Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[platform/kernel/linux-rpi.git] / arch / x86 / kvm / x86.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32 #include "xen.h"
33
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/intel-iommu.h>
45 #include <linux/cpufreq.h>
46 #include <linux/user-return-notifier.h>
47 #include <linux/srcu.h>
48 #include <linux/slab.h>
49 #include <linux/perf_event.h>
50 #include <linux/uaccess.h>
51 #include <linux/hash.h>
52 #include <linux/pci.h>
53 #include <linux/timekeeper_internal.h>
54 #include <linux/pvclock_gtod.h>
55 #include <linux/kvm_irqfd.h>
56 #include <linux/irqbypass.h>
57 #include <linux/sched/stat.h>
58 #include <linux/sched/isolation.h>
59 #include <linux/mem_encrypt.h>
60 #include <linux/entry-kvm.h>
61 #include <linux/suspend.h>
62
63 #include <trace/events/kvm.h>
64
65 #include <asm/debugreg.h>
66 #include <asm/msr.h>
67 #include <asm/desc.h>
68 #include <asm/mce.h>
69 #include <asm/pkru.h>
70 #include <linux/kernel_stat.h>
71 #include <asm/fpu/api.h>
72 #include <asm/fpu/xcr.h>
73 #include <asm/fpu/xstate.h>
74 #include <asm/pvclock.h>
75 #include <asm/div64.h>
76 #include <asm/irq_remapping.h>
77 #include <asm/mshyperv.h>
78 #include <asm/hypervisor.h>
79 #include <asm/tlbflush.h>
80 #include <asm/intel_pt.h>
81 #include <asm/emulate_prefix.h>
82 #include <asm/sgx.h>
83 #include <clocksource/hyperv_timer.h>
84
85 #define CREATE_TRACE_POINTS
86 #include "trace.h"
87
88 #define MAX_IO_MSRS 256
89 #define KVM_MAX_MCE_BANKS 32
90 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
91 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
92
93 #define emul_to_vcpu(ctxt) \
94         ((struct kvm_vcpu *)(ctxt)->vcpu)
95
96 /* EFER defaults:
97  * - enable syscall per default because its emulated by KVM
98  * - enable LME and LMA per default on 64 bit KVM
99  */
100 #ifdef CONFIG_X86_64
101 static
102 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
103 #else
104 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
105 #endif
106
107 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
108
109 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
110
111 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
112                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
113
114 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
115 static void process_nmi(struct kvm_vcpu *vcpu);
116 static void process_smi(struct kvm_vcpu *vcpu);
117 static void enter_smm(struct kvm_vcpu *vcpu);
118 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
119 static void store_regs(struct kvm_vcpu *vcpu);
120 static int sync_regs(struct kvm_vcpu *vcpu);
121 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
122
123 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
124 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
125
126 struct kvm_x86_ops kvm_x86_ops __read_mostly;
127 EXPORT_SYMBOL_GPL(kvm_x86_ops);
128
129 #define KVM_X86_OP(func)                                             \
130         DEFINE_STATIC_CALL_NULL(kvm_x86_##func,                      \
131                                 *(((struct kvm_x86_ops *)0)->func));
132 #define KVM_X86_OP_NULL KVM_X86_OP
133 #include <asm/kvm-x86-ops.h>
134 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
135 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
136 EXPORT_STATIC_CALL_GPL(kvm_x86_tlb_flush_current);
137
138 static bool __read_mostly ignore_msrs = 0;
139 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
140
141 bool __read_mostly report_ignored_msrs = true;
142 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
143 EXPORT_SYMBOL_GPL(report_ignored_msrs);
144
145 unsigned int min_timer_period_us = 200;
146 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
147
148 static bool __read_mostly kvmclock_periodic_sync = true;
149 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
150
151 bool __read_mostly kvm_has_tsc_control;
152 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
153 u32  __read_mostly kvm_max_guest_tsc_khz;
154 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
155 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
156 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
157 u64  __read_mostly kvm_max_tsc_scaling_ratio;
158 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
159 u64 __read_mostly kvm_default_tsc_scaling_ratio;
160 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
161 bool __read_mostly kvm_has_bus_lock_exit;
162 EXPORT_SYMBOL_GPL(kvm_has_bus_lock_exit);
163
164 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
165 static u32 __read_mostly tsc_tolerance_ppm = 250;
166 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
167
168 /*
169  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
170  * adaptive tuning starting from default advancement of 1000ns.  '0' disables
171  * advancement entirely.  Any other value is used as-is and disables adaptive
172  * tuning, i.e. allows privileged userspace to set an exact advancement time.
173  */
174 static int __read_mostly lapic_timer_advance_ns = -1;
175 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
176
177 static bool __read_mostly vector_hashing = true;
178 module_param(vector_hashing, bool, S_IRUGO);
179
180 bool __read_mostly enable_vmware_backdoor = false;
181 module_param(enable_vmware_backdoor, bool, S_IRUGO);
182 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
183
184 static bool __read_mostly force_emulation_prefix = false;
185 module_param(force_emulation_prefix, bool, S_IRUGO);
186
187 int __read_mostly pi_inject_timer = -1;
188 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
189
190 /*
191  * Restoring the host value for MSRs that are only consumed when running in
192  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
193  * returns to userspace, i.e. the kernel can run with the guest's value.
194  */
195 #define KVM_MAX_NR_USER_RETURN_MSRS 16
196
197 struct kvm_user_return_msrs {
198         struct user_return_notifier urn;
199         bool registered;
200         struct kvm_user_return_msr_values {
201                 u64 host;
202                 u64 curr;
203         } values[KVM_MAX_NR_USER_RETURN_MSRS];
204 };
205
206 u32 __read_mostly kvm_nr_uret_msrs;
207 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
208 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
209 static struct kvm_user_return_msrs __percpu *user_return_msrs;
210
211 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
212                                 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
213                                 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
214                                 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
215
216 u64 __read_mostly host_efer;
217 EXPORT_SYMBOL_GPL(host_efer);
218
219 bool __read_mostly allow_smaller_maxphyaddr = 0;
220 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
221
222 bool __read_mostly enable_apicv = true;
223 EXPORT_SYMBOL_GPL(enable_apicv);
224
225 u64 __read_mostly host_xss;
226 EXPORT_SYMBOL_GPL(host_xss);
227 u64 __read_mostly supported_xss;
228 EXPORT_SYMBOL_GPL(supported_xss);
229
230 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
231         KVM_GENERIC_VM_STATS(),
232         STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
233         STATS_DESC_COUNTER(VM, mmu_pte_write),
234         STATS_DESC_COUNTER(VM, mmu_pde_zapped),
235         STATS_DESC_COUNTER(VM, mmu_flooded),
236         STATS_DESC_COUNTER(VM, mmu_recycled),
237         STATS_DESC_COUNTER(VM, mmu_cache_miss),
238         STATS_DESC_ICOUNTER(VM, mmu_unsync),
239         STATS_DESC_ICOUNTER(VM, pages_4k),
240         STATS_DESC_ICOUNTER(VM, pages_2m),
241         STATS_DESC_ICOUNTER(VM, pages_1g),
242         STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
243         STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
244         STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
245 };
246
247 const struct kvm_stats_header kvm_vm_stats_header = {
248         .name_size = KVM_STATS_NAME_SIZE,
249         .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
250         .id_offset = sizeof(struct kvm_stats_header),
251         .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
252         .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
253                        sizeof(kvm_vm_stats_desc),
254 };
255
256 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
257         KVM_GENERIC_VCPU_STATS(),
258         STATS_DESC_COUNTER(VCPU, pf_fixed),
259         STATS_DESC_COUNTER(VCPU, pf_guest),
260         STATS_DESC_COUNTER(VCPU, tlb_flush),
261         STATS_DESC_COUNTER(VCPU, invlpg),
262         STATS_DESC_COUNTER(VCPU, exits),
263         STATS_DESC_COUNTER(VCPU, io_exits),
264         STATS_DESC_COUNTER(VCPU, mmio_exits),
265         STATS_DESC_COUNTER(VCPU, signal_exits),
266         STATS_DESC_COUNTER(VCPU, irq_window_exits),
267         STATS_DESC_COUNTER(VCPU, nmi_window_exits),
268         STATS_DESC_COUNTER(VCPU, l1d_flush),
269         STATS_DESC_COUNTER(VCPU, halt_exits),
270         STATS_DESC_COUNTER(VCPU, request_irq_exits),
271         STATS_DESC_COUNTER(VCPU, irq_exits),
272         STATS_DESC_COUNTER(VCPU, host_state_reload),
273         STATS_DESC_COUNTER(VCPU, fpu_reload),
274         STATS_DESC_COUNTER(VCPU, insn_emulation),
275         STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
276         STATS_DESC_COUNTER(VCPU, hypercalls),
277         STATS_DESC_COUNTER(VCPU, irq_injections),
278         STATS_DESC_COUNTER(VCPU, nmi_injections),
279         STATS_DESC_COUNTER(VCPU, req_event),
280         STATS_DESC_COUNTER(VCPU, nested_run),
281         STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
282         STATS_DESC_COUNTER(VCPU, directed_yield_successful),
283         STATS_DESC_ICOUNTER(VCPU, guest_mode)
284 };
285
286 const struct kvm_stats_header kvm_vcpu_stats_header = {
287         .name_size = KVM_STATS_NAME_SIZE,
288         .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
289         .id_offset = sizeof(struct kvm_stats_header),
290         .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
291         .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
292                        sizeof(kvm_vcpu_stats_desc),
293 };
294
295 u64 __read_mostly host_xcr0;
296 u64 __read_mostly supported_xcr0;
297 EXPORT_SYMBOL_GPL(supported_xcr0);
298
299 static struct kmem_cache *x86_emulator_cache;
300
301 /*
302  * When called, it means the previous get/set msr reached an invalid msr.
303  * Return true if we want to ignore/silent this failed msr access.
304  */
305 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
306 {
307         const char *op = write ? "wrmsr" : "rdmsr";
308
309         if (ignore_msrs) {
310                 if (report_ignored_msrs)
311                         kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
312                                       op, msr, data);
313                 /* Mask the error */
314                 return true;
315         } else {
316                 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
317                                       op, msr, data);
318                 return false;
319         }
320 }
321
322 static struct kmem_cache *kvm_alloc_emulator_cache(void)
323 {
324         unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
325         unsigned int size = sizeof(struct x86_emulate_ctxt);
326
327         return kmem_cache_create_usercopy("x86_emulator", size,
328                                           __alignof__(struct x86_emulate_ctxt),
329                                           SLAB_ACCOUNT, useroffset,
330                                           size - useroffset, NULL);
331 }
332
333 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
334
335 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
336 {
337         int i;
338         for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
339                 vcpu->arch.apf.gfns[i] = ~0;
340 }
341
342 static void kvm_on_user_return(struct user_return_notifier *urn)
343 {
344         unsigned slot;
345         struct kvm_user_return_msrs *msrs
346                 = container_of(urn, struct kvm_user_return_msrs, urn);
347         struct kvm_user_return_msr_values *values;
348         unsigned long flags;
349
350         /*
351          * Disabling irqs at this point since the following code could be
352          * interrupted and executed through kvm_arch_hardware_disable()
353          */
354         local_irq_save(flags);
355         if (msrs->registered) {
356                 msrs->registered = false;
357                 user_return_notifier_unregister(urn);
358         }
359         local_irq_restore(flags);
360         for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
361                 values = &msrs->values[slot];
362                 if (values->host != values->curr) {
363                         wrmsrl(kvm_uret_msrs_list[slot], values->host);
364                         values->curr = values->host;
365                 }
366         }
367 }
368
369 static int kvm_probe_user_return_msr(u32 msr)
370 {
371         u64 val;
372         int ret;
373
374         preempt_disable();
375         ret = rdmsrl_safe(msr, &val);
376         if (ret)
377                 goto out;
378         ret = wrmsrl_safe(msr, val);
379 out:
380         preempt_enable();
381         return ret;
382 }
383
384 int kvm_add_user_return_msr(u32 msr)
385 {
386         BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
387
388         if (kvm_probe_user_return_msr(msr))
389                 return -1;
390
391         kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
392         return kvm_nr_uret_msrs++;
393 }
394 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
395
396 int kvm_find_user_return_msr(u32 msr)
397 {
398         int i;
399
400         for (i = 0; i < kvm_nr_uret_msrs; ++i) {
401                 if (kvm_uret_msrs_list[i] == msr)
402                         return i;
403         }
404         return -1;
405 }
406 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
407
408 static void kvm_user_return_msr_cpu_online(void)
409 {
410         unsigned int cpu = smp_processor_id();
411         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
412         u64 value;
413         int i;
414
415         for (i = 0; i < kvm_nr_uret_msrs; ++i) {
416                 rdmsrl_safe(kvm_uret_msrs_list[i], &value);
417                 msrs->values[i].host = value;
418                 msrs->values[i].curr = value;
419         }
420 }
421
422 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
423 {
424         unsigned int cpu = smp_processor_id();
425         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
426         int err;
427
428         value = (value & mask) | (msrs->values[slot].host & ~mask);
429         if (value == msrs->values[slot].curr)
430                 return 0;
431         err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
432         if (err)
433                 return 1;
434
435         msrs->values[slot].curr = value;
436         if (!msrs->registered) {
437                 msrs->urn.on_user_return = kvm_on_user_return;
438                 user_return_notifier_register(&msrs->urn);
439                 msrs->registered = true;
440         }
441         return 0;
442 }
443 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
444
445 static void drop_user_return_notifiers(void)
446 {
447         unsigned int cpu = smp_processor_id();
448         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
449
450         if (msrs->registered)
451                 kvm_on_user_return(&msrs->urn);
452 }
453
454 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
455 {
456         return vcpu->arch.apic_base;
457 }
458 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
459
460 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
461 {
462         return kvm_apic_mode(kvm_get_apic_base(vcpu));
463 }
464 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
465
466 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
467 {
468         enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
469         enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
470         u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
471                 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
472
473         if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
474                 return 1;
475         if (!msr_info->host_initiated) {
476                 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
477                         return 1;
478                 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
479                         return 1;
480         }
481
482         kvm_lapic_set_base(vcpu, msr_info->data);
483         kvm_recalculate_apic_map(vcpu->kvm);
484         return 0;
485 }
486 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
487
488 /*
489  * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
490  *
491  * Hardware virtualization extension instructions may fault if a reboot turns
492  * off virtualization while processes are running.  Usually after catching the
493  * fault we just panic; during reboot instead the instruction is ignored.
494  */
495 noinstr void kvm_spurious_fault(void)
496 {
497         /* Fault while not rebooting.  We want the trace. */
498         BUG_ON(!kvm_rebooting);
499 }
500 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
501
502 #define EXCPT_BENIGN            0
503 #define EXCPT_CONTRIBUTORY      1
504 #define EXCPT_PF                2
505
506 static int exception_class(int vector)
507 {
508         switch (vector) {
509         case PF_VECTOR:
510                 return EXCPT_PF;
511         case DE_VECTOR:
512         case TS_VECTOR:
513         case NP_VECTOR:
514         case SS_VECTOR:
515         case GP_VECTOR:
516                 return EXCPT_CONTRIBUTORY;
517         default:
518                 break;
519         }
520         return EXCPT_BENIGN;
521 }
522
523 #define EXCPT_FAULT             0
524 #define EXCPT_TRAP              1
525 #define EXCPT_ABORT             2
526 #define EXCPT_INTERRUPT         3
527
528 static int exception_type(int vector)
529 {
530         unsigned int mask;
531
532         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
533                 return EXCPT_INTERRUPT;
534
535         mask = 1 << vector;
536
537         /* #DB is trap, as instruction watchpoints are handled elsewhere */
538         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
539                 return EXCPT_TRAP;
540
541         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
542                 return EXCPT_ABORT;
543
544         /* Reserved exceptions will result in fault */
545         return EXCPT_FAULT;
546 }
547
548 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
549 {
550         unsigned nr = vcpu->arch.exception.nr;
551         bool has_payload = vcpu->arch.exception.has_payload;
552         unsigned long payload = vcpu->arch.exception.payload;
553
554         if (!has_payload)
555                 return;
556
557         switch (nr) {
558         case DB_VECTOR:
559                 /*
560                  * "Certain debug exceptions may clear bit 0-3.  The
561                  * remaining contents of the DR6 register are never
562                  * cleared by the processor".
563                  */
564                 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
565                 /*
566                  * In order to reflect the #DB exception payload in guest
567                  * dr6, three components need to be considered: active low
568                  * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
569                  * DR6_BS and DR6_BT)
570                  * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
571                  * In the target guest dr6:
572                  * FIXED_1 bits should always be set.
573                  * Active low bits should be cleared if 1-setting in payload.
574                  * Active high bits should be set if 1-setting in payload.
575                  *
576                  * Note, the payload is compatible with the pending debug
577                  * exceptions/exit qualification under VMX, that active_low bits
578                  * are active high in payload.
579                  * So they need to be flipped for DR6.
580                  */
581                 vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
582                 vcpu->arch.dr6 |= payload;
583                 vcpu->arch.dr6 ^= payload & DR6_ACTIVE_LOW;
584
585                 /*
586                  * The #DB payload is defined as compatible with the 'pending
587                  * debug exceptions' field under VMX, not DR6. While bit 12 is
588                  * defined in the 'pending debug exceptions' field (enabled
589                  * breakpoint), it is reserved and must be zero in DR6.
590                  */
591                 vcpu->arch.dr6 &= ~BIT(12);
592                 break;
593         case PF_VECTOR:
594                 vcpu->arch.cr2 = payload;
595                 break;
596         }
597
598         vcpu->arch.exception.has_payload = false;
599         vcpu->arch.exception.payload = 0;
600 }
601 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
602
603 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
604                 unsigned nr, bool has_error, u32 error_code,
605                 bool has_payload, unsigned long payload, bool reinject)
606 {
607         u32 prev_nr;
608         int class1, class2;
609
610         kvm_make_request(KVM_REQ_EVENT, vcpu);
611
612         if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
613         queue:
614                 if (reinject) {
615                         /*
616                          * On vmentry, vcpu->arch.exception.pending is only
617                          * true if an event injection was blocked by
618                          * nested_run_pending.  In that case, however,
619                          * vcpu_enter_guest requests an immediate exit,
620                          * and the guest shouldn't proceed far enough to
621                          * need reinjection.
622                          */
623                         WARN_ON_ONCE(vcpu->arch.exception.pending);
624                         vcpu->arch.exception.injected = true;
625                         if (WARN_ON_ONCE(has_payload)) {
626                                 /*
627                                  * A reinjected event has already
628                                  * delivered its payload.
629                                  */
630                                 has_payload = false;
631                                 payload = 0;
632                         }
633                 } else {
634                         vcpu->arch.exception.pending = true;
635                         vcpu->arch.exception.injected = false;
636                 }
637                 vcpu->arch.exception.has_error_code = has_error;
638                 vcpu->arch.exception.nr = nr;
639                 vcpu->arch.exception.error_code = error_code;
640                 vcpu->arch.exception.has_payload = has_payload;
641                 vcpu->arch.exception.payload = payload;
642                 if (!is_guest_mode(vcpu))
643                         kvm_deliver_exception_payload(vcpu);
644                 return;
645         }
646
647         /* to check exception */
648         prev_nr = vcpu->arch.exception.nr;
649         if (prev_nr == DF_VECTOR) {
650                 /* triple fault -> shutdown */
651                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
652                 return;
653         }
654         class1 = exception_class(prev_nr);
655         class2 = exception_class(nr);
656         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
657                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
658                 /*
659                  * Generate double fault per SDM Table 5-5.  Set
660                  * exception.pending = true so that the double fault
661                  * can trigger a nested vmexit.
662                  */
663                 vcpu->arch.exception.pending = true;
664                 vcpu->arch.exception.injected = false;
665                 vcpu->arch.exception.has_error_code = true;
666                 vcpu->arch.exception.nr = DF_VECTOR;
667                 vcpu->arch.exception.error_code = 0;
668                 vcpu->arch.exception.has_payload = false;
669                 vcpu->arch.exception.payload = 0;
670         } else
671                 /* replace previous exception with a new one in a hope
672                    that instruction re-execution will regenerate lost
673                    exception */
674                 goto queue;
675 }
676
677 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
678 {
679         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
680 }
681 EXPORT_SYMBOL_GPL(kvm_queue_exception);
682
683 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
684 {
685         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
686 }
687 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
688
689 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
690                            unsigned long payload)
691 {
692         kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
693 }
694 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
695
696 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
697                                     u32 error_code, unsigned long payload)
698 {
699         kvm_multiple_exception(vcpu, nr, true, error_code,
700                                true, payload, false);
701 }
702
703 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
704 {
705         if (err)
706                 kvm_inject_gp(vcpu, 0);
707         else
708                 return kvm_skip_emulated_instruction(vcpu);
709
710         return 1;
711 }
712 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
713
714 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
715 {
716         if (err) {
717                 kvm_inject_gp(vcpu, 0);
718                 return 1;
719         }
720
721         return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
722                                        EMULTYPE_COMPLETE_USER_EXIT);
723 }
724
725 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
726 {
727         ++vcpu->stat.pf_guest;
728         vcpu->arch.exception.nested_apf =
729                 is_guest_mode(vcpu) && fault->async_page_fault;
730         if (vcpu->arch.exception.nested_apf) {
731                 vcpu->arch.apf.nested_apf_token = fault->address;
732                 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
733         } else {
734                 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
735                                         fault->address);
736         }
737 }
738 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
739
740 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
741                                     struct x86_exception *fault)
742 {
743         struct kvm_mmu *fault_mmu;
744         WARN_ON_ONCE(fault->vector != PF_VECTOR);
745
746         fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
747                                                vcpu->arch.walk_mmu;
748
749         /*
750          * Invalidate the TLB entry for the faulting address, if it exists,
751          * else the access will fault indefinitely (and to emulate hardware).
752          */
753         if ((fault->error_code & PFERR_PRESENT_MASK) &&
754             !(fault->error_code & PFERR_RSVD_MASK))
755                 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
756                                        fault_mmu->root_hpa);
757
758         fault_mmu->inject_page_fault(vcpu, fault);
759         return fault->nested_page_fault;
760 }
761 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
762
763 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
764 {
765         atomic_inc(&vcpu->arch.nmi_queued);
766         kvm_make_request(KVM_REQ_NMI, vcpu);
767 }
768 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
769
770 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
771 {
772         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
773 }
774 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
775
776 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
777 {
778         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
779 }
780 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
781
782 /*
783  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
784  * a #GP and return false.
785  */
786 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
787 {
788         if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
789                 return true;
790         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
791         return false;
792 }
793 EXPORT_SYMBOL_GPL(kvm_require_cpl);
794
795 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
796 {
797         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
798                 return true;
799
800         kvm_queue_exception(vcpu, UD_VECTOR);
801         return false;
802 }
803 EXPORT_SYMBOL_GPL(kvm_require_dr);
804
805 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
806 {
807         return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
808 }
809
810 /*
811  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
812  */
813 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
814 {
815         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
816         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
817         gpa_t real_gpa;
818         int i;
819         int ret;
820         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
821
822         /*
823          * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
824          * to an L1 GPA.
825          */
826         real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
827                                      PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
828         if (real_gpa == UNMAPPED_GVA)
829                 return 0;
830
831         /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
832         ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
833                                        cr3 & GENMASK(11, 5), sizeof(pdpte));
834         if (ret < 0)
835                 return 0;
836
837         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
838                 if ((pdpte[i] & PT_PRESENT_MASK) &&
839                     (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
840                         return 0;
841                 }
842         }
843
844         /*
845          * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
846          * Shadow page roots need to be reconstructed instead.
847          */
848         if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
849                 kvm_mmu_free_roots(vcpu, mmu, KVM_MMU_ROOT_CURRENT);
850
851         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
852         kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
853         kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
854         vcpu->arch.pdptrs_from_userspace = false;
855
856         return 1;
857 }
858 EXPORT_SYMBOL_GPL(load_pdptrs);
859
860 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
861 {
862         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
863                 kvm_clear_async_pf_completion_queue(vcpu);
864                 kvm_async_pf_hash_reset(vcpu);
865         }
866
867         if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
868                 kvm_mmu_reset_context(vcpu);
869
870         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
871             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
872             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
873                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
874 }
875 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
876
877 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
878 {
879         unsigned long old_cr0 = kvm_read_cr0(vcpu);
880
881         cr0 |= X86_CR0_ET;
882
883 #ifdef CONFIG_X86_64
884         if (cr0 & 0xffffffff00000000UL)
885                 return 1;
886 #endif
887
888         cr0 &= ~CR0_RESERVED_BITS;
889
890         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
891                 return 1;
892
893         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
894                 return 1;
895
896 #ifdef CONFIG_X86_64
897         if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
898             (cr0 & X86_CR0_PG)) {
899                 int cs_db, cs_l;
900
901                 if (!is_pae(vcpu))
902                         return 1;
903                 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
904                 if (cs_l)
905                         return 1;
906         }
907 #endif
908         if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
909             is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
910             !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
911                 return 1;
912
913         if (!(cr0 & X86_CR0_PG) &&
914             (is_64_bit_mode(vcpu) || kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)))
915                 return 1;
916
917         static_call(kvm_x86_set_cr0)(vcpu, cr0);
918
919         kvm_post_set_cr0(vcpu, old_cr0, cr0);
920
921         return 0;
922 }
923 EXPORT_SYMBOL_GPL(kvm_set_cr0);
924
925 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
926 {
927         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
928 }
929 EXPORT_SYMBOL_GPL(kvm_lmsw);
930
931 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
932 {
933         if (vcpu->arch.guest_state_protected)
934                 return;
935
936         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
937
938                 if (vcpu->arch.xcr0 != host_xcr0)
939                         xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
940
941                 if (vcpu->arch.xsaves_enabled &&
942                     vcpu->arch.ia32_xss != host_xss)
943                         wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
944         }
945
946         if (static_cpu_has(X86_FEATURE_PKU) &&
947             (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
948              (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) &&
949             vcpu->arch.pkru != vcpu->arch.host_pkru)
950                 write_pkru(vcpu->arch.pkru);
951 }
952 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
953
954 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
955 {
956         if (vcpu->arch.guest_state_protected)
957                 return;
958
959         if (static_cpu_has(X86_FEATURE_PKU) &&
960             (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
961              (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) {
962                 vcpu->arch.pkru = rdpkru();
963                 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
964                         write_pkru(vcpu->arch.host_pkru);
965         }
966
967         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
968
969                 if (vcpu->arch.xcr0 != host_xcr0)
970                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
971
972                 if (vcpu->arch.xsaves_enabled &&
973                     vcpu->arch.ia32_xss != host_xss)
974                         wrmsrl(MSR_IA32_XSS, host_xss);
975         }
976
977 }
978 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
979
980 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
981 {
982         u64 xcr0 = xcr;
983         u64 old_xcr0 = vcpu->arch.xcr0;
984         u64 valid_bits;
985
986         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
987         if (index != XCR_XFEATURE_ENABLED_MASK)
988                 return 1;
989         if (!(xcr0 & XFEATURE_MASK_FP))
990                 return 1;
991         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
992                 return 1;
993
994         /*
995          * Do not allow the guest to set bits that we do not support
996          * saving.  However, xcr0 bit 0 is always set, even if the
997          * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
998          */
999         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
1000         if (xcr0 & ~valid_bits)
1001                 return 1;
1002
1003         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1004             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1005                 return 1;
1006
1007         if (xcr0 & XFEATURE_MASK_AVX512) {
1008                 if (!(xcr0 & XFEATURE_MASK_YMM))
1009                         return 1;
1010                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1011                         return 1;
1012         }
1013
1014         if ((xcr0 & XFEATURE_MASK_XTILE) &&
1015             ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1016                 return 1;
1017
1018         vcpu->arch.xcr0 = xcr0;
1019
1020         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1021                 kvm_update_cpuid_runtime(vcpu);
1022         return 0;
1023 }
1024
1025 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1026 {
1027         if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1028             __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1029                 kvm_inject_gp(vcpu, 0);
1030                 return 1;
1031         }
1032
1033         return kvm_skip_emulated_instruction(vcpu);
1034 }
1035 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1036
1037 bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1038 {
1039         if (cr4 & cr4_reserved_bits)
1040                 return false;
1041
1042         if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1043                 return false;
1044
1045         return static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1046 }
1047 EXPORT_SYMBOL_GPL(kvm_is_valid_cr4);
1048
1049 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1050 {
1051         /*
1052          * If any role bit is changed, the MMU needs to be reset.
1053          *
1054          * If CR4.PCIDE is changed 1 -> 0, the guest TLB must be flushed.
1055          * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1056          * according to the SDM; however, stale prev_roots could be reused
1057          * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1058          * free them all.  KVM_REQ_MMU_RELOAD is fit for the both cases; it
1059          * is slow, but changing CR4.PCIDE is a rare case.
1060          *
1061          * If CR4.PGE is changed, the guest TLB must be flushed.
1062          *
1063          * Note: resetting MMU is a superset of KVM_REQ_MMU_RELOAD and
1064          * KVM_REQ_MMU_RELOAD is a superset of KVM_REQ_TLB_FLUSH_GUEST, hence
1065          * the usage of "else if".
1066          */
1067         if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1068                 kvm_mmu_reset_context(vcpu);
1069         else if ((cr4 ^ old_cr4) & X86_CR4_PCIDE)
1070                 kvm_make_request(KVM_REQ_MMU_RELOAD, vcpu);
1071         else if ((cr4 ^ old_cr4) & X86_CR4_PGE)
1072                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1073 }
1074 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1075
1076 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1077 {
1078         unsigned long old_cr4 = kvm_read_cr4(vcpu);
1079
1080         if (!kvm_is_valid_cr4(vcpu, cr4))
1081                 return 1;
1082
1083         if (is_long_mode(vcpu)) {
1084                 if (!(cr4 & X86_CR4_PAE))
1085                         return 1;
1086                 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1087                         return 1;
1088         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1089                    && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1090                    && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1091                 return 1;
1092
1093         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1094                 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1095                         return 1;
1096
1097                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1098                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1099                         return 1;
1100         }
1101
1102         static_call(kvm_x86_set_cr4)(vcpu, cr4);
1103
1104         kvm_post_set_cr4(vcpu, old_cr4, cr4);
1105
1106         return 0;
1107 }
1108 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1109
1110 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1111 {
1112         struct kvm_mmu *mmu = vcpu->arch.mmu;
1113         unsigned long roots_to_free = 0;
1114         int i;
1115
1116         /*
1117          * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1118          * this is reachable when running EPT=1 and unrestricted_guest=0,  and
1119          * also via the emulator.  KVM's TDP page tables are not in the scope of
1120          * the invalidation, but the guest's TLB entries need to be flushed as
1121          * the CPU may have cached entries in its TLB for the target PCID.
1122          */
1123         if (unlikely(tdp_enabled)) {
1124                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1125                 return;
1126         }
1127
1128         /*
1129          * If neither the current CR3 nor any of the prev_roots use the given
1130          * PCID, then nothing needs to be done here because a resync will
1131          * happen anyway before switching to any other CR3.
1132          */
1133         if (kvm_get_active_pcid(vcpu) == pcid) {
1134                 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1135                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1136         }
1137
1138         /*
1139          * If PCID is disabled, there is no need to free prev_roots even if the
1140          * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1141          * with PCIDE=0.
1142          */
1143         if (!kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
1144                 return;
1145
1146         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1147                 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1148                         roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1149
1150         kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
1151 }
1152
1153 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1154 {
1155         bool skip_tlb_flush = false;
1156         unsigned long pcid = 0;
1157 #ifdef CONFIG_X86_64
1158         bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1159
1160         if (pcid_enabled) {
1161                 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1162                 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1163                 pcid = cr3 & X86_CR3_PCID_MASK;
1164         }
1165 #endif
1166
1167         /* PDPTRs are always reloaded for PAE paging. */
1168         if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1169                 goto handle_tlb_flush;
1170
1171         /*
1172          * Do not condition the GPA check on long mode, this helper is used to
1173          * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1174          * the current vCPU mode is accurate.
1175          */
1176         if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1177                 return 1;
1178
1179         if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1180                 return 1;
1181
1182         if (cr3 != kvm_read_cr3(vcpu))
1183                 kvm_mmu_new_pgd(vcpu, cr3);
1184
1185         vcpu->arch.cr3 = cr3;
1186         kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1187         /* Do not call post_set_cr3, we do not get here for confidential guests.  */
1188
1189 handle_tlb_flush:
1190         /*
1191          * A load of CR3 that flushes the TLB flushes only the current PCID,
1192          * even if PCID is disabled, in which case PCID=0 is flushed.  It's a
1193          * moot point in the end because _disabling_ PCID will flush all PCIDs,
1194          * and it's impossible to use a non-zero PCID when PCID is disabled,
1195          * i.e. only PCID=0 can be relevant.
1196          */
1197         if (!skip_tlb_flush)
1198                 kvm_invalidate_pcid(vcpu, pcid);
1199
1200         return 0;
1201 }
1202 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1203
1204 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1205 {
1206         if (cr8 & CR8_RESERVED_BITS)
1207                 return 1;
1208         if (lapic_in_kernel(vcpu))
1209                 kvm_lapic_set_tpr(vcpu, cr8);
1210         else
1211                 vcpu->arch.cr8 = cr8;
1212         return 0;
1213 }
1214 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1215
1216 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1217 {
1218         if (lapic_in_kernel(vcpu))
1219                 return kvm_lapic_get_cr8(vcpu);
1220         else
1221                 return vcpu->arch.cr8;
1222 }
1223 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1224
1225 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1226 {
1227         int i;
1228
1229         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1230                 for (i = 0; i < KVM_NR_DB_REGS; i++)
1231                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1232         }
1233 }
1234
1235 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1236 {
1237         unsigned long dr7;
1238
1239         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1240                 dr7 = vcpu->arch.guest_debug_dr7;
1241         else
1242                 dr7 = vcpu->arch.dr7;
1243         static_call(kvm_x86_set_dr7)(vcpu, dr7);
1244         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1245         if (dr7 & DR7_BP_EN_MASK)
1246                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1247 }
1248 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1249
1250 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1251 {
1252         u64 fixed = DR6_FIXED_1;
1253
1254         if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1255                 fixed |= DR6_RTM;
1256
1257         if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1258                 fixed |= DR6_BUS_LOCK;
1259         return fixed;
1260 }
1261
1262 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1263 {
1264         size_t size = ARRAY_SIZE(vcpu->arch.db);
1265
1266         switch (dr) {
1267         case 0 ... 3:
1268                 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1269                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1270                         vcpu->arch.eff_db[dr] = val;
1271                 break;
1272         case 4:
1273         case 6:
1274                 if (!kvm_dr6_valid(val))
1275                         return 1; /* #GP */
1276                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1277                 break;
1278         case 5:
1279         default: /* 7 */
1280                 if (!kvm_dr7_valid(val))
1281                         return 1; /* #GP */
1282                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1283                 kvm_update_dr7(vcpu);
1284                 break;
1285         }
1286
1287         return 0;
1288 }
1289 EXPORT_SYMBOL_GPL(kvm_set_dr);
1290
1291 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1292 {
1293         size_t size = ARRAY_SIZE(vcpu->arch.db);
1294
1295         switch (dr) {
1296         case 0 ... 3:
1297                 *val = vcpu->arch.db[array_index_nospec(dr, size)];
1298                 break;
1299         case 4:
1300         case 6:
1301                 *val = vcpu->arch.dr6;
1302                 break;
1303         case 5:
1304         default: /* 7 */
1305                 *val = vcpu->arch.dr7;
1306                 break;
1307         }
1308 }
1309 EXPORT_SYMBOL_GPL(kvm_get_dr);
1310
1311 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1312 {
1313         u32 ecx = kvm_rcx_read(vcpu);
1314         u64 data;
1315
1316         if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1317                 kvm_inject_gp(vcpu, 0);
1318                 return 1;
1319         }
1320
1321         kvm_rax_write(vcpu, (u32)data);
1322         kvm_rdx_write(vcpu, data >> 32);
1323         return kvm_skip_emulated_instruction(vcpu);
1324 }
1325 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1326
1327 /*
1328  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1329  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1330  *
1331  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1332  * extract the supported MSRs from the related const lists.
1333  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1334  * capabilities of the host cpu. This capabilities test skips MSRs that are
1335  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1336  * may depend on host virtualization features rather than host cpu features.
1337  */
1338
1339 static const u32 msrs_to_save_all[] = {
1340         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1341         MSR_STAR,
1342 #ifdef CONFIG_X86_64
1343         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1344 #endif
1345         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1346         MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1347         MSR_IA32_SPEC_CTRL,
1348         MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1349         MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1350         MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1351         MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1352         MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1353         MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1354         MSR_IA32_UMWAIT_CONTROL,
1355
1356         MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1357         MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1358         MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1359         MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1360         MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1361         MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1362         MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1363         MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1364         MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1365         MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1366         MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1367         MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1368         MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1369         MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1370         MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1371         MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1372         MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1373         MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1374         MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1375         MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1376         MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1377         MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1378
1379         MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1380         MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1381         MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1382         MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1383         MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1384         MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1385         MSR_IA32_XFD, MSR_IA32_XFD_ERR,
1386 };
1387
1388 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1389 static unsigned num_msrs_to_save;
1390
1391 static const u32 emulated_msrs_all[] = {
1392         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1393         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1394         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1395         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1396         HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1397         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1398         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1399         HV_X64_MSR_RESET,
1400         HV_X64_MSR_VP_INDEX,
1401         HV_X64_MSR_VP_RUNTIME,
1402         HV_X64_MSR_SCONTROL,
1403         HV_X64_MSR_STIMER0_CONFIG,
1404         HV_X64_MSR_VP_ASSIST_PAGE,
1405         HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1406         HV_X64_MSR_TSC_EMULATION_STATUS,
1407         HV_X64_MSR_SYNDBG_OPTIONS,
1408         HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1409         HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1410         HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1411
1412         MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1413         MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1414
1415         MSR_IA32_TSC_ADJUST,
1416         MSR_IA32_TSC_DEADLINE,
1417         MSR_IA32_ARCH_CAPABILITIES,
1418         MSR_IA32_PERF_CAPABILITIES,
1419         MSR_IA32_MISC_ENABLE,
1420         MSR_IA32_MCG_STATUS,
1421         MSR_IA32_MCG_CTL,
1422         MSR_IA32_MCG_EXT_CTL,
1423         MSR_IA32_SMBASE,
1424         MSR_SMI_COUNT,
1425         MSR_PLATFORM_INFO,
1426         MSR_MISC_FEATURES_ENABLES,
1427         MSR_AMD64_VIRT_SPEC_CTRL,
1428         MSR_AMD64_TSC_RATIO,
1429         MSR_IA32_POWER_CTL,
1430         MSR_IA32_UCODE_REV,
1431
1432         /*
1433          * The following list leaves out MSRs whose values are determined
1434          * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1435          * We always support the "true" VMX control MSRs, even if the host
1436          * processor does not, so I am putting these registers here rather
1437          * than in msrs_to_save_all.
1438          */
1439         MSR_IA32_VMX_BASIC,
1440         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1441         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1442         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1443         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1444         MSR_IA32_VMX_MISC,
1445         MSR_IA32_VMX_CR0_FIXED0,
1446         MSR_IA32_VMX_CR4_FIXED0,
1447         MSR_IA32_VMX_VMCS_ENUM,
1448         MSR_IA32_VMX_PROCBASED_CTLS2,
1449         MSR_IA32_VMX_EPT_VPID_CAP,
1450         MSR_IA32_VMX_VMFUNC,
1451
1452         MSR_K7_HWCR,
1453         MSR_KVM_POLL_CONTROL,
1454 };
1455
1456 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1457 static unsigned num_emulated_msrs;
1458
1459 /*
1460  * List of msr numbers which are used to expose MSR-based features that
1461  * can be used by a hypervisor to validate requested CPU features.
1462  */
1463 static const u32 msr_based_features_all[] = {
1464         MSR_IA32_VMX_BASIC,
1465         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1466         MSR_IA32_VMX_PINBASED_CTLS,
1467         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1468         MSR_IA32_VMX_PROCBASED_CTLS,
1469         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1470         MSR_IA32_VMX_EXIT_CTLS,
1471         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1472         MSR_IA32_VMX_ENTRY_CTLS,
1473         MSR_IA32_VMX_MISC,
1474         MSR_IA32_VMX_CR0_FIXED0,
1475         MSR_IA32_VMX_CR0_FIXED1,
1476         MSR_IA32_VMX_CR4_FIXED0,
1477         MSR_IA32_VMX_CR4_FIXED1,
1478         MSR_IA32_VMX_VMCS_ENUM,
1479         MSR_IA32_VMX_PROCBASED_CTLS2,
1480         MSR_IA32_VMX_EPT_VPID_CAP,
1481         MSR_IA32_VMX_VMFUNC,
1482
1483         MSR_F10H_DECFG,
1484         MSR_IA32_UCODE_REV,
1485         MSR_IA32_ARCH_CAPABILITIES,
1486         MSR_IA32_PERF_CAPABILITIES,
1487 };
1488
1489 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1490 static unsigned int num_msr_based_features;
1491
1492 static u64 kvm_get_arch_capabilities(void)
1493 {
1494         u64 data = 0;
1495
1496         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1497                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1498
1499         /*
1500          * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1501          * the nested hypervisor runs with NX huge pages.  If it is not,
1502          * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1503          * L1 guests, so it need not worry about its own (L2) guests.
1504          */
1505         data |= ARCH_CAP_PSCHANGE_MC_NO;
1506
1507         /*
1508          * If we're doing cache flushes (either "always" or "cond")
1509          * we will do one whenever the guest does a vmlaunch/vmresume.
1510          * If an outer hypervisor is doing the cache flush for us
1511          * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1512          * capability to the guest too, and if EPT is disabled we're not
1513          * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1514          * require a nested hypervisor to do a flush of its own.
1515          */
1516         if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1517                 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1518
1519         if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1520                 data |= ARCH_CAP_RDCL_NO;
1521         if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1522                 data |= ARCH_CAP_SSB_NO;
1523         if (!boot_cpu_has_bug(X86_BUG_MDS))
1524                 data |= ARCH_CAP_MDS_NO;
1525
1526         if (!boot_cpu_has(X86_FEATURE_RTM)) {
1527                 /*
1528                  * If RTM=0 because the kernel has disabled TSX, the host might
1529                  * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1530                  * and therefore knows that there cannot be TAA) but keep
1531                  * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1532                  * and we want to allow migrating those guests to tsx=off hosts.
1533                  */
1534                 data &= ~ARCH_CAP_TAA_NO;
1535         } else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1536                 data |= ARCH_CAP_TAA_NO;
1537         } else {
1538                 /*
1539                  * Nothing to do here; we emulate TSX_CTRL if present on the
1540                  * host so the guest can choose between disabling TSX or
1541                  * using VERW to clear CPU buffers.
1542                  */
1543         }
1544
1545         return data;
1546 }
1547
1548 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1549 {
1550         switch (msr->index) {
1551         case MSR_IA32_ARCH_CAPABILITIES:
1552                 msr->data = kvm_get_arch_capabilities();
1553                 break;
1554         case MSR_IA32_UCODE_REV:
1555                 rdmsrl_safe(msr->index, &msr->data);
1556                 break;
1557         default:
1558                 return static_call(kvm_x86_get_msr_feature)(msr);
1559         }
1560         return 0;
1561 }
1562
1563 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1564 {
1565         struct kvm_msr_entry msr;
1566         int r;
1567
1568         msr.index = index;
1569         r = kvm_get_msr_feature(&msr);
1570
1571         if (r == KVM_MSR_RET_INVALID) {
1572                 /* Unconditionally clear the output for simplicity */
1573                 *data = 0;
1574                 if (kvm_msr_ignored_check(index, 0, false))
1575                         r = 0;
1576         }
1577
1578         if (r)
1579                 return r;
1580
1581         *data = msr.data;
1582
1583         return 0;
1584 }
1585
1586 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1587 {
1588         if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1589                 return false;
1590
1591         if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1592                 return false;
1593
1594         if (efer & (EFER_LME | EFER_LMA) &&
1595             !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1596                 return false;
1597
1598         if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1599                 return false;
1600
1601         return true;
1602
1603 }
1604 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1605 {
1606         if (efer & efer_reserved_bits)
1607                 return false;
1608
1609         return __kvm_valid_efer(vcpu, efer);
1610 }
1611 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1612
1613 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1614 {
1615         u64 old_efer = vcpu->arch.efer;
1616         u64 efer = msr_info->data;
1617         int r;
1618
1619         if (efer & efer_reserved_bits)
1620                 return 1;
1621
1622         if (!msr_info->host_initiated) {
1623                 if (!__kvm_valid_efer(vcpu, efer))
1624                         return 1;
1625
1626                 if (is_paging(vcpu) &&
1627                     (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1628                         return 1;
1629         }
1630
1631         efer &= ~EFER_LMA;
1632         efer |= vcpu->arch.efer & EFER_LMA;
1633
1634         r = static_call(kvm_x86_set_efer)(vcpu, efer);
1635         if (r) {
1636                 WARN_ON(r > 0);
1637                 return r;
1638         }
1639
1640         /* Update reserved bits */
1641         if ((efer ^ old_efer) & EFER_NX)
1642                 kvm_mmu_reset_context(vcpu);
1643
1644         return 0;
1645 }
1646
1647 void kvm_enable_efer_bits(u64 mask)
1648 {
1649        efer_reserved_bits &= ~mask;
1650 }
1651 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1652
1653 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1654 {
1655         struct kvm_x86_msr_filter *msr_filter;
1656         struct msr_bitmap_range *ranges;
1657         struct kvm *kvm = vcpu->kvm;
1658         bool allowed;
1659         int idx;
1660         u32 i;
1661
1662         /* x2APIC MSRs do not support filtering. */
1663         if (index >= 0x800 && index <= 0x8ff)
1664                 return true;
1665
1666         idx = srcu_read_lock(&kvm->srcu);
1667
1668         msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1669         if (!msr_filter) {
1670                 allowed = true;
1671                 goto out;
1672         }
1673
1674         allowed = msr_filter->default_allow;
1675         ranges = msr_filter->ranges;
1676
1677         for (i = 0; i < msr_filter->count; i++) {
1678                 u32 start = ranges[i].base;
1679                 u32 end = start + ranges[i].nmsrs;
1680                 u32 flags = ranges[i].flags;
1681                 unsigned long *bitmap = ranges[i].bitmap;
1682
1683                 if ((index >= start) && (index < end) && (flags & type)) {
1684                         allowed = !!test_bit(index - start, bitmap);
1685                         break;
1686                 }
1687         }
1688
1689 out:
1690         srcu_read_unlock(&kvm->srcu, idx);
1691
1692         return allowed;
1693 }
1694 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1695
1696 /*
1697  * Write @data into the MSR specified by @index.  Select MSR specific fault
1698  * checks are bypassed if @host_initiated is %true.
1699  * Returns 0 on success, non-0 otherwise.
1700  * Assumes vcpu_load() was already called.
1701  */
1702 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1703                          bool host_initiated)
1704 {
1705         struct msr_data msr;
1706
1707         if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1708                 return KVM_MSR_RET_FILTERED;
1709
1710         switch (index) {
1711         case MSR_FS_BASE:
1712         case MSR_GS_BASE:
1713         case MSR_KERNEL_GS_BASE:
1714         case MSR_CSTAR:
1715         case MSR_LSTAR:
1716                 if (is_noncanonical_address(data, vcpu))
1717                         return 1;
1718                 break;
1719         case MSR_IA32_SYSENTER_EIP:
1720         case MSR_IA32_SYSENTER_ESP:
1721                 /*
1722                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1723                  * non-canonical address is written on Intel but not on
1724                  * AMD (which ignores the top 32-bits, because it does
1725                  * not implement 64-bit SYSENTER).
1726                  *
1727                  * 64-bit code should hence be able to write a non-canonical
1728                  * value on AMD.  Making the address canonical ensures that
1729                  * vmentry does not fail on Intel after writing a non-canonical
1730                  * value, and that something deterministic happens if the guest
1731                  * invokes 64-bit SYSENTER.
1732                  */
1733                 data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1734                 break;
1735         case MSR_TSC_AUX:
1736                 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1737                         return 1;
1738
1739                 if (!host_initiated &&
1740                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1741                     !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1742                         return 1;
1743
1744                 /*
1745                  * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1746                  * incomplete and conflicting architectural behavior.  Current
1747                  * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1748                  * reserved and always read as zeros.  Enforce Intel's reserved
1749                  * bits check if and only if the guest CPU is Intel, and clear
1750                  * the bits in all other cases.  This ensures cross-vendor
1751                  * migration will provide consistent behavior for the guest.
1752                  */
1753                 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1754                         return 1;
1755
1756                 data = (u32)data;
1757                 break;
1758         }
1759
1760         msr.data = data;
1761         msr.index = index;
1762         msr.host_initiated = host_initiated;
1763
1764         return static_call(kvm_x86_set_msr)(vcpu, &msr);
1765 }
1766
1767 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1768                                      u32 index, u64 data, bool host_initiated)
1769 {
1770         int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1771
1772         if (ret == KVM_MSR_RET_INVALID)
1773                 if (kvm_msr_ignored_check(index, data, true))
1774                         ret = 0;
1775
1776         return ret;
1777 }
1778
1779 /*
1780  * Read the MSR specified by @index into @data.  Select MSR specific fault
1781  * checks are bypassed if @host_initiated is %true.
1782  * Returns 0 on success, non-0 otherwise.
1783  * Assumes vcpu_load() was already called.
1784  */
1785 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1786                   bool host_initiated)
1787 {
1788         struct msr_data msr;
1789         int ret;
1790
1791         if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1792                 return KVM_MSR_RET_FILTERED;
1793
1794         switch (index) {
1795         case MSR_TSC_AUX:
1796                 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1797                         return 1;
1798
1799                 if (!host_initiated &&
1800                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1801                     !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1802                         return 1;
1803                 break;
1804         }
1805
1806         msr.index = index;
1807         msr.host_initiated = host_initiated;
1808
1809         ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1810         if (!ret)
1811                 *data = msr.data;
1812         return ret;
1813 }
1814
1815 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1816                                      u32 index, u64 *data, bool host_initiated)
1817 {
1818         int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1819
1820         if (ret == KVM_MSR_RET_INVALID) {
1821                 /* Unconditionally clear *data for simplicity */
1822                 *data = 0;
1823                 if (kvm_msr_ignored_check(index, 0, false))
1824                         ret = 0;
1825         }
1826
1827         return ret;
1828 }
1829
1830 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1831 {
1832         return kvm_get_msr_ignored_check(vcpu, index, data, false);
1833 }
1834 EXPORT_SYMBOL_GPL(kvm_get_msr);
1835
1836 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1837 {
1838         return kvm_set_msr_ignored_check(vcpu, index, data, false);
1839 }
1840 EXPORT_SYMBOL_GPL(kvm_set_msr);
1841
1842 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1843 {
1844         if (!vcpu->run->msr.error) {
1845                 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1846                 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1847         }
1848 }
1849
1850 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
1851 {
1852         return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
1853 }
1854
1855 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1856 {
1857         complete_userspace_rdmsr(vcpu);
1858         return complete_emulated_msr_access(vcpu);
1859 }
1860
1861 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
1862 {
1863         return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1864 }
1865
1866 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
1867 {
1868         complete_userspace_rdmsr(vcpu);
1869         return complete_fast_msr_access(vcpu);
1870 }
1871
1872 static u64 kvm_msr_reason(int r)
1873 {
1874         switch (r) {
1875         case KVM_MSR_RET_INVALID:
1876                 return KVM_MSR_EXIT_REASON_UNKNOWN;
1877         case KVM_MSR_RET_FILTERED:
1878                 return KVM_MSR_EXIT_REASON_FILTER;
1879         default:
1880                 return KVM_MSR_EXIT_REASON_INVAL;
1881         }
1882 }
1883
1884 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1885                               u32 exit_reason, u64 data,
1886                               int (*completion)(struct kvm_vcpu *vcpu),
1887                               int r)
1888 {
1889         u64 msr_reason = kvm_msr_reason(r);
1890
1891         /* Check if the user wanted to know about this MSR fault */
1892         if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1893                 return 0;
1894
1895         vcpu->run->exit_reason = exit_reason;
1896         vcpu->run->msr.error = 0;
1897         memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1898         vcpu->run->msr.reason = msr_reason;
1899         vcpu->run->msr.index = index;
1900         vcpu->run->msr.data = data;
1901         vcpu->arch.complete_userspace_io = completion;
1902
1903         return 1;
1904 }
1905
1906 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1907 {
1908         u32 ecx = kvm_rcx_read(vcpu);
1909         u64 data;
1910         int r;
1911
1912         r = kvm_get_msr(vcpu, ecx, &data);
1913
1914         if (!r) {
1915                 trace_kvm_msr_read(ecx, data);
1916
1917                 kvm_rax_write(vcpu, data & -1u);
1918                 kvm_rdx_write(vcpu, (data >> 32) & -1u);
1919         } else {
1920                 /* MSR read failed? See if we should ask user space */
1921                 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
1922                                        complete_fast_rdmsr, r))
1923                         return 0;
1924                 trace_kvm_msr_read_ex(ecx);
1925         }
1926
1927         return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1928 }
1929 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1930
1931 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1932 {
1933         u32 ecx = kvm_rcx_read(vcpu);
1934         u64 data = kvm_read_edx_eax(vcpu);
1935         int r;
1936
1937         r = kvm_set_msr(vcpu, ecx, data);
1938
1939         if (!r) {
1940                 trace_kvm_msr_write(ecx, data);
1941         } else {
1942                 /* MSR write failed? See if we should ask user space */
1943                 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
1944                                        complete_fast_msr_access, r))
1945                         return 0;
1946                 /* Signal all other negative errors to userspace */
1947                 if (r < 0)
1948                         return r;
1949                 trace_kvm_msr_write_ex(ecx, data);
1950         }
1951
1952         return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1953 }
1954 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1955
1956 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
1957 {
1958         return kvm_skip_emulated_instruction(vcpu);
1959 }
1960 EXPORT_SYMBOL_GPL(kvm_emulate_as_nop);
1961
1962 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
1963 {
1964         /* Treat an INVD instruction as a NOP and just skip it. */
1965         return kvm_emulate_as_nop(vcpu);
1966 }
1967 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
1968
1969 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
1970 {
1971         pr_warn_once("kvm: MWAIT instruction emulated as NOP!\n");
1972         return kvm_emulate_as_nop(vcpu);
1973 }
1974 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
1975
1976 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
1977 {
1978         kvm_queue_exception(vcpu, UD_VECTOR);
1979         return 1;
1980 }
1981 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
1982
1983 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
1984 {
1985         pr_warn_once("kvm: MONITOR instruction emulated as NOP!\n");
1986         return kvm_emulate_as_nop(vcpu);
1987 }
1988 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
1989
1990 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
1991 {
1992         xfer_to_guest_mode_prepare();
1993         return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
1994                 xfer_to_guest_mode_work_pending();
1995 }
1996
1997 /*
1998  * The fast path for frequent and performance sensitive wrmsr emulation,
1999  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2000  * the latency of virtual IPI by avoiding the expensive bits of transitioning
2001  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2002  * other cases which must be called after interrupts are enabled on the host.
2003  */
2004 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2005 {
2006         if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2007                 return 1;
2008
2009         if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2010                 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2011                 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2012                 ((u32)(data >> 32) != X2APIC_BROADCAST)) {
2013
2014                 data &= ~(1 << 12);
2015                 kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32));
2016                 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
2017                 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data);
2018                 trace_kvm_apic_write(APIC_ICR, (u32)data);
2019                 return 0;
2020         }
2021
2022         return 1;
2023 }
2024
2025 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2026 {
2027         if (!kvm_can_use_hv_timer(vcpu))
2028                 return 1;
2029
2030         kvm_set_lapic_tscdeadline_msr(vcpu, data);
2031         return 0;
2032 }
2033
2034 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2035 {
2036         u32 msr = kvm_rcx_read(vcpu);
2037         u64 data;
2038         fastpath_t ret = EXIT_FASTPATH_NONE;
2039
2040         switch (msr) {
2041         case APIC_BASE_MSR + (APIC_ICR >> 4):
2042                 data = kvm_read_edx_eax(vcpu);
2043                 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2044                         kvm_skip_emulated_instruction(vcpu);
2045                         ret = EXIT_FASTPATH_EXIT_HANDLED;
2046                 }
2047                 break;
2048         case MSR_IA32_TSC_DEADLINE:
2049                 data = kvm_read_edx_eax(vcpu);
2050                 if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2051                         kvm_skip_emulated_instruction(vcpu);
2052                         ret = EXIT_FASTPATH_REENTER_GUEST;
2053                 }
2054                 break;
2055         default:
2056                 break;
2057         }
2058
2059         if (ret != EXIT_FASTPATH_NONE)
2060                 trace_kvm_msr_write(msr, data);
2061
2062         return ret;
2063 }
2064 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2065
2066 /*
2067  * Adapt set_msr() to msr_io()'s calling convention
2068  */
2069 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2070 {
2071         return kvm_get_msr_ignored_check(vcpu, index, data, true);
2072 }
2073
2074 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2075 {
2076         return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2077 }
2078
2079 #ifdef CONFIG_X86_64
2080 struct pvclock_clock {
2081         int vclock_mode;
2082         u64 cycle_last;
2083         u64 mask;
2084         u32 mult;
2085         u32 shift;
2086         u64 base_cycles;
2087         u64 offset;
2088 };
2089
2090 struct pvclock_gtod_data {
2091         seqcount_t      seq;
2092
2093         struct pvclock_clock clock; /* extract of a clocksource struct */
2094         struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2095
2096         ktime_t         offs_boot;
2097         u64             wall_time_sec;
2098 };
2099
2100 static struct pvclock_gtod_data pvclock_gtod_data;
2101
2102 static void update_pvclock_gtod(struct timekeeper *tk)
2103 {
2104         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2105
2106         write_seqcount_begin(&vdata->seq);
2107
2108         /* copy pvclock gtod data */
2109         vdata->clock.vclock_mode        = tk->tkr_mono.clock->vdso_clock_mode;
2110         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
2111         vdata->clock.mask               = tk->tkr_mono.mask;
2112         vdata->clock.mult               = tk->tkr_mono.mult;
2113         vdata->clock.shift              = tk->tkr_mono.shift;
2114         vdata->clock.base_cycles        = tk->tkr_mono.xtime_nsec;
2115         vdata->clock.offset             = tk->tkr_mono.base;
2116
2117         vdata->raw_clock.vclock_mode    = tk->tkr_raw.clock->vdso_clock_mode;
2118         vdata->raw_clock.cycle_last     = tk->tkr_raw.cycle_last;
2119         vdata->raw_clock.mask           = tk->tkr_raw.mask;
2120         vdata->raw_clock.mult           = tk->tkr_raw.mult;
2121         vdata->raw_clock.shift          = tk->tkr_raw.shift;
2122         vdata->raw_clock.base_cycles    = tk->tkr_raw.xtime_nsec;
2123         vdata->raw_clock.offset         = tk->tkr_raw.base;
2124
2125         vdata->wall_time_sec            = tk->xtime_sec;
2126
2127         vdata->offs_boot                = tk->offs_boot;
2128
2129         write_seqcount_end(&vdata->seq);
2130 }
2131
2132 static s64 get_kvmclock_base_ns(void)
2133 {
2134         /* Count up from boot time, but with the frequency of the raw clock.  */
2135         return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2136 }
2137 #else
2138 static s64 get_kvmclock_base_ns(void)
2139 {
2140         /* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
2141         return ktime_get_boottime_ns();
2142 }
2143 #endif
2144
2145 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2146 {
2147         int version;
2148         int r;
2149         struct pvclock_wall_clock wc;
2150         u32 wc_sec_hi;
2151         u64 wall_nsec;
2152
2153         if (!wall_clock)
2154                 return;
2155
2156         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2157         if (r)
2158                 return;
2159
2160         if (version & 1)
2161                 ++version;  /* first time write, random junk */
2162
2163         ++version;
2164
2165         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2166                 return;
2167
2168         /*
2169          * The guest calculates current wall clock time by adding
2170          * system time (updated by kvm_guest_time_update below) to the
2171          * wall clock specified here.  We do the reverse here.
2172          */
2173         wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2174
2175         wc.nsec = do_div(wall_nsec, 1000000000);
2176         wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2177         wc.version = version;
2178
2179         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2180
2181         if (sec_hi_ofs) {
2182                 wc_sec_hi = wall_nsec >> 32;
2183                 kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2184                                 &wc_sec_hi, sizeof(wc_sec_hi));
2185         }
2186
2187         version++;
2188         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2189 }
2190
2191 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2192                                   bool old_msr, bool host_initiated)
2193 {
2194         struct kvm_arch *ka = &vcpu->kvm->arch;
2195
2196         if (vcpu->vcpu_id == 0 && !host_initiated) {
2197                 if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2198                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2199
2200                 ka->boot_vcpu_runs_old_kvmclock = old_msr;
2201         }
2202
2203         vcpu->arch.time = system_time;
2204         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2205
2206         /* we verify if the enable bit is set... */
2207         vcpu->arch.pv_time_enabled = false;
2208         if (!(system_time & 1))
2209                 return;
2210
2211         if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2212                                        &vcpu->arch.pv_time, system_time & ~1ULL,
2213                                        sizeof(struct pvclock_vcpu_time_info)))
2214                 vcpu->arch.pv_time_enabled = true;
2215
2216         return;
2217 }
2218
2219 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2220 {
2221         do_shl32_div32(dividend, divisor);
2222         return dividend;
2223 }
2224
2225 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2226                                s8 *pshift, u32 *pmultiplier)
2227 {
2228         uint64_t scaled64;
2229         int32_t  shift = 0;
2230         uint64_t tps64;
2231         uint32_t tps32;
2232
2233         tps64 = base_hz;
2234         scaled64 = scaled_hz;
2235         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2236                 tps64 >>= 1;
2237                 shift--;
2238         }
2239
2240         tps32 = (uint32_t)tps64;
2241         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2242                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2243                         scaled64 >>= 1;
2244                 else
2245                         tps32 <<= 1;
2246                 shift++;
2247         }
2248
2249         *pshift = shift;
2250         *pmultiplier = div_frac(scaled64, tps32);
2251 }
2252
2253 #ifdef CONFIG_X86_64
2254 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2255 #endif
2256
2257 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2258 static unsigned long max_tsc_khz;
2259
2260 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2261 {
2262         u64 v = (u64)khz * (1000000 + ppm);
2263         do_div(v, 1000000);
2264         return v;
2265 }
2266
2267 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2268
2269 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2270 {
2271         u64 ratio;
2272
2273         /* Guest TSC same frequency as host TSC? */
2274         if (!scale) {
2275                 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2276                 return 0;
2277         }
2278
2279         /* TSC scaling supported? */
2280         if (!kvm_has_tsc_control) {
2281                 if (user_tsc_khz > tsc_khz) {
2282                         vcpu->arch.tsc_catchup = 1;
2283                         vcpu->arch.tsc_always_catchup = 1;
2284                         return 0;
2285                 } else {
2286                         pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2287                         return -1;
2288                 }
2289         }
2290
2291         /* TSC scaling required  - calculate ratio */
2292         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
2293                                 user_tsc_khz, tsc_khz);
2294
2295         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
2296                 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2297                                     user_tsc_khz);
2298                 return -1;
2299         }
2300
2301         kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2302         return 0;
2303 }
2304
2305 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2306 {
2307         u32 thresh_lo, thresh_hi;
2308         int use_scaling = 0;
2309
2310         /* tsc_khz can be zero if TSC calibration fails */
2311         if (user_tsc_khz == 0) {
2312                 /* set tsc_scaling_ratio to a safe value */
2313                 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2314                 return -1;
2315         }
2316
2317         /* Compute a scale to convert nanoseconds in TSC cycles */
2318         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2319                            &vcpu->arch.virtual_tsc_shift,
2320                            &vcpu->arch.virtual_tsc_mult);
2321         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2322
2323         /*
2324          * Compute the variation in TSC rate which is acceptable
2325          * within the range of tolerance and decide if the
2326          * rate being applied is within that bounds of the hardware
2327          * rate.  If so, no scaling or compensation need be done.
2328          */
2329         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2330         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2331         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2332                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2333                 use_scaling = 1;
2334         }
2335         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2336 }
2337
2338 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2339 {
2340         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2341                                       vcpu->arch.virtual_tsc_mult,
2342                                       vcpu->arch.virtual_tsc_shift);
2343         tsc += vcpu->arch.this_tsc_write;
2344         return tsc;
2345 }
2346
2347 static inline int gtod_is_based_on_tsc(int mode)
2348 {
2349         return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2350 }
2351
2352 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2353 {
2354 #ifdef CONFIG_X86_64
2355         bool vcpus_matched;
2356         struct kvm_arch *ka = &vcpu->kvm->arch;
2357         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2358
2359         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2360                          atomic_read(&vcpu->kvm->online_vcpus));
2361
2362         /*
2363          * Once the masterclock is enabled, always perform request in
2364          * order to update it.
2365          *
2366          * In order to enable masterclock, the host clocksource must be TSC
2367          * and the vcpus need to have matched TSCs.  When that happens,
2368          * perform request to enable masterclock.
2369          */
2370         if (ka->use_master_clock ||
2371             (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2372                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2373
2374         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2375                             atomic_read(&vcpu->kvm->online_vcpus),
2376                             ka->use_master_clock, gtod->clock.vclock_mode);
2377 #endif
2378 }
2379
2380 /*
2381  * Multiply tsc by a fixed point number represented by ratio.
2382  *
2383  * The most significant 64-N bits (mult) of ratio represent the
2384  * integral part of the fixed point number; the remaining N bits
2385  * (frac) represent the fractional part, ie. ratio represents a fixed
2386  * point number (mult + frac * 2^(-N)).
2387  *
2388  * N equals to kvm_tsc_scaling_ratio_frac_bits.
2389  */
2390 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2391 {
2392         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
2393 }
2394
2395 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc, u64 ratio)
2396 {
2397         u64 _tsc = tsc;
2398
2399         if (ratio != kvm_default_tsc_scaling_ratio)
2400                 _tsc = __scale_tsc(ratio, tsc);
2401
2402         return _tsc;
2403 }
2404 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2405
2406 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2407 {
2408         u64 tsc;
2409
2410         tsc = kvm_scale_tsc(vcpu, rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2411
2412         return target_tsc - tsc;
2413 }
2414
2415 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2416 {
2417         return vcpu->arch.l1_tsc_offset +
2418                 kvm_scale_tsc(vcpu, host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2419 }
2420 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2421
2422 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2423 {
2424         u64 nested_offset;
2425
2426         if (l2_multiplier == kvm_default_tsc_scaling_ratio)
2427                 nested_offset = l1_offset;
2428         else
2429                 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2430                                                 kvm_tsc_scaling_ratio_frac_bits);
2431
2432         nested_offset += l2_offset;
2433         return nested_offset;
2434 }
2435 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2436
2437 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2438 {
2439         if (l2_multiplier != kvm_default_tsc_scaling_ratio)
2440                 return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2441                                        kvm_tsc_scaling_ratio_frac_bits);
2442
2443         return l1_multiplier;
2444 }
2445 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2446
2447 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2448 {
2449         trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2450                                    vcpu->arch.l1_tsc_offset,
2451                                    l1_offset);
2452
2453         vcpu->arch.l1_tsc_offset = l1_offset;
2454
2455         /*
2456          * If we are here because L1 chose not to trap WRMSR to TSC then
2457          * according to the spec this should set L1's TSC (as opposed to
2458          * setting L1's offset for L2).
2459          */
2460         if (is_guest_mode(vcpu))
2461                 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2462                         l1_offset,
2463                         static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2464                         static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2465         else
2466                 vcpu->arch.tsc_offset = l1_offset;
2467
2468         static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset);
2469 }
2470
2471 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2472 {
2473         vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2474
2475         /* Userspace is changing the multiplier while L2 is active */
2476         if (is_guest_mode(vcpu))
2477                 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2478                         l1_multiplier,
2479                         static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2480         else
2481                 vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2482
2483         if (kvm_has_tsc_control)
2484                 static_call(kvm_x86_write_tsc_multiplier)(
2485                         vcpu, vcpu->arch.tsc_scaling_ratio);
2486 }
2487
2488 static inline bool kvm_check_tsc_unstable(void)
2489 {
2490 #ifdef CONFIG_X86_64
2491         /*
2492          * TSC is marked unstable when we're running on Hyper-V,
2493          * 'TSC page' clocksource is good.
2494          */
2495         if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2496                 return false;
2497 #endif
2498         return check_tsc_unstable();
2499 }
2500
2501 /*
2502  * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2503  * offset for the vcpu and tracks the TSC matching generation that the vcpu
2504  * participates in.
2505  */
2506 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2507                                   u64 ns, bool matched)
2508 {
2509         struct kvm *kvm = vcpu->kvm;
2510
2511         lockdep_assert_held(&kvm->arch.tsc_write_lock);
2512
2513         /*
2514          * We also track th most recent recorded KHZ, write and time to
2515          * allow the matching interval to be extended at each write.
2516          */
2517         kvm->arch.last_tsc_nsec = ns;
2518         kvm->arch.last_tsc_write = tsc;
2519         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2520         kvm->arch.last_tsc_offset = offset;
2521
2522         vcpu->arch.last_guest_tsc = tsc;
2523
2524         kvm_vcpu_write_tsc_offset(vcpu, offset);
2525
2526         if (!matched) {
2527                 /*
2528                  * We split periods of matched TSC writes into generations.
2529                  * For each generation, we track the original measured
2530                  * nanosecond time, offset, and write, so if TSCs are in
2531                  * sync, we can match exact offset, and if not, we can match
2532                  * exact software computation in compute_guest_tsc()
2533                  *
2534                  * These values are tracked in kvm->arch.cur_xxx variables.
2535                  */
2536                 kvm->arch.cur_tsc_generation++;
2537                 kvm->arch.cur_tsc_nsec = ns;
2538                 kvm->arch.cur_tsc_write = tsc;
2539                 kvm->arch.cur_tsc_offset = offset;
2540                 kvm->arch.nr_vcpus_matched_tsc = 0;
2541         } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2542                 kvm->arch.nr_vcpus_matched_tsc++;
2543         }
2544
2545         /* Keep track of which generation this VCPU has synchronized to */
2546         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2547         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2548         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2549
2550         kvm_track_tsc_matching(vcpu);
2551 }
2552
2553 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2554 {
2555         struct kvm *kvm = vcpu->kvm;
2556         u64 offset, ns, elapsed;
2557         unsigned long flags;
2558         bool matched = false;
2559         bool synchronizing = false;
2560
2561         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2562         offset = kvm_compute_l1_tsc_offset(vcpu, data);
2563         ns = get_kvmclock_base_ns();
2564         elapsed = ns - kvm->arch.last_tsc_nsec;
2565
2566         if (vcpu->arch.virtual_tsc_khz) {
2567                 if (data == 0) {
2568                         /*
2569                          * detection of vcpu initialization -- need to sync
2570                          * with other vCPUs. This particularly helps to keep
2571                          * kvm_clock stable after CPU hotplug
2572                          */
2573                         synchronizing = true;
2574                 } else {
2575                         u64 tsc_exp = kvm->arch.last_tsc_write +
2576                                                 nsec_to_cycles(vcpu, elapsed);
2577                         u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2578                         /*
2579                          * Special case: TSC write with a small delta (1 second)
2580                          * of virtual cycle time against real time is
2581                          * interpreted as an attempt to synchronize the CPU.
2582                          */
2583                         synchronizing = data < tsc_exp + tsc_hz &&
2584                                         data + tsc_hz > tsc_exp;
2585                 }
2586         }
2587
2588         /*
2589          * For a reliable TSC, we can match TSC offsets, and for an unstable
2590          * TSC, we add elapsed time in this computation.  We could let the
2591          * compensation code attempt to catch up if we fall behind, but
2592          * it's better to try to match offsets from the beginning.
2593          */
2594         if (synchronizing &&
2595             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2596                 if (!kvm_check_tsc_unstable()) {
2597                         offset = kvm->arch.cur_tsc_offset;
2598                 } else {
2599                         u64 delta = nsec_to_cycles(vcpu, elapsed);
2600                         data += delta;
2601                         offset = kvm_compute_l1_tsc_offset(vcpu, data);
2602                 }
2603                 matched = true;
2604         }
2605
2606         __kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2607         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2608 }
2609
2610 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2611                                            s64 adjustment)
2612 {
2613         u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2614         kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2615 }
2616
2617 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2618 {
2619         if (vcpu->arch.l1_tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2620                 WARN_ON(adjustment < 0);
2621         adjustment = kvm_scale_tsc(vcpu, (u64) adjustment,
2622                                    vcpu->arch.l1_tsc_scaling_ratio);
2623         adjust_tsc_offset_guest(vcpu, adjustment);
2624 }
2625
2626 #ifdef CONFIG_X86_64
2627
2628 static u64 read_tsc(void)
2629 {
2630         u64 ret = (u64)rdtsc_ordered();
2631         u64 last = pvclock_gtod_data.clock.cycle_last;
2632
2633         if (likely(ret >= last))
2634                 return ret;
2635
2636         /*
2637          * GCC likes to generate cmov here, but this branch is extremely
2638          * predictable (it's just a function of time and the likely is
2639          * very likely) and there's a data dependence, so force GCC
2640          * to generate a branch instead.  I don't barrier() because
2641          * we don't actually need a barrier, and if this function
2642          * ever gets inlined it will generate worse code.
2643          */
2644         asm volatile ("");
2645         return last;
2646 }
2647
2648 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2649                           int *mode)
2650 {
2651         long v;
2652         u64 tsc_pg_val;
2653
2654         switch (clock->vclock_mode) {
2655         case VDSO_CLOCKMODE_HVCLOCK:
2656                 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2657                                                   tsc_timestamp);
2658                 if (tsc_pg_val != U64_MAX) {
2659                         /* TSC page valid */
2660                         *mode = VDSO_CLOCKMODE_HVCLOCK;
2661                         v = (tsc_pg_val - clock->cycle_last) &
2662                                 clock->mask;
2663                 } else {
2664                         /* TSC page invalid */
2665                         *mode = VDSO_CLOCKMODE_NONE;
2666                 }
2667                 break;
2668         case VDSO_CLOCKMODE_TSC:
2669                 *mode = VDSO_CLOCKMODE_TSC;
2670                 *tsc_timestamp = read_tsc();
2671                 v = (*tsc_timestamp - clock->cycle_last) &
2672                         clock->mask;
2673                 break;
2674         default:
2675                 *mode = VDSO_CLOCKMODE_NONE;
2676         }
2677
2678         if (*mode == VDSO_CLOCKMODE_NONE)
2679                 *tsc_timestamp = v = 0;
2680
2681         return v * clock->mult;
2682 }
2683
2684 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2685 {
2686         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2687         unsigned long seq;
2688         int mode;
2689         u64 ns;
2690
2691         do {
2692                 seq = read_seqcount_begin(&gtod->seq);
2693                 ns = gtod->raw_clock.base_cycles;
2694                 ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2695                 ns >>= gtod->raw_clock.shift;
2696                 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2697         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2698         *t = ns;
2699
2700         return mode;
2701 }
2702
2703 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2704 {
2705         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2706         unsigned long seq;
2707         int mode;
2708         u64 ns;
2709
2710         do {
2711                 seq = read_seqcount_begin(&gtod->seq);
2712                 ts->tv_sec = gtod->wall_time_sec;
2713                 ns = gtod->clock.base_cycles;
2714                 ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2715                 ns >>= gtod->clock.shift;
2716         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2717
2718         ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2719         ts->tv_nsec = ns;
2720
2721         return mode;
2722 }
2723
2724 /* returns true if host is using TSC based clocksource */
2725 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2726 {
2727         /* checked again under seqlock below */
2728         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2729                 return false;
2730
2731         return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2732                                                       tsc_timestamp));
2733 }
2734
2735 /* returns true if host is using TSC based clocksource */
2736 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2737                                            u64 *tsc_timestamp)
2738 {
2739         /* checked again under seqlock below */
2740         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2741                 return false;
2742
2743         return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2744 }
2745 #endif
2746
2747 /*
2748  *
2749  * Assuming a stable TSC across physical CPUS, and a stable TSC
2750  * across virtual CPUs, the following condition is possible.
2751  * Each numbered line represents an event visible to both
2752  * CPUs at the next numbered event.
2753  *
2754  * "timespecX" represents host monotonic time. "tscX" represents
2755  * RDTSC value.
2756  *
2757  *              VCPU0 on CPU0           |       VCPU1 on CPU1
2758  *
2759  * 1.  read timespec0,tsc0
2760  * 2.                                   | timespec1 = timespec0 + N
2761  *                                      | tsc1 = tsc0 + M
2762  * 3. transition to guest               | transition to guest
2763  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2764  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
2765  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2766  *
2767  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2768  *
2769  *      - ret0 < ret1
2770  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2771  *              ...
2772  *      - 0 < N - M => M < N
2773  *
2774  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2775  * always the case (the difference between two distinct xtime instances
2776  * might be smaller then the difference between corresponding TSC reads,
2777  * when updating guest vcpus pvclock areas).
2778  *
2779  * To avoid that problem, do not allow visibility of distinct
2780  * system_timestamp/tsc_timestamp values simultaneously: use a master
2781  * copy of host monotonic time values. Update that master copy
2782  * in lockstep.
2783  *
2784  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2785  *
2786  */
2787
2788 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2789 {
2790 #ifdef CONFIG_X86_64
2791         struct kvm_arch *ka = &kvm->arch;
2792         int vclock_mode;
2793         bool host_tsc_clocksource, vcpus_matched;
2794
2795         lockdep_assert_held(&kvm->arch.tsc_write_lock);
2796         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2797                         atomic_read(&kvm->online_vcpus));
2798
2799         /*
2800          * If the host uses TSC clock, then passthrough TSC as stable
2801          * to the guest.
2802          */
2803         host_tsc_clocksource = kvm_get_time_and_clockread(
2804                                         &ka->master_kernel_ns,
2805                                         &ka->master_cycle_now);
2806
2807         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2808                                 && !ka->backwards_tsc_observed
2809                                 && !ka->boot_vcpu_runs_old_kvmclock;
2810
2811         if (ka->use_master_clock)
2812                 atomic_set(&kvm_guest_has_master_clock, 1);
2813
2814         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2815         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2816                                         vcpus_matched);
2817 #endif
2818 }
2819
2820 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2821 {
2822         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2823 }
2824
2825 static void __kvm_start_pvclock_update(struct kvm *kvm)
2826 {
2827         raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
2828         write_seqcount_begin(&kvm->arch.pvclock_sc);
2829 }
2830
2831 static void kvm_start_pvclock_update(struct kvm *kvm)
2832 {
2833         kvm_make_mclock_inprogress_request(kvm);
2834
2835         /* no guest entries from this point */
2836         __kvm_start_pvclock_update(kvm);
2837 }
2838
2839 static void kvm_end_pvclock_update(struct kvm *kvm)
2840 {
2841         struct kvm_arch *ka = &kvm->arch;
2842         struct kvm_vcpu *vcpu;
2843         unsigned long i;
2844
2845         write_seqcount_end(&ka->pvclock_sc);
2846         raw_spin_unlock_irq(&ka->tsc_write_lock);
2847         kvm_for_each_vcpu(i, vcpu, kvm)
2848                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2849
2850         /* guest entries allowed */
2851         kvm_for_each_vcpu(i, vcpu, kvm)
2852                 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2853 }
2854
2855 static void kvm_update_masterclock(struct kvm *kvm)
2856 {
2857         kvm_hv_invalidate_tsc_page(kvm);
2858         kvm_start_pvclock_update(kvm);
2859         pvclock_update_vm_gtod_copy(kvm);
2860         kvm_end_pvclock_update(kvm);
2861 }
2862
2863 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc.  */
2864 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
2865 {
2866         struct kvm_arch *ka = &kvm->arch;
2867         struct pvclock_vcpu_time_info hv_clock;
2868
2869         /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2870         get_cpu();
2871
2872         data->flags = 0;
2873         if (ka->use_master_clock && __this_cpu_read(cpu_tsc_khz)) {
2874 #ifdef CONFIG_X86_64
2875                 struct timespec64 ts;
2876
2877                 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
2878                         data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
2879                         data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
2880                 } else
2881 #endif
2882                 data->host_tsc = rdtsc();
2883
2884                 data->flags |= KVM_CLOCK_TSC_STABLE;
2885                 hv_clock.tsc_timestamp = ka->master_cycle_now;
2886                 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2887                 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2888                                    &hv_clock.tsc_shift,
2889                                    &hv_clock.tsc_to_system_mul);
2890                 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
2891         } else {
2892                 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
2893         }
2894
2895         put_cpu();
2896 }
2897
2898 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
2899 {
2900         struct kvm_arch *ka = &kvm->arch;
2901         unsigned seq;
2902
2903         do {
2904                 seq = read_seqcount_begin(&ka->pvclock_sc);
2905                 __get_kvmclock(kvm, data);
2906         } while (read_seqcount_retry(&ka->pvclock_sc, seq));
2907 }
2908
2909 u64 get_kvmclock_ns(struct kvm *kvm)
2910 {
2911         struct kvm_clock_data data;
2912
2913         get_kvmclock(kvm, &data);
2914         return data.clock;
2915 }
2916
2917 static void kvm_setup_pvclock_page(struct kvm_vcpu *v,
2918                                    struct gfn_to_hva_cache *cache,
2919                                    unsigned int offset)
2920 {
2921         struct kvm_vcpu_arch *vcpu = &v->arch;
2922         struct pvclock_vcpu_time_info guest_hv_clock;
2923
2924         if (unlikely(kvm_read_guest_offset_cached(v->kvm, cache,
2925                 &guest_hv_clock, offset, sizeof(guest_hv_clock))))
2926                 return;
2927
2928         /* This VCPU is paused, but it's legal for a guest to read another
2929          * VCPU's kvmclock, so we really have to follow the specification where
2930          * it says that version is odd if data is being modified, and even after
2931          * it is consistent.
2932          *
2933          * Version field updates must be kept separate.  This is because
2934          * kvm_write_guest_cached might use a "rep movs" instruction, and
2935          * writes within a string instruction are weakly ordered.  So there
2936          * are three writes overall.
2937          *
2938          * As a small optimization, only write the version field in the first
2939          * and third write.  The vcpu->pv_time cache is still valid, because the
2940          * version field is the first in the struct.
2941          */
2942         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2943
2944         if (guest_hv_clock.version & 1)
2945                 ++guest_hv_clock.version;  /* first time write, random junk */
2946
2947         vcpu->hv_clock.version = guest_hv_clock.version + 1;
2948         kvm_write_guest_offset_cached(v->kvm, cache,
2949                                       &vcpu->hv_clock, offset,
2950                                       sizeof(vcpu->hv_clock.version));
2951
2952         smp_wmb();
2953
2954         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2955         vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2956
2957         if (vcpu->pvclock_set_guest_stopped_request) {
2958                 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2959                 vcpu->pvclock_set_guest_stopped_request = false;
2960         }
2961
2962         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2963
2964         kvm_write_guest_offset_cached(v->kvm, cache,
2965                                       &vcpu->hv_clock, offset,
2966                                       sizeof(vcpu->hv_clock));
2967
2968         smp_wmb();
2969
2970         vcpu->hv_clock.version++;
2971         kvm_write_guest_offset_cached(v->kvm, cache,
2972                                      &vcpu->hv_clock, offset,
2973                                      sizeof(vcpu->hv_clock.version));
2974 }
2975
2976 static int kvm_guest_time_update(struct kvm_vcpu *v)
2977 {
2978         unsigned long flags, tgt_tsc_khz;
2979         unsigned seq;
2980         struct kvm_vcpu_arch *vcpu = &v->arch;
2981         struct kvm_arch *ka = &v->kvm->arch;
2982         s64 kernel_ns;
2983         u64 tsc_timestamp, host_tsc;
2984         u8 pvclock_flags;
2985         bool use_master_clock;
2986
2987         kernel_ns = 0;
2988         host_tsc = 0;
2989
2990         /*
2991          * If the host uses TSC clock, then passthrough TSC as stable
2992          * to the guest.
2993          */
2994         do {
2995                 seq = read_seqcount_begin(&ka->pvclock_sc);
2996                 use_master_clock = ka->use_master_clock;
2997                 if (use_master_clock) {
2998                         host_tsc = ka->master_cycle_now;
2999                         kernel_ns = ka->master_kernel_ns;
3000                 }
3001         } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3002
3003         /* Keep irq disabled to prevent changes to the clock */
3004         local_irq_save(flags);
3005         tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
3006         if (unlikely(tgt_tsc_khz == 0)) {
3007                 local_irq_restore(flags);
3008                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3009                 return 1;
3010         }
3011         if (!use_master_clock) {
3012                 host_tsc = rdtsc();
3013                 kernel_ns = get_kvmclock_base_ns();
3014         }
3015
3016         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3017
3018         /*
3019          * We may have to catch up the TSC to match elapsed wall clock
3020          * time for two reasons, even if kvmclock is used.
3021          *   1) CPU could have been running below the maximum TSC rate
3022          *   2) Broken TSC compensation resets the base at each VCPU
3023          *      entry to avoid unknown leaps of TSC even when running
3024          *      again on the same CPU.  This may cause apparent elapsed
3025          *      time to disappear, and the guest to stand still or run
3026          *      very slowly.
3027          */
3028         if (vcpu->tsc_catchup) {
3029                 u64 tsc = compute_guest_tsc(v, kernel_ns);
3030                 if (tsc > tsc_timestamp) {
3031                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3032                         tsc_timestamp = tsc;
3033                 }
3034         }
3035
3036         local_irq_restore(flags);
3037
3038         /* With all the info we got, fill in the values */
3039
3040         if (kvm_has_tsc_control)
3041                 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz,
3042                                             v->arch.l1_tsc_scaling_ratio);
3043
3044         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3045                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3046                                    &vcpu->hv_clock.tsc_shift,
3047                                    &vcpu->hv_clock.tsc_to_system_mul);
3048                 vcpu->hw_tsc_khz = tgt_tsc_khz;
3049         }
3050
3051         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3052         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3053         vcpu->last_guest_tsc = tsc_timestamp;
3054
3055         /* If the host uses TSC clocksource, then it is stable */
3056         pvclock_flags = 0;
3057         if (use_master_clock)
3058                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3059
3060         vcpu->hv_clock.flags = pvclock_flags;
3061
3062         if (vcpu->pv_time_enabled)
3063                 kvm_setup_pvclock_page(v, &vcpu->pv_time, 0);
3064         if (vcpu->xen.vcpu_info_set)
3065                 kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_info_cache,
3066                                        offsetof(struct compat_vcpu_info, time));
3067         if (vcpu->xen.vcpu_time_info_set)
3068                 kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_time_info_cache, 0);
3069         if (!v->vcpu_idx)
3070                 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3071         return 0;
3072 }
3073
3074 /*
3075  * kvmclock updates which are isolated to a given vcpu, such as
3076  * vcpu->cpu migration, should not allow system_timestamp from
3077  * the rest of the vcpus to remain static. Otherwise ntp frequency
3078  * correction applies to one vcpu's system_timestamp but not
3079  * the others.
3080  *
3081  * So in those cases, request a kvmclock update for all vcpus.
3082  * We need to rate-limit these requests though, as they can
3083  * considerably slow guests that have a large number of vcpus.
3084  * The time for a remote vcpu to update its kvmclock is bound
3085  * by the delay we use to rate-limit the updates.
3086  */
3087
3088 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3089
3090 static void kvmclock_update_fn(struct work_struct *work)
3091 {
3092         unsigned long i;
3093         struct delayed_work *dwork = to_delayed_work(work);
3094         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3095                                            kvmclock_update_work);
3096         struct kvm *kvm = container_of(ka, struct kvm, arch);
3097         struct kvm_vcpu *vcpu;
3098
3099         kvm_for_each_vcpu(i, vcpu, kvm) {
3100                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3101                 kvm_vcpu_kick(vcpu);
3102         }
3103 }
3104
3105 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3106 {
3107         struct kvm *kvm = v->kvm;
3108
3109         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3110         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3111                                         KVMCLOCK_UPDATE_DELAY);
3112 }
3113
3114 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3115
3116 static void kvmclock_sync_fn(struct work_struct *work)
3117 {
3118         struct delayed_work *dwork = to_delayed_work(work);
3119         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3120                                            kvmclock_sync_work);
3121         struct kvm *kvm = container_of(ka, struct kvm, arch);
3122
3123         if (!kvmclock_periodic_sync)
3124                 return;
3125
3126         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3127         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3128                                         KVMCLOCK_SYNC_PERIOD);
3129 }
3130
3131 /*
3132  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3133  */
3134 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3135 {
3136         /* McStatusWrEn enabled? */
3137         if (guest_cpuid_is_amd_or_hygon(vcpu))
3138                 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3139
3140         return false;
3141 }
3142
3143 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3144 {
3145         u64 mcg_cap = vcpu->arch.mcg_cap;
3146         unsigned bank_num = mcg_cap & 0xff;
3147         u32 msr = msr_info->index;
3148         u64 data = msr_info->data;
3149
3150         switch (msr) {
3151         case MSR_IA32_MCG_STATUS:
3152                 vcpu->arch.mcg_status = data;
3153                 break;
3154         case MSR_IA32_MCG_CTL:
3155                 if (!(mcg_cap & MCG_CTL_P) &&
3156                     (data || !msr_info->host_initiated))
3157                         return 1;
3158                 if (data != 0 && data != ~(u64)0)
3159                         return 1;
3160                 vcpu->arch.mcg_ctl = data;
3161                 break;
3162         default:
3163                 if (msr >= MSR_IA32_MC0_CTL &&
3164                     msr < MSR_IA32_MCx_CTL(bank_num)) {
3165                         u32 offset = array_index_nospec(
3166                                 msr - MSR_IA32_MC0_CTL,
3167                                 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3168
3169                         /* only 0 or all 1s can be written to IA32_MCi_CTL
3170                          * some Linux kernels though clear bit 10 in bank 4 to
3171                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
3172                          * this to avoid an uncatched #GP in the guest
3173                          */
3174                         if ((offset & 0x3) == 0 &&
3175                             data != 0 && (data | (1 << 10)) != ~(u64)0)
3176                                 return -1;
3177
3178                         /* MCi_STATUS */
3179                         if (!msr_info->host_initiated &&
3180                             (offset & 0x3) == 1 && data != 0) {
3181                                 if (!can_set_mci_status(vcpu))
3182                                         return -1;
3183                         }
3184
3185                         vcpu->arch.mce_banks[offset] = data;
3186                         break;
3187                 }
3188                 return 1;
3189         }
3190         return 0;
3191 }
3192
3193 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3194 {
3195         u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3196
3197         return (vcpu->arch.apf.msr_en_val & mask) == mask;
3198 }
3199
3200 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3201 {
3202         gpa_t gpa = data & ~0x3f;
3203
3204         /* Bits 4:5 are reserved, Should be zero */
3205         if (data & 0x30)
3206                 return 1;
3207
3208         if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3209             (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3210                 return 1;
3211
3212         if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3213             (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3214                 return 1;
3215
3216         if (!lapic_in_kernel(vcpu))
3217                 return data ? 1 : 0;
3218
3219         vcpu->arch.apf.msr_en_val = data;
3220
3221         if (!kvm_pv_async_pf_enabled(vcpu)) {
3222                 kvm_clear_async_pf_completion_queue(vcpu);
3223                 kvm_async_pf_hash_reset(vcpu);
3224                 return 0;
3225         }
3226
3227         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3228                                         sizeof(u64)))
3229                 return 1;
3230
3231         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3232         vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3233
3234         kvm_async_pf_wakeup_all(vcpu);
3235
3236         return 0;
3237 }
3238
3239 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3240 {
3241         /* Bits 8-63 are reserved */
3242         if (data >> 8)
3243                 return 1;
3244
3245         if (!lapic_in_kernel(vcpu))
3246                 return 1;
3247
3248         vcpu->arch.apf.msr_int_val = data;
3249
3250         vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3251
3252         return 0;
3253 }
3254
3255 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3256 {
3257         vcpu->arch.pv_time_enabled = false;
3258         vcpu->arch.time = 0;
3259 }
3260
3261 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3262 {
3263         ++vcpu->stat.tlb_flush;
3264         static_call(kvm_x86_tlb_flush_all)(vcpu);
3265 }
3266
3267 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3268 {
3269         ++vcpu->stat.tlb_flush;
3270
3271         if (!tdp_enabled) {
3272                 /*
3273                  * A TLB flush on behalf of the guest is equivalent to
3274                  * INVPCID(all), toggling CR4.PGE, etc., which requires
3275                  * a forced sync of the shadow page tables.  Ensure all the
3276                  * roots are synced and the guest TLB in hardware is clean.
3277                  */
3278                 kvm_mmu_sync_roots(vcpu);
3279                 kvm_mmu_sync_prev_roots(vcpu);
3280         }
3281
3282         static_call(kvm_x86_tlb_flush_guest)(vcpu);
3283 }
3284
3285
3286 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3287 {
3288         ++vcpu->stat.tlb_flush;
3289         static_call(kvm_x86_tlb_flush_current)(vcpu);
3290 }
3291
3292 /*
3293  * Service "local" TLB flush requests, which are specific to the current MMU
3294  * context.  In addition to the generic event handling in vcpu_enter_guest(),
3295  * TLB flushes that are targeted at an MMU context also need to be serviced
3296  * prior before nested VM-Enter/VM-Exit.
3297  */
3298 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3299 {
3300         if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3301                 kvm_vcpu_flush_tlb_current(vcpu);
3302
3303         if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3304                 kvm_vcpu_flush_tlb_guest(vcpu);
3305 }
3306 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3307
3308 static void record_steal_time(struct kvm_vcpu *vcpu)
3309 {
3310         struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3311         struct kvm_steal_time __user *st;
3312         struct kvm_memslots *slots;
3313         u64 steal;
3314         u32 version;
3315
3316         if (kvm_xen_msr_enabled(vcpu->kvm)) {
3317                 kvm_xen_runstate_set_running(vcpu);
3318                 return;
3319         }
3320
3321         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3322                 return;
3323
3324         if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3325                 return;
3326
3327         slots = kvm_memslots(vcpu->kvm);
3328
3329         if (unlikely(slots->generation != ghc->generation ||
3330                      kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3331                 gfn_t gfn = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3332
3333                 /* We rely on the fact that it fits in a single page. */
3334                 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3335
3336                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gfn, sizeof(*st)) ||
3337                     kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3338                         return;
3339         }
3340
3341         st = (struct kvm_steal_time __user *)ghc->hva;
3342         /*
3343          * Doing a TLB flush here, on the guest's behalf, can avoid
3344          * expensive IPIs.
3345          */
3346         if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3347                 u8 st_preempted = 0;
3348                 int err = -EFAULT;
3349
3350                 if (!user_access_begin(st, sizeof(*st)))
3351                         return;
3352
3353                 asm volatile("1: xchgb %0, %2\n"
3354                              "xor %1, %1\n"
3355                              "2:\n"
3356                              _ASM_EXTABLE_UA(1b, 2b)
3357                              : "+q" (st_preempted),
3358                                "+&r" (err),
3359                                "+m" (st->preempted));
3360                 if (err)
3361                         goto out;
3362
3363                 user_access_end();
3364
3365                 vcpu->arch.st.preempted = 0;
3366
3367                 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3368                                        st_preempted & KVM_VCPU_FLUSH_TLB);
3369                 if (st_preempted & KVM_VCPU_FLUSH_TLB)
3370                         kvm_vcpu_flush_tlb_guest(vcpu);
3371
3372                 if (!user_access_begin(st, sizeof(*st)))
3373                         goto dirty;
3374         } else {
3375                 if (!user_access_begin(st, sizeof(*st)))
3376                         return;
3377
3378                 unsafe_put_user(0, &st->preempted, out);
3379                 vcpu->arch.st.preempted = 0;
3380         }
3381
3382         unsafe_get_user(version, &st->version, out);
3383         if (version & 1)
3384                 version += 1;  /* first time write, random junk */
3385
3386         version += 1;
3387         unsafe_put_user(version, &st->version, out);
3388
3389         smp_wmb();
3390
3391         unsafe_get_user(steal, &st->steal, out);
3392         steal += current->sched_info.run_delay -
3393                 vcpu->arch.st.last_steal;
3394         vcpu->arch.st.last_steal = current->sched_info.run_delay;
3395         unsafe_put_user(steal, &st->steal, out);
3396
3397         version += 1;
3398         unsafe_put_user(version, &st->version, out);
3399
3400  out:
3401         user_access_end();
3402  dirty:
3403         mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3404 }
3405
3406 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3407 {
3408         bool pr = false;
3409         u32 msr = msr_info->index;
3410         u64 data = msr_info->data;
3411
3412         if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3413                 return kvm_xen_write_hypercall_page(vcpu, data);
3414
3415         switch (msr) {
3416         case MSR_AMD64_NB_CFG:
3417         case MSR_IA32_UCODE_WRITE:
3418         case MSR_VM_HSAVE_PA:
3419         case MSR_AMD64_PATCH_LOADER:
3420         case MSR_AMD64_BU_CFG2:
3421         case MSR_AMD64_DC_CFG:
3422         case MSR_F15H_EX_CFG:
3423                 break;
3424
3425         case MSR_IA32_UCODE_REV:
3426                 if (msr_info->host_initiated)
3427                         vcpu->arch.microcode_version = data;
3428                 break;
3429         case MSR_IA32_ARCH_CAPABILITIES:
3430                 if (!msr_info->host_initiated)
3431                         return 1;
3432                 vcpu->arch.arch_capabilities = data;
3433                 break;
3434         case MSR_IA32_PERF_CAPABILITIES: {
3435                 struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3436
3437                 if (!msr_info->host_initiated)
3438                         return 1;
3439                 if (kvm_get_msr_feature(&msr_ent))
3440                         return 1;
3441                 if (data & ~msr_ent.data)
3442                         return 1;
3443
3444                 vcpu->arch.perf_capabilities = data;
3445
3446                 return 0;
3447                 }
3448         case MSR_EFER:
3449                 return set_efer(vcpu, msr_info);
3450         case MSR_K7_HWCR:
3451                 data &= ~(u64)0x40;     /* ignore flush filter disable */
3452                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
3453                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
3454
3455                 /* Handle McStatusWrEn */
3456                 if (data == BIT_ULL(18)) {
3457                         vcpu->arch.msr_hwcr = data;
3458                 } else if (data != 0) {
3459                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3460                                     data);
3461                         return 1;
3462                 }
3463                 break;
3464         case MSR_FAM10H_MMIO_CONF_BASE:
3465                 if (data != 0) {
3466                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3467                                     "0x%llx\n", data);
3468                         return 1;
3469                 }
3470                 break;
3471         case 0x200 ... 0x2ff:
3472                 return kvm_mtrr_set_msr(vcpu, msr, data);
3473         case MSR_IA32_APICBASE:
3474                 return kvm_set_apic_base(vcpu, msr_info);
3475         case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3476                 return kvm_x2apic_msr_write(vcpu, msr, data);
3477         case MSR_IA32_TSC_DEADLINE:
3478                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
3479                 break;
3480         case MSR_IA32_TSC_ADJUST:
3481                 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3482                         if (!msr_info->host_initiated) {
3483                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3484                                 adjust_tsc_offset_guest(vcpu, adj);
3485                                 /* Before back to guest, tsc_timestamp must be adjusted
3486                                  * as well, otherwise guest's percpu pvclock time could jump.
3487                                  */
3488                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3489                         }
3490                         vcpu->arch.ia32_tsc_adjust_msr = data;
3491                 }
3492                 break;
3493         case MSR_IA32_MISC_ENABLE:
3494                 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3495                     ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3496                         if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3497                                 return 1;
3498                         vcpu->arch.ia32_misc_enable_msr = data;
3499                         kvm_update_cpuid_runtime(vcpu);
3500                 } else {
3501                         vcpu->arch.ia32_misc_enable_msr = data;
3502                 }
3503                 break;
3504         case MSR_IA32_SMBASE:
3505                 if (!msr_info->host_initiated)
3506                         return 1;
3507                 vcpu->arch.smbase = data;
3508                 break;
3509         case MSR_IA32_POWER_CTL:
3510                 vcpu->arch.msr_ia32_power_ctl = data;
3511                 break;
3512         case MSR_IA32_TSC:
3513                 if (msr_info->host_initiated) {
3514                         kvm_synchronize_tsc(vcpu, data);
3515                 } else {
3516                         u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3517                         adjust_tsc_offset_guest(vcpu, adj);
3518                         vcpu->arch.ia32_tsc_adjust_msr += adj;
3519                 }
3520                 break;
3521         case MSR_IA32_XSS:
3522                 if (!msr_info->host_initiated &&
3523                     !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3524                         return 1;
3525                 /*
3526                  * KVM supports exposing PT to the guest, but does not support
3527                  * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3528                  * XSAVES/XRSTORS to save/restore PT MSRs.
3529                  */
3530                 if (data & ~supported_xss)
3531                         return 1;
3532                 vcpu->arch.ia32_xss = data;
3533                 break;
3534         case MSR_SMI_COUNT:
3535                 if (!msr_info->host_initiated)
3536                         return 1;
3537                 vcpu->arch.smi_count = data;
3538                 break;
3539         case MSR_KVM_WALL_CLOCK_NEW:
3540                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3541                         return 1;
3542
3543                 vcpu->kvm->arch.wall_clock = data;
3544                 kvm_write_wall_clock(vcpu->kvm, data, 0);
3545                 break;
3546         case MSR_KVM_WALL_CLOCK:
3547                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3548                         return 1;
3549
3550                 vcpu->kvm->arch.wall_clock = data;
3551                 kvm_write_wall_clock(vcpu->kvm, data, 0);
3552                 break;
3553         case MSR_KVM_SYSTEM_TIME_NEW:
3554                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3555                         return 1;
3556
3557                 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3558                 break;
3559         case MSR_KVM_SYSTEM_TIME:
3560                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3561                         return 1;
3562
3563                 kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3564                 break;
3565         case MSR_KVM_ASYNC_PF_EN:
3566                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3567                         return 1;
3568
3569                 if (kvm_pv_enable_async_pf(vcpu, data))
3570                         return 1;
3571                 break;
3572         case MSR_KVM_ASYNC_PF_INT:
3573                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3574                         return 1;
3575
3576                 if (kvm_pv_enable_async_pf_int(vcpu, data))
3577                         return 1;
3578                 break;
3579         case MSR_KVM_ASYNC_PF_ACK:
3580                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3581                         return 1;
3582                 if (data & 0x1) {
3583                         vcpu->arch.apf.pageready_pending = false;
3584                         kvm_check_async_pf_completion(vcpu);
3585                 }
3586                 break;
3587         case MSR_KVM_STEAL_TIME:
3588                 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3589                         return 1;
3590
3591                 if (unlikely(!sched_info_on()))
3592                         return 1;
3593
3594                 if (data & KVM_STEAL_RESERVED_MASK)
3595                         return 1;
3596
3597                 vcpu->arch.st.msr_val = data;
3598
3599                 if (!(data & KVM_MSR_ENABLED))
3600                         break;
3601
3602                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3603
3604                 break;
3605         case MSR_KVM_PV_EOI_EN:
3606                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3607                         return 1;
3608
3609                 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
3610                         return 1;
3611                 break;
3612
3613         case MSR_KVM_POLL_CONTROL:
3614                 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3615                         return 1;
3616
3617                 /* only enable bit supported */
3618                 if (data & (-1ULL << 1))
3619                         return 1;
3620
3621                 vcpu->arch.msr_kvm_poll_control = data;
3622                 break;
3623
3624         case MSR_IA32_MCG_CTL:
3625         case MSR_IA32_MCG_STATUS:
3626         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3627                 return set_msr_mce(vcpu, msr_info);
3628
3629         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3630         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3631                 pr = true;
3632                 fallthrough;
3633         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3634         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3635                 if (kvm_pmu_is_valid_msr(vcpu, msr))
3636                         return kvm_pmu_set_msr(vcpu, msr_info);
3637
3638                 if (pr || data != 0)
3639                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3640                                     "0x%x data 0x%llx\n", msr, data);
3641                 break;
3642         case MSR_K7_CLK_CTL:
3643                 /*
3644                  * Ignore all writes to this no longer documented MSR.
3645                  * Writes are only relevant for old K7 processors,
3646                  * all pre-dating SVM, but a recommended workaround from
3647                  * AMD for these chips. It is possible to specify the
3648                  * affected processor models on the command line, hence
3649                  * the need to ignore the workaround.
3650                  */
3651                 break;
3652         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3653         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3654         case HV_X64_MSR_SYNDBG_OPTIONS:
3655         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3656         case HV_X64_MSR_CRASH_CTL:
3657         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3658         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3659         case HV_X64_MSR_TSC_EMULATION_CONTROL:
3660         case HV_X64_MSR_TSC_EMULATION_STATUS:
3661                 return kvm_hv_set_msr_common(vcpu, msr, data,
3662                                              msr_info->host_initiated);
3663         case MSR_IA32_BBL_CR_CTL3:
3664                 /* Drop writes to this legacy MSR -- see rdmsr
3665                  * counterpart for further detail.
3666                  */
3667                 if (report_ignored_msrs)
3668                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3669                                 msr, data);
3670                 break;
3671         case MSR_AMD64_OSVW_ID_LENGTH:
3672                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3673                         return 1;
3674                 vcpu->arch.osvw.length = data;
3675                 break;
3676         case MSR_AMD64_OSVW_STATUS:
3677                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3678                         return 1;
3679                 vcpu->arch.osvw.status = data;
3680                 break;
3681         case MSR_PLATFORM_INFO:
3682                 if (!msr_info->host_initiated ||
3683                     (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3684                      cpuid_fault_enabled(vcpu)))
3685                         return 1;
3686                 vcpu->arch.msr_platform_info = data;
3687                 break;
3688         case MSR_MISC_FEATURES_ENABLES:
3689                 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3690                     (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3691                      !supports_cpuid_fault(vcpu)))
3692                         return 1;
3693                 vcpu->arch.msr_misc_features_enables = data;
3694                 break;
3695 #ifdef CONFIG_X86_64
3696         case MSR_IA32_XFD:
3697                 if (!msr_info->host_initiated &&
3698                     !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3699                         return 1;
3700
3701                 if (data & ~(XFEATURE_MASK_USER_DYNAMIC &
3702                              vcpu->arch.guest_supported_xcr0))
3703                         return 1;
3704
3705                 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
3706                 break;
3707         case MSR_IA32_XFD_ERR:
3708                 if (!msr_info->host_initiated &&
3709                     !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3710                         return 1;
3711
3712                 if (data & ~(XFEATURE_MASK_USER_DYNAMIC &
3713                              vcpu->arch.guest_supported_xcr0))
3714                         return 1;
3715
3716                 vcpu->arch.guest_fpu.xfd_err = data;
3717                 break;
3718 #endif
3719         default:
3720                 if (kvm_pmu_is_valid_msr(vcpu, msr))
3721                         return kvm_pmu_set_msr(vcpu, msr_info);
3722                 return KVM_MSR_RET_INVALID;
3723         }
3724         return 0;
3725 }
3726 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3727
3728 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3729 {
3730         u64 data;
3731         u64 mcg_cap = vcpu->arch.mcg_cap;
3732         unsigned bank_num = mcg_cap & 0xff;
3733
3734         switch (msr) {
3735         case MSR_IA32_P5_MC_ADDR:
3736         case MSR_IA32_P5_MC_TYPE:
3737                 data = 0;
3738                 break;
3739         case MSR_IA32_MCG_CAP:
3740                 data = vcpu->arch.mcg_cap;
3741                 break;
3742         case MSR_IA32_MCG_CTL:
3743                 if (!(mcg_cap & MCG_CTL_P) && !host)
3744                         return 1;
3745                 data = vcpu->arch.mcg_ctl;
3746                 break;
3747         case MSR_IA32_MCG_STATUS:
3748                 data = vcpu->arch.mcg_status;
3749                 break;
3750         default:
3751                 if (msr >= MSR_IA32_MC0_CTL &&
3752                     msr < MSR_IA32_MCx_CTL(bank_num)) {
3753                         u32 offset = array_index_nospec(
3754                                 msr - MSR_IA32_MC0_CTL,
3755                                 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3756
3757                         data = vcpu->arch.mce_banks[offset];
3758                         break;
3759                 }
3760                 return 1;
3761         }
3762         *pdata = data;
3763         return 0;
3764 }
3765
3766 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3767 {
3768         switch (msr_info->index) {
3769         case MSR_IA32_PLATFORM_ID:
3770         case MSR_IA32_EBL_CR_POWERON:
3771         case MSR_IA32_LASTBRANCHFROMIP:
3772         case MSR_IA32_LASTBRANCHTOIP:
3773         case MSR_IA32_LASTINTFROMIP:
3774         case MSR_IA32_LASTINTTOIP:
3775         case MSR_AMD64_SYSCFG:
3776         case MSR_K8_TSEG_ADDR:
3777         case MSR_K8_TSEG_MASK:
3778         case MSR_VM_HSAVE_PA:
3779         case MSR_K8_INT_PENDING_MSG:
3780         case MSR_AMD64_NB_CFG:
3781         case MSR_FAM10H_MMIO_CONF_BASE:
3782         case MSR_AMD64_BU_CFG2:
3783         case MSR_IA32_PERF_CTL:
3784         case MSR_AMD64_DC_CFG:
3785         case MSR_F15H_EX_CFG:
3786         /*
3787          * Intel Sandy Bridge CPUs must support the RAPL (running average power
3788          * limit) MSRs. Just return 0, as we do not want to expose the host
3789          * data here. Do not conditionalize this on CPUID, as KVM does not do
3790          * so for existing CPU-specific MSRs.
3791          */
3792         case MSR_RAPL_POWER_UNIT:
3793         case MSR_PP0_ENERGY_STATUS:     /* Power plane 0 (core) */
3794         case MSR_PP1_ENERGY_STATUS:     /* Power plane 1 (graphics uncore) */
3795         case MSR_PKG_ENERGY_STATUS:     /* Total package */
3796         case MSR_DRAM_ENERGY_STATUS:    /* DRAM controller */
3797                 msr_info->data = 0;
3798                 break;
3799         case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3800                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3801                         return kvm_pmu_get_msr(vcpu, msr_info);
3802                 if (!msr_info->host_initiated)
3803                         return 1;
3804                 msr_info->data = 0;
3805                 break;
3806         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3807         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3808         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3809         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3810                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3811                         return kvm_pmu_get_msr(vcpu, msr_info);
3812                 msr_info->data = 0;
3813                 break;
3814         case MSR_IA32_UCODE_REV:
3815                 msr_info->data = vcpu->arch.microcode_version;
3816                 break;
3817         case MSR_IA32_ARCH_CAPABILITIES:
3818                 if (!msr_info->host_initiated &&
3819                     !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3820                         return 1;
3821                 msr_info->data = vcpu->arch.arch_capabilities;
3822                 break;
3823         case MSR_IA32_PERF_CAPABILITIES:
3824                 if (!msr_info->host_initiated &&
3825                     !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3826                         return 1;
3827                 msr_info->data = vcpu->arch.perf_capabilities;
3828                 break;
3829         case MSR_IA32_POWER_CTL:
3830                 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3831                 break;
3832         case MSR_IA32_TSC: {
3833                 /*
3834                  * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3835                  * even when not intercepted. AMD manual doesn't explicitly
3836                  * state this but appears to behave the same.
3837                  *
3838                  * On userspace reads and writes, however, we unconditionally
3839                  * return L1's TSC value to ensure backwards-compatible
3840                  * behavior for migration.
3841                  */
3842                 u64 offset, ratio;
3843
3844                 if (msr_info->host_initiated) {
3845                         offset = vcpu->arch.l1_tsc_offset;
3846                         ratio = vcpu->arch.l1_tsc_scaling_ratio;
3847                 } else {
3848                         offset = vcpu->arch.tsc_offset;
3849                         ratio = vcpu->arch.tsc_scaling_ratio;
3850                 }
3851
3852                 msr_info->data = kvm_scale_tsc(vcpu, rdtsc(), ratio) + offset;
3853                 break;
3854         }
3855         case MSR_MTRRcap:
3856         case 0x200 ... 0x2ff:
3857                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3858         case 0xcd: /* fsb frequency */
3859                 msr_info->data = 3;
3860                 break;
3861                 /*
3862                  * MSR_EBC_FREQUENCY_ID
3863                  * Conservative value valid for even the basic CPU models.
3864                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3865                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3866                  * and 266MHz for model 3, or 4. Set Core Clock
3867                  * Frequency to System Bus Frequency Ratio to 1 (bits
3868                  * 31:24) even though these are only valid for CPU
3869                  * models > 2, however guests may end up dividing or
3870                  * multiplying by zero otherwise.
3871                  */
3872         case MSR_EBC_FREQUENCY_ID:
3873                 msr_info->data = 1 << 24;
3874                 break;
3875         case MSR_IA32_APICBASE:
3876                 msr_info->data = kvm_get_apic_base(vcpu);
3877                 break;
3878         case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3879                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3880         case MSR_IA32_TSC_DEADLINE:
3881                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3882                 break;
3883         case MSR_IA32_TSC_ADJUST:
3884                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3885                 break;
3886         case MSR_IA32_MISC_ENABLE:
3887                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3888                 break;
3889         case MSR_IA32_SMBASE:
3890                 if (!msr_info->host_initiated)
3891                         return 1;
3892                 msr_info->data = vcpu->arch.smbase;
3893                 break;
3894         case MSR_SMI_COUNT:
3895                 msr_info->data = vcpu->arch.smi_count;
3896                 break;
3897         case MSR_IA32_PERF_STATUS:
3898                 /* TSC increment by tick */
3899                 msr_info->data = 1000ULL;
3900                 /* CPU multiplier */
3901                 msr_info->data |= (((uint64_t)4ULL) << 40);
3902                 break;
3903         case MSR_EFER:
3904                 msr_info->data = vcpu->arch.efer;
3905                 break;
3906         case MSR_KVM_WALL_CLOCK:
3907                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3908                         return 1;
3909
3910                 msr_info->data = vcpu->kvm->arch.wall_clock;
3911                 break;
3912         case MSR_KVM_WALL_CLOCK_NEW:
3913                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3914                         return 1;
3915
3916                 msr_info->data = vcpu->kvm->arch.wall_clock;
3917                 break;
3918         case MSR_KVM_SYSTEM_TIME:
3919                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3920                         return 1;
3921
3922                 msr_info->data = vcpu->arch.time;
3923                 break;
3924         case MSR_KVM_SYSTEM_TIME_NEW:
3925                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3926                         return 1;
3927
3928                 msr_info->data = vcpu->arch.time;
3929                 break;
3930         case MSR_KVM_ASYNC_PF_EN:
3931                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3932                         return 1;
3933
3934                 msr_info->data = vcpu->arch.apf.msr_en_val;
3935                 break;
3936         case MSR_KVM_ASYNC_PF_INT:
3937                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3938                         return 1;
3939
3940                 msr_info->data = vcpu->arch.apf.msr_int_val;
3941                 break;
3942         case MSR_KVM_ASYNC_PF_ACK:
3943                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3944                         return 1;
3945
3946                 msr_info->data = 0;
3947                 break;
3948         case MSR_KVM_STEAL_TIME:
3949                 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3950                         return 1;
3951
3952                 msr_info->data = vcpu->arch.st.msr_val;
3953                 break;
3954         case MSR_KVM_PV_EOI_EN:
3955                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3956                         return 1;
3957
3958                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
3959                 break;
3960         case MSR_KVM_POLL_CONTROL:
3961                 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3962                         return 1;
3963
3964                 msr_info->data = vcpu->arch.msr_kvm_poll_control;
3965                 break;
3966         case MSR_IA32_P5_MC_ADDR:
3967         case MSR_IA32_P5_MC_TYPE:
3968         case MSR_IA32_MCG_CAP:
3969         case MSR_IA32_MCG_CTL:
3970         case MSR_IA32_MCG_STATUS:
3971         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3972                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3973                                    msr_info->host_initiated);
3974         case MSR_IA32_XSS:
3975                 if (!msr_info->host_initiated &&
3976                     !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3977                         return 1;
3978                 msr_info->data = vcpu->arch.ia32_xss;
3979                 break;
3980         case MSR_K7_CLK_CTL:
3981                 /*
3982                  * Provide expected ramp-up count for K7. All other
3983                  * are set to zero, indicating minimum divisors for
3984                  * every field.
3985                  *
3986                  * This prevents guest kernels on AMD host with CPU
3987                  * type 6, model 8 and higher from exploding due to
3988                  * the rdmsr failing.
3989                  */
3990                 msr_info->data = 0x20000000;
3991                 break;
3992         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3993         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3994         case HV_X64_MSR_SYNDBG_OPTIONS:
3995         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3996         case HV_X64_MSR_CRASH_CTL:
3997         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3998         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3999         case HV_X64_MSR_TSC_EMULATION_CONTROL:
4000         case HV_X64_MSR_TSC_EMULATION_STATUS:
4001                 return kvm_hv_get_msr_common(vcpu,
4002                                              msr_info->index, &msr_info->data,
4003                                              msr_info->host_initiated);
4004         case MSR_IA32_BBL_CR_CTL3:
4005                 /* This legacy MSR exists but isn't fully documented in current
4006                  * silicon.  It is however accessed by winxp in very narrow
4007                  * scenarios where it sets bit #19, itself documented as
4008                  * a "reserved" bit.  Best effort attempt to source coherent
4009                  * read data here should the balance of the register be
4010                  * interpreted by the guest:
4011                  *
4012                  * L2 cache control register 3: 64GB range, 256KB size,
4013                  * enabled, latency 0x1, configured
4014                  */
4015                 msr_info->data = 0xbe702111;
4016                 break;
4017         case MSR_AMD64_OSVW_ID_LENGTH:
4018                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4019                         return 1;
4020                 msr_info->data = vcpu->arch.osvw.length;
4021                 break;
4022         case MSR_AMD64_OSVW_STATUS:
4023                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4024                         return 1;
4025                 msr_info->data = vcpu->arch.osvw.status;
4026                 break;
4027         case MSR_PLATFORM_INFO:
4028                 if (!msr_info->host_initiated &&
4029                     !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4030                         return 1;
4031                 msr_info->data = vcpu->arch.msr_platform_info;
4032                 break;
4033         case MSR_MISC_FEATURES_ENABLES:
4034                 msr_info->data = vcpu->arch.msr_misc_features_enables;
4035                 break;
4036         case MSR_K7_HWCR:
4037                 msr_info->data = vcpu->arch.msr_hwcr;
4038                 break;
4039 #ifdef CONFIG_X86_64
4040         case MSR_IA32_XFD:
4041                 if (!msr_info->host_initiated &&
4042                     !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4043                         return 1;
4044
4045                 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4046                 break;
4047         case MSR_IA32_XFD_ERR:
4048                 if (!msr_info->host_initiated &&
4049                     !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4050                         return 1;
4051
4052                 msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4053                 break;
4054 #endif
4055         default:
4056                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4057                         return kvm_pmu_get_msr(vcpu, msr_info);
4058                 return KVM_MSR_RET_INVALID;
4059         }
4060         return 0;
4061 }
4062 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4063
4064 /*
4065  * Read or write a bunch of msrs. All parameters are kernel addresses.
4066  *
4067  * @return number of msrs set successfully.
4068  */
4069 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4070                     struct kvm_msr_entry *entries,
4071                     int (*do_msr)(struct kvm_vcpu *vcpu,
4072                                   unsigned index, u64 *data))
4073 {
4074         int i;
4075
4076         for (i = 0; i < msrs->nmsrs; ++i)
4077                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
4078                         break;
4079
4080         return i;
4081 }
4082
4083 /*
4084  * Read or write a bunch of msrs. Parameters are user addresses.
4085  *
4086  * @return number of msrs set successfully.
4087  */
4088 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4089                   int (*do_msr)(struct kvm_vcpu *vcpu,
4090                                 unsigned index, u64 *data),
4091                   int writeback)
4092 {
4093         struct kvm_msrs msrs;
4094         struct kvm_msr_entry *entries;
4095         int r, n;
4096         unsigned size;
4097
4098         r = -EFAULT;
4099         if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4100                 goto out;
4101
4102         r = -E2BIG;
4103         if (msrs.nmsrs >= MAX_IO_MSRS)
4104                 goto out;
4105
4106         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4107         entries = memdup_user(user_msrs->entries, size);
4108         if (IS_ERR(entries)) {
4109                 r = PTR_ERR(entries);
4110                 goto out;
4111         }
4112
4113         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
4114         if (r < 0)
4115                 goto out_free;
4116
4117         r = -EFAULT;
4118         if (writeback && copy_to_user(user_msrs->entries, entries, size))
4119                 goto out_free;
4120
4121         r = n;
4122
4123 out_free:
4124         kfree(entries);
4125 out:
4126         return r;
4127 }
4128
4129 static inline bool kvm_can_mwait_in_guest(void)
4130 {
4131         return boot_cpu_has(X86_FEATURE_MWAIT) &&
4132                 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
4133                 boot_cpu_has(X86_FEATURE_ARAT);
4134 }
4135
4136 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4137                                             struct kvm_cpuid2 __user *cpuid_arg)
4138 {
4139         struct kvm_cpuid2 cpuid;
4140         int r;
4141
4142         r = -EFAULT;
4143         if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4144                 return r;
4145
4146         r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4147         if (r)
4148                 return r;
4149
4150         r = -EFAULT;
4151         if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4152                 return r;
4153
4154         return 0;
4155 }
4156
4157 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4158 {
4159         int r = 0;
4160
4161         switch (ext) {
4162         case KVM_CAP_IRQCHIP:
4163         case KVM_CAP_HLT:
4164         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4165         case KVM_CAP_SET_TSS_ADDR:
4166         case KVM_CAP_EXT_CPUID:
4167         case KVM_CAP_EXT_EMUL_CPUID:
4168         case KVM_CAP_CLOCKSOURCE:
4169         case KVM_CAP_PIT:
4170         case KVM_CAP_NOP_IO_DELAY:
4171         case KVM_CAP_MP_STATE:
4172         case KVM_CAP_SYNC_MMU:
4173         case KVM_CAP_USER_NMI:
4174         case KVM_CAP_REINJECT_CONTROL:
4175         case KVM_CAP_IRQ_INJECT_STATUS:
4176         case KVM_CAP_IOEVENTFD:
4177         case KVM_CAP_IOEVENTFD_NO_LENGTH:
4178         case KVM_CAP_PIT2:
4179         case KVM_CAP_PIT_STATE2:
4180         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4181         case KVM_CAP_VCPU_EVENTS:
4182         case KVM_CAP_HYPERV:
4183         case KVM_CAP_HYPERV_VAPIC:
4184         case KVM_CAP_HYPERV_SPIN:
4185         case KVM_CAP_HYPERV_SYNIC:
4186         case KVM_CAP_HYPERV_SYNIC2:
4187         case KVM_CAP_HYPERV_VP_INDEX:
4188         case KVM_CAP_HYPERV_EVENTFD:
4189         case KVM_CAP_HYPERV_TLBFLUSH:
4190         case KVM_CAP_HYPERV_SEND_IPI:
4191         case KVM_CAP_HYPERV_CPUID:
4192         case KVM_CAP_HYPERV_ENFORCE_CPUID:
4193         case KVM_CAP_SYS_HYPERV_CPUID:
4194         case KVM_CAP_PCI_SEGMENT:
4195         case KVM_CAP_DEBUGREGS:
4196         case KVM_CAP_X86_ROBUST_SINGLESTEP:
4197         case KVM_CAP_XSAVE:
4198         case KVM_CAP_ASYNC_PF:
4199         case KVM_CAP_ASYNC_PF_INT:
4200         case KVM_CAP_GET_TSC_KHZ:
4201         case KVM_CAP_KVMCLOCK_CTRL:
4202         case KVM_CAP_READONLY_MEM:
4203         case KVM_CAP_HYPERV_TIME:
4204         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4205         case KVM_CAP_TSC_DEADLINE_TIMER:
4206         case KVM_CAP_DISABLE_QUIRKS:
4207         case KVM_CAP_SET_BOOT_CPU_ID:
4208         case KVM_CAP_SPLIT_IRQCHIP:
4209         case KVM_CAP_IMMEDIATE_EXIT:
4210         case KVM_CAP_PMU_EVENT_FILTER:
4211         case KVM_CAP_GET_MSR_FEATURES:
4212         case KVM_CAP_MSR_PLATFORM_INFO:
4213         case KVM_CAP_EXCEPTION_PAYLOAD:
4214         case KVM_CAP_SET_GUEST_DEBUG:
4215         case KVM_CAP_LAST_CPU:
4216         case KVM_CAP_X86_USER_SPACE_MSR:
4217         case KVM_CAP_X86_MSR_FILTER:
4218         case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4219 #ifdef CONFIG_X86_SGX_KVM
4220         case KVM_CAP_SGX_ATTRIBUTE:
4221 #endif
4222         case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4223         case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4224         case KVM_CAP_SREGS2:
4225         case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4226         case KVM_CAP_VCPU_ATTRIBUTES:
4227                 r = 1;
4228                 break;
4229         case KVM_CAP_EXIT_HYPERCALL:
4230                 r = KVM_EXIT_HYPERCALL_VALID_MASK;
4231                 break;
4232         case KVM_CAP_SET_GUEST_DEBUG2:
4233                 return KVM_GUESTDBG_VALID_MASK;
4234 #ifdef CONFIG_KVM_XEN
4235         case KVM_CAP_XEN_HVM:
4236                 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4237                     KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4238                     KVM_XEN_HVM_CONFIG_SHARED_INFO |
4239                     KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL;
4240                 if (sched_info_on())
4241                         r |= KVM_XEN_HVM_CONFIG_RUNSTATE;
4242                 break;
4243 #endif
4244         case KVM_CAP_SYNC_REGS:
4245                 r = KVM_SYNC_X86_VALID_FIELDS;
4246                 break;
4247         case KVM_CAP_ADJUST_CLOCK:
4248                 r = KVM_CLOCK_VALID_FLAGS;
4249                 break;
4250         case KVM_CAP_X86_DISABLE_EXITS:
4251                 r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
4252                       KVM_X86_DISABLE_EXITS_CSTATE;
4253                 if(kvm_can_mwait_in_guest())
4254                         r |= KVM_X86_DISABLE_EXITS_MWAIT;
4255                 break;
4256         case KVM_CAP_X86_SMM:
4257                 /* SMBASE is usually relocated above 1M on modern chipsets,
4258                  * and SMM handlers might indeed rely on 4G segment limits,
4259                  * so do not report SMM to be available if real mode is
4260                  * emulated via vm86 mode.  Still, do not go to great lengths
4261                  * to avoid userspace's usage of the feature, because it is a
4262                  * fringe case that is not enabled except via specific settings
4263                  * of the module parameters.
4264                  */
4265                 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4266                 break;
4267         case KVM_CAP_VAPIC:
4268                 r = !static_call(kvm_x86_cpu_has_accelerated_tpr)();
4269                 break;
4270         case KVM_CAP_NR_VCPUS:
4271                 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4272                 break;
4273         case KVM_CAP_MAX_VCPUS:
4274                 r = KVM_MAX_VCPUS;
4275                 break;
4276         case KVM_CAP_MAX_VCPU_ID:
4277                 r = KVM_MAX_VCPU_IDS;
4278                 break;
4279         case KVM_CAP_PV_MMU:    /* obsolete */
4280                 r = 0;
4281                 break;
4282         case KVM_CAP_MCE:
4283                 r = KVM_MAX_MCE_BANKS;
4284                 break;
4285         case KVM_CAP_XCRS:
4286                 r = boot_cpu_has(X86_FEATURE_XSAVE);
4287                 break;
4288         case KVM_CAP_TSC_CONTROL:
4289                 r = kvm_has_tsc_control;
4290                 break;
4291         case KVM_CAP_X2APIC_API:
4292                 r = KVM_X2APIC_API_VALID_FLAGS;
4293                 break;
4294         case KVM_CAP_NESTED_STATE:
4295                 r = kvm_x86_ops.nested_ops->get_state ?
4296                         kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4297                 break;
4298         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4299                 r = kvm_x86_ops.enable_direct_tlbflush != NULL;
4300                 break;
4301         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4302                 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4303                 break;
4304         case KVM_CAP_SMALLER_MAXPHYADDR:
4305                 r = (int) allow_smaller_maxphyaddr;
4306                 break;
4307         case KVM_CAP_STEAL_TIME:
4308                 r = sched_info_on();
4309                 break;
4310         case KVM_CAP_X86_BUS_LOCK_EXIT:
4311                 if (kvm_has_bus_lock_exit)
4312                         r = KVM_BUS_LOCK_DETECTION_OFF |
4313                             KVM_BUS_LOCK_DETECTION_EXIT;
4314                 else
4315                         r = 0;
4316                 break;
4317         case KVM_CAP_XSAVE2: {
4318                 u64 guest_perm = xstate_get_guest_group_perm();
4319
4320                 r = xstate_required_size(supported_xcr0 & guest_perm, false);
4321                 if (r < sizeof(struct kvm_xsave))
4322                         r = sizeof(struct kvm_xsave);
4323                 break;
4324         }
4325         default:
4326                 break;
4327         }
4328         return r;
4329
4330 }
4331
4332 long kvm_arch_dev_ioctl(struct file *filp,
4333                         unsigned int ioctl, unsigned long arg)
4334 {
4335         void __user *argp = (void __user *)arg;
4336         long r;
4337
4338         switch (ioctl) {
4339         case KVM_GET_MSR_INDEX_LIST: {
4340                 struct kvm_msr_list __user *user_msr_list = argp;
4341                 struct kvm_msr_list msr_list;
4342                 unsigned n;
4343
4344                 r = -EFAULT;
4345                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4346                         goto out;
4347                 n = msr_list.nmsrs;
4348                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4349                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4350                         goto out;
4351                 r = -E2BIG;
4352                 if (n < msr_list.nmsrs)
4353                         goto out;
4354                 r = -EFAULT;
4355                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4356                                  num_msrs_to_save * sizeof(u32)))
4357                         goto out;
4358                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4359                                  &emulated_msrs,
4360                                  num_emulated_msrs * sizeof(u32)))
4361                         goto out;
4362                 r = 0;
4363                 break;
4364         }
4365         case KVM_GET_SUPPORTED_CPUID:
4366         case KVM_GET_EMULATED_CPUID: {
4367                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4368                 struct kvm_cpuid2 cpuid;
4369
4370                 r = -EFAULT;
4371                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4372                         goto out;
4373
4374                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4375                                             ioctl);
4376                 if (r)
4377                         goto out;
4378
4379                 r = -EFAULT;
4380                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4381                         goto out;
4382                 r = 0;
4383                 break;
4384         }
4385         case KVM_X86_GET_MCE_CAP_SUPPORTED:
4386                 r = -EFAULT;
4387                 if (copy_to_user(argp, &kvm_mce_cap_supported,
4388                                  sizeof(kvm_mce_cap_supported)))
4389                         goto out;
4390                 r = 0;
4391                 break;
4392         case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4393                 struct kvm_msr_list __user *user_msr_list = argp;
4394                 struct kvm_msr_list msr_list;
4395                 unsigned int n;
4396
4397                 r = -EFAULT;
4398                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4399                         goto out;
4400                 n = msr_list.nmsrs;
4401                 msr_list.nmsrs = num_msr_based_features;
4402                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4403                         goto out;
4404                 r = -E2BIG;
4405                 if (n < msr_list.nmsrs)
4406                         goto out;
4407                 r = -EFAULT;
4408                 if (copy_to_user(user_msr_list->indices, &msr_based_features,
4409                                  num_msr_based_features * sizeof(u32)))
4410                         goto out;
4411                 r = 0;
4412                 break;
4413         }
4414         case KVM_GET_MSRS:
4415                 r = msr_io(NULL, argp, do_get_msr_feature, 1);
4416                 break;
4417         case KVM_GET_SUPPORTED_HV_CPUID:
4418                 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4419                 break;
4420         default:
4421                 r = -EINVAL;
4422                 break;
4423         }
4424 out:
4425         return r;
4426 }
4427
4428 static void wbinvd_ipi(void *garbage)
4429 {
4430         wbinvd();
4431 }
4432
4433 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4434 {
4435         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4436 }
4437
4438 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4439 {
4440         /* Address WBINVD may be executed by guest */
4441         if (need_emulate_wbinvd(vcpu)) {
4442                 if (static_call(kvm_x86_has_wbinvd_exit)())
4443                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4444                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4445                         smp_call_function_single(vcpu->cpu,
4446                                         wbinvd_ipi, NULL, 1);
4447         }
4448
4449         static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4450
4451         /* Save host pkru register if supported */
4452         vcpu->arch.host_pkru = read_pkru();
4453
4454         /* Apply any externally detected TSC adjustments (due to suspend) */
4455         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4456                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4457                 vcpu->arch.tsc_offset_adjustment = 0;
4458                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4459         }
4460
4461         if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4462                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4463                                 rdtsc() - vcpu->arch.last_host_tsc;
4464                 if (tsc_delta < 0)
4465                         mark_tsc_unstable("KVM discovered backwards TSC");
4466
4467                 if (kvm_check_tsc_unstable()) {
4468                         u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4469                                                 vcpu->arch.last_guest_tsc);
4470                         kvm_vcpu_write_tsc_offset(vcpu, offset);
4471                         vcpu->arch.tsc_catchup = 1;
4472                 }
4473
4474                 if (kvm_lapic_hv_timer_in_use(vcpu))
4475                         kvm_lapic_restart_hv_timer(vcpu);
4476
4477                 /*
4478                  * On a host with synchronized TSC, there is no need to update
4479                  * kvmclock on vcpu->cpu migration
4480                  */
4481                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4482                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4483                 if (vcpu->cpu != cpu)
4484                         kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4485                 vcpu->cpu = cpu;
4486         }
4487
4488         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4489 }
4490
4491 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4492 {
4493         struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
4494         struct kvm_steal_time __user *st;
4495         struct kvm_memslots *slots;
4496         static const u8 preempted = KVM_VCPU_PREEMPTED;
4497
4498         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4499                 return;
4500
4501         if (vcpu->arch.st.preempted)
4502                 return;
4503
4504         /* This happens on process exit */
4505         if (unlikely(current->mm != vcpu->kvm->mm))
4506                 return;
4507
4508         slots = kvm_memslots(vcpu->kvm);
4509
4510         if (unlikely(slots->generation != ghc->generation ||
4511                      kvm_is_error_hva(ghc->hva) || !ghc->memslot))
4512                 return;
4513
4514         st = (struct kvm_steal_time __user *)ghc->hva;
4515         BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
4516
4517         if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
4518                 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4519
4520         mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
4521 }
4522
4523 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4524 {
4525         int idx;
4526
4527         if (vcpu->preempted && !vcpu->arch.guest_state_protected)
4528                 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4529
4530         /*
4531          * Take the srcu lock as memslots will be accessed to check the gfn
4532          * cache generation against the memslots generation.
4533          */
4534         idx = srcu_read_lock(&vcpu->kvm->srcu);
4535         if (kvm_xen_msr_enabled(vcpu->kvm))
4536                 kvm_xen_runstate_set_preempted(vcpu);
4537         else
4538                 kvm_steal_time_set_preempted(vcpu);
4539         srcu_read_unlock(&vcpu->kvm->srcu, idx);
4540
4541         static_call(kvm_x86_vcpu_put)(vcpu);
4542         vcpu->arch.last_host_tsc = rdtsc();
4543 }
4544
4545 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4546                                     struct kvm_lapic_state *s)
4547 {
4548         static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
4549
4550         return kvm_apic_get_state(vcpu, s);
4551 }
4552
4553 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4554                                     struct kvm_lapic_state *s)
4555 {
4556         int r;
4557
4558         r = kvm_apic_set_state(vcpu, s);
4559         if (r)
4560                 return r;
4561         update_cr8_intercept(vcpu);
4562
4563         return 0;
4564 }
4565
4566 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4567 {
4568         /*
4569          * We can accept userspace's request for interrupt injection
4570          * as long as we have a place to store the interrupt number.
4571          * The actual injection will happen when the CPU is able to
4572          * deliver the interrupt.
4573          */
4574         if (kvm_cpu_has_extint(vcpu))
4575                 return false;
4576
4577         /* Acknowledging ExtINT does not happen if LINT0 is masked.  */
4578         return (!lapic_in_kernel(vcpu) ||
4579                 kvm_apic_accept_pic_intr(vcpu));
4580 }
4581
4582 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4583 {
4584         /*
4585          * Do not cause an interrupt window exit if an exception
4586          * is pending or an event needs reinjection; userspace
4587          * might want to inject the interrupt manually using KVM_SET_REGS
4588          * or KVM_SET_SREGS.  For that to work, we must be at an
4589          * instruction boundary and with no events half-injected.
4590          */
4591         return (kvm_arch_interrupt_allowed(vcpu) &&
4592                 kvm_cpu_accept_dm_intr(vcpu) &&
4593                 !kvm_event_needs_reinjection(vcpu) &&
4594                 !vcpu->arch.exception.pending);
4595 }
4596
4597 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4598                                     struct kvm_interrupt *irq)
4599 {
4600         if (irq->irq >= KVM_NR_INTERRUPTS)
4601                 return -EINVAL;
4602
4603         if (!irqchip_in_kernel(vcpu->kvm)) {
4604                 kvm_queue_interrupt(vcpu, irq->irq, false);
4605                 kvm_make_request(KVM_REQ_EVENT, vcpu);
4606                 return 0;
4607         }
4608
4609         /*
4610          * With in-kernel LAPIC, we only use this to inject EXTINT, so
4611          * fail for in-kernel 8259.
4612          */
4613         if (pic_in_kernel(vcpu->kvm))
4614                 return -ENXIO;
4615
4616         if (vcpu->arch.pending_external_vector != -1)
4617                 return -EEXIST;
4618
4619         vcpu->arch.pending_external_vector = irq->irq;
4620         kvm_make_request(KVM_REQ_EVENT, vcpu);
4621         return 0;
4622 }
4623
4624 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4625 {
4626         kvm_inject_nmi(vcpu);
4627
4628         return 0;
4629 }
4630
4631 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4632 {
4633         kvm_make_request(KVM_REQ_SMI, vcpu);
4634
4635         return 0;
4636 }
4637
4638 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4639                                            struct kvm_tpr_access_ctl *tac)
4640 {
4641         if (tac->flags)
4642                 return -EINVAL;
4643         vcpu->arch.tpr_access_reporting = !!tac->enabled;
4644         return 0;
4645 }
4646
4647 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4648                                         u64 mcg_cap)
4649 {
4650         int r;
4651         unsigned bank_num = mcg_cap & 0xff, bank;
4652
4653         r = -EINVAL;
4654         if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4655                 goto out;
4656         if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
4657                 goto out;
4658         r = 0;
4659         vcpu->arch.mcg_cap = mcg_cap;
4660         /* Init IA32_MCG_CTL to all 1s */
4661         if (mcg_cap & MCG_CTL_P)
4662                 vcpu->arch.mcg_ctl = ~(u64)0;
4663         /* Init IA32_MCi_CTL to all 1s */
4664         for (bank = 0; bank < bank_num; bank++)
4665                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4666
4667         static_call(kvm_x86_setup_mce)(vcpu);
4668 out:
4669         return r;
4670 }
4671
4672 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4673                                       struct kvm_x86_mce *mce)
4674 {
4675         u64 mcg_cap = vcpu->arch.mcg_cap;
4676         unsigned bank_num = mcg_cap & 0xff;
4677         u64 *banks = vcpu->arch.mce_banks;
4678
4679         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4680                 return -EINVAL;
4681         /*
4682          * if IA32_MCG_CTL is not all 1s, the uncorrected error
4683          * reporting is disabled
4684          */
4685         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
4686             vcpu->arch.mcg_ctl != ~(u64)0)
4687                 return 0;
4688         banks += 4 * mce->bank;
4689         /*
4690          * if IA32_MCi_CTL is not all 1s, the uncorrected error
4691          * reporting is disabled for the bank
4692          */
4693         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
4694                 return 0;
4695         if (mce->status & MCI_STATUS_UC) {
4696                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
4697                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
4698                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4699                         return 0;
4700                 }
4701                 if (banks[1] & MCI_STATUS_VAL)
4702                         mce->status |= MCI_STATUS_OVER;
4703                 banks[2] = mce->addr;
4704                 banks[3] = mce->misc;
4705                 vcpu->arch.mcg_status = mce->mcg_status;
4706                 banks[1] = mce->status;
4707                 kvm_queue_exception(vcpu, MC_VECTOR);
4708         } else if (!(banks[1] & MCI_STATUS_VAL)
4709                    || !(banks[1] & MCI_STATUS_UC)) {
4710                 if (banks[1] & MCI_STATUS_VAL)
4711                         mce->status |= MCI_STATUS_OVER;
4712                 banks[2] = mce->addr;
4713                 banks[3] = mce->misc;
4714                 banks[1] = mce->status;
4715         } else
4716                 banks[1] |= MCI_STATUS_OVER;
4717         return 0;
4718 }
4719
4720 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
4721                                                struct kvm_vcpu_events *events)
4722 {
4723         process_nmi(vcpu);
4724
4725         if (kvm_check_request(KVM_REQ_SMI, vcpu))
4726                 process_smi(vcpu);
4727
4728         /*
4729          * In guest mode, payload delivery should be deferred,
4730          * so that the L1 hypervisor can intercept #PF before
4731          * CR2 is modified (or intercept #DB before DR6 is
4732          * modified under nVMX). Unless the per-VM capability,
4733          * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
4734          * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
4735          * opportunistically defer the exception payload, deliver it if the
4736          * capability hasn't been requested before processing a
4737          * KVM_GET_VCPU_EVENTS.
4738          */
4739         if (!vcpu->kvm->arch.exception_payload_enabled &&
4740             vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
4741                 kvm_deliver_exception_payload(vcpu);
4742
4743         /*
4744          * The API doesn't provide the instruction length for software
4745          * exceptions, so don't report them. As long as the guest RIP
4746          * isn't advanced, we should expect to encounter the exception
4747          * again.
4748          */
4749         if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
4750                 events->exception.injected = 0;
4751                 events->exception.pending = 0;
4752         } else {
4753                 events->exception.injected = vcpu->arch.exception.injected;
4754                 events->exception.pending = vcpu->arch.exception.pending;
4755                 /*
4756                  * For ABI compatibility, deliberately conflate
4757                  * pending and injected exceptions when
4758                  * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
4759                  */
4760                 if (!vcpu->kvm->arch.exception_payload_enabled)
4761                         events->exception.injected |=
4762                                 vcpu->arch.exception.pending;
4763         }
4764         events->exception.nr = vcpu->arch.exception.nr;
4765         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
4766         events->exception.error_code = vcpu->arch.exception.error_code;
4767         events->exception_has_payload = vcpu->arch.exception.has_payload;
4768         events->exception_payload = vcpu->arch.exception.payload;
4769
4770         events->interrupt.injected =
4771                 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
4772         events->interrupt.nr = vcpu->arch.interrupt.nr;
4773         events->interrupt.soft = 0;
4774         events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
4775
4776         events->nmi.injected = vcpu->arch.nmi_injected;
4777         events->nmi.pending = vcpu->arch.nmi_pending != 0;
4778         events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
4779         events->nmi.pad = 0;
4780
4781         events->sipi_vector = 0; /* never valid when reporting to user space */
4782
4783         events->smi.smm = is_smm(vcpu);
4784         events->smi.pending = vcpu->arch.smi_pending;
4785         events->smi.smm_inside_nmi =
4786                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
4787         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
4788
4789         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
4790                          | KVM_VCPUEVENT_VALID_SHADOW
4791                          | KVM_VCPUEVENT_VALID_SMM);
4792         if (vcpu->kvm->arch.exception_payload_enabled)
4793                 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4794
4795         memset(&events->reserved, 0, sizeof(events->reserved));
4796 }
4797
4798 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm);
4799
4800 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
4801                                               struct kvm_vcpu_events *events)
4802 {
4803         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4804                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4805                               | KVM_VCPUEVENT_VALID_SHADOW
4806                               | KVM_VCPUEVENT_VALID_SMM
4807                               | KVM_VCPUEVENT_VALID_PAYLOAD))
4808                 return -EINVAL;
4809
4810         if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4811                 if (!vcpu->kvm->arch.exception_payload_enabled)
4812                         return -EINVAL;
4813                 if (events->exception.pending)
4814                         events->exception.injected = 0;
4815                 else
4816                         events->exception_has_payload = 0;
4817         } else {
4818                 events->exception.pending = 0;
4819                 events->exception_has_payload = 0;
4820         }
4821
4822         if ((events->exception.injected || events->exception.pending) &&
4823             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
4824                 return -EINVAL;
4825
4826         /* INITs are latched while in SMM */
4827         if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4828             (events->smi.smm || events->smi.pending) &&
4829             vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4830                 return -EINVAL;
4831
4832         process_nmi(vcpu);
4833         vcpu->arch.exception.injected = events->exception.injected;
4834         vcpu->arch.exception.pending = events->exception.pending;
4835         vcpu->arch.exception.nr = events->exception.nr;
4836         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4837         vcpu->arch.exception.error_code = events->exception.error_code;
4838         vcpu->arch.exception.has_payload = events->exception_has_payload;
4839         vcpu->arch.exception.payload = events->exception_payload;
4840
4841         vcpu->arch.interrupt.injected = events->interrupt.injected;
4842         vcpu->arch.interrupt.nr = events->interrupt.nr;
4843         vcpu->arch.interrupt.soft = events->interrupt.soft;
4844         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
4845                 static_call(kvm_x86_set_interrupt_shadow)(vcpu,
4846                                                 events->interrupt.shadow);
4847
4848         vcpu->arch.nmi_injected = events->nmi.injected;
4849         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
4850                 vcpu->arch.nmi_pending = events->nmi.pending;
4851         static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
4852
4853         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
4854             lapic_in_kernel(vcpu))
4855                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
4856
4857         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
4858                 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm)
4859                         kvm_smm_changed(vcpu, events->smi.smm);
4860
4861                 vcpu->arch.smi_pending = events->smi.pending;
4862
4863                 if (events->smi.smm) {
4864                         if (events->smi.smm_inside_nmi)
4865                                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
4866                         else
4867                                 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
4868                 }
4869
4870                 if (lapic_in_kernel(vcpu)) {
4871                         if (events->smi.latched_init)
4872                                 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4873                         else
4874                                 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4875                 }
4876         }
4877
4878         kvm_make_request(KVM_REQ_EVENT, vcpu);
4879
4880         return 0;
4881 }
4882
4883 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
4884                                              struct kvm_debugregs *dbgregs)
4885 {
4886         unsigned long val;
4887
4888         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
4889         kvm_get_dr(vcpu, 6, &val);
4890         dbgregs->dr6 = val;
4891         dbgregs->dr7 = vcpu->arch.dr7;
4892         dbgregs->flags = 0;
4893         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
4894 }
4895
4896 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
4897                                             struct kvm_debugregs *dbgregs)
4898 {
4899         if (dbgregs->flags)
4900                 return -EINVAL;
4901
4902         if (!kvm_dr6_valid(dbgregs->dr6))
4903                 return -EINVAL;
4904         if (!kvm_dr7_valid(dbgregs->dr7))
4905                 return -EINVAL;
4906
4907         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
4908         kvm_update_dr0123(vcpu);
4909         vcpu->arch.dr6 = dbgregs->dr6;
4910         vcpu->arch.dr7 = dbgregs->dr7;
4911         kvm_update_dr7(vcpu);
4912
4913         return 0;
4914 }
4915
4916 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4917                                          struct kvm_xsave *guest_xsave)
4918 {
4919         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
4920                 return;
4921
4922         fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
4923                                        guest_xsave->region,
4924                                        sizeof(guest_xsave->region),
4925                                        vcpu->arch.pkru);
4926 }
4927
4928 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
4929                                           u8 *state, unsigned int size)
4930 {
4931         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
4932                 return;
4933
4934         fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
4935                                        state, size, vcpu->arch.pkru);
4936 }
4937
4938 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
4939                                         struct kvm_xsave *guest_xsave)
4940 {
4941         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
4942                 return 0;
4943
4944         return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
4945                                               guest_xsave->region,
4946                                               supported_xcr0, &vcpu->arch.pkru);
4947 }
4948
4949 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
4950                                         struct kvm_xcrs *guest_xcrs)
4951 {
4952         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
4953                 guest_xcrs->nr_xcrs = 0;
4954                 return;
4955         }
4956
4957         guest_xcrs->nr_xcrs = 1;
4958         guest_xcrs->flags = 0;
4959         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
4960         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
4961 }
4962
4963 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
4964                                        struct kvm_xcrs *guest_xcrs)
4965 {
4966         int i, r = 0;
4967
4968         if (!boot_cpu_has(X86_FEATURE_XSAVE))
4969                 return -EINVAL;
4970
4971         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
4972                 return -EINVAL;
4973
4974         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
4975                 /* Only support XCR0 currently */
4976                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
4977                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
4978                                 guest_xcrs->xcrs[i].value);
4979                         break;
4980                 }
4981         if (r)
4982                 r = -EINVAL;
4983         return r;
4984 }
4985
4986 /*
4987  * kvm_set_guest_paused() indicates to the guest kernel that it has been
4988  * stopped by the hypervisor.  This function will be called from the host only.
4989  * EINVAL is returned when the host attempts to set the flag for a guest that
4990  * does not support pv clocks.
4991  */
4992 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
4993 {
4994         if (!vcpu->arch.pv_time_enabled)
4995                 return -EINVAL;
4996         vcpu->arch.pvclock_set_guest_stopped_request = true;
4997         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4998         return 0;
4999 }
5000
5001 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5002                                  struct kvm_device_attr *attr)
5003 {
5004         int r;
5005
5006         switch (attr->attr) {
5007         case KVM_VCPU_TSC_OFFSET:
5008                 r = 0;
5009                 break;
5010         default:
5011                 r = -ENXIO;
5012         }
5013
5014         return r;
5015 }
5016
5017 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5018                                  struct kvm_device_attr *attr)
5019 {
5020         u64 __user *uaddr = (u64 __user *)(unsigned long)attr->addr;
5021         int r;
5022
5023         if ((u64)(unsigned long)uaddr != attr->addr)
5024                 return -EFAULT;
5025
5026         switch (attr->attr) {
5027         case KVM_VCPU_TSC_OFFSET:
5028                 r = -EFAULT;
5029                 if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5030                         break;
5031                 r = 0;
5032                 break;
5033         default:
5034                 r = -ENXIO;
5035         }
5036
5037         return r;
5038 }
5039
5040 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5041                                  struct kvm_device_attr *attr)
5042 {
5043         u64 __user *uaddr = (u64 __user *)(unsigned long)attr->addr;
5044         struct kvm *kvm = vcpu->kvm;
5045         int r;
5046
5047         if ((u64)(unsigned long)uaddr != attr->addr)
5048                 return -EFAULT;
5049
5050         switch (attr->attr) {
5051         case KVM_VCPU_TSC_OFFSET: {
5052                 u64 offset, tsc, ns;
5053                 unsigned long flags;
5054                 bool matched;
5055
5056                 r = -EFAULT;
5057                 if (get_user(offset, uaddr))
5058                         break;
5059
5060                 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5061
5062                 matched = (vcpu->arch.virtual_tsc_khz &&
5063                            kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5064                            kvm->arch.last_tsc_offset == offset);
5065
5066                 tsc = kvm_scale_tsc(vcpu, rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5067                 ns = get_kvmclock_base_ns();
5068
5069                 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5070                 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5071
5072                 r = 0;
5073                 break;
5074         }
5075         default:
5076                 r = -ENXIO;
5077         }
5078
5079         return r;
5080 }
5081
5082 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5083                                       unsigned int ioctl,
5084                                       void __user *argp)
5085 {
5086         struct kvm_device_attr attr;
5087         int r;
5088
5089         if (copy_from_user(&attr, argp, sizeof(attr)))
5090                 return -EFAULT;
5091
5092         if (attr.group != KVM_VCPU_TSC_CTRL)
5093                 return -ENXIO;
5094
5095         switch (ioctl) {
5096         case KVM_HAS_DEVICE_ATTR:
5097                 r = kvm_arch_tsc_has_attr(vcpu, &attr);
5098                 break;
5099         case KVM_GET_DEVICE_ATTR:
5100                 r = kvm_arch_tsc_get_attr(vcpu, &attr);
5101                 break;
5102         case KVM_SET_DEVICE_ATTR:
5103                 r = kvm_arch_tsc_set_attr(vcpu, &attr);
5104                 break;
5105         }
5106
5107         return r;
5108 }
5109
5110 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5111                                      struct kvm_enable_cap *cap)
5112 {
5113         int r;
5114         uint16_t vmcs_version;
5115         void __user *user_ptr;
5116
5117         if (cap->flags)
5118                 return -EINVAL;
5119
5120         switch (cap->cap) {
5121         case KVM_CAP_HYPERV_SYNIC2:
5122                 if (cap->args[0])
5123                         return -EINVAL;
5124                 fallthrough;
5125
5126         case KVM_CAP_HYPERV_SYNIC:
5127                 if (!irqchip_in_kernel(vcpu->kvm))
5128                         return -EINVAL;
5129                 return kvm_hv_activate_synic(vcpu, cap->cap ==
5130                                              KVM_CAP_HYPERV_SYNIC2);
5131         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5132                 if (!kvm_x86_ops.nested_ops->enable_evmcs)
5133                         return -ENOTTY;
5134                 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5135                 if (!r) {
5136                         user_ptr = (void __user *)(uintptr_t)cap->args[0];
5137                         if (copy_to_user(user_ptr, &vmcs_version,
5138                                          sizeof(vmcs_version)))
5139                                 r = -EFAULT;
5140                 }
5141                 return r;
5142         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5143                 if (!kvm_x86_ops.enable_direct_tlbflush)
5144                         return -ENOTTY;
5145
5146                 return static_call(kvm_x86_enable_direct_tlbflush)(vcpu);
5147
5148         case KVM_CAP_HYPERV_ENFORCE_CPUID:
5149                 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5150
5151         case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5152                 vcpu->arch.pv_cpuid.enforce = cap->args[0];
5153                 if (vcpu->arch.pv_cpuid.enforce)
5154                         kvm_update_pv_runtime(vcpu);
5155
5156                 return 0;
5157         default:
5158                 return -EINVAL;
5159         }
5160 }
5161
5162 long kvm_arch_vcpu_ioctl(struct file *filp,
5163                          unsigned int ioctl, unsigned long arg)
5164 {
5165         struct kvm_vcpu *vcpu = filp->private_data;
5166         void __user *argp = (void __user *)arg;
5167         int r;
5168         union {
5169                 struct kvm_sregs2 *sregs2;
5170                 struct kvm_lapic_state *lapic;
5171                 struct kvm_xsave *xsave;
5172                 struct kvm_xcrs *xcrs;
5173                 void *buffer;
5174         } u;
5175
5176         vcpu_load(vcpu);
5177
5178         u.buffer = NULL;
5179         switch (ioctl) {
5180         case KVM_GET_LAPIC: {
5181                 r = -EINVAL;
5182                 if (!lapic_in_kernel(vcpu))
5183                         goto out;
5184                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5185                                 GFP_KERNEL_ACCOUNT);
5186
5187                 r = -ENOMEM;
5188                 if (!u.lapic)
5189                         goto out;
5190                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5191                 if (r)
5192                         goto out;
5193                 r = -EFAULT;
5194                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5195                         goto out;
5196                 r = 0;
5197                 break;
5198         }
5199         case KVM_SET_LAPIC: {
5200                 r = -EINVAL;
5201                 if (!lapic_in_kernel(vcpu))
5202                         goto out;
5203                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
5204                 if (IS_ERR(u.lapic)) {
5205                         r = PTR_ERR(u.lapic);
5206                         goto out_nofree;
5207                 }
5208
5209                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5210                 break;
5211         }
5212         case KVM_INTERRUPT: {
5213                 struct kvm_interrupt irq;
5214
5215                 r = -EFAULT;
5216                 if (copy_from_user(&irq, argp, sizeof(irq)))
5217                         goto out;
5218                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5219                 break;
5220         }
5221         case KVM_NMI: {
5222                 r = kvm_vcpu_ioctl_nmi(vcpu);
5223                 break;
5224         }
5225         case KVM_SMI: {
5226                 r = kvm_vcpu_ioctl_smi(vcpu);
5227                 break;
5228         }
5229         case KVM_SET_CPUID: {
5230                 struct kvm_cpuid __user *cpuid_arg = argp;
5231                 struct kvm_cpuid cpuid;
5232
5233                 /*
5234                  * KVM does not correctly handle changing guest CPUID after KVM_RUN, as
5235                  * MAXPHYADDR, GBPAGES support, AMD reserved bit behavior, etc.. aren't
5236                  * tracked in kvm_mmu_page_role.  As a result, KVM may miss guest page
5237                  * faults due to reusing SPs/SPTEs.  In practice no sane VMM mucks with
5238                  * the core vCPU model on the fly, so fail.
5239                  */
5240                 r = -EINVAL;
5241                 if (vcpu->arch.last_vmentry_cpu != -1)
5242                         goto out;
5243
5244                 r = -EFAULT;
5245                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5246                         goto out;
5247                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5248                 break;
5249         }
5250         case KVM_SET_CPUID2: {
5251                 struct kvm_cpuid2 __user *cpuid_arg = argp;
5252                 struct kvm_cpuid2 cpuid;
5253
5254                 /*
5255                  * KVM_SET_CPUID{,2} after KVM_RUN is forbidded, see the comment in
5256                  * KVM_SET_CPUID case above.
5257                  */
5258                 r = -EINVAL;
5259                 if (vcpu->arch.last_vmentry_cpu != -1)
5260                         goto out;
5261
5262                 r = -EFAULT;
5263                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5264                         goto out;
5265                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5266                                               cpuid_arg->entries);
5267                 break;
5268         }
5269         case KVM_GET_CPUID2: {
5270                 struct kvm_cpuid2 __user *cpuid_arg = argp;
5271                 struct kvm_cpuid2 cpuid;
5272
5273                 r = -EFAULT;
5274                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5275                         goto out;
5276                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5277                                               cpuid_arg->entries);
5278                 if (r)
5279                         goto out;
5280                 r = -EFAULT;
5281                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5282                         goto out;
5283                 r = 0;
5284                 break;
5285         }
5286         case KVM_GET_MSRS: {
5287                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5288                 r = msr_io(vcpu, argp, do_get_msr, 1);
5289                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5290                 break;
5291         }
5292         case KVM_SET_MSRS: {
5293                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5294                 r = msr_io(vcpu, argp, do_set_msr, 0);
5295                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5296                 break;
5297         }
5298         case KVM_TPR_ACCESS_REPORTING: {
5299                 struct kvm_tpr_access_ctl tac;
5300
5301                 r = -EFAULT;
5302                 if (copy_from_user(&tac, argp, sizeof(tac)))
5303                         goto out;
5304                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5305                 if (r)
5306                         goto out;
5307                 r = -EFAULT;
5308                 if (copy_to_user(argp, &tac, sizeof(tac)))
5309                         goto out;
5310                 r = 0;
5311                 break;
5312         };
5313         case KVM_SET_VAPIC_ADDR: {
5314                 struct kvm_vapic_addr va;
5315                 int idx;
5316
5317                 r = -EINVAL;
5318                 if (!lapic_in_kernel(vcpu))
5319                         goto out;
5320                 r = -EFAULT;
5321                 if (copy_from_user(&va, argp, sizeof(va)))
5322                         goto out;
5323                 idx = srcu_read_lock(&vcpu->kvm->srcu);
5324                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5325                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5326                 break;
5327         }
5328         case KVM_X86_SETUP_MCE: {
5329                 u64 mcg_cap;
5330
5331                 r = -EFAULT;
5332                 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5333                         goto out;
5334                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5335                 break;
5336         }
5337         case KVM_X86_SET_MCE: {
5338                 struct kvm_x86_mce mce;
5339
5340                 r = -EFAULT;
5341                 if (copy_from_user(&mce, argp, sizeof(mce)))
5342                         goto out;
5343                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5344                 break;
5345         }
5346         case KVM_GET_VCPU_EVENTS: {
5347                 struct kvm_vcpu_events events;
5348
5349                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5350
5351                 r = -EFAULT;
5352                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5353                         break;
5354                 r = 0;
5355                 break;
5356         }
5357         case KVM_SET_VCPU_EVENTS: {
5358                 struct kvm_vcpu_events events;
5359
5360                 r = -EFAULT;
5361                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5362                         break;
5363
5364                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5365                 break;
5366         }
5367         case KVM_GET_DEBUGREGS: {
5368                 struct kvm_debugregs dbgregs;
5369
5370                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5371
5372                 r = -EFAULT;
5373                 if (copy_to_user(argp, &dbgregs,
5374                                  sizeof(struct kvm_debugregs)))
5375                         break;
5376                 r = 0;
5377                 break;
5378         }
5379         case KVM_SET_DEBUGREGS: {
5380                 struct kvm_debugregs dbgregs;
5381
5382                 r = -EFAULT;
5383                 if (copy_from_user(&dbgregs, argp,
5384                                    sizeof(struct kvm_debugregs)))
5385                         break;
5386
5387                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5388                 break;
5389         }
5390         case KVM_GET_XSAVE: {
5391                 r = -EINVAL;
5392                 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
5393                         break;
5394
5395                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5396                 r = -ENOMEM;
5397                 if (!u.xsave)
5398                         break;
5399
5400                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5401
5402                 r = -EFAULT;
5403                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5404                         break;
5405                 r = 0;
5406                 break;
5407         }
5408         case KVM_SET_XSAVE: {
5409                 int size = vcpu->arch.guest_fpu.uabi_size;
5410
5411                 u.xsave = memdup_user(argp, size);
5412                 if (IS_ERR(u.xsave)) {
5413                         r = PTR_ERR(u.xsave);
5414                         goto out_nofree;
5415                 }
5416
5417                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5418                 break;
5419         }
5420
5421         case KVM_GET_XSAVE2: {
5422                 int size = vcpu->arch.guest_fpu.uabi_size;
5423
5424                 u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT);
5425                 r = -ENOMEM;
5426                 if (!u.xsave)
5427                         break;
5428
5429                 kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
5430
5431                 r = -EFAULT;
5432                 if (copy_to_user(argp, u.xsave, size))
5433                         break;
5434
5435                 r = 0;
5436                 break;
5437         }
5438
5439         case KVM_GET_XCRS: {
5440                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5441                 r = -ENOMEM;
5442                 if (!u.xcrs)
5443                         break;
5444
5445                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5446
5447                 r = -EFAULT;
5448                 if (copy_to_user(argp, u.xcrs,
5449                                  sizeof(struct kvm_xcrs)))
5450                         break;
5451                 r = 0;
5452                 break;
5453         }
5454         case KVM_SET_XCRS: {
5455                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5456                 if (IS_ERR(u.xcrs)) {
5457                         r = PTR_ERR(u.xcrs);
5458                         goto out_nofree;
5459                 }
5460
5461                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5462                 break;
5463         }
5464         case KVM_SET_TSC_KHZ: {
5465                 u32 user_tsc_khz;
5466
5467                 r = -EINVAL;
5468                 user_tsc_khz = (u32)arg;
5469
5470                 if (kvm_has_tsc_control &&
5471                     user_tsc_khz >= kvm_max_guest_tsc_khz)
5472                         goto out;
5473
5474                 if (user_tsc_khz == 0)
5475                         user_tsc_khz = tsc_khz;
5476
5477                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5478                         r = 0;
5479
5480                 goto out;
5481         }
5482         case KVM_GET_TSC_KHZ: {
5483                 r = vcpu->arch.virtual_tsc_khz;
5484                 goto out;
5485         }
5486         case KVM_KVMCLOCK_CTRL: {
5487                 r = kvm_set_guest_paused(vcpu);
5488                 goto out;
5489         }
5490         case KVM_ENABLE_CAP: {
5491                 struct kvm_enable_cap cap;
5492
5493                 r = -EFAULT;
5494                 if (copy_from_user(&cap, argp, sizeof(cap)))
5495                         goto out;
5496                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5497                 break;
5498         }
5499         case KVM_GET_NESTED_STATE: {
5500                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5501                 u32 user_data_size;
5502
5503                 r = -EINVAL;
5504                 if (!kvm_x86_ops.nested_ops->get_state)
5505                         break;
5506
5507                 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5508                 r = -EFAULT;
5509                 if (get_user(user_data_size, &user_kvm_nested_state->size))
5510                         break;
5511
5512                 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5513                                                      user_data_size);
5514                 if (r < 0)
5515                         break;
5516
5517                 if (r > user_data_size) {
5518                         if (put_user(r, &user_kvm_nested_state->size))
5519                                 r = -EFAULT;
5520                         else
5521                                 r = -E2BIG;
5522                         break;
5523                 }
5524
5525                 r = 0;
5526                 break;
5527         }
5528         case KVM_SET_NESTED_STATE: {
5529                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5530                 struct kvm_nested_state kvm_state;
5531                 int idx;
5532
5533                 r = -EINVAL;
5534                 if (!kvm_x86_ops.nested_ops->set_state)
5535                         break;
5536
5537                 r = -EFAULT;
5538                 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5539                         break;
5540
5541                 r = -EINVAL;
5542                 if (kvm_state.size < sizeof(kvm_state))
5543                         break;
5544
5545                 if (kvm_state.flags &
5546                     ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5547                       | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5548                       | KVM_STATE_NESTED_GIF_SET))
5549                         break;
5550
5551                 /* nested_run_pending implies guest_mode.  */
5552                 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5553                     && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5554                         break;
5555
5556                 idx = srcu_read_lock(&vcpu->kvm->srcu);
5557                 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5558                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5559                 break;
5560         }
5561         case KVM_GET_SUPPORTED_HV_CPUID:
5562                 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5563                 break;
5564 #ifdef CONFIG_KVM_XEN
5565         case KVM_XEN_VCPU_GET_ATTR: {
5566                 struct kvm_xen_vcpu_attr xva;
5567
5568                 r = -EFAULT;
5569                 if (copy_from_user(&xva, argp, sizeof(xva)))
5570                         goto out;
5571                 r = kvm_xen_vcpu_get_attr(vcpu, &xva);
5572                 if (!r && copy_to_user(argp, &xva, sizeof(xva)))
5573                         r = -EFAULT;
5574                 break;
5575         }
5576         case KVM_XEN_VCPU_SET_ATTR: {
5577                 struct kvm_xen_vcpu_attr xva;
5578
5579                 r = -EFAULT;
5580                 if (copy_from_user(&xva, argp, sizeof(xva)))
5581                         goto out;
5582                 r = kvm_xen_vcpu_set_attr(vcpu, &xva);
5583                 break;
5584         }
5585 #endif
5586         case KVM_GET_SREGS2: {
5587                 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
5588                 r = -ENOMEM;
5589                 if (!u.sregs2)
5590                         goto out;
5591                 __get_sregs2(vcpu, u.sregs2);
5592                 r = -EFAULT;
5593                 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
5594                         goto out;
5595                 r = 0;
5596                 break;
5597         }
5598         case KVM_SET_SREGS2: {
5599                 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
5600                 if (IS_ERR(u.sregs2)) {
5601                         r = PTR_ERR(u.sregs2);
5602                         u.sregs2 = NULL;
5603                         goto out;
5604                 }
5605                 r = __set_sregs2(vcpu, u.sregs2);
5606                 break;
5607         }
5608         case KVM_HAS_DEVICE_ATTR:
5609         case KVM_GET_DEVICE_ATTR:
5610         case KVM_SET_DEVICE_ATTR:
5611                 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
5612                 break;
5613         default:
5614                 r = -EINVAL;
5615         }
5616 out:
5617         kfree(u.buffer);
5618 out_nofree:
5619         vcpu_put(vcpu);
5620         return r;
5621 }
5622
5623 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5624 {
5625         return VM_FAULT_SIGBUS;
5626 }
5627
5628 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5629 {
5630         int ret;
5631
5632         if (addr > (unsigned int)(-3 * PAGE_SIZE))
5633                 return -EINVAL;
5634         ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
5635         return ret;
5636 }
5637
5638 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5639                                               u64 ident_addr)
5640 {
5641         return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
5642 }
5643
5644 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5645                                          unsigned long kvm_nr_mmu_pages)
5646 {
5647         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5648                 return -EINVAL;
5649
5650         mutex_lock(&kvm->slots_lock);
5651
5652         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5653         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5654
5655         mutex_unlock(&kvm->slots_lock);
5656         return 0;
5657 }
5658
5659 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5660 {
5661         return kvm->arch.n_max_mmu_pages;
5662 }
5663
5664 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5665 {
5666         struct kvm_pic *pic = kvm->arch.vpic;
5667         int r;
5668
5669         r = 0;
5670         switch (chip->chip_id) {
5671         case KVM_IRQCHIP_PIC_MASTER:
5672                 memcpy(&chip->chip.pic, &pic->pics[0],
5673                         sizeof(struct kvm_pic_state));
5674                 break;
5675         case KVM_IRQCHIP_PIC_SLAVE:
5676                 memcpy(&chip->chip.pic, &pic->pics[1],
5677                         sizeof(struct kvm_pic_state));
5678                 break;
5679         case KVM_IRQCHIP_IOAPIC:
5680                 kvm_get_ioapic(kvm, &chip->chip.ioapic);
5681                 break;
5682         default:
5683                 r = -EINVAL;
5684                 break;
5685         }
5686         return r;
5687 }
5688
5689 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5690 {
5691         struct kvm_pic *pic = kvm->arch.vpic;
5692         int r;
5693
5694         r = 0;
5695         switch (chip->chip_id) {
5696         case KVM_IRQCHIP_PIC_MASTER:
5697                 spin_lock(&pic->lock);
5698                 memcpy(&pic->pics[0], &chip->chip.pic,
5699                         sizeof(struct kvm_pic_state));
5700                 spin_unlock(&pic->lock);
5701                 break;
5702         case KVM_IRQCHIP_PIC_SLAVE:
5703                 spin_lock(&pic->lock);
5704                 memcpy(&pic->pics[1], &chip->chip.pic,
5705                         sizeof(struct kvm_pic_state));
5706                 spin_unlock(&pic->lock);
5707                 break;
5708         case KVM_IRQCHIP_IOAPIC:
5709                 kvm_set_ioapic(kvm, &chip->chip.ioapic);
5710                 break;
5711         default:
5712                 r = -EINVAL;
5713                 break;
5714         }
5715         kvm_pic_update_irq(pic);
5716         return r;
5717 }
5718
5719 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5720 {
5721         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
5722
5723         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
5724
5725         mutex_lock(&kps->lock);
5726         memcpy(ps, &kps->channels, sizeof(*ps));
5727         mutex_unlock(&kps->lock);
5728         return 0;
5729 }
5730
5731 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5732 {
5733         int i;
5734         struct kvm_pit *pit = kvm->arch.vpit;
5735
5736         mutex_lock(&pit->pit_state.lock);
5737         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
5738         for (i = 0; i < 3; i++)
5739                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
5740         mutex_unlock(&pit->pit_state.lock);
5741         return 0;
5742 }
5743
5744 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5745 {
5746         mutex_lock(&kvm->arch.vpit->pit_state.lock);
5747         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
5748                 sizeof(ps->channels));
5749         ps->flags = kvm->arch.vpit->pit_state.flags;
5750         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
5751         memset(&ps->reserved, 0, sizeof(ps->reserved));
5752         return 0;
5753 }
5754
5755 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5756 {
5757         int start = 0;
5758         int i;
5759         u32 prev_legacy, cur_legacy;
5760         struct kvm_pit *pit = kvm->arch.vpit;
5761
5762         mutex_lock(&pit->pit_state.lock);
5763         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
5764         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
5765         if (!prev_legacy && cur_legacy)
5766                 start = 1;
5767         memcpy(&pit->pit_state.channels, &ps->channels,
5768                sizeof(pit->pit_state.channels));
5769         pit->pit_state.flags = ps->flags;
5770         for (i = 0; i < 3; i++)
5771                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
5772                                    start && i == 0);
5773         mutex_unlock(&pit->pit_state.lock);
5774         return 0;
5775 }
5776
5777 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
5778                                  struct kvm_reinject_control *control)
5779 {
5780         struct kvm_pit *pit = kvm->arch.vpit;
5781
5782         /* pit->pit_state.lock was overloaded to prevent userspace from getting
5783          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
5784          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
5785          */
5786         mutex_lock(&pit->pit_state.lock);
5787         kvm_pit_set_reinject(pit, control->pit_reinject);
5788         mutex_unlock(&pit->pit_state.lock);
5789
5790         return 0;
5791 }
5792
5793 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
5794 {
5795
5796         /*
5797          * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
5798          * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
5799          * on all VM-Exits, thus we only need to kick running vCPUs to force a
5800          * VM-Exit.
5801          */
5802         struct kvm_vcpu *vcpu;
5803         unsigned long i;
5804
5805         kvm_for_each_vcpu(i, vcpu, kvm)
5806                 kvm_vcpu_kick(vcpu);
5807 }
5808
5809 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
5810                         bool line_status)
5811 {
5812         if (!irqchip_in_kernel(kvm))
5813                 return -ENXIO;
5814
5815         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
5816                                         irq_event->irq, irq_event->level,
5817                                         line_status);
5818         return 0;
5819 }
5820
5821 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
5822                             struct kvm_enable_cap *cap)
5823 {
5824         int r;
5825
5826         if (cap->flags)
5827                 return -EINVAL;
5828
5829         switch (cap->cap) {
5830         case KVM_CAP_DISABLE_QUIRKS:
5831                 kvm->arch.disabled_quirks = cap->args[0];
5832                 r = 0;
5833                 break;
5834         case KVM_CAP_SPLIT_IRQCHIP: {
5835                 mutex_lock(&kvm->lock);
5836                 r = -EINVAL;
5837                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
5838                         goto split_irqchip_unlock;
5839                 r = -EEXIST;
5840                 if (irqchip_in_kernel(kvm))
5841                         goto split_irqchip_unlock;
5842                 if (kvm->created_vcpus)
5843                         goto split_irqchip_unlock;
5844                 r = kvm_setup_empty_irq_routing(kvm);
5845                 if (r)
5846                         goto split_irqchip_unlock;
5847                 /* Pairs with irqchip_in_kernel. */
5848                 smp_wmb();
5849                 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
5850                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
5851                 kvm_request_apicv_update(kvm, true, APICV_INHIBIT_REASON_ABSENT);
5852                 r = 0;
5853 split_irqchip_unlock:
5854                 mutex_unlock(&kvm->lock);
5855                 break;
5856         }
5857         case KVM_CAP_X2APIC_API:
5858                 r = -EINVAL;
5859                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
5860                         break;
5861
5862                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
5863                         kvm->arch.x2apic_format = true;
5864                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
5865                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
5866
5867                 r = 0;
5868                 break;
5869         case KVM_CAP_X86_DISABLE_EXITS:
5870                 r = -EINVAL;
5871                 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
5872                         break;
5873
5874                 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
5875                         kvm_can_mwait_in_guest())
5876                         kvm->arch.mwait_in_guest = true;
5877                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
5878                         kvm->arch.hlt_in_guest = true;
5879                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
5880                         kvm->arch.pause_in_guest = true;
5881                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
5882                         kvm->arch.cstate_in_guest = true;
5883                 r = 0;
5884                 break;
5885         case KVM_CAP_MSR_PLATFORM_INFO:
5886                 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
5887                 r = 0;
5888                 break;
5889         case KVM_CAP_EXCEPTION_PAYLOAD:
5890                 kvm->arch.exception_payload_enabled = cap->args[0];
5891                 r = 0;
5892                 break;
5893         case KVM_CAP_X86_USER_SPACE_MSR:
5894                 kvm->arch.user_space_msr_mask = cap->args[0];
5895                 r = 0;
5896                 break;
5897         case KVM_CAP_X86_BUS_LOCK_EXIT:
5898                 r = -EINVAL;
5899                 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
5900                         break;
5901
5902                 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
5903                     (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
5904                         break;
5905
5906                 if (kvm_has_bus_lock_exit &&
5907                     cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
5908                         kvm->arch.bus_lock_detection_enabled = true;
5909                 r = 0;
5910                 break;
5911 #ifdef CONFIG_X86_SGX_KVM
5912         case KVM_CAP_SGX_ATTRIBUTE: {
5913                 unsigned long allowed_attributes = 0;
5914
5915                 r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
5916                 if (r)
5917                         break;
5918
5919                 /* KVM only supports the PROVISIONKEY privileged attribute. */
5920                 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
5921                     !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
5922                         kvm->arch.sgx_provisioning_allowed = true;
5923                 else
5924                         r = -EINVAL;
5925                 break;
5926         }
5927 #endif
5928         case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
5929                 r = -EINVAL;
5930                 if (kvm_x86_ops.vm_copy_enc_context_from)
5931                         r = kvm_x86_ops.vm_copy_enc_context_from(kvm, cap->args[0]);
5932                 return r;
5933         case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
5934                 r = -EINVAL;
5935                 if (kvm_x86_ops.vm_move_enc_context_from)
5936                         r = kvm_x86_ops.vm_move_enc_context_from(
5937                                 kvm, cap->args[0]);
5938                 return r;
5939         case KVM_CAP_EXIT_HYPERCALL:
5940                 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
5941                         r = -EINVAL;
5942                         break;
5943                 }
5944                 kvm->arch.hypercall_exit_enabled = cap->args[0];
5945                 r = 0;
5946                 break;
5947         case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
5948                 r = -EINVAL;
5949                 if (cap->args[0] & ~1)
5950                         break;
5951                 kvm->arch.exit_on_emulation_error = cap->args[0];
5952                 r = 0;
5953                 break;
5954         default:
5955                 r = -EINVAL;
5956                 break;
5957         }
5958         return r;
5959 }
5960
5961 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
5962 {
5963         struct kvm_x86_msr_filter *msr_filter;
5964
5965         msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
5966         if (!msr_filter)
5967                 return NULL;
5968
5969         msr_filter->default_allow = default_allow;
5970         return msr_filter;
5971 }
5972
5973 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
5974 {
5975         u32 i;
5976
5977         if (!msr_filter)
5978                 return;
5979
5980         for (i = 0; i < msr_filter->count; i++)
5981                 kfree(msr_filter->ranges[i].bitmap);
5982
5983         kfree(msr_filter);
5984 }
5985
5986 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
5987                               struct kvm_msr_filter_range *user_range)
5988 {
5989         unsigned long *bitmap = NULL;
5990         size_t bitmap_size;
5991
5992         if (!user_range->nmsrs)
5993                 return 0;
5994
5995         if (user_range->flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE))
5996                 return -EINVAL;
5997
5998         if (!user_range->flags)
5999                 return -EINVAL;
6000
6001         bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6002         if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6003                 return -EINVAL;
6004
6005         bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6006         if (IS_ERR(bitmap))
6007                 return PTR_ERR(bitmap);
6008
6009         msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6010                 .flags = user_range->flags,
6011                 .base = user_range->base,
6012                 .nmsrs = user_range->nmsrs,
6013                 .bitmap = bitmap,
6014         };
6015
6016         msr_filter->count++;
6017         return 0;
6018 }
6019
6020 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp)
6021 {
6022         struct kvm_msr_filter __user *user_msr_filter = argp;
6023         struct kvm_x86_msr_filter *new_filter, *old_filter;
6024         struct kvm_msr_filter filter;
6025         bool default_allow;
6026         bool empty = true;
6027         int r = 0;
6028         u32 i;
6029
6030         if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
6031                 return -EFAULT;
6032
6033         for (i = 0; i < ARRAY_SIZE(filter.ranges); i++)
6034                 empty &= !filter.ranges[i].nmsrs;
6035
6036         default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY);
6037         if (empty && !default_allow)
6038                 return -EINVAL;
6039
6040         new_filter = kvm_alloc_msr_filter(default_allow);
6041         if (!new_filter)
6042                 return -ENOMEM;
6043
6044         for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6045                 r = kvm_add_msr_filter(new_filter, &filter.ranges[i]);
6046                 if (r) {
6047                         kvm_free_msr_filter(new_filter);
6048                         return r;
6049                 }
6050         }
6051
6052         mutex_lock(&kvm->lock);
6053
6054         /* The per-VM filter is protected by kvm->lock... */
6055         old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1);
6056
6057         rcu_assign_pointer(kvm->arch.msr_filter, new_filter);
6058         synchronize_srcu(&kvm->srcu);
6059
6060         kvm_free_msr_filter(old_filter);
6061
6062         kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6063         mutex_unlock(&kvm->lock);
6064
6065         return 0;
6066 }
6067
6068 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
6069 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6070 {
6071         struct kvm_vcpu *vcpu;
6072         unsigned long i;
6073         int ret = 0;
6074
6075         mutex_lock(&kvm->lock);
6076         kvm_for_each_vcpu(i, vcpu, kvm) {
6077                 if (!vcpu->arch.pv_time_enabled)
6078                         continue;
6079
6080                 ret = kvm_set_guest_paused(vcpu);
6081                 if (ret) {
6082                         kvm_err("Failed to pause guest VCPU%d: %d\n",
6083                                 vcpu->vcpu_id, ret);
6084                         break;
6085                 }
6086         }
6087         mutex_unlock(&kvm->lock);
6088
6089         return ret ? NOTIFY_BAD : NOTIFY_DONE;
6090 }
6091
6092 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6093 {
6094         switch (state) {
6095         case PM_HIBERNATION_PREPARE:
6096         case PM_SUSPEND_PREPARE:
6097                 return kvm_arch_suspend_notifier(kvm);
6098         }
6099
6100         return NOTIFY_DONE;
6101 }
6102 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6103
6104 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6105 {
6106         struct kvm_clock_data data = { 0 };
6107
6108         get_kvmclock(kvm, &data);
6109         if (copy_to_user(argp, &data, sizeof(data)))
6110                 return -EFAULT;
6111
6112         return 0;
6113 }
6114
6115 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6116 {
6117         struct kvm_arch *ka = &kvm->arch;
6118         struct kvm_clock_data data;
6119         u64 now_raw_ns;
6120
6121         if (copy_from_user(&data, argp, sizeof(data)))
6122                 return -EFAULT;
6123
6124         /*
6125          * Only KVM_CLOCK_REALTIME is used, but allow passing the
6126          * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6127          */
6128         if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6129                 return -EINVAL;
6130
6131         kvm_hv_invalidate_tsc_page(kvm);
6132         kvm_start_pvclock_update(kvm);
6133         pvclock_update_vm_gtod_copy(kvm);
6134
6135         /*
6136          * This pairs with kvm_guest_time_update(): when masterclock is
6137          * in use, we use master_kernel_ns + kvmclock_offset to set
6138          * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6139          * is slightly ahead) here we risk going negative on unsigned
6140          * 'system_time' when 'data.clock' is very small.
6141          */
6142         if (data.flags & KVM_CLOCK_REALTIME) {
6143                 u64 now_real_ns = ktime_get_real_ns();
6144
6145                 /*
6146                  * Avoid stepping the kvmclock backwards.
6147                  */
6148                 if (now_real_ns > data.realtime)
6149                         data.clock += now_real_ns - data.realtime;
6150         }
6151
6152         if (ka->use_master_clock)
6153                 now_raw_ns = ka->master_kernel_ns;
6154         else
6155                 now_raw_ns = get_kvmclock_base_ns();
6156         ka->kvmclock_offset = data.clock - now_raw_ns;
6157         kvm_end_pvclock_update(kvm);
6158         return 0;
6159 }
6160
6161 long kvm_arch_vm_ioctl(struct file *filp,
6162                        unsigned int ioctl, unsigned long arg)
6163 {
6164         struct kvm *kvm = filp->private_data;
6165         void __user *argp = (void __user *)arg;
6166         int r = -ENOTTY;
6167         /*
6168          * This union makes it completely explicit to gcc-3.x
6169          * that these two variables' stack usage should be
6170          * combined, not added together.
6171          */
6172         union {
6173                 struct kvm_pit_state ps;
6174                 struct kvm_pit_state2 ps2;
6175                 struct kvm_pit_config pit_config;
6176         } u;
6177
6178         switch (ioctl) {
6179         case KVM_SET_TSS_ADDR:
6180                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
6181                 break;
6182         case KVM_SET_IDENTITY_MAP_ADDR: {
6183                 u64 ident_addr;
6184
6185                 mutex_lock(&kvm->lock);
6186                 r = -EINVAL;
6187                 if (kvm->created_vcpus)
6188                         goto set_identity_unlock;
6189                 r = -EFAULT;
6190                 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
6191                         goto set_identity_unlock;
6192                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
6193 set_identity_unlock:
6194                 mutex_unlock(&kvm->lock);
6195                 break;
6196         }
6197         case KVM_SET_NR_MMU_PAGES:
6198                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
6199                 break;
6200         case KVM_GET_NR_MMU_PAGES:
6201                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
6202                 break;
6203         case KVM_CREATE_IRQCHIP: {
6204                 mutex_lock(&kvm->lock);
6205
6206                 r = -EEXIST;
6207                 if (irqchip_in_kernel(kvm))
6208                         goto create_irqchip_unlock;
6209
6210                 r = -EINVAL;
6211                 if (kvm->created_vcpus)
6212                         goto create_irqchip_unlock;
6213
6214                 r = kvm_pic_init(kvm);
6215                 if (r)
6216                         goto create_irqchip_unlock;
6217
6218                 r = kvm_ioapic_init(kvm);
6219                 if (r) {
6220                         kvm_pic_destroy(kvm);
6221                         goto create_irqchip_unlock;
6222                 }
6223
6224                 r = kvm_setup_default_irq_routing(kvm);
6225                 if (r) {
6226                         kvm_ioapic_destroy(kvm);
6227                         kvm_pic_destroy(kvm);
6228                         goto create_irqchip_unlock;
6229                 }
6230                 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
6231                 smp_wmb();
6232                 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
6233                 kvm_request_apicv_update(kvm, true, APICV_INHIBIT_REASON_ABSENT);
6234         create_irqchip_unlock:
6235                 mutex_unlock(&kvm->lock);
6236                 break;
6237         }
6238         case KVM_CREATE_PIT:
6239                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
6240                 goto create_pit;
6241         case KVM_CREATE_PIT2:
6242                 r = -EFAULT;
6243                 if (copy_from_user(&u.pit_config, argp,
6244                                    sizeof(struct kvm_pit_config)))
6245                         goto out;
6246         create_pit:
6247                 mutex_lock(&kvm->lock);
6248                 r = -EEXIST;
6249                 if (kvm->arch.vpit)
6250                         goto create_pit_unlock;
6251                 r = -ENOMEM;
6252                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
6253                 if (kvm->arch.vpit)
6254                         r = 0;
6255         create_pit_unlock:
6256                 mutex_unlock(&kvm->lock);
6257                 break;
6258         case KVM_GET_IRQCHIP: {
6259                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6260                 struct kvm_irqchip *chip;
6261
6262                 chip = memdup_user(argp, sizeof(*chip));
6263                 if (IS_ERR(chip)) {
6264                         r = PTR_ERR(chip);
6265                         goto out;
6266                 }
6267
6268                 r = -ENXIO;
6269                 if (!irqchip_kernel(kvm))
6270                         goto get_irqchip_out;
6271                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
6272                 if (r)
6273                         goto get_irqchip_out;
6274                 r = -EFAULT;
6275                 if (copy_to_user(argp, chip, sizeof(*chip)))
6276                         goto get_irqchip_out;
6277                 r = 0;
6278         get_irqchip_out:
6279                 kfree(chip);
6280                 break;
6281         }
6282         case KVM_SET_IRQCHIP: {
6283                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6284                 struct kvm_irqchip *chip;
6285
6286                 chip = memdup_user(argp, sizeof(*chip));
6287                 if (IS_ERR(chip)) {
6288                         r = PTR_ERR(chip);
6289                         goto out;
6290                 }
6291
6292                 r = -ENXIO;
6293                 if (!irqchip_kernel(kvm))
6294                         goto set_irqchip_out;
6295                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
6296         set_irqchip_out:
6297                 kfree(chip);
6298                 break;
6299         }
6300         case KVM_GET_PIT: {
6301                 r = -EFAULT;
6302                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
6303                         goto out;
6304                 r = -ENXIO;
6305                 if (!kvm->arch.vpit)
6306                         goto out;
6307                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
6308                 if (r)
6309                         goto out;
6310                 r = -EFAULT;
6311                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
6312                         goto out;
6313                 r = 0;
6314                 break;
6315         }
6316         case KVM_SET_PIT: {
6317                 r = -EFAULT;
6318                 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
6319                         goto out;
6320                 mutex_lock(&kvm->lock);
6321                 r = -ENXIO;
6322                 if (!kvm->arch.vpit)
6323                         goto set_pit_out;
6324                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
6325 set_pit_out:
6326                 mutex_unlock(&kvm->lock);
6327                 break;
6328         }
6329         case KVM_GET_PIT2: {
6330                 r = -ENXIO;
6331                 if (!kvm->arch.vpit)
6332                         goto out;
6333                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
6334                 if (r)
6335                         goto out;
6336                 r = -EFAULT;
6337                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
6338                         goto out;
6339                 r = 0;
6340                 break;
6341         }
6342         case KVM_SET_PIT2: {
6343                 r = -EFAULT;
6344                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
6345                         goto out;
6346                 mutex_lock(&kvm->lock);
6347                 r = -ENXIO;
6348                 if (!kvm->arch.vpit)
6349                         goto set_pit2_out;
6350                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
6351 set_pit2_out:
6352                 mutex_unlock(&kvm->lock);
6353                 break;
6354         }
6355         case KVM_REINJECT_CONTROL: {
6356                 struct kvm_reinject_control control;
6357                 r =  -EFAULT;
6358                 if (copy_from_user(&control, argp, sizeof(control)))
6359                         goto out;
6360                 r = -ENXIO;
6361                 if (!kvm->arch.vpit)
6362                         goto out;
6363                 r = kvm_vm_ioctl_reinject(kvm, &control);
6364                 break;
6365         }
6366         case KVM_SET_BOOT_CPU_ID:
6367                 r = 0;
6368                 mutex_lock(&kvm->lock);
6369                 if (kvm->created_vcpus)
6370                         r = -EBUSY;
6371                 else
6372                         kvm->arch.bsp_vcpu_id = arg;
6373                 mutex_unlock(&kvm->lock);
6374                 break;
6375 #ifdef CONFIG_KVM_XEN
6376         case KVM_XEN_HVM_CONFIG: {
6377                 struct kvm_xen_hvm_config xhc;
6378                 r = -EFAULT;
6379                 if (copy_from_user(&xhc, argp, sizeof(xhc)))
6380                         goto out;
6381                 r = kvm_xen_hvm_config(kvm, &xhc);
6382                 break;
6383         }
6384         case KVM_XEN_HVM_GET_ATTR: {
6385                 struct kvm_xen_hvm_attr xha;
6386
6387                 r = -EFAULT;
6388                 if (copy_from_user(&xha, argp, sizeof(xha)))
6389                         goto out;
6390                 r = kvm_xen_hvm_get_attr(kvm, &xha);
6391                 if (!r && copy_to_user(argp, &xha, sizeof(xha)))
6392                         r = -EFAULT;
6393                 break;
6394         }
6395         case KVM_XEN_HVM_SET_ATTR: {
6396                 struct kvm_xen_hvm_attr xha;
6397
6398                 r = -EFAULT;
6399                 if (copy_from_user(&xha, argp, sizeof(xha)))
6400                         goto out;
6401                 r = kvm_xen_hvm_set_attr(kvm, &xha);
6402                 break;
6403         }
6404 #endif
6405         case KVM_SET_CLOCK:
6406                 r = kvm_vm_ioctl_set_clock(kvm, argp);
6407                 break;
6408         case KVM_GET_CLOCK:
6409                 r = kvm_vm_ioctl_get_clock(kvm, argp);
6410                 break;
6411         case KVM_MEMORY_ENCRYPT_OP: {
6412                 r = -ENOTTY;
6413                 if (kvm_x86_ops.mem_enc_op)
6414                         r = static_call(kvm_x86_mem_enc_op)(kvm, argp);
6415                 break;
6416         }
6417         case KVM_MEMORY_ENCRYPT_REG_REGION: {
6418                 struct kvm_enc_region region;
6419
6420                 r = -EFAULT;
6421                 if (copy_from_user(&region, argp, sizeof(region)))
6422                         goto out;
6423
6424                 r = -ENOTTY;
6425                 if (kvm_x86_ops.mem_enc_reg_region)
6426                         r = static_call(kvm_x86_mem_enc_reg_region)(kvm, &region);
6427                 break;
6428         }
6429         case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
6430                 struct kvm_enc_region region;
6431
6432                 r = -EFAULT;
6433                 if (copy_from_user(&region, argp, sizeof(region)))
6434                         goto out;
6435
6436                 r = -ENOTTY;
6437                 if (kvm_x86_ops.mem_enc_unreg_region)
6438                         r = static_call(kvm_x86_mem_enc_unreg_region)(kvm, &region);
6439                 break;
6440         }
6441         case KVM_HYPERV_EVENTFD: {
6442                 struct kvm_hyperv_eventfd hvevfd;
6443
6444                 r = -EFAULT;
6445                 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
6446                         goto out;
6447                 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
6448                 break;
6449         }
6450         case KVM_SET_PMU_EVENT_FILTER:
6451                 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
6452                 break;
6453         case KVM_X86_SET_MSR_FILTER:
6454                 r = kvm_vm_ioctl_set_msr_filter(kvm, argp);
6455                 break;
6456         default:
6457                 r = -ENOTTY;
6458         }
6459 out:
6460         return r;
6461 }
6462
6463 static void kvm_init_msr_list(void)
6464 {
6465         struct x86_pmu_capability x86_pmu;
6466         u32 dummy[2];
6467         unsigned i;
6468
6469         BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
6470                          "Please update the fixed PMCs in msrs_to_saved_all[]");
6471
6472         perf_get_x86_pmu_capability(&x86_pmu);
6473
6474         num_msrs_to_save = 0;
6475         num_emulated_msrs = 0;
6476         num_msr_based_features = 0;
6477
6478         for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
6479                 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
6480                         continue;
6481
6482                 /*
6483                  * Even MSRs that are valid in the host may not be exposed
6484                  * to the guests in some cases.
6485                  */
6486                 switch (msrs_to_save_all[i]) {
6487                 case MSR_IA32_BNDCFGS:
6488                         if (!kvm_mpx_supported())
6489                                 continue;
6490                         break;
6491                 case MSR_TSC_AUX:
6492                         if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
6493                             !kvm_cpu_cap_has(X86_FEATURE_RDPID))
6494                                 continue;
6495                         break;
6496                 case MSR_IA32_UMWAIT_CONTROL:
6497                         if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
6498                                 continue;
6499                         break;
6500                 case MSR_IA32_RTIT_CTL:
6501                 case MSR_IA32_RTIT_STATUS:
6502                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
6503                                 continue;
6504                         break;
6505                 case MSR_IA32_RTIT_CR3_MATCH:
6506                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6507                             !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
6508                                 continue;
6509                         break;
6510                 case MSR_IA32_RTIT_OUTPUT_BASE:
6511                 case MSR_IA32_RTIT_OUTPUT_MASK:
6512                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6513                                 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
6514                                  !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
6515                                 continue;
6516                         break;
6517                 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
6518                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6519                                 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
6520                                 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
6521                                 continue;
6522                         break;
6523                 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
6524                         if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
6525                             min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6526                                 continue;
6527                         break;
6528                 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
6529                         if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
6530                             min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6531                                 continue;
6532                         break;
6533                 case MSR_IA32_XFD:
6534                 case MSR_IA32_XFD_ERR:
6535                         if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
6536                                 continue;
6537                         break;
6538                 default:
6539                         break;
6540                 }
6541
6542                 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
6543         }
6544
6545         for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
6546                 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
6547                         continue;
6548
6549                 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
6550         }
6551
6552         for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
6553                 struct kvm_msr_entry msr;
6554
6555                 msr.index = msr_based_features_all[i];
6556                 if (kvm_get_msr_feature(&msr))
6557                         continue;
6558
6559                 msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
6560         }
6561 }
6562
6563 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
6564                            const void *v)
6565 {
6566         int handled = 0;
6567         int n;
6568
6569         do {
6570                 n = min(len, 8);
6571                 if (!(lapic_in_kernel(vcpu) &&
6572                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
6573                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
6574                         break;
6575                 handled += n;
6576                 addr += n;
6577                 len -= n;
6578                 v += n;
6579         } while (len);
6580
6581         return handled;
6582 }
6583
6584 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
6585 {
6586         int handled = 0;
6587         int n;
6588
6589         do {
6590                 n = min(len, 8);
6591                 if (!(lapic_in_kernel(vcpu) &&
6592                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
6593                                          addr, n, v))
6594                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
6595                         break;
6596                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
6597                 handled += n;
6598                 addr += n;
6599                 len -= n;
6600                 v += n;
6601         } while (len);
6602
6603         return handled;
6604 }
6605
6606 static void kvm_set_segment(struct kvm_vcpu *vcpu,
6607                         struct kvm_segment *var, int seg)
6608 {
6609         static_call(kvm_x86_set_segment)(vcpu, var, seg);
6610 }
6611
6612 void kvm_get_segment(struct kvm_vcpu *vcpu,
6613                      struct kvm_segment *var, int seg)
6614 {
6615         static_call(kvm_x86_get_segment)(vcpu, var, seg);
6616 }
6617
6618 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
6619                            struct x86_exception *exception)
6620 {
6621         struct kvm_mmu *mmu = vcpu->arch.mmu;
6622         gpa_t t_gpa;
6623
6624         BUG_ON(!mmu_is_nested(vcpu));
6625
6626         /* NPT walks are always user-walks */
6627         access |= PFERR_USER_MASK;
6628         t_gpa  = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
6629
6630         return t_gpa;
6631 }
6632
6633 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
6634                               struct x86_exception *exception)
6635 {
6636         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6637
6638         u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6639         return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
6640 }
6641 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
6642
6643  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
6644                                 struct x86_exception *exception)
6645 {
6646         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6647
6648         u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6649         access |= PFERR_FETCH_MASK;
6650         return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
6651 }
6652
6653 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
6654                                struct x86_exception *exception)
6655 {
6656         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6657
6658         u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6659         access |= PFERR_WRITE_MASK;
6660         return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
6661 }
6662 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
6663
6664 /* uses this to access any guest's mapped memory without checking CPL */
6665 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
6666                                 struct x86_exception *exception)
6667 {
6668         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6669
6670         return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
6671 }
6672
6673 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6674                                       struct kvm_vcpu *vcpu, u32 access,
6675                                       struct x86_exception *exception)
6676 {
6677         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6678         void *data = val;
6679         int r = X86EMUL_CONTINUE;
6680
6681         while (bytes) {
6682                 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
6683                 unsigned offset = addr & (PAGE_SIZE-1);
6684                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
6685                 int ret;
6686
6687                 if (gpa == UNMAPPED_GVA)
6688                         return X86EMUL_PROPAGATE_FAULT;
6689                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
6690                                                offset, toread);
6691                 if (ret < 0) {
6692                         r = X86EMUL_IO_NEEDED;
6693                         goto out;
6694                 }
6695
6696                 bytes -= toread;
6697                 data += toread;
6698                 addr += toread;
6699         }
6700 out:
6701         return r;
6702 }
6703
6704 /* used for instruction fetching */
6705 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
6706                                 gva_t addr, void *val, unsigned int bytes,
6707                                 struct x86_exception *exception)
6708 {
6709         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6710         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6711         u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6712         unsigned offset;
6713         int ret;
6714
6715         /* Inline kvm_read_guest_virt_helper for speed.  */
6716         gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
6717                                     exception);
6718         if (unlikely(gpa == UNMAPPED_GVA))
6719                 return X86EMUL_PROPAGATE_FAULT;
6720
6721         offset = addr & (PAGE_SIZE-1);
6722         if (WARN_ON(offset + bytes > PAGE_SIZE))
6723                 bytes = (unsigned)PAGE_SIZE - offset;
6724         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
6725                                        offset, bytes);
6726         if (unlikely(ret < 0))
6727                 return X86EMUL_IO_NEEDED;
6728
6729         return X86EMUL_CONTINUE;
6730 }
6731
6732 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
6733                                gva_t addr, void *val, unsigned int bytes,
6734                                struct x86_exception *exception)
6735 {
6736         u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6737
6738         /*
6739          * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
6740          * is returned, but our callers are not ready for that and they blindly
6741          * call kvm_inject_page_fault.  Ensure that they at least do not leak
6742          * uninitialized kernel stack memory into cr2 and error code.
6743          */
6744         memset(exception, 0, sizeof(*exception));
6745         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
6746                                           exception);
6747 }
6748 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
6749
6750 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
6751                              gva_t addr, void *val, unsigned int bytes,
6752                              struct x86_exception *exception, bool system)
6753 {
6754         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6755         u32 access = 0;
6756
6757         if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6758                 access |= PFERR_USER_MASK;
6759
6760         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
6761 }
6762
6763 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
6764                 unsigned long addr, void *val, unsigned int bytes)
6765 {
6766         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6767         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
6768
6769         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
6770 }
6771
6772 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6773                                       struct kvm_vcpu *vcpu, u32 access,
6774                                       struct x86_exception *exception)
6775 {
6776         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6777         void *data = val;
6778         int r = X86EMUL_CONTINUE;
6779
6780         while (bytes) {
6781                 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
6782                 unsigned offset = addr & (PAGE_SIZE-1);
6783                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
6784                 int ret;
6785
6786                 if (gpa == UNMAPPED_GVA)
6787                         return X86EMUL_PROPAGATE_FAULT;
6788                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
6789                 if (ret < 0) {
6790                         r = X86EMUL_IO_NEEDED;
6791                         goto out;
6792                 }
6793
6794                 bytes -= towrite;
6795                 data += towrite;
6796                 addr += towrite;
6797         }
6798 out:
6799         return r;
6800 }
6801
6802 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
6803                               unsigned int bytes, struct x86_exception *exception,
6804                               bool system)
6805 {
6806         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6807         u32 access = PFERR_WRITE_MASK;
6808
6809         if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6810                 access |= PFERR_USER_MASK;
6811
6812         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6813                                            access, exception);
6814 }
6815
6816 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
6817                                 unsigned int bytes, struct x86_exception *exception)
6818 {
6819         /* kvm_write_guest_virt_system can pull in tons of pages. */
6820         vcpu->arch.l1tf_flush_l1d = true;
6821
6822         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6823                                            PFERR_WRITE_MASK, exception);
6824 }
6825 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
6826
6827 int handle_ud(struct kvm_vcpu *vcpu)
6828 {
6829         static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
6830         int emul_type = EMULTYPE_TRAP_UD;
6831         char sig[5]; /* ud2; .ascii "kvm" */
6832         struct x86_exception e;
6833
6834         if (unlikely(!static_call(kvm_x86_can_emulate_instruction)(vcpu, NULL, 0)))
6835                 return 1;
6836
6837         if (force_emulation_prefix &&
6838             kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
6839                                 sig, sizeof(sig), &e) == 0 &&
6840             memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
6841                 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
6842                 emul_type = EMULTYPE_TRAP_UD_FORCED;
6843         }
6844
6845         return kvm_emulate_instruction(vcpu, emul_type);
6846 }
6847 EXPORT_SYMBOL_GPL(handle_ud);
6848
6849 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6850                             gpa_t gpa, bool write)
6851 {
6852         /* For APIC access vmexit */
6853         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6854                 return 1;
6855
6856         if (vcpu_match_mmio_gpa(vcpu, gpa)) {
6857                 trace_vcpu_match_mmio(gva, gpa, write, true);
6858                 return 1;
6859         }
6860
6861         return 0;
6862 }
6863
6864 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6865                                 gpa_t *gpa, struct x86_exception *exception,
6866                                 bool write)
6867 {
6868         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6869         u32 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
6870                 | (write ? PFERR_WRITE_MASK : 0);
6871
6872         /*
6873          * currently PKRU is only applied to ept enabled guest so
6874          * there is no pkey in EPT page table for L1 guest or EPT
6875          * shadow page table for L2 guest.
6876          */
6877         if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
6878             !permission_fault(vcpu, vcpu->arch.walk_mmu,
6879                               vcpu->arch.mmio_access, 0, access))) {
6880                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
6881                                         (gva & (PAGE_SIZE - 1));
6882                 trace_vcpu_match_mmio(gva, *gpa, write, false);
6883                 return 1;
6884         }
6885
6886         *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
6887
6888         if (*gpa == UNMAPPED_GVA)
6889                 return -1;
6890
6891         return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
6892 }
6893
6894 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
6895                         const void *val, int bytes)
6896 {
6897         int ret;
6898
6899         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
6900         if (ret < 0)
6901                 return 0;
6902         kvm_page_track_write(vcpu, gpa, val, bytes);
6903         return 1;
6904 }
6905
6906 struct read_write_emulator_ops {
6907         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
6908                                   int bytes);
6909         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
6910                                   void *val, int bytes);
6911         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6912                                int bytes, void *val);
6913         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6914                                     void *val, int bytes);
6915         bool write;
6916 };
6917
6918 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
6919 {
6920         if (vcpu->mmio_read_completed) {
6921                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
6922                                vcpu->mmio_fragments[0].gpa, val);
6923                 vcpu->mmio_read_completed = 0;
6924                 return 1;
6925         }
6926
6927         return 0;
6928 }
6929
6930 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6931                         void *val, int bytes)
6932 {
6933         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
6934 }
6935
6936 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6937                          void *val, int bytes)
6938 {
6939         return emulator_write_phys(vcpu, gpa, val, bytes);
6940 }
6941
6942 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
6943 {
6944         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
6945         return vcpu_mmio_write(vcpu, gpa, bytes, val);
6946 }
6947
6948 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6949                           void *val, int bytes)
6950 {
6951         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
6952         return X86EMUL_IO_NEEDED;
6953 }
6954
6955 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6956                            void *val, int bytes)
6957 {
6958         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
6959
6960         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
6961         return X86EMUL_CONTINUE;
6962 }
6963
6964 static const struct read_write_emulator_ops read_emultor = {
6965         .read_write_prepare = read_prepare,
6966         .read_write_emulate = read_emulate,
6967         .read_write_mmio = vcpu_mmio_read,
6968         .read_write_exit_mmio = read_exit_mmio,
6969 };
6970
6971 static const struct read_write_emulator_ops write_emultor = {
6972         .read_write_emulate = write_emulate,
6973         .read_write_mmio = write_mmio,
6974         .read_write_exit_mmio = write_exit_mmio,
6975         .write = true,
6976 };
6977
6978 static int emulator_read_write_onepage(unsigned long addr, void *val,
6979                                        unsigned int bytes,
6980                                        struct x86_exception *exception,
6981                                        struct kvm_vcpu *vcpu,
6982                                        const struct read_write_emulator_ops *ops)
6983 {
6984         gpa_t gpa;
6985         int handled, ret;
6986         bool write = ops->write;
6987         struct kvm_mmio_fragment *frag;
6988         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6989
6990         /*
6991          * If the exit was due to a NPF we may already have a GPA.
6992          * If the GPA is present, use it to avoid the GVA to GPA table walk.
6993          * Note, this cannot be used on string operations since string
6994          * operation using rep will only have the initial GPA from the NPF
6995          * occurred.
6996          */
6997         if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
6998             (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
6999                 gpa = ctxt->gpa_val;
7000                 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7001         } else {
7002                 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7003                 if (ret < 0)
7004                         return X86EMUL_PROPAGATE_FAULT;
7005         }
7006
7007         if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7008                 return X86EMUL_CONTINUE;
7009
7010         /*
7011          * Is this MMIO handled locally?
7012          */
7013         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7014         if (handled == bytes)
7015                 return X86EMUL_CONTINUE;
7016
7017         gpa += handled;
7018         bytes -= handled;
7019         val += handled;
7020
7021         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7022         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7023         frag->gpa = gpa;
7024         frag->data = val;
7025         frag->len = bytes;
7026         return X86EMUL_CONTINUE;
7027 }
7028
7029 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7030                         unsigned long addr,
7031                         void *val, unsigned int bytes,
7032                         struct x86_exception *exception,
7033                         const struct read_write_emulator_ops *ops)
7034 {
7035         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7036         gpa_t gpa;
7037         int rc;
7038
7039         if (ops->read_write_prepare &&
7040                   ops->read_write_prepare(vcpu, val, bytes))
7041                 return X86EMUL_CONTINUE;
7042
7043         vcpu->mmio_nr_fragments = 0;
7044
7045         /* Crossing a page boundary? */
7046         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7047                 int now;
7048
7049                 now = -addr & ~PAGE_MASK;
7050                 rc = emulator_read_write_onepage(addr, val, now, exception,
7051                                                  vcpu, ops);
7052
7053                 if (rc != X86EMUL_CONTINUE)
7054                         return rc;
7055                 addr += now;
7056                 if (ctxt->mode != X86EMUL_MODE_PROT64)
7057                         addr = (u32)addr;
7058                 val += now;
7059                 bytes -= now;
7060         }
7061
7062         rc = emulator_read_write_onepage(addr, val, bytes, exception,
7063                                          vcpu, ops);
7064         if (rc != X86EMUL_CONTINUE)
7065                 return rc;
7066
7067         if (!vcpu->mmio_nr_fragments)
7068                 return rc;
7069
7070         gpa = vcpu->mmio_fragments[0].gpa;
7071
7072         vcpu->mmio_needed = 1;
7073         vcpu->mmio_cur_fragment = 0;
7074
7075         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
7076         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
7077         vcpu->run->exit_reason = KVM_EXIT_MMIO;
7078         vcpu->run->mmio.phys_addr = gpa;
7079
7080         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
7081 }
7082
7083 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
7084                                   unsigned long addr,
7085                                   void *val,
7086                                   unsigned int bytes,
7087                                   struct x86_exception *exception)
7088 {
7089         return emulator_read_write(ctxt, addr, val, bytes,
7090                                    exception, &read_emultor);
7091 }
7092
7093 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
7094                             unsigned long addr,
7095                             const void *val,
7096                             unsigned int bytes,
7097                             struct x86_exception *exception)
7098 {
7099         return emulator_read_write(ctxt, addr, (void *)val, bytes,
7100                                    exception, &write_emultor);
7101 }
7102
7103 #define CMPXCHG_TYPE(t, ptr, old, new) \
7104         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
7105
7106 #ifdef CONFIG_X86_64
7107 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
7108 #else
7109 #  define CMPXCHG64(ptr, old, new) \
7110         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
7111 #endif
7112
7113 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
7114                                      unsigned long addr,
7115                                      const void *old,
7116                                      const void *new,
7117                                      unsigned int bytes,
7118                                      struct x86_exception *exception)
7119 {
7120         struct kvm_host_map map;
7121         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7122         u64 page_line_mask;
7123         gpa_t gpa;
7124         char *kaddr;
7125         bool exchanged;
7126
7127         /* guests cmpxchg8b have to be emulated atomically */
7128         if (bytes > 8 || (bytes & (bytes - 1)))
7129                 goto emul_write;
7130
7131         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
7132
7133         if (gpa == UNMAPPED_GVA ||
7134             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7135                 goto emul_write;
7136
7137         /*
7138          * Emulate the atomic as a straight write to avoid #AC if SLD is
7139          * enabled in the host and the access splits a cache line.
7140          */
7141         if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
7142                 page_line_mask = ~(cache_line_size() - 1);
7143         else
7144                 page_line_mask = PAGE_MASK;
7145
7146         if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
7147                 goto emul_write;
7148
7149         if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
7150                 goto emul_write;
7151
7152         kaddr = map.hva + offset_in_page(gpa);
7153
7154         switch (bytes) {
7155         case 1:
7156                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
7157                 break;
7158         case 2:
7159                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
7160                 break;
7161         case 4:
7162                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
7163                 break;
7164         case 8:
7165                 exchanged = CMPXCHG64(kaddr, old, new);
7166                 break;
7167         default:
7168                 BUG();
7169         }
7170
7171         kvm_vcpu_unmap(vcpu, &map, true);
7172
7173         if (!exchanged)
7174                 return X86EMUL_CMPXCHG_FAILED;
7175
7176         kvm_page_track_write(vcpu, gpa, new, bytes);
7177
7178         return X86EMUL_CONTINUE;
7179
7180 emul_write:
7181         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
7182
7183         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
7184 }
7185
7186 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
7187 {
7188         int r = 0, i;
7189
7190         for (i = 0; i < vcpu->arch.pio.count; i++) {
7191                 if (vcpu->arch.pio.in)
7192                         r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
7193                                             vcpu->arch.pio.size, pd);
7194                 else
7195                         r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
7196                                              vcpu->arch.pio.port, vcpu->arch.pio.size,
7197                                              pd);
7198                 if (r)
7199                         break;
7200                 pd += vcpu->arch.pio.size;
7201         }
7202         return r;
7203 }
7204
7205 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
7206                                unsigned short port,
7207                                unsigned int count, bool in)
7208 {
7209         vcpu->arch.pio.port = port;
7210         vcpu->arch.pio.in = in;
7211         vcpu->arch.pio.count  = count;
7212         vcpu->arch.pio.size = size;
7213
7214         if (!kernel_pio(vcpu, vcpu->arch.pio_data))
7215                 return 1;
7216
7217         vcpu->run->exit_reason = KVM_EXIT_IO;
7218         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
7219         vcpu->run->io.size = size;
7220         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
7221         vcpu->run->io.count = count;
7222         vcpu->run->io.port = port;
7223
7224         return 0;
7225 }
7226
7227 static int __emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7228                              unsigned short port, unsigned int count)
7229 {
7230         WARN_ON(vcpu->arch.pio.count);
7231         memset(vcpu->arch.pio_data, 0, size * count);
7232         return emulator_pio_in_out(vcpu, size, port, count, true);
7233 }
7234
7235 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
7236 {
7237         int size = vcpu->arch.pio.size;
7238         unsigned count = vcpu->arch.pio.count;
7239         memcpy(val, vcpu->arch.pio_data, size * count);
7240         trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
7241         vcpu->arch.pio.count = 0;
7242 }
7243
7244 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7245                            unsigned short port, void *val, unsigned int count)
7246 {
7247         if (vcpu->arch.pio.count) {
7248                 /*
7249                  * Complete a previous iteration that required userspace I/O.
7250                  * Note, @count isn't guaranteed to match pio.count as userspace
7251                  * can modify ECX before rerunning the vCPU.  Ignore any such
7252                  * shenanigans as KVM doesn't support modifying the rep count,
7253                  * and the emulator ensures @count doesn't overflow the buffer.
7254                  */
7255         } else {
7256                 int r = __emulator_pio_in(vcpu, size, port, count);
7257                 if (!r)
7258                         return r;
7259
7260                 /* Results already available, fall through.  */
7261         }
7262
7263         complete_emulator_pio_in(vcpu, val);
7264         return 1;
7265 }
7266
7267 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
7268                                     int size, unsigned short port, void *val,
7269                                     unsigned int count)
7270 {
7271         return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
7272
7273 }
7274
7275 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
7276                             unsigned short port, const void *val,
7277                             unsigned int count)
7278 {
7279         int ret;
7280
7281         memcpy(vcpu->arch.pio_data, val, size * count);
7282         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
7283         ret = emulator_pio_in_out(vcpu, size, port, count, false);
7284         if (ret)
7285                 vcpu->arch.pio.count = 0;
7286
7287         return ret;
7288 }
7289
7290 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
7291                                      int size, unsigned short port,
7292                                      const void *val, unsigned int count)
7293 {
7294         return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
7295 }
7296
7297 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
7298 {
7299         return static_call(kvm_x86_get_segment_base)(vcpu, seg);
7300 }
7301
7302 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
7303 {
7304         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
7305 }
7306
7307 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
7308 {
7309         if (!need_emulate_wbinvd(vcpu))
7310                 return X86EMUL_CONTINUE;
7311
7312         if (static_call(kvm_x86_has_wbinvd_exit)()) {
7313                 int cpu = get_cpu();
7314
7315                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
7316                 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
7317                                 wbinvd_ipi, NULL, 1);
7318                 put_cpu();
7319                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
7320         } else
7321                 wbinvd();
7322         return X86EMUL_CONTINUE;
7323 }
7324
7325 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
7326 {
7327         kvm_emulate_wbinvd_noskip(vcpu);
7328         return kvm_skip_emulated_instruction(vcpu);
7329 }
7330 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
7331
7332
7333
7334 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
7335 {
7336         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
7337 }
7338
7339 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
7340                             unsigned long *dest)
7341 {
7342         kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
7343 }
7344
7345 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
7346                            unsigned long value)
7347 {
7348
7349         return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
7350 }
7351
7352 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
7353 {
7354         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
7355 }
7356
7357 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
7358 {
7359         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7360         unsigned long value;
7361
7362         switch (cr) {
7363         case 0:
7364                 value = kvm_read_cr0(vcpu);
7365                 break;
7366         case 2:
7367                 value = vcpu->arch.cr2;
7368                 break;
7369         case 3:
7370                 value = kvm_read_cr3(vcpu);
7371                 break;
7372         case 4:
7373                 value = kvm_read_cr4(vcpu);
7374                 break;
7375         case 8:
7376                 value = kvm_get_cr8(vcpu);
7377                 break;
7378         default:
7379                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
7380                 return 0;
7381         }
7382
7383         return value;
7384 }
7385
7386 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
7387 {
7388         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7389         int res = 0;
7390
7391         switch (cr) {
7392         case 0:
7393                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
7394                 break;
7395         case 2:
7396                 vcpu->arch.cr2 = val;
7397                 break;
7398         case 3:
7399                 res = kvm_set_cr3(vcpu, val);
7400                 break;
7401         case 4:
7402                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
7403                 break;
7404         case 8:
7405                 res = kvm_set_cr8(vcpu, val);
7406                 break;
7407         default:
7408                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
7409                 res = -1;
7410         }
7411
7412         return res;
7413 }
7414
7415 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
7416 {
7417         return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
7418 }
7419
7420 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7421 {
7422         static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
7423 }
7424
7425 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7426 {
7427         static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
7428 }
7429
7430 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7431 {
7432         static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
7433 }
7434
7435 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7436 {
7437         static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
7438 }
7439
7440 static unsigned long emulator_get_cached_segment_base(
7441         struct x86_emulate_ctxt *ctxt, int seg)
7442 {
7443         return get_segment_base(emul_to_vcpu(ctxt), seg);
7444 }
7445
7446 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
7447                                  struct desc_struct *desc, u32 *base3,
7448                                  int seg)
7449 {
7450         struct kvm_segment var;
7451
7452         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
7453         *selector = var.selector;
7454
7455         if (var.unusable) {
7456                 memset(desc, 0, sizeof(*desc));
7457                 if (base3)
7458                         *base3 = 0;
7459                 return false;
7460         }
7461
7462         if (var.g)
7463                 var.limit >>= 12;
7464         set_desc_limit(desc, var.limit);
7465         set_desc_base(desc, (unsigned long)var.base);
7466 #ifdef CONFIG_X86_64
7467         if (base3)
7468                 *base3 = var.base >> 32;
7469 #endif
7470         desc->type = var.type;
7471         desc->s = var.s;
7472         desc->dpl = var.dpl;
7473         desc->p = var.present;
7474         desc->avl = var.avl;
7475         desc->l = var.l;
7476         desc->d = var.db;
7477         desc->g = var.g;
7478
7479         return true;
7480 }
7481
7482 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
7483                                  struct desc_struct *desc, u32 base3,
7484                                  int seg)
7485 {
7486         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7487         struct kvm_segment var;
7488
7489         var.selector = selector;
7490         var.base = get_desc_base(desc);
7491 #ifdef CONFIG_X86_64
7492         var.base |= ((u64)base3) << 32;
7493 #endif
7494         var.limit = get_desc_limit(desc);
7495         if (desc->g)
7496                 var.limit = (var.limit << 12) | 0xfff;
7497         var.type = desc->type;
7498         var.dpl = desc->dpl;
7499         var.db = desc->d;
7500         var.s = desc->s;
7501         var.l = desc->l;
7502         var.g = desc->g;
7503         var.avl = desc->avl;
7504         var.present = desc->p;
7505         var.unusable = !var.present;
7506         var.padding = 0;
7507
7508         kvm_set_segment(vcpu, &var, seg);
7509         return;
7510 }
7511
7512 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
7513                             u32 msr_index, u64 *pdata)
7514 {
7515         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7516         int r;
7517
7518         r = kvm_get_msr(vcpu, msr_index, pdata);
7519
7520         if (r && kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
7521                                     complete_emulated_rdmsr, r)) {
7522                 /* Bounce to user space */
7523                 return X86EMUL_IO_NEEDED;
7524         }
7525
7526         return r;
7527 }
7528
7529 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
7530                             u32 msr_index, u64 data)
7531 {
7532         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7533         int r;
7534
7535         r = kvm_set_msr(vcpu, msr_index, data);
7536
7537         if (r && kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
7538                                     complete_emulated_msr_access, r)) {
7539                 /* Bounce to user space */
7540                 return X86EMUL_IO_NEEDED;
7541         }
7542
7543         return r;
7544 }
7545
7546 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
7547 {
7548         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7549
7550         return vcpu->arch.smbase;
7551 }
7552
7553 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
7554 {
7555         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7556
7557         vcpu->arch.smbase = smbase;
7558 }
7559
7560 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
7561                               u32 pmc)
7562 {
7563         if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc))
7564                 return 0;
7565         return -EINVAL;
7566 }
7567
7568 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
7569                              u32 pmc, u64 *pdata)
7570 {
7571         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
7572 }
7573
7574 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
7575 {
7576         emul_to_vcpu(ctxt)->arch.halt_request = 1;
7577 }
7578
7579 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
7580                               struct x86_instruction_info *info,
7581                               enum x86_intercept_stage stage)
7582 {
7583         return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
7584                                             &ctxt->exception);
7585 }
7586
7587 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
7588                               u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
7589                               bool exact_only)
7590 {
7591         return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
7592 }
7593
7594 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
7595 {
7596         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
7597 }
7598
7599 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
7600 {
7601         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
7602 }
7603
7604 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
7605 {
7606         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
7607 }
7608
7609 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
7610 {
7611         return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
7612 }
7613
7614 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
7615 {
7616         kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
7617 }
7618
7619 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
7620 {
7621         static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
7622 }
7623
7624 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
7625 {
7626         return emul_to_vcpu(ctxt)->arch.hflags;
7627 }
7628
7629 static void emulator_exiting_smm(struct x86_emulate_ctxt *ctxt)
7630 {
7631         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7632
7633         kvm_smm_changed(vcpu, false);
7634 }
7635
7636 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt,
7637                                   const char *smstate)
7638 {
7639         return static_call(kvm_x86_leave_smm)(emul_to_vcpu(ctxt), smstate);
7640 }
7641
7642 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
7643 {
7644         kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
7645 }
7646
7647 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
7648 {
7649         return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
7650 }
7651
7652 static const struct x86_emulate_ops emulate_ops = {
7653         .read_gpr            = emulator_read_gpr,
7654         .write_gpr           = emulator_write_gpr,
7655         .read_std            = emulator_read_std,
7656         .write_std           = emulator_write_std,
7657         .read_phys           = kvm_read_guest_phys_system,
7658         .fetch               = kvm_fetch_guest_virt,
7659         .read_emulated       = emulator_read_emulated,
7660         .write_emulated      = emulator_write_emulated,
7661         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
7662         .invlpg              = emulator_invlpg,
7663         .pio_in_emulated     = emulator_pio_in_emulated,
7664         .pio_out_emulated    = emulator_pio_out_emulated,
7665         .get_segment         = emulator_get_segment,
7666         .set_segment         = emulator_set_segment,
7667         .get_cached_segment_base = emulator_get_cached_segment_base,
7668         .get_gdt             = emulator_get_gdt,
7669         .get_idt             = emulator_get_idt,
7670         .set_gdt             = emulator_set_gdt,
7671         .set_idt             = emulator_set_idt,
7672         .get_cr              = emulator_get_cr,
7673         .set_cr              = emulator_set_cr,
7674         .cpl                 = emulator_get_cpl,
7675         .get_dr              = emulator_get_dr,
7676         .set_dr              = emulator_set_dr,
7677         .get_smbase          = emulator_get_smbase,
7678         .set_smbase          = emulator_set_smbase,
7679         .set_msr             = emulator_set_msr,
7680         .get_msr             = emulator_get_msr,
7681         .check_pmc           = emulator_check_pmc,
7682         .read_pmc            = emulator_read_pmc,
7683         .halt                = emulator_halt,
7684         .wbinvd              = emulator_wbinvd,
7685         .fix_hypercall       = emulator_fix_hypercall,
7686         .intercept           = emulator_intercept,
7687         .get_cpuid           = emulator_get_cpuid,
7688         .guest_has_long_mode = emulator_guest_has_long_mode,
7689         .guest_has_movbe     = emulator_guest_has_movbe,
7690         .guest_has_fxsr      = emulator_guest_has_fxsr,
7691         .set_nmi_mask        = emulator_set_nmi_mask,
7692         .get_hflags          = emulator_get_hflags,
7693         .exiting_smm         = emulator_exiting_smm,
7694         .leave_smm           = emulator_leave_smm,
7695         .triple_fault        = emulator_triple_fault,
7696         .set_xcr             = emulator_set_xcr,
7697 };
7698
7699 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
7700 {
7701         u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
7702         /*
7703          * an sti; sti; sequence only disable interrupts for the first
7704          * instruction. So, if the last instruction, be it emulated or
7705          * not, left the system with the INT_STI flag enabled, it
7706          * means that the last instruction is an sti. We should not
7707          * leave the flag on in this case. The same goes for mov ss
7708          */
7709         if (int_shadow & mask)
7710                 mask = 0;
7711         if (unlikely(int_shadow || mask)) {
7712                 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
7713                 if (!mask)
7714                         kvm_make_request(KVM_REQ_EVENT, vcpu);
7715         }
7716 }
7717
7718 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
7719 {
7720         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7721         if (ctxt->exception.vector == PF_VECTOR)
7722                 return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
7723
7724         if (ctxt->exception.error_code_valid)
7725                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
7726                                       ctxt->exception.error_code);
7727         else
7728                 kvm_queue_exception(vcpu, ctxt->exception.vector);
7729         return false;
7730 }
7731
7732 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
7733 {
7734         struct x86_emulate_ctxt *ctxt;
7735
7736         ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
7737         if (!ctxt) {
7738                 pr_err("kvm: failed to allocate vcpu's emulator\n");
7739                 return NULL;
7740         }
7741
7742         ctxt->vcpu = vcpu;
7743         ctxt->ops = &emulate_ops;
7744         vcpu->arch.emulate_ctxt = ctxt;
7745
7746         return ctxt;
7747 }
7748
7749 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
7750 {
7751         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7752         int cs_db, cs_l;
7753
7754         static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
7755
7756         ctxt->gpa_available = false;
7757         ctxt->eflags = kvm_get_rflags(vcpu);
7758         ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
7759
7760         ctxt->eip = kvm_rip_read(vcpu);
7761         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
7762                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
7763                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
7764                      cs_db                              ? X86EMUL_MODE_PROT32 :
7765                                                           X86EMUL_MODE_PROT16;
7766         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
7767         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
7768         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
7769
7770         ctxt->interruptibility = 0;
7771         ctxt->have_exception = false;
7772         ctxt->exception.vector = -1;
7773         ctxt->perm_ok = false;
7774
7775         init_decode_cache(ctxt);
7776         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7777 }
7778
7779 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
7780 {
7781         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7782         int ret;
7783
7784         init_emulate_ctxt(vcpu);
7785
7786         ctxt->op_bytes = 2;
7787         ctxt->ad_bytes = 2;
7788         ctxt->_eip = ctxt->eip + inc_eip;
7789         ret = emulate_int_real(ctxt, irq);
7790
7791         if (ret != X86EMUL_CONTINUE) {
7792                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7793         } else {
7794                 ctxt->eip = ctxt->_eip;
7795                 kvm_rip_write(vcpu, ctxt->eip);
7796                 kvm_set_rflags(vcpu, ctxt->eflags);
7797         }
7798 }
7799 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
7800
7801 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
7802                                            u8 ndata, u8 *insn_bytes, u8 insn_size)
7803 {
7804         struct kvm_run *run = vcpu->run;
7805         u64 info[5];
7806         u8 info_start;
7807
7808         /*
7809          * Zero the whole array used to retrieve the exit info, as casting to
7810          * u32 for select entries will leave some chunks uninitialized.
7811          */
7812         memset(&info, 0, sizeof(info));
7813
7814         static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1],
7815                                            &info[2], (u32 *)&info[3],
7816                                            (u32 *)&info[4]);
7817
7818         run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7819         run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
7820
7821         /*
7822          * There's currently space for 13 entries, but 5 are used for the exit
7823          * reason and info.  Restrict to 4 to reduce the maintenance burden
7824          * when expanding kvm_run.emulation_failure in the future.
7825          */
7826         if (WARN_ON_ONCE(ndata > 4))
7827                 ndata = 4;
7828
7829         /* Always include the flags as a 'data' entry. */
7830         info_start = 1;
7831         run->emulation_failure.flags = 0;
7832
7833         if (insn_size) {
7834                 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
7835                               sizeof(run->emulation_failure.insn_bytes) != 16));
7836                 info_start += 2;
7837                 run->emulation_failure.flags |=
7838                         KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
7839                 run->emulation_failure.insn_size = insn_size;
7840                 memset(run->emulation_failure.insn_bytes, 0x90,
7841                        sizeof(run->emulation_failure.insn_bytes));
7842                 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
7843         }
7844
7845         memcpy(&run->internal.data[info_start], info, sizeof(info));
7846         memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
7847                ndata * sizeof(data[0]));
7848
7849         run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
7850 }
7851
7852 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
7853 {
7854         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7855
7856         prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
7857                                        ctxt->fetch.end - ctxt->fetch.data);
7858 }
7859
7860 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
7861                                           u8 ndata)
7862 {
7863         prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
7864 }
7865 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
7866
7867 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
7868 {
7869         __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
7870 }
7871 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
7872
7873 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
7874 {
7875         struct kvm *kvm = vcpu->kvm;
7876
7877         ++vcpu->stat.insn_emulation_fail;
7878         trace_kvm_emulate_insn_failed(vcpu);
7879
7880         if (emulation_type & EMULTYPE_VMWARE_GP) {
7881                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7882                 return 1;
7883         }
7884
7885         if (kvm->arch.exit_on_emulation_error ||
7886             (emulation_type & EMULTYPE_SKIP)) {
7887                 prepare_emulation_ctxt_failure_exit(vcpu);
7888                 return 0;
7889         }
7890
7891         kvm_queue_exception(vcpu, UD_VECTOR);
7892
7893         if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
7894                 prepare_emulation_ctxt_failure_exit(vcpu);
7895                 return 0;
7896         }
7897
7898         return 1;
7899 }
7900
7901 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7902                                   bool write_fault_to_shadow_pgtable,
7903                                   int emulation_type)
7904 {
7905         gpa_t gpa = cr2_or_gpa;
7906         kvm_pfn_t pfn;
7907
7908         if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7909                 return false;
7910
7911         if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7912             WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7913                 return false;
7914
7915         if (!vcpu->arch.mmu->direct_map) {
7916                 /*
7917                  * Write permission should be allowed since only
7918                  * write access need to be emulated.
7919                  */
7920                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7921
7922                 /*
7923                  * If the mapping is invalid in guest, let cpu retry
7924                  * it to generate fault.
7925                  */
7926                 if (gpa == UNMAPPED_GVA)
7927                         return true;
7928         }
7929
7930         /*
7931          * Do not retry the unhandleable instruction if it faults on the
7932          * readonly host memory, otherwise it will goto a infinite loop:
7933          * retry instruction -> write #PF -> emulation fail -> retry
7934          * instruction -> ...
7935          */
7936         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
7937
7938         /*
7939          * If the instruction failed on the error pfn, it can not be fixed,
7940          * report the error to userspace.
7941          */
7942         if (is_error_noslot_pfn(pfn))
7943                 return false;
7944
7945         kvm_release_pfn_clean(pfn);
7946
7947         /* The instructions are well-emulated on direct mmu. */
7948         if (vcpu->arch.mmu->direct_map) {
7949                 unsigned int indirect_shadow_pages;
7950
7951                 write_lock(&vcpu->kvm->mmu_lock);
7952                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
7953                 write_unlock(&vcpu->kvm->mmu_lock);
7954
7955                 if (indirect_shadow_pages)
7956                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7957
7958                 return true;
7959         }
7960
7961         /*
7962          * if emulation was due to access to shadowed page table
7963          * and it failed try to unshadow page and re-enter the
7964          * guest to let CPU execute the instruction.
7965          */
7966         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7967
7968         /*
7969          * If the access faults on its page table, it can not
7970          * be fixed by unprotecting shadow page and it should
7971          * be reported to userspace.
7972          */
7973         return !write_fault_to_shadow_pgtable;
7974 }
7975
7976 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
7977                               gpa_t cr2_or_gpa,  int emulation_type)
7978 {
7979         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7980         unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
7981
7982         last_retry_eip = vcpu->arch.last_retry_eip;
7983         last_retry_addr = vcpu->arch.last_retry_addr;
7984
7985         /*
7986          * If the emulation is caused by #PF and it is non-page_table
7987          * writing instruction, it means the VM-EXIT is caused by shadow
7988          * page protected, we can zap the shadow page and retry this
7989          * instruction directly.
7990          *
7991          * Note: if the guest uses a non-page-table modifying instruction
7992          * on the PDE that points to the instruction, then we will unmap
7993          * the instruction and go to an infinite loop. So, we cache the
7994          * last retried eip and the last fault address, if we meet the eip
7995          * and the address again, we can break out of the potential infinite
7996          * loop.
7997          */
7998         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
7999
8000         if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8001                 return false;
8002
8003         if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8004             WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8005                 return false;
8006
8007         if (x86_page_table_writing_insn(ctxt))
8008                 return false;
8009
8010         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
8011                 return false;
8012
8013         vcpu->arch.last_retry_eip = ctxt->eip;
8014         vcpu->arch.last_retry_addr = cr2_or_gpa;
8015
8016         if (!vcpu->arch.mmu->direct_map)
8017                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8018
8019         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8020
8021         return true;
8022 }
8023
8024 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8025 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8026
8027 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm)
8028 {
8029         trace_kvm_smm_transition(vcpu->vcpu_id, vcpu->arch.smbase, entering_smm);
8030
8031         if (entering_smm) {
8032                 vcpu->arch.hflags |= HF_SMM_MASK;
8033         } else {
8034                 vcpu->arch.hflags &= ~(HF_SMM_MASK | HF_SMM_INSIDE_NMI_MASK);
8035
8036                 /* Process a latched INIT or SMI, if any.  */
8037                 kvm_make_request(KVM_REQ_EVENT, vcpu);
8038
8039                 /*
8040                  * Even if KVM_SET_SREGS2 loaded PDPTRs out of band,
8041                  * on SMM exit we still need to reload them from
8042                  * guest memory
8043                  */
8044                 vcpu->arch.pdptrs_from_userspace = false;
8045         }
8046
8047         kvm_mmu_reset_context(vcpu);
8048 }
8049
8050 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8051                                 unsigned long *db)
8052 {
8053         u32 dr6 = 0;
8054         int i;
8055         u32 enable, rwlen;
8056
8057         enable = dr7;
8058         rwlen = dr7 >> 16;
8059         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8060                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8061                         dr6 |= (1 << i);
8062         return dr6;
8063 }
8064
8065 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8066 {
8067         struct kvm_run *kvm_run = vcpu->run;
8068
8069         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8070                 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8071                 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8072                 kvm_run->debug.arch.exception = DB_VECTOR;
8073                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
8074                 return 0;
8075         }
8076         kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8077         return 1;
8078 }
8079
8080 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8081 {
8082         unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8083         int r;
8084
8085         r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
8086         if (unlikely(!r))
8087                 return 0;
8088
8089         kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8090
8091         /*
8092          * rflags is the old, "raw" value of the flags.  The new value has
8093          * not been saved yet.
8094          *
8095          * This is correct even for TF set by the guest, because "the
8096          * processor will not generate this exception after the instruction
8097          * that sets the TF flag".
8098          */
8099         if (unlikely(rflags & X86_EFLAGS_TF))
8100                 r = kvm_vcpu_do_singlestep(vcpu);
8101         return r;
8102 }
8103 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8104
8105 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
8106 {
8107         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
8108             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
8109                 struct kvm_run *kvm_run = vcpu->run;
8110                 unsigned long eip = kvm_get_linear_rip(vcpu);
8111                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8112                                            vcpu->arch.guest_debug_dr7,
8113                                            vcpu->arch.eff_db);
8114
8115                 if (dr6 != 0) {
8116                         kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
8117                         kvm_run->debug.arch.pc = eip;
8118                         kvm_run->debug.arch.exception = DB_VECTOR;
8119                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
8120                         *r = 0;
8121                         return true;
8122                 }
8123         }
8124
8125         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
8126             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
8127                 unsigned long eip = kvm_get_linear_rip(vcpu);
8128                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8129                                            vcpu->arch.dr7,
8130                                            vcpu->arch.db);
8131
8132                 if (dr6 != 0) {
8133                         kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
8134                         *r = 1;
8135                         return true;
8136                 }
8137         }
8138
8139         return false;
8140 }
8141
8142 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
8143 {
8144         switch (ctxt->opcode_len) {
8145         case 1:
8146                 switch (ctxt->b) {
8147                 case 0xe4:      /* IN */
8148                 case 0xe5:
8149                 case 0xec:
8150                 case 0xed:
8151                 case 0xe6:      /* OUT */
8152                 case 0xe7:
8153                 case 0xee:
8154                 case 0xef:
8155                 case 0x6c:      /* INS */
8156                 case 0x6d:
8157                 case 0x6e:      /* OUTS */
8158                 case 0x6f:
8159                         return true;
8160                 }
8161                 break;
8162         case 2:
8163                 switch (ctxt->b) {
8164                 case 0x33:      /* RDPMC */
8165                         return true;
8166                 }
8167                 break;
8168         }
8169
8170         return false;
8171 }
8172
8173 /*
8174  * Decode to be emulated instruction. Return EMULATION_OK if success.
8175  */
8176 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
8177                                     void *insn, int insn_len)
8178 {
8179         int r = EMULATION_OK;
8180         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8181
8182         init_emulate_ctxt(vcpu);
8183
8184         /*
8185          * We will reenter on the same instruction since we do not set
8186          * complete_userspace_io. This does not handle watchpoints yet,
8187          * those would be handled in the emulate_ops.
8188          */
8189         if (!(emulation_type & EMULTYPE_SKIP) &&
8190             kvm_vcpu_check_breakpoint(vcpu, &r))
8191                 return r;
8192
8193         r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
8194
8195         trace_kvm_emulate_insn_start(vcpu);
8196         ++vcpu->stat.insn_emulation;
8197
8198         return r;
8199 }
8200 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
8201
8202 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8203                             int emulation_type, void *insn, int insn_len)
8204 {
8205         int r;
8206         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8207         bool writeback = true;
8208         bool write_fault_to_spt;
8209
8210         if (unlikely(!static_call(kvm_x86_can_emulate_instruction)(vcpu, insn, insn_len)))
8211                 return 1;
8212
8213         vcpu->arch.l1tf_flush_l1d = true;
8214
8215         /*
8216          * Clear write_fault_to_shadow_pgtable here to ensure it is
8217          * never reused.
8218          */
8219         write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
8220         vcpu->arch.write_fault_to_shadow_pgtable = false;
8221
8222         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
8223                 kvm_clear_exception_queue(vcpu);
8224
8225                 r = x86_decode_emulated_instruction(vcpu, emulation_type,
8226                                                     insn, insn_len);
8227                 if (r != EMULATION_OK)  {
8228                         if ((emulation_type & EMULTYPE_TRAP_UD) ||
8229                             (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
8230                                 kvm_queue_exception(vcpu, UD_VECTOR);
8231                                 return 1;
8232                         }
8233                         if (reexecute_instruction(vcpu, cr2_or_gpa,
8234                                                   write_fault_to_spt,
8235                                                   emulation_type))
8236                                 return 1;
8237                         if (ctxt->have_exception) {
8238                                 /*
8239                                  * #UD should result in just EMULATION_FAILED, and trap-like
8240                                  * exception should not be encountered during decode.
8241                                  */
8242                                 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
8243                                              exception_type(ctxt->exception.vector) == EXCPT_TRAP);
8244                                 inject_emulated_exception(vcpu);
8245                                 return 1;
8246                         }
8247                         return handle_emulation_failure(vcpu, emulation_type);
8248                 }
8249         }
8250
8251         if ((emulation_type & EMULTYPE_VMWARE_GP) &&
8252             !is_vmware_backdoor_opcode(ctxt)) {
8253                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8254                 return 1;
8255         }
8256
8257         /*
8258          * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
8259          * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
8260          * The caller is responsible for updating interruptibility state and
8261          * injecting single-step #DBs.
8262          */
8263         if (emulation_type & EMULTYPE_SKIP) {
8264                 if (ctxt->mode != X86EMUL_MODE_PROT64)
8265                         ctxt->eip = (u32)ctxt->_eip;
8266                 else
8267                         ctxt->eip = ctxt->_eip;
8268
8269                 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
8270                         r = 1;
8271                         goto writeback;
8272                 }
8273
8274                 kvm_rip_write(vcpu, ctxt->eip);
8275                 if (ctxt->eflags & X86_EFLAGS_RF)
8276                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
8277                 return 1;
8278         }
8279
8280         if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
8281                 return 1;
8282
8283         /* this is needed for vmware backdoor interface to work since it
8284            changes registers values  during IO operation */
8285         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
8286                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8287                 emulator_invalidate_register_cache(ctxt);
8288         }
8289
8290 restart:
8291         if (emulation_type & EMULTYPE_PF) {
8292                 /* Save the faulting GPA (cr2) in the address field */
8293                 ctxt->exception.address = cr2_or_gpa;
8294
8295                 /* With shadow page tables, cr2 contains a GVA or nGPA. */
8296                 if (vcpu->arch.mmu->direct_map) {
8297                         ctxt->gpa_available = true;
8298                         ctxt->gpa_val = cr2_or_gpa;
8299                 }
8300         } else {
8301                 /* Sanitize the address out of an abundance of paranoia. */
8302                 ctxt->exception.address = 0;
8303         }
8304
8305         r = x86_emulate_insn(ctxt);
8306
8307         if (r == EMULATION_INTERCEPTED)
8308                 return 1;
8309
8310         if (r == EMULATION_FAILED) {
8311                 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
8312                                         emulation_type))
8313                         return 1;
8314
8315                 return handle_emulation_failure(vcpu, emulation_type);
8316         }
8317
8318         if (ctxt->have_exception) {
8319                 r = 1;
8320                 if (inject_emulated_exception(vcpu))
8321                         return r;
8322         } else if (vcpu->arch.pio.count) {
8323                 if (!vcpu->arch.pio.in) {
8324                         /* FIXME: return into emulator if single-stepping.  */
8325                         vcpu->arch.pio.count = 0;
8326                 } else {
8327                         writeback = false;
8328                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
8329                 }
8330                 r = 0;
8331         } else if (vcpu->mmio_needed) {
8332                 ++vcpu->stat.mmio_exits;
8333
8334                 if (!vcpu->mmio_is_write)
8335                         writeback = false;
8336                 r = 0;
8337                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8338         } else if (vcpu->arch.complete_userspace_io) {
8339                 writeback = false;
8340                 r = 0;
8341         } else if (r == EMULATION_RESTART)
8342                 goto restart;
8343         else
8344                 r = 1;
8345
8346 writeback:
8347         if (writeback) {
8348                 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8349                 toggle_interruptibility(vcpu, ctxt->interruptibility);
8350                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8351                 if (!ctxt->have_exception ||
8352                     exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
8353                         kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8354                         if (ctxt->is_branch)
8355                                 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
8356                         kvm_rip_write(vcpu, ctxt->eip);
8357                         if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
8358                                 r = kvm_vcpu_do_singlestep(vcpu);
8359                         if (kvm_x86_ops.update_emulated_instruction)
8360                                 static_call(kvm_x86_update_emulated_instruction)(vcpu);
8361                         __kvm_set_rflags(vcpu, ctxt->eflags);
8362                 }
8363
8364                 /*
8365                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
8366                  * do nothing, and it will be requested again as soon as
8367                  * the shadow expires.  But we still need to check here,
8368                  * because POPF has no interrupt shadow.
8369                  */
8370                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
8371                         kvm_make_request(KVM_REQ_EVENT, vcpu);
8372         } else
8373                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
8374
8375         return r;
8376 }
8377
8378 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
8379 {
8380         return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
8381 }
8382 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
8383
8384 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
8385                                         void *insn, int insn_len)
8386 {
8387         return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
8388 }
8389 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
8390
8391 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
8392 {
8393         vcpu->arch.pio.count = 0;
8394         return 1;
8395 }
8396
8397 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
8398 {
8399         vcpu->arch.pio.count = 0;
8400
8401         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
8402                 return 1;
8403
8404         return kvm_skip_emulated_instruction(vcpu);
8405 }
8406
8407 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
8408                             unsigned short port)
8409 {
8410         unsigned long val = kvm_rax_read(vcpu);
8411         int ret = emulator_pio_out(vcpu, size, port, &val, 1);
8412
8413         if (ret)
8414                 return ret;
8415
8416         /*
8417          * Workaround userspace that relies on old KVM behavior of %rip being
8418          * incremented prior to exiting to userspace to handle "OUT 0x7e".
8419          */
8420         if (port == 0x7e &&
8421             kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
8422                 vcpu->arch.complete_userspace_io =
8423                         complete_fast_pio_out_port_0x7e;
8424                 kvm_skip_emulated_instruction(vcpu);
8425         } else {
8426                 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8427                 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
8428         }
8429         return 0;
8430 }
8431
8432 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
8433 {
8434         unsigned long val;
8435
8436         /* We should only ever be called with arch.pio.count equal to 1 */
8437         BUG_ON(vcpu->arch.pio.count != 1);
8438
8439         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
8440                 vcpu->arch.pio.count = 0;
8441                 return 1;
8442         }
8443
8444         /* For size less than 4 we merge, else we zero extend */
8445         val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
8446
8447         /*
8448          * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
8449          * the copy and tracing
8450          */
8451         emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
8452         kvm_rax_write(vcpu, val);
8453
8454         return kvm_skip_emulated_instruction(vcpu);
8455 }
8456
8457 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
8458                            unsigned short port)
8459 {
8460         unsigned long val;
8461         int ret;
8462
8463         /* For size less than 4 we merge, else we zero extend */
8464         val = (size < 4) ? kvm_rax_read(vcpu) : 0;
8465
8466         ret = emulator_pio_in(vcpu, size, port, &val, 1);
8467         if (ret) {
8468                 kvm_rax_write(vcpu, val);
8469                 return ret;
8470         }
8471
8472         vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8473         vcpu->arch.complete_userspace_io = complete_fast_pio_in;
8474
8475         return 0;
8476 }
8477
8478 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
8479 {
8480         int ret;
8481
8482         if (in)
8483                 ret = kvm_fast_pio_in(vcpu, size, port);
8484         else
8485                 ret = kvm_fast_pio_out(vcpu, size, port);
8486         return ret && kvm_skip_emulated_instruction(vcpu);
8487 }
8488 EXPORT_SYMBOL_GPL(kvm_fast_pio);
8489
8490 static int kvmclock_cpu_down_prep(unsigned int cpu)
8491 {
8492         __this_cpu_write(cpu_tsc_khz, 0);
8493         return 0;
8494 }
8495
8496 static void tsc_khz_changed(void *data)
8497 {
8498         struct cpufreq_freqs *freq = data;
8499         unsigned long khz = 0;
8500
8501         if (data)
8502                 khz = freq->new;
8503         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8504                 khz = cpufreq_quick_get(raw_smp_processor_id());
8505         if (!khz)
8506                 khz = tsc_khz;
8507         __this_cpu_write(cpu_tsc_khz, khz);
8508 }
8509
8510 #ifdef CONFIG_X86_64
8511 static void kvm_hyperv_tsc_notifier(void)
8512 {
8513         struct kvm *kvm;
8514         int cpu;
8515
8516         mutex_lock(&kvm_lock);
8517         list_for_each_entry(kvm, &vm_list, vm_list)
8518                 kvm_make_mclock_inprogress_request(kvm);
8519
8520         /* no guest entries from this point */
8521         hyperv_stop_tsc_emulation();
8522
8523         /* TSC frequency always matches when on Hyper-V */
8524         for_each_present_cpu(cpu)
8525                 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
8526         kvm_max_guest_tsc_khz = tsc_khz;
8527
8528         list_for_each_entry(kvm, &vm_list, vm_list) {
8529                 __kvm_start_pvclock_update(kvm);
8530                 pvclock_update_vm_gtod_copy(kvm);
8531                 kvm_end_pvclock_update(kvm);
8532         }
8533
8534         mutex_unlock(&kvm_lock);
8535 }
8536 #endif
8537
8538 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
8539 {
8540         struct kvm *kvm;
8541         struct kvm_vcpu *vcpu;
8542         int send_ipi = 0;
8543         unsigned long i;
8544
8545         /*
8546          * We allow guests to temporarily run on slowing clocks,
8547          * provided we notify them after, or to run on accelerating
8548          * clocks, provided we notify them before.  Thus time never
8549          * goes backwards.
8550          *
8551          * However, we have a problem.  We can't atomically update
8552          * the frequency of a given CPU from this function; it is
8553          * merely a notifier, which can be called from any CPU.
8554          * Changing the TSC frequency at arbitrary points in time
8555          * requires a recomputation of local variables related to
8556          * the TSC for each VCPU.  We must flag these local variables
8557          * to be updated and be sure the update takes place with the
8558          * new frequency before any guests proceed.
8559          *
8560          * Unfortunately, the combination of hotplug CPU and frequency
8561          * change creates an intractable locking scenario; the order
8562          * of when these callouts happen is undefined with respect to
8563          * CPU hotplug, and they can race with each other.  As such,
8564          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
8565          * undefined; you can actually have a CPU frequency change take
8566          * place in between the computation of X and the setting of the
8567          * variable.  To protect against this problem, all updates of
8568          * the per_cpu tsc_khz variable are done in an interrupt
8569          * protected IPI, and all callers wishing to update the value
8570          * must wait for a synchronous IPI to complete (which is trivial
8571          * if the caller is on the CPU already).  This establishes the
8572          * necessary total order on variable updates.
8573          *
8574          * Note that because a guest time update may take place
8575          * anytime after the setting of the VCPU's request bit, the
8576          * correct TSC value must be set before the request.  However,
8577          * to ensure the update actually makes it to any guest which
8578          * starts running in hardware virtualization between the set
8579          * and the acquisition of the spinlock, we must also ping the
8580          * CPU after setting the request bit.
8581          *
8582          */
8583
8584         smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8585
8586         mutex_lock(&kvm_lock);
8587         list_for_each_entry(kvm, &vm_list, vm_list) {
8588                 kvm_for_each_vcpu(i, vcpu, kvm) {
8589                         if (vcpu->cpu != cpu)
8590                                 continue;
8591                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8592                         if (vcpu->cpu != raw_smp_processor_id())
8593                                 send_ipi = 1;
8594                 }
8595         }
8596         mutex_unlock(&kvm_lock);
8597
8598         if (freq->old < freq->new && send_ipi) {
8599                 /*
8600                  * We upscale the frequency.  Must make the guest
8601                  * doesn't see old kvmclock values while running with
8602                  * the new frequency, otherwise we risk the guest sees
8603                  * time go backwards.
8604                  *
8605                  * In case we update the frequency for another cpu
8606                  * (which might be in guest context) send an interrupt
8607                  * to kick the cpu out of guest context.  Next time
8608                  * guest context is entered kvmclock will be updated,
8609                  * so the guest will not see stale values.
8610                  */
8611                 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8612         }
8613 }
8614
8615 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
8616                                      void *data)
8617 {
8618         struct cpufreq_freqs *freq = data;
8619         int cpu;
8620
8621         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
8622                 return 0;
8623         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
8624                 return 0;
8625
8626         for_each_cpu(cpu, freq->policy->cpus)
8627                 __kvmclock_cpufreq_notifier(freq, cpu);
8628
8629         return 0;
8630 }
8631
8632 static struct notifier_block kvmclock_cpufreq_notifier_block = {
8633         .notifier_call  = kvmclock_cpufreq_notifier
8634 };
8635
8636 static int kvmclock_cpu_online(unsigned int cpu)
8637 {
8638         tsc_khz_changed(NULL);
8639         return 0;
8640 }
8641
8642 static void kvm_timer_init(void)
8643 {
8644         max_tsc_khz = tsc_khz;
8645
8646         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
8647 #ifdef CONFIG_CPU_FREQ
8648                 struct cpufreq_policy *policy;
8649                 int cpu;
8650
8651                 cpu = get_cpu();
8652                 policy = cpufreq_cpu_get(cpu);
8653                 if (policy) {
8654                         if (policy->cpuinfo.max_freq)
8655                                 max_tsc_khz = policy->cpuinfo.max_freq;
8656                         cpufreq_cpu_put(policy);
8657                 }
8658                 put_cpu();
8659 #endif
8660                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
8661                                           CPUFREQ_TRANSITION_NOTIFIER);
8662         }
8663
8664         cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
8665                           kvmclock_cpu_online, kvmclock_cpu_down_prep);
8666 }
8667
8668 #ifdef CONFIG_X86_64
8669 static void pvclock_gtod_update_fn(struct work_struct *work)
8670 {
8671         struct kvm *kvm;
8672         struct kvm_vcpu *vcpu;
8673         unsigned long i;
8674
8675         mutex_lock(&kvm_lock);
8676         list_for_each_entry(kvm, &vm_list, vm_list)
8677                 kvm_for_each_vcpu(i, vcpu, kvm)
8678                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8679         atomic_set(&kvm_guest_has_master_clock, 0);
8680         mutex_unlock(&kvm_lock);
8681 }
8682
8683 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
8684
8685 /*
8686  * Indirection to move queue_work() out of the tk_core.seq write held
8687  * region to prevent possible deadlocks against time accessors which
8688  * are invoked with work related locks held.
8689  */
8690 static void pvclock_irq_work_fn(struct irq_work *w)
8691 {
8692         queue_work(system_long_wq, &pvclock_gtod_work);
8693 }
8694
8695 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
8696
8697 /*
8698  * Notification about pvclock gtod data update.
8699  */
8700 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
8701                                void *priv)
8702 {
8703         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
8704         struct timekeeper *tk = priv;
8705
8706         update_pvclock_gtod(tk);
8707
8708         /*
8709          * Disable master clock if host does not trust, or does not use,
8710          * TSC based clocksource. Delegate queue_work() to irq_work as
8711          * this is invoked with tk_core.seq write held.
8712          */
8713         if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
8714             atomic_read(&kvm_guest_has_master_clock) != 0)
8715                 irq_work_queue(&pvclock_irq_work);
8716         return 0;
8717 }
8718
8719 static struct notifier_block pvclock_gtod_notifier = {
8720         .notifier_call = pvclock_gtod_notify,
8721 };
8722 #endif
8723
8724 int kvm_arch_init(void *opaque)
8725 {
8726         struct kvm_x86_init_ops *ops = opaque;
8727         int r;
8728
8729         if (kvm_x86_ops.hardware_enable) {
8730                 pr_err("kvm: already loaded vendor module '%s'\n", kvm_x86_ops.name);
8731                 r = -EEXIST;
8732                 goto out;
8733         }
8734
8735         if (!ops->cpu_has_kvm_support()) {
8736                 pr_err_ratelimited("kvm: no hardware support for '%s'\n",
8737                                    ops->runtime_ops->name);
8738                 r = -EOPNOTSUPP;
8739                 goto out;
8740         }
8741         if (ops->disabled_by_bios()) {
8742                 pr_err_ratelimited("kvm: support for '%s' disabled by bios\n",
8743                                    ops->runtime_ops->name);
8744                 r = -EOPNOTSUPP;
8745                 goto out;
8746         }
8747
8748         /*
8749          * KVM explicitly assumes that the guest has an FPU and
8750          * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
8751          * vCPU's FPU state as a fxregs_state struct.
8752          */
8753         if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
8754                 printk(KERN_ERR "kvm: inadequate fpu\n");
8755                 r = -EOPNOTSUPP;
8756                 goto out;
8757         }
8758
8759         r = -ENOMEM;
8760
8761         x86_emulator_cache = kvm_alloc_emulator_cache();
8762         if (!x86_emulator_cache) {
8763                 pr_err("kvm: failed to allocate cache for x86 emulator\n");
8764                 goto out;
8765         }
8766
8767         user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
8768         if (!user_return_msrs) {
8769                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
8770                 goto out_free_x86_emulator_cache;
8771         }
8772         kvm_nr_uret_msrs = 0;
8773
8774         r = kvm_mmu_module_init();
8775         if (r)
8776                 goto out_free_percpu;
8777
8778         kvm_timer_init();
8779
8780         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
8781                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
8782                 supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
8783         }
8784
8785         if (pi_inject_timer == -1)
8786                 pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
8787 #ifdef CONFIG_X86_64
8788         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
8789
8790         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8791                 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
8792 #endif
8793
8794         return 0;
8795
8796 out_free_percpu:
8797         free_percpu(user_return_msrs);
8798 out_free_x86_emulator_cache:
8799         kmem_cache_destroy(x86_emulator_cache);
8800 out:
8801         return r;
8802 }
8803
8804 void kvm_arch_exit(void)
8805 {
8806 #ifdef CONFIG_X86_64
8807         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8808                 clear_hv_tscchange_cb();
8809 #endif
8810         kvm_lapic_exit();
8811
8812         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8813                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
8814                                             CPUFREQ_TRANSITION_NOTIFIER);
8815         cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
8816 #ifdef CONFIG_X86_64
8817         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
8818         irq_work_sync(&pvclock_irq_work);
8819         cancel_work_sync(&pvclock_gtod_work);
8820 #endif
8821         kvm_x86_ops.hardware_enable = NULL;
8822         kvm_mmu_module_exit();
8823         free_percpu(user_return_msrs);
8824         kmem_cache_destroy(x86_emulator_cache);
8825 #ifdef CONFIG_KVM_XEN
8826         static_key_deferred_flush(&kvm_xen_enabled);
8827         WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
8828 #endif
8829 }
8830
8831 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
8832 {
8833         /*
8834          * The vCPU has halted, e.g. executed HLT.  Update the run state if the
8835          * local APIC is in-kernel, the run loop will detect the non-runnable
8836          * state and halt the vCPU.  Exit to userspace if the local APIC is
8837          * managed by userspace, in which case userspace is responsible for
8838          * handling wake events.
8839          */
8840         ++vcpu->stat.halt_exits;
8841         if (lapic_in_kernel(vcpu)) {
8842                 vcpu->arch.mp_state = state;
8843                 return 1;
8844         } else {
8845                 vcpu->run->exit_reason = reason;
8846                 return 0;
8847         }
8848 }
8849
8850 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
8851 {
8852         return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
8853 }
8854 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
8855
8856 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
8857 {
8858         int ret = kvm_skip_emulated_instruction(vcpu);
8859         /*
8860          * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
8861          * KVM_EXIT_DEBUG here.
8862          */
8863         return kvm_emulate_halt_noskip(vcpu) && ret;
8864 }
8865 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
8866
8867 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
8868 {
8869         int ret = kvm_skip_emulated_instruction(vcpu);
8870
8871         return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
8872                                         KVM_EXIT_AP_RESET_HOLD) && ret;
8873 }
8874 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
8875
8876 #ifdef CONFIG_X86_64
8877 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
8878                                 unsigned long clock_type)
8879 {
8880         struct kvm_clock_pairing clock_pairing;
8881         struct timespec64 ts;
8882         u64 cycle;
8883         int ret;
8884
8885         if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
8886                 return -KVM_EOPNOTSUPP;
8887
8888         if (!kvm_get_walltime_and_clockread(&ts, &cycle))
8889                 return -KVM_EOPNOTSUPP;
8890
8891         clock_pairing.sec = ts.tv_sec;
8892         clock_pairing.nsec = ts.tv_nsec;
8893         clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
8894         clock_pairing.flags = 0;
8895         memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
8896
8897         ret = 0;
8898         if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
8899                             sizeof(struct kvm_clock_pairing)))
8900                 ret = -KVM_EFAULT;
8901
8902         return ret;
8903 }
8904 #endif
8905
8906 /*
8907  * kvm_pv_kick_cpu_op:  Kick a vcpu.
8908  *
8909  * @apicid - apicid of vcpu to be kicked.
8910  */
8911 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
8912 {
8913         struct kvm_lapic_irq lapic_irq;
8914
8915         lapic_irq.shorthand = APIC_DEST_NOSHORT;
8916         lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
8917         lapic_irq.level = 0;
8918         lapic_irq.dest_id = apicid;
8919         lapic_irq.msi_redir_hint = false;
8920
8921         lapic_irq.delivery_mode = APIC_DM_REMRD;
8922         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
8923 }
8924
8925 bool kvm_apicv_activated(struct kvm *kvm)
8926 {
8927         return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
8928 }
8929 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
8930
8931 static void kvm_apicv_init(struct kvm *kvm)
8932 {
8933         init_rwsem(&kvm->arch.apicv_update_lock);
8934
8935         set_bit(APICV_INHIBIT_REASON_ABSENT,
8936                 &kvm->arch.apicv_inhibit_reasons);
8937         if (!enable_apicv)
8938                 set_bit(APICV_INHIBIT_REASON_DISABLE,
8939                         &kvm->arch.apicv_inhibit_reasons);
8940 }
8941
8942 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
8943 {
8944         struct kvm_vcpu *target = NULL;
8945         struct kvm_apic_map *map;
8946
8947         vcpu->stat.directed_yield_attempted++;
8948
8949         if (single_task_running())
8950                 goto no_yield;
8951
8952         rcu_read_lock();
8953         map = rcu_dereference(vcpu->kvm->arch.apic_map);
8954
8955         if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
8956                 target = map->phys_map[dest_id]->vcpu;
8957
8958         rcu_read_unlock();
8959
8960         if (!target || !READ_ONCE(target->ready))
8961                 goto no_yield;
8962
8963         /* Ignore requests to yield to self */
8964         if (vcpu == target)
8965                 goto no_yield;
8966
8967         if (kvm_vcpu_yield_to(target) <= 0)
8968                 goto no_yield;
8969
8970         vcpu->stat.directed_yield_successful++;
8971
8972 no_yield:
8973         return;
8974 }
8975
8976 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
8977 {
8978         u64 ret = vcpu->run->hypercall.ret;
8979
8980         if (!is_64_bit_mode(vcpu))
8981                 ret = (u32)ret;
8982         kvm_rax_write(vcpu, ret);
8983         ++vcpu->stat.hypercalls;
8984         return kvm_skip_emulated_instruction(vcpu);
8985 }
8986
8987 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
8988 {
8989         unsigned long nr, a0, a1, a2, a3, ret;
8990         int op_64_bit;
8991
8992         if (kvm_xen_hypercall_enabled(vcpu->kvm))
8993                 return kvm_xen_hypercall(vcpu);
8994
8995         if (kvm_hv_hypercall_enabled(vcpu))
8996                 return kvm_hv_hypercall(vcpu);
8997
8998         nr = kvm_rax_read(vcpu);
8999         a0 = kvm_rbx_read(vcpu);
9000         a1 = kvm_rcx_read(vcpu);
9001         a2 = kvm_rdx_read(vcpu);
9002         a3 = kvm_rsi_read(vcpu);
9003
9004         trace_kvm_hypercall(nr, a0, a1, a2, a3);
9005
9006         op_64_bit = is_64_bit_hypercall(vcpu);
9007         if (!op_64_bit) {
9008                 nr &= 0xFFFFFFFF;
9009                 a0 &= 0xFFFFFFFF;
9010                 a1 &= 0xFFFFFFFF;
9011                 a2 &= 0xFFFFFFFF;
9012                 a3 &= 0xFFFFFFFF;
9013         }
9014
9015         if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
9016                 ret = -KVM_EPERM;
9017                 goto out;
9018         }
9019
9020         ret = -KVM_ENOSYS;
9021
9022         switch (nr) {
9023         case KVM_HC_VAPIC_POLL_IRQ:
9024                 ret = 0;
9025                 break;
9026         case KVM_HC_KICK_CPU:
9027                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
9028                         break;
9029
9030                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
9031                 kvm_sched_yield(vcpu, a1);
9032                 ret = 0;
9033                 break;
9034 #ifdef CONFIG_X86_64
9035         case KVM_HC_CLOCK_PAIRING:
9036                 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
9037                 break;
9038 #endif
9039         case KVM_HC_SEND_IPI:
9040                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
9041                         break;
9042
9043                 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
9044                 break;
9045         case KVM_HC_SCHED_YIELD:
9046                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
9047                         break;
9048
9049                 kvm_sched_yield(vcpu, a0);
9050                 ret = 0;
9051                 break;
9052         case KVM_HC_MAP_GPA_RANGE: {
9053                 u64 gpa = a0, npages = a1, attrs = a2;
9054
9055                 ret = -KVM_ENOSYS;
9056                 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
9057                         break;
9058
9059                 if (!PAGE_ALIGNED(gpa) || !npages ||
9060                     gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
9061                         ret = -KVM_EINVAL;
9062                         break;
9063                 }
9064
9065                 vcpu->run->exit_reason        = KVM_EXIT_HYPERCALL;
9066                 vcpu->run->hypercall.nr       = KVM_HC_MAP_GPA_RANGE;
9067                 vcpu->run->hypercall.args[0]  = gpa;
9068                 vcpu->run->hypercall.args[1]  = npages;
9069                 vcpu->run->hypercall.args[2]  = attrs;
9070                 vcpu->run->hypercall.longmode = op_64_bit;
9071                 vcpu->arch.complete_userspace_io = complete_hypercall_exit;
9072                 return 0;
9073         }
9074         default:
9075                 ret = -KVM_ENOSYS;
9076                 break;
9077         }
9078 out:
9079         if (!op_64_bit)
9080                 ret = (u32)ret;
9081         kvm_rax_write(vcpu, ret);
9082
9083         ++vcpu->stat.hypercalls;
9084         return kvm_skip_emulated_instruction(vcpu);
9085 }
9086 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
9087
9088 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
9089 {
9090         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
9091         char instruction[3];
9092         unsigned long rip = kvm_rip_read(vcpu);
9093
9094         static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
9095
9096         return emulator_write_emulated(ctxt, rip, instruction, 3,
9097                 &ctxt->exception);
9098 }
9099
9100 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
9101 {
9102         return vcpu->run->request_interrupt_window &&
9103                 likely(!pic_in_kernel(vcpu->kvm));
9104 }
9105
9106 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
9107 {
9108         struct kvm_run *kvm_run = vcpu->run;
9109
9110         kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu);
9111         kvm_run->cr8 = kvm_get_cr8(vcpu);
9112         kvm_run->apic_base = kvm_get_apic_base(vcpu);
9113
9114         /*
9115          * The call to kvm_ready_for_interrupt_injection() may end up in
9116          * kvm_xen_has_interrupt() which may require the srcu lock to be
9117          * held, to protect against changes in the vcpu_info address.
9118          */
9119         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9120         kvm_run->ready_for_interrupt_injection =
9121                 pic_in_kernel(vcpu->kvm) ||
9122                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
9123         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9124
9125         if (is_smm(vcpu))
9126                 kvm_run->flags |= KVM_RUN_X86_SMM;
9127 }
9128
9129 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
9130 {
9131         int max_irr, tpr;
9132
9133         if (!kvm_x86_ops.update_cr8_intercept)
9134                 return;
9135
9136         if (!lapic_in_kernel(vcpu))
9137                 return;
9138
9139         if (vcpu->arch.apicv_active)
9140                 return;
9141
9142         if (!vcpu->arch.apic->vapic_addr)
9143                 max_irr = kvm_lapic_find_highest_irr(vcpu);
9144         else
9145                 max_irr = -1;
9146
9147         if (max_irr != -1)
9148                 max_irr >>= 4;
9149
9150         tpr = kvm_lapic_get_cr8(vcpu);
9151
9152         static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
9153 }
9154
9155
9156 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
9157 {
9158         if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9159                 kvm_x86_ops.nested_ops->triple_fault(vcpu);
9160                 return 1;
9161         }
9162
9163         return kvm_x86_ops.nested_ops->check_events(vcpu);
9164 }
9165
9166 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
9167 {
9168         if (vcpu->arch.exception.error_code && !is_protmode(vcpu))
9169                 vcpu->arch.exception.error_code = false;
9170         static_call(kvm_x86_queue_exception)(vcpu);
9171 }
9172
9173 static int inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
9174 {
9175         int r;
9176         bool can_inject = true;
9177
9178         /* try to reinject previous events if any */
9179
9180         if (vcpu->arch.exception.injected) {
9181                 kvm_inject_exception(vcpu);
9182                 can_inject = false;
9183         }
9184         /*
9185          * Do not inject an NMI or interrupt if there is a pending
9186          * exception.  Exceptions and interrupts are recognized at
9187          * instruction boundaries, i.e. the start of an instruction.
9188          * Trap-like exceptions, e.g. #DB, have higher priority than
9189          * NMIs and interrupts, i.e. traps are recognized before an
9190          * NMI/interrupt that's pending on the same instruction.
9191          * Fault-like exceptions, e.g. #GP and #PF, are the lowest
9192          * priority, but are only generated (pended) during instruction
9193          * execution, i.e. a pending fault-like exception means the
9194          * fault occurred on the *previous* instruction and must be
9195          * serviced prior to recognizing any new events in order to
9196          * fully complete the previous instruction.
9197          */
9198         else if (!vcpu->arch.exception.pending) {
9199                 if (vcpu->arch.nmi_injected) {
9200                         static_call(kvm_x86_set_nmi)(vcpu);
9201                         can_inject = false;
9202                 } else if (vcpu->arch.interrupt.injected) {
9203                         static_call(kvm_x86_set_irq)(vcpu);
9204                         can_inject = false;
9205                 }
9206         }
9207
9208         WARN_ON_ONCE(vcpu->arch.exception.injected &&
9209                      vcpu->arch.exception.pending);
9210
9211         /*
9212          * Call check_nested_events() even if we reinjected a previous event
9213          * in order for caller to determine if it should require immediate-exit
9214          * from L2 to L1 due to pending L1 events which require exit
9215          * from L2 to L1.
9216          */
9217         if (is_guest_mode(vcpu)) {
9218                 r = kvm_check_nested_events(vcpu);
9219                 if (r < 0)
9220                         goto out;
9221         }
9222
9223         /* try to inject new event if pending */
9224         if (vcpu->arch.exception.pending) {
9225                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
9226                                         vcpu->arch.exception.has_error_code,
9227                                         vcpu->arch.exception.error_code);
9228
9229                 vcpu->arch.exception.pending = false;
9230                 vcpu->arch.exception.injected = true;
9231
9232                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
9233                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
9234                                              X86_EFLAGS_RF);
9235
9236                 if (vcpu->arch.exception.nr == DB_VECTOR) {
9237                         kvm_deliver_exception_payload(vcpu);
9238                         if (vcpu->arch.dr7 & DR7_GD) {
9239                                 vcpu->arch.dr7 &= ~DR7_GD;
9240                                 kvm_update_dr7(vcpu);
9241                         }
9242                 }
9243
9244                 kvm_inject_exception(vcpu);
9245                 can_inject = false;
9246         }
9247
9248         /* Don't inject interrupts if the user asked to avoid doing so */
9249         if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
9250                 return 0;
9251
9252         /*
9253          * Finally, inject interrupt events.  If an event cannot be injected
9254          * due to architectural conditions (e.g. IF=0) a window-open exit
9255          * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
9256          * and can architecturally be injected, but we cannot do it right now:
9257          * an interrupt could have arrived just now and we have to inject it
9258          * as a vmexit, or there could already an event in the queue, which is
9259          * indicated by can_inject.  In that case we request an immediate exit
9260          * in order to make progress and get back here for another iteration.
9261          * The kvm_x86_ops hooks communicate this by returning -EBUSY.
9262          */
9263         if (vcpu->arch.smi_pending) {
9264                 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
9265                 if (r < 0)
9266                         goto out;
9267                 if (r) {
9268                         vcpu->arch.smi_pending = false;
9269                         ++vcpu->arch.smi_count;
9270                         enter_smm(vcpu);
9271                         can_inject = false;
9272                 } else
9273                         static_call(kvm_x86_enable_smi_window)(vcpu);
9274         }
9275
9276         if (vcpu->arch.nmi_pending) {
9277                 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
9278                 if (r < 0)
9279                         goto out;
9280                 if (r) {
9281                         --vcpu->arch.nmi_pending;
9282                         vcpu->arch.nmi_injected = true;
9283                         static_call(kvm_x86_set_nmi)(vcpu);
9284                         can_inject = false;
9285                         WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
9286                 }
9287                 if (vcpu->arch.nmi_pending)
9288                         static_call(kvm_x86_enable_nmi_window)(vcpu);
9289         }
9290
9291         if (kvm_cpu_has_injectable_intr(vcpu)) {
9292                 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
9293                 if (r < 0)
9294                         goto out;
9295                 if (r) {
9296                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
9297                         static_call(kvm_x86_set_irq)(vcpu);
9298                         WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
9299                 }
9300                 if (kvm_cpu_has_injectable_intr(vcpu))
9301                         static_call(kvm_x86_enable_irq_window)(vcpu);
9302         }
9303
9304         if (is_guest_mode(vcpu) &&
9305             kvm_x86_ops.nested_ops->hv_timer_pending &&
9306             kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
9307                 *req_immediate_exit = true;
9308
9309         WARN_ON(vcpu->arch.exception.pending);
9310         return 0;
9311
9312 out:
9313         if (r == -EBUSY) {
9314                 *req_immediate_exit = true;
9315                 r = 0;
9316         }
9317         return r;
9318 }
9319
9320 static void process_nmi(struct kvm_vcpu *vcpu)
9321 {
9322         unsigned limit = 2;
9323
9324         /*
9325          * x86 is limited to one NMI running, and one NMI pending after it.
9326          * If an NMI is already in progress, limit further NMIs to just one.
9327          * Otherwise, allow two (and we'll inject the first one immediately).
9328          */
9329         if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
9330                 limit = 1;
9331
9332         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
9333         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
9334         kvm_make_request(KVM_REQ_EVENT, vcpu);
9335 }
9336
9337 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
9338 {
9339         u32 flags = 0;
9340         flags |= seg->g       << 23;
9341         flags |= seg->db      << 22;
9342         flags |= seg->l       << 21;
9343         flags |= seg->avl     << 20;
9344         flags |= seg->present << 15;
9345         flags |= seg->dpl     << 13;
9346         flags |= seg->s       << 12;
9347         flags |= seg->type    << 8;
9348         return flags;
9349 }
9350
9351 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
9352 {
9353         struct kvm_segment seg;
9354         int offset;
9355
9356         kvm_get_segment(vcpu, &seg, n);
9357         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
9358
9359         if (n < 3)
9360                 offset = 0x7f84 + n * 12;
9361         else
9362                 offset = 0x7f2c + (n - 3) * 12;
9363
9364         put_smstate(u32, buf, offset + 8, seg.base);
9365         put_smstate(u32, buf, offset + 4, seg.limit);
9366         put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
9367 }
9368
9369 #ifdef CONFIG_X86_64
9370 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
9371 {
9372         struct kvm_segment seg;
9373         int offset;
9374         u16 flags;
9375
9376         kvm_get_segment(vcpu, &seg, n);
9377         offset = 0x7e00 + n * 16;
9378
9379         flags = enter_smm_get_segment_flags(&seg) >> 8;
9380         put_smstate(u16, buf, offset, seg.selector);
9381         put_smstate(u16, buf, offset + 2, flags);
9382         put_smstate(u32, buf, offset + 4, seg.limit);
9383         put_smstate(u64, buf, offset + 8, seg.base);
9384 }
9385 #endif
9386
9387 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
9388 {
9389         struct desc_ptr dt;
9390         struct kvm_segment seg;
9391         unsigned long val;
9392         int i;
9393
9394         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
9395         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
9396         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
9397         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
9398
9399         for (i = 0; i < 8; i++)
9400                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read_raw(vcpu, i));
9401
9402         kvm_get_dr(vcpu, 6, &val);
9403         put_smstate(u32, buf, 0x7fcc, (u32)val);
9404         kvm_get_dr(vcpu, 7, &val);
9405         put_smstate(u32, buf, 0x7fc8, (u32)val);
9406
9407         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9408         put_smstate(u32, buf, 0x7fc4, seg.selector);
9409         put_smstate(u32, buf, 0x7f64, seg.base);
9410         put_smstate(u32, buf, 0x7f60, seg.limit);
9411         put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
9412
9413         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9414         put_smstate(u32, buf, 0x7fc0, seg.selector);
9415         put_smstate(u32, buf, 0x7f80, seg.base);
9416         put_smstate(u32, buf, 0x7f7c, seg.limit);
9417         put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
9418
9419         static_call(kvm_x86_get_gdt)(vcpu, &dt);
9420         put_smstate(u32, buf, 0x7f74, dt.address);
9421         put_smstate(u32, buf, 0x7f70, dt.size);
9422
9423         static_call(kvm_x86_get_idt)(vcpu, &dt);
9424         put_smstate(u32, buf, 0x7f58, dt.address);
9425         put_smstate(u32, buf, 0x7f54, dt.size);
9426
9427         for (i = 0; i < 6; i++)
9428                 enter_smm_save_seg_32(vcpu, buf, i);
9429
9430         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
9431
9432         /* revision id */
9433         put_smstate(u32, buf, 0x7efc, 0x00020000);
9434         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
9435 }
9436
9437 #ifdef CONFIG_X86_64
9438 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
9439 {
9440         struct desc_ptr dt;
9441         struct kvm_segment seg;
9442         unsigned long val;
9443         int i;
9444
9445         for (i = 0; i < 16; i++)
9446                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read_raw(vcpu, i));
9447
9448         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
9449         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
9450
9451         kvm_get_dr(vcpu, 6, &val);
9452         put_smstate(u64, buf, 0x7f68, val);
9453         kvm_get_dr(vcpu, 7, &val);
9454         put_smstate(u64, buf, 0x7f60, val);
9455
9456         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
9457         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
9458         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
9459
9460         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
9461
9462         /* revision id */
9463         put_smstate(u32, buf, 0x7efc, 0x00020064);
9464
9465         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
9466
9467         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9468         put_smstate(u16, buf, 0x7e90, seg.selector);
9469         put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
9470         put_smstate(u32, buf, 0x7e94, seg.limit);
9471         put_smstate(u64, buf, 0x7e98, seg.base);
9472
9473         static_call(kvm_x86_get_idt)(vcpu, &dt);
9474         put_smstate(u32, buf, 0x7e84, dt.size);
9475         put_smstate(u64, buf, 0x7e88, dt.address);
9476
9477         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9478         put_smstate(u16, buf, 0x7e70, seg.selector);
9479         put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
9480         put_smstate(u32, buf, 0x7e74, seg.limit);
9481         put_smstate(u64, buf, 0x7e78, seg.base);
9482
9483         static_call(kvm_x86_get_gdt)(vcpu, &dt);
9484         put_smstate(u32, buf, 0x7e64, dt.size);
9485         put_smstate(u64, buf, 0x7e68, dt.address);
9486
9487         for (i = 0; i < 6; i++)
9488                 enter_smm_save_seg_64(vcpu, buf, i);
9489 }
9490 #endif
9491
9492 static void enter_smm(struct kvm_vcpu *vcpu)
9493 {
9494         struct kvm_segment cs, ds;
9495         struct desc_ptr dt;
9496         unsigned long cr0;
9497         char buf[512];
9498
9499         memset(buf, 0, 512);
9500 #ifdef CONFIG_X86_64
9501         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9502                 enter_smm_save_state_64(vcpu, buf);
9503         else
9504 #endif
9505                 enter_smm_save_state_32(vcpu, buf);
9506
9507         /*
9508          * Give enter_smm() a chance to make ISA-specific changes to the vCPU
9509          * state (e.g. leave guest mode) after we've saved the state into the
9510          * SMM state-save area.
9511          */
9512         static_call(kvm_x86_enter_smm)(vcpu, buf);
9513
9514         kvm_smm_changed(vcpu, true);
9515         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
9516
9517         if (static_call(kvm_x86_get_nmi_mask)(vcpu))
9518                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
9519         else
9520                 static_call(kvm_x86_set_nmi_mask)(vcpu, true);
9521
9522         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
9523         kvm_rip_write(vcpu, 0x8000);
9524
9525         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
9526         static_call(kvm_x86_set_cr0)(vcpu, cr0);
9527         vcpu->arch.cr0 = cr0;
9528
9529         static_call(kvm_x86_set_cr4)(vcpu, 0);
9530
9531         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
9532         dt.address = dt.size = 0;
9533         static_call(kvm_x86_set_idt)(vcpu, &dt);
9534
9535         kvm_set_dr(vcpu, 7, DR7_FIXED_1);
9536
9537         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
9538         cs.base = vcpu->arch.smbase;
9539
9540         ds.selector = 0;
9541         ds.base = 0;
9542
9543         cs.limit    = ds.limit = 0xffffffff;
9544         cs.type     = ds.type = 0x3;
9545         cs.dpl      = ds.dpl = 0;
9546         cs.db       = ds.db = 0;
9547         cs.s        = ds.s = 1;
9548         cs.l        = ds.l = 0;
9549         cs.g        = ds.g = 1;
9550         cs.avl      = ds.avl = 0;
9551         cs.present  = ds.present = 1;
9552         cs.unusable = ds.unusable = 0;
9553         cs.padding  = ds.padding = 0;
9554
9555         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
9556         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
9557         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
9558         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
9559         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
9560         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
9561
9562 #ifdef CONFIG_X86_64
9563         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9564                 static_call(kvm_x86_set_efer)(vcpu, 0);
9565 #endif
9566
9567         kvm_update_cpuid_runtime(vcpu);
9568         kvm_mmu_reset_context(vcpu);
9569 }
9570
9571 static void process_smi(struct kvm_vcpu *vcpu)
9572 {
9573         vcpu->arch.smi_pending = true;
9574         kvm_make_request(KVM_REQ_EVENT, vcpu);
9575 }
9576
9577 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
9578                                        unsigned long *vcpu_bitmap)
9579 {
9580         kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
9581 }
9582
9583 void kvm_make_scan_ioapic_request(struct kvm *kvm)
9584 {
9585         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
9586 }
9587
9588 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
9589 {
9590         bool activate;
9591
9592         if (!lapic_in_kernel(vcpu))
9593                 return;
9594
9595         down_read(&vcpu->kvm->arch.apicv_update_lock);
9596
9597         activate = kvm_apicv_activated(vcpu->kvm);
9598         if (vcpu->arch.apicv_active == activate)
9599                 goto out;
9600
9601         vcpu->arch.apicv_active = activate;
9602         kvm_apic_update_apicv(vcpu);
9603         static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
9604
9605         /*
9606          * When APICv gets disabled, we may still have injected interrupts
9607          * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
9608          * still active when the interrupt got accepted. Make sure
9609          * inject_pending_event() is called to check for that.
9610          */
9611         if (!vcpu->arch.apicv_active)
9612                 kvm_make_request(KVM_REQ_EVENT, vcpu);
9613
9614 out:
9615         up_read(&vcpu->kvm->arch.apicv_update_lock);
9616 }
9617 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
9618
9619 void __kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
9620 {
9621         unsigned long old, new;
9622
9623         lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
9624
9625         if (!kvm_x86_ops.check_apicv_inhibit_reasons ||
9626             !static_call(kvm_x86_check_apicv_inhibit_reasons)(bit))
9627                 return;
9628
9629         old = new = kvm->arch.apicv_inhibit_reasons;
9630
9631         if (activate)
9632                 __clear_bit(bit, &new);
9633         else
9634                 __set_bit(bit, &new);
9635
9636         if (!!old != !!new) {
9637                 trace_kvm_apicv_update_request(activate, bit);
9638                 /*
9639                  * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
9640                  * false positives in the sanity check WARN in svm_vcpu_run().
9641                  * This task will wait for all vCPUs to ack the kick IRQ before
9642                  * updating apicv_inhibit_reasons, and all other vCPUs will
9643                  * block on acquiring apicv_update_lock so that vCPUs can't
9644                  * redo svm_vcpu_run() without seeing the new inhibit state.
9645                  *
9646                  * Note, holding apicv_update_lock and taking it in the read
9647                  * side (handling the request) also prevents other vCPUs from
9648                  * servicing the request with a stale apicv_inhibit_reasons.
9649                  */
9650                 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
9651                 kvm->arch.apicv_inhibit_reasons = new;
9652                 if (new) {
9653                         unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
9654                         kvm_zap_gfn_range(kvm, gfn, gfn+1);
9655                 }
9656         } else
9657                 kvm->arch.apicv_inhibit_reasons = new;
9658 }
9659 EXPORT_SYMBOL_GPL(__kvm_request_apicv_update);
9660
9661 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
9662 {
9663         down_write(&kvm->arch.apicv_update_lock);
9664         __kvm_request_apicv_update(kvm, activate, bit);
9665         up_write(&kvm->arch.apicv_update_lock);
9666 }
9667 EXPORT_SYMBOL_GPL(kvm_request_apicv_update);
9668
9669 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
9670 {
9671         if (!kvm_apic_present(vcpu))
9672                 return;
9673
9674         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
9675
9676         if (irqchip_split(vcpu->kvm))
9677                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
9678         else {
9679                 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
9680                 if (ioapic_in_kernel(vcpu->kvm))
9681                         kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
9682         }
9683
9684         if (is_guest_mode(vcpu))
9685                 vcpu->arch.load_eoi_exitmap_pending = true;
9686         else
9687                 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
9688 }
9689
9690 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
9691 {
9692         u64 eoi_exit_bitmap[4];
9693
9694         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
9695                 return;
9696
9697         if (to_hv_vcpu(vcpu)) {
9698                 bitmap_or((ulong *)eoi_exit_bitmap,
9699                           vcpu->arch.ioapic_handled_vectors,
9700                           to_hv_synic(vcpu)->vec_bitmap, 256);
9701                 static_call(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
9702                 return;
9703         }
9704
9705         static_call(kvm_x86_load_eoi_exitmap)(
9706                 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
9707 }
9708
9709 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
9710                                             unsigned long start, unsigned long end)
9711 {
9712         unsigned long apic_address;
9713
9714         /*
9715          * The physical address of apic access page is stored in the VMCS.
9716          * Update it when it becomes invalid.
9717          */
9718         apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
9719         if (start <= apic_address && apic_address < end)
9720                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
9721 }
9722
9723 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
9724 {
9725         if (!lapic_in_kernel(vcpu))
9726                 return;
9727
9728         if (!kvm_x86_ops.set_apic_access_page_addr)
9729                 return;
9730
9731         static_call(kvm_x86_set_apic_access_page_addr)(vcpu);
9732 }
9733
9734 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
9735 {
9736         smp_send_reschedule(vcpu->cpu);
9737 }
9738 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
9739
9740 /*
9741  * Returns 1 to let vcpu_run() continue the guest execution loop without
9742  * exiting to the userspace.  Otherwise, the value will be returned to the
9743  * userspace.
9744  */
9745 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
9746 {
9747         int r;
9748         bool req_int_win =
9749                 dm_request_for_irq_injection(vcpu) &&
9750                 kvm_cpu_accept_dm_intr(vcpu);
9751         fastpath_t exit_fastpath;
9752
9753         bool req_immediate_exit = false;
9754
9755         /* Forbid vmenter if vcpu dirty ring is soft-full */
9756         if (unlikely(vcpu->kvm->dirty_ring_size &&
9757                      kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) {
9758                 vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL;
9759                 trace_kvm_dirty_ring_exit(vcpu);
9760                 r = 0;
9761                 goto out;
9762         }
9763
9764         if (kvm_request_pending(vcpu)) {
9765                 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
9766                         r = -EIO;
9767                         goto out;
9768                 }
9769                 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
9770                         if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
9771                                 r = 0;
9772                                 goto out;
9773                         }
9774                 }
9775                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
9776                         kvm_mmu_unload(vcpu);
9777                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
9778                         __kvm_migrate_timers(vcpu);
9779                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
9780                         kvm_update_masterclock(vcpu->kvm);
9781                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
9782                         kvm_gen_kvmclock_update(vcpu);
9783                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
9784                         r = kvm_guest_time_update(vcpu);
9785                         if (unlikely(r))
9786                                 goto out;
9787                 }
9788                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
9789                         kvm_mmu_sync_roots(vcpu);
9790                 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
9791                         kvm_mmu_load_pgd(vcpu);
9792                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
9793                         kvm_vcpu_flush_tlb_all(vcpu);
9794
9795                         /* Flushing all ASIDs flushes the current ASID... */
9796                         kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
9797                 }
9798                 kvm_service_local_tlb_flush_requests(vcpu);
9799
9800                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
9801                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
9802                         r = 0;
9803                         goto out;
9804                 }
9805                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9806                         if (is_guest_mode(vcpu)) {
9807                                 kvm_x86_ops.nested_ops->triple_fault(vcpu);
9808                         } else {
9809                                 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
9810                                 vcpu->mmio_needed = 0;
9811                                 r = 0;
9812                                 goto out;
9813                         }
9814                 }
9815                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
9816                         /* Page is swapped out. Do synthetic halt */
9817                         vcpu->arch.apf.halted = true;
9818                         r = 1;
9819                         goto out;
9820                 }
9821                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
9822                         record_steal_time(vcpu);
9823                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
9824                         process_smi(vcpu);
9825                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
9826                         process_nmi(vcpu);
9827                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
9828                         kvm_pmu_handle_event(vcpu);
9829                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
9830                         kvm_pmu_deliver_pmi(vcpu);
9831                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
9832                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
9833                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
9834                                      vcpu->arch.ioapic_handled_vectors)) {
9835                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
9836                                 vcpu->run->eoi.vector =
9837                                                 vcpu->arch.pending_ioapic_eoi;
9838                                 r = 0;
9839                                 goto out;
9840                         }
9841                 }
9842                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
9843                         vcpu_scan_ioapic(vcpu);
9844                 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
9845                         vcpu_load_eoi_exitmap(vcpu);
9846                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
9847                         kvm_vcpu_reload_apic_access_page(vcpu);
9848                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
9849                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9850                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
9851                         r = 0;
9852                         goto out;
9853                 }
9854                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
9855                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9856                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
9857                         r = 0;
9858                         goto out;
9859                 }
9860                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
9861                         struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
9862
9863                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
9864                         vcpu->run->hyperv = hv_vcpu->exit;
9865                         r = 0;
9866                         goto out;
9867                 }
9868
9869                 /*
9870                  * KVM_REQ_HV_STIMER has to be processed after
9871                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
9872                  * depend on the guest clock being up-to-date
9873                  */
9874                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
9875                         kvm_hv_process_stimers(vcpu);
9876                 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
9877                         kvm_vcpu_update_apicv(vcpu);
9878                 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
9879                         kvm_check_async_pf_completion(vcpu);
9880                 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
9881                         static_call(kvm_x86_msr_filter_changed)(vcpu);
9882
9883                 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
9884                         static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
9885         }
9886
9887         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
9888             kvm_xen_has_interrupt(vcpu)) {
9889                 ++vcpu->stat.req_event;
9890                 r = kvm_apic_accept_events(vcpu);
9891                 if (r < 0) {
9892                         r = 0;
9893                         goto out;
9894                 }
9895                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
9896                         r = 1;
9897                         goto out;
9898                 }
9899
9900                 r = inject_pending_event(vcpu, &req_immediate_exit);
9901                 if (r < 0) {
9902                         r = 0;
9903                         goto out;
9904                 }
9905                 if (req_int_win)
9906                         static_call(kvm_x86_enable_irq_window)(vcpu);
9907
9908                 if (kvm_lapic_enabled(vcpu)) {
9909                         update_cr8_intercept(vcpu);
9910                         kvm_lapic_sync_to_vapic(vcpu);
9911                 }
9912         }
9913
9914         r = kvm_mmu_reload(vcpu);
9915         if (unlikely(r)) {
9916                 goto cancel_injection;
9917         }
9918
9919         preempt_disable();
9920
9921         static_call(kvm_x86_prepare_guest_switch)(vcpu);
9922
9923         /*
9924          * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
9925          * IPI are then delayed after guest entry, which ensures that they
9926          * result in virtual interrupt delivery.
9927          */
9928         local_irq_disable();
9929         vcpu->mode = IN_GUEST_MODE;
9930
9931         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9932
9933         /*
9934          * 1) We should set ->mode before checking ->requests.  Please see
9935          * the comment in kvm_vcpu_exiting_guest_mode().
9936          *
9937          * 2) For APICv, we should set ->mode before checking PID.ON. This
9938          * pairs with the memory barrier implicit in pi_test_and_set_on
9939          * (see vmx_deliver_posted_interrupt).
9940          *
9941          * 3) This also orders the write to mode from any reads to the page
9942          * tables done while the VCPU is running.  Please see the comment
9943          * in kvm_flush_remote_tlbs.
9944          */
9945         smp_mb__after_srcu_read_unlock();
9946
9947         /*
9948          * This handles the case where a posted interrupt was
9949          * notified with kvm_vcpu_kick.  Assigned devices can
9950          * use the POSTED_INTR_VECTOR even if APICv is disabled,
9951          * so do it even if APICv is disabled on this vCPU.
9952          */
9953         if (kvm_lapic_enabled(vcpu))
9954                 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
9955
9956         if (kvm_vcpu_exit_request(vcpu)) {
9957                 vcpu->mode = OUTSIDE_GUEST_MODE;
9958                 smp_wmb();
9959                 local_irq_enable();
9960                 preempt_enable();
9961                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9962                 r = 1;
9963                 goto cancel_injection;
9964         }
9965
9966         if (req_immediate_exit) {
9967                 kvm_make_request(KVM_REQ_EVENT, vcpu);
9968                 static_call(kvm_x86_request_immediate_exit)(vcpu);
9969         }
9970
9971         fpregs_assert_state_consistent();
9972         if (test_thread_flag(TIF_NEED_FPU_LOAD))
9973                 switch_fpu_return();
9974
9975         if (vcpu->arch.guest_fpu.xfd_err)
9976                 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
9977
9978         if (unlikely(vcpu->arch.switch_db_regs)) {
9979                 set_debugreg(0, 7);
9980                 set_debugreg(vcpu->arch.eff_db[0], 0);
9981                 set_debugreg(vcpu->arch.eff_db[1], 1);
9982                 set_debugreg(vcpu->arch.eff_db[2], 2);
9983                 set_debugreg(vcpu->arch.eff_db[3], 3);
9984         } else if (unlikely(hw_breakpoint_active())) {
9985                 set_debugreg(0, 7);
9986         }
9987
9988         for (;;) {
9989                 /*
9990                  * Assert that vCPU vs. VM APICv state is consistent.  An APICv
9991                  * update must kick and wait for all vCPUs before toggling the
9992                  * per-VM state, and responsing vCPUs must wait for the update
9993                  * to complete before servicing KVM_REQ_APICV_UPDATE.
9994                  */
9995                 WARN_ON_ONCE(kvm_apicv_activated(vcpu->kvm) != kvm_vcpu_apicv_active(vcpu));
9996
9997                 exit_fastpath = static_call(kvm_x86_run)(vcpu);
9998                 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
9999                         break;
10000
10001                 if (kvm_lapic_enabled(vcpu))
10002                         static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10003
10004                 if (unlikely(kvm_vcpu_exit_request(vcpu))) {
10005                         exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
10006                         break;
10007                 }
10008         }
10009
10010         /*
10011          * Do this here before restoring debug registers on the host.  And
10012          * since we do this before handling the vmexit, a DR access vmexit
10013          * can (a) read the correct value of the debug registers, (b) set
10014          * KVM_DEBUGREG_WONT_EXIT again.
10015          */
10016         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
10017                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
10018                 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
10019                 kvm_update_dr0123(vcpu);
10020                 kvm_update_dr7(vcpu);
10021         }
10022
10023         /*
10024          * If the guest has used debug registers, at least dr7
10025          * will be disabled while returning to the host.
10026          * If we don't have active breakpoints in the host, we don't
10027          * care about the messed up debug address registers. But if
10028          * we have some of them active, restore the old state.
10029          */
10030         if (hw_breakpoint_active())
10031                 hw_breakpoint_restore();
10032
10033         vcpu->arch.last_vmentry_cpu = vcpu->cpu;
10034         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
10035
10036         vcpu->mode = OUTSIDE_GUEST_MODE;
10037         smp_wmb();
10038
10039         /*
10040          * Sync xfd before calling handle_exit_irqoff() which may
10041          * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
10042          * in #NM irqoff handler).
10043          */
10044         if (vcpu->arch.xfd_no_write_intercept)
10045                 fpu_sync_guest_vmexit_xfd_state();
10046
10047         static_call(kvm_x86_handle_exit_irqoff)(vcpu);
10048
10049         if (vcpu->arch.guest_fpu.xfd_err)
10050                 wrmsrl(MSR_IA32_XFD_ERR, 0);
10051
10052         /*
10053          * Consume any pending interrupts, including the possible source of
10054          * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
10055          * An instruction is required after local_irq_enable() to fully unblock
10056          * interrupts on processors that implement an interrupt shadow, the
10057          * stat.exits increment will do nicely.
10058          */
10059         kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
10060         local_irq_enable();
10061         ++vcpu->stat.exits;
10062         local_irq_disable();
10063         kvm_after_interrupt(vcpu);
10064
10065         /*
10066          * Wait until after servicing IRQs to account guest time so that any
10067          * ticks that occurred while running the guest are properly accounted
10068          * to the guest.  Waiting until IRQs are enabled degrades the accuracy
10069          * of accounting via context tracking, but the loss of accuracy is
10070          * acceptable for all known use cases.
10071          */
10072         vtime_account_guest_exit();
10073
10074         if (lapic_in_kernel(vcpu)) {
10075                 s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
10076                 if (delta != S64_MIN) {
10077                         trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
10078                         vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
10079                 }
10080         }
10081
10082         local_irq_enable();
10083         preempt_enable();
10084
10085         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
10086
10087         /*
10088          * Profile KVM exit RIPs:
10089          */
10090         if (unlikely(prof_on == KVM_PROFILING)) {
10091                 unsigned long rip = kvm_rip_read(vcpu);
10092                 profile_hit(KVM_PROFILING, (void *)rip);
10093         }
10094
10095         if (unlikely(vcpu->arch.tsc_always_catchup))
10096                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10097
10098         if (vcpu->arch.apic_attention)
10099                 kvm_lapic_sync_from_vapic(vcpu);
10100
10101         r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
10102         return r;
10103
10104 cancel_injection:
10105         if (req_immediate_exit)
10106                 kvm_make_request(KVM_REQ_EVENT, vcpu);
10107         static_call(kvm_x86_cancel_injection)(vcpu);
10108         if (unlikely(vcpu->arch.apic_attention))
10109                 kvm_lapic_sync_from_vapic(vcpu);
10110 out:
10111         return r;
10112 }
10113
10114 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
10115 {
10116         if (!kvm_arch_vcpu_runnable(vcpu) &&
10117             (!kvm_x86_ops.pre_block || static_call(kvm_x86_pre_block)(vcpu) == 0)) {
10118                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
10119                 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10120                         kvm_vcpu_halt(vcpu);
10121                 else
10122                         kvm_vcpu_block(vcpu);
10123                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
10124
10125                 if (kvm_x86_ops.post_block)
10126                         static_call(kvm_x86_post_block)(vcpu);
10127
10128                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
10129                         return 1;
10130         }
10131
10132         if (kvm_apic_accept_events(vcpu) < 0)
10133                 return 0;
10134         switch(vcpu->arch.mp_state) {
10135         case KVM_MP_STATE_HALTED:
10136         case KVM_MP_STATE_AP_RESET_HOLD:
10137                 vcpu->arch.pv.pv_unhalted = false;
10138                 vcpu->arch.mp_state =
10139                         KVM_MP_STATE_RUNNABLE;
10140                 fallthrough;
10141         case KVM_MP_STATE_RUNNABLE:
10142                 vcpu->arch.apf.halted = false;
10143                 break;
10144         case KVM_MP_STATE_INIT_RECEIVED:
10145                 break;
10146         default:
10147                 return -EINTR;
10148         }
10149         return 1;
10150 }
10151
10152 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
10153 {
10154         if (is_guest_mode(vcpu))
10155                 kvm_check_nested_events(vcpu);
10156
10157         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
10158                 !vcpu->arch.apf.halted);
10159 }
10160
10161 static int vcpu_run(struct kvm_vcpu *vcpu)
10162 {
10163         int r;
10164         struct kvm *kvm = vcpu->kvm;
10165
10166         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
10167         vcpu->arch.l1tf_flush_l1d = true;
10168
10169         for (;;) {
10170                 if (kvm_vcpu_running(vcpu)) {
10171                         r = vcpu_enter_guest(vcpu);
10172                 } else {
10173                         r = vcpu_block(kvm, vcpu);
10174                 }
10175
10176                 if (r <= 0)
10177                         break;
10178
10179                 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
10180                 if (kvm_cpu_has_pending_timer(vcpu))
10181                         kvm_inject_pending_timer_irqs(vcpu);
10182
10183                 if (dm_request_for_irq_injection(vcpu) &&
10184                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
10185                         r = 0;
10186                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
10187                         ++vcpu->stat.request_irq_exits;
10188                         break;
10189                 }
10190
10191                 if (__xfer_to_guest_mode_work_pending()) {
10192                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
10193                         r = xfer_to_guest_mode_handle_work(vcpu);
10194                         if (r)
10195                                 return r;
10196                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
10197                 }
10198         }
10199
10200         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
10201
10202         return r;
10203 }
10204
10205 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
10206 {
10207         int r;
10208
10209         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
10210         r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
10211         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
10212         return r;
10213 }
10214
10215 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
10216 {
10217         BUG_ON(!vcpu->arch.pio.count);
10218
10219         return complete_emulated_io(vcpu);
10220 }
10221
10222 /*
10223  * Implements the following, as a state machine:
10224  *
10225  * read:
10226  *   for each fragment
10227  *     for each mmio piece in the fragment
10228  *       write gpa, len
10229  *       exit
10230  *       copy data
10231  *   execute insn
10232  *
10233  * write:
10234  *   for each fragment
10235  *     for each mmio piece in the fragment
10236  *       write gpa, len
10237  *       copy data
10238  *       exit
10239  */
10240 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
10241 {
10242         struct kvm_run *run = vcpu->run;
10243         struct kvm_mmio_fragment *frag;
10244         unsigned len;
10245
10246         BUG_ON(!vcpu->mmio_needed);
10247
10248         /* Complete previous fragment */
10249         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
10250         len = min(8u, frag->len);
10251         if (!vcpu->mmio_is_write)
10252                 memcpy(frag->data, run->mmio.data, len);
10253
10254         if (frag->len <= 8) {
10255                 /* Switch to the next fragment. */
10256                 frag++;
10257                 vcpu->mmio_cur_fragment++;
10258         } else {
10259                 /* Go forward to the next mmio piece. */
10260                 frag->data += len;
10261                 frag->gpa += len;
10262                 frag->len -= len;
10263         }
10264
10265         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
10266                 vcpu->mmio_needed = 0;
10267
10268                 /* FIXME: return into emulator if single-stepping.  */
10269                 if (vcpu->mmio_is_write)
10270                         return 1;
10271                 vcpu->mmio_read_completed = 1;
10272                 return complete_emulated_io(vcpu);
10273         }
10274
10275         run->exit_reason = KVM_EXIT_MMIO;
10276         run->mmio.phys_addr = frag->gpa;
10277         if (vcpu->mmio_is_write)
10278                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
10279         run->mmio.len = min(8u, frag->len);
10280         run->mmio.is_write = vcpu->mmio_is_write;
10281         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
10282         return 0;
10283 }
10284
10285 /* Swap (qemu) user FPU context for the guest FPU context. */
10286 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
10287 {
10288         /*
10289          * Exclude PKRU from restore as restored separately in
10290          * kvm_x86_ops.run().
10291          */
10292         fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
10293         trace_kvm_fpu(1);
10294 }
10295
10296 /* When vcpu_run ends, restore user space FPU context. */
10297 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
10298 {
10299         fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
10300         ++vcpu->stat.fpu_reload;
10301         trace_kvm_fpu(0);
10302 }
10303
10304 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
10305 {
10306         struct kvm_run *kvm_run = vcpu->run;
10307         int r;
10308
10309         vcpu_load(vcpu);
10310         kvm_sigset_activate(vcpu);
10311         kvm_run->flags = 0;
10312         kvm_load_guest_fpu(vcpu);
10313
10314         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
10315                 if (kvm_run->immediate_exit) {
10316                         r = -EINTR;
10317                         goto out;
10318                 }
10319                 kvm_vcpu_block(vcpu);
10320                 if (kvm_apic_accept_events(vcpu) < 0) {
10321                         r = 0;
10322                         goto out;
10323                 }
10324                 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
10325                 r = -EAGAIN;
10326                 if (signal_pending(current)) {
10327                         r = -EINTR;
10328                         kvm_run->exit_reason = KVM_EXIT_INTR;
10329                         ++vcpu->stat.signal_exits;
10330                 }
10331                 goto out;
10332         }
10333
10334         if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
10335             (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
10336                 r = -EINVAL;
10337                 goto out;
10338         }
10339
10340         if (kvm_run->kvm_dirty_regs) {
10341                 r = sync_regs(vcpu);
10342                 if (r != 0)
10343                         goto out;
10344         }
10345
10346         /* re-sync apic's tpr */
10347         if (!lapic_in_kernel(vcpu)) {
10348                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
10349                         r = -EINVAL;
10350                         goto out;
10351                 }
10352         }
10353
10354         if (unlikely(vcpu->arch.complete_userspace_io)) {
10355                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
10356                 vcpu->arch.complete_userspace_io = NULL;
10357                 r = cui(vcpu);
10358                 if (r <= 0)
10359                         goto out;
10360         } else
10361                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
10362
10363         if (kvm_run->immediate_exit)
10364                 r = -EINTR;
10365         else
10366                 r = vcpu_run(vcpu);
10367
10368 out:
10369         kvm_put_guest_fpu(vcpu);
10370         if (kvm_run->kvm_valid_regs)
10371                 store_regs(vcpu);
10372         post_kvm_run_save(vcpu);
10373         kvm_sigset_deactivate(vcpu);
10374
10375         vcpu_put(vcpu);
10376         return r;
10377 }
10378
10379 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10380 {
10381         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
10382                 /*
10383                  * We are here if userspace calls get_regs() in the middle of
10384                  * instruction emulation. Registers state needs to be copied
10385                  * back from emulation context to vcpu. Userspace shouldn't do
10386                  * that usually, but some bad designed PV devices (vmware
10387                  * backdoor interface) need this to work
10388                  */
10389                 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
10390                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10391         }
10392         regs->rax = kvm_rax_read(vcpu);
10393         regs->rbx = kvm_rbx_read(vcpu);
10394         regs->rcx = kvm_rcx_read(vcpu);
10395         regs->rdx = kvm_rdx_read(vcpu);
10396         regs->rsi = kvm_rsi_read(vcpu);
10397         regs->rdi = kvm_rdi_read(vcpu);
10398         regs->rsp = kvm_rsp_read(vcpu);
10399         regs->rbp = kvm_rbp_read(vcpu);
10400 #ifdef CONFIG_X86_64
10401         regs->r8 = kvm_r8_read(vcpu);
10402         regs->r9 = kvm_r9_read(vcpu);
10403         regs->r10 = kvm_r10_read(vcpu);
10404         regs->r11 = kvm_r11_read(vcpu);
10405         regs->r12 = kvm_r12_read(vcpu);
10406         regs->r13 = kvm_r13_read(vcpu);
10407         regs->r14 = kvm_r14_read(vcpu);
10408         regs->r15 = kvm_r15_read(vcpu);
10409 #endif
10410
10411         regs->rip = kvm_rip_read(vcpu);
10412         regs->rflags = kvm_get_rflags(vcpu);
10413 }
10414
10415 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10416 {
10417         vcpu_load(vcpu);
10418         __get_regs(vcpu, regs);
10419         vcpu_put(vcpu);
10420         return 0;
10421 }
10422
10423 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10424 {
10425         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
10426         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10427
10428         kvm_rax_write(vcpu, regs->rax);
10429         kvm_rbx_write(vcpu, regs->rbx);
10430         kvm_rcx_write(vcpu, regs->rcx);
10431         kvm_rdx_write(vcpu, regs->rdx);
10432         kvm_rsi_write(vcpu, regs->rsi);
10433         kvm_rdi_write(vcpu, regs->rdi);
10434         kvm_rsp_write(vcpu, regs->rsp);
10435         kvm_rbp_write(vcpu, regs->rbp);
10436 #ifdef CONFIG_X86_64
10437         kvm_r8_write(vcpu, regs->r8);
10438         kvm_r9_write(vcpu, regs->r9);
10439         kvm_r10_write(vcpu, regs->r10);
10440         kvm_r11_write(vcpu, regs->r11);
10441         kvm_r12_write(vcpu, regs->r12);
10442         kvm_r13_write(vcpu, regs->r13);
10443         kvm_r14_write(vcpu, regs->r14);
10444         kvm_r15_write(vcpu, regs->r15);
10445 #endif
10446
10447         kvm_rip_write(vcpu, regs->rip);
10448         kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
10449
10450         vcpu->arch.exception.pending = false;
10451
10452         kvm_make_request(KVM_REQ_EVENT, vcpu);
10453 }
10454
10455 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10456 {
10457         vcpu_load(vcpu);
10458         __set_regs(vcpu, regs);
10459         vcpu_put(vcpu);
10460         return 0;
10461 }
10462
10463 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
10464 {
10465         struct kvm_segment cs;
10466
10467         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
10468         *db = cs.db;
10469         *l = cs.l;
10470 }
10471 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
10472
10473 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10474 {
10475         struct desc_ptr dt;
10476
10477         if (vcpu->arch.guest_state_protected)
10478                 goto skip_protected_regs;
10479
10480         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10481         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10482         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10483         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10484         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10485         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10486
10487         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10488         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10489
10490         static_call(kvm_x86_get_idt)(vcpu, &dt);
10491         sregs->idt.limit = dt.size;
10492         sregs->idt.base = dt.address;
10493         static_call(kvm_x86_get_gdt)(vcpu, &dt);
10494         sregs->gdt.limit = dt.size;
10495         sregs->gdt.base = dt.address;
10496
10497         sregs->cr2 = vcpu->arch.cr2;
10498         sregs->cr3 = kvm_read_cr3(vcpu);
10499
10500 skip_protected_regs:
10501         sregs->cr0 = kvm_read_cr0(vcpu);
10502         sregs->cr4 = kvm_read_cr4(vcpu);
10503         sregs->cr8 = kvm_get_cr8(vcpu);
10504         sregs->efer = vcpu->arch.efer;
10505         sregs->apic_base = kvm_get_apic_base(vcpu);
10506 }
10507
10508 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10509 {
10510         __get_sregs_common(vcpu, sregs);
10511
10512         if (vcpu->arch.guest_state_protected)
10513                 return;
10514
10515         if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
10516                 set_bit(vcpu->arch.interrupt.nr,
10517                         (unsigned long *)sregs->interrupt_bitmap);
10518 }
10519
10520 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
10521 {
10522         int i;
10523
10524         __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
10525
10526         if (vcpu->arch.guest_state_protected)
10527                 return;
10528
10529         if (is_pae_paging(vcpu)) {
10530                 for (i = 0 ; i < 4 ; i++)
10531                         sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
10532                 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
10533         }
10534 }
10535
10536 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
10537                                   struct kvm_sregs *sregs)
10538 {
10539         vcpu_load(vcpu);
10540         __get_sregs(vcpu, sregs);
10541         vcpu_put(vcpu);
10542         return 0;
10543 }
10544
10545 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
10546                                     struct kvm_mp_state *mp_state)
10547 {
10548         int r;
10549
10550         vcpu_load(vcpu);
10551         if (kvm_mpx_supported())
10552                 kvm_load_guest_fpu(vcpu);
10553
10554         r = kvm_apic_accept_events(vcpu);
10555         if (r < 0)
10556                 goto out;
10557         r = 0;
10558
10559         if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
10560              vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
10561             vcpu->arch.pv.pv_unhalted)
10562                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
10563         else
10564                 mp_state->mp_state = vcpu->arch.mp_state;
10565
10566 out:
10567         if (kvm_mpx_supported())
10568                 kvm_put_guest_fpu(vcpu);
10569         vcpu_put(vcpu);
10570         return r;
10571 }
10572
10573 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
10574                                     struct kvm_mp_state *mp_state)
10575 {
10576         int ret = -EINVAL;
10577
10578         vcpu_load(vcpu);
10579
10580         if (!lapic_in_kernel(vcpu) &&
10581             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
10582                 goto out;
10583
10584         /*
10585          * KVM_MP_STATE_INIT_RECEIVED means the processor is in
10586          * INIT state; latched init should be reported using
10587          * KVM_SET_VCPU_EVENTS, so reject it here.
10588          */
10589         if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
10590             (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
10591              mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
10592                 goto out;
10593
10594         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
10595                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
10596                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
10597         } else
10598                 vcpu->arch.mp_state = mp_state->mp_state;
10599         kvm_make_request(KVM_REQ_EVENT, vcpu);
10600
10601         ret = 0;
10602 out:
10603         vcpu_put(vcpu);
10604         return ret;
10605 }
10606
10607 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
10608                     int reason, bool has_error_code, u32 error_code)
10609 {
10610         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
10611         int ret;
10612
10613         init_emulate_ctxt(vcpu);
10614
10615         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
10616                                    has_error_code, error_code);
10617         if (ret) {
10618                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
10619                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
10620                 vcpu->run->internal.ndata = 0;
10621                 return 0;
10622         }
10623
10624         kvm_rip_write(vcpu, ctxt->eip);
10625         kvm_set_rflags(vcpu, ctxt->eflags);
10626         return 1;
10627 }
10628 EXPORT_SYMBOL_GPL(kvm_task_switch);
10629
10630 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10631 {
10632         if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
10633                 /*
10634                  * When EFER.LME and CR0.PG are set, the processor is in
10635                  * 64-bit mode (though maybe in a 32-bit code segment).
10636                  * CR4.PAE and EFER.LMA must be set.
10637                  */
10638                 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
10639                         return false;
10640                 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
10641                         return false;
10642         } else {
10643                 /*
10644                  * Not in 64-bit mode: EFER.LMA is clear and the code
10645                  * segment cannot be 64-bit.
10646                  */
10647                 if (sregs->efer & EFER_LMA || sregs->cs.l)
10648                         return false;
10649         }
10650
10651         return kvm_is_valid_cr4(vcpu, sregs->cr4);
10652 }
10653
10654 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
10655                 int *mmu_reset_needed, bool update_pdptrs)
10656 {
10657         struct msr_data apic_base_msr;
10658         int idx;
10659         struct desc_ptr dt;
10660
10661         if (!kvm_is_valid_sregs(vcpu, sregs))
10662                 return -EINVAL;
10663
10664         apic_base_msr.data = sregs->apic_base;
10665         apic_base_msr.host_initiated = true;
10666         if (kvm_set_apic_base(vcpu, &apic_base_msr))
10667                 return -EINVAL;
10668
10669         if (vcpu->arch.guest_state_protected)
10670                 return 0;
10671
10672         dt.size = sregs->idt.limit;
10673         dt.address = sregs->idt.base;
10674         static_call(kvm_x86_set_idt)(vcpu, &dt);
10675         dt.size = sregs->gdt.limit;
10676         dt.address = sregs->gdt.base;
10677         static_call(kvm_x86_set_gdt)(vcpu, &dt);
10678
10679         vcpu->arch.cr2 = sregs->cr2;
10680         *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
10681         vcpu->arch.cr3 = sregs->cr3;
10682         kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
10683         static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3);
10684
10685         kvm_set_cr8(vcpu, sregs->cr8);
10686
10687         *mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
10688         static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
10689
10690         *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
10691         static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
10692         vcpu->arch.cr0 = sregs->cr0;
10693
10694         *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
10695         static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
10696
10697         if (update_pdptrs) {
10698                 idx = srcu_read_lock(&vcpu->kvm->srcu);
10699                 if (is_pae_paging(vcpu)) {
10700                         load_pdptrs(vcpu, kvm_read_cr3(vcpu));
10701                         *mmu_reset_needed = 1;
10702                 }
10703                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
10704         }
10705
10706         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10707         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10708         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10709         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10710         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10711         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10712
10713         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10714         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10715
10716         update_cr8_intercept(vcpu);
10717
10718         /* Older userspace won't unhalt the vcpu on reset. */
10719         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
10720             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
10721             !is_protmode(vcpu))
10722                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10723
10724         return 0;
10725 }
10726
10727 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10728 {
10729         int pending_vec, max_bits;
10730         int mmu_reset_needed = 0;
10731         int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
10732
10733         if (ret)
10734                 return ret;
10735
10736         if (mmu_reset_needed)
10737                 kvm_mmu_reset_context(vcpu);
10738
10739         max_bits = KVM_NR_INTERRUPTS;
10740         pending_vec = find_first_bit(
10741                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
10742
10743         if (pending_vec < max_bits) {
10744                 kvm_queue_interrupt(vcpu, pending_vec, false);
10745                 pr_debug("Set back pending irq %d\n", pending_vec);
10746                 kvm_make_request(KVM_REQ_EVENT, vcpu);
10747         }
10748         return 0;
10749 }
10750
10751 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
10752 {
10753         int mmu_reset_needed = 0;
10754         bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
10755         bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
10756                 !(sregs2->efer & EFER_LMA);
10757         int i, ret;
10758
10759         if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
10760                 return -EINVAL;
10761
10762         if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
10763                 return -EINVAL;
10764
10765         ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
10766                                  &mmu_reset_needed, !valid_pdptrs);
10767         if (ret)
10768                 return ret;
10769
10770         if (valid_pdptrs) {
10771                 for (i = 0; i < 4 ; i++)
10772                         kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
10773
10774                 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
10775                 mmu_reset_needed = 1;
10776                 vcpu->arch.pdptrs_from_userspace = true;
10777         }
10778         if (mmu_reset_needed)
10779                 kvm_mmu_reset_context(vcpu);
10780         return 0;
10781 }
10782
10783 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
10784                                   struct kvm_sregs *sregs)
10785 {
10786         int ret;
10787
10788         vcpu_load(vcpu);
10789         ret = __set_sregs(vcpu, sregs);
10790         vcpu_put(vcpu);
10791         return ret;
10792 }
10793
10794 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
10795 {
10796         bool inhibit = false;
10797         struct kvm_vcpu *vcpu;
10798         unsigned long i;
10799
10800         down_write(&kvm->arch.apicv_update_lock);
10801
10802         kvm_for_each_vcpu(i, vcpu, kvm) {
10803                 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
10804                         inhibit = true;
10805                         break;
10806                 }
10807         }
10808         __kvm_request_apicv_update(kvm, !inhibit, APICV_INHIBIT_REASON_BLOCKIRQ);
10809         up_write(&kvm->arch.apicv_update_lock);
10810 }
10811
10812 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
10813                                         struct kvm_guest_debug *dbg)
10814 {
10815         unsigned long rflags;
10816         int i, r;
10817
10818         if (vcpu->arch.guest_state_protected)
10819                 return -EINVAL;
10820
10821         vcpu_load(vcpu);
10822
10823         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
10824                 r = -EBUSY;
10825                 if (vcpu->arch.exception.pending)
10826                         goto out;
10827                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
10828                         kvm_queue_exception(vcpu, DB_VECTOR);
10829                 else
10830                         kvm_queue_exception(vcpu, BP_VECTOR);
10831         }
10832
10833         /*
10834          * Read rflags as long as potentially injected trace flags are still
10835          * filtered out.
10836          */
10837         rflags = kvm_get_rflags(vcpu);
10838
10839         vcpu->guest_debug = dbg->control;
10840         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
10841                 vcpu->guest_debug = 0;
10842
10843         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
10844                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
10845                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
10846                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
10847         } else {
10848                 for (i = 0; i < KVM_NR_DB_REGS; i++)
10849                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
10850         }
10851         kvm_update_dr7(vcpu);
10852
10853         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
10854                 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
10855
10856         /*
10857          * Trigger an rflags update that will inject or remove the trace
10858          * flags.
10859          */
10860         kvm_set_rflags(vcpu, rflags);
10861
10862         static_call(kvm_x86_update_exception_bitmap)(vcpu);
10863
10864         kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
10865
10866         r = 0;
10867
10868 out:
10869         vcpu_put(vcpu);
10870         return r;
10871 }
10872
10873 /*
10874  * Translate a guest virtual address to a guest physical address.
10875  */
10876 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
10877                                     struct kvm_translation *tr)
10878 {
10879         unsigned long vaddr = tr->linear_address;
10880         gpa_t gpa;
10881         int idx;
10882
10883         vcpu_load(vcpu);
10884
10885         idx = srcu_read_lock(&vcpu->kvm->srcu);
10886         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
10887         srcu_read_unlock(&vcpu->kvm->srcu, idx);
10888         tr->physical_address = gpa;
10889         tr->valid = gpa != UNMAPPED_GVA;
10890         tr->writeable = 1;
10891         tr->usermode = 0;
10892
10893         vcpu_put(vcpu);
10894         return 0;
10895 }
10896
10897 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
10898 {
10899         struct fxregs_state *fxsave;
10900
10901         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
10902                 return 0;
10903
10904         vcpu_load(vcpu);
10905
10906         fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
10907         memcpy(fpu->fpr, fxsave->st_space, 128);
10908         fpu->fcw = fxsave->cwd;
10909         fpu->fsw = fxsave->swd;
10910         fpu->ftwx = fxsave->twd;
10911         fpu->last_opcode = fxsave->fop;
10912         fpu->last_ip = fxsave->rip;
10913         fpu->last_dp = fxsave->rdp;
10914         memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
10915
10916         vcpu_put(vcpu);
10917         return 0;
10918 }
10919
10920 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
10921 {
10922         struct fxregs_state *fxsave;
10923
10924         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
10925                 return 0;
10926
10927         vcpu_load(vcpu);
10928
10929         fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
10930
10931         memcpy(fxsave->st_space, fpu->fpr, 128);
10932         fxsave->cwd = fpu->fcw;
10933         fxsave->swd = fpu->fsw;
10934         fxsave->twd = fpu->ftwx;
10935         fxsave->fop = fpu->last_opcode;
10936         fxsave->rip = fpu->last_ip;
10937         fxsave->rdp = fpu->last_dp;
10938         memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
10939
10940         vcpu_put(vcpu);
10941         return 0;
10942 }
10943
10944 static void store_regs(struct kvm_vcpu *vcpu)
10945 {
10946         BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
10947
10948         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
10949                 __get_regs(vcpu, &vcpu->run->s.regs.regs);
10950
10951         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
10952                 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
10953
10954         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
10955                 kvm_vcpu_ioctl_x86_get_vcpu_events(
10956                                 vcpu, &vcpu->run->s.regs.events);
10957 }
10958
10959 static int sync_regs(struct kvm_vcpu *vcpu)
10960 {
10961         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
10962                 __set_regs(vcpu, &vcpu->run->s.regs.regs);
10963                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
10964         }
10965         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
10966                 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
10967                         return -EINVAL;
10968                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
10969         }
10970         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
10971                 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
10972                                 vcpu, &vcpu->run->s.regs.events))
10973                         return -EINVAL;
10974                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
10975         }
10976
10977         return 0;
10978 }
10979
10980 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
10981 {
10982         if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
10983                 pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
10984                              "guest TSC will not be reliable\n");
10985
10986         return 0;
10987 }
10988
10989 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
10990 {
10991         struct page *page;
10992         int r;
10993
10994         vcpu->arch.last_vmentry_cpu = -1;
10995         vcpu->arch.regs_avail = ~0;
10996         vcpu->arch.regs_dirty = ~0;
10997
10998         if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
10999                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11000         else
11001                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
11002
11003         r = kvm_mmu_create(vcpu);
11004         if (r < 0)
11005                 return r;
11006
11007         if (irqchip_in_kernel(vcpu->kvm)) {
11008                 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
11009                 if (r < 0)
11010                         goto fail_mmu_destroy;
11011                 if (kvm_apicv_activated(vcpu->kvm))
11012                         vcpu->arch.apicv_active = true;
11013         } else
11014                 static_branch_inc(&kvm_has_noapic_vcpu);
11015
11016         r = -ENOMEM;
11017
11018         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
11019         if (!page)
11020                 goto fail_free_lapic;
11021         vcpu->arch.pio_data = page_address(page);
11022
11023         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
11024                                        GFP_KERNEL_ACCOUNT);
11025         if (!vcpu->arch.mce_banks)
11026                 goto fail_free_pio_data;
11027         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
11028
11029         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
11030                                 GFP_KERNEL_ACCOUNT))
11031                 goto fail_free_mce_banks;
11032
11033         if (!alloc_emulate_ctxt(vcpu))
11034                 goto free_wbinvd_dirty_mask;
11035
11036         if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
11037                 pr_err("kvm: failed to allocate vcpu's fpu\n");
11038                 goto free_emulate_ctxt;
11039         }
11040
11041         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
11042         vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
11043
11044         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
11045
11046         kvm_async_pf_hash_reset(vcpu);
11047         kvm_pmu_init(vcpu);
11048
11049         vcpu->arch.pending_external_vector = -1;
11050         vcpu->arch.preempted_in_kernel = false;
11051
11052 #if IS_ENABLED(CONFIG_HYPERV)
11053         vcpu->arch.hv_root_tdp = INVALID_PAGE;
11054 #endif
11055
11056         r = static_call(kvm_x86_vcpu_create)(vcpu);
11057         if (r)
11058                 goto free_guest_fpu;
11059
11060         vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
11061         vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
11062         kvm_vcpu_mtrr_init(vcpu);
11063         vcpu_load(vcpu);
11064         kvm_set_tsc_khz(vcpu, max_tsc_khz);
11065         kvm_vcpu_reset(vcpu, false);
11066         kvm_init_mmu(vcpu);
11067         vcpu_put(vcpu);
11068         return 0;
11069
11070 free_guest_fpu:
11071         fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11072 free_emulate_ctxt:
11073         kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11074 free_wbinvd_dirty_mask:
11075         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11076 fail_free_mce_banks:
11077         kfree(vcpu->arch.mce_banks);
11078 fail_free_pio_data:
11079         free_page((unsigned long)vcpu->arch.pio_data);
11080 fail_free_lapic:
11081         kvm_free_lapic(vcpu);
11082 fail_mmu_destroy:
11083         kvm_mmu_destroy(vcpu);
11084         return r;
11085 }
11086
11087 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
11088 {
11089         struct kvm *kvm = vcpu->kvm;
11090
11091         if (mutex_lock_killable(&vcpu->mutex))
11092                 return;
11093         vcpu_load(vcpu);
11094         kvm_synchronize_tsc(vcpu, 0);
11095         vcpu_put(vcpu);
11096
11097         /* poll control enabled by default */
11098         vcpu->arch.msr_kvm_poll_control = 1;
11099
11100         mutex_unlock(&vcpu->mutex);
11101
11102         if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
11103                 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
11104                                                 KVMCLOCK_SYNC_PERIOD);
11105 }
11106
11107 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
11108 {
11109         int idx;
11110
11111         kvmclock_reset(vcpu);
11112
11113         static_call(kvm_x86_vcpu_free)(vcpu);
11114
11115         kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11116         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11117         fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11118
11119         kvm_hv_vcpu_uninit(vcpu);
11120         kvm_pmu_destroy(vcpu);
11121         kfree(vcpu->arch.mce_banks);
11122         kvm_free_lapic(vcpu);
11123         idx = srcu_read_lock(&vcpu->kvm->srcu);
11124         kvm_mmu_destroy(vcpu);
11125         srcu_read_unlock(&vcpu->kvm->srcu, idx);
11126         free_page((unsigned long)vcpu->arch.pio_data);
11127         kvfree(vcpu->arch.cpuid_entries);
11128         if (!lapic_in_kernel(vcpu))
11129                 static_branch_dec(&kvm_has_noapic_vcpu);
11130 }
11131
11132 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
11133 {
11134         struct kvm_cpuid_entry2 *cpuid_0x1;
11135         unsigned long old_cr0 = kvm_read_cr0(vcpu);
11136         unsigned long new_cr0;
11137
11138         /*
11139          * Several of the "set" flows, e.g. ->set_cr0(), read other registers
11140          * to handle side effects.  RESET emulation hits those flows and relies
11141          * on emulated/virtualized registers, including those that are loaded
11142          * into hardware, to be zeroed at vCPU creation.  Use CRs as a sentinel
11143          * to detect improper or missing initialization.
11144          */
11145         WARN_ON_ONCE(!init_event &&
11146                      (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
11147
11148         kvm_lapic_reset(vcpu, init_event);
11149
11150         vcpu->arch.hflags = 0;
11151
11152         vcpu->arch.smi_pending = 0;
11153         vcpu->arch.smi_count = 0;
11154         atomic_set(&vcpu->arch.nmi_queued, 0);
11155         vcpu->arch.nmi_pending = 0;
11156         vcpu->arch.nmi_injected = false;
11157         kvm_clear_interrupt_queue(vcpu);
11158         kvm_clear_exception_queue(vcpu);
11159
11160         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
11161         kvm_update_dr0123(vcpu);
11162         vcpu->arch.dr6 = DR6_ACTIVE_LOW;
11163         vcpu->arch.dr7 = DR7_FIXED_1;
11164         kvm_update_dr7(vcpu);
11165
11166         vcpu->arch.cr2 = 0;
11167
11168         kvm_make_request(KVM_REQ_EVENT, vcpu);
11169         vcpu->arch.apf.msr_en_val = 0;
11170         vcpu->arch.apf.msr_int_val = 0;
11171         vcpu->arch.st.msr_val = 0;
11172
11173         kvmclock_reset(vcpu);
11174
11175         kvm_clear_async_pf_completion_queue(vcpu);
11176         kvm_async_pf_hash_reset(vcpu);
11177         vcpu->arch.apf.halted = false;
11178
11179         if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
11180                 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
11181
11182                 /*
11183                  * To avoid have the INIT path from kvm_apic_has_events() that be
11184                  * called with loaded FPU and does not let userspace fix the state.
11185                  */
11186                 if (init_event)
11187                         kvm_put_guest_fpu(vcpu);
11188
11189                 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
11190                 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
11191
11192                 if (init_event)
11193                         kvm_load_guest_fpu(vcpu);
11194         }
11195
11196         if (!init_event) {
11197                 kvm_pmu_reset(vcpu);
11198                 vcpu->arch.smbase = 0x30000;
11199
11200                 vcpu->arch.msr_misc_features_enables = 0;
11201
11202                 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
11203         }
11204
11205         /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
11206         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
11207         kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
11208
11209         /*
11210          * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
11211          * if no CPUID match is found.  Note, it's impossible to get a match at
11212          * RESET since KVM emulates RESET before exposing the vCPU to userspace,
11213          * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
11214          * on RESET.  But, go through the motions in case that's ever remedied.
11215          */
11216         cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1, 0);
11217         kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
11218
11219         vcpu->arch.ia32_xss = 0;
11220
11221         static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
11222
11223         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
11224         kvm_rip_write(vcpu, 0xfff0);
11225
11226         vcpu->arch.cr3 = 0;
11227         kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11228
11229         /*
11230          * CR0.CD/NW are set on RESET, preserved on INIT.  Note, some versions
11231          * of Intel's SDM list CD/NW as being set on INIT, but they contradict
11232          * (or qualify) that with a footnote stating that CD/NW are preserved.
11233          */
11234         new_cr0 = X86_CR0_ET;
11235         if (init_event)
11236                 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
11237         else
11238                 new_cr0 |= X86_CR0_NW | X86_CR0_CD;
11239
11240         static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
11241         static_call(kvm_x86_set_cr4)(vcpu, 0);
11242         static_call(kvm_x86_set_efer)(vcpu, 0);
11243         static_call(kvm_x86_update_exception_bitmap)(vcpu);
11244
11245         /*
11246          * Reset the MMU context if paging was enabled prior to INIT (which is
11247          * implied if CR0.PG=1 as CR0 will be '0' prior to RESET).  Unlike the
11248          * standard CR0/CR4/EFER modification paths, only CR0.PG needs to be
11249          * checked because it is unconditionally cleared on INIT and all other
11250          * paging related bits are ignored if paging is disabled, i.e. CR0.WP,
11251          * CR4, and EFER changes are all irrelevant if CR0.PG was '0'.
11252          */
11253         if (old_cr0 & X86_CR0_PG)
11254                 kvm_mmu_reset_context(vcpu);
11255
11256         /*
11257          * Intel's SDM states that all TLB entries are flushed on INIT.  AMD's
11258          * APM states the TLBs are untouched by INIT, but it also states that
11259          * the TLBs are flushed on "External initialization of the processor."
11260          * Flush the guest TLB regardless of vendor, there is no meaningful
11261          * benefit in relying on the guest to flush the TLB immediately after
11262          * INIT.  A spurious TLB flush is benign and likely negligible from a
11263          * performance perspective.
11264          */
11265         if (init_event)
11266                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11267 }
11268 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
11269
11270 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
11271 {
11272         struct kvm_segment cs;
11273
11274         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
11275         cs.selector = vector << 8;
11276         cs.base = vector << 12;
11277         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
11278         kvm_rip_write(vcpu, 0);
11279 }
11280 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
11281
11282 int kvm_arch_hardware_enable(void)
11283 {
11284         struct kvm *kvm;
11285         struct kvm_vcpu *vcpu;
11286         unsigned long i;
11287         int ret;
11288         u64 local_tsc;
11289         u64 max_tsc = 0;
11290         bool stable, backwards_tsc = false;
11291
11292         kvm_user_return_msr_cpu_online();
11293         ret = static_call(kvm_x86_hardware_enable)();
11294         if (ret != 0)
11295                 return ret;
11296
11297         local_tsc = rdtsc();
11298         stable = !kvm_check_tsc_unstable();
11299         list_for_each_entry(kvm, &vm_list, vm_list) {
11300                 kvm_for_each_vcpu(i, vcpu, kvm) {
11301                         if (!stable && vcpu->cpu == smp_processor_id())
11302                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
11303                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
11304                                 backwards_tsc = true;
11305                                 if (vcpu->arch.last_host_tsc > max_tsc)
11306                                         max_tsc = vcpu->arch.last_host_tsc;
11307                         }
11308                 }
11309         }
11310
11311         /*
11312          * Sometimes, even reliable TSCs go backwards.  This happens on
11313          * platforms that reset TSC during suspend or hibernate actions, but
11314          * maintain synchronization.  We must compensate.  Fortunately, we can
11315          * detect that condition here, which happens early in CPU bringup,
11316          * before any KVM threads can be running.  Unfortunately, we can't
11317          * bring the TSCs fully up to date with real time, as we aren't yet far
11318          * enough into CPU bringup that we know how much real time has actually
11319          * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
11320          * variables that haven't been updated yet.
11321          *
11322          * So we simply find the maximum observed TSC above, then record the
11323          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
11324          * the adjustment will be applied.  Note that we accumulate
11325          * adjustments, in case multiple suspend cycles happen before some VCPU
11326          * gets a chance to run again.  In the event that no KVM threads get a
11327          * chance to run, we will miss the entire elapsed period, as we'll have
11328          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
11329          * loose cycle time.  This isn't too big a deal, since the loss will be
11330          * uniform across all VCPUs (not to mention the scenario is extremely
11331          * unlikely). It is possible that a second hibernate recovery happens
11332          * much faster than a first, causing the observed TSC here to be
11333          * smaller; this would require additional padding adjustment, which is
11334          * why we set last_host_tsc to the local tsc observed here.
11335          *
11336          * N.B. - this code below runs only on platforms with reliable TSC,
11337          * as that is the only way backwards_tsc is set above.  Also note
11338          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
11339          * have the same delta_cyc adjustment applied if backwards_tsc
11340          * is detected.  Note further, this adjustment is only done once,
11341          * as we reset last_host_tsc on all VCPUs to stop this from being
11342          * called multiple times (one for each physical CPU bringup).
11343          *
11344          * Platforms with unreliable TSCs don't have to deal with this, they
11345          * will be compensated by the logic in vcpu_load, which sets the TSC to
11346          * catchup mode.  This will catchup all VCPUs to real time, but cannot
11347          * guarantee that they stay in perfect synchronization.
11348          */
11349         if (backwards_tsc) {
11350                 u64 delta_cyc = max_tsc - local_tsc;
11351                 list_for_each_entry(kvm, &vm_list, vm_list) {
11352                         kvm->arch.backwards_tsc_observed = true;
11353                         kvm_for_each_vcpu(i, vcpu, kvm) {
11354                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
11355                                 vcpu->arch.last_host_tsc = local_tsc;
11356                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
11357                         }
11358
11359                         /*
11360                          * We have to disable TSC offset matching.. if you were
11361                          * booting a VM while issuing an S4 host suspend....
11362                          * you may have some problem.  Solving this issue is
11363                          * left as an exercise to the reader.
11364                          */
11365                         kvm->arch.last_tsc_nsec = 0;
11366                         kvm->arch.last_tsc_write = 0;
11367                 }
11368
11369         }
11370         return 0;
11371 }
11372
11373 void kvm_arch_hardware_disable(void)
11374 {
11375         static_call(kvm_x86_hardware_disable)();
11376         drop_user_return_notifiers();
11377 }
11378
11379 int kvm_arch_hardware_setup(void *opaque)
11380 {
11381         struct kvm_x86_init_ops *ops = opaque;
11382         int r;
11383
11384         rdmsrl_safe(MSR_EFER, &host_efer);
11385
11386         if (boot_cpu_has(X86_FEATURE_XSAVES))
11387                 rdmsrl(MSR_IA32_XSS, host_xss);
11388
11389         r = ops->hardware_setup();
11390         if (r != 0)
11391                 return r;
11392
11393         memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
11394         kvm_ops_static_call_update();
11395
11396         kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
11397
11398         if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
11399                 supported_xss = 0;
11400
11401 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
11402         cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
11403 #undef __kvm_cpu_cap_has
11404
11405         if (kvm_has_tsc_control) {
11406                 /*
11407                  * Make sure the user can only configure tsc_khz values that
11408                  * fit into a signed integer.
11409                  * A min value is not calculated because it will always
11410                  * be 1 on all machines.
11411                  */
11412                 u64 max = min(0x7fffffffULL,
11413                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
11414                 kvm_max_guest_tsc_khz = max;
11415
11416                 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
11417         }
11418
11419         kvm_init_msr_list();
11420         return 0;
11421 }
11422
11423 void kvm_arch_hardware_unsetup(void)
11424 {
11425         kvm_unregister_perf_callbacks();
11426
11427         static_call(kvm_x86_hardware_unsetup)();
11428 }
11429
11430 int kvm_arch_check_processor_compat(void *opaque)
11431 {
11432         struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
11433         struct kvm_x86_init_ops *ops = opaque;
11434
11435         WARN_ON(!irqs_disabled());
11436
11437         if (__cr4_reserved_bits(cpu_has, c) !=
11438             __cr4_reserved_bits(cpu_has, &boot_cpu_data))
11439                 return -EIO;
11440
11441         return ops->check_processor_compatibility();
11442 }
11443
11444 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
11445 {
11446         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
11447 }
11448 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
11449
11450 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
11451 {
11452         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
11453 }
11454
11455 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
11456 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
11457
11458 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
11459 {
11460         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
11461
11462         vcpu->arch.l1tf_flush_l1d = true;
11463         if (pmu->version && unlikely(pmu->event_count)) {
11464                 pmu->need_cleanup = true;
11465                 kvm_make_request(KVM_REQ_PMU, vcpu);
11466         }
11467         static_call(kvm_x86_sched_in)(vcpu, cpu);
11468 }
11469
11470 void kvm_arch_free_vm(struct kvm *kvm)
11471 {
11472         kfree(to_kvm_hv(kvm)->hv_pa_pg);
11473         __kvm_arch_free_vm(kvm);
11474 }
11475
11476
11477 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
11478 {
11479         int ret;
11480         unsigned long flags;
11481
11482         if (type)
11483                 return -EINVAL;
11484
11485         ret = kvm_page_track_init(kvm);
11486         if (ret)
11487                 return ret;
11488
11489         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
11490         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
11491         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
11492         INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
11493         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
11494         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
11495
11496         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
11497         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
11498         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
11499         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
11500                 &kvm->arch.irq_sources_bitmap);
11501
11502         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
11503         mutex_init(&kvm->arch.apic_map_lock);
11504         seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
11505         kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
11506
11507         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
11508         pvclock_update_vm_gtod_copy(kvm);
11509         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
11510
11511         kvm->arch.guest_can_read_msr_platform_info = true;
11512
11513 #if IS_ENABLED(CONFIG_HYPERV)
11514         spin_lock_init(&kvm->arch.hv_root_tdp_lock);
11515         kvm->arch.hv_root_tdp = INVALID_PAGE;
11516 #endif
11517
11518         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
11519         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
11520
11521         kvm_apicv_init(kvm);
11522         kvm_hv_init_vm(kvm);
11523         kvm_mmu_init_vm(kvm);
11524         kvm_xen_init_vm(kvm);
11525
11526         return static_call(kvm_x86_vm_init)(kvm);
11527 }
11528
11529 int kvm_arch_post_init_vm(struct kvm *kvm)
11530 {
11531         return kvm_mmu_post_init_vm(kvm);
11532 }
11533
11534 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
11535 {
11536         vcpu_load(vcpu);
11537         kvm_mmu_unload(vcpu);
11538         vcpu_put(vcpu);
11539 }
11540
11541 static void kvm_free_vcpus(struct kvm *kvm)
11542 {
11543         unsigned long i;
11544         struct kvm_vcpu *vcpu;
11545
11546         /*
11547          * Unpin any mmu pages first.
11548          */
11549         kvm_for_each_vcpu(i, vcpu, kvm) {
11550                 kvm_clear_async_pf_completion_queue(vcpu);
11551                 kvm_unload_vcpu_mmu(vcpu);
11552         }
11553
11554         kvm_destroy_vcpus(kvm);
11555 }
11556
11557 void kvm_arch_sync_events(struct kvm *kvm)
11558 {
11559         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
11560         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
11561         kvm_free_pit(kvm);
11562 }
11563
11564 #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
11565
11566 /**
11567  * __x86_set_memory_region: Setup KVM internal memory slot
11568  *
11569  * @kvm: the kvm pointer to the VM.
11570  * @id: the slot ID to setup.
11571  * @gpa: the GPA to install the slot (unused when @size == 0).
11572  * @size: the size of the slot. Set to zero to uninstall a slot.
11573  *
11574  * This function helps to setup a KVM internal memory slot.  Specify
11575  * @size > 0 to install a new slot, while @size == 0 to uninstall a
11576  * slot.  The return code can be one of the following:
11577  *
11578  *   HVA:           on success (uninstall will return a bogus HVA)
11579  *   -errno:        on error
11580  *
11581  * The caller should always use IS_ERR() to check the return value
11582  * before use.  Note, the KVM internal memory slots are guaranteed to
11583  * remain valid and unchanged until the VM is destroyed, i.e., the
11584  * GPA->HVA translation will not change.  However, the HVA is a user
11585  * address, i.e. its accessibility is not guaranteed, and must be
11586  * accessed via __copy_{to,from}_user().
11587  */
11588 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
11589                                       u32 size)
11590 {
11591         int i, r;
11592         unsigned long hva, old_npages;
11593         struct kvm_memslots *slots = kvm_memslots(kvm);
11594         struct kvm_memory_slot *slot;
11595
11596         /* Called with kvm->slots_lock held.  */
11597         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
11598                 return ERR_PTR_USR(-EINVAL);
11599
11600         slot = id_to_memslot(slots, id);
11601         if (size) {
11602                 if (slot && slot->npages)
11603                         return ERR_PTR_USR(-EEXIST);
11604
11605                 /*
11606                  * MAP_SHARED to prevent internal slot pages from being moved
11607                  * by fork()/COW.
11608                  */
11609                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
11610                               MAP_SHARED | MAP_ANONYMOUS, 0);
11611                 if (IS_ERR((void *)hva))
11612                         return (void __user *)hva;
11613         } else {
11614                 if (!slot || !slot->npages)
11615                         return NULL;
11616
11617                 old_npages = slot->npages;
11618                 hva = slot->userspace_addr;
11619         }
11620
11621         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
11622                 struct kvm_userspace_memory_region m;
11623
11624                 m.slot = id | (i << 16);
11625                 m.flags = 0;
11626                 m.guest_phys_addr = gpa;
11627                 m.userspace_addr = hva;
11628                 m.memory_size = size;
11629                 r = __kvm_set_memory_region(kvm, &m);
11630                 if (r < 0)
11631                         return ERR_PTR_USR(r);
11632         }
11633
11634         if (!size)
11635                 vm_munmap(hva, old_npages * PAGE_SIZE);
11636
11637         return (void __user *)hva;
11638 }
11639 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
11640
11641 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
11642 {
11643         kvm_mmu_pre_destroy_vm(kvm);
11644 }
11645
11646 void kvm_arch_destroy_vm(struct kvm *kvm)
11647 {
11648         if (current->mm == kvm->mm) {
11649                 /*
11650                  * Free memory regions allocated on behalf of userspace,
11651                  * unless the the memory map has changed due to process exit
11652                  * or fd copying.
11653                  */
11654                 mutex_lock(&kvm->slots_lock);
11655                 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
11656                                         0, 0);
11657                 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
11658                                         0, 0);
11659                 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
11660                 mutex_unlock(&kvm->slots_lock);
11661         }
11662         static_call_cond(kvm_x86_vm_destroy)(kvm);
11663         kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
11664         kvm_pic_destroy(kvm);
11665         kvm_ioapic_destroy(kvm);
11666         kvm_free_vcpus(kvm);
11667         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
11668         kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
11669         kvm_mmu_uninit_vm(kvm);
11670         kvm_page_track_cleanup(kvm);
11671         kvm_xen_destroy_vm(kvm);
11672         kvm_hv_destroy_vm(kvm);
11673 }
11674
11675 static void memslot_rmap_free(struct kvm_memory_slot *slot)
11676 {
11677         int i;
11678
11679         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
11680                 kvfree(slot->arch.rmap[i]);
11681                 slot->arch.rmap[i] = NULL;
11682         }
11683 }
11684
11685 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
11686 {
11687         int i;
11688
11689         memslot_rmap_free(slot);
11690
11691         for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11692                 kvfree(slot->arch.lpage_info[i - 1]);
11693                 slot->arch.lpage_info[i - 1] = NULL;
11694         }
11695
11696         kvm_page_track_free_memslot(slot);
11697 }
11698
11699 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
11700 {
11701         const int sz = sizeof(*slot->arch.rmap[0]);
11702         int i;
11703
11704         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
11705                 int level = i + 1;
11706                 int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
11707
11708                 if (slot->arch.rmap[i])
11709                         continue;
11710
11711                 slot->arch.rmap[i] = kvcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
11712                 if (!slot->arch.rmap[i]) {
11713                         memslot_rmap_free(slot);
11714                         return -ENOMEM;
11715                 }
11716         }
11717
11718         return 0;
11719 }
11720
11721 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
11722                                       struct kvm_memory_slot *slot)
11723 {
11724         unsigned long npages = slot->npages;
11725         int i, r;
11726
11727         /*
11728          * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
11729          * old arrays will be freed by __kvm_set_memory_region() if installing
11730          * the new memslot is successful.
11731          */
11732         memset(&slot->arch, 0, sizeof(slot->arch));
11733
11734         if (kvm_memslots_have_rmaps(kvm)) {
11735                 r = memslot_rmap_alloc(slot, npages);
11736                 if (r)
11737                         return r;
11738         }
11739
11740         for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11741                 struct kvm_lpage_info *linfo;
11742                 unsigned long ugfn;
11743                 int lpages;
11744                 int level = i + 1;
11745
11746                 lpages = __kvm_mmu_slot_lpages(slot, npages, level);
11747
11748                 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
11749                 if (!linfo)
11750                         goto out_free;
11751
11752                 slot->arch.lpage_info[i - 1] = linfo;
11753
11754                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
11755                         linfo[0].disallow_lpage = 1;
11756                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
11757                         linfo[lpages - 1].disallow_lpage = 1;
11758                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
11759                 /*
11760                  * If the gfn and userspace address are not aligned wrt each
11761                  * other, disable large page support for this slot.
11762                  */
11763                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
11764                         unsigned long j;
11765
11766                         for (j = 0; j < lpages; ++j)
11767                                 linfo[j].disallow_lpage = 1;
11768                 }
11769         }
11770
11771         if (kvm_page_track_create_memslot(kvm, slot, npages))
11772                 goto out_free;
11773
11774         return 0;
11775
11776 out_free:
11777         memslot_rmap_free(slot);
11778
11779         for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11780                 kvfree(slot->arch.lpage_info[i - 1]);
11781                 slot->arch.lpage_info[i - 1] = NULL;
11782         }
11783         return -ENOMEM;
11784 }
11785
11786 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
11787 {
11788         struct kvm_vcpu *vcpu;
11789         unsigned long i;
11790
11791         /*
11792          * memslots->generation has been incremented.
11793          * mmio generation may have reached its maximum value.
11794          */
11795         kvm_mmu_invalidate_mmio_sptes(kvm, gen);
11796
11797         /* Force re-initialization of steal_time cache */
11798         kvm_for_each_vcpu(i, vcpu, kvm)
11799                 kvm_vcpu_kick(vcpu);
11800 }
11801
11802 int kvm_arch_prepare_memory_region(struct kvm *kvm,
11803                                    const struct kvm_memory_slot *old,
11804                                    struct kvm_memory_slot *new,
11805                                    enum kvm_mr_change change)
11806 {
11807         if (change == KVM_MR_CREATE || change == KVM_MR_MOVE)
11808                 return kvm_alloc_memslot_metadata(kvm, new);
11809
11810         if (change == KVM_MR_FLAGS_ONLY)
11811                 memcpy(&new->arch, &old->arch, sizeof(old->arch));
11812         else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
11813                 return -EIO;
11814
11815         return 0;
11816 }
11817
11818
11819 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
11820 {
11821         struct kvm_arch *ka = &kvm->arch;
11822
11823         if (!kvm_x86_ops.cpu_dirty_log_size)
11824                 return;
11825
11826         if ((enable && ++ka->cpu_dirty_logging_count == 1) ||
11827             (!enable && --ka->cpu_dirty_logging_count == 0))
11828                 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
11829
11830         WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0);
11831 }
11832
11833 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
11834                                      struct kvm_memory_slot *old,
11835                                      const struct kvm_memory_slot *new,
11836                                      enum kvm_mr_change change)
11837 {
11838         u32 old_flags = old ? old->flags : 0;
11839         u32 new_flags = new ? new->flags : 0;
11840         bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
11841
11842         /*
11843          * Update CPU dirty logging if dirty logging is being toggled.  This
11844          * applies to all operations.
11845          */
11846         if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
11847                 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
11848
11849         /*
11850          * Nothing more to do for RO slots (which can't be dirtied and can't be
11851          * made writable) or CREATE/MOVE/DELETE of a slot.
11852          *
11853          * For a memslot with dirty logging disabled:
11854          * CREATE:      No dirty mappings will already exist.
11855          * MOVE/DELETE: The old mappings will already have been cleaned up by
11856          *              kvm_arch_flush_shadow_memslot()
11857          *
11858          * For a memslot with dirty logging enabled:
11859          * CREATE:      No shadow pages exist, thus nothing to write-protect
11860          *              and no dirty bits to clear.
11861          * MOVE/DELETE: The old mappings will already have been cleaned up by
11862          *              kvm_arch_flush_shadow_memslot().
11863          */
11864         if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
11865                 return;
11866
11867         /*
11868          * READONLY and non-flags changes were filtered out above, and the only
11869          * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
11870          * logging isn't being toggled on or off.
11871          */
11872         if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
11873                 return;
11874
11875         if (!log_dirty_pages) {
11876                 /*
11877                  * Dirty logging tracks sptes in 4k granularity, meaning that
11878                  * large sptes have to be split.  If live migration succeeds,
11879                  * the guest in the source machine will be destroyed and large
11880                  * sptes will be created in the destination.  However, if the
11881                  * guest continues to run in the source machine (for example if
11882                  * live migration fails), small sptes will remain around and
11883                  * cause bad performance.
11884                  *
11885                  * Scan sptes if dirty logging has been stopped, dropping those
11886                  * which can be collapsed into a single large-page spte.  Later
11887                  * page faults will create the large-page sptes.
11888                  */
11889                 kvm_mmu_zap_collapsible_sptes(kvm, new);
11890         } else {
11891                 /*
11892                  * Initially-all-set does not require write protecting any page,
11893                  * because they're all assumed to be dirty.
11894                  */
11895                 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
11896                         return;
11897
11898                 if (kvm_x86_ops.cpu_dirty_log_size) {
11899                         kvm_mmu_slot_leaf_clear_dirty(kvm, new);
11900                         kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
11901                 } else {
11902                         kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
11903                 }
11904         }
11905 }
11906
11907 void kvm_arch_commit_memory_region(struct kvm *kvm,
11908                                 struct kvm_memory_slot *old,
11909                                 const struct kvm_memory_slot *new,
11910                                 enum kvm_mr_change change)
11911 {
11912         if (!kvm->arch.n_requested_mmu_pages &&
11913             (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
11914                 unsigned long nr_mmu_pages;
11915
11916                 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
11917                 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
11918                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
11919         }
11920
11921         kvm_mmu_slot_apply_flags(kvm, old, new, change);
11922
11923         /* Free the arrays associated with the old memslot. */
11924         if (change == KVM_MR_MOVE)
11925                 kvm_arch_free_memslot(kvm, old);
11926 }
11927
11928 void kvm_arch_flush_shadow_all(struct kvm *kvm)
11929 {
11930         kvm_mmu_zap_all(kvm);
11931 }
11932
11933 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
11934                                    struct kvm_memory_slot *slot)
11935 {
11936         kvm_page_track_flush_slot(kvm, slot);
11937 }
11938
11939 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
11940 {
11941         return (is_guest_mode(vcpu) &&
11942                         kvm_x86_ops.guest_apic_has_interrupt &&
11943                         static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
11944 }
11945
11946 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
11947 {
11948         if (!list_empty_careful(&vcpu->async_pf.done))
11949                 return true;
11950
11951         if (kvm_apic_has_events(vcpu))
11952                 return true;
11953
11954         if (vcpu->arch.pv.pv_unhalted)
11955                 return true;
11956
11957         if (vcpu->arch.exception.pending)
11958                 return true;
11959
11960         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11961             (vcpu->arch.nmi_pending &&
11962              static_call(kvm_x86_nmi_allowed)(vcpu, false)))
11963                 return true;
11964
11965         if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
11966             (vcpu->arch.smi_pending &&
11967              static_call(kvm_x86_smi_allowed)(vcpu, false)))
11968                 return true;
11969
11970         if (kvm_arch_interrupt_allowed(vcpu) &&
11971             (kvm_cpu_has_interrupt(vcpu) ||
11972             kvm_guest_apic_has_interrupt(vcpu)))
11973                 return true;
11974
11975         if (kvm_hv_has_stimer_pending(vcpu))
11976                 return true;
11977
11978         if (is_guest_mode(vcpu) &&
11979             kvm_x86_ops.nested_ops->hv_timer_pending &&
11980             kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
11981                 return true;
11982
11983         return false;
11984 }
11985
11986 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
11987 {
11988         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
11989 }
11990
11991 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
11992 {
11993         if (vcpu->arch.apicv_active && static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
11994                 return true;
11995
11996         return false;
11997 }
11998
11999 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
12000 {
12001         if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
12002                 return true;
12003
12004         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12005                 kvm_test_request(KVM_REQ_SMI, vcpu) ||
12006                  kvm_test_request(KVM_REQ_EVENT, vcpu))
12007                 return true;
12008
12009         return kvm_arch_dy_has_pending_interrupt(vcpu);
12010 }
12011
12012 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
12013 {
12014         if (vcpu->arch.guest_state_protected)
12015                 return true;
12016
12017         return vcpu->arch.preempted_in_kernel;
12018 }
12019
12020 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
12021 {
12022         return kvm_rip_read(vcpu);
12023 }
12024
12025 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
12026 {
12027         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
12028 }
12029
12030 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
12031 {
12032         return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
12033 }
12034
12035 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
12036 {
12037         /* Can't read the RIP when guest state is protected, just return 0 */
12038         if (vcpu->arch.guest_state_protected)
12039                 return 0;
12040
12041         if (is_64_bit_mode(vcpu))
12042                 return kvm_rip_read(vcpu);
12043         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
12044                      kvm_rip_read(vcpu));
12045 }
12046 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
12047
12048 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
12049 {
12050         return kvm_get_linear_rip(vcpu) == linear_rip;
12051 }
12052 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
12053
12054 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
12055 {
12056         unsigned long rflags;
12057
12058         rflags = static_call(kvm_x86_get_rflags)(vcpu);
12059         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
12060                 rflags &= ~X86_EFLAGS_TF;
12061         return rflags;
12062 }
12063 EXPORT_SYMBOL_GPL(kvm_get_rflags);
12064
12065 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12066 {
12067         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
12068             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
12069                 rflags |= X86_EFLAGS_TF;
12070         static_call(kvm_x86_set_rflags)(vcpu, rflags);
12071 }
12072
12073 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12074 {
12075         __kvm_set_rflags(vcpu, rflags);
12076         kvm_make_request(KVM_REQ_EVENT, vcpu);
12077 }
12078 EXPORT_SYMBOL_GPL(kvm_set_rflags);
12079
12080 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
12081 {
12082         int r;
12083
12084         if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
12085               work->wakeup_all)
12086                 return;
12087
12088         r = kvm_mmu_reload(vcpu);
12089         if (unlikely(r))
12090                 return;
12091
12092         if (!vcpu->arch.mmu->direct_map &&
12093               work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
12094                 return;
12095
12096         kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
12097 }
12098
12099 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
12100 {
12101         BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
12102
12103         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
12104 }
12105
12106 static inline u32 kvm_async_pf_next_probe(u32 key)
12107 {
12108         return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
12109 }
12110
12111 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12112 {
12113         u32 key = kvm_async_pf_hash_fn(gfn);
12114
12115         while (vcpu->arch.apf.gfns[key] != ~0)
12116                 key = kvm_async_pf_next_probe(key);
12117
12118         vcpu->arch.apf.gfns[key] = gfn;
12119 }
12120
12121 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
12122 {
12123         int i;
12124         u32 key = kvm_async_pf_hash_fn(gfn);
12125
12126         for (i = 0; i < ASYNC_PF_PER_VCPU &&
12127                      (vcpu->arch.apf.gfns[key] != gfn &&
12128                       vcpu->arch.apf.gfns[key] != ~0); i++)
12129                 key = kvm_async_pf_next_probe(key);
12130
12131         return key;
12132 }
12133
12134 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12135 {
12136         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
12137 }
12138
12139 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12140 {
12141         u32 i, j, k;
12142
12143         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
12144
12145         if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
12146                 return;
12147
12148         while (true) {
12149                 vcpu->arch.apf.gfns[i] = ~0;
12150                 do {
12151                         j = kvm_async_pf_next_probe(j);
12152                         if (vcpu->arch.apf.gfns[j] == ~0)
12153                                 return;
12154                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
12155                         /*
12156                          * k lies cyclically in ]i,j]
12157                          * |    i.k.j |
12158                          * |....j i.k.| or  |.k..j i...|
12159                          */
12160                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
12161                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
12162                 i = j;
12163         }
12164 }
12165
12166 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
12167 {
12168         u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
12169
12170         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
12171                                       sizeof(reason));
12172 }
12173
12174 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
12175 {
12176         unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12177
12178         return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12179                                              &token, offset, sizeof(token));
12180 }
12181
12182 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
12183 {
12184         unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12185         u32 val;
12186
12187         if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12188                                          &val, offset, sizeof(val)))
12189                 return false;
12190
12191         return !val;
12192 }
12193
12194 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
12195 {
12196         if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
12197                 return false;
12198
12199         if (!kvm_pv_async_pf_enabled(vcpu) ||
12200             (vcpu->arch.apf.send_user_only && static_call(kvm_x86_get_cpl)(vcpu) == 0))
12201                 return false;
12202
12203         return true;
12204 }
12205
12206 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
12207 {
12208         if (unlikely(!lapic_in_kernel(vcpu) ||
12209                      kvm_event_needs_reinjection(vcpu) ||
12210                      vcpu->arch.exception.pending))
12211                 return false;
12212
12213         if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
12214                 return false;
12215
12216         /*
12217          * If interrupts are off we cannot even use an artificial
12218          * halt state.
12219          */
12220         return kvm_arch_interrupt_allowed(vcpu);
12221 }
12222
12223 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
12224                                      struct kvm_async_pf *work)
12225 {
12226         struct x86_exception fault;
12227
12228         trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
12229         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
12230
12231         if (kvm_can_deliver_async_pf(vcpu) &&
12232             !apf_put_user_notpresent(vcpu)) {
12233                 fault.vector = PF_VECTOR;
12234                 fault.error_code_valid = true;
12235                 fault.error_code = 0;
12236                 fault.nested_page_fault = false;
12237                 fault.address = work->arch.token;
12238                 fault.async_page_fault = true;
12239                 kvm_inject_page_fault(vcpu, &fault);
12240                 return true;
12241         } else {
12242                 /*
12243                  * It is not possible to deliver a paravirtualized asynchronous
12244                  * page fault, but putting the guest in an artificial halt state
12245                  * can be beneficial nevertheless: if an interrupt arrives, we
12246                  * can deliver it timely and perhaps the guest will schedule
12247                  * another process.  When the instruction that triggered a page
12248                  * fault is retried, hopefully the page will be ready in the host.
12249                  */
12250                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
12251                 return false;
12252         }
12253 }
12254
12255 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
12256                                  struct kvm_async_pf *work)
12257 {
12258         struct kvm_lapic_irq irq = {
12259                 .delivery_mode = APIC_DM_FIXED,
12260                 .vector = vcpu->arch.apf.vec
12261         };
12262
12263         if (work->wakeup_all)
12264                 work->arch.token = ~0; /* broadcast wakeup */
12265         else
12266                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
12267         trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
12268
12269         if ((work->wakeup_all || work->notpresent_injected) &&
12270             kvm_pv_async_pf_enabled(vcpu) &&
12271             !apf_put_user_ready(vcpu, work->arch.token)) {
12272                 vcpu->arch.apf.pageready_pending = true;
12273                 kvm_apic_set_irq(vcpu, &irq, NULL);
12274         }
12275
12276         vcpu->arch.apf.halted = false;
12277         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
12278 }
12279
12280 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
12281 {
12282         kvm_make_request(KVM_REQ_APF_READY, vcpu);
12283         if (!vcpu->arch.apf.pageready_pending)
12284                 kvm_vcpu_kick(vcpu);
12285 }
12286
12287 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
12288 {
12289         if (!kvm_pv_async_pf_enabled(vcpu))
12290                 return true;
12291         else
12292                 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
12293 }
12294
12295 void kvm_arch_start_assignment(struct kvm *kvm)
12296 {
12297         if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
12298                 static_call_cond(kvm_x86_start_assignment)(kvm);
12299 }
12300 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
12301
12302 void kvm_arch_end_assignment(struct kvm *kvm)
12303 {
12304         atomic_dec(&kvm->arch.assigned_device_count);
12305 }
12306 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
12307
12308 bool kvm_arch_has_assigned_device(struct kvm *kvm)
12309 {
12310         return atomic_read(&kvm->arch.assigned_device_count);
12311 }
12312 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
12313
12314 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
12315 {
12316         atomic_inc(&kvm->arch.noncoherent_dma_count);
12317 }
12318 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
12319
12320 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
12321 {
12322         atomic_dec(&kvm->arch.noncoherent_dma_count);
12323 }
12324 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
12325
12326 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
12327 {
12328         return atomic_read(&kvm->arch.noncoherent_dma_count);
12329 }
12330 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
12331
12332 bool kvm_arch_has_irq_bypass(void)
12333 {
12334         return true;
12335 }
12336
12337 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
12338                                       struct irq_bypass_producer *prod)
12339 {
12340         struct kvm_kernel_irqfd *irqfd =
12341                 container_of(cons, struct kvm_kernel_irqfd, consumer);
12342         int ret;
12343
12344         irqfd->producer = prod;
12345         kvm_arch_start_assignment(irqfd->kvm);
12346         ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm,
12347                                          prod->irq, irqfd->gsi, 1);
12348
12349         if (ret)
12350                 kvm_arch_end_assignment(irqfd->kvm);
12351
12352         return ret;
12353 }
12354
12355 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
12356                                       struct irq_bypass_producer *prod)
12357 {
12358         int ret;
12359         struct kvm_kernel_irqfd *irqfd =
12360                 container_of(cons, struct kvm_kernel_irqfd, consumer);
12361
12362         WARN_ON(irqfd->producer != prod);
12363         irqfd->producer = NULL;
12364
12365         /*
12366          * When producer of consumer is unregistered, we change back to
12367          * remapped mode, so we can re-use the current implementation
12368          * when the irq is masked/disabled or the consumer side (KVM
12369          * int this case doesn't want to receive the interrupts.
12370         */
12371         ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
12372         if (ret)
12373                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
12374                        " fails: %d\n", irqfd->consumer.token, ret);
12375
12376         kvm_arch_end_assignment(irqfd->kvm);
12377 }
12378
12379 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
12380                                    uint32_t guest_irq, bool set)
12381 {
12382         return static_call(kvm_x86_update_pi_irte)(kvm, host_irq, guest_irq, set);
12383 }
12384
12385 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
12386                                   struct kvm_kernel_irq_routing_entry *new)
12387 {
12388         if (new->type != KVM_IRQ_ROUTING_MSI)
12389                 return true;
12390
12391         return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
12392 }
12393
12394 bool kvm_vector_hashing_enabled(void)
12395 {
12396         return vector_hashing;
12397 }
12398
12399 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
12400 {
12401         return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
12402 }
12403 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
12404
12405
12406 int kvm_spec_ctrl_test_value(u64 value)
12407 {
12408         /*
12409          * test that setting IA32_SPEC_CTRL to given value
12410          * is allowed by the host processor
12411          */
12412
12413         u64 saved_value;
12414         unsigned long flags;
12415         int ret = 0;
12416
12417         local_irq_save(flags);
12418
12419         if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
12420                 ret = 1;
12421         else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
12422                 ret = 1;
12423         else
12424                 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
12425
12426         local_irq_restore(flags);
12427
12428         return ret;
12429 }
12430 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
12431
12432 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
12433 {
12434         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
12435         struct x86_exception fault;
12436         u32 access = error_code &
12437                 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
12438
12439         if (!(error_code & PFERR_PRESENT_MASK) ||
12440             mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != UNMAPPED_GVA) {
12441                 /*
12442                  * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
12443                  * tables probably do not match the TLB.  Just proceed
12444                  * with the error code that the processor gave.
12445                  */
12446                 fault.vector = PF_VECTOR;
12447                 fault.error_code_valid = true;
12448                 fault.error_code = error_code;
12449                 fault.nested_page_fault = false;
12450                 fault.address = gva;
12451         }
12452         vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
12453 }
12454 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
12455
12456 /*
12457  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
12458  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
12459  * indicates whether exit to userspace is needed.
12460  */
12461 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
12462                               struct x86_exception *e)
12463 {
12464         if (r == X86EMUL_PROPAGATE_FAULT) {
12465                 kvm_inject_emulated_page_fault(vcpu, e);
12466                 return 1;
12467         }
12468
12469         /*
12470          * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
12471          * while handling a VMX instruction KVM could've handled the request
12472          * correctly by exiting to userspace and performing I/O but there
12473          * doesn't seem to be a real use-case behind such requests, just return
12474          * KVM_EXIT_INTERNAL_ERROR for now.
12475          */
12476         kvm_prepare_emulation_failure_exit(vcpu);
12477
12478         return 0;
12479 }
12480 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
12481
12482 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
12483 {
12484         bool pcid_enabled;
12485         struct x86_exception e;
12486         struct {
12487                 u64 pcid;
12488                 u64 gla;
12489         } operand;
12490         int r;
12491
12492         r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
12493         if (r != X86EMUL_CONTINUE)
12494                 return kvm_handle_memory_failure(vcpu, r, &e);
12495
12496         if (operand.pcid >> 12 != 0) {
12497                 kvm_inject_gp(vcpu, 0);
12498                 return 1;
12499         }
12500
12501         pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
12502
12503         switch (type) {
12504         case INVPCID_TYPE_INDIV_ADDR:
12505                 if ((!pcid_enabled && (operand.pcid != 0)) ||
12506                     is_noncanonical_address(operand.gla, vcpu)) {
12507                         kvm_inject_gp(vcpu, 0);
12508                         return 1;
12509                 }
12510                 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
12511                 return kvm_skip_emulated_instruction(vcpu);
12512
12513         case INVPCID_TYPE_SINGLE_CTXT:
12514                 if (!pcid_enabled && (operand.pcid != 0)) {
12515                         kvm_inject_gp(vcpu, 0);
12516                         return 1;
12517                 }
12518
12519                 kvm_invalidate_pcid(vcpu, operand.pcid);
12520                 return kvm_skip_emulated_instruction(vcpu);
12521
12522         case INVPCID_TYPE_ALL_NON_GLOBAL:
12523                 /*
12524                  * Currently, KVM doesn't mark global entries in the shadow
12525                  * page tables, so a non-global flush just degenerates to a
12526                  * global flush. If needed, we could optimize this later by
12527                  * keeping track of global entries in shadow page tables.
12528                  */
12529
12530                 fallthrough;
12531         case INVPCID_TYPE_ALL_INCL_GLOBAL:
12532                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12533                 return kvm_skip_emulated_instruction(vcpu);
12534
12535         default:
12536                 kvm_inject_gp(vcpu, 0);
12537                 return 1;
12538         }
12539 }
12540 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
12541
12542 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
12543 {
12544         struct kvm_run *run = vcpu->run;
12545         struct kvm_mmio_fragment *frag;
12546         unsigned int len;
12547
12548         BUG_ON(!vcpu->mmio_needed);
12549
12550         /* Complete previous fragment */
12551         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
12552         len = min(8u, frag->len);
12553         if (!vcpu->mmio_is_write)
12554                 memcpy(frag->data, run->mmio.data, len);
12555
12556         if (frag->len <= 8) {
12557                 /* Switch to the next fragment. */
12558                 frag++;
12559                 vcpu->mmio_cur_fragment++;
12560         } else {
12561                 /* Go forward to the next mmio piece. */
12562                 frag->data += len;
12563                 frag->gpa += len;
12564                 frag->len -= len;
12565         }
12566
12567         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
12568                 vcpu->mmio_needed = 0;
12569
12570                 // VMG change, at this point, we're always done
12571                 // RIP has already been advanced
12572                 return 1;
12573         }
12574
12575         // More MMIO is needed
12576         run->mmio.phys_addr = frag->gpa;
12577         run->mmio.len = min(8u, frag->len);
12578         run->mmio.is_write = vcpu->mmio_is_write;
12579         if (run->mmio.is_write)
12580                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
12581         run->exit_reason = KVM_EXIT_MMIO;
12582
12583         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12584
12585         return 0;
12586 }
12587
12588 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12589                           void *data)
12590 {
12591         int handled;
12592         struct kvm_mmio_fragment *frag;
12593
12594         if (!data)
12595                 return -EINVAL;
12596
12597         handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12598         if (handled == bytes)
12599                 return 1;
12600
12601         bytes -= handled;
12602         gpa += handled;
12603         data += handled;
12604
12605         /*TODO: Check if need to increment number of frags */
12606         frag = vcpu->mmio_fragments;
12607         vcpu->mmio_nr_fragments = 1;
12608         frag->len = bytes;
12609         frag->gpa = gpa;
12610         frag->data = data;
12611
12612         vcpu->mmio_needed = 1;
12613         vcpu->mmio_cur_fragment = 0;
12614
12615         vcpu->run->mmio.phys_addr = gpa;
12616         vcpu->run->mmio.len = min(8u, frag->len);
12617         vcpu->run->mmio.is_write = 1;
12618         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
12619         vcpu->run->exit_reason = KVM_EXIT_MMIO;
12620
12621         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12622
12623         return 0;
12624 }
12625 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
12626
12627 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12628                          void *data)
12629 {
12630         int handled;
12631         struct kvm_mmio_fragment *frag;
12632
12633         if (!data)
12634                 return -EINVAL;
12635
12636         handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12637         if (handled == bytes)
12638                 return 1;
12639
12640         bytes -= handled;
12641         gpa += handled;
12642         data += handled;
12643
12644         /*TODO: Check if need to increment number of frags */
12645         frag = vcpu->mmio_fragments;
12646         vcpu->mmio_nr_fragments = 1;
12647         frag->len = bytes;
12648         frag->gpa = gpa;
12649         frag->data = data;
12650
12651         vcpu->mmio_needed = 1;
12652         vcpu->mmio_cur_fragment = 0;
12653
12654         vcpu->run->mmio.phys_addr = gpa;
12655         vcpu->run->mmio.len = min(8u, frag->len);
12656         vcpu->run->mmio.is_write = 0;
12657         vcpu->run->exit_reason = KVM_EXIT_MMIO;
12658
12659         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12660
12661         return 0;
12662 }
12663 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
12664
12665 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
12666                            unsigned int port);
12667
12668 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
12669 {
12670         int size = vcpu->arch.pio.size;
12671         int port = vcpu->arch.pio.port;
12672
12673         vcpu->arch.pio.count = 0;
12674         if (vcpu->arch.sev_pio_count)
12675                 return kvm_sev_es_outs(vcpu, size, port);
12676         return 1;
12677 }
12678
12679 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
12680                            unsigned int port)
12681 {
12682         for (;;) {
12683                 unsigned int count =
12684                         min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
12685                 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
12686
12687                 /* memcpy done already by emulator_pio_out.  */
12688                 vcpu->arch.sev_pio_count -= count;
12689                 vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size;
12690                 if (!ret)
12691                         break;
12692
12693                 /* Emulation done by the kernel.  */
12694                 if (!vcpu->arch.sev_pio_count)
12695                         return 1;
12696         }
12697
12698         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
12699         return 0;
12700 }
12701
12702 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
12703                           unsigned int port);
12704
12705 static void advance_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
12706 {
12707         unsigned count = vcpu->arch.pio.count;
12708         complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
12709         vcpu->arch.sev_pio_count -= count;
12710         vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size;
12711 }
12712
12713 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
12714 {
12715         int size = vcpu->arch.pio.size;
12716         int port = vcpu->arch.pio.port;
12717
12718         advance_sev_es_emulated_ins(vcpu);
12719         if (vcpu->arch.sev_pio_count)
12720                 return kvm_sev_es_ins(vcpu, size, port);
12721         return 1;
12722 }
12723
12724 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
12725                           unsigned int port)
12726 {
12727         for (;;) {
12728                 unsigned int count =
12729                         min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
12730                 if (!__emulator_pio_in(vcpu, size, port, count))
12731                         break;
12732
12733                 /* Emulation done by the kernel.  */
12734                 advance_sev_es_emulated_ins(vcpu);
12735                 if (!vcpu->arch.sev_pio_count)
12736                         return 1;
12737         }
12738
12739         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
12740         return 0;
12741 }
12742
12743 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
12744                          unsigned int port, void *data,  unsigned int count,
12745                          int in)
12746 {
12747         vcpu->arch.sev_pio_data = data;
12748         vcpu->arch.sev_pio_count = count;
12749         return in ? kvm_sev_es_ins(vcpu, size, port)
12750                   : kvm_sev_es_outs(vcpu, size, port);
12751 }
12752 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
12753
12754 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
12755 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
12756 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
12757 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
12758 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
12759 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
12760 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
12761 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
12762 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
12763 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
12764 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
12765 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
12766 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
12767 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
12768 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
12769 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
12770 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
12771 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
12772 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
12773 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
12774 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
12775 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
12776 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request);
12777 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
12778 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
12779 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
12780 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
12781 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);