 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
7609 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
7611 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
7614 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
7616 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
7619 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
7621 static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
7624 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
7626 return emul_to_vcpu(ctxt)->arch.hflags;
7629 static void emulator_exiting_smm(struct x86_emulate_ctxt *ctxt)
7631 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7633 kvm_smm_changed(vcpu, false);
7636 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt,
7637 const char *smstate)
7639 return static_call(kvm_x86_leave_smm)(emul_to_vcpu(ctxt), smstate);
7642 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
7644 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
7647 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
7649 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
7652 static const struct x86_emulate_ops emulate_ops = {
7653 .read_gpr = emulator_read_gpr,
7654 .write_gpr = emulator_write_gpr,
7655 .read_std = emulator_read_std,
7656 .write_std = emulator_write_std,
7657 .read_phys = kvm_read_guest_phys_system,
7658 .fetch = kvm_fetch_guest_virt,
7659 .read_emulated = emulator_read_emulated,
7660 .write_emulated = emulator_write_emulated,
7661 .cmpxchg_emulated = emulator_cmpxchg_emulated,
7662 .invlpg = emulator_invlpg,
7663 .pio_in_emulated = emulator_pio_in_emulated,
7664 .pio_out_emulated = emulator_pio_out_emulated,
7665 .get_segment = emulator_get_segment,
7666 .set_segment = emulator_set_segment,
7667 .get_cached_segment_base = emulator_get_cached_segment_base,
7668 .get_gdt = emulator_get_gdt,
7669 .get_idt = emulator_get_idt,
7670 .set_gdt = emulator_set_gdt,
7671 .set_idt = emulator_set_idt,
7672 .get_cr = emulator_get_cr,
7673 .set_cr = emulator_set_cr,
7674 .cpl = emulator_get_cpl,
7675 .get_dr = emulator_get_dr,
7676 .set_dr = emulator_set_dr,
7677 .get_smbase = emulator_get_smbase,
7678 .set_smbase = emulator_set_smbase,
7679 .set_msr = emulator_set_msr,
7680 .get_msr = emulator_get_msr,
7681 .check_pmc = emulator_check_pmc,
7682 .read_pmc = emulator_read_pmc,
7683 .halt = emulator_halt,
7684 .wbinvd = emulator_wbinvd,
7685 .fix_hypercall = emulator_fix_hypercall,
7686 .intercept = emulator_intercept,
7687 .get_cpuid = emulator_get_cpuid,
7688 .guest_has_long_mode = emulator_guest_has_long_mode,
7689 .guest_has_movbe = emulator_guest_has_movbe,
7690 .guest_has_fxsr = emulator_guest_has_fxsr,
7691 .set_nmi_mask = emulator_set_nmi_mask,
7692 .get_hflags = emulator_get_hflags,
7693 .exiting_smm = emulator_exiting_smm,
7694 .leave_smm = emulator_leave_smm,
7695 .triple_fault = emulator_triple_fault,
7696 .set_xcr = emulator_set_xcr,
7699 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
7701 u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
7703 * an sti; sti; sequence only disable interrupts for the first
7704 * instruction. So, if the last instruction, be it emulated or
7705 * not, left the system with the INT_STI flag enabled, it
7706 * means that the last instruction is an sti. We should not
7707 * leave the flag on in this case. The same goes for mov ss
7709 if (int_shadow & mask)
7711 if (unlikely(int_shadow || mask)) {
7712 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
7714 kvm_make_request(KVM_REQ_EVENT, vcpu);
7718 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
7720 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7721 if (ctxt->exception.vector == PF_VECTOR)
7722 return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
7724 if (ctxt->exception.error_code_valid)
7725 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
7726 ctxt->exception.error_code);
7728 kvm_queue_exception(vcpu, ctxt->exception.vector);
7732 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
7734 struct x86_emulate_ctxt *ctxt;
7736 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
7738 pr_err("kvm: failed to allocate vcpu's emulator\n");
7743 ctxt->ops = &emulate_ops;
7744 vcpu->arch.emulate_ctxt = ctxt;
7749 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
7751 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7754 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
7756 ctxt->gpa_available = false;
7757 ctxt->eflags = kvm_get_rflags(vcpu);
7758 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
7760 ctxt->eip = kvm_rip_read(vcpu);
7761 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
7762 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
7763 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
7764 cs_db ? X86EMUL_MODE_PROT32 :
7765 X86EMUL_MODE_PROT16;
7766 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
7767 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
7768 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
7770 ctxt->interruptibility = 0;
7771 ctxt->have_exception = false;
7772 ctxt->exception.vector = -1;
7773 ctxt->perm_ok = false;
7775 init_decode_cache(ctxt);
7776 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7779 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
7781 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7784 init_emulate_ctxt(vcpu);
7788 ctxt->_eip = ctxt->eip + inc_eip;
7789 ret = emulate_int_real(ctxt, irq);
7791 if (ret != X86EMUL_CONTINUE) {
7792 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7794 ctxt->eip = ctxt->_eip;
7795 kvm_rip_write(vcpu, ctxt->eip);
7796 kvm_set_rflags(vcpu, ctxt->eflags);
7799 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
7801 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
7802 u8 ndata, u8 *insn_bytes, u8 insn_size)
7804 struct kvm_run *run = vcpu->run;
7809 * Zero the whole array used to retrieve the exit info, as casting to
7810 * u32 for select entries will leave some chunks uninitialized.
7812 memset(&info, 0, sizeof(info));
7814 static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1],
7815 &info[2], (u32 *)&info[3],
7818 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7819 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
7822 * There's currently space for 13 entries, but 5 are used for the exit
7823 * reason and info. Restrict to 4 to reduce the maintenance burden
7824 * when expanding kvm_run.emulation_failure in the future.
7826 if (WARN_ON_ONCE(ndata > 4))
7829 /* Always include the flags as a 'data' entry. */
7831 run->emulation_failure.flags = 0;
7834 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
7835 sizeof(run->emulation_failure.insn_bytes) != 16));
7837 run->emulation_failure.flags |=
7838 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
7839 run->emulation_failure.insn_size = insn_size;
7840 memset(run->emulation_failure.insn_bytes, 0x90,
7841 sizeof(run->emulation_failure.insn_bytes));
7842 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
7845 memcpy(&run->internal.data[info_start], info, sizeof(info));
7846 memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
7847 ndata * sizeof(data[0]));
7849 run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
7852 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
7854 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7856 prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
7857 ctxt->fetch.end - ctxt->fetch.data);
7860 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
7863 prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
7865 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
7867 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
7869 __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
7871 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
7873 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
7875 struct kvm *kvm = vcpu->kvm;
7877 ++vcpu->stat.insn_emulation_fail;
7878 trace_kvm_emulate_insn_failed(vcpu);
7880 if (emulation_type & EMULTYPE_VMWARE_GP) {
7881 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7885 if (kvm->arch.exit_on_emulation_error ||
7886 (emulation_type & EMULTYPE_SKIP)) {
7887 prepare_emulation_ctxt_failure_exit(vcpu);
7891 kvm_queue_exception(vcpu, UD_VECTOR);
7893 if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
7894 prepare_emulation_ctxt_failure_exit(vcpu);
7901 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7902 bool write_fault_to_shadow_pgtable,
7905 gpa_t gpa = cr2_or_gpa;
7908 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7911 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7912 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7915 if (!vcpu->arch.mmu->direct_map) {
7917 * Write permission should be allowed since only
7918 * write access need to be emulated.
7920 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7923 * If the mapping is invalid in guest, let cpu retry
7924 * it to generate fault.
7926 if (gpa == UNMAPPED_GVA)
7931 * Do not retry the unhandleable instruction if it faults on the
7932 * readonly host memory, otherwise it will goto a infinite loop:
7933 * retry instruction -> write #PF -> emulation fail -> retry
7934 * instruction -> ...
7936 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
7939 * If the instruction failed on the error pfn, it can not be fixed,
7940 * report the error to userspace.
7942 if (is_error_noslot_pfn(pfn))
7945 kvm_release_pfn_clean(pfn);
7947 /* The instructions are well-emulated on direct mmu. */
7948 if (vcpu->arch.mmu->direct_map) {
7949 unsigned int indirect_shadow_pages;
7951 write_lock(&vcpu->kvm->mmu_lock);
7952 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
7953 write_unlock(&vcpu->kvm->mmu_lock);
7955 if (indirect_shadow_pages)
7956 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7962 * if emulation was due to access to shadowed page table
7963 * and it failed try to unshadow page and re-enter the
7964 * guest to let CPU execute the instruction.
7966 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7969 * If the access faults on its page table, it can not
7970 * be fixed by unprotecting shadow page and it should
7971 * be reported to userspace.
7973 return !write_fault_to_shadow_pgtable;
7976 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
7977 gpa_t cr2_or_gpa, int emulation_type)
7979 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7980 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
7982 last_retry_eip = vcpu->arch.last_retry_eip;
7983 last_retry_addr = vcpu->arch.last_retry_addr;
7986 * If the emulation is caused by #PF and it is non-page_table
7987 * writing instruction, it means the VM-EXIT is caused by shadow
7988 * page protected, we can zap the shadow page and retry this
7989 * instruction directly.
7991 * Note: if the guest uses a non-page-table modifying instruction
7992 * on the PDE that points to the instruction, then we will unmap
7993 * the instruction and go to an infinite loop. So, we cache the
7994 * last retried eip and the last fault address, if we meet the eip
7995 * and the address again, we can break out of the potential infinite
7998 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
8000 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8003 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8004 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8007 if (x86_page_table_writing_insn(ctxt))
8010 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
8013 vcpu->arch.last_retry_eip = ctxt->eip;
8014 vcpu->arch.last_retry_addr = cr2_or_gpa;
8016 if (!vcpu->arch.mmu->direct_map)
8017 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8019 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8024 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8025 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8027 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm)
8029 trace_kvm_smm_transition(vcpu->vcpu_id, vcpu->arch.smbase, entering_smm);
8032 vcpu->arch.hflags |= HF_SMM_MASK;
8034 vcpu->arch.hflags &= ~(HF_SMM_MASK | HF_SMM_INSIDE_NMI_MASK);
8036 /* Process a latched INIT or SMI, if any. */
8037 kvm_make_request(KVM_REQ_EVENT, vcpu);
8040 * Even if KVM_SET_SREGS2 loaded PDPTRs out of band,
8041 * on SMM exit we still need to reload them from
8044 vcpu->arch.pdptrs_from_userspace = false;
8047 kvm_mmu_reset_context(vcpu);
8050 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8059 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8060 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8065 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8067 struct kvm_run *kvm_run = vcpu->run;
8069 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8070 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8071 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8072 kvm_run->debug.arch.exception = DB_VECTOR;
8073 kvm_run->exit_reason = KVM_EXIT_DEBUG;
8076 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8080 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8082 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8085 r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
8089 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8092 * rflags is the old, "raw" value of the flags. The new value has
8093 * not been saved yet.
8095 * This is correct even for TF set by the guest, because "the
8096 * processor will not generate this exception after the instruction
8097 * that sets the TF flag".
8099 if (unlikely(rflags & X86_EFLAGS_TF))
8100 r = kvm_vcpu_do_singlestep(vcpu);
8103 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8105 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
8107 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
8108 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
8109 struct kvm_run *kvm_run = vcpu->run;
8110 unsigned long eip = kvm_get_linear_rip(vcpu);
8111 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8112 vcpu->arch.guest_debug_dr7,
8116 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
8117 kvm_run->debug.arch.pc = eip;
8118 kvm_run->debug.arch.exception = DB_VECTOR;
8119 kvm_run->exit_reason = KVM_EXIT_DEBUG;
8125 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
8126 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
8127 unsigned long eip = kvm_get_linear_rip(vcpu);
8128 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8133 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
8142 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
8144 switch (ctxt->opcode_len) {
8151 case 0xe6: /* OUT */
8155 case 0x6c: /* INS */
8157 case 0x6e: /* OUTS */
8164 case 0x33: /* RDPMC */
8174 * Decode to be emulated instruction. Return EMULATION_OK if success.
8176 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
8177 void *insn, int insn_len)
8179 int r = EMULATION_OK;
8180 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8182 init_emulate_ctxt(vcpu);
8185 * We will reenter on the same instruction since we do not set
8186 * complete_userspace_io. This does not handle watchpoints yet,
8187 * those would be handled in the emulate_ops.
8189 if (!(emulation_type & EMULTYPE_SKIP) &&
8190 kvm_vcpu_check_breakpoint(vcpu, &r))
8193 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
8195 trace_kvm_emulate_insn_start(vcpu);
8196 ++vcpu->stat.insn_emulation;
8200 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
8202 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8203 int emulation_type, void *insn, int insn_len)
8206 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8207 bool writeback = true;
8208 bool write_fault_to_spt;
8210 if (unlikely(!static_call(kvm_x86_can_emulate_instruction)(vcpu, insn, insn_len)))
8213 vcpu->arch.l1tf_flush_l1d = true;
8216 * Clear write_fault_to_shadow_pgtable here to ensure it is
8219 write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
8220 vcpu->arch.write_fault_to_shadow_pgtable = false;
8222 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
8223 kvm_clear_exception_queue(vcpu);
8225 r = x86_decode_emulated_instruction(vcpu, emulation_type,
8227 if (r != EMULATION_OK) {
8228 if ((emulation_type & EMULTYPE_TRAP_UD) ||
8229 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
8230 kvm_queue_exception(vcpu, UD_VECTOR);
8233 if (reexecute_instruction(vcpu, cr2_or_gpa,
8237 if (ctxt->have_exception) {
8239 * #UD should result in just EMULATION_FAILED, and trap-like
8240 * exception should not be encountered during decode.
8242 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
8243 exception_type(ctxt->exception.vector) == EXCPT_TRAP);
8244 inject_emulated_exception(vcpu);
8247 return handle_emulation_failure(vcpu, emulation_type);
8251 if ((emulation_type & EMULTYPE_VMWARE_GP) &&
8252 !is_vmware_backdoor_opcode(ctxt)) {
8253 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8258 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
8259 * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
8260 * The caller is responsible for updating interruptibility state and
8261 * injecting single-step #DBs.
8263 if (emulation_type & EMULTYPE_SKIP) {
8264 if (ctxt->mode != X86EMUL_MODE_PROT64)
8265 ctxt->eip = (u32)ctxt->_eip;
8267 ctxt->eip = ctxt->_eip;
8269 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
8274 kvm_rip_write(vcpu, ctxt->eip);
8275 if (ctxt->eflags & X86_EFLAGS_RF)
8276 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
8280 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
8283 /* this is needed for vmware backdoor interface to work since it
8284 changes registers values during IO operation */
8285 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
8286 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8287 emulator_invalidate_register_cache(ctxt);
8291 if (emulation_type & EMULTYPE_PF) {
8292 /* Save the faulting GPA (cr2) in the address field */
8293 ctxt->exception.address = cr2_or_gpa;
8295 /* With shadow page tables, cr2 contains a GVA or nGPA. */
8296 if (vcpu->arch.mmu->direct_map) {
8297 ctxt->gpa_available = true;
8298 ctxt->gpa_val = cr2_or_gpa;
8301 /* Sanitize the address out of an abundance of paranoia. */
8302 ctxt->exception.address = 0;
8305 r = x86_emulate_insn(ctxt);
8307 if (r == EMULATION_INTERCEPTED)
8310 if (r == EMULATION_FAILED) {
8311 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
8315 return handle_emulation_failure(vcpu, emulation_type);
8318 if (ctxt->have_exception) {
8320 if (inject_emulated_exception(vcpu))
8322 } else if (vcpu->arch.pio.count) {
8323 if (!vcpu->arch.pio.in) {
8324 /* FIXME: return into emulator if single-stepping. */
8325 vcpu->arch.pio.count = 0;
8328 vcpu->arch.complete_userspace_io = complete_emulated_pio;
8331 } else if (vcpu->mmio_needed) {
8332 ++vcpu->stat.mmio_exits;
8334 if (!vcpu->mmio_is_write)
8337 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8338 } else if (vcpu->arch.complete_userspace_io) {
8341 } else if (r == EMULATION_RESTART)
8348 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8349 toggle_interruptibility(vcpu, ctxt->interruptibility);
8350 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8351 if (!ctxt->have_exception ||
8352 exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
8353 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8354 if (ctxt->is_branch)
8355 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
8356 kvm_rip_write(vcpu, ctxt->eip);
8357 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
8358 r = kvm_vcpu_do_singlestep(vcpu);
8359 if (kvm_x86_ops.update_emulated_instruction)
8360 static_call(kvm_x86_update_emulated_instruction)(vcpu);
8361 __kvm_set_rflags(vcpu, ctxt->eflags);
8365 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
8366 * do nothing, and it will be requested again as soon as
8367 * the shadow expires. But we still need to check here,
8368 * because POPF has no interrupt shadow.
8370 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
8371 kvm_make_request(KVM_REQ_EVENT, vcpu);
8373 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
8378 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
8380 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
8382 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
8384 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
8385 void *insn, int insn_len)
8387 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
8389 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
8391 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
8393 vcpu->arch.pio.count = 0;
8397 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
8399 vcpu->arch.pio.count = 0;
8401 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
8404 return kvm_skip_emulated_instruction(vcpu);
8407 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
8408 unsigned short port)
8410 unsigned long val = kvm_rax_read(vcpu);
8411 int ret = emulator_pio_out(vcpu, size, port, &val, 1);
8417 * Workaround userspace that relies on old KVM behavior of %rip being
8418 * incremented prior to exiting to userspace to handle "OUT 0x7e".
8421 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
8422 vcpu->arch.complete_userspace_io =
8423 complete_fast_pio_out_port_0x7e;
8424 kvm_skip_emulated_instruction(vcpu);
8426 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8427 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
8432 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
8436 /* We should only ever be called with arch.pio.count equal to 1 */
8437 BUG_ON(vcpu->arch.pio.count != 1);
8439 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
8440 vcpu->arch.pio.count = 0;
8444 /* For size less than 4 we merge, else we zero extend */
8445 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
8448 * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
8449 * the copy and tracing
8451 emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
8452 kvm_rax_write(vcpu, val);
8454 return kvm_skip_emulated_instruction(vcpu);
8457 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
8458 unsigned short port)
8463 /* For size less than 4 we merge, else we zero extend */
8464 val = (size < 4) ? kvm_rax_read(vcpu) : 0;
8466 ret = emulator_pio_in(vcpu, size, port, &val, 1);
8468 kvm_rax_write(vcpu, val);
8472 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8473 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
8478 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
8483 ret = kvm_fast_pio_in(vcpu, size, port);
8485 ret = kvm_fast_pio_out(vcpu, size, port);
8486 return ret && kvm_skip_emulated_instruction(vcpu);
8488 EXPORT_SYMBOL_GPL(kvm_fast_pio);
8490 static int kvmclock_cpu_down_prep(unsigned int cpu)
8492 __this_cpu_write(cpu_tsc_khz, 0);
8496 static void tsc_khz_changed(void *data)
8498 struct cpufreq_freqs *freq = data;
8499 unsigned long khz = 0;
8503 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8504 khz = cpufreq_quick_get(raw_smp_processor_id());
8507 __this_cpu_write(cpu_tsc_khz, khz);
8510 #ifdef CONFIG_X86_64
8511 static void kvm_hyperv_tsc_notifier(void)
8516 mutex_lock(&kvm_lock);
8517 list_for_each_entry(kvm, &vm_list, vm_list)
8518 kvm_make_mclock_inprogress_request(kvm);
8520 /* no guest entries from this point */
8521 hyperv_stop_tsc_emulation();
8523 /* TSC frequency always matches when on Hyper-V */
8524 for_each_present_cpu(cpu)
8525 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
8526 kvm_max_guest_tsc_khz = tsc_khz;
8528 list_for_each_entry(kvm, &vm_list, vm_list) {
8529 __kvm_start_pvclock_update(kvm);
8530 pvclock_update_vm_gtod_copy(kvm);
8531 kvm_end_pvclock_update(kvm);
8534 mutex_unlock(&kvm_lock);
8538 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
8541 struct kvm_vcpu *vcpu;
8546 * We allow guests to temporarily run on slowing clocks,
8547 * provided we notify them after, or to run on accelerating
8548 * clocks, provided we notify them before. Thus time never
8551 * However, we have a problem. We can't atomically update
8552 * the frequency of a given CPU from this function; it is
8553 * merely a notifier, which can be called from any CPU.
8554 * Changing the TSC frequency at arbitrary points in time
8555 * requires a recomputation of local variables related to
8556 * the TSC for each VCPU. We must flag these local variables
8557 * to be updated and be sure the update takes place with the
8558 * new frequency before any guests proceed.
8560 * Unfortunately, the combination of hotplug CPU and frequency
8561 * change creates an intractable locking scenario; the order
8562 * of when these callouts happen is undefined with respect to
8563 * CPU hotplug, and they can race with each other. As such,
8564 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
8565 * undefined; you can actually have a CPU frequency change take
8566 * place in between the computation of X and the setting of the
8567 * variable. To protect against this problem, all updates of
8568 * the per_cpu tsc_khz variable are done in an interrupt
8569 * protected IPI, and all callers wishing to update the value
8570 * must wait for a synchronous IPI to complete (which is trivial
8571 * if the caller is on the CPU already). This establishes the
8572 * necessary total order on variable updates.
8574 * Note that because a guest time update may take place
8575 * anytime after the setting of the VCPU's request bit, the
8576 * correct TSC value must be set before the request. However,
8577 * to ensure the update actually makes it to any guest which
8578 * starts running in hardware virtualization between the set
8579 * and the acquisition of the spinlock, we must also ping the
8580 * CPU after setting the request bit.
8584 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8586 mutex_lock(&kvm_lock);
8587 list_for_each_entry(kvm, &vm_list, vm_list) {
8588 kvm_for_each_vcpu(i, vcpu, kvm) {
8589 if (vcpu->cpu != cpu)
8591 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8592 if (vcpu->cpu != raw_smp_processor_id())
8596 mutex_unlock(&kvm_lock);
8598 if (freq->old < freq->new && send_ipi) {
8600 * We upscale the frequency. Must make the guest
8601 * doesn't see old kvmclock values while running with
8602 * the new frequency, otherwise we risk the guest sees
8603 * time go backwards.
8605 * In case we update the frequency for another cpu
8606 * (which might be in guest context) send an interrupt
8607 * to kick the cpu out of guest context. Next time
8608 * guest context is entered kvmclock will be updated,
8609 * so the guest will not see stale values.
8611 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8615 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
8618 struct cpufreq_freqs *freq = data;
8621 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
8623 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
8626 for_each_cpu(cpu, freq->policy->cpus)
8627 __kvmclock_cpufreq_notifier(freq, cpu);
8632 static struct notifier_block kvmclock_cpufreq_notifier_block = {
8633 .notifier_call = kvmclock_cpufreq_notifier
8636 static int kvmclock_cpu_online(unsigned int cpu)
8638 tsc_khz_changed(NULL);
8642 static void kvm_timer_init(void)
8644 max_tsc_khz = tsc_khz;
8646 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
8647 #ifdef CONFIG_CPU_FREQ
8648 struct cpufreq_policy *policy;
8652 policy = cpufreq_cpu_get(cpu);
8654 if (policy->cpuinfo.max_freq)
8655 max_tsc_khz = policy->cpuinfo.max_freq;
8656 cpufreq_cpu_put(policy);
8660 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
8661 CPUFREQ_TRANSITION_NOTIFIER);
8664 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
8665 kvmclock_cpu_online, kvmclock_cpu_down_prep);
8668 #ifdef CONFIG_X86_64
8669 static void pvclock_gtod_update_fn(struct work_struct *work)
8672 struct kvm_vcpu *vcpu;
8675 mutex_lock(&kvm_lock);
8676 list_for_each_entry(kvm, &vm_list, vm_list)
8677 kvm_for_each_vcpu(i, vcpu, kvm)
8678 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8679 atomic_set(&kvm_guest_has_master_clock, 0);
8680 mutex_unlock(&kvm_lock);
8683 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
8686 * Indirection to move queue_work() out of the tk_core.seq write held
8687 * region to prevent possible deadlocks against time accessors which
8688 * are invoked with work related locks held.
8690 static void pvclock_irq_work_fn(struct irq_work *w)
8692 queue_work(system_long_wq, &pvclock_gtod_work);
8695 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
8698 * Notification about pvclock gtod data update.
8700 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
8703 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
8704 struct timekeeper *tk = priv;
8706 update_pvclock_gtod(tk);
8709 * Disable master clock if host does not trust, or does not use,
8710 * TSC based clocksource. Delegate queue_work() to irq_work as
8711 * this is invoked with tk_core.seq write held.
8713 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
8714 atomic_read(&kvm_guest_has_master_clock) != 0)
8715 irq_work_queue(&pvclock_irq_work);
8719 static struct notifier_block pvclock_gtod_notifier = {
8720 .notifier_call = pvclock_gtod_notify,
8724 int kvm_arch_init(void *opaque)
8726 struct kvm_x86_init_ops *ops = opaque;
8729 if (kvm_x86_ops.hardware_enable) {
8730 pr_err("kvm: already loaded vendor module '%s'\n", kvm_x86_ops.name);
8735 if (!ops->cpu_has_kvm_support()) {
8736 pr_err_ratelimited("kvm: no hardware support for '%s'\n",
8737 ops->runtime_ops->name);
8741 if (ops->disabled_by_bios()) {
8742 pr_err_ratelimited("kvm: support for '%s' disabled by bios\n",
8743 ops->runtime_ops->name);
8749 * KVM explicitly assumes that the guest has an FPU and
8750 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
8751 * vCPU's FPU state as a fxregs_state struct.
8753 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
8754 printk(KERN_ERR "kvm: inadequate fpu\n");
8761 x86_emulator_cache = kvm_alloc_emulator_cache();
8762 if (!x86_emulator_cache) {
8763 pr_err("kvm: failed to allocate cache for x86 emulator\n");
8767 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
8768 if (!user_return_msrs) {
8769 printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
8770 goto out_free_x86_emulator_cache;
8772 kvm_nr_uret_msrs = 0;
8774 r = kvm_mmu_module_init();
8776 goto out_free_percpu;
8780 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
8781 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
8782 supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
8785 if (pi_inject_timer == -1)
8786 pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
8787 #ifdef CONFIG_X86_64
8788 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
8790 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8791 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
8797 free_percpu(user_return_msrs);
8798 out_free_x86_emulator_cache:
8799 kmem_cache_destroy(x86_emulator_cache);
8804 void kvm_arch_exit(void)
8806 #ifdef CONFIG_X86_64
8807 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8808 clear_hv_tscchange_cb();
8812 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8813 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
8814 CPUFREQ_TRANSITION_NOTIFIER);
8815 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
8816 #ifdef CONFIG_X86_64
8817 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
8818 irq_work_sync(&pvclock_irq_work);
8819 cancel_work_sync(&pvclock_gtod_work);
8821 kvm_x86_ops.hardware_enable = NULL;
8822 kvm_mmu_module_exit();
8823 free_percpu(user_return_msrs);
8824 kmem_cache_destroy(x86_emulator_cache);
8825 #ifdef CONFIG_KVM_XEN
8826 static_key_deferred_flush(&kvm_xen_enabled);
8827 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
8831 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
8834 * The vCPU has halted, e.g. executed HLT. Update the run state if the
8835 * local APIC is in-kernel, the run loop will detect the non-runnable
8836 * state and halt the vCPU. Exit to userspace if the local APIC is
8837 * managed by userspace, in which case userspace is responsible for
8838 * handling wake events.
8840 ++vcpu->stat.halt_exits;
8841 if (lapic_in_kernel(vcpu)) {
8842 vcpu->arch.mp_state = state;
8845 vcpu->run->exit_reason = reason;
8850 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
8852 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
8854 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
8856 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
8858 int ret = kvm_skip_emulated_instruction(vcpu);
8860 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
8861 * KVM_EXIT_DEBUG here.
8863 return kvm_emulate_halt_noskip(vcpu) && ret;
8865 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
8867 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
8869 int ret = kvm_skip_emulated_instruction(vcpu);
8871 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
8872 KVM_EXIT_AP_RESET_HOLD) && ret;
8874 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
8876 #ifdef CONFIG_X86_64
8877 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
8878 unsigned long clock_type)
8880 struct kvm_clock_pairing clock_pairing;
8881 struct timespec64 ts;
8885 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
8886 return -KVM_EOPNOTSUPP;
8888 if (!kvm_get_walltime_and_clockread(&ts, &cycle))
8889 return -KVM_EOPNOTSUPP;
8891 clock_pairing.sec = ts.tv_sec;
8892 clock_pairing.nsec = ts.tv_nsec;
8893 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
8894 clock_pairing.flags = 0;
8895 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
8898 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
8899 sizeof(struct kvm_clock_pairing)))
8907 * kvm_pv_kick_cpu_op: Kick a vcpu.
8909 * @apicid - apicid of vcpu to be kicked.
8911 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
8913 struct kvm_lapic_irq lapic_irq;
8915 lapic_irq.shorthand = APIC_DEST_NOSHORT;
8916 lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
8917 lapic_irq.level = 0;
8918 lapic_irq.dest_id = apicid;
8919 lapic_irq.msi_redir_hint = false;
8921 lapic_irq.delivery_mode = APIC_DM_REMRD;
8922 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
8925 bool kvm_apicv_activated(struct kvm *kvm)
8927 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
8929 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
8931 static void kvm_apicv_init(struct kvm *kvm)
8933 init_rwsem(&kvm->arch.apicv_update_lock);
8935 set_bit(APICV_INHIBIT_REASON_ABSENT,
8936 &kvm->arch.apicv_inhibit_reasons);
8938 set_bit(APICV_INHIBIT_REASON_DISABLE,
8939 &kvm->arch.apicv_inhibit_reasons);
8942 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
8944 struct kvm_vcpu *target = NULL;
8945 struct kvm_apic_map *map;
8947 vcpu->stat.directed_yield_attempted++;
8949 if (single_task_running())
8953 map = rcu_dereference(vcpu->kvm->arch.apic_map);
8955 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
8956 target = map->phys_map[dest_id]->vcpu;
8960 if (!target || !READ_ONCE(target->ready))
8963 /* Ignore requests to yield to self */
8967 if (kvm_vcpu_yield_to(target) <= 0)
8970 vcpu->stat.directed_yield_successful++;
8976 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
8978 u64 ret = vcpu->run->hypercall.ret;
8980 if (!is_64_bit_mode(vcpu))
8982 kvm_rax_write(vcpu, ret);
8983 ++vcpu->stat.hypercalls;
8984 return kvm_skip_emulated_instruction(vcpu);
8987 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
8989 unsigned long nr, a0, a1, a2, a3, ret;
8992 if (kvm_xen_hypercall_enabled(vcpu->kvm))
8993 return kvm_xen_hypercall(vcpu);
8995 if (kvm_hv_hypercall_enabled(vcpu))
8996 return kvm_hv_hypercall(vcpu);
8998 nr = kvm_rax_read(vcpu);
8999 a0 = kvm_rbx_read(vcpu);
9000 a1 = kvm_rcx_read(vcpu);
9001 a2 = kvm_rdx_read(vcpu);
9002 a3 = kvm_rsi_read(vcpu);
9004 trace_kvm_hypercall(nr, a0, a1, a2, a3);
9006 op_64_bit = is_64_bit_hypercall(vcpu);
9015 if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
9023 case KVM_HC_VAPIC_POLL_IRQ:
9026 case KVM_HC_KICK_CPU:
9027 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
9030 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
9031 kvm_sched_yield(vcpu, a1);
9034 #ifdef CONFIG_X86_64
9035 case KVM_HC_CLOCK_PAIRING:
9036 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
9039 case KVM_HC_SEND_IPI:
9040 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
9043 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
9045 case KVM_HC_SCHED_YIELD:
9046 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
9049 kvm_sched_yield(vcpu, a0);
9052 case KVM_HC_MAP_GPA_RANGE: {
9053 u64 gpa = a0, npages = a1, attrs = a2;
9056 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
9059 if (!PAGE_ALIGNED(gpa) || !npages ||
9060 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
9065 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL;
9066 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE;
9067 vcpu->run->hypercall.args[0] = gpa;
9068 vcpu->run->hypercall.args[1] = npages;
9069 vcpu->run->hypercall.args[2] = attrs;
9070 vcpu->run->hypercall.longmode = op_64_bit;
9071 vcpu->arch.complete_userspace_io = complete_hypercall_exit;
9081 kvm_rax_write(vcpu, ret);
9083 ++vcpu->stat.hypercalls;
9084 return kvm_skip_emulated_instruction(vcpu);
9086 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
9088 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
9090 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
9091 char instruction[3];
9092 unsigned long rip = kvm_rip_read(vcpu);
9094 static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
9096 return emulator_write_emulated(ctxt, rip, instruction, 3,
9100 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
9102 return vcpu->run->request_interrupt_window &&
9103 likely(!pic_in_kernel(vcpu->kvm));
9106 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
9108 struct kvm_run *kvm_run = vcpu->run;
9110 kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu);
9111 kvm_run->cr8 = kvm_get_cr8(vcpu);
9112 kvm_run->apic_base = kvm_get_apic_base(vcpu);
9115 * The call to kvm_ready_for_interrupt_injection() may end up in
9116 * kvm_xen_has_interrupt() which may require the srcu lock to be
9117 * held, to protect against changes in the vcpu_info address.
9119 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9120 kvm_run->ready_for_interrupt_injection =
9121 pic_in_kernel(vcpu->kvm) ||
9122 kvm_vcpu_ready_for_interrupt_injection(vcpu);
9123 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9126 kvm_run->flags |= KVM_RUN_X86_SMM;
9129 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
9133 if (!kvm_x86_ops.update_cr8_intercept)
9136 if (!lapic_in_kernel(vcpu))
9139 if (vcpu->arch.apicv_active)
9142 if (!vcpu->arch.apic->vapic_addr)
9143 max_irr = kvm_lapic_find_highest_irr(vcpu);
9150 tpr = kvm_lapic_get_cr8(vcpu);
9152 static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
9156 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
9158 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9159 kvm_x86_ops.nested_ops->triple_fault(vcpu);
9163 return kvm_x86_ops.nested_ops->check_events(vcpu);
9166 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
9168 if (vcpu->arch.exception.error_code && !is_protmode(vcpu))
9169 vcpu->arch.exception.error_code = false;
9170 static_call(kvm_x86_queue_exception)(vcpu);
9173 static int inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
9176 bool can_inject = true;
9178 /* try to reinject previous events if any */
9180 if (vcpu->arch.exception.injected) {
9181 kvm_inject_exception(vcpu);
9185 * Do not inject an NMI or interrupt if there is a pending
9186 * exception. Exceptions and interrupts are recognized at
9187 * instruction boundaries, i.e. the start of an instruction.
9188 * Trap-like exceptions, e.g. #DB, have higher priority than
9189 * NMIs and interrupts, i.e. traps are recognized before an
9190 * NMI/interrupt that's pending on the same instruction.
9191 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
9192 * priority, but are only generated (pended) during instruction
9193 * execution, i.e. a pending fault-like exception means the
9194 * fault occurred on the *previous* instruction and must be
9195 * serviced prior to recognizing any new events in order to
9196 * fully complete the previous instruction.
9198 else if (!vcpu->arch.exception.pending) {
9199 if (vcpu->arch.nmi_injected) {
9200 static_call(kvm_x86_set_nmi)(vcpu);
9202 } else if (vcpu->arch.interrupt.injected) {
9203 static_call(kvm_x86_set_irq)(vcpu);
9208 WARN_ON_ONCE(vcpu->arch.exception.injected &&
9209 vcpu->arch.exception.pending);
9212 * Call check_nested_events() even if we reinjected a previous event
9213 * in order for caller to determine if it should require immediate-exit
9214 * from L2 to L1 due to pending L1 events which require exit
9217 if (is_guest_mode(vcpu)) {
9218 r = kvm_check_nested_events(vcpu);
9223 /* try to inject new event if pending */
9224 if (vcpu->arch.exception.pending) {
9225 trace_kvm_inj_exception(vcpu->arch.exception.nr,
9226 vcpu->arch.exception.has_error_code,
9227 vcpu->arch.exception.error_code);
9229 vcpu->arch.exception.pending = false;
9230 vcpu->arch.exception.injected = true;
9232 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
9233 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
9236 if (vcpu->arch.exception.nr == DB_VECTOR) {
9237 kvm_deliver_exception_payload(vcpu);
9238 if (vcpu->arch.dr7 & DR7_GD) {
9239 vcpu->arch.dr7 &= ~DR7_GD;
9240 kvm_update_dr7(vcpu);
9244 kvm_inject_exception(vcpu);
9248 /* Don't inject interrupts if the user asked to avoid doing so */
9249 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
9253 * Finally, inject interrupt events. If an event cannot be injected
9254 * due to architectural conditions (e.g. IF=0) a window-open exit
9255 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending
9256 * and can architecturally be injected, but we cannot do it right now:
9257 * an interrupt could have arrived just now and we have to inject it
9258 * as a vmexit, or there could already an event in the queue, which is
9259 * indicated by can_inject. In that case we request an immediate exit
9260 * in order to make progress and get back here for another iteration.
9261 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
9263 if (vcpu->arch.smi_pending) {
9264 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
9268 vcpu->arch.smi_pending = false;
9269 ++vcpu->arch.smi_count;
9273 static_call(kvm_x86_enable_smi_window)(vcpu);
9276 if (vcpu->arch.nmi_pending) {
9277 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
9281 --vcpu->arch.nmi_pending;
9282 vcpu->arch.nmi_injected = true;
9283 static_call(kvm_x86_set_nmi)(vcpu);
9285 WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
9287 if (vcpu->arch.nmi_pending)
9288 static_call(kvm_x86_enable_nmi_window)(vcpu);
9291 if (kvm_cpu_has_injectable_intr(vcpu)) {
9292 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
9296 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
9297 static_call(kvm_x86_set_irq)(vcpu);
9298 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
9300 if (kvm_cpu_has_injectable_intr(vcpu))
9301 static_call(kvm_x86_enable_irq_window)(vcpu);
9304 if (is_guest_mode(vcpu) &&
9305 kvm_x86_ops.nested_ops->hv_timer_pending &&
9306 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
9307 *req_immediate_exit = true;
9309 WARN_ON(vcpu->arch.exception.pending);
9314 *req_immediate_exit = true;
9320 static void process_nmi(struct kvm_vcpu *vcpu)
9325 * x86 is limited to one NMI running, and one NMI pending after it.
9326 * If an NMI is already in progress, limit further NMIs to just one.
9327 * Otherwise, allow two (and we'll inject the first one immediately).
9329 if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
9332 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
9333 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
9334 kvm_make_request(KVM_REQ_EVENT, vcpu);
9337 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
9340 flags |= seg->g << 23;
9341 flags |= seg->db << 22;
9342 flags |= seg->l << 21;
9343 flags |= seg->avl << 20;
9344 flags |= seg->present << 15;
9345 flags |= seg->dpl << 13;
9346 flags |= seg->s << 12;
9347 flags |= seg->type << 8;
9351 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
9353 struct kvm_segment seg;
9356 kvm_get_segment(vcpu, &seg, n);
9357 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
9360 offset = 0x7f84 + n * 12;
9362 offset = 0x7f2c + (n - 3) * 12;
9364 put_smstate(u32, buf, offset + 8, seg.base);
9365 put_smstate(u32, buf, offset + 4, seg.limit);
9366 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
9369 #ifdef CONFIG_X86_64
9370 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
9372 struct kvm_segment seg;
9376 kvm_get_segment(vcpu, &seg, n);
9377 offset = 0x7e00 + n * 16;
9379 flags = enter_smm_get_segment_flags(&seg) >> 8;
9380 put_smstate(u16, buf, offset, seg.selector);
9381 put_smstate(u16, buf, offset + 2, flags);
9382 put_smstate(u32, buf, offset + 4, seg.limit);
9383 put_smstate(u64, buf, offset + 8, seg.base);
9387 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
9390 struct kvm_segment seg;
9394 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
9395 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
9396 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
9397 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
9399 for (i = 0; i < 8; i++)
9400 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read_raw(vcpu, i));
9402 kvm_get_dr(vcpu, 6, &val);
9403 put_smstate(u32, buf, 0x7fcc, (u32)val);
9404 kvm_get_dr(vcpu, 7, &val);
9405 put_smstate(u32, buf, 0x7fc8, (u32)val);
9407 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9408 put_smstate(u32, buf, 0x7fc4, seg.selector);
9409 put_smstate(u32, buf, 0x7f64, seg.base);
9410 put_smstate(u32, buf, 0x7f60, seg.limit);
9411 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
9413 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9414 put_smstate(u32, buf, 0x7fc0, seg.selector);
9415 put_smstate(u32, buf, 0x7f80, seg.base);
9416 put_smstate(u32, buf, 0x7f7c, seg.limit);
9417 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
9419 static_call(kvm_x86_get_gdt)(vcpu, &dt);
9420 put_smstate(u32, buf, 0x7f74, dt.address);
9421 put_smstate(u32, buf, 0x7f70, dt.size);
9423 static_call(kvm_x86_get_idt)(vcpu, &dt);
9424 put_smstate(u32, buf, 0x7f58, dt.address);
9425 put_smstate(u32, buf, 0x7f54, dt.size);
9427 for (i = 0; i < 6; i++)
9428 enter_smm_save_seg_32(vcpu, buf, i);
9430 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
9433 put_smstate(u32, buf, 0x7efc, 0x00020000);
9434 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
9437 #ifdef CONFIG_X86_64
9438 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
9441 struct kvm_segment seg;
9445 for (i = 0; i < 16; i++)
9446 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read_raw(vcpu, i));
9448 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
9449 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
9451 kvm_get_dr(vcpu, 6, &val);
9452 put_smstate(u64, buf, 0x7f68, val);
9453 kvm_get_dr(vcpu, 7, &val);
9454 put_smstate(u64, buf, 0x7f60, val);
9456 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
9457 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
9458 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
9460 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
9463 put_smstate(u32, buf, 0x7efc, 0x00020064);
9465 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
9467 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9468 put_smstate(u16, buf, 0x7e90, seg.selector);
9469 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
9470 put_smstate(u32, buf, 0x7e94, seg.limit);
9471 put_smstate(u64, buf, 0x7e98, seg.base);
9473 static_call(kvm_x86_get_idt)(vcpu, &dt);
9474 put_smstate(u32, buf, 0x7e84, dt.size);
9475 put_smstate(u64, buf, 0x7e88, dt.address);
9477 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9478 put_smstate(u16, buf, 0x7e70, seg.selector);
9479 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
9480 put_smstate(u32, buf, 0x7e74, seg.limit);
9481 put_smstate(u64, buf, 0x7e78, seg.base);
9483 static_call(kvm_x86_get_gdt)(vcpu, &dt);
9484 put_smstate(u32, buf, 0x7e64, dt.size);
9485 put_smstate(u64, buf, 0x7e68, dt.address);
9487 for (i = 0; i < 6; i++)
9488 enter_smm_save_seg_64(vcpu, buf, i);
9492 static void enter_smm(struct kvm_vcpu *vcpu)
9494 struct kvm_segment cs, ds;
9499 memset(buf, 0, 512);
9500 #ifdef CONFIG_X86_64
9501 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9502 enter_smm_save_state_64(vcpu, buf);
9505 enter_smm_save_state_32(vcpu, buf);
9508 * Give enter_smm() a chance to make ISA-specific changes to the vCPU
9509 * state (e.g. leave guest mode) after we've saved the state into the
9510 * SMM state-save area.
9512 static_call(kvm_x86_enter_smm)(vcpu, buf);
9514 kvm_smm_changed(vcpu, true);
9515 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
9517 if (static_call(kvm_x86_get_nmi_mask)(vcpu))
9518 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
9520 static_call(kvm_x86_set_nmi_mask)(vcpu, true);
9522 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
9523 kvm_rip_write(vcpu, 0x8000);
9525 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
9526 static_call(kvm_x86_set_cr0)(vcpu, cr0);
9527 vcpu->arch.cr0 = cr0;
9529 static_call(kvm_x86_set_cr4)(vcpu, 0);
9531 /* Undocumented: IDT limit is set to zero on entry to SMM. */
9532 dt.address = dt.size = 0;
9533 static_call(kvm_x86_set_idt)(vcpu, &dt);
9535 kvm_set_dr(vcpu, 7, DR7_FIXED_1);
9537 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
9538 cs.base = vcpu->arch.smbase;
9543 cs.limit = ds.limit = 0xffffffff;
9544 cs.type = ds.type = 0x3;
9545 cs.dpl = ds.dpl = 0;
9550 cs.avl = ds.avl = 0;
9551 cs.present = ds.present = 1;
9552 cs.unusable = ds.unusable = 0;
9553 cs.padding = ds.padding = 0;
9555 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
9556 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
9557 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
9558 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
9559 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
9560 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
9562 #ifdef CONFIG_X86_64
9563 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9564 static_call(kvm_x86_set_efer)(vcpu, 0);
9567 kvm_update_cpuid_runtime(vcpu);
9568 kvm_mmu_reset_context(vcpu);
9571 static void process_smi(struct kvm_vcpu *vcpu)
9573 vcpu->arch.smi_pending = true;
9574 kvm_make_request(KVM_REQ_EVENT, vcpu);
9577 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
9578 unsigned long *vcpu_bitmap)
9580 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
9583 void kvm_make_scan_ioapic_request(struct kvm *kvm)
9585 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
9588 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
9592 if (!lapic_in_kernel(vcpu))
9595 down_read(&vcpu->kvm->arch.apicv_update_lock);
9597 activate = kvm_apicv_activated(vcpu->kvm);
9598 if (vcpu->arch.apicv_active == activate)
9601 vcpu->arch.apicv_active = activate;
9602 kvm_apic_update_apicv(vcpu);
9603 static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
9606 * When APICv gets disabled, we may still have injected interrupts
9607 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
9608 * still active when the interrupt got accepted. Make sure
9609 * inject_pending_event() is called to check for that.
9611 if (!vcpu->arch.apicv_active)
9612 kvm_make_request(KVM_REQ_EVENT, vcpu);
9615 up_read(&vcpu->kvm->arch.apicv_update_lock);
9617 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
9619 void __kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
9621 unsigned long old, new;
9623 lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
9625 if (!kvm_x86_ops.check_apicv_inhibit_reasons ||
9626 !static_call(kvm_x86_check_apicv_inhibit_reasons)(bit))
9629 old = new = kvm->arch.apicv_inhibit_reasons;
9632 __clear_bit(bit, &new);
9634 __set_bit(bit, &new);
9636 if (!!old != !!new) {
9637 trace_kvm_apicv_update_request(activate, bit);
9639 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
9640 * false positives in the sanity check WARN in svm_vcpu_run().
9641 * This task will wait for all vCPUs to ack the kick IRQ before
9642 * updating apicv_inhibit_reasons, and all other vCPUs will
9643 * block on acquiring apicv_update_lock so that vCPUs can't
9644 * redo svm_vcpu_run() without seeing the new inhibit state.
9646 * Note, holding apicv_update_lock and taking it in the read
9647 * side (handling the request) also prevents other vCPUs from
9648 * servicing the request with a stale apicv_inhibit_reasons.
9650 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
9651 kvm->arch.apicv_inhibit_reasons = new;
9653 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
9654 kvm_zap_gfn_range(kvm, gfn, gfn+1);
9657 kvm->arch.apicv_inhibit_reasons = new;
9659 EXPORT_SYMBOL_GPL(__kvm_request_apicv_update);
9661 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
9663 down_write(&kvm->arch.apicv_update_lock);
9664 __kvm_request_apicv_update(kvm, activate, bit);
9665 up_write(&kvm->arch.apicv_update_lock);
9667 EXPORT_SYMBOL_GPL(kvm_request_apicv_update);
9669 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
9671 if (!kvm_apic_present(vcpu))
9674 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
9676 if (irqchip_split(vcpu->kvm))
9677 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
9679 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
9680 if (ioapic_in_kernel(vcpu->kvm))
9681 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
9684 if (is_guest_mode(vcpu))
9685 vcpu->arch.load_eoi_exitmap_pending = true;
9687 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
9690 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
9692 u64 eoi_exit_bitmap[4];
9694 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
9697 if (to_hv_vcpu(vcpu)) {
9698 bitmap_or((ulong *)eoi_exit_bitmap,
9699 vcpu->arch.ioapic_handled_vectors,
9700 to_hv_synic(vcpu)->vec_bitmap, 256);
9701 static_call(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
9705 static_call(kvm_x86_load_eoi_exitmap)(
9706 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
9709 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
9710 unsigned long start, unsigned long end)
9712 unsigned long apic_address;
9715 * The physical address of apic access page is stored in the VMCS.
9716 * Update it when it becomes invalid.
9718 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
9719 if (start <= apic_address && apic_address < end)
9720 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
9723 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
9725 if (!lapic_in_kernel(vcpu))
9728 if (!kvm_x86_ops.set_apic_access_page_addr)
9731 static_call(kvm_x86_set_apic_access_page_addr)(vcpu);
9734 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
9736 smp_send_reschedule(vcpu->cpu);
9738 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
9741 * Returns 1 to let vcpu_run() continue the guest execution loop without
9742 * exiting to the userspace. Otherwise, the value will be returned to the
9745 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
9749 dm_request_for_irq_injection(vcpu) &&
9750 kvm_cpu_accept_dm_intr(vcpu);
9751 fastpath_t exit_fastpath;
9753 bool req_immediate_exit = false;
9755 /* Forbid vmenter if vcpu dirty ring is soft-full */
9756 if (unlikely(vcpu->kvm->dirty_ring_size &&
9757 kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) {
9758 vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL;
9759 trace_kvm_dirty_ring_exit(vcpu);
9764 if (kvm_request_pending(vcpu)) {
9765 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
9769 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
9770 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
9775 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
9776 kvm_mmu_unload(vcpu);
9777 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
9778 __kvm_migrate_timers(vcpu);
9779 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
9780 kvm_update_masterclock(vcpu->kvm);
9781 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
9782 kvm_gen_kvmclock_update(vcpu);
9783 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
9784 r = kvm_guest_time_update(vcpu);
9788 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
9789 kvm_mmu_sync_roots(vcpu);
9790 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
9791 kvm_mmu_load_pgd(vcpu);
9792 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
9793 kvm_vcpu_flush_tlb_all(vcpu);
9795 /* Flushing all ASIDs flushes the current ASID... */
9796 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
9798 kvm_service_local_tlb_flush_requests(vcpu);
9800 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
9801 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
9805 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9806 if (is_guest_mode(vcpu)) {
9807 kvm_x86_ops.nested_ops->triple_fault(vcpu);
9809 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
9810 vcpu->mmio_needed = 0;
9815 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
9816 /* Page is swapped out. Do synthetic halt */
9817 vcpu->arch.apf.halted = true;
9821 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
9822 record_steal_time(vcpu);
9823 if (kvm_check_request(KVM_REQ_SMI, vcpu))
9825 if (kvm_check_request(KVM_REQ_NMI, vcpu))
9827 if (kvm_check_request(KVM_REQ_PMU, vcpu))
9828 kvm_pmu_handle_event(vcpu);
9829 if (kvm_check_request(KVM_REQ_PMI, vcpu))
9830 kvm_pmu_deliver_pmi(vcpu);
9831 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
9832 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
9833 if (test_bit(vcpu->arch.pending_ioapic_eoi,
9834 vcpu->arch.ioapic_handled_vectors)) {
9835 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
9836 vcpu->run->eoi.vector =
9837 vcpu->arch.pending_ioapic_eoi;
9842 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
9843 vcpu_scan_ioapic(vcpu);
9844 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
9845 vcpu_load_eoi_exitmap(vcpu);
9846 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
9847 kvm_vcpu_reload_apic_access_page(vcpu);
9848 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
9849 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9850 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
9854 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
9855 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9856 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
9860 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
9861 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
9863 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
9864 vcpu->run->hyperv = hv_vcpu->exit;
9870 * KVM_REQ_HV_STIMER has to be processed after
9871 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
9872 * depend on the guest clock being up-to-date
9874 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
9875 kvm_hv_process_stimers(vcpu);
9876 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
9877 kvm_vcpu_update_apicv(vcpu);
9878 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
9879 kvm_check_async_pf_completion(vcpu);
9880 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
9881 static_call(kvm_x86_msr_filter_changed)(vcpu);
9883 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
9884 static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
9887 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
9888 kvm_xen_has_interrupt(vcpu)) {
9889 ++vcpu->stat.req_event;
9890 r = kvm_apic_accept_events(vcpu);
9895 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
9900 r = inject_pending_event(vcpu, &req_immediate_exit);
9906 static_call(kvm_x86_enable_irq_window)(vcpu);
9908 if (kvm_lapic_enabled(vcpu)) {
9909 update_cr8_intercept(vcpu);
9910 kvm_lapic_sync_to_vapic(vcpu);
9914 r = kvm_mmu_reload(vcpu);
9916 goto cancel_injection;
9921 static_call(kvm_x86_prepare_guest_switch)(vcpu);
9924 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
9925 * IPI are then delayed after guest entry, which ensures that they
9926 * result in virtual interrupt delivery.
9928 local_irq_disable();
9929 vcpu->mode = IN_GUEST_MODE;
9931 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9934 * 1) We should set ->mode before checking ->requests. Please see
9935 * the comment in kvm_vcpu_exiting_guest_mode().
9937 * 2) For APICv, we should set ->mode before checking PID.ON. This
9938 * pairs with the memory barrier implicit in pi_test_and_set_on
9939 * (see vmx_deliver_posted_interrupt).
9941 * 3) This also orders the write to mode from any reads to the page
9942 * tables done while the VCPU is running. Please see the comment
9943 * in kvm_flush_remote_tlbs.
9945 smp_mb__after_srcu_read_unlock();
9948 * This handles the case where a posted interrupt was
9949 * notified with kvm_vcpu_kick. Assigned devices can
9950 * use the POSTED_INTR_VECTOR even if APICv is disabled,
9951 * so do it even if APICv is disabled on this vCPU.
9953 if (kvm_lapic_enabled(vcpu))
9954 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
9956 if (kvm_vcpu_exit_request(vcpu)) {
9957 vcpu->mode = OUTSIDE_GUEST_MODE;
9961 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9963 goto cancel_injection;
9966 if (req_immediate_exit) {
9967 kvm_make_request(KVM_REQ_EVENT, vcpu);
9968 static_call(kvm_x86_request_immediate_exit)(vcpu);
9971 fpregs_assert_state_consistent();
9972 if (test_thread_flag(TIF_NEED_FPU_LOAD))
9973 switch_fpu_return();
9975 if (vcpu->arch.guest_fpu.xfd_err)
9976 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
9978 if (unlikely(vcpu->arch.switch_db_regs)) {
9980 set_debugreg(vcpu->arch.eff_db[0], 0);
9981 set_debugreg(vcpu->arch.eff_db[1], 1);
9982 set_debugreg(vcpu->arch.eff_db[2], 2);
9983 set_debugreg(vcpu->arch.eff_db[3], 3);
9984 } else if (unlikely(hw_breakpoint_active())) {
9990 * Assert that vCPU vs. VM APICv state is consistent. An APICv
9991 * update must kick and wait for all vCPUs before toggling the
9992 * per-VM state, and responsing vCPUs must wait for the update
9993 * to complete before servicing KVM_REQ_APICV_UPDATE.
9995 WARN_ON_ONCE(kvm_apicv_activated(vcpu->kvm) != kvm_vcpu_apicv_active(vcpu));
9997 exit_fastpath = static_call(kvm_x86_run)(vcpu);
9998 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
10001 if (kvm_lapic_enabled(vcpu))
10002 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10004 if (unlikely(kvm_vcpu_exit_request(vcpu))) {
10005 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
10011 * Do this here before restoring debug registers on the host. And
10012 * since we do this before handling the vmexit, a DR access vmexit
10013 * can (a) read the correct value of the debug registers, (b) set
10014 * KVM_DEBUGREG_WONT_EXIT again.
10016 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
10017 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
10018 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
10019 kvm_update_dr0123(vcpu);
10020 kvm_update_dr7(vcpu);
10024 * If the guest has used debug registers, at least dr7
10025 * will be disabled while returning to the host.
10026 * If we don't have active breakpoints in the host, we don't
10027 * care about the messed up debug address registers. But if
10028 * we have some of them active, restore the old state.
10030 if (hw_breakpoint_active())
10031 hw_breakpoint_restore();
10033 vcpu->arch.last_vmentry_cpu = vcpu->cpu;
10034 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
10036 vcpu->mode = OUTSIDE_GUEST_MODE;
10040 * Sync xfd before calling handle_exit_irqoff() which may
10041 * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
10042 * in #NM irqoff handler).
10044 if (vcpu->arch.xfd_no_write_intercept)
10045 fpu_sync_guest_vmexit_xfd_state();
10047 static_call(kvm_x86_handle_exit_irqoff)(vcpu);
10049 if (vcpu->arch.guest_fpu.xfd_err)
10050 wrmsrl(MSR_IA32_XFD_ERR, 0);
10053 * Consume any pending interrupts, including the possible source of
10054 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
10055 * An instruction is required after local_irq_enable() to fully unblock
10056 * interrupts on processors that implement an interrupt shadow, the
10057 * stat.exits increment will do nicely.
10059 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
10060 local_irq_enable();
10061 ++vcpu->stat.exits;
10062 local_irq_disable();
10063 kvm_after_interrupt(vcpu);
10066 * Wait until after servicing IRQs to account guest time so that any
10067 * ticks that occurred while running the guest are properly accounted
10068 * to the guest. Waiting until IRQs are enabled degrades the accuracy
10069 * of accounting via context tracking, but the loss of accuracy is
10070 * acceptable for all known use cases.
10072 vtime_account_guest_exit();
10074 if (lapic_in_kernel(vcpu)) {
10075 s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
10076 if (delta != S64_MIN) {
10077 trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
10078 vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
10082 local_irq_enable();
10085 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
10088 * Profile KVM exit RIPs:
10090 if (unlikely(prof_on == KVM_PROFILING)) {
10091 unsigned long rip = kvm_rip_read(vcpu);
10092 profile_hit(KVM_PROFILING, (void *)rip);
10095 if (unlikely(vcpu->arch.tsc_always_catchup))
10096 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10098 if (vcpu->arch.apic_attention)
10099 kvm_lapic_sync_from_vapic(vcpu);
10101 r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
10105 if (req_immediate_exit)
10106 kvm_make_request(KVM_REQ_EVENT, vcpu);
10107 static_call(kvm_x86_cancel_injection)(vcpu);
10108 if (unlikely(vcpu->arch.apic_attention))
10109 kvm_lapic_sync_from_vapic(vcpu);
10114 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
10116 if (!kvm_arch_vcpu_runnable(vcpu) &&
10117 (!kvm_x86_ops.pre_block || static_call(kvm_x86_pre_block)(vcpu) == 0)) {
10118 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
10119 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10120 kvm_vcpu_halt(vcpu);
10122 kvm_vcpu_block(vcpu);
10123 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
10125 if (kvm_x86_ops.post_block)
10126 static_call(kvm_x86_post_block)(vcpu);
10128 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
10132 if (kvm_apic_accept_events(vcpu) < 0)
10134 switch(vcpu->arch.mp_state) {
10135 case KVM_MP_STATE_HALTED:
10136 case KVM_MP_STATE_AP_RESET_HOLD:
10137 vcpu->arch.pv.pv_unhalted = false;
10138 vcpu->arch.mp_state =
10139 KVM_MP_STATE_RUNNABLE;
10141 case KVM_MP_STATE_RUNNABLE:
10142 vcpu->arch.apf.halted = false;
10144 case KVM_MP_STATE_INIT_RECEIVED:
10152 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
10154 if (is_guest_mode(vcpu))
10155 kvm_check_nested_events(vcpu);
10157 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
10158 !vcpu->arch.apf.halted);
10161 static int vcpu_run(struct kvm_vcpu *vcpu)
10164 struct kvm *kvm = vcpu->kvm;
10166 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
10167 vcpu->arch.l1tf_flush_l1d = true;
10170 if (kvm_vcpu_running(vcpu)) {
10171 r = vcpu_enter_guest(vcpu);
10173 r = vcpu_block(kvm, vcpu);
10179 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
10180 if (kvm_cpu_has_pending_timer(vcpu))
10181 kvm_inject_pending_timer_irqs(vcpu);
10183 if (dm_request_for_irq_injection(vcpu) &&
10184 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
10186 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
10187 ++vcpu->stat.request_irq_exits;
10191 if (__xfer_to_guest_mode_work_pending()) {
10192 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
10193 r = xfer_to_guest_mode_handle_work(vcpu);
10196 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
10200 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
10205 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
10209 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
10210 r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
10211 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
10215 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
10217 BUG_ON(!vcpu->arch.pio.count);
10219 return complete_emulated_io(vcpu);
10223 * Implements the following, as a state machine:
10226 * for each fragment
10227 * for each mmio piece in the fragment
10234 * for each fragment
10235 * for each mmio piece in the fragment
10240 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
10242 struct kvm_run *run = vcpu->run;
10243 struct kvm_mmio_fragment *frag;
10246 BUG_ON(!vcpu->mmio_needed);
10248 /* Complete previous fragment */
10249 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
10250 len = min(8u, frag->len);
10251 if (!vcpu->mmio_is_write)
10252 memcpy(frag->data, run->mmio.data, len);
10254 if (frag->len <= 8) {
10255 /* Switch to the next fragment. */
10257 vcpu->mmio_cur_fragment++;
10259 /* Go forward to the next mmio piece. */
10265 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
10266 vcpu->mmio_needed = 0;
10268 /* FIXME: return into emulator if single-stepping. */
10269 if (vcpu->mmio_is_write)
10271 vcpu->mmio_read_completed = 1;
10272 return complete_emulated_io(vcpu);
10275 run->exit_reason = KVM_EXIT_MMIO;
10276 run->mmio.phys_addr = frag->gpa;
10277 if (vcpu->mmio_is_write)
10278 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
10279 run->mmio.len = min(8u, frag->len);
10280 run->mmio.is_write = vcpu->mmio_is_write;
10281 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
10285 /* Swap (qemu) user FPU context for the guest FPU context. */
10286 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
10289 * Exclude PKRU from restore as restored separately in
10290 * kvm_x86_ops.run().
10292 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
10296 /* When vcpu_run ends, restore user space FPU context. */
10297 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
10299 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
10300 ++vcpu->stat.fpu_reload;
10304 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
10306 struct kvm_run *kvm_run = vcpu->run;
10310 kvm_sigset_activate(vcpu);
10311 kvm_run->flags = 0;
10312 kvm_load_guest_fpu(vcpu);
10314 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
10315 if (kvm_run->immediate_exit) {
10319 kvm_vcpu_block(vcpu);
10320 if (kvm_apic_accept_events(vcpu) < 0) {
10324 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
10326 if (signal_pending(current)) {
10328 kvm_run->exit_reason = KVM_EXIT_INTR;
10329 ++vcpu->stat.signal_exits;
10334 if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
10335 (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
10340 if (kvm_run->kvm_dirty_regs) {
10341 r = sync_regs(vcpu);
10346 /* re-sync apic's tpr */
10347 if (!lapic_in_kernel(vcpu)) {
10348 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
10354 if (unlikely(vcpu->arch.complete_userspace_io)) {
10355 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
10356 vcpu->arch.complete_userspace_io = NULL;
10361 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
10363 if (kvm_run->immediate_exit)
10366 r = vcpu_run(vcpu);
10369 kvm_put_guest_fpu(vcpu);
10370 if (kvm_run->kvm_valid_regs)
10372 post_kvm_run_save(vcpu);
10373 kvm_sigset_deactivate(vcpu);
10379 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10381 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
10383 * We are here if userspace calls get_regs() in the middle of
10384 * instruction emulation. Registers state needs to be copied
10385 * back from emulation context to vcpu. Userspace shouldn't do
10386 * that usually, but some bad designed PV devices (vmware
10387 * backdoor interface) need this to work
10389 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
10390 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10392 regs->rax = kvm_rax_read(vcpu);
10393 regs->rbx = kvm_rbx_read(vcpu);
10394 regs->rcx = kvm_rcx_read(vcpu);
10395 regs->rdx = kvm_rdx_read(vcpu);
10396 regs->rsi = kvm_rsi_read(vcpu);
10397 regs->rdi = kvm_rdi_read(vcpu);
10398 regs->rsp = kvm_rsp_read(vcpu);
10399 regs->rbp = kvm_rbp_read(vcpu);
10400 #ifdef CONFIG_X86_64
10401 regs->r8 = kvm_r8_read(vcpu);
10402 regs->r9 = kvm_r9_read(vcpu);
10403 regs->r10 = kvm_r10_read(vcpu);
10404 regs->r11 = kvm_r11_read(vcpu);
10405 regs->r12 = kvm_r12_read(vcpu);
10406 regs->r13 = kvm_r13_read(vcpu);
10407 regs->r14 = kvm_r14_read(vcpu);
10408 regs->r15 = kvm_r15_read(vcpu);
10411 regs->rip = kvm_rip_read(vcpu);
10412 regs->rflags = kvm_get_rflags(vcpu);
10415 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10418 __get_regs(vcpu, regs);
10423 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10425 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
10426 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10428 kvm_rax_write(vcpu, regs->rax);
10429 kvm_rbx_write(vcpu, regs->rbx);
10430 kvm_rcx_write(vcpu, regs->rcx);
10431 kvm_rdx_write(vcpu, regs->rdx);
10432 kvm_rsi_write(vcpu, regs->rsi);
10433 kvm_rdi_write(vcpu, regs->rdi);
10434 kvm_rsp_write(vcpu, regs->rsp);
10435 kvm_rbp_write(vcpu, regs->rbp);
10436 #ifdef CONFIG_X86_64
10437 kvm_r8_write(vcpu, regs->r8);
10438 kvm_r9_write(vcpu, regs->r9);
10439 kvm_r10_write(vcpu, regs->r10);
10440 kvm_r11_write(vcpu, regs->r11);
10441 kvm_r12_write(vcpu, regs->r12);
10442 kvm_r13_write(vcpu, regs->r13);
10443 kvm_r14_write(vcpu, regs->r14);
10444 kvm_r15_write(vcpu, regs->r15);
10447 kvm_rip_write(vcpu, regs->rip);
10448 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
10450 vcpu->arch.exception.pending = false;
10452 kvm_make_request(KVM_REQ_EVENT, vcpu);
10455 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10458 __set_regs(vcpu, regs);
10463 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
10465 struct kvm_segment cs;
10467 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
10471 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
10473 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10475 struct desc_ptr dt;
10477 if (vcpu->arch.guest_state_protected)
10478 goto skip_protected_regs;
10480 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10481 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10482 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10483 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10484 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10485 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10487 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10488 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10490 static_call(kvm_x86_get_idt)(vcpu, &dt);
10491 sregs->idt.limit = dt.size;
10492 sregs->idt.base = dt.address;
10493 static_call(kvm_x86_get_gdt)(vcpu, &dt);
10494 sregs->gdt.limit = dt.size;
10495 sregs->gdt.base = dt.address;
10497 sregs->cr2 = vcpu->arch.cr2;
10498 sregs->cr3 = kvm_read_cr3(vcpu);
10500 skip_protected_regs:
10501 sregs->cr0 = kvm_read_cr0(vcpu);
10502 sregs->cr4 = kvm_read_cr4(vcpu);
10503 sregs->cr8 = kvm_get_cr8(vcpu);
10504 sregs->efer = vcpu->arch.efer;
10505 sregs->apic_base = kvm_get_apic_base(vcpu);
10508 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10510 __get_sregs_common(vcpu, sregs);
10512 if (vcpu->arch.guest_state_protected)
10515 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
10516 set_bit(vcpu->arch.interrupt.nr,
10517 (unsigned long *)sregs->interrupt_bitmap);
10520 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
10524 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
10526 if (vcpu->arch.guest_state_protected)
10529 if (is_pae_paging(vcpu)) {
10530 for (i = 0 ; i < 4 ; i++)
10531 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
10532 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
10536 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
10537 struct kvm_sregs *sregs)
10540 __get_sregs(vcpu, sregs);
10545 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
10546 struct kvm_mp_state *mp_state)
10551 if (kvm_mpx_supported())
10552 kvm_load_guest_fpu(vcpu);
10554 r = kvm_apic_accept_events(vcpu);
10559 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
10560 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
10561 vcpu->arch.pv.pv_unhalted)
10562 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
10564 mp_state->mp_state = vcpu->arch.mp_state;
10567 if (kvm_mpx_supported())
10568 kvm_put_guest_fpu(vcpu);
10573 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
10574 struct kvm_mp_state *mp_state)
10580 if (!lapic_in_kernel(vcpu) &&
10581 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
10585 * KVM_MP_STATE_INIT_RECEIVED means the processor is in
10586 * INIT state; latched init should be reported using
10587 * KVM_SET_VCPU_EVENTS, so reject it here.
10589 if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
10590 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
10591 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
10594 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
10595 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
10596 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
10598 vcpu->arch.mp_state = mp_state->mp_state;
10599 kvm_make_request(KVM_REQ_EVENT, vcpu);
10607 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
10608 int reason, bool has_error_code, u32 error_code)
10610 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
10613 init_emulate_ctxt(vcpu);
10615 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
10616 has_error_code, error_code);
10618 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
10619 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
10620 vcpu->run->internal.ndata = 0;
10624 kvm_rip_write(vcpu, ctxt->eip);
10625 kvm_set_rflags(vcpu, ctxt->eflags);
10628 EXPORT_SYMBOL_GPL(kvm_task_switch);
10630 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10632 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
10634 * When EFER.LME and CR0.PG are set, the processor is in
10635 * 64-bit mode (though maybe in a 32-bit code segment).
10636 * CR4.PAE and EFER.LMA must be set.
10638 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
10640 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
10644 * Not in 64-bit mode: EFER.LMA is clear and the code
10645 * segment cannot be 64-bit.
10647 if (sregs->efer & EFER_LMA || sregs->cs.l)
10651 return kvm_is_valid_cr4(vcpu, sregs->cr4);
10654 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
10655 int *mmu_reset_needed, bool update_pdptrs)
10657 struct msr_data apic_base_msr;
10659 struct desc_ptr dt;
10661 if (!kvm_is_valid_sregs(vcpu, sregs))
10664 apic_base_msr.data = sregs->apic_base;
10665 apic_base_msr.host_initiated = true;
10666 if (kvm_set_apic_base(vcpu, &apic_base_msr))
10669 if (vcpu->arch.guest_state_protected)
10672 dt.size = sregs->idt.limit;
10673 dt.address = sregs->idt.base;
10674 static_call(kvm_x86_set_idt)(vcpu, &dt);
10675 dt.size = sregs->gdt.limit;
10676 dt.address = sregs->gdt.base;
10677 static_call(kvm_x86_set_gdt)(vcpu, &dt);
10679 vcpu->arch.cr2 = sregs->cr2;
10680 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
10681 vcpu->arch.cr3 = sregs->cr3;
10682 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
10683 static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3);
10685 kvm_set_cr8(vcpu, sregs->cr8);
10687 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
10688 static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
10690 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
10691 static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
10692 vcpu->arch.cr0 = sregs->cr0;
10694 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
10695 static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
10697 if (update_pdptrs) {
10698 idx = srcu_read_lock(&vcpu->kvm->srcu);
10699 if (is_pae_paging(vcpu)) {
10700 load_pdptrs(vcpu, kvm_read_cr3(vcpu));
10701 *mmu_reset_needed = 1;
10703 srcu_read_unlock(&vcpu->kvm->srcu, idx);
10706 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10707 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10708 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10709 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10710 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10711 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10713 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10714 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10716 update_cr8_intercept(vcpu);
10718 /* Older userspace won't unhalt the vcpu on reset. */
10719 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
10720 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
10721 !is_protmode(vcpu))
10722 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10727 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10729 int pending_vec, max_bits;
10730 int mmu_reset_needed = 0;
10731 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
10736 if (mmu_reset_needed)
10737 kvm_mmu_reset_context(vcpu);
10739 max_bits = KVM_NR_INTERRUPTS;
10740 pending_vec = find_first_bit(
10741 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
10743 if (pending_vec < max_bits) {
10744 kvm_queue_interrupt(vcpu, pending_vec, false);
10745 pr_debug("Set back pending irq %d\n", pending_vec);
10746 kvm_make_request(KVM_REQ_EVENT, vcpu);
10751 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
10753 int mmu_reset_needed = 0;
10754 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
10755 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
10756 !(sregs2->efer & EFER_LMA);
10759 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
10762 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
10765 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
10766 &mmu_reset_needed, !valid_pdptrs);
10770 if (valid_pdptrs) {
10771 for (i = 0; i < 4 ; i++)
10772 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
10774 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
10775 mmu_reset_needed = 1;
10776 vcpu->arch.pdptrs_from_userspace = true;
10778 if (mmu_reset_needed)
10779 kvm_mmu_reset_context(vcpu);
10783 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
10784 struct kvm_sregs *sregs)
10789 ret = __set_sregs(vcpu, sregs);
10794 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
10796 bool inhibit = false;
10797 struct kvm_vcpu *vcpu;
10800 down_write(&kvm->arch.apicv_update_lock);
10802 kvm_for_each_vcpu(i, vcpu, kvm) {
10803 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
10808 __kvm_request_apicv_update(kvm, !inhibit, APICV_INHIBIT_REASON_BLOCKIRQ);
10809 up_write(&kvm->arch.apicv_update_lock);
10812 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
10813 struct kvm_guest_debug *dbg)
10815 unsigned long rflags;
10818 if (vcpu->arch.guest_state_protected)
10823 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
10825 if (vcpu->arch.exception.pending)
10827 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
10828 kvm_queue_exception(vcpu, DB_VECTOR);
10830 kvm_queue_exception(vcpu, BP_VECTOR);
10834 * Read rflags as long as potentially injected trace flags are still
10837 rflags = kvm_get_rflags(vcpu);
10839 vcpu->guest_debug = dbg->control;
10840 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
10841 vcpu->guest_debug = 0;
10843 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
10844 for (i = 0; i < KVM_NR_DB_REGS; ++i)
10845 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
10846 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
10848 for (i = 0; i < KVM_NR_DB_REGS; i++)
10849 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
10851 kvm_update_dr7(vcpu);
10853 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
10854 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
10857 * Trigger an rflags update that will inject or remove the trace
10860 kvm_set_rflags(vcpu, rflags);
10862 static_call(kvm_x86_update_exception_bitmap)(vcpu);
10864 kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
10874 * Translate a guest virtual address to a guest physical address.
10876 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
10877 struct kvm_translation *tr)
10879 unsigned long vaddr = tr->linear_address;
10885 idx = srcu_read_lock(&vcpu->kvm->srcu);
10886 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
10887 srcu_read_unlock(&vcpu->kvm->srcu, idx);
10888 tr->physical_address = gpa;
10889 tr->valid = gpa != UNMAPPED_GVA;
10897 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
10899 struct fxregs_state *fxsave;
10901 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
10906 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
10907 memcpy(fpu->fpr, fxsave->st_space, 128);
10908 fpu->fcw = fxsave->cwd;
10909 fpu->fsw = fxsave->swd;
10910 fpu->ftwx = fxsave->twd;
10911 fpu->last_opcode = fxsave->fop;
10912 fpu->last_ip = fxsave->rip;
10913 fpu->last_dp = fxsave->rdp;
10914 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
10920 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
10922 struct fxregs_state *fxsave;
10924 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
10929 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
10931 memcpy(fxsave->st_space, fpu->fpr, 128);
10932 fxsave->cwd = fpu->fcw;
10933 fxsave->swd = fpu->fsw;
10934 fxsave->twd = fpu->ftwx;
10935 fxsave->fop = fpu->last_opcode;
10936 fxsave->rip = fpu->last_ip;
10937 fxsave->rdp = fpu->last_dp;
10938 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
10944 static void store_regs(struct kvm_vcpu *vcpu)
10946 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
10948 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
10949 __get_regs(vcpu, &vcpu->run->s.regs.regs);
10951 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
10952 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
10954 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
10955 kvm_vcpu_ioctl_x86_get_vcpu_events(
10956 vcpu, &vcpu->run->s.regs.events);
10959 static int sync_regs(struct kvm_vcpu *vcpu)
10961 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
10962 __set_regs(vcpu, &vcpu->run->s.regs.regs);
10963 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
10965 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
10966 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
10968 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
10970 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
10971 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
10972 vcpu, &vcpu->run->s.regs.events))
10974 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
10980 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
10982 if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
10983 pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
10984 "guest TSC will not be reliable\n");
10989 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
10994 vcpu->arch.last_vmentry_cpu = -1;
10995 vcpu->arch.regs_avail = ~0;
10996 vcpu->arch.regs_dirty = ~0;
10998 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
10999 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11001 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
11003 r = kvm_mmu_create(vcpu);
11007 if (irqchip_in_kernel(vcpu->kvm)) {
11008 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
11010 goto fail_mmu_destroy;
11011 if (kvm_apicv_activated(vcpu->kvm))
11012 vcpu->arch.apicv_active = true;
11014 static_branch_inc(&kvm_has_noapic_vcpu);
11018 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
11020 goto fail_free_lapic;
11021 vcpu->arch.pio_data = page_address(page);
11023 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
11024 GFP_KERNEL_ACCOUNT);
11025 if (!vcpu->arch.mce_banks)
11026 goto fail_free_pio_data;
11027 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
11029 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
11030 GFP_KERNEL_ACCOUNT))
11031 goto fail_free_mce_banks;
11033 if (!alloc_emulate_ctxt(vcpu))
11034 goto free_wbinvd_dirty_mask;
11036 if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
11037 pr_err("kvm: failed to allocate vcpu's fpu\n");
11038 goto free_emulate_ctxt;
11041 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
11042 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
11044 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
11046 kvm_async_pf_hash_reset(vcpu);
11047 kvm_pmu_init(vcpu);
11049 vcpu->arch.pending_external_vector = -1;
11050 vcpu->arch.preempted_in_kernel = false;
11052 #if IS_ENABLED(CONFIG_HYPERV)
11053 vcpu->arch.hv_root_tdp = INVALID_PAGE;
11056 r = static_call(kvm_x86_vcpu_create)(vcpu);
11058 goto free_guest_fpu;
11060 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
11061 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
11062 kvm_vcpu_mtrr_init(vcpu);
11064 kvm_set_tsc_khz(vcpu, max_tsc_khz);
11065 kvm_vcpu_reset(vcpu, false);
11066 kvm_init_mmu(vcpu);
11071 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11073 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11074 free_wbinvd_dirty_mask:
11075 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11076 fail_free_mce_banks:
11077 kfree(vcpu->arch.mce_banks);
11078 fail_free_pio_data:
11079 free_page((unsigned long)vcpu->arch.pio_data);
11081 kvm_free_lapic(vcpu);
11083 kvm_mmu_destroy(vcpu);
11087 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
11089 struct kvm *kvm = vcpu->kvm;
11091 if (mutex_lock_killable(&vcpu->mutex))
11094 kvm_synchronize_tsc(vcpu, 0);
11097 /* poll control enabled by default */
11098 vcpu->arch.msr_kvm_poll_control = 1;
11100 mutex_unlock(&vcpu->mutex);
11102 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
11103 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
11104 KVMCLOCK_SYNC_PERIOD);
11107 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
11111 kvmclock_reset(vcpu);
11113 static_call(kvm_x86_vcpu_free)(vcpu);
11115 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11116 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11117 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11119 kvm_hv_vcpu_uninit(vcpu);
11120 kvm_pmu_destroy(vcpu);
11121 kfree(vcpu->arch.mce_banks);
11122 kvm_free_lapic(vcpu);
11123 idx = srcu_read_lock(&vcpu->kvm->srcu);
11124 kvm_mmu_destroy(vcpu);
11125 srcu_read_unlock(&vcpu->kvm->srcu, idx);
11126 free_page((unsigned long)vcpu->arch.pio_data);
11127 kvfree(vcpu->arch.cpuid_entries);
11128 if (!lapic_in_kernel(vcpu))
11129 static_branch_dec(&kvm_has_noapic_vcpu);
11132 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
11134 struct kvm_cpuid_entry2 *cpuid_0x1;
11135 unsigned long old_cr0 = kvm_read_cr0(vcpu);
11136 unsigned long new_cr0;
11139 * Several of the "set" flows, e.g. ->set_cr0(), read other registers
11140 * to handle side effects. RESET emulation hits those flows and relies
11141 * on emulated/virtualized registers, including those that are loaded
11142 * into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel
11143 * to detect improper or missing initialization.
11145 WARN_ON_ONCE(!init_event &&
11146 (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
11148 kvm_lapic_reset(vcpu, init_event);
11150 vcpu->arch.hflags = 0;
11152 vcpu->arch.smi_pending = 0;
11153 vcpu->arch.smi_count = 0;
11154 atomic_set(&vcpu->arch.nmi_queued, 0);
11155 vcpu->arch.nmi_pending = 0;
11156 vcpu->arch.nmi_injected = false;
11157 kvm_clear_interrupt_queue(vcpu);
11158 kvm_clear_exception_queue(vcpu);
11160 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
11161 kvm_update_dr0123(vcpu);
11162 vcpu->arch.dr6 = DR6_ACTIVE_LOW;
11163 vcpu->arch.dr7 = DR7_FIXED_1;
11164 kvm_update_dr7(vcpu);
11166 vcpu->arch.cr2 = 0;
11168 kvm_make_request(KVM_REQ_EVENT, vcpu);
11169 vcpu->arch.apf.msr_en_val = 0;
11170 vcpu->arch.apf.msr_int_val = 0;
11171 vcpu->arch.st.msr_val = 0;
11173 kvmclock_reset(vcpu);
11175 kvm_clear_async_pf_completion_queue(vcpu);
11176 kvm_async_pf_hash_reset(vcpu);
11177 vcpu->arch.apf.halted = false;
11179 if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
11180 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
11183 * To avoid have the INIT path from kvm_apic_has_events() that be
11184 * called with loaded FPU and does not let userspace fix the state.
11187 kvm_put_guest_fpu(vcpu);
11189 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
11190 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
11193 kvm_load_guest_fpu(vcpu);
11197 kvm_pmu_reset(vcpu);
11198 vcpu->arch.smbase = 0x30000;
11200 vcpu->arch.msr_misc_features_enables = 0;
11202 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
11205 /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
11206 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
11207 kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
11210 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
11211 * if no CPUID match is found. Note, it's impossible to get a match at
11212 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
11213 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
11214 * on RESET. But, go through the motions in case that's ever remedied.
11216 cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1, 0);
11217 kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
11219 vcpu->arch.ia32_xss = 0;
11221 static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
11223 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
11224 kvm_rip_write(vcpu, 0xfff0);
11226 vcpu->arch.cr3 = 0;
11227 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11230 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions
11231 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
11232 * (or qualify) that with a footnote stating that CD/NW are preserved.
11234 new_cr0 = X86_CR0_ET;
11236 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
11238 new_cr0 |= X86_CR0_NW | X86_CR0_CD;
11240 static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
11241 static_call(kvm_x86_set_cr4)(vcpu, 0);
11242 static_call(kvm_x86_set_efer)(vcpu, 0);
11243 static_call(kvm_x86_update_exception_bitmap)(vcpu);
11246 * Reset the MMU context if paging was enabled prior to INIT (which is
11247 * implied if CR0.PG=1 as CR0 will be '0' prior to RESET). Unlike the
11248 * standard CR0/CR4/EFER modification paths, only CR0.PG needs to be
11249 * checked because it is unconditionally cleared on INIT and all other
11250 * paging related bits are ignored if paging is disabled, i.e. CR0.WP,
11251 * CR4, and EFER changes are all irrelevant if CR0.PG was '0'.
11253 if (old_cr0 & X86_CR0_PG)
11254 kvm_mmu_reset_context(vcpu);
11257 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's
11258 * APM states the TLBs are untouched by INIT, but it also states that
11259 * the TLBs are flushed on "External initialization of the processor."
11260 * Flush the guest TLB regardless of vendor, there is no meaningful
11261 * benefit in relying on the guest to flush the TLB immediately after
11262 * INIT. A spurious TLB flush is benign and likely negligible from a
11263 * performance perspective.
11266 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11268 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
11270 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
11272 struct kvm_segment cs;
11274 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
11275 cs.selector = vector << 8;
11276 cs.base = vector << 12;
11277 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
11278 kvm_rip_write(vcpu, 0);
11280 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
11282 int kvm_arch_hardware_enable(void)
11285 struct kvm_vcpu *vcpu;
11290 bool stable, backwards_tsc = false;
11292 kvm_user_return_msr_cpu_online();
11293 ret = static_call(kvm_x86_hardware_enable)();
11297 local_tsc = rdtsc();
11298 stable = !kvm_check_tsc_unstable();
11299 list_for_each_entry(kvm, &vm_list, vm_list) {
11300 kvm_for_each_vcpu(i, vcpu, kvm) {
11301 if (!stable && vcpu->cpu == smp_processor_id())
11302 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
11303 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
11304 backwards_tsc = true;
11305 if (vcpu->arch.last_host_tsc > max_tsc)
11306 max_tsc = vcpu->arch.last_host_tsc;
11312 * Sometimes, even reliable TSCs go backwards. This happens on
11313 * platforms that reset TSC during suspend or hibernate actions, but
11314 * maintain synchronization. We must compensate. Fortunately, we can
11315 * detect that condition here, which happens early in CPU bringup,
11316 * before any KVM threads can be running. Unfortunately, we can't
11317 * bring the TSCs fully up to date with real time, as we aren't yet far
11318 * enough into CPU bringup that we know how much real time has actually
11319 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
11320 * variables that haven't been updated yet.
11322 * So we simply find the maximum observed TSC above, then record the
11323 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
11324 * the adjustment will be applied. Note that we accumulate
11325 * adjustments, in case multiple suspend cycles happen before some VCPU
11326 * gets a chance to run again. In the event that no KVM threads get a
11327 * chance to run, we will miss the entire elapsed period, as we'll have
11328 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
11329 * loose cycle time. This isn't too big a deal, since the loss will be
11330 * uniform across all VCPUs (not to mention the scenario is extremely
11331 * unlikely). It is possible that a second hibernate recovery happens
11332 * much faster than a first, causing the observed TSC here to be
11333 * smaller; this would require additional padding adjustment, which is
11334 * why we set last_host_tsc to the local tsc observed here.
11336 * N.B. - this code below runs only on platforms with reliable TSC,
11337 * as that is the only way backwards_tsc is set above. Also note
11338 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
11339 * have the same delta_cyc adjustment applied if backwards_tsc
11340 * is detected. Note further, this adjustment is only done once,
11341 * as we reset last_host_tsc on all VCPUs to stop this from being
11342 * called multiple times (one for each physical CPU bringup).
11344 * Platforms with unreliable TSCs don't have to deal with this, they
11345 * will be compensated by the logic in vcpu_load, which sets the TSC to
11346 * catchup mode. This will catchup all VCPUs to real time, but cannot
11347 * guarantee that they stay in perfect synchronization.
11349 if (backwards_tsc) {
11350 u64 delta_cyc = max_tsc - local_tsc;
11351 list_for_each_entry(kvm, &vm_list, vm_list) {
11352 kvm->arch.backwards_tsc_observed = true;
11353 kvm_for_each_vcpu(i, vcpu, kvm) {
11354 vcpu->arch.tsc_offset_adjustment += delta_cyc;
11355 vcpu->arch.last_host_tsc = local_tsc;
11356 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
11360 * We have to disable TSC offset matching.. if you were
11361 * booting a VM while issuing an S4 host suspend....
11362 * you may have some problem. Solving this issue is
11363 * left as an exercise to the reader.
11365 kvm->arch.last_tsc_nsec = 0;
11366 kvm->arch.last_tsc_write = 0;
11373 void kvm_arch_hardware_disable(void)
11375 static_call(kvm_x86_hardware_disable)();
11376 drop_user_return_notifiers();
11379 int kvm_arch_hardware_setup(void *opaque)
11381 struct kvm_x86_init_ops *ops = opaque;
11384 rdmsrl_safe(MSR_EFER, &host_efer);
11386 if (boot_cpu_has(X86_FEATURE_XSAVES))
11387 rdmsrl(MSR_IA32_XSS, host_xss);
11389 r = ops->hardware_setup();
11393 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
11394 kvm_ops_static_call_update();
11396 kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
11398 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
11401 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
11402 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
11403 #undef __kvm_cpu_cap_has
11405 if (kvm_has_tsc_control) {
11407 * Make sure the user can only configure tsc_khz values that
11408 * fit into a signed integer.
11409 * A min value is not calculated because it will always
11410 * be 1 on all machines.
11412 u64 max = min(0x7fffffffULL,
11413 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
11414 kvm_max_guest_tsc_khz = max;
11416 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
11419 kvm_init_msr_list();
11423 void kvm_arch_hardware_unsetup(void)
11425 kvm_unregister_perf_callbacks();
11427 static_call(kvm_x86_hardware_unsetup)();
11430 int kvm_arch_check_processor_compat(void *opaque)
11432 struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
11433 struct kvm_x86_init_ops *ops = opaque;
11435 WARN_ON(!irqs_disabled());
11437 if (__cr4_reserved_bits(cpu_has, c) !=
11438 __cr4_reserved_bits(cpu_has, &boot_cpu_data))
11441 return ops->check_processor_compatibility();
11444 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
11446 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
11448 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
11450 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
11452 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
11455 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
11456 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
11458 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
11460 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
11462 vcpu->arch.l1tf_flush_l1d = true;
11463 if (pmu->version && unlikely(pmu->event_count)) {
11464 pmu->need_cleanup = true;
11465 kvm_make_request(KVM_REQ_PMU, vcpu);
11467 static_call(kvm_x86_sched_in)(vcpu, cpu);
11470 void kvm_arch_free_vm(struct kvm *kvm)
11472 kfree(to_kvm_hv(kvm)->hv_pa_pg);
11473 __kvm_arch_free_vm(kvm);
11477 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
11480 unsigned long flags;
11485 ret = kvm_page_track_init(kvm);
11489 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
11490 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
11491 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
11492 INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
11493 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
11494 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
11496 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
11497 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
11498 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
11499 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
11500 &kvm->arch.irq_sources_bitmap);
11502 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
11503 mutex_init(&kvm->arch.apic_map_lock);
11504 seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
11505 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
11507 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
11508 pvclock_update_vm_gtod_copy(kvm);
11509 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
11511 kvm->arch.guest_can_read_msr_platform_info = true;
11513 #if IS_ENABLED(CONFIG_HYPERV)
11514 spin_lock_init(&kvm->arch.hv_root_tdp_lock);
11515 kvm->arch.hv_root_tdp = INVALID_PAGE;
11518 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
11519 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
11521 kvm_apicv_init(kvm);
11522 kvm_hv_init_vm(kvm);
11523 kvm_mmu_init_vm(kvm);
11524 kvm_xen_init_vm(kvm);
11526 return static_call(kvm_x86_vm_init)(kvm);
11529 int kvm_arch_post_init_vm(struct kvm *kvm)
11531 return kvm_mmu_post_init_vm(kvm);
11534 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
11537 kvm_mmu_unload(vcpu);
11541 static void kvm_free_vcpus(struct kvm *kvm)
11544 struct kvm_vcpu *vcpu;
11547 * Unpin any mmu pages first.
11549 kvm_for_each_vcpu(i, vcpu, kvm) {
11550 kvm_clear_async_pf_completion_queue(vcpu);
11551 kvm_unload_vcpu_mmu(vcpu);
11554 kvm_destroy_vcpus(kvm);
11557 void kvm_arch_sync_events(struct kvm *kvm)
11559 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
11560 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
11564 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e))
11567 * __x86_set_memory_region: Setup KVM internal memory slot
11569 * @kvm: the kvm pointer to the VM.
11570 * @id: the slot ID to setup.
11571 * @gpa: the GPA to install the slot (unused when @size == 0).
11572 * @size: the size of the slot. Set to zero to uninstall a slot.
11574 * This function helps to setup a KVM internal memory slot. Specify
11575 * @size > 0 to install a new slot, while @size == 0 to uninstall a
11576 * slot. The return code can be one of the following:
11578 * HVA: on success (uninstall will return a bogus HVA)
11581 * The caller should always use IS_ERR() to check the return value
11582 * before use. Note, the KVM internal memory slots are guaranteed to
11583 * remain valid and unchanged until the VM is destroyed, i.e., the
11584 * GPA->HVA translation will not change. However, the HVA is a user
11585 * address, i.e. its accessibility is not guaranteed, and must be
11586 * accessed via __copy_{to,from}_user().
11588 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
11592 unsigned long hva, old_npages;
11593 struct kvm_memslots *slots = kvm_memslots(kvm);
11594 struct kvm_memory_slot *slot;
11596 /* Called with kvm->slots_lock held. */
11597 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
11598 return ERR_PTR_USR(-EINVAL);
11600 slot = id_to_memslot(slots, id);
11602 if (slot && slot->npages)
11603 return ERR_PTR_USR(-EEXIST);
11606 * MAP_SHARED to prevent internal slot pages from being moved
11609 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
11610 MAP_SHARED | MAP_ANONYMOUS, 0);
11611 if (IS_ERR((void *)hva))
11612 return (void __user *)hva;
11614 if (!slot || !slot->npages)
11617 old_npages = slot->npages;
11618 hva = slot->userspace_addr;
11621 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
11622 struct kvm_userspace_memory_region m;
11624 m.slot = id | (i << 16);
11626 m.guest_phys_addr = gpa;
11627 m.userspace_addr = hva;
11628 m.memory_size = size;
11629 r = __kvm_set_memory_region(kvm, &m);
11631 return ERR_PTR_USR(r);
11635 vm_munmap(hva, old_npages * PAGE_SIZE);
11637 return (void __user *)hva;
11639 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
11641 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
11643 kvm_mmu_pre_destroy_vm(kvm);
11646 void kvm_arch_destroy_vm(struct kvm *kvm)
11648 if (current->mm == kvm->mm) {
11650 * Free memory regions allocated on behalf of userspace,
11651 * unless the the memory map has changed due to process exit
11654 mutex_lock(&kvm->slots_lock);
11655 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
11657 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
11659 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
11660 mutex_unlock(&kvm->slots_lock);
11662 static_call_cond(kvm_x86_vm_destroy)(kvm);
11663 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
11664 kvm_pic_destroy(kvm);
11665 kvm_ioapic_destroy(kvm);
11666 kvm_free_vcpus(kvm);
11667 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
11668 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
11669 kvm_mmu_uninit_vm(kvm);
11670 kvm_page_track_cleanup(kvm);
11671 kvm_xen_destroy_vm(kvm);
11672 kvm_hv_destroy_vm(kvm);
11675 static void memslot_rmap_free(struct kvm_memory_slot *slot)
11679 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
11680 kvfree(slot->arch.rmap[i]);
11681 slot->arch.rmap[i] = NULL;
11685 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
11689 memslot_rmap_free(slot);
11691 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11692 kvfree(slot->arch.lpage_info[i - 1]);
11693 slot->arch.lpage_info[i - 1] = NULL;
11696 kvm_page_track_free_memslot(slot);
11699 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
11701 const int sz = sizeof(*slot->arch.rmap[0]);
11704 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
11706 int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
11708 if (slot->arch.rmap[i])
11711 slot->arch.rmap[i] = kvcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
11712 if (!slot->arch.rmap[i]) {
11713 memslot_rmap_free(slot);
11721 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
11722 struct kvm_memory_slot *slot)
11724 unsigned long npages = slot->npages;
11728 * Clear out the previous array pointers for the KVM_MR_MOVE case. The
11729 * old arrays will be freed by __kvm_set_memory_region() if installing
11730 * the new memslot is successful.
11732 memset(&slot->arch, 0, sizeof(slot->arch));
11734 if (kvm_memslots_have_rmaps(kvm)) {
11735 r = memslot_rmap_alloc(slot, npages);
11740 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11741 struct kvm_lpage_info *linfo;
11742 unsigned long ugfn;
11746 lpages = __kvm_mmu_slot_lpages(slot, npages, level);
11748 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
11752 slot->arch.lpage_info[i - 1] = linfo;
11754 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
11755 linfo[0].disallow_lpage = 1;
11756 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
11757 linfo[lpages - 1].disallow_lpage = 1;
11758 ugfn = slot->userspace_addr >> PAGE_SHIFT;
11760 * If the gfn and userspace address are not aligned wrt each
11761 * other, disable large page support for this slot.
11763 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
11766 for (j = 0; j < lpages; ++j)
11767 linfo[j].disallow_lpage = 1;
11771 if (kvm_page_track_create_memslot(kvm, slot, npages))
11777 memslot_rmap_free(slot);
11779 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11780 kvfree(slot->arch.lpage_info[i - 1]);
11781 slot->arch.lpage_info[i - 1] = NULL;
11786 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
11788 struct kvm_vcpu *vcpu;
11792 * memslots->generation has been incremented.
11793 * mmio generation may have reached its maximum value.
11795 kvm_mmu_invalidate_mmio_sptes(kvm, gen);
11797 /* Force re-initialization of steal_time cache */
11798 kvm_for_each_vcpu(i, vcpu, kvm)
11799 kvm_vcpu_kick(vcpu);
11802 int kvm_arch_prepare_memory_region(struct kvm *kvm,
11803 const struct kvm_memory_slot *old,
11804 struct kvm_memory_slot *new,
11805 enum kvm_mr_change change)
11807 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE)
11808 return kvm_alloc_memslot_metadata(kvm, new);
11810 if (change == KVM_MR_FLAGS_ONLY)
11811 memcpy(&new->arch, &old->arch, sizeof(old->arch));
11812 else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
11819 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
11821 struct kvm_arch *ka = &kvm->arch;
11823 if (!kvm_x86_ops.cpu_dirty_log_size)
11826 if ((enable && ++ka->cpu_dirty_logging_count == 1) ||
11827 (!enable && --ka->cpu_dirty_logging_count == 0))
11828 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
11830 WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0);
11833 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
11834 struct kvm_memory_slot *old,
11835 const struct kvm_memory_slot *new,
11836 enum kvm_mr_change change)
11838 u32 old_flags = old ? old->flags : 0;
11839 u32 new_flags = new ? new->flags : 0;
11840 bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
11843 * Update CPU dirty logging if dirty logging is being toggled. This
11844 * applies to all operations.
11846 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
11847 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
11850 * Nothing more to do for RO slots (which can't be dirtied and can't be
11851 * made writable) or CREATE/MOVE/DELETE of a slot.
11853 * For a memslot with dirty logging disabled:
11854 * CREATE: No dirty mappings will already exist.
11855 * MOVE/DELETE: The old mappings will already have been cleaned up by
11856 * kvm_arch_flush_shadow_memslot()
11858 * For a memslot with dirty logging enabled:
11859 * CREATE: No shadow pages exist, thus nothing to write-protect
11860 * and no dirty bits to clear.
11861 * MOVE/DELETE: The old mappings will already have been cleaned up by
11862 * kvm_arch_flush_shadow_memslot().
11864 if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
11868 * READONLY and non-flags changes were filtered out above, and the only
11869 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
11870 * logging isn't being toggled on or off.
11872 if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
11875 if (!log_dirty_pages) {
11877 * Dirty logging tracks sptes in 4k granularity, meaning that
11878 * large sptes have to be split. If live migration succeeds,
11879 * the guest in the source machine will be destroyed and large
11880 * sptes will be created in the destination. However, if the
11881 * guest continues to run in the source machine (for example if
11882 * live migration fails), small sptes will remain around and
11883 * cause bad performance.
11885 * Scan sptes if dirty logging has been stopped, dropping those
11886 * which can be collapsed into a single large-page spte. Later
11887 * page faults will create the large-page sptes.
11889 kvm_mmu_zap_collapsible_sptes(kvm, new);
11892 * Initially-all-set does not require write protecting any page,
11893 * because they're all assumed to be dirty.
11895 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
11898 if (kvm_x86_ops.cpu_dirty_log_size) {
11899 kvm_mmu_slot_leaf_clear_dirty(kvm, new);
11900 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
11902 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
11907 void kvm_arch_commit_memory_region(struct kvm *kvm,
11908 struct kvm_memory_slot *old,
11909 const struct kvm_memory_slot *new,
11910 enum kvm_mr_change change)
11912 if (!kvm->arch.n_requested_mmu_pages &&
11913 (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
11914 unsigned long nr_mmu_pages;
11916 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
11917 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
11918 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
11921 kvm_mmu_slot_apply_flags(kvm, old, new, change);
11923 /* Free the arrays associated with the old memslot. */
11924 if (change == KVM_MR_MOVE)
11925 kvm_arch_free_memslot(kvm, old);
11928 void kvm_arch_flush_shadow_all(struct kvm *kvm)
11930 kvm_mmu_zap_all(kvm);
11933 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
11934 struct kvm_memory_slot *slot)
11936 kvm_page_track_flush_slot(kvm, slot);
11939 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
11941 return (is_guest_mode(vcpu) &&
11942 kvm_x86_ops.guest_apic_has_interrupt &&
11943 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
11946 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
11948 if (!list_empty_careful(&vcpu->async_pf.done))
11951 if (kvm_apic_has_events(vcpu))
11954 if (vcpu->arch.pv.pv_unhalted)
11957 if (vcpu->arch.exception.pending)
11960 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11961 (vcpu->arch.nmi_pending &&
11962 static_call(kvm_x86_nmi_allowed)(vcpu, false)))
11965 if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
11966 (vcpu->arch.smi_pending &&
11967 static_call(kvm_x86_smi_allowed)(vcpu, false)))
11970 if (kvm_arch_interrupt_allowed(vcpu) &&
11971 (kvm_cpu_has_interrupt(vcpu) ||
11972 kvm_guest_apic_has_interrupt(vcpu)))
11975 if (kvm_hv_has_stimer_pending(vcpu))
11978 if (is_guest_mode(vcpu) &&
11979 kvm_x86_ops.nested_ops->hv_timer_pending &&
11980 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
11986 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
11988 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
11991 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
11993 if (vcpu->arch.apicv_active && static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
11999 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
12001 if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
12004 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12005 kvm_test_request(KVM_REQ_SMI, vcpu) ||
12006 kvm_test_request(KVM_REQ_EVENT, vcpu))
12009 return kvm_arch_dy_has_pending_interrupt(vcpu);
12012 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
12014 if (vcpu->arch.guest_state_protected)
12017 return vcpu->arch.preempted_in_kernel;
12020 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
12022 return kvm_rip_read(vcpu);
12025 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
12027 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
12030 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
12032 return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
12035 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
12037 /* Can't read the RIP when guest state is protected, just return 0 */
12038 if (vcpu->arch.guest_state_protected)
12041 if (is_64_bit_mode(vcpu))
12042 return kvm_rip_read(vcpu);
12043 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
12044 kvm_rip_read(vcpu));
12046 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
12048 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
12050 return kvm_get_linear_rip(vcpu) == linear_rip;
12052 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
12054 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
12056 unsigned long rflags;
12058 rflags = static_call(kvm_x86_get_rflags)(vcpu);
12059 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
12060 rflags &= ~X86_EFLAGS_TF;
12063 EXPORT_SYMBOL_GPL(kvm_get_rflags);
12065 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12067 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
12068 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
12069 rflags |= X86_EFLAGS_TF;
12070 static_call(kvm_x86_set_rflags)(vcpu, rflags);
12073 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12075 __kvm_set_rflags(vcpu, rflags);
12076 kvm_make_request(KVM_REQ_EVENT, vcpu);
12078 EXPORT_SYMBOL_GPL(kvm_set_rflags);
12080 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
12084 if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
12088 r = kvm_mmu_reload(vcpu);
12092 if (!vcpu->arch.mmu->direct_map &&
12093 work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
12096 kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
12099 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
12101 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
12103 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
12106 static inline u32 kvm_async_pf_next_probe(u32 key)
12108 return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
12111 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12113 u32 key = kvm_async_pf_hash_fn(gfn);
12115 while (vcpu->arch.apf.gfns[key] != ~0)
12116 key = kvm_async_pf_next_probe(key);
12118 vcpu->arch.apf.gfns[key] = gfn;
12121 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
12124 u32 key = kvm_async_pf_hash_fn(gfn);
12126 for (i = 0; i < ASYNC_PF_PER_VCPU &&
12127 (vcpu->arch.apf.gfns[key] != gfn &&
12128 vcpu->arch.apf.gfns[key] != ~0); i++)
12129 key = kvm_async_pf_next_probe(key);
12134 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12136 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
12139 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12143 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
12145 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
12149 vcpu->arch.apf.gfns[i] = ~0;
12151 j = kvm_async_pf_next_probe(j);
12152 if (vcpu->arch.apf.gfns[j] == ~0)
12154 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
12156 * k lies cyclically in ]i,j]
12158 * |....j i.k.| or |.k..j i...|
12160 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
12161 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
12166 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
12168 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
12170 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
12174 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
12176 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12178 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12179 &token, offset, sizeof(token));
12182 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
12184 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12187 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12188 &val, offset, sizeof(val)))
12194 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
12196 if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
12199 if (!kvm_pv_async_pf_enabled(vcpu) ||
12200 (vcpu->arch.apf.send_user_only && static_call(kvm_x86_get_cpl)(vcpu) == 0))
12206 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
12208 if (unlikely(!lapic_in_kernel(vcpu) ||
12209 kvm_event_needs_reinjection(vcpu) ||
12210 vcpu->arch.exception.pending))
12213 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
12217 * If interrupts are off we cannot even use an artificial
12220 return kvm_arch_interrupt_allowed(vcpu);
12223 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
12224 struct kvm_async_pf *work)
12226 struct x86_exception fault;
12228 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
12229 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
12231 if (kvm_can_deliver_async_pf(vcpu) &&
12232 !apf_put_user_notpresent(vcpu)) {
12233 fault.vector = PF_VECTOR;
12234 fault.error_code_valid = true;
12235 fault.error_code = 0;
12236 fault.nested_page_fault = false;
12237 fault.address = work->arch.token;
12238 fault.async_page_fault = true;
12239 kvm_inject_page_fault(vcpu, &fault);
12243 * It is not possible to deliver a paravirtualized asynchronous
12244 * page fault, but putting the guest in an artificial halt state
12245 * can be beneficial nevertheless: if an interrupt arrives, we
12246 * can deliver it timely and perhaps the guest will schedule
12247 * another process. When the instruction that triggered a page
12248 * fault is retried, hopefully the page will be ready in the host.
12250 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
12255 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
12256 struct kvm_async_pf *work)
12258 struct kvm_lapic_irq irq = {
12259 .delivery_mode = APIC_DM_FIXED,
12260 .vector = vcpu->arch.apf.vec
12263 if (work->wakeup_all)
12264 work->arch.token = ~0; /* broadcast wakeup */
12266 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
12267 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
12269 if ((work->wakeup_all || work->notpresent_injected) &&
12270 kvm_pv_async_pf_enabled(vcpu) &&
12271 !apf_put_user_ready(vcpu, work->arch.token)) {
12272 vcpu->arch.apf.pageready_pending = true;
12273 kvm_apic_set_irq(vcpu, &irq, NULL);
12276 vcpu->arch.apf.halted = false;
12277 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
12280 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
12282 kvm_make_request(KVM_REQ_APF_READY, vcpu);
12283 if (!vcpu->arch.apf.pageready_pending)
12284 kvm_vcpu_kick(vcpu);
12287 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
12289 if (!kvm_pv_async_pf_enabled(vcpu))
12292 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
12295 void kvm_arch_start_assignment(struct kvm *kvm)
12297 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
12298 static_call_cond(kvm_x86_start_assignment)(kvm);
12300 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
12302 void kvm_arch_end_assignment(struct kvm *kvm)
12304 atomic_dec(&kvm->arch.assigned_device_count);
12306 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
12308 bool kvm_arch_has_assigned_device(struct kvm *kvm)
12310 return atomic_read(&kvm->arch.assigned_device_count);
12312 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
12314 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
12316 atomic_inc(&kvm->arch.noncoherent_dma_count);
12318 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
12320 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
12322 atomic_dec(&kvm->arch.noncoherent_dma_count);
12324 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
12326 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
12328 return atomic_read(&kvm->arch.noncoherent_dma_count);
12330 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
12332 bool kvm_arch_has_irq_bypass(void)
12337 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
12338 struct irq_bypass_producer *prod)
12340 struct kvm_kernel_irqfd *irqfd =
12341 container_of(cons, struct kvm_kernel_irqfd, consumer);
12344 irqfd->producer = prod;
12345 kvm_arch_start_assignment(irqfd->kvm);
12346 ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm,
12347 prod->irq, irqfd->gsi, 1);
12350 kvm_arch_end_assignment(irqfd->kvm);
12355 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
12356 struct irq_bypass_producer *prod)
12359 struct kvm_kernel_irqfd *irqfd =
12360 container_of(cons, struct kvm_kernel_irqfd, consumer);
12362 WARN_ON(irqfd->producer != prod);
12363 irqfd->producer = NULL;
12366 * When producer of consumer is unregistered, we change back to
12367 * remapped mode, so we can re-use the current implementation
12368 * when the irq is masked/disabled or the consumer side (KVM
12369 * int this case doesn't want to receive the interrupts.
12371 ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
12373 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
12374 " fails: %d\n", irqfd->consumer.token, ret);
12376 kvm_arch_end_assignment(irqfd->kvm);
12379 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
12380 uint32_t guest_irq, bool set)
12382 return static_call(kvm_x86_update_pi_irte)(kvm, host_irq, guest_irq, set);
12385 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
12386 struct kvm_kernel_irq_routing_entry *new)
12388 if (new->type != KVM_IRQ_ROUTING_MSI)
12391 return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
12394 bool kvm_vector_hashing_enabled(void)
12396 return vector_hashing;
12399 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
12401 return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
12403 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
12406 int kvm_spec_ctrl_test_value(u64 value)
12409 * test that setting IA32_SPEC_CTRL to given value
12410 * is allowed by the host processor
12414 unsigned long flags;
12417 local_irq_save(flags);
12419 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
12421 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
12424 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
12426 local_irq_restore(flags);
12430 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
12432 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
12434 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
12435 struct x86_exception fault;
12436 u32 access = error_code &
12437 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
12439 if (!(error_code & PFERR_PRESENT_MASK) ||
12440 mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != UNMAPPED_GVA) {
12442 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
12443 * tables probably do not match the TLB. Just proceed
12444 * with the error code that the processor gave.
12446 fault.vector = PF_VECTOR;
12447 fault.error_code_valid = true;
12448 fault.error_code = error_code;
12449 fault.nested_page_fault = false;
12450 fault.address = gva;
12452 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
12454 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
12457 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
12458 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
12459 * indicates whether exit to userspace is needed.
12461 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
12462 struct x86_exception *e)
12464 if (r == X86EMUL_PROPAGATE_FAULT) {
12465 kvm_inject_emulated_page_fault(vcpu, e);
12470 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
12471 * while handling a VMX instruction KVM could've handled the request
12472 * correctly by exiting to userspace and performing I/O but there
12473 * doesn't seem to be a real use-case behind such requests, just return
12474 * KVM_EXIT_INTERNAL_ERROR for now.
12476 kvm_prepare_emulation_failure_exit(vcpu);
12480 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
12482 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
12485 struct x86_exception e;
12492 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
12493 if (r != X86EMUL_CONTINUE)
12494 return kvm_handle_memory_failure(vcpu, r, &e);
12496 if (operand.pcid >> 12 != 0) {
12497 kvm_inject_gp(vcpu, 0);
12501 pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
12504 case INVPCID_TYPE_INDIV_ADDR:
12505 if ((!pcid_enabled && (operand.pcid != 0)) ||
12506 is_noncanonical_address(operand.gla, vcpu)) {
12507 kvm_inject_gp(vcpu, 0);
12510 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
12511 return kvm_skip_emulated_instruction(vcpu);
12513 case INVPCID_TYPE_SINGLE_CTXT:
12514 if (!pcid_enabled && (operand.pcid != 0)) {
12515 kvm_inject_gp(vcpu, 0);
12519 kvm_invalidate_pcid(vcpu, operand.pcid);
12520 return kvm_skip_emulated_instruction(vcpu);
12522 case INVPCID_TYPE_ALL_NON_GLOBAL:
12524 * Currently, KVM doesn't mark global entries in the shadow
12525 * page tables, so a non-global flush just degenerates to a
12526 * global flush. If needed, we could optimize this later by
12527 * keeping track of global entries in shadow page tables.
12531 case INVPCID_TYPE_ALL_INCL_GLOBAL:
12532 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12533 return kvm_skip_emulated_instruction(vcpu);
12536 kvm_inject_gp(vcpu, 0);
12540 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
12542 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
12544 struct kvm_run *run = vcpu->run;
12545 struct kvm_mmio_fragment *frag;
12548 BUG_ON(!vcpu->mmio_needed);
12550 /* Complete previous fragment */
12551 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
12552 len = min(8u, frag->len);
12553 if (!vcpu->mmio_is_write)
12554 memcpy(frag->data, run->mmio.data, len);
12556 if (frag->len <= 8) {
12557 /* Switch to the next fragment. */
12559 vcpu->mmio_cur_fragment++;
12561 /* Go forward to the next mmio piece. */
12567 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
12568 vcpu->mmio_needed = 0;
12570 // VMG change, at this point, we're always done
12571 // RIP has already been advanced
12575 // More MMIO is needed
12576 run->mmio.phys_addr = frag->gpa;
12577 run->mmio.len = min(8u, frag->len);
12578 run->mmio.is_write = vcpu->mmio_is_write;
12579 if (run->mmio.is_write)
12580 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
12581 run->exit_reason = KVM_EXIT_MMIO;
12583 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12588 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12592 struct kvm_mmio_fragment *frag;
12597 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12598 if (handled == bytes)
12605 /*TODO: Check if need to increment number of frags */
12606 frag = vcpu->mmio_fragments;
12607 vcpu->mmio_nr_fragments = 1;
12612 vcpu->mmio_needed = 1;
12613 vcpu->mmio_cur_fragment = 0;
12615 vcpu->run->mmio.phys_addr = gpa;
12616 vcpu->run->mmio.len = min(8u, frag->len);
12617 vcpu->run->mmio.is_write = 1;
12618 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
12619 vcpu->run->exit_reason = KVM_EXIT_MMIO;
12621 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12625 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
12627 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12631 struct kvm_mmio_fragment *frag;
12636 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12637 if (handled == bytes)
12644 /*TODO: Check if need to increment number of frags */
12645 frag = vcpu->mmio_fragments;
12646 vcpu->mmio_nr_fragments = 1;
12651 vcpu->mmio_needed = 1;
12652 vcpu->mmio_cur_fragment = 0;
12654 vcpu->run->mmio.phys_addr = gpa;
12655 vcpu->run->mmio.len = min(8u, frag->len);
12656 vcpu->run->mmio.is_write = 0;
12657 vcpu->run->exit_reason = KVM_EXIT_MMIO;
12659 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12663 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
12665 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
12666 unsigned int port);
12668 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
12670 int size = vcpu->arch.pio.size;
12671 int port = vcpu->arch.pio.port;
12673 vcpu->arch.pio.count = 0;
12674 if (vcpu->arch.sev_pio_count)
12675 return kvm_sev_es_outs(vcpu, size, port);
12679 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
12683 unsigned int count =
12684 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
12685 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
12687 /* memcpy done already by emulator_pio_out. */
12688 vcpu->arch.sev_pio_count -= count;
12689 vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size;
12693 /* Emulation done by the kernel. */
12694 if (!vcpu->arch.sev_pio_count)
12698 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
12702 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
12703 unsigned int port);
12705 static void advance_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
12707 unsigned count = vcpu->arch.pio.count;
12708 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
12709 vcpu->arch.sev_pio_count -= count;
12710 vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size;
12713 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
12715 int size = vcpu->arch.pio.size;
12716 int port = vcpu->arch.pio.port;
12718 advance_sev_es_emulated_ins(vcpu);
12719 if (vcpu->arch.sev_pio_count)
12720 return kvm_sev_es_ins(vcpu, size, port);
12724 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
12728 unsigned int count =
12729 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
12730 if (!__emulator_pio_in(vcpu, size, port, count))
12733 /* Emulation done by the kernel. */
12734 advance_sev_es_emulated_ins(vcpu);
12735 if (!vcpu->arch.sev_pio_count)
12739 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
12743 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
12744 unsigned int port, void *data, unsigned int count,
12747 vcpu->arch.sev_pio_data = data;
12748 vcpu->arch.sev_pio_count = count;
12749 return in ? kvm_sev_es_ins(vcpu, size, port)
12750 : kvm_sev_es_outs(vcpu, size, port);
12752 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
12754 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
12755 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
12756 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
12757 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
12758 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
12759 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
12760 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
12761 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
12762 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
12763 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
12764 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
12765 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
12766 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
12767 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
12768 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
12769 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
12770 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
12771 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
12772 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
12773 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
12774 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
12775 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
12776 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request);
12777 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
12778 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
12779 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
12780 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
12781 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);