Merge tag 'kvm-s390-next-5.7-3' of git://git.kernel.org/pub/scm/linux/kernel/git...
[platform/kernel/linux-rpi.git] / arch / x86 / kvm / x86.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "mmu.h"
22 #include "i8254.h"
23 #include "tss.h"
24 #include "kvm_cache_regs.h"
25 #include "kvm_emulate.h"
26 #include "x86.h"
27 #include "cpuid.h"
28 #include "pmu.h"
29 #include "hyperv.h"
30 #include "lapic.h"
31
32 #include <linux/clocksource.h>
33 #include <linux/interrupt.h>
34 #include <linux/kvm.h>
35 #include <linux/fs.h>
36 #include <linux/vmalloc.h>
37 #include <linux/export.h>
38 #include <linux/moduleparam.h>
39 #include <linux/mman.h>
40 #include <linux/highmem.h>
41 #include <linux/iommu.h>
42 #include <linux/intel-iommu.h>
43 #include <linux/cpufreq.h>
44 #include <linux/user-return-notifier.h>
45 #include <linux/srcu.h>
46 #include <linux/slab.h>
47 #include <linux/perf_event.h>
48 #include <linux/uaccess.h>
49 #include <linux/hash.h>
50 #include <linux/pci.h>
51 #include <linux/timekeeper_internal.h>
52 #include <linux/pvclock_gtod.h>
53 #include <linux/kvm_irqfd.h>
54 #include <linux/irqbypass.h>
55 #include <linux/sched/stat.h>
56 #include <linux/sched/isolation.h>
57 #include <linux/mem_encrypt.h>
58
59 #include <trace/events/kvm.h>
60
61 #include <asm/debugreg.h>
62 #include <asm/msr.h>
63 #include <asm/desc.h>
64 #include <asm/mce.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70 #include <asm/mshyperv.h>
71 #include <asm/hypervisor.h>
72 #include <asm/intel_pt.h>
73 #include <asm/emulate_prefix.h>
74 #include <clocksource/hyperv_timer.h>
75
76 #define CREATE_TRACE_POINTS
77 #include "trace.h"
78
79 #define MAX_IO_MSRS 256
80 #define KVM_MAX_MCE_BANKS 32
81 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
82 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
83
84 #define emul_to_vcpu(ctxt) \
85         ((struct kvm_vcpu *)(ctxt)->vcpu)
86
87 /* EFER defaults:
88  * - enable syscall per default because its emulated by KVM
89  * - enable LME and LMA per default on 64 bit KVM
90  */
91 #ifdef CONFIG_X86_64
92 static
93 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
94 #else
95 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
96 #endif
97
98 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
99
100 #define VM_STAT(x, ...) offsetof(struct kvm, stat.x), KVM_STAT_VM, ## __VA_ARGS__
101 #define VCPU_STAT(x, ...) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU, ## __VA_ARGS__
102
103 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
104                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
105
106 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
107 static void process_nmi(struct kvm_vcpu *vcpu);
108 static void enter_smm(struct kvm_vcpu *vcpu);
109 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
110 static void store_regs(struct kvm_vcpu *vcpu);
111 static int sync_regs(struct kvm_vcpu *vcpu);
112
113 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
114 EXPORT_SYMBOL_GPL(kvm_x86_ops);
115
116 static bool __read_mostly ignore_msrs = 0;
117 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
118
119 static bool __read_mostly report_ignored_msrs = true;
120 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
121
122 unsigned int min_timer_period_us = 200;
123 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
124
125 static bool __read_mostly kvmclock_periodic_sync = true;
126 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
127
128 bool __read_mostly kvm_has_tsc_control;
129 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
130 u32  __read_mostly kvm_max_guest_tsc_khz;
131 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
132 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
133 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
134 u64  __read_mostly kvm_max_tsc_scaling_ratio;
135 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
136 u64 __read_mostly kvm_default_tsc_scaling_ratio;
137 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
138
139 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
140 static u32 __read_mostly tsc_tolerance_ppm = 250;
141 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
142
143 /*
144  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
145  * adaptive tuning starting from default advancment of 1000ns.  '0' disables
146  * advancement entirely.  Any other value is used as-is and disables adaptive
147  * tuning, i.e. allows priveleged userspace to set an exact advancement time.
148  */
149 static int __read_mostly lapic_timer_advance_ns = -1;
150 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
151
152 static bool __read_mostly vector_hashing = true;
153 module_param(vector_hashing, bool, S_IRUGO);
154
155 bool __read_mostly enable_vmware_backdoor = false;
156 module_param(enable_vmware_backdoor, bool, S_IRUGO);
157 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
158
159 static bool __read_mostly force_emulation_prefix = false;
160 module_param(force_emulation_prefix, bool, S_IRUGO);
161
162 int __read_mostly pi_inject_timer = -1;
163 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
164
165 #define KVM_NR_SHARED_MSRS 16
166
167 struct kvm_shared_msrs_global {
168         int nr;
169         u32 msrs[KVM_NR_SHARED_MSRS];
170 };
171
172 struct kvm_shared_msrs {
173         struct user_return_notifier urn;
174         bool registered;
175         struct kvm_shared_msr_values {
176                 u64 host;
177                 u64 curr;
178         } values[KVM_NR_SHARED_MSRS];
179 };
180
181 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
182 static struct kvm_shared_msrs __percpu *shared_msrs;
183
184 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
185                                 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
186                                 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
187                                 | XFEATURE_MASK_PKRU)
188
189 u64 __read_mostly host_efer;
190 EXPORT_SYMBOL_GPL(host_efer);
191
192 static u64 __read_mostly host_xss;
193 u64 __read_mostly supported_xss;
194 EXPORT_SYMBOL_GPL(supported_xss);
195
196 struct kvm_stats_debugfs_item debugfs_entries[] = {
197         { "pf_fixed", VCPU_STAT(pf_fixed) },
198         { "pf_guest", VCPU_STAT(pf_guest) },
199         { "tlb_flush", VCPU_STAT(tlb_flush) },
200         { "invlpg", VCPU_STAT(invlpg) },
201         { "exits", VCPU_STAT(exits) },
202         { "io_exits", VCPU_STAT(io_exits) },
203         { "mmio_exits", VCPU_STAT(mmio_exits) },
204         { "signal_exits", VCPU_STAT(signal_exits) },
205         { "irq_window", VCPU_STAT(irq_window_exits) },
206         { "nmi_window", VCPU_STAT(nmi_window_exits) },
207         { "halt_exits", VCPU_STAT(halt_exits) },
208         { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
209         { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
210         { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
211         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
212         { "hypercalls", VCPU_STAT(hypercalls) },
213         { "request_irq", VCPU_STAT(request_irq_exits) },
214         { "irq_exits", VCPU_STAT(irq_exits) },
215         { "host_state_reload", VCPU_STAT(host_state_reload) },
216         { "fpu_reload", VCPU_STAT(fpu_reload) },
217         { "insn_emulation", VCPU_STAT(insn_emulation) },
218         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
219         { "irq_injections", VCPU_STAT(irq_injections) },
220         { "nmi_injections", VCPU_STAT(nmi_injections) },
221         { "req_event", VCPU_STAT(req_event) },
222         { "l1d_flush", VCPU_STAT(l1d_flush) },
223         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
224         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
225         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
226         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
227         { "mmu_flooded", VM_STAT(mmu_flooded) },
228         { "mmu_recycled", VM_STAT(mmu_recycled) },
229         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
230         { "mmu_unsync", VM_STAT(mmu_unsync) },
231         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
232         { "largepages", VM_STAT(lpages, .mode = 0444) },
233         { "nx_largepages_splitted", VM_STAT(nx_lpage_splits, .mode = 0444) },
234         { "max_mmu_page_hash_collisions",
235                 VM_STAT(max_mmu_page_hash_collisions) },
236         { NULL }
237 };
238
239 u64 __read_mostly host_xcr0;
240 u64 __read_mostly supported_xcr0;
241 EXPORT_SYMBOL_GPL(supported_xcr0);
242
243 struct kmem_cache *x86_fpu_cache;
244 EXPORT_SYMBOL_GPL(x86_fpu_cache);
245
246 static struct kmem_cache *x86_emulator_cache;
247
248 static struct kmem_cache *kvm_alloc_emulator_cache(void)
249 {
250         unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
251         unsigned int size = sizeof(struct x86_emulate_ctxt);
252
253         return kmem_cache_create_usercopy("x86_emulator", size,
254                                           __alignof__(struct x86_emulate_ctxt),
255                                           SLAB_ACCOUNT, useroffset,
256                                           size - useroffset, NULL);
257 }
258
259 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
260
261 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
262 {
263         int i;
264         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
265                 vcpu->arch.apf.gfns[i] = ~0;
266 }
267
268 static void kvm_on_user_return(struct user_return_notifier *urn)
269 {
270         unsigned slot;
271         struct kvm_shared_msrs *locals
272                 = container_of(urn, struct kvm_shared_msrs, urn);
273         struct kvm_shared_msr_values *values;
274         unsigned long flags;
275
276         /*
277          * Disabling irqs at this point since the following code could be
278          * interrupted and executed through kvm_arch_hardware_disable()
279          */
280         local_irq_save(flags);
281         if (locals->registered) {
282                 locals->registered = false;
283                 user_return_notifier_unregister(urn);
284         }
285         local_irq_restore(flags);
286         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
287                 values = &locals->values[slot];
288                 if (values->host != values->curr) {
289                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
290                         values->curr = values->host;
291                 }
292         }
293 }
294
295 void kvm_define_shared_msr(unsigned slot, u32 msr)
296 {
297         BUG_ON(slot >= KVM_NR_SHARED_MSRS);
298         shared_msrs_global.msrs[slot] = msr;
299         if (slot >= shared_msrs_global.nr)
300                 shared_msrs_global.nr = slot + 1;
301 }
302 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
303
304 static void kvm_shared_msr_cpu_online(void)
305 {
306         unsigned int cpu = smp_processor_id();
307         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
308         u64 value;
309         int i;
310
311         for (i = 0; i < shared_msrs_global.nr; ++i) {
312                 rdmsrl_safe(shared_msrs_global.msrs[i], &value);
313                 smsr->values[i].host = value;
314                 smsr->values[i].curr = value;
315         }
316 }
317
318 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
319 {
320         unsigned int cpu = smp_processor_id();
321         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
322         int err;
323
324         value = (value & mask) | (smsr->values[slot].host & ~mask);
325         if (value == smsr->values[slot].curr)
326                 return 0;
327         err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
328         if (err)
329                 return 1;
330
331         smsr->values[slot].curr = value;
332         if (!smsr->registered) {
333                 smsr->urn.on_user_return = kvm_on_user_return;
334                 user_return_notifier_register(&smsr->urn);
335                 smsr->registered = true;
336         }
337         return 0;
338 }
339 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
340
341 static void drop_user_return_notifiers(void)
342 {
343         unsigned int cpu = smp_processor_id();
344         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
345
346         if (smsr->registered)
347                 kvm_on_user_return(&smsr->urn);
348 }
349
350 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
351 {
352         return vcpu->arch.apic_base;
353 }
354 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
355
356 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
357 {
358         return kvm_apic_mode(kvm_get_apic_base(vcpu));
359 }
360 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
361
362 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
363 {
364         enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
365         enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
366         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
367                 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
368
369         if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
370                 return 1;
371         if (!msr_info->host_initiated) {
372                 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
373                         return 1;
374                 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
375                         return 1;
376         }
377
378         kvm_lapic_set_base(vcpu, msr_info->data);
379         kvm_recalculate_apic_map(vcpu->kvm);
380         return 0;
381 }
382 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
383
384 asmlinkage __visible void kvm_spurious_fault(void)
385 {
386         /* Fault while not rebooting.  We want the trace. */
387         BUG_ON(!kvm_rebooting);
388 }
389 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
390
391 #define EXCPT_BENIGN            0
392 #define EXCPT_CONTRIBUTORY      1
393 #define EXCPT_PF                2
394
395 static int exception_class(int vector)
396 {
397         switch (vector) {
398         case PF_VECTOR:
399                 return EXCPT_PF;
400         case DE_VECTOR:
401         case TS_VECTOR:
402         case NP_VECTOR:
403         case SS_VECTOR:
404         case GP_VECTOR:
405                 return EXCPT_CONTRIBUTORY;
406         default:
407                 break;
408         }
409         return EXCPT_BENIGN;
410 }
411
412 #define EXCPT_FAULT             0
413 #define EXCPT_TRAP              1
414 #define EXCPT_ABORT             2
415 #define EXCPT_INTERRUPT         3
416
417 static int exception_type(int vector)
418 {
419         unsigned int mask;
420
421         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
422                 return EXCPT_INTERRUPT;
423
424         mask = 1 << vector;
425
426         /* #DB is trap, as instruction watchpoints are handled elsewhere */
427         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
428                 return EXCPT_TRAP;
429
430         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
431                 return EXCPT_ABORT;
432
433         /* Reserved exceptions will result in fault */
434         return EXCPT_FAULT;
435 }
436
437 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
438 {
439         unsigned nr = vcpu->arch.exception.nr;
440         bool has_payload = vcpu->arch.exception.has_payload;
441         unsigned long payload = vcpu->arch.exception.payload;
442
443         if (!has_payload)
444                 return;
445
446         switch (nr) {
447         case DB_VECTOR:
448                 /*
449                  * "Certain debug exceptions may clear bit 0-3.  The
450                  * remaining contents of the DR6 register are never
451                  * cleared by the processor".
452                  */
453                 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
454                 /*
455                  * DR6.RTM is set by all #DB exceptions that don't clear it.
456                  */
457                 vcpu->arch.dr6 |= DR6_RTM;
458                 vcpu->arch.dr6 |= payload;
459                 /*
460                  * Bit 16 should be set in the payload whenever the #DB
461                  * exception should clear DR6.RTM. This makes the payload
462                  * compatible with the pending debug exceptions under VMX.
463                  * Though not currently documented in the SDM, this also
464                  * makes the payload compatible with the exit qualification
465                  * for #DB exceptions under VMX.
466                  */
467                 vcpu->arch.dr6 ^= payload & DR6_RTM;
468
469                 /*
470                  * The #DB payload is defined as compatible with the 'pending
471                  * debug exceptions' field under VMX, not DR6. While bit 12 is
472                  * defined in the 'pending debug exceptions' field (enabled
473                  * breakpoint), it is reserved and must be zero in DR6.
474                  */
475                 vcpu->arch.dr6 &= ~BIT(12);
476                 break;
477         case PF_VECTOR:
478                 vcpu->arch.cr2 = payload;
479                 break;
480         }
481
482         vcpu->arch.exception.has_payload = false;
483         vcpu->arch.exception.payload = 0;
484 }
485 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
486
487 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
488                 unsigned nr, bool has_error, u32 error_code,
489                 bool has_payload, unsigned long payload, bool reinject)
490 {
491         u32 prev_nr;
492         int class1, class2;
493
494         kvm_make_request(KVM_REQ_EVENT, vcpu);
495
496         if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
497         queue:
498                 if (has_error && !is_protmode(vcpu))
499                         has_error = false;
500                 if (reinject) {
501                         /*
502                          * On vmentry, vcpu->arch.exception.pending is only
503                          * true if an event injection was blocked by
504                          * nested_run_pending.  In that case, however,
505                          * vcpu_enter_guest requests an immediate exit,
506                          * and the guest shouldn't proceed far enough to
507                          * need reinjection.
508                          */
509                         WARN_ON_ONCE(vcpu->arch.exception.pending);
510                         vcpu->arch.exception.injected = true;
511                         if (WARN_ON_ONCE(has_payload)) {
512                                 /*
513                                  * A reinjected event has already
514                                  * delivered its payload.
515                                  */
516                                 has_payload = false;
517                                 payload = 0;
518                         }
519                 } else {
520                         vcpu->arch.exception.pending = true;
521                         vcpu->arch.exception.injected = false;
522                 }
523                 vcpu->arch.exception.has_error_code = has_error;
524                 vcpu->arch.exception.nr = nr;
525                 vcpu->arch.exception.error_code = error_code;
526                 vcpu->arch.exception.has_payload = has_payload;
527                 vcpu->arch.exception.payload = payload;
528                 if (!is_guest_mode(vcpu))
529                         kvm_deliver_exception_payload(vcpu);
530                 return;
531         }
532
533         /* to check exception */
534         prev_nr = vcpu->arch.exception.nr;
535         if (prev_nr == DF_VECTOR) {
536                 /* triple fault -> shutdown */
537                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
538                 return;
539         }
540         class1 = exception_class(prev_nr);
541         class2 = exception_class(nr);
542         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
543                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
544                 /*
545                  * Generate double fault per SDM Table 5-5.  Set
546                  * exception.pending = true so that the double fault
547                  * can trigger a nested vmexit.
548                  */
549                 vcpu->arch.exception.pending = true;
550                 vcpu->arch.exception.injected = false;
551                 vcpu->arch.exception.has_error_code = true;
552                 vcpu->arch.exception.nr = DF_VECTOR;
553                 vcpu->arch.exception.error_code = 0;
554                 vcpu->arch.exception.has_payload = false;
555                 vcpu->arch.exception.payload = 0;
556         } else
557                 /* replace previous exception with a new one in a hope
558                    that instruction re-execution will regenerate lost
559                    exception */
560                 goto queue;
561 }
562
563 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
564 {
565         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
566 }
567 EXPORT_SYMBOL_GPL(kvm_queue_exception);
568
569 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
570 {
571         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
572 }
573 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
574
575 static void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
576                                   unsigned long payload)
577 {
578         kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
579 }
580
581 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
582                                     u32 error_code, unsigned long payload)
583 {
584         kvm_multiple_exception(vcpu, nr, true, error_code,
585                                true, payload, false);
586 }
587
588 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
589 {
590         if (err)
591                 kvm_inject_gp(vcpu, 0);
592         else
593                 return kvm_skip_emulated_instruction(vcpu);
594
595         return 1;
596 }
597 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
598
599 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
600 {
601         ++vcpu->stat.pf_guest;
602         vcpu->arch.exception.nested_apf =
603                 is_guest_mode(vcpu) && fault->async_page_fault;
604         if (vcpu->arch.exception.nested_apf) {
605                 vcpu->arch.apf.nested_apf_token = fault->address;
606                 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
607         } else {
608                 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
609                                         fault->address);
610         }
611 }
612 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
613
614 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
615 {
616         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
617                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
618         else
619                 vcpu->arch.mmu->inject_page_fault(vcpu, fault);
620
621         return fault->nested_page_fault;
622 }
623
624 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
625 {
626         atomic_inc(&vcpu->arch.nmi_queued);
627         kvm_make_request(KVM_REQ_NMI, vcpu);
628 }
629 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
630
631 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
632 {
633         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
634 }
635 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
636
637 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
638 {
639         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
640 }
641 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
642
643 /*
644  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
645  * a #GP and return false.
646  */
647 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
648 {
649         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
650                 return true;
651         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
652         return false;
653 }
654 EXPORT_SYMBOL_GPL(kvm_require_cpl);
655
656 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
657 {
658         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
659                 return true;
660
661         kvm_queue_exception(vcpu, UD_VECTOR);
662         return false;
663 }
664 EXPORT_SYMBOL_GPL(kvm_require_dr);
665
666 /*
667  * This function will be used to read from the physical memory of the currently
668  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
669  * can read from guest physical or from the guest's guest physical memory.
670  */
671 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
672                             gfn_t ngfn, void *data, int offset, int len,
673                             u32 access)
674 {
675         struct x86_exception exception;
676         gfn_t real_gfn;
677         gpa_t ngpa;
678
679         ngpa     = gfn_to_gpa(ngfn);
680         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
681         if (real_gfn == UNMAPPED_GVA)
682                 return -EFAULT;
683
684         real_gfn = gpa_to_gfn(real_gfn);
685
686         return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
687 }
688 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
689
690 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
691                                void *data, int offset, int len, u32 access)
692 {
693         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
694                                        data, offset, len, access);
695 }
696
697 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
698 {
699         return rsvd_bits(cpuid_maxphyaddr(vcpu), 63) | rsvd_bits(5, 8) |
700                rsvd_bits(1, 2);
701 }
702
703 /*
704  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
705  */
706 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
707 {
708         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
709         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
710         int i;
711         int ret;
712         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
713
714         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
715                                       offset * sizeof(u64), sizeof(pdpte),
716                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
717         if (ret < 0) {
718                 ret = 0;
719                 goto out;
720         }
721         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
722                 if ((pdpte[i] & PT_PRESENT_MASK) &&
723                     (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
724                         ret = 0;
725                         goto out;
726                 }
727         }
728         ret = 1;
729
730         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
731         kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
732
733 out:
734
735         return ret;
736 }
737 EXPORT_SYMBOL_GPL(load_pdptrs);
738
739 bool pdptrs_changed(struct kvm_vcpu *vcpu)
740 {
741         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
742         int offset;
743         gfn_t gfn;
744         int r;
745
746         if (!is_pae_paging(vcpu))
747                 return false;
748
749         if (!kvm_register_is_available(vcpu, VCPU_EXREG_PDPTR))
750                 return true;
751
752         gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
753         offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
754         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
755                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
756         if (r < 0)
757                 return true;
758
759         return memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
760 }
761 EXPORT_SYMBOL_GPL(pdptrs_changed);
762
763 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
764 {
765         unsigned long old_cr0 = kvm_read_cr0(vcpu);
766         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
767
768         cr0 |= X86_CR0_ET;
769
770 #ifdef CONFIG_X86_64
771         if (cr0 & 0xffffffff00000000UL)
772                 return 1;
773 #endif
774
775         cr0 &= ~CR0_RESERVED_BITS;
776
777         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
778                 return 1;
779
780         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
781                 return 1;
782
783         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
784 #ifdef CONFIG_X86_64
785                 if ((vcpu->arch.efer & EFER_LME)) {
786                         int cs_db, cs_l;
787
788                         if (!is_pae(vcpu))
789                                 return 1;
790                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
791                         if (cs_l)
792                                 return 1;
793                 } else
794 #endif
795                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
796                                                  kvm_read_cr3(vcpu)))
797                         return 1;
798         }
799
800         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
801                 return 1;
802
803         kvm_x86_ops->set_cr0(vcpu, cr0);
804
805         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
806                 kvm_clear_async_pf_completion_queue(vcpu);
807                 kvm_async_pf_hash_reset(vcpu);
808         }
809
810         if ((cr0 ^ old_cr0) & update_bits)
811                 kvm_mmu_reset_context(vcpu);
812
813         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
814             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
815             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
816                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
817
818         return 0;
819 }
820 EXPORT_SYMBOL_GPL(kvm_set_cr0);
821
822 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
823 {
824         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
825 }
826 EXPORT_SYMBOL_GPL(kvm_lmsw);
827
828 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
829 {
830         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
831
832                 if (vcpu->arch.xcr0 != host_xcr0)
833                         xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
834
835                 if (vcpu->arch.xsaves_enabled &&
836                     vcpu->arch.ia32_xss != host_xss)
837                         wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
838         }
839 }
840 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
841
842 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
843 {
844         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
845
846                 if (vcpu->arch.xcr0 != host_xcr0)
847                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
848
849                 if (vcpu->arch.xsaves_enabled &&
850                     vcpu->arch.ia32_xss != host_xss)
851                         wrmsrl(MSR_IA32_XSS, host_xss);
852         }
853
854 }
855 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
856
857 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
858 {
859         u64 xcr0 = xcr;
860         u64 old_xcr0 = vcpu->arch.xcr0;
861         u64 valid_bits;
862
863         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
864         if (index != XCR_XFEATURE_ENABLED_MASK)
865                 return 1;
866         if (!(xcr0 & XFEATURE_MASK_FP))
867                 return 1;
868         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
869                 return 1;
870
871         /*
872          * Do not allow the guest to set bits that we do not support
873          * saving.  However, xcr0 bit 0 is always set, even if the
874          * emulated CPU does not support XSAVE (see fx_init).
875          */
876         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
877         if (xcr0 & ~valid_bits)
878                 return 1;
879
880         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
881             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
882                 return 1;
883
884         if (xcr0 & XFEATURE_MASK_AVX512) {
885                 if (!(xcr0 & XFEATURE_MASK_YMM))
886                         return 1;
887                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
888                         return 1;
889         }
890         vcpu->arch.xcr0 = xcr0;
891
892         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
893                 kvm_update_cpuid(vcpu);
894         return 0;
895 }
896
897 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
898 {
899         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
900             __kvm_set_xcr(vcpu, index, xcr)) {
901                 kvm_inject_gp(vcpu, 0);
902                 return 1;
903         }
904         return 0;
905 }
906 EXPORT_SYMBOL_GPL(kvm_set_xcr);
907
908 #define __cr4_reserved_bits(__cpu_has, __c)             \
909 ({                                                      \
910         u64 __reserved_bits = CR4_RESERVED_BITS;        \
911                                                         \
912         if (!__cpu_has(__c, X86_FEATURE_XSAVE))         \
913                 __reserved_bits |= X86_CR4_OSXSAVE;     \
914         if (!__cpu_has(__c, X86_FEATURE_SMEP))          \
915                 __reserved_bits |= X86_CR4_SMEP;        \
916         if (!__cpu_has(__c, X86_FEATURE_SMAP))          \
917                 __reserved_bits |= X86_CR4_SMAP;        \
918         if (!__cpu_has(__c, X86_FEATURE_FSGSBASE))      \
919                 __reserved_bits |= X86_CR4_FSGSBASE;    \
920         if (!__cpu_has(__c, X86_FEATURE_PKU))           \
921                 __reserved_bits |= X86_CR4_PKE;         \
922         if (!__cpu_has(__c, X86_FEATURE_LA57))          \
923                 __reserved_bits |= X86_CR4_LA57;        \
924         if (!__cpu_has(__c, X86_FEATURE_UMIP))          \
925                 __reserved_bits |= X86_CR4_UMIP;        \
926         __reserved_bits;                                \
927 })
928
929 static u64 kvm_host_cr4_reserved_bits(struct cpuinfo_x86 *c)
930 {
931         u64 reserved_bits = __cr4_reserved_bits(cpu_has, c);
932
933         if (kvm_cpu_cap_has(X86_FEATURE_LA57))
934                 reserved_bits &= ~X86_CR4_LA57;
935
936         if (kvm_cpu_cap_has(X86_FEATURE_UMIP))
937                 reserved_bits &= ~X86_CR4_UMIP;
938
939         return reserved_bits;
940 }
941
942 static int kvm_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
943 {
944         if (cr4 & cr4_reserved_bits)
945                 return -EINVAL;
946
947         if (cr4 & __cr4_reserved_bits(guest_cpuid_has, vcpu))
948                 return -EINVAL;
949
950         return 0;
951 }
952
953 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
954 {
955         unsigned long old_cr4 = kvm_read_cr4(vcpu);
956         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
957                                    X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
958
959         if (kvm_valid_cr4(vcpu, cr4))
960                 return 1;
961
962         if (is_long_mode(vcpu)) {
963                 if (!(cr4 & X86_CR4_PAE))
964                         return 1;
965         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
966                    && ((cr4 ^ old_cr4) & pdptr_bits)
967                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
968                                    kvm_read_cr3(vcpu)))
969                 return 1;
970
971         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
972                 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
973                         return 1;
974
975                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
976                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
977                         return 1;
978         }
979
980         if (kvm_x86_ops->set_cr4(vcpu, cr4))
981                 return 1;
982
983         if (((cr4 ^ old_cr4) & pdptr_bits) ||
984             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
985                 kvm_mmu_reset_context(vcpu);
986
987         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
988                 kvm_update_cpuid(vcpu);
989
990         return 0;
991 }
992 EXPORT_SYMBOL_GPL(kvm_set_cr4);
993
994 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
995 {
996         bool skip_tlb_flush = false;
997 #ifdef CONFIG_X86_64
998         bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
999
1000         if (pcid_enabled) {
1001                 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1002                 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1003         }
1004 #endif
1005
1006         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
1007                 if (!skip_tlb_flush) {
1008                         kvm_mmu_sync_roots(vcpu);
1009                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1010                 }
1011                 return 0;
1012         }
1013
1014         if (is_long_mode(vcpu) &&
1015             (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63)))
1016                 return 1;
1017         else if (is_pae_paging(vcpu) &&
1018                  !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
1019                 return 1;
1020
1021         kvm_mmu_new_cr3(vcpu, cr3, skip_tlb_flush);
1022         vcpu->arch.cr3 = cr3;
1023         kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1024
1025         return 0;
1026 }
1027 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1028
1029 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1030 {
1031         if (cr8 & CR8_RESERVED_BITS)
1032                 return 1;
1033         if (lapic_in_kernel(vcpu))
1034                 kvm_lapic_set_tpr(vcpu, cr8);
1035         else
1036                 vcpu->arch.cr8 = cr8;
1037         return 0;
1038 }
1039 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1040
1041 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1042 {
1043         if (lapic_in_kernel(vcpu))
1044                 return kvm_lapic_get_cr8(vcpu);
1045         else
1046                 return vcpu->arch.cr8;
1047 }
1048 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1049
1050 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1051 {
1052         int i;
1053
1054         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1055                 for (i = 0; i < KVM_NR_DB_REGS; i++)
1056                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1057                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
1058         }
1059 }
1060
1061 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
1062 {
1063         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1064                 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
1065 }
1066
1067 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
1068 {
1069         unsigned long dr7;
1070
1071         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1072                 dr7 = vcpu->arch.guest_debug_dr7;
1073         else
1074                 dr7 = vcpu->arch.dr7;
1075         kvm_x86_ops->set_dr7(vcpu, dr7);
1076         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1077         if (dr7 & DR7_BP_EN_MASK)
1078                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1079 }
1080
1081 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1082 {
1083         u64 fixed = DR6_FIXED_1;
1084
1085         if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1086                 fixed |= DR6_RTM;
1087         return fixed;
1088 }
1089
1090 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1091 {
1092         size_t size = ARRAY_SIZE(vcpu->arch.db);
1093
1094         switch (dr) {
1095         case 0 ... 3:
1096                 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1097                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1098                         vcpu->arch.eff_db[dr] = val;
1099                 break;
1100         case 4:
1101                 /* fall through */
1102         case 6:
1103                 if (val & 0xffffffff00000000ULL)
1104                         return -1; /* #GP */
1105                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1106                 kvm_update_dr6(vcpu);
1107                 break;
1108         case 5:
1109                 /* fall through */
1110         default: /* 7 */
1111                 if (!kvm_dr7_valid(val))
1112                         return -1; /* #GP */
1113                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1114                 kvm_update_dr7(vcpu);
1115                 break;
1116         }
1117
1118         return 0;
1119 }
1120
1121 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1122 {
1123         if (__kvm_set_dr(vcpu, dr, val)) {
1124                 kvm_inject_gp(vcpu, 0);
1125                 return 1;
1126         }
1127         return 0;
1128 }
1129 EXPORT_SYMBOL_GPL(kvm_set_dr);
1130
1131 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1132 {
1133         size_t size = ARRAY_SIZE(vcpu->arch.db);
1134
1135         switch (dr) {
1136         case 0 ... 3:
1137                 *val = vcpu->arch.db[array_index_nospec(dr, size)];
1138                 break;
1139         case 4:
1140                 /* fall through */
1141         case 6:
1142                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1143                         *val = vcpu->arch.dr6;
1144                 else
1145                         *val = kvm_x86_ops->get_dr6(vcpu);
1146                 break;
1147         case 5:
1148                 /* fall through */
1149         default: /* 7 */
1150                 *val = vcpu->arch.dr7;
1151                 break;
1152         }
1153         return 0;
1154 }
1155 EXPORT_SYMBOL_GPL(kvm_get_dr);
1156
1157 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1158 {
1159         u32 ecx = kvm_rcx_read(vcpu);
1160         u64 data;
1161         int err;
1162
1163         err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1164         if (err)
1165                 return err;
1166         kvm_rax_write(vcpu, (u32)data);
1167         kvm_rdx_write(vcpu, data >> 32);
1168         return err;
1169 }
1170 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1171
1172 /*
1173  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1174  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1175  *
1176  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1177  * extract the supported MSRs from the related const lists.
1178  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1179  * capabilities of the host cpu. This capabilities test skips MSRs that are
1180  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1181  * may depend on host virtualization features rather than host cpu features.
1182  */
1183
1184 static const u32 msrs_to_save_all[] = {
1185         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1186         MSR_STAR,
1187 #ifdef CONFIG_X86_64
1188         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1189 #endif
1190         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1191         MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1192         MSR_IA32_SPEC_CTRL,
1193         MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1194         MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1195         MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1196         MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1197         MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1198         MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1199         MSR_IA32_UMWAIT_CONTROL,
1200
1201         MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1202         MSR_ARCH_PERFMON_FIXED_CTR0 + 2, MSR_ARCH_PERFMON_FIXED_CTR0 + 3,
1203         MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1204         MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1205         MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1206         MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1207         MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1208         MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1209         MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1210         MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1211         MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1212         MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1213         MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1214         MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1215         MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1216         MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1217         MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1218         MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1219         MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1220         MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1221         MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1222         MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1223 };
1224
1225 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1226 static unsigned num_msrs_to_save;
1227
1228 static const u32 emulated_msrs_all[] = {
1229         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1230         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1231         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1232         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1233         HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1234         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1235         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1236         HV_X64_MSR_RESET,
1237         HV_X64_MSR_VP_INDEX,
1238         HV_X64_MSR_VP_RUNTIME,
1239         HV_X64_MSR_SCONTROL,
1240         HV_X64_MSR_STIMER0_CONFIG,
1241         HV_X64_MSR_VP_ASSIST_PAGE,
1242         HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1243         HV_X64_MSR_TSC_EMULATION_STATUS,
1244
1245         MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1246         MSR_KVM_PV_EOI_EN,
1247
1248         MSR_IA32_TSC_ADJUST,
1249         MSR_IA32_TSCDEADLINE,
1250         MSR_IA32_ARCH_CAPABILITIES,
1251         MSR_IA32_MISC_ENABLE,
1252         MSR_IA32_MCG_STATUS,
1253         MSR_IA32_MCG_CTL,
1254         MSR_IA32_MCG_EXT_CTL,
1255         MSR_IA32_SMBASE,
1256         MSR_SMI_COUNT,
1257         MSR_PLATFORM_INFO,
1258         MSR_MISC_FEATURES_ENABLES,
1259         MSR_AMD64_VIRT_SPEC_CTRL,
1260         MSR_IA32_POWER_CTL,
1261         MSR_IA32_UCODE_REV,
1262
1263         /*
1264          * The following list leaves out MSRs whose values are determined
1265          * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1266          * We always support the "true" VMX control MSRs, even if the host
1267          * processor does not, so I am putting these registers here rather
1268          * than in msrs_to_save_all.
1269          */
1270         MSR_IA32_VMX_BASIC,
1271         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1272         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1273         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1274         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1275         MSR_IA32_VMX_MISC,
1276         MSR_IA32_VMX_CR0_FIXED0,
1277         MSR_IA32_VMX_CR4_FIXED0,
1278         MSR_IA32_VMX_VMCS_ENUM,
1279         MSR_IA32_VMX_PROCBASED_CTLS2,
1280         MSR_IA32_VMX_EPT_VPID_CAP,
1281         MSR_IA32_VMX_VMFUNC,
1282
1283         MSR_K7_HWCR,
1284         MSR_KVM_POLL_CONTROL,
1285 };
1286
1287 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1288 static unsigned num_emulated_msrs;
1289
1290 /*
1291  * List of msr numbers which are used to expose MSR-based features that
1292  * can be used by a hypervisor to validate requested CPU features.
1293  */
1294 static const u32 msr_based_features_all[] = {
1295         MSR_IA32_VMX_BASIC,
1296         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1297         MSR_IA32_VMX_PINBASED_CTLS,
1298         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1299         MSR_IA32_VMX_PROCBASED_CTLS,
1300         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1301         MSR_IA32_VMX_EXIT_CTLS,
1302         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1303         MSR_IA32_VMX_ENTRY_CTLS,
1304         MSR_IA32_VMX_MISC,
1305         MSR_IA32_VMX_CR0_FIXED0,
1306         MSR_IA32_VMX_CR0_FIXED1,
1307         MSR_IA32_VMX_CR4_FIXED0,
1308         MSR_IA32_VMX_CR4_FIXED1,
1309         MSR_IA32_VMX_VMCS_ENUM,
1310         MSR_IA32_VMX_PROCBASED_CTLS2,
1311         MSR_IA32_VMX_EPT_VPID_CAP,
1312         MSR_IA32_VMX_VMFUNC,
1313
1314         MSR_F10H_DECFG,
1315         MSR_IA32_UCODE_REV,
1316         MSR_IA32_ARCH_CAPABILITIES,
1317 };
1318
1319 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1320 static unsigned int num_msr_based_features;
1321
1322 static u64 kvm_get_arch_capabilities(void)
1323 {
1324         u64 data = 0;
1325
1326         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1327                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1328
1329         /*
1330          * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1331          * the nested hypervisor runs with NX huge pages.  If it is not,
1332          * L1 is anyway vulnerable to ITLB_MULTIHIT explots from other
1333          * L1 guests, so it need not worry about its own (L2) guests.
1334          */
1335         data |= ARCH_CAP_PSCHANGE_MC_NO;
1336
1337         /*
1338          * If we're doing cache flushes (either "always" or "cond")
1339          * we will do one whenever the guest does a vmlaunch/vmresume.
1340          * If an outer hypervisor is doing the cache flush for us
1341          * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1342          * capability to the guest too, and if EPT is disabled we're not
1343          * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1344          * require a nested hypervisor to do a flush of its own.
1345          */
1346         if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1347                 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1348
1349         if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1350                 data |= ARCH_CAP_RDCL_NO;
1351         if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1352                 data |= ARCH_CAP_SSB_NO;
1353         if (!boot_cpu_has_bug(X86_BUG_MDS))
1354                 data |= ARCH_CAP_MDS_NO;
1355
1356         /*
1357          * On TAA affected systems:
1358          *      - nothing to do if TSX is disabled on the host.
1359          *      - we emulate TSX_CTRL if present on the host.
1360          *        This lets the guest use VERW to clear CPU buffers.
1361          */
1362         if (!boot_cpu_has(X86_FEATURE_RTM))
1363                 data &= ~(ARCH_CAP_TAA_NO | ARCH_CAP_TSX_CTRL_MSR);
1364         else if (!boot_cpu_has_bug(X86_BUG_TAA))
1365                 data |= ARCH_CAP_TAA_NO;
1366
1367         return data;
1368 }
1369
1370 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1371 {
1372         switch (msr->index) {
1373         case MSR_IA32_ARCH_CAPABILITIES:
1374                 msr->data = kvm_get_arch_capabilities();
1375                 break;
1376         case MSR_IA32_UCODE_REV:
1377                 rdmsrl_safe(msr->index, &msr->data);
1378                 break;
1379         default:
1380                 if (kvm_x86_ops->get_msr_feature(msr))
1381                         return 1;
1382         }
1383         return 0;
1384 }
1385
1386 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1387 {
1388         struct kvm_msr_entry msr;
1389         int r;
1390
1391         msr.index = index;
1392         r = kvm_get_msr_feature(&msr);
1393         if (r)
1394                 return r;
1395
1396         *data = msr.data;
1397
1398         return 0;
1399 }
1400
1401 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1402 {
1403         if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1404                 return false;
1405
1406         if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1407                 return false;
1408
1409         if (efer & (EFER_LME | EFER_LMA) &&
1410             !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1411                 return false;
1412
1413         if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1414                 return false;
1415
1416         return true;
1417
1418 }
1419 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1420 {
1421         if (efer & efer_reserved_bits)
1422                 return false;
1423
1424         return __kvm_valid_efer(vcpu, efer);
1425 }
1426 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1427
1428 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1429 {
1430         u64 old_efer = vcpu->arch.efer;
1431         u64 efer = msr_info->data;
1432
1433         if (efer & efer_reserved_bits)
1434                 return 1;
1435
1436         if (!msr_info->host_initiated) {
1437                 if (!__kvm_valid_efer(vcpu, efer))
1438                         return 1;
1439
1440                 if (is_paging(vcpu) &&
1441                     (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1442                         return 1;
1443         }
1444
1445         efer &= ~EFER_LMA;
1446         efer |= vcpu->arch.efer & EFER_LMA;
1447
1448         kvm_x86_ops->set_efer(vcpu, efer);
1449
1450         /* Update reserved bits */
1451         if ((efer ^ old_efer) & EFER_NX)
1452                 kvm_mmu_reset_context(vcpu);
1453
1454         return 0;
1455 }
1456
1457 void kvm_enable_efer_bits(u64 mask)
1458 {
1459        efer_reserved_bits &= ~mask;
1460 }
1461 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1462
1463 /*
1464  * Write @data into the MSR specified by @index.  Select MSR specific fault
1465  * checks are bypassed if @host_initiated is %true.
1466  * Returns 0 on success, non-0 otherwise.
1467  * Assumes vcpu_load() was already called.
1468  */
1469 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1470                          bool host_initiated)
1471 {
1472         struct msr_data msr;
1473
1474         switch (index) {
1475         case MSR_FS_BASE:
1476         case MSR_GS_BASE:
1477         case MSR_KERNEL_GS_BASE:
1478         case MSR_CSTAR:
1479         case MSR_LSTAR:
1480                 if (is_noncanonical_address(data, vcpu))
1481                         return 1;
1482                 break;
1483         case MSR_IA32_SYSENTER_EIP:
1484         case MSR_IA32_SYSENTER_ESP:
1485                 /*
1486                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1487                  * non-canonical address is written on Intel but not on
1488                  * AMD (which ignores the top 32-bits, because it does
1489                  * not implement 64-bit SYSENTER).
1490                  *
1491                  * 64-bit code should hence be able to write a non-canonical
1492                  * value on AMD.  Making the address canonical ensures that
1493                  * vmentry does not fail on Intel after writing a non-canonical
1494                  * value, and that something deterministic happens if the guest
1495                  * invokes 64-bit SYSENTER.
1496                  */
1497                 data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1498         }
1499
1500         msr.data = data;
1501         msr.index = index;
1502         msr.host_initiated = host_initiated;
1503
1504         return kvm_x86_ops->set_msr(vcpu, &msr);
1505 }
1506
1507 /*
1508  * Read the MSR specified by @index into @data.  Select MSR specific fault
1509  * checks are bypassed if @host_initiated is %true.
1510  * Returns 0 on success, non-0 otherwise.
1511  * Assumes vcpu_load() was already called.
1512  */
1513 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1514                   bool host_initiated)
1515 {
1516         struct msr_data msr;
1517         int ret;
1518
1519         msr.index = index;
1520         msr.host_initiated = host_initiated;
1521
1522         ret = kvm_x86_ops->get_msr(vcpu, &msr);
1523         if (!ret)
1524                 *data = msr.data;
1525         return ret;
1526 }
1527
1528 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1529 {
1530         return __kvm_get_msr(vcpu, index, data, false);
1531 }
1532 EXPORT_SYMBOL_GPL(kvm_get_msr);
1533
1534 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1535 {
1536         return __kvm_set_msr(vcpu, index, data, false);
1537 }
1538 EXPORT_SYMBOL_GPL(kvm_set_msr);
1539
1540 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1541 {
1542         u32 ecx = kvm_rcx_read(vcpu);
1543         u64 data;
1544
1545         if (kvm_get_msr(vcpu, ecx, &data)) {
1546                 trace_kvm_msr_read_ex(ecx);
1547                 kvm_inject_gp(vcpu, 0);
1548                 return 1;
1549         }
1550
1551         trace_kvm_msr_read(ecx, data);
1552
1553         kvm_rax_write(vcpu, data & -1u);
1554         kvm_rdx_write(vcpu, (data >> 32) & -1u);
1555         return kvm_skip_emulated_instruction(vcpu);
1556 }
1557 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1558
1559 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1560 {
1561         u32 ecx = kvm_rcx_read(vcpu);
1562         u64 data = kvm_read_edx_eax(vcpu);
1563
1564         if (kvm_set_msr(vcpu, ecx, data)) {
1565                 trace_kvm_msr_write_ex(ecx, data);
1566                 kvm_inject_gp(vcpu, 0);
1567                 return 1;
1568         }
1569
1570         trace_kvm_msr_write(ecx, data);
1571         return kvm_skip_emulated_instruction(vcpu);
1572 }
1573 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1574
1575 /*
1576  * The fast path for frequent and performance sensitive wrmsr emulation,
1577  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
1578  * the latency of virtual IPI by avoiding the expensive bits of transitioning
1579  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
1580  * other cases which must be called after interrupts are enabled on the host.
1581  */
1582 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
1583 {
1584         if (lapic_in_kernel(vcpu) && apic_x2apic_mode(vcpu->arch.apic) &&
1585                 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
1586                 ((data & APIC_MODE_MASK) == APIC_DM_FIXED)) {
1587
1588                 data &= ~(1 << 12);
1589                 kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32));
1590                 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
1591                 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data);
1592                 trace_kvm_apic_write(APIC_ICR, (u32)data);
1593                 return 0;
1594         }
1595
1596         return 1;
1597 }
1598
1599 enum exit_fastpath_completion handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
1600 {
1601         u32 msr = kvm_rcx_read(vcpu);
1602         u64 data;
1603         int ret = 0;
1604
1605         switch (msr) {
1606         case APIC_BASE_MSR + (APIC_ICR >> 4):
1607                 data = kvm_read_edx_eax(vcpu);
1608                 ret = handle_fastpath_set_x2apic_icr_irqoff(vcpu, data);
1609                 break;
1610         default:
1611                 return EXIT_FASTPATH_NONE;
1612         }
1613
1614         if (!ret) {
1615                 trace_kvm_msr_write(msr, data);
1616                 return EXIT_FASTPATH_SKIP_EMUL_INS;
1617         }
1618
1619         return EXIT_FASTPATH_NONE;
1620 }
1621 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
1622
1623 /*
1624  * Adapt set_msr() to msr_io()'s calling convention
1625  */
1626 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1627 {
1628         return __kvm_get_msr(vcpu, index, data, true);
1629 }
1630
1631 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1632 {
1633         return __kvm_set_msr(vcpu, index, *data, true);
1634 }
1635
1636 #ifdef CONFIG_X86_64
1637 struct pvclock_clock {
1638         int vclock_mode;
1639         u64 cycle_last;
1640         u64 mask;
1641         u32 mult;
1642         u32 shift;
1643         u64 base_cycles;
1644         u64 offset;
1645 };
1646
1647 struct pvclock_gtod_data {
1648         seqcount_t      seq;
1649
1650         struct pvclock_clock clock; /* extract of a clocksource struct */
1651         struct pvclock_clock raw_clock; /* extract of a clocksource struct */
1652
1653         ktime_t         offs_boot;
1654         u64             wall_time_sec;
1655 };
1656
1657 static struct pvclock_gtod_data pvclock_gtod_data;
1658
1659 static void update_pvclock_gtod(struct timekeeper *tk)
1660 {
1661         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1662
1663         write_seqcount_begin(&vdata->seq);
1664
1665         /* copy pvclock gtod data */
1666         vdata->clock.vclock_mode        = tk->tkr_mono.clock->archdata.vclock_mode;
1667         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1668         vdata->clock.mask               = tk->tkr_mono.mask;
1669         vdata->clock.mult               = tk->tkr_mono.mult;
1670         vdata->clock.shift              = tk->tkr_mono.shift;
1671         vdata->clock.base_cycles        = tk->tkr_mono.xtime_nsec;
1672         vdata->clock.offset             = tk->tkr_mono.base;
1673
1674         vdata->raw_clock.vclock_mode    = tk->tkr_raw.clock->archdata.vclock_mode;
1675         vdata->raw_clock.cycle_last     = tk->tkr_raw.cycle_last;
1676         vdata->raw_clock.mask           = tk->tkr_raw.mask;
1677         vdata->raw_clock.mult           = tk->tkr_raw.mult;
1678         vdata->raw_clock.shift          = tk->tkr_raw.shift;
1679         vdata->raw_clock.base_cycles    = tk->tkr_raw.xtime_nsec;
1680         vdata->raw_clock.offset         = tk->tkr_raw.base;
1681
1682         vdata->wall_time_sec            = tk->xtime_sec;
1683
1684         vdata->offs_boot                = tk->offs_boot;
1685
1686         write_seqcount_end(&vdata->seq);
1687 }
1688
1689 static s64 get_kvmclock_base_ns(void)
1690 {
1691         /* Count up from boot time, but with the frequency of the raw clock.  */
1692         return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
1693 }
1694 #else
1695 static s64 get_kvmclock_base_ns(void)
1696 {
1697         /* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
1698         return ktime_get_boottime_ns();
1699 }
1700 #endif
1701
1702 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1703 {
1704         kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1705         kvm_vcpu_kick(vcpu);
1706 }
1707
1708 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1709 {
1710         int version;
1711         int r;
1712         struct pvclock_wall_clock wc;
1713         u64 wall_nsec;
1714
1715         if (!wall_clock)
1716                 return;
1717
1718         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1719         if (r)
1720                 return;
1721
1722         if (version & 1)
1723                 ++version;  /* first time write, random junk */
1724
1725         ++version;
1726
1727         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1728                 return;
1729
1730         /*
1731          * The guest calculates current wall clock time by adding
1732          * system time (updated by kvm_guest_time_update below) to the
1733          * wall clock specified here.  We do the reverse here.
1734          */
1735         wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
1736
1737         wc.nsec = do_div(wall_nsec, 1000000000);
1738         wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
1739         wc.version = version;
1740
1741         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1742
1743         version++;
1744         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1745 }
1746
1747 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1748 {
1749         do_shl32_div32(dividend, divisor);
1750         return dividend;
1751 }
1752
1753 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1754                                s8 *pshift, u32 *pmultiplier)
1755 {
1756         uint64_t scaled64;
1757         int32_t  shift = 0;
1758         uint64_t tps64;
1759         uint32_t tps32;
1760
1761         tps64 = base_hz;
1762         scaled64 = scaled_hz;
1763         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1764                 tps64 >>= 1;
1765                 shift--;
1766         }
1767
1768         tps32 = (uint32_t)tps64;
1769         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1770                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1771                         scaled64 >>= 1;
1772                 else
1773                         tps32 <<= 1;
1774                 shift++;
1775         }
1776
1777         *pshift = shift;
1778         *pmultiplier = div_frac(scaled64, tps32);
1779 }
1780
1781 #ifdef CONFIG_X86_64
1782 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1783 #endif
1784
1785 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1786 static unsigned long max_tsc_khz;
1787
1788 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1789 {
1790         u64 v = (u64)khz * (1000000 + ppm);
1791         do_div(v, 1000000);
1792         return v;
1793 }
1794
1795 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1796 {
1797         u64 ratio;
1798
1799         /* Guest TSC same frequency as host TSC? */
1800         if (!scale) {
1801                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1802                 return 0;
1803         }
1804
1805         /* TSC scaling supported? */
1806         if (!kvm_has_tsc_control) {
1807                 if (user_tsc_khz > tsc_khz) {
1808                         vcpu->arch.tsc_catchup = 1;
1809                         vcpu->arch.tsc_always_catchup = 1;
1810                         return 0;
1811                 } else {
1812                         pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
1813                         return -1;
1814                 }
1815         }
1816
1817         /* TSC scaling required  - calculate ratio */
1818         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1819                                 user_tsc_khz, tsc_khz);
1820
1821         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1822                 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1823                                     user_tsc_khz);
1824                 return -1;
1825         }
1826
1827         vcpu->arch.tsc_scaling_ratio = ratio;
1828         return 0;
1829 }
1830
1831 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1832 {
1833         u32 thresh_lo, thresh_hi;
1834         int use_scaling = 0;
1835
1836         /* tsc_khz can be zero if TSC calibration fails */
1837         if (user_tsc_khz == 0) {
1838                 /* set tsc_scaling_ratio to a safe value */
1839                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1840                 return -1;
1841         }
1842
1843         /* Compute a scale to convert nanoseconds in TSC cycles */
1844         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1845                            &vcpu->arch.virtual_tsc_shift,
1846                            &vcpu->arch.virtual_tsc_mult);
1847         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1848
1849         /*
1850          * Compute the variation in TSC rate which is acceptable
1851          * within the range of tolerance and decide if the
1852          * rate being applied is within that bounds of the hardware
1853          * rate.  If so, no scaling or compensation need be done.
1854          */
1855         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1856         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1857         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1858                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1859                 use_scaling = 1;
1860         }
1861         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1862 }
1863
1864 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1865 {
1866         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1867                                       vcpu->arch.virtual_tsc_mult,
1868                                       vcpu->arch.virtual_tsc_shift);
1869         tsc += vcpu->arch.this_tsc_write;
1870         return tsc;
1871 }
1872
1873 static inline int gtod_is_based_on_tsc(int mode)
1874 {
1875         return mode == VCLOCK_TSC || mode == VCLOCK_HVCLOCK;
1876 }
1877
1878 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1879 {
1880 #ifdef CONFIG_X86_64
1881         bool vcpus_matched;
1882         struct kvm_arch *ka = &vcpu->kvm->arch;
1883         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1884
1885         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1886                          atomic_read(&vcpu->kvm->online_vcpus));
1887
1888         /*
1889          * Once the masterclock is enabled, always perform request in
1890          * order to update it.
1891          *
1892          * In order to enable masterclock, the host clocksource must be TSC
1893          * and the vcpus need to have matched TSCs.  When that happens,
1894          * perform request to enable masterclock.
1895          */
1896         if (ka->use_master_clock ||
1897             (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
1898                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1899
1900         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1901                             atomic_read(&vcpu->kvm->online_vcpus),
1902                             ka->use_master_clock, gtod->clock.vclock_mode);
1903 #endif
1904 }
1905
1906 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1907 {
1908         u64 curr_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1909         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1910 }
1911
1912 /*
1913  * Multiply tsc by a fixed point number represented by ratio.
1914  *
1915  * The most significant 64-N bits (mult) of ratio represent the
1916  * integral part of the fixed point number; the remaining N bits
1917  * (frac) represent the fractional part, ie. ratio represents a fixed
1918  * point number (mult + frac * 2^(-N)).
1919  *
1920  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1921  */
1922 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1923 {
1924         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1925 }
1926
1927 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1928 {
1929         u64 _tsc = tsc;
1930         u64 ratio = vcpu->arch.tsc_scaling_ratio;
1931
1932         if (ratio != kvm_default_tsc_scaling_ratio)
1933                 _tsc = __scale_tsc(ratio, tsc);
1934
1935         return _tsc;
1936 }
1937 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1938
1939 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1940 {
1941         u64 tsc;
1942
1943         tsc = kvm_scale_tsc(vcpu, rdtsc());
1944
1945         return target_tsc - tsc;
1946 }
1947
1948 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1949 {
1950         u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1951
1952         return tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1953 }
1954 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1955
1956 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1957 {
1958         vcpu->arch.tsc_offset = kvm_x86_ops->write_l1_tsc_offset(vcpu, offset);
1959 }
1960
1961 static inline bool kvm_check_tsc_unstable(void)
1962 {
1963 #ifdef CONFIG_X86_64
1964         /*
1965          * TSC is marked unstable when we're running on Hyper-V,
1966          * 'TSC page' clocksource is good.
1967          */
1968         if (pvclock_gtod_data.clock.vclock_mode == VCLOCK_HVCLOCK)
1969                 return false;
1970 #endif
1971         return check_tsc_unstable();
1972 }
1973
1974 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1975 {
1976         struct kvm *kvm = vcpu->kvm;
1977         u64 offset, ns, elapsed;
1978         unsigned long flags;
1979         bool matched;
1980         bool already_matched;
1981         u64 data = msr->data;
1982         bool synchronizing = false;
1983
1984         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1985         offset = kvm_compute_tsc_offset(vcpu, data);
1986         ns = get_kvmclock_base_ns();
1987         elapsed = ns - kvm->arch.last_tsc_nsec;
1988
1989         if (vcpu->arch.virtual_tsc_khz) {
1990                 if (data == 0 && msr->host_initiated) {
1991                         /*
1992                          * detection of vcpu initialization -- need to sync
1993                          * with other vCPUs. This particularly helps to keep
1994                          * kvm_clock stable after CPU hotplug
1995                          */
1996                         synchronizing = true;
1997                 } else {
1998                         u64 tsc_exp = kvm->arch.last_tsc_write +
1999                                                 nsec_to_cycles(vcpu, elapsed);
2000                         u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2001                         /*
2002                          * Special case: TSC write with a small delta (1 second)
2003                          * of virtual cycle time against real time is
2004                          * interpreted as an attempt to synchronize the CPU.
2005                          */
2006                         synchronizing = data < tsc_exp + tsc_hz &&
2007                                         data + tsc_hz > tsc_exp;
2008                 }
2009         }
2010
2011         /*
2012          * For a reliable TSC, we can match TSC offsets, and for an unstable
2013          * TSC, we add elapsed time in this computation.  We could let the
2014          * compensation code attempt to catch up if we fall behind, but
2015          * it's better to try to match offsets from the beginning.
2016          */
2017         if (synchronizing &&
2018             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2019                 if (!kvm_check_tsc_unstable()) {
2020                         offset = kvm->arch.cur_tsc_offset;
2021                 } else {
2022                         u64 delta = nsec_to_cycles(vcpu, elapsed);
2023                         data += delta;
2024                         offset = kvm_compute_tsc_offset(vcpu, data);
2025                 }
2026                 matched = true;
2027                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
2028         } else {
2029                 /*
2030                  * We split periods of matched TSC writes into generations.
2031                  * For each generation, we track the original measured
2032                  * nanosecond time, offset, and write, so if TSCs are in
2033                  * sync, we can match exact offset, and if not, we can match
2034                  * exact software computation in compute_guest_tsc()
2035                  *
2036                  * These values are tracked in kvm->arch.cur_xxx variables.
2037                  */
2038                 kvm->arch.cur_tsc_generation++;
2039                 kvm->arch.cur_tsc_nsec = ns;
2040                 kvm->arch.cur_tsc_write = data;
2041                 kvm->arch.cur_tsc_offset = offset;
2042                 matched = false;
2043         }
2044
2045         /*
2046          * We also track th most recent recorded KHZ, write and time to
2047          * allow the matching interval to be extended at each write.
2048          */
2049         kvm->arch.last_tsc_nsec = ns;
2050         kvm->arch.last_tsc_write = data;
2051         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2052
2053         vcpu->arch.last_guest_tsc = data;
2054
2055         /* Keep track of which generation this VCPU has synchronized to */
2056         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2057         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2058         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2059
2060         if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
2061                 update_ia32_tsc_adjust_msr(vcpu, offset);
2062
2063         kvm_vcpu_write_tsc_offset(vcpu, offset);
2064         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2065
2066         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
2067         if (!matched) {
2068                 kvm->arch.nr_vcpus_matched_tsc = 0;
2069         } else if (!already_matched) {
2070                 kvm->arch.nr_vcpus_matched_tsc++;
2071         }
2072
2073         kvm_track_tsc_matching(vcpu);
2074         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
2075 }
2076
2077 EXPORT_SYMBOL_GPL(kvm_write_tsc);
2078
2079 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2080                                            s64 adjustment)
2081 {
2082         u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
2083         kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2084 }
2085
2086 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2087 {
2088         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2089                 WARN_ON(adjustment < 0);
2090         adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
2091         adjust_tsc_offset_guest(vcpu, adjustment);
2092 }
2093
2094 #ifdef CONFIG_X86_64
2095
2096 static u64 read_tsc(void)
2097 {
2098         u64 ret = (u64)rdtsc_ordered();
2099         u64 last = pvclock_gtod_data.clock.cycle_last;
2100
2101         if (likely(ret >= last))
2102                 return ret;
2103
2104         /*
2105          * GCC likes to generate cmov here, but this branch is extremely
2106          * predictable (it's just a function of time and the likely is
2107          * very likely) and there's a data dependence, so force GCC
2108          * to generate a branch instead.  I don't barrier() because
2109          * we don't actually need a barrier, and if this function
2110          * ever gets inlined it will generate worse code.
2111          */
2112         asm volatile ("");
2113         return last;
2114 }
2115
2116 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2117                           int *mode)
2118 {
2119         long v;
2120         u64 tsc_pg_val;
2121
2122         switch (clock->vclock_mode) {
2123         case VCLOCK_HVCLOCK:
2124                 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2125                                                   tsc_timestamp);
2126                 if (tsc_pg_val != U64_MAX) {
2127                         /* TSC page valid */
2128                         *mode = VCLOCK_HVCLOCK;
2129                         v = (tsc_pg_val - clock->cycle_last) &
2130                                 clock->mask;
2131                 } else {
2132                         /* TSC page invalid */
2133                         *mode = VCLOCK_NONE;
2134                 }
2135                 break;
2136         case VCLOCK_TSC:
2137                 *mode = VCLOCK_TSC;
2138                 *tsc_timestamp = read_tsc();
2139                 v = (*tsc_timestamp - clock->cycle_last) &
2140                         clock->mask;
2141                 break;
2142         default:
2143                 *mode = VCLOCK_NONE;
2144         }
2145
2146         if (*mode == VCLOCK_NONE)
2147                 *tsc_timestamp = v = 0;
2148
2149         return v * clock->mult;
2150 }
2151
2152 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2153 {
2154         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2155         unsigned long seq;
2156         int mode;
2157         u64 ns;
2158
2159         do {
2160                 seq = read_seqcount_begin(&gtod->seq);
2161                 ns = gtod->raw_clock.base_cycles;
2162                 ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2163                 ns >>= gtod->raw_clock.shift;
2164                 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2165         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2166         *t = ns;
2167
2168         return mode;
2169 }
2170
2171 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2172 {
2173         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2174         unsigned long seq;
2175         int mode;
2176         u64 ns;
2177
2178         do {
2179                 seq = read_seqcount_begin(&gtod->seq);
2180                 ts->tv_sec = gtod->wall_time_sec;
2181                 ns = gtod->clock.base_cycles;
2182                 ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2183                 ns >>= gtod->clock.shift;
2184         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2185
2186         ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2187         ts->tv_nsec = ns;
2188
2189         return mode;
2190 }
2191
2192 /* returns true if host is using TSC based clocksource */
2193 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2194 {
2195         /* checked again under seqlock below */
2196         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2197                 return false;
2198
2199         return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2200                                                       tsc_timestamp));
2201 }
2202
2203 /* returns true if host is using TSC based clocksource */
2204 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2205                                            u64 *tsc_timestamp)
2206 {
2207         /* checked again under seqlock below */
2208         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2209                 return false;
2210
2211         return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2212 }
2213 #endif
2214
2215 /*
2216  *
2217  * Assuming a stable TSC across physical CPUS, and a stable TSC
2218  * across virtual CPUs, the following condition is possible.
2219  * Each numbered line represents an event visible to both
2220  * CPUs at the next numbered event.
2221  *
2222  * "timespecX" represents host monotonic time. "tscX" represents
2223  * RDTSC value.
2224  *
2225  *              VCPU0 on CPU0           |       VCPU1 on CPU1
2226  *
2227  * 1.  read timespec0,tsc0
2228  * 2.                                   | timespec1 = timespec0 + N
2229  *                                      | tsc1 = tsc0 + M
2230  * 3. transition to guest               | transition to guest
2231  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2232  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
2233  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2234  *
2235  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2236  *
2237  *      - ret0 < ret1
2238  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2239  *              ...
2240  *      - 0 < N - M => M < N
2241  *
2242  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2243  * always the case (the difference between two distinct xtime instances
2244  * might be smaller then the difference between corresponding TSC reads,
2245  * when updating guest vcpus pvclock areas).
2246  *
2247  * To avoid that problem, do not allow visibility of distinct
2248  * system_timestamp/tsc_timestamp values simultaneously: use a master
2249  * copy of host monotonic time values. Update that master copy
2250  * in lockstep.
2251  *
2252  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2253  *
2254  */
2255
2256 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2257 {
2258 #ifdef CONFIG_X86_64
2259         struct kvm_arch *ka = &kvm->arch;
2260         int vclock_mode;
2261         bool host_tsc_clocksource, vcpus_matched;
2262
2263         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2264                         atomic_read(&kvm->online_vcpus));
2265
2266         /*
2267          * If the host uses TSC clock, then passthrough TSC as stable
2268          * to the guest.
2269          */
2270         host_tsc_clocksource = kvm_get_time_and_clockread(
2271                                         &ka->master_kernel_ns,
2272                                         &ka->master_cycle_now);
2273
2274         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2275                                 && !ka->backwards_tsc_observed
2276                                 && !ka->boot_vcpu_runs_old_kvmclock;
2277
2278         if (ka->use_master_clock)
2279                 atomic_set(&kvm_guest_has_master_clock, 1);
2280
2281         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2282         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2283                                         vcpus_matched);
2284 #endif
2285 }
2286
2287 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2288 {
2289         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2290 }
2291
2292 static void kvm_gen_update_masterclock(struct kvm *kvm)
2293 {
2294 #ifdef CONFIG_X86_64
2295         int i;
2296         struct kvm_vcpu *vcpu;
2297         struct kvm_arch *ka = &kvm->arch;
2298
2299         spin_lock(&ka->pvclock_gtod_sync_lock);
2300         kvm_make_mclock_inprogress_request(kvm);
2301         /* no guest entries from this point */
2302         pvclock_update_vm_gtod_copy(kvm);
2303
2304         kvm_for_each_vcpu(i, vcpu, kvm)
2305                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2306
2307         /* guest entries allowed */
2308         kvm_for_each_vcpu(i, vcpu, kvm)
2309                 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2310
2311         spin_unlock(&ka->pvclock_gtod_sync_lock);
2312 #endif
2313 }
2314
2315 u64 get_kvmclock_ns(struct kvm *kvm)
2316 {
2317         struct kvm_arch *ka = &kvm->arch;
2318         struct pvclock_vcpu_time_info hv_clock;
2319         u64 ret;
2320
2321         spin_lock(&ka->pvclock_gtod_sync_lock);
2322         if (!ka->use_master_clock) {
2323                 spin_unlock(&ka->pvclock_gtod_sync_lock);
2324                 return get_kvmclock_base_ns() + ka->kvmclock_offset;
2325         }
2326
2327         hv_clock.tsc_timestamp = ka->master_cycle_now;
2328         hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2329         spin_unlock(&ka->pvclock_gtod_sync_lock);
2330
2331         /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2332         get_cpu();
2333
2334         if (__this_cpu_read(cpu_tsc_khz)) {
2335                 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2336                                    &hv_clock.tsc_shift,
2337                                    &hv_clock.tsc_to_system_mul);
2338                 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2339         } else
2340                 ret = get_kvmclock_base_ns() + ka->kvmclock_offset;
2341
2342         put_cpu();
2343
2344         return ret;
2345 }
2346
2347 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
2348 {
2349         struct kvm_vcpu_arch *vcpu = &v->arch;
2350         struct pvclock_vcpu_time_info guest_hv_clock;
2351
2352         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
2353                 &guest_hv_clock, sizeof(guest_hv_clock))))
2354                 return;
2355
2356         /* This VCPU is paused, but it's legal for a guest to read another
2357          * VCPU's kvmclock, so we really have to follow the specification where
2358          * it says that version is odd if data is being modified, and even after
2359          * it is consistent.
2360          *
2361          * Version field updates must be kept separate.  This is because
2362          * kvm_write_guest_cached might use a "rep movs" instruction, and
2363          * writes within a string instruction are weakly ordered.  So there
2364          * are three writes overall.
2365          *
2366          * As a small optimization, only write the version field in the first
2367          * and third write.  The vcpu->pv_time cache is still valid, because the
2368          * version field is the first in the struct.
2369          */
2370         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2371
2372         if (guest_hv_clock.version & 1)
2373                 ++guest_hv_clock.version;  /* first time write, random junk */
2374
2375         vcpu->hv_clock.version = guest_hv_clock.version + 1;
2376         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2377                                 &vcpu->hv_clock,
2378                                 sizeof(vcpu->hv_clock.version));
2379
2380         smp_wmb();
2381
2382         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2383         vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2384
2385         if (vcpu->pvclock_set_guest_stopped_request) {
2386                 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2387                 vcpu->pvclock_set_guest_stopped_request = false;
2388         }
2389
2390         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2391
2392         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2393                                 &vcpu->hv_clock,
2394                                 sizeof(vcpu->hv_clock));
2395
2396         smp_wmb();
2397
2398         vcpu->hv_clock.version++;
2399         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2400                                 &vcpu->hv_clock,
2401                                 sizeof(vcpu->hv_clock.version));
2402 }
2403
2404 static int kvm_guest_time_update(struct kvm_vcpu *v)
2405 {
2406         unsigned long flags, tgt_tsc_khz;
2407         struct kvm_vcpu_arch *vcpu = &v->arch;
2408         struct kvm_arch *ka = &v->kvm->arch;
2409         s64 kernel_ns;
2410         u64 tsc_timestamp, host_tsc;
2411         u8 pvclock_flags;
2412         bool use_master_clock;
2413
2414         kernel_ns = 0;
2415         host_tsc = 0;
2416
2417         /*
2418          * If the host uses TSC clock, then passthrough TSC as stable
2419          * to the guest.
2420          */
2421         spin_lock(&ka->pvclock_gtod_sync_lock);
2422         use_master_clock = ka->use_master_clock;
2423         if (use_master_clock) {
2424                 host_tsc = ka->master_cycle_now;
2425                 kernel_ns = ka->master_kernel_ns;
2426         }
2427         spin_unlock(&ka->pvclock_gtod_sync_lock);
2428
2429         /* Keep irq disabled to prevent changes to the clock */
2430         local_irq_save(flags);
2431         tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2432         if (unlikely(tgt_tsc_khz == 0)) {
2433                 local_irq_restore(flags);
2434                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2435                 return 1;
2436         }
2437         if (!use_master_clock) {
2438                 host_tsc = rdtsc();
2439                 kernel_ns = get_kvmclock_base_ns();
2440         }
2441
2442         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2443
2444         /*
2445          * We may have to catch up the TSC to match elapsed wall clock
2446          * time for two reasons, even if kvmclock is used.
2447          *   1) CPU could have been running below the maximum TSC rate
2448          *   2) Broken TSC compensation resets the base at each VCPU
2449          *      entry to avoid unknown leaps of TSC even when running
2450          *      again on the same CPU.  This may cause apparent elapsed
2451          *      time to disappear, and the guest to stand still or run
2452          *      very slowly.
2453          */
2454         if (vcpu->tsc_catchup) {
2455                 u64 tsc = compute_guest_tsc(v, kernel_ns);
2456                 if (tsc > tsc_timestamp) {
2457                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2458                         tsc_timestamp = tsc;
2459                 }
2460         }
2461
2462         local_irq_restore(flags);
2463
2464         /* With all the info we got, fill in the values */
2465
2466         if (kvm_has_tsc_control)
2467                 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2468
2469         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2470                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2471                                    &vcpu->hv_clock.tsc_shift,
2472                                    &vcpu->hv_clock.tsc_to_system_mul);
2473                 vcpu->hw_tsc_khz = tgt_tsc_khz;
2474         }
2475
2476         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2477         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2478         vcpu->last_guest_tsc = tsc_timestamp;
2479         WARN_ON((s64)vcpu->hv_clock.system_time < 0);
2480
2481         /* If the host uses TSC clocksource, then it is stable */
2482         pvclock_flags = 0;
2483         if (use_master_clock)
2484                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2485
2486         vcpu->hv_clock.flags = pvclock_flags;
2487
2488         if (vcpu->pv_time_enabled)
2489                 kvm_setup_pvclock_page(v);
2490         if (v == kvm_get_vcpu(v->kvm, 0))
2491                 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2492         return 0;
2493 }
2494
2495 /*
2496  * kvmclock updates which are isolated to a given vcpu, such as
2497  * vcpu->cpu migration, should not allow system_timestamp from
2498  * the rest of the vcpus to remain static. Otherwise ntp frequency
2499  * correction applies to one vcpu's system_timestamp but not
2500  * the others.
2501  *
2502  * So in those cases, request a kvmclock update for all vcpus.
2503  * We need to rate-limit these requests though, as they can
2504  * considerably slow guests that have a large number of vcpus.
2505  * The time for a remote vcpu to update its kvmclock is bound
2506  * by the delay we use to rate-limit the updates.
2507  */
2508
2509 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2510
2511 static void kvmclock_update_fn(struct work_struct *work)
2512 {
2513         int i;
2514         struct delayed_work *dwork = to_delayed_work(work);
2515         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2516                                            kvmclock_update_work);
2517         struct kvm *kvm = container_of(ka, struct kvm, arch);
2518         struct kvm_vcpu *vcpu;
2519
2520         kvm_for_each_vcpu(i, vcpu, kvm) {
2521                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2522                 kvm_vcpu_kick(vcpu);
2523         }
2524 }
2525
2526 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2527 {
2528         struct kvm *kvm = v->kvm;
2529
2530         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2531         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2532                                         KVMCLOCK_UPDATE_DELAY);
2533 }
2534
2535 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2536
2537 static void kvmclock_sync_fn(struct work_struct *work)
2538 {
2539         struct delayed_work *dwork = to_delayed_work(work);
2540         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2541                                            kvmclock_sync_work);
2542         struct kvm *kvm = container_of(ka, struct kvm, arch);
2543
2544         if (!kvmclock_periodic_sync)
2545                 return;
2546
2547         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2548         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2549                                         KVMCLOCK_SYNC_PERIOD);
2550 }
2551
2552 /*
2553  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
2554  */
2555 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
2556 {
2557         /* McStatusWrEn enabled? */
2558         if (guest_cpuid_is_amd_or_hygon(vcpu))
2559                 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
2560
2561         return false;
2562 }
2563
2564 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2565 {
2566         u64 mcg_cap = vcpu->arch.mcg_cap;
2567         unsigned bank_num = mcg_cap & 0xff;
2568         u32 msr = msr_info->index;
2569         u64 data = msr_info->data;
2570
2571         switch (msr) {
2572         case MSR_IA32_MCG_STATUS:
2573                 vcpu->arch.mcg_status = data;
2574                 break;
2575         case MSR_IA32_MCG_CTL:
2576                 if (!(mcg_cap & MCG_CTL_P) &&
2577                     (data || !msr_info->host_initiated))
2578                         return 1;
2579                 if (data != 0 && data != ~(u64)0)
2580                         return 1;
2581                 vcpu->arch.mcg_ctl = data;
2582                 break;
2583         default:
2584                 if (msr >= MSR_IA32_MC0_CTL &&
2585                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2586                         u32 offset = array_index_nospec(
2587                                 msr - MSR_IA32_MC0_CTL,
2588                                 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
2589
2590                         /* only 0 or all 1s can be written to IA32_MCi_CTL
2591                          * some Linux kernels though clear bit 10 in bank 4 to
2592                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2593                          * this to avoid an uncatched #GP in the guest
2594                          */
2595                         if ((offset & 0x3) == 0 &&
2596                             data != 0 && (data | (1 << 10)) != ~(u64)0)
2597                                 return -1;
2598
2599                         /* MCi_STATUS */
2600                         if (!msr_info->host_initiated &&
2601                             (offset & 0x3) == 1 && data != 0) {
2602                                 if (!can_set_mci_status(vcpu))
2603                                         return -1;
2604                         }
2605
2606                         vcpu->arch.mce_banks[offset] = data;
2607                         break;
2608                 }
2609                 return 1;
2610         }
2611         return 0;
2612 }
2613
2614 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2615 {
2616         struct kvm *kvm = vcpu->kvm;
2617         int lm = is_long_mode(vcpu);
2618         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2619                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2620         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2621                 : kvm->arch.xen_hvm_config.blob_size_32;
2622         u32 page_num = data & ~PAGE_MASK;
2623         u64 page_addr = data & PAGE_MASK;
2624         u8 *page;
2625         int r;
2626
2627         r = -E2BIG;
2628         if (page_num >= blob_size)
2629                 goto out;
2630         r = -ENOMEM;
2631         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2632         if (IS_ERR(page)) {
2633                 r = PTR_ERR(page);
2634                 goto out;
2635         }
2636         if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2637                 goto out_free;
2638         r = 0;
2639 out_free:
2640         kfree(page);
2641 out:
2642         return r;
2643 }
2644
2645 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2646 {
2647         gpa_t gpa = data & ~0x3f;
2648
2649         /* Bits 3:5 are reserved, Should be zero */
2650         if (data & 0x38)
2651                 return 1;
2652
2653         vcpu->arch.apf.msr_val = data;
2654
2655         if (!(data & KVM_ASYNC_PF_ENABLED)) {
2656                 kvm_clear_async_pf_completion_queue(vcpu);
2657                 kvm_async_pf_hash_reset(vcpu);
2658                 return 0;
2659         }
2660
2661         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2662                                         sizeof(u32)))
2663                 return 1;
2664
2665         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2666         vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2667         kvm_async_pf_wakeup_all(vcpu);
2668         return 0;
2669 }
2670
2671 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2672 {
2673         vcpu->arch.pv_time_enabled = false;
2674         vcpu->arch.time = 0;
2675 }
2676
2677 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
2678 {
2679         ++vcpu->stat.tlb_flush;
2680         kvm_x86_ops->tlb_flush(vcpu, invalidate_gpa);
2681 }
2682
2683 static void record_steal_time(struct kvm_vcpu *vcpu)
2684 {
2685         struct kvm_host_map map;
2686         struct kvm_steal_time *st;
2687
2688         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2689                 return;
2690
2691         /* -EAGAIN is returned in atomic context so we can just return. */
2692         if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT,
2693                         &map, &vcpu->arch.st.cache, false))
2694                 return;
2695
2696         st = map.hva +
2697                 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
2698
2699         /*
2700          * Doing a TLB flush here, on the guest's behalf, can avoid
2701          * expensive IPIs.
2702          */
2703         trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
2704                 st->preempted & KVM_VCPU_FLUSH_TLB);
2705         if (xchg(&st->preempted, 0) & KVM_VCPU_FLUSH_TLB)
2706                 kvm_vcpu_flush_tlb(vcpu, false);
2707
2708         vcpu->arch.st.preempted = 0;
2709
2710         if (st->version & 1)
2711                 st->version += 1;  /* first time write, random junk */
2712
2713         st->version += 1;
2714
2715         smp_wmb();
2716
2717         st->steal += current->sched_info.run_delay -
2718                 vcpu->arch.st.last_steal;
2719         vcpu->arch.st.last_steal = current->sched_info.run_delay;
2720
2721         smp_wmb();
2722
2723         st->version += 1;
2724
2725         kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, false);
2726 }
2727
2728 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2729 {
2730         bool pr = false;
2731         u32 msr = msr_info->index;
2732         u64 data = msr_info->data;
2733
2734         switch (msr) {
2735         case MSR_AMD64_NB_CFG:
2736         case MSR_IA32_UCODE_WRITE:
2737         case MSR_VM_HSAVE_PA:
2738         case MSR_AMD64_PATCH_LOADER:
2739         case MSR_AMD64_BU_CFG2:
2740         case MSR_AMD64_DC_CFG:
2741         case MSR_F15H_EX_CFG:
2742                 break;
2743
2744         case MSR_IA32_UCODE_REV:
2745                 if (msr_info->host_initiated)
2746                         vcpu->arch.microcode_version = data;
2747                 break;
2748         case MSR_IA32_ARCH_CAPABILITIES:
2749                 if (!msr_info->host_initiated)
2750                         return 1;
2751                 vcpu->arch.arch_capabilities = data;
2752                 break;
2753         case MSR_EFER:
2754                 return set_efer(vcpu, msr_info);
2755         case MSR_K7_HWCR:
2756                 data &= ~(u64)0x40;     /* ignore flush filter disable */
2757                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2758                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
2759
2760                 /* Handle McStatusWrEn */
2761                 if (data == BIT_ULL(18)) {
2762                         vcpu->arch.msr_hwcr = data;
2763                 } else if (data != 0) {
2764                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2765                                     data);
2766                         return 1;
2767                 }
2768                 break;
2769         case MSR_FAM10H_MMIO_CONF_BASE:
2770                 if (data != 0) {
2771                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2772                                     "0x%llx\n", data);
2773                         return 1;
2774                 }
2775                 break;
2776         case MSR_IA32_DEBUGCTLMSR:
2777                 if (!data) {
2778                         /* We support the non-activated case already */
2779                         break;
2780                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2781                         /* Values other than LBR and BTF are vendor-specific,
2782                            thus reserved and should throw a #GP */
2783                         return 1;
2784                 }
2785                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2786                             __func__, data);
2787                 break;
2788         case 0x200 ... 0x2ff:
2789                 return kvm_mtrr_set_msr(vcpu, msr, data);
2790         case MSR_IA32_APICBASE:
2791                 return kvm_set_apic_base(vcpu, msr_info);
2792         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2793                 return kvm_x2apic_msr_write(vcpu, msr, data);
2794         case MSR_IA32_TSCDEADLINE:
2795                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2796                 break;
2797         case MSR_IA32_TSC_ADJUST:
2798                 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2799                         if (!msr_info->host_initiated) {
2800                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2801                                 adjust_tsc_offset_guest(vcpu, adj);
2802                         }
2803                         vcpu->arch.ia32_tsc_adjust_msr = data;
2804                 }
2805                 break;
2806         case MSR_IA32_MISC_ENABLE:
2807                 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
2808                     ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
2809                         if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
2810                                 return 1;
2811                         vcpu->arch.ia32_misc_enable_msr = data;
2812                         kvm_update_cpuid(vcpu);
2813                 } else {
2814                         vcpu->arch.ia32_misc_enable_msr = data;
2815                 }
2816                 break;
2817         case MSR_IA32_SMBASE:
2818                 if (!msr_info->host_initiated)
2819                         return 1;
2820                 vcpu->arch.smbase = data;
2821                 break;
2822         case MSR_IA32_POWER_CTL:
2823                 vcpu->arch.msr_ia32_power_ctl = data;
2824                 break;
2825         case MSR_IA32_TSC:
2826                 kvm_write_tsc(vcpu, msr_info);
2827                 break;
2828         case MSR_IA32_XSS:
2829                 if (!msr_info->host_initiated &&
2830                     !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
2831                         return 1;
2832                 /*
2833                  * KVM supports exposing PT to the guest, but does not support
2834                  * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
2835                  * XSAVES/XRSTORS to save/restore PT MSRs.
2836                  */
2837                 if (data & ~supported_xss)
2838                         return 1;
2839                 vcpu->arch.ia32_xss = data;
2840                 break;
2841         case MSR_SMI_COUNT:
2842                 if (!msr_info->host_initiated)
2843                         return 1;
2844                 vcpu->arch.smi_count = data;
2845                 break;
2846         case MSR_KVM_WALL_CLOCK_NEW:
2847         case MSR_KVM_WALL_CLOCK:
2848                 vcpu->kvm->arch.wall_clock = data;
2849                 kvm_write_wall_clock(vcpu->kvm, data);
2850                 break;
2851         case MSR_KVM_SYSTEM_TIME_NEW:
2852         case MSR_KVM_SYSTEM_TIME: {
2853                 struct kvm_arch *ka = &vcpu->kvm->arch;
2854
2855                 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2856                         bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2857
2858                         if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2859                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2860
2861                         ka->boot_vcpu_runs_old_kvmclock = tmp;
2862                 }
2863
2864                 vcpu->arch.time = data;
2865                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2866
2867                 /* we verify if the enable bit is set... */
2868                 vcpu->arch.pv_time_enabled = false;
2869                 if (!(data & 1))
2870                         break;
2871
2872                 if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2873                      &vcpu->arch.pv_time, data & ~1ULL,
2874                      sizeof(struct pvclock_vcpu_time_info)))
2875                         vcpu->arch.pv_time_enabled = true;
2876
2877                 break;
2878         }
2879         case MSR_KVM_ASYNC_PF_EN:
2880                 if (kvm_pv_enable_async_pf(vcpu, data))
2881                         return 1;
2882                 break;
2883         case MSR_KVM_STEAL_TIME:
2884
2885                 if (unlikely(!sched_info_on()))
2886                         return 1;
2887
2888                 if (data & KVM_STEAL_RESERVED_MASK)
2889                         return 1;
2890
2891                 vcpu->arch.st.msr_val = data;
2892
2893                 if (!(data & KVM_MSR_ENABLED))
2894                         break;
2895
2896                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2897
2898                 break;
2899         case MSR_KVM_PV_EOI_EN:
2900                 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
2901                         return 1;
2902                 break;
2903
2904         case MSR_KVM_POLL_CONTROL:
2905                 /* only enable bit supported */
2906                 if (data & (-1ULL << 1))
2907                         return 1;
2908
2909                 vcpu->arch.msr_kvm_poll_control = data;
2910                 break;
2911
2912         case MSR_IA32_MCG_CTL:
2913         case MSR_IA32_MCG_STATUS:
2914         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2915                 return set_msr_mce(vcpu, msr_info);
2916
2917         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2918         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2919                 pr = true; /* fall through */
2920         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2921         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2922                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2923                         return kvm_pmu_set_msr(vcpu, msr_info);
2924
2925                 if (pr || data != 0)
2926                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2927                                     "0x%x data 0x%llx\n", msr, data);
2928                 break;
2929         case MSR_K7_CLK_CTL:
2930                 /*
2931                  * Ignore all writes to this no longer documented MSR.
2932                  * Writes are only relevant for old K7 processors,
2933                  * all pre-dating SVM, but a recommended workaround from
2934                  * AMD for these chips. It is possible to specify the
2935                  * affected processor models on the command line, hence
2936                  * the need to ignore the workaround.
2937                  */
2938                 break;
2939         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2940         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2941         case HV_X64_MSR_CRASH_CTL:
2942         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2943         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2944         case HV_X64_MSR_TSC_EMULATION_CONTROL:
2945         case HV_X64_MSR_TSC_EMULATION_STATUS:
2946                 return kvm_hv_set_msr_common(vcpu, msr, data,
2947                                              msr_info->host_initiated);
2948         case MSR_IA32_BBL_CR_CTL3:
2949                 /* Drop writes to this legacy MSR -- see rdmsr
2950                  * counterpart for further detail.
2951                  */
2952                 if (report_ignored_msrs)
2953                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2954                                 msr, data);
2955                 break;
2956         case MSR_AMD64_OSVW_ID_LENGTH:
2957                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2958                         return 1;
2959                 vcpu->arch.osvw.length = data;
2960                 break;
2961         case MSR_AMD64_OSVW_STATUS:
2962                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2963                         return 1;
2964                 vcpu->arch.osvw.status = data;
2965                 break;
2966         case MSR_PLATFORM_INFO:
2967                 if (!msr_info->host_initiated ||
2968                     (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2969                      cpuid_fault_enabled(vcpu)))
2970                         return 1;
2971                 vcpu->arch.msr_platform_info = data;
2972                 break;
2973         case MSR_MISC_FEATURES_ENABLES:
2974                 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2975                     (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2976                      !supports_cpuid_fault(vcpu)))
2977                         return 1;
2978                 vcpu->arch.msr_misc_features_enables = data;
2979                 break;
2980         default:
2981                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2982                         return xen_hvm_config(vcpu, data);
2983                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2984                         return kvm_pmu_set_msr(vcpu, msr_info);
2985                 if (!ignore_msrs) {
2986                         vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2987                                     msr, data);
2988                         return 1;
2989                 } else {
2990                         if (report_ignored_msrs)
2991                                 vcpu_unimpl(vcpu,
2992                                         "ignored wrmsr: 0x%x data 0x%llx\n",
2993                                         msr, data);
2994                         break;
2995                 }
2996         }
2997         return 0;
2998 }
2999 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3000
3001 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3002 {
3003         u64 data;
3004         u64 mcg_cap = vcpu->arch.mcg_cap;
3005         unsigned bank_num = mcg_cap & 0xff;
3006
3007         switch (msr) {
3008         case MSR_IA32_P5_MC_ADDR:
3009         case MSR_IA32_P5_MC_TYPE:
3010                 data = 0;
3011                 break;
3012         case MSR_IA32_MCG_CAP:
3013                 data = vcpu->arch.mcg_cap;
3014                 break;
3015         case MSR_IA32_MCG_CTL:
3016                 if (!(mcg_cap & MCG_CTL_P) && !host)
3017                         return 1;
3018                 data = vcpu->arch.mcg_ctl;
3019                 break;
3020         case MSR_IA32_MCG_STATUS:
3021                 data = vcpu->arch.mcg_status;
3022                 break;
3023         default:
3024                 if (msr >= MSR_IA32_MC0_CTL &&
3025                     msr < MSR_IA32_MCx_CTL(bank_num)) {
3026                         u32 offset = array_index_nospec(
3027                                 msr - MSR_IA32_MC0_CTL,
3028                                 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3029
3030                         data = vcpu->arch.mce_banks[offset];
3031                         break;
3032                 }
3033                 return 1;
3034         }
3035         *pdata = data;
3036         return 0;
3037 }
3038
3039 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3040 {
3041         switch (msr_info->index) {
3042         case MSR_IA32_PLATFORM_ID:
3043         case MSR_IA32_EBL_CR_POWERON:
3044         case MSR_IA32_DEBUGCTLMSR:
3045         case MSR_IA32_LASTBRANCHFROMIP:
3046         case MSR_IA32_LASTBRANCHTOIP:
3047         case MSR_IA32_LASTINTFROMIP:
3048         case MSR_IA32_LASTINTTOIP:
3049         case MSR_K8_SYSCFG:
3050         case MSR_K8_TSEG_ADDR:
3051         case MSR_K8_TSEG_MASK:
3052         case MSR_VM_HSAVE_PA:
3053         case MSR_K8_INT_PENDING_MSG:
3054         case MSR_AMD64_NB_CFG:
3055         case MSR_FAM10H_MMIO_CONF_BASE:
3056         case MSR_AMD64_BU_CFG2:
3057         case MSR_IA32_PERF_CTL:
3058         case MSR_AMD64_DC_CFG:
3059         case MSR_F15H_EX_CFG:
3060                 msr_info->data = 0;
3061                 break;
3062         case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3063         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3064         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3065         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3066         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3067                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3068                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
3069                 msr_info->data = 0;
3070                 break;
3071         case MSR_IA32_UCODE_REV:
3072                 msr_info->data = vcpu->arch.microcode_version;
3073                 break;
3074         case MSR_IA32_ARCH_CAPABILITIES:
3075                 if (!msr_info->host_initiated &&
3076                     !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3077                         return 1;
3078                 msr_info->data = vcpu->arch.arch_capabilities;
3079                 break;
3080         case MSR_IA32_POWER_CTL:
3081                 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3082                 break;
3083         case MSR_IA32_TSC:
3084                 msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset;
3085                 break;
3086         case MSR_MTRRcap:
3087         case 0x200 ... 0x2ff:
3088                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3089         case 0xcd: /* fsb frequency */
3090                 msr_info->data = 3;
3091                 break;
3092                 /*
3093                  * MSR_EBC_FREQUENCY_ID
3094                  * Conservative value valid for even the basic CPU models.
3095                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3096                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3097                  * and 266MHz for model 3, or 4. Set Core Clock
3098                  * Frequency to System Bus Frequency Ratio to 1 (bits
3099                  * 31:24) even though these are only valid for CPU
3100                  * models > 2, however guests may end up dividing or
3101                  * multiplying by zero otherwise.
3102                  */
3103         case MSR_EBC_FREQUENCY_ID:
3104                 msr_info->data = 1 << 24;
3105                 break;
3106         case MSR_IA32_APICBASE:
3107                 msr_info->data = kvm_get_apic_base(vcpu);
3108                 break;
3109         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
3110                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3111         case MSR_IA32_TSCDEADLINE:
3112                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3113                 break;
3114         case MSR_IA32_TSC_ADJUST:
3115                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3116                 break;
3117         case MSR_IA32_MISC_ENABLE:
3118                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3119                 break;
3120         case MSR_IA32_SMBASE:
3121                 if (!msr_info->host_initiated)
3122                         return 1;
3123                 msr_info->data = vcpu->arch.smbase;
3124                 break;
3125         case MSR_SMI_COUNT:
3126                 msr_info->data = vcpu->arch.smi_count;
3127                 break;
3128         case MSR_IA32_PERF_STATUS:
3129                 /* TSC increment by tick */
3130                 msr_info->data = 1000ULL;
3131                 /* CPU multiplier */
3132                 msr_info->data |= (((uint64_t)4ULL) << 40);
3133                 break;
3134         case MSR_EFER:
3135                 msr_info->data = vcpu->arch.efer;
3136                 break;
3137         case MSR_KVM_WALL_CLOCK:
3138         case MSR_KVM_WALL_CLOCK_NEW:
3139                 msr_info->data = vcpu->kvm->arch.wall_clock;
3140                 break;
3141         case MSR_KVM_SYSTEM_TIME:
3142         case MSR_KVM_SYSTEM_TIME_NEW:
3143                 msr_info->data = vcpu->arch.time;
3144                 break;
3145         case MSR_KVM_ASYNC_PF_EN:
3146                 msr_info->data = vcpu->arch.apf.msr_val;
3147                 break;
3148         case MSR_KVM_STEAL_TIME:
3149                 msr_info->data = vcpu->arch.st.msr_val;
3150                 break;
3151         case MSR_KVM_PV_EOI_EN:
3152                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
3153                 break;
3154         case MSR_KVM_POLL_CONTROL:
3155                 msr_info->data = vcpu->arch.msr_kvm_poll_control;
3156                 break;
3157         case MSR_IA32_P5_MC_ADDR:
3158         case MSR_IA32_P5_MC_TYPE:
3159         case MSR_IA32_MCG_CAP:
3160         case MSR_IA32_MCG_CTL:
3161         case MSR_IA32_MCG_STATUS:
3162         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3163                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3164                                    msr_info->host_initiated);
3165         case MSR_IA32_XSS:
3166                 if (!msr_info->host_initiated &&
3167                     !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3168                         return 1;
3169                 msr_info->data = vcpu->arch.ia32_xss;
3170                 break;
3171         case MSR_K7_CLK_CTL:
3172                 /*
3173                  * Provide expected ramp-up count for K7. All other
3174                  * are set to zero, indicating minimum divisors for
3175                  * every field.
3176                  *
3177                  * This prevents guest kernels on AMD host with CPU
3178                  * type 6, model 8 and higher from exploding due to
3179                  * the rdmsr failing.
3180                  */
3181                 msr_info->data = 0x20000000;
3182                 break;
3183         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3184         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3185         case HV_X64_MSR_CRASH_CTL:
3186         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3187         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3188         case HV_X64_MSR_TSC_EMULATION_CONTROL:
3189         case HV_X64_MSR_TSC_EMULATION_STATUS:
3190                 return kvm_hv_get_msr_common(vcpu,
3191                                              msr_info->index, &msr_info->data,
3192                                              msr_info->host_initiated);
3193         case MSR_IA32_BBL_CR_CTL3:
3194                 /* This legacy MSR exists but isn't fully documented in current
3195                  * silicon.  It is however accessed by winxp in very narrow
3196                  * scenarios where it sets bit #19, itself documented as
3197                  * a "reserved" bit.  Best effort attempt to source coherent
3198                  * read data here should the balance of the register be
3199                  * interpreted by the guest:
3200                  *
3201                  * L2 cache control register 3: 64GB range, 256KB size,
3202                  * enabled, latency 0x1, configured
3203                  */
3204                 msr_info->data = 0xbe702111;
3205                 break;
3206         case MSR_AMD64_OSVW_ID_LENGTH:
3207                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3208                         return 1;
3209                 msr_info->data = vcpu->arch.osvw.length;
3210                 break;
3211         case MSR_AMD64_OSVW_STATUS:
3212                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3213                         return 1;
3214                 msr_info->data = vcpu->arch.osvw.status;
3215                 break;
3216         case MSR_PLATFORM_INFO:
3217                 if (!msr_info->host_initiated &&
3218                     !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3219                         return 1;
3220                 msr_info->data = vcpu->arch.msr_platform_info;
3221                 break;
3222         case MSR_MISC_FEATURES_ENABLES:
3223                 msr_info->data = vcpu->arch.msr_misc_features_enables;
3224                 break;
3225         case MSR_K7_HWCR:
3226                 msr_info->data = vcpu->arch.msr_hwcr;
3227                 break;
3228         default:
3229                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3230                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
3231                 if (!ignore_msrs) {
3232                         vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
3233                                                msr_info->index);
3234                         return 1;
3235                 } else {
3236                         if (report_ignored_msrs)
3237                                 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n",
3238                                         msr_info->index);
3239                         msr_info->data = 0;
3240                 }
3241                 break;
3242         }
3243         return 0;
3244 }
3245 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3246
3247 /*
3248  * Read or write a bunch of msrs. All parameters are kernel addresses.
3249  *
3250  * @return number of msrs set successfully.
3251  */
3252 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3253                     struct kvm_msr_entry *entries,
3254                     int (*do_msr)(struct kvm_vcpu *vcpu,
3255                                   unsigned index, u64 *data))
3256 {
3257         int i;
3258
3259         for (i = 0; i < msrs->nmsrs; ++i)
3260                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
3261                         break;
3262
3263         return i;
3264 }
3265
3266 /*
3267  * Read or write a bunch of msrs. Parameters are user addresses.
3268  *
3269  * @return number of msrs set successfully.
3270  */
3271 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3272                   int (*do_msr)(struct kvm_vcpu *vcpu,
3273                                 unsigned index, u64 *data),
3274                   int writeback)
3275 {
3276         struct kvm_msrs msrs;
3277         struct kvm_msr_entry *entries;
3278         int r, n;
3279         unsigned size;
3280
3281         r = -EFAULT;
3282         if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3283                 goto out;
3284
3285         r = -E2BIG;
3286         if (msrs.nmsrs >= MAX_IO_MSRS)
3287                 goto out;
3288
3289         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3290         entries = memdup_user(user_msrs->entries, size);
3291         if (IS_ERR(entries)) {
3292                 r = PTR_ERR(entries);
3293                 goto out;
3294         }
3295
3296         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3297         if (r < 0)
3298                 goto out_free;
3299
3300         r = -EFAULT;
3301         if (writeback && copy_to_user(user_msrs->entries, entries, size))
3302                 goto out_free;
3303
3304         r = n;
3305
3306 out_free:
3307         kfree(entries);
3308 out:
3309         return r;
3310 }
3311
3312 static inline bool kvm_can_mwait_in_guest(void)
3313 {
3314         return boot_cpu_has(X86_FEATURE_MWAIT) &&
3315                 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
3316                 boot_cpu_has(X86_FEATURE_ARAT);
3317 }
3318
3319 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
3320 {
3321         int r = 0;
3322
3323         switch (ext) {
3324         case KVM_CAP_IRQCHIP:
3325         case KVM_CAP_HLT:
3326         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3327         case KVM_CAP_SET_TSS_ADDR:
3328         case KVM_CAP_EXT_CPUID:
3329         case KVM_CAP_EXT_EMUL_CPUID:
3330         case KVM_CAP_CLOCKSOURCE:
3331         case KVM_CAP_PIT:
3332         case KVM_CAP_NOP_IO_DELAY:
3333         case KVM_CAP_MP_STATE:
3334         case KVM_CAP_SYNC_MMU:
3335         case KVM_CAP_USER_NMI:
3336         case KVM_CAP_REINJECT_CONTROL:
3337         case KVM_CAP_IRQ_INJECT_STATUS:
3338         case KVM_CAP_IOEVENTFD:
3339         case KVM_CAP_IOEVENTFD_NO_LENGTH:
3340         case KVM_CAP_PIT2:
3341         case KVM_CAP_PIT_STATE2:
3342         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3343         case KVM_CAP_XEN_HVM:
3344         case KVM_CAP_VCPU_EVENTS:
3345         case KVM_CAP_HYPERV:
3346         case KVM_CAP_HYPERV_VAPIC:
3347         case KVM_CAP_HYPERV_SPIN:
3348         case KVM_CAP_HYPERV_SYNIC:
3349         case KVM_CAP_HYPERV_SYNIC2:
3350         case KVM_CAP_HYPERV_VP_INDEX:
3351         case KVM_CAP_HYPERV_EVENTFD:
3352         case KVM_CAP_HYPERV_TLBFLUSH:
3353         case KVM_CAP_HYPERV_SEND_IPI:
3354         case KVM_CAP_HYPERV_CPUID:
3355         case KVM_CAP_PCI_SEGMENT:
3356         case KVM_CAP_DEBUGREGS:
3357         case KVM_CAP_X86_ROBUST_SINGLESTEP:
3358         case KVM_CAP_XSAVE:
3359         case KVM_CAP_ASYNC_PF:
3360         case KVM_CAP_GET_TSC_KHZ:
3361         case KVM_CAP_KVMCLOCK_CTRL:
3362         case KVM_CAP_READONLY_MEM:
3363         case KVM_CAP_HYPERV_TIME:
3364         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3365         case KVM_CAP_TSC_DEADLINE_TIMER:
3366         case KVM_CAP_DISABLE_QUIRKS:
3367         case KVM_CAP_SET_BOOT_CPU_ID:
3368         case KVM_CAP_SPLIT_IRQCHIP:
3369         case KVM_CAP_IMMEDIATE_EXIT:
3370         case KVM_CAP_PMU_EVENT_FILTER:
3371         case KVM_CAP_GET_MSR_FEATURES:
3372         case KVM_CAP_MSR_PLATFORM_INFO:
3373         case KVM_CAP_EXCEPTION_PAYLOAD:
3374                 r = 1;
3375                 break;
3376         case KVM_CAP_SYNC_REGS:
3377                 r = KVM_SYNC_X86_VALID_FIELDS;
3378                 break;
3379         case KVM_CAP_ADJUST_CLOCK:
3380                 r = KVM_CLOCK_TSC_STABLE;
3381                 break;
3382         case KVM_CAP_X86_DISABLE_EXITS:
3383                 r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
3384                       KVM_X86_DISABLE_EXITS_CSTATE;
3385                 if(kvm_can_mwait_in_guest())
3386                         r |= KVM_X86_DISABLE_EXITS_MWAIT;
3387                 break;
3388         case KVM_CAP_X86_SMM:
3389                 /* SMBASE is usually relocated above 1M on modern chipsets,
3390                  * and SMM handlers might indeed rely on 4G segment limits,
3391                  * so do not report SMM to be available if real mode is
3392                  * emulated via vm86 mode.  Still, do not go to great lengths
3393                  * to avoid userspace's usage of the feature, because it is a
3394                  * fringe case that is not enabled except via specific settings
3395                  * of the module parameters.
3396                  */
3397                 r = kvm_x86_ops->has_emulated_msr(MSR_IA32_SMBASE);
3398                 break;
3399         case KVM_CAP_VAPIC:
3400                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
3401                 break;
3402         case KVM_CAP_NR_VCPUS:
3403                 r = KVM_SOFT_MAX_VCPUS;
3404                 break;
3405         case KVM_CAP_MAX_VCPUS:
3406                 r = KVM_MAX_VCPUS;
3407                 break;
3408         case KVM_CAP_MAX_VCPU_ID:
3409                 r = KVM_MAX_VCPU_ID;
3410                 break;
3411         case KVM_CAP_PV_MMU:    /* obsolete */
3412                 r = 0;
3413                 break;
3414         case KVM_CAP_MCE:
3415                 r = KVM_MAX_MCE_BANKS;
3416                 break;
3417         case KVM_CAP_XCRS:
3418                 r = boot_cpu_has(X86_FEATURE_XSAVE);
3419                 break;
3420         case KVM_CAP_TSC_CONTROL:
3421                 r = kvm_has_tsc_control;
3422                 break;
3423         case KVM_CAP_X2APIC_API:
3424                 r = KVM_X2APIC_API_VALID_FLAGS;
3425                 break;
3426         case KVM_CAP_NESTED_STATE:
3427                 r = kvm_x86_ops->get_nested_state ?
3428                         kvm_x86_ops->get_nested_state(NULL, NULL, 0) : 0;
3429                 break;
3430         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
3431                 r = kvm_x86_ops->enable_direct_tlbflush != NULL;
3432                 break;
3433         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3434                 r = kvm_x86_ops->nested_enable_evmcs != NULL;
3435                 break;
3436         default:
3437                 break;
3438         }
3439         return r;
3440
3441 }
3442
3443 long kvm_arch_dev_ioctl(struct file *filp,
3444                         unsigned int ioctl, unsigned long arg)
3445 {
3446         void __user *argp = (void __user *)arg;
3447         long r;
3448
3449         switch (ioctl) {
3450         case KVM_GET_MSR_INDEX_LIST: {
3451                 struct kvm_msr_list __user *user_msr_list = argp;
3452                 struct kvm_msr_list msr_list;
3453                 unsigned n;
3454
3455                 r = -EFAULT;
3456                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3457                         goto out;
3458                 n = msr_list.nmsrs;
3459                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3460                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3461                         goto out;
3462                 r = -E2BIG;
3463                 if (n < msr_list.nmsrs)
3464                         goto out;
3465                 r = -EFAULT;
3466                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3467                                  num_msrs_to_save * sizeof(u32)))
3468                         goto out;
3469                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3470                                  &emulated_msrs,
3471                                  num_emulated_msrs * sizeof(u32)))
3472                         goto out;
3473                 r = 0;
3474                 break;
3475         }
3476         case KVM_GET_SUPPORTED_CPUID:
3477         case KVM_GET_EMULATED_CPUID: {
3478                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3479                 struct kvm_cpuid2 cpuid;
3480
3481                 r = -EFAULT;
3482                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3483                         goto out;
3484
3485                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3486                                             ioctl);
3487                 if (r)
3488                         goto out;
3489
3490                 r = -EFAULT;
3491                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3492                         goto out;
3493                 r = 0;
3494                 break;
3495         }
3496         case KVM_X86_GET_MCE_CAP_SUPPORTED:
3497                 r = -EFAULT;
3498                 if (copy_to_user(argp, &kvm_mce_cap_supported,
3499                                  sizeof(kvm_mce_cap_supported)))
3500                         goto out;
3501                 r = 0;
3502                 break;
3503         case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3504                 struct kvm_msr_list __user *user_msr_list = argp;
3505                 struct kvm_msr_list msr_list;
3506                 unsigned int n;
3507
3508                 r = -EFAULT;
3509                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3510                         goto out;
3511                 n = msr_list.nmsrs;
3512                 msr_list.nmsrs = num_msr_based_features;
3513                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3514                         goto out;
3515                 r = -E2BIG;
3516                 if (n < msr_list.nmsrs)
3517                         goto out;
3518                 r = -EFAULT;
3519                 if (copy_to_user(user_msr_list->indices, &msr_based_features,
3520                                  num_msr_based_features * sizeof(u32)))
3521                         goto out;
3522                 r = 0;
3523                 break;
3524         }
3525         case KVM_GET_MSRS:
3526                 r = msr_io(NULL, argp, do_get_msr_feature, 1);
3527                 break;
3528         default:
3529                 r = -EINVAL;
3530                 break;
3531         }
3532 out:
3533         return r;
3534 }
3535
3536 static void wbinvd_ipi(void *garbage)
3537 {
3538         wbinvd();
3539 }
3540
3541 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3542 {
3543         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3544 }
3545
3546 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3547 {
3548         /* Address WBINVD may be executed by guest */
3549         if (need_emulate_wbinvd(vcpu)) {
3550                 if (kvm_x86_ops->has_wbinvd_exit())
3551                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3552                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3553                         smp_call_function_single(vcpu->cpu,
3554                                         wbinvd_ipi, NULL, 1);
3555         }
3556
3557         kvm_x86_ops->vcpu_load(vcpu, cpu);
3558
3559         /* Apply any externally detected TSC adjustments (due to suspend) */
3560         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3561                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3562                 vcpu->arch.tsc_offset_adjustment = 0;
3563                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3564         }
3565
3566         if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3567                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3568                                 rdtsc() - vcpu->arch.last_host_tsc;
3569                 if (tsc_delta < 0)
3570                         mark_tsc_unstable("KVM discovered backwards TSC");
3571
3572                 if (kvm_check_tsc_unstable()) {
3573                         u64 offset = kvm_compute_tsc_offset(vcpu,
3574                                                 vcpu->arch.last_guest_tsc);
3575                         kvm_vcpu_write_tsc_offset(vcpu, offset);
3576                         vcpu->arch.tsc_catchup = 1;
3577                 }
3578
3579                 if (kvm_lapic_hv_timer_in_use(vcpu))
3580                         kvm_lapic_restart_hv_timer(vcpu);
3581
3582                 /*
3583                  * On a host with synchronized TSC, there is no need to update
3584                  * kvmclock on vcpu->cpu migration
3585                  */
3586                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3587                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3588                 if (vcpu->cpu != cpu)
3589                         kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3590                 vcpu->cpu = cpu;
3591         }
3592
3593         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3594 }
3595
3596 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3597 {
3598         struct kvm_host_map map;
3599         struct kvm_steal_time *st;
3600
3601         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3602                 return;
3603
3604         if (vcpu->arch.st.preempted)
3605                 return;
3606
3607         if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT, &map,
3608                         &vcpu->arch.st.cache, true))
3609                 return;
3610
3611         st = map.hva +
3612                 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
3613
3614         st->preempted = vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
3615
3616         kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, true);
3617 }
3618
3619 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3620 {
3621         int idx;
3622
3623         if (vcpu->preempted)
3624                 vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu);
3625
3626         /*
3627          * Disable page faults because we're in atomic context here.
3628          * kvm_write_guest_offset_cached() would call might_fault()
3629          * that relies on pagefault_disable() to tell if there's a
3630          * bug. NOTE: the write to guest memory may not go through if
3631          * during postcopy live migration or if there's heavy guest
3632          * paging.
3633          */
3634         pagefault_disable();
3635         /*
3636          * kvm_memslots() will be called by
3637          * kvm_write_guest_offset_cached() so take the srcu lock.
3638          */
3639         idx = srcu_read_lock(&vcpu->kvm->srcu);
3640         kvm_steal_time_set_preempted(vcpu);
3641         srcu_read_unlock(&vcpu->kvm->srcu, idx);
3642         pagefault_enable();
3643         kvm_x86_ops->vcpu_put(vcpu);
3644         vcpu->arch.last_host_tsc = rdtsc();
3645         /*
3646          * If userspace has set any breakpoints or watchpoints, dr6 is restored
3647          * on every vmexit, but if not, we might have a stale dr6 from the
3648          * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3649          */
3650         set_debugreg(0, 6);
3651 }
3652
3653 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3654                                     struct kvm_lapic_state *s)
3655 {
3656         if (vcpu->arch.apicv_active)
3657                 kvm_x86_ops->sync_pir_to_irr(vcpu);
3658
3659         return kvm_apic_get_state(vcpu, s);
3660 }
3661
3662 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3663                                     struct kvm_lapic_state *s)
3664 {
3665         int r;
3666
3667         r = kvm_apic_set_state(vcpu, s);
3668         if (r)
3669                 return r;
3670         update_cr8_intercept(vcpu);
3671
3672         return 0;
3673 }
3674
3675 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
3676 {
3677         return (!lapic_in_kernel(vcpu) ||
3678                 kvm_apic_accept_pic_intr(vcpu));
3679 }
3680
3681 /*
3682  * if userspace requested an interrupt window, check that the
3683  * interrupt window is open.
3684  *
3685  * No need to exit to userspace if we already have an interrupt queued.
3686  */
3687 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
3688 {
3689         return kvm_arch_interrupt_allowed(vcpu) &&
3690                 !kvm_cpu_has_interrupt(vcpu) &&
3691                 !kvm_event_needs_reinjection(vcpu) &&
3692                 kvm_cpu_accept_dm_intr(vcpu);
3693 }
3694
3695 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3696                                     struct kvm_interrupt *irq)
3697 {
3698         if (irq->irq >= KVM_NR_INTERRUPTS)
3699                 return -EINVAL;
3700
3701         if (!irqchip_in_kernel(vcpu->kvm)) {
3702                 kvm_queue_interrupt(vcpu, irq->irq, false);
3703                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3704                 return 0;
3705         }
3706
3707         /*
3708          * With in-kernel LAPIC, we only use this to inject EXTINT, so
3709          * fail for in-kernel 8259.
3710          */
3711         if (pic_in_kernel(vcpu->kvm))
3712                 return -ENXIO;
3713
3714         if (vcpu->arch.pending_external_vector != -1)
3715                 return -EEXIST;
3716
3717         vcpu->arch.pending_external_vector = irq->irq;
3718         kvm_make_request(KVM_REQ_EVENT, vcpu);
3719         return 0;
3720 }
3721
3722 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3723 {
3724         kvm_inject_nmi(vcpu);
3725
3726         return 0;
3727 }
3728
3729 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3730 {
3731         kvm_make_request(KVM_REQ_SMI, vcpu);
3732
3733         return 0;
3734 }
3735
3736 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3737                                            struct kvm_tpr_access_ctl *tac)
3738 {
3739         if (tac->flags)
3740                 return -EINVAL;
3741         vcpu->arch.tpr_access_reporting = !!tac->enabled;
3742         return 0;
3743 }
3744
3745 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3746                                         u64 mcg_cap)
3747 {
3748         int r;
3749         unsigned bank_num = mcg_cap & 0xff, bank;
3750
3751         r = -EINVAL;
3752         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3753                 goto out;
3754         if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3755                 goto out;
3756         r = 0;
3757         vcpu->arch.mcg_cap = mcg_cap;
3758         /* Init IA32_MCG_CTL to all 1s */
3759         if (mcg_cap & MCG_CTL_P)
3760                 vcpu->arch.mcg_ctl = ~(u64)0;
3761         /* Init IA32_MCi_CTL to all 1s */
3762         for (bank = 0; bank < bank_num; bank++)
3763                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3764
3765         kvm_x86_ops->setup_mce(vcpu);
3766 out:
3767         return r;
3768 }
3769
3770 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3771                                       struct kvm_x86_mce *mce)
3772 {
3773         u64 mcg_cap = vcpu->arch.mcg_cap;
3774         unsigned bank_num = mcg_cap & 0xff;
3775         u64 *banks = vcpu->arch.mce_banks;
3776
3777         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3778                 return -EINVAL;
3779         /*
3780          * if IA32_MCG_CTL is not all 1s, the uncorrected error
3781          * reporting is disabled
3782          */
3783         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3784             vcpu->arch.mcg_ctl != ~(u64)0)
3785                 return 0;
3786         banks += 4 * mce->bank;
3787         /*
3788          * if IA32_MCi_CTL is not all 1s, the uncorrected error
3789          * reporting is disabled for the bank
3790          */
3791         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3792                 return 0;
3793         if (mce->status & MCI_STATUS_UC) {
3794                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3795                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3796                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3797                         return 0;
3798                 }
3799                 if (banks[1] & MCI_STATUS_VAL)
3800                         mce->status |= MCI_STATUS_OVER;
3801                 banks[2] = mce->addr;
3802                 banks[3] = mce->misc;
3803                 vcpu->arch.mcg_status = mce->mcg_status;
3804                 banks[1] = mce->status;
3805                 kvm_queue_exception(vcpu, MC_VECTOR);
3806         } else if (!(banks[1] & MCI_STATUS_VAL)
3807                    || !(banks[1] & MCI_STATUS_UC)) {
3808                 if (banks[1] & MCI_STATUS_VAL)
3809                         mce->status |= MCI_STATUS_OVER;
3810                 banks[2] = mce->addr;
3811                 banks[3] = mce->misc;
3812                 banks[1] = mce->status;
3813         } else
3814                 banks[1] |= MCI_STATUS_OVER;
3815         return 0;
3816 }
3817
3818 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3819                                                struct kvm_vcpu_events *events)
3820 {
3821         process_nmi(vcpu);
3822
3823         /*
3824          * In guest mode, payload delivery should be deferred,
3825          * so that the L1 hypervisor can intercept #PF before
3826          * CR2 is modified (or intercept #DB before DR6 is
3827          * modified under nVMX). Unless the per-VM capability,
3828          * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
3829          * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
3830          * opportunistically defer the exception payload, deliver it if the
3831          * capability hasn't been requested before processing a
3832          * KVM_GET_VCPU_EVENTS.
3833          */
3834         if (!vcpu->kvm->arch.exception_payload_enabled &&
3835             vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
3836                 kvm_deliver_exception_payload(vcpu);
3837
3838         /*
3839          * The API doesn't provide the instruction length for software
3840          * exceptions, so don't report them. As long as the guest RIP
3841          * isn't advanced, we should expect to encounter the exception
3842          * again.
3843          */
3844         if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
3845                 events->exception.injected = 0;
3846                 events->exception.pending = 0;
3847         } else {
3848                 events->exception.injected = vcpu->arch.exception.injected;
3849                 events->exception.pending = vcpu->arch.exception.pending;
3850                 /*
3851                  * For ABI compatibility, deliberately conflate
3852                  * pending and injected exceptions when
3853                  * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
3854                  */
3855                 if (!vcpu->kvm->arch.exception_payload_enabled)
3856                         events->exception.injected |=
3857                                 vcpu->arch.exception.pending;
3858         }
3859         events->exception.nr = vcpu->arch.exception.nr;
3860         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3861         events->exception.error_code = vcpu->arch.exception.error_code;
3862         events->exception_has_payload = vcpu->arch.exception.has_payload;
3863         events->exception_payload = vcpu->arch.exception.payload;
3864
3865         events->interrupt.injected =
3866                 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
3867         events->interrupt.nr = vcpu->arch.interrupt.nr;
3868         events->interrupt.soft = 0;
3869         events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3870
3871         events->nmi.injected = vcpu->arch.nmi_injected;
3872         events->nmi.pending = vcpu->arch.nmi_pending != 0;
3873         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3874         events->nmi.pad = 0;
3875
3876         events->sipi_vector = 0; /* never valid when reporting to user space */
3877
3878         events->smi.smm = is_smm(vcpu);
3879         events->smi.pending = vcpu->arch.smi_pending;
3880         events->smi.smm_inside_nmi =
3881                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3882         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3883
3884         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3885                          | KVM_VCPUEVENT_VALID_SHADOW
3886                          | KVM_VCPUEVENT_VALID_SMM);
3887         if (vcpu->kvm->arch.exception_payload_enabled)
3888                 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
3889
3890         memset(&events->reserved, 0, sizeof(events->reserved));
3891 }
3892
3893 static void kvm_smm_changed(struct kvm_vcpu *vcpu);
3894
3895 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3896                                               struct kvm_vcpu_events *events)
3897 {
3898         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3899                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3900                               | KVM_VCPUEVENT_VALID_SHADOW
3901                               | KVM_VCPUEVENT_VALID_SMM
3902                               | KVM_VCPUEVENT_VALID_PAYLOAD))
3903                 return -EINVAL;
3904
3905         if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
3906                 if (!vcpu->kvm->arch.exception_payload_enabled)
3907                         return -EINVAL;
3908                 if (events->exception.pending)
3909                         events->exception.injected = 0;
3910                 else
3911                         events->exception_has_payload = 0;
3912         } else {
3913                 events->exception.pending = 0;
3914                 events->exception_has_payload = 0;
3915         }
3916
3917         if ((events->exception.injected || events->exception.pending) &&
3918             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
3919                 return -EINVAL;
3920
3921         /* INITs are latched while in SMM */
3922         if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3923             (events->smi.smm || events->smi.pending) &&
3924             vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3925                 return -EINVAL;
3926
3927         process_nmi(vcpu);
3928         vcpu->arch.exception.injected = events->exception.injected;
3929         vcpu->arch.exception.pending = events->exception.pending;
3930         vcpu->arch.exception.nr = events->exception.nr;
3931         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3932         vcpu->arch.exception.error_code = events->exception.error_code;
3933         vcpu->arch.exception.has_payload = events->exception_has_payload;
3934         vcpu->arch.exception.payload = events->exception_payload;
3935
3936         vcpu->arch.interrupt.injected = events->interrupt.injected;
3937         vcpu->arch.interrupt.nr = events->interrupt.nr;
3938         vcpu->arch.interrupt.soft = events->interrupt.soft;
3939         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3940                 kvm_x86_ops->set_interrupt_shadow(vcpu,
3941                                                   events->interrupt.shadow);
3942
3943         vcpu->arch.nmi_injected = events->nmi.injected;
3944         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3945                 vcpu->arch.nmi_pending = events->nmi.pending;
3946         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3947
3948         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3949             lapic_in_kernel(vcpu))
3950                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3951
3952         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3953                 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
3954                         if (events->smi.smm)
3955                                 vcpu->arch.hflags |= HF_SMM_MASK;
3956                         else
3957                                 vcpu->arch.hflags &= ~HF_SMM_MASK;
3958                         kvm_smm_changed(vcpu);
3959                 }
3960
3961                 vcpu->arch.smi_pending = events->smi.pending;
3962
3963                 if (events->smi.smm) {
3964                         if (events->smi.smm_inside_nmi)
3965                                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3966                         else
3967                                 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3968                 }
3969
3970                 if (lapic_in_kernel(vcpu)) {
3971                         if (events->smi.latched_init)
3972                                 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3973                         else
3974                                 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3975                 }
3976         }
3977
3978         kvm_make_request(KVM_REQ_EVENT, vcpu);
3979
3980         return 0;
3981 }
3982
3983 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3984                                              struct kvm_debugregs *dbgregs)
3985 {
3986         unsigned long val;
3987
3988         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3989         kvm_get_dr(vcpu, 6, &val);
3990         dbgregs->dr6 = val;
3991         dbgregs->dr7 = vcpu->arch.dr7;
3992         dbgregs->flags = 0;
3993         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3994 }
3995
3996 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3997                                             struct kvm_debugregs *dbgregs)
3998 {
3999         if (dbgregs->flags)
4000                 return -EINVAL;
4001
4002         if (dbgregs->dr6 & ~0xffffffffull)
4003                 return -EINVAL;
4004         if (dbgregs->dr7 & ~0xffffffffull)
4005                 return -EINVAL;
4006
4007         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
4008         kvm_update_dr0123(vcpu);
4009         vcpu->arch.dr6 = dbgregs->dr6;
4010         kvm_update_dr6(vcpu);
4011         vcpu->arch.dr7 = dbgregs->dr7;
4012         kvm_update_dr7(vcpu);
4013
4014         return 0;
4015 }
4016
4017 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
4018
4019 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
4020 {
4021         struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4022         u64 xstate_bv = xsave->header.xfeatures;
4023         u64 valid;
4024
4025         /*
4026          * Copy legacy XSAVE area, to avoid complications with CPUID
4027          * leaves 0 and 1 in the loop below.
4028          */
4029         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
4030
4031         /* Set XSTATE_BV */
4032         xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
4033         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
4034
4035         /*
4036          * Copy each region from the possibly compacted offset to the
4037          * non-compacted offset.
4038          */
4039         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4040         while (valid) {
4041                 u64 xfeature_mask = valid & -valid;
4042                 int xfeature_nr = fls64(xfeature_mask) - 1;
4043                 void *src = get_xsave_addr(xsave, xfeature_nr);
4044
4045                 if (src) {
4046                         u32 size, offset, ecx, edx;
4047                         cpuid_count(XSTATE_CPUID, xfeature_nr,
4048                                     &size, &offset, &ecx, &edx);
4049                         if (xfeature_nr == XFEATURE_PKRU)
4050                                 memcpy(dest + offset, &vcpu->arch.pkru,
4051                                        sizeof(vcpu->arch.pkru));
4052                         else
4053                                 memcpy(dest + offset, src, size);
4054
4055                 }
4056
4057                 valid -= xfeature_mask;
4058         }
4059 }
4060
4061 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
4062 {
4063         struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4064         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
4065         u64 valid;
4066
4067         /*
4068          * Copy legacy XSAVE area, to avoid complications with CPUID
4069          * leaves 0 and 1 in the loop below.
4070          */
4071         memcpy(xsave, src, XSAVE_HDR_OFFSET);
4072
4073         /* Set XSTATE_BV and possibly XCOMP_BV.  */
4074         xsave->header.xfeatures = xstate_bv;
4075         if (boot_cpu_has(X86_FEATURE_XSAVES))
4076                 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
4077
4078         /*
4079          * Copy each region from the non-compacted offset to the
4080          * possibly compacted offset.
4081          */
4082         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4083         while (valid) {
4084                 u64 xfeature_mask = valid & -valid;
4085                 int xfeature_nr = fls64(xfeature_mask) - 1;
4086                 void *dest = get_xsave_addr(xsave, xfeature_nr);
4087
4088                 if (dest) {
4089                         u32 size, offset, ecx, edx;
4090                         cpuid_count(XSTATE_CPUID, xfeature_nr,
4091                                     &size, &offset, &ecx, &edx);
4092                         if (xfeature_nr == XFEATURE_PKRU)
4093                                 memcpy(&vcpu->arch.pkru, src + offset,
4094                                        sizeof(vcpu->arch.pkru));
4095                         else
4096                                 memcpy(dest, src + offset, size);
4097                 }
4098
4099                 valid -= xfeature_mask;
4100         }
4101 }
4102
4103 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4104                                          struct kvm_xsave *guest_xsave)
4105 {
4106         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4107                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
4108                 fill_xsave((u8 *) guest_xsave->region, vcpu);
4109         } else {
4110                 memcpy(guest_xsave->region,
4111                         &vcpu->arch.guest_fpu->state.fxsave,
4112                         sizeof(struct fxregs_state));
4113                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
4114                         XFEATURE_MASK_FPSSE;
4115         }
4116 }
4117
4118 #define XSAVE_MXCSR_OFFSET 24
4119
4120 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
4121                                         struct kvm_xsave *guest_xsave)
4122 {
4123         u64 xstate_bv =
4124                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
4125         u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
4126
4127         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4128                 /*
4129                  * Here we allow setting states that are not present in
4130                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
4131                  * with old userspace.
4132                  */
4133                 if (xstate_bv & ~supported_xcr0 || mxcsr & ~mxcsr_feature_mask)
4134                         return -EINVAL;
4135                 load_xsave(vcpu, (u8 *)guest_xsave->region);
4136         } else {
4137                 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
4138                         mxcsr & ~mxcsr_feature_mask)
4139                         return -EINVAL;
4140                 memcpy(&vcpu->arch.guest_fpu->state.fxsave,
4141                         guest_xsave->region, sizeof(struct fxregs_state));
4142         }
4143         return 0;
4144 }
4145
4146 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
4147                                         struct kvm_xcrs *guest_xcrs)
4148 {
4149         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
4150                 guest_xcrs->nr_xcrs = 0;
4151                 return;
4152         }
4153
4154         guest_xcrs->nr_xcrs = 1;
4155         guest_xcrs->flags = 0;
4156         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
4157         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
4158 }
4159
4160 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
4161                                        struct kvm_xcrs *guest_xcrs)
4162 {
4163         int i, r = 0;
4164
4165         if (!boot_cpu_has(X86_FEATURE_XSAVE))
4166                 return -EINVAL;
4167
4168         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
4169                 return -EINVAL;
4170
4171         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
4172                 /* Only support XCR0 currently */
4173                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
4174                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
4175                                 guest_xcrs->xcrs[i].value);
4176                         break;
4177                 }
4178         if (r)
4179                 r = -EINVAL;
4180         return r;
4181 }
4182
4183 /*
4184  * kvm_set_guest_paused() indicates to the guest kernel that it has been
4185  * stopped by the hypervisor.  This function will be called from the host only.
4186  * EINVAL is returned when the host attempts to set the flag for a guest that
4187  * does not support pv clocks.
4188  */
4189 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
4190 {
4191         if (!vcpu->arch.pv_time_enabled)
4192                 return -EINVAL;
4193         vcpu->arch.pvclock_set_guest_stopped_request = true;
4194         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4195         return 0;
4196 }
4197
4198 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
4199                                      struct kvm_enable_cap *cap)
4200 {
4201         int r;
4202         uint16_t vmcs_version;
4203         void __user *user_ptr;
4204
4205         if (cap->flags)
4206                 return -EINVAL;
4207
4208         switch (cap->cap) {
4209         case KVM_CAP_HYPERV_SYNIC2:
4210                 if (cap->args[0])
4211                         return -EINVAL;
4212                 /* fall through */
4213
4214         case KVM_CAP_HYPERV_SYNIC:
4215                 if (!irqchip_in_kernel(vcpu->kvm))
4216                         return -EINVAL;
4217                 return kvm_hv_activate_synic(vcpu, cap->cap ==
4218                                              KVM_CAP_HYPERV_SYNIC2);
4219         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4220                 if (!kvm_x86_ops->nested_enable_evmcs)
4221                         return -ENOTTY;
4222                 r = kvm_x86_ops->nested_enable_evmcs(vcpu, &vmcs_version);
4223                 if (!r) {
4224                         user_ptr = (void __user *)(uintptr_t)cap->args[0];
4225                         if (copy_to_user(user_ptr, &vmcs_version,
4226                                          sizeof(vmcs_version)))
4227                                 r = -EFAULT;
4228                 }
4229                 return r;
4230         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4231                 if (!kvm_x86_ops->enable_direct_tlbflush)
4232                         return -ENOTTY;
4233
4234                 return kvm_x86_ops->enable_direct_tlbflush(vcpu);
4235
4236         default:
4237                 return -EINVAL;
4238         }
4239 }
4240
4241 long kvm_arch_vcpu_ioctl(struct file *filp,
4242                          unsigned int ioctl, unsigned long arg)
4243 {
4244         struct kvm_vcpu *vcpu = filp->private_data;
4245         void __user *argp = (void __user *)arg;
4246         int r;
4247         union {
4248                 struct kvm_lapic_state *lapic;
4249                 struct kvm_xsave *xsave;
4250                 struct kvm_xcrs *xcrs;
4251                 void *buffer;
4252         } u;
4253
4254         vcpu_load(vcpu);
4255
4256         u.buffer = NULL;
4257         switch (ioctl) {
4258         case KVM_GET_LAPIC: {
4259                 r = -EINVAL;
4260                 if (!lapic_in_kernel(vcpu))
4261                         goto out;
4262                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
4263                                 GFP_KERNEL_ACCOUNT);
4264
4265                 r = -ENOMEM;
4266                 if (!u.lapic)
4267                         goto out;
4268                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
4269                 if (r)
4270                         goto out;
4271                 r = -EFAULT;
4272                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
4273                         goto out;
4274                 r = 0;
4275                 break;
4276         }
4277         case KVM_SET_LAPIC: {
4278                 r = -EINVAL;
4279                 if (!lapic_in_kernel(vcpu))
4280                         goto out;
4281                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
4282                 if (IS_ERR(u.lapic)) {
4283                         r = PTR_ERR(u.lapic);
4284                         goto out_nofree;
4285                 }
4286
4287                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
4288                 break;
4289         }
4290         case KVM_INTERRUPT: {
4291                 struct kvm_interrupt irq;
4292
4293                 r = -EFAULT;
4294                 if (copy_from_user(&irq, argp, sizeof(irq)))
4295                         goto out;
4296                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
4297                 break;
4298         }
4299         case KVM_NMI: {
4300                 r = kvm_vcpu_ioctl_nmi(vcpu);
4301                 break;
4302         }
4303         case KVM_SMI: {
4304                 r = kvm_vcpu_ioctl_smi(vcpu);
4305                 break;
4306         }
4307         case KVM_SET_CPUID: {
4308                 struct kvm_cpuid __user *cpuid_arg = argp;
4309                 struct kvm_cpuid cpuid;
4310
4311                 r = -EFAULT;
4312                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4313                         goto out;
4314                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4315                 break;
4316         }
4317         case KVM_SET_CPUID2: {
4318                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4319                 struct kvm_cpuid2 cpuid;
4320
4321                 r = -EFAULT;
4322                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4323                         goto out;
4324                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
4325                                               cpuid_arg->entries);
4326                 break;
4327         }
4328         case KVM_GET_CPUID2: {
4329                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4330                 struct kvm_cpuid2 cpuid;
4331
4332                 r = -EFAULT;
4333                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4334                         goto out;
4335                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
4336                                               cpuid_arg->entries);
4337                 if (r)
4338                         goto out;
4339                 r = -EFAULT;
4340                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4341                         goto out;
4342                 r = 0;
4343                 break;
4344         }
4345         case KVM_GET_MSRS: {
4346                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
4347                 r = msr_io(vcpu, argp, do_get_msr, 1);
4348                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4349                 break;
4350         }
4351         case KVM_SET_MSRS: {
4352                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
4353                 r = msr_io(vcpu, argp, do_set_msr, 0);
4354                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4355                 break;
4356         }
4357         case KVM_TPR_ACCESS_REPORTING: {
4358                 struct kvm_tpr_access_ctl tac;
4359
4360                 r = -EFAULT;
4361                 if (copy_from_user(&tac, argp, sizeof(tac)))
4362                         goto out;
4363                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
4364                 if (r)
4365                         goto out;
4366                 r = -EFAULT;
4367                 if (copy_to_user(argp, &tac, sizeof(tac)))
4368                         goto out;
4369                 r = 0;
4370                 break;
4371         };
4372         case KVM_SET_VAPIC_ADDR: {
4373                 struct kvm_vapic_addr va;
4374                 int idx;
4375
4376                 r = -EINVAL;
4377                 if (!lapic_in_kernel(vcpu))
4378                         goto out;
4379                 r = -EFAULT;
4380                 if (copy_from_user(&va, argp, sizeof(va)))
4381                         goto out;
4382                 idx = srcu_read_lock(&vcpu->kvm->srcu);
4383                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
4384                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4385                 break;
4386         }
4387         case KVM_X86_SETUP_MCE: {
4388                 u64 mcg_cap;
4389
4390                 r = -EFAULT;
4391                 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
4392                         goto out;
4393                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
4394                 break;
4395         }
4396         case KVM_X86_SET_MCE: {
4397                 struct kvm_x86_mce mce;
4398
4399                 r = -EFAULT;
4400                 if (copy_from_user(&mce, argp, sizeof(mce)))
4401                         goto out;
4402                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4403                 break;
4404         }
4405         case KVM_GET_VCPU_EVENTS: {
4406                 struct kvm_vcpu_events events;
4407
4408                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4409
4410                 r = -EFAULT;
4411                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4412                         break;
4413                 r = 0;
4414                 break;
4415         }
4416         case KVM_SET_VCPU_EVENTS: {
4417                 struct kvm_vcpu_events events;
4418
4419                 r = -EFAULT;
4420                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
4421                         break;
4422
4423                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4424                 break;
4425         }
4426         case KVM_GET_DEBUGREGS: {
4427                 struct kvm_debugregs dbgregs;
4428
4429                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4430
4431                 r = -EFAULT;
4432                 if (copy_to_user(argp, &dbgregs,
4433                                  sizeof(struct kvm_debugregs)))
4434                         break;
4435                 r = 0;
4436                 break;
4437         }
4438         case KVM_SET_DEBUGREGS: {
4439                 struct kvm_debugregs dbgregs;
4440
4441                 r = -EFAULT;
4442                 if (copy_from_user(&dbgregs, argp,
4443                                    sizeof(struct kvm_debugregs)))
4444                         break;
4445
4446                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
4447                 break;
4448         }
4449         case KVM_GET_XSAVE: {
4450                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
4451                 r = -ENOMEM;
4452                 if (!u.xsave)
4453                         break;
4454
4455                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
4456
4457                 r = -EFAULT;
4458                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
4459                         break;
4460                 r = 0;
4461                 break;
4462         }
4463         case KVM_SET_XSAVE: {
4464                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
4465                 if (IS_ERR(u.xsave)) {
4466                         r = PTR_ERR(u.xsave);
4467                         goto out_nofree;
4468                 }
4469
4470                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
4471                 break;
4472         }
4473         case KVM_GET_XCRS: {
4474                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
4475                 r = -ENOMEM;
4476                 if (!u.xcrs)
4477                         break;
4478
4479                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
4480
4481                 r = -EFAULT;
4482                 if (copy_to_user(argp, u.xcrs,
4483                                  sizeof(struct kvm_xcrs)))
4484                         break;
4485                 r = 0;
4486                 break;
4487         }
4488         case KVM_SET_XCRS: {
4489                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
4490                 if (IS_ERR(u.xcrs)) {
4491                         r = PTR_ERR(u.xcrs);
4492                         goto out_nofree;
4493                 }
4494
4495                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
4496                 break;
4497         }
4498         case KVM_SET_TSC_KHZ: {
4499                 u32 user_tsc_khz;
4500
4501                 r = -EINVAL;
4502                 user_tsc_khz = (u32)arg;
4503
4504                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
4505                         goto out;
4506
4507                 if (user_tsc_khz == 0)
4508                         user_tsc_khz = tsc_khz;
4509
4510                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
4511                         r = 0;
4512
4513                 goto out;
4514         }
4515         case KVM_GET_TSC_KHZ: {
4516                 r = vcpu->arch.virtual_tsc_khz;
4517                 goto out;
4518         }
4519         case KVM_KVMCLOCK_CTRL: {
4520                 r = kvm_set_guest_paused(vcpu);
4521                 goto out;
4522         }
4523         case KVM_ENABLE_CAP: {
4524                 struct kvm_enable_cap cap;
4525
4526                 r = -EFAULT;
4527                 if (copy_from_user(&cap, argp, sizeof(cap)))
4528                         goto out;
4529                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
4530                 break;
4531         }
4532         case KVM_GET_NESTED_STATE: {
4533                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4534                 u32 user_data_size;
4535
4536                 r = -EINVAL;
4537                 if (!kvm_x86_ops->get_nested_state)
4538                         break;
4539
4540                 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
4541                 r = -EFAULT;
4542                 if (get_user(user_data_size, &user_kvm_nested_state->size))
4543                         break;
4544
4545                 r = kvm_x86_ops->get_nested_state(vcpu, user_kvm_nested_state,
4546                                                   user_data_size);
4547                 if (r < 0)
4548                         break;
4549
4550                 if (r > user_data_size) {
4551                         if (put_user(r, &user_kvm_nested_state->size))
4552                                 r = -EFAULT;
4553                         else
4554                                 r = -E2BIG;
4555                         break;
4556                 }
4557
4558                 r = 0;
4559                 break;
4560         }
4561         case KVM_SET_NESTED_STATE: {
4562                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4563                 struct kvm_nested_state kvm_state;
4564                 int idx;
4565
4566                 r = -EINVAL;
4567                 if (!kvm_x86_ops->set_nested_state)
4568                         break;
4569
4570                 r = -EFAULT;
4571                 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
4572                         break;
4573
4574                 r = -EINVAL;
4575                 if (kvm_state.size < sizeof(kvm_state))
4576                         break;
4577
4578                 if (kvm_state.flags &
4579                     ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
4580                       | KVM_STATE_NESTED_EVMCS))
4581                         break;
4582
4583                 /* nested_run_pending implies guest_mode.  */
4584                 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
4585                     && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
4586                         break;
4587
4588                 idx = srcu_read_lock(&vcpu->kvm->srcu);
4589                 r = kvm_x86_ops->set_nested_state(vcpu, user_kvm_nested_state, &kvm_state);
4590                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4591                 break;
4592         }
4593         case KVM_GET_SUPPORTED_HV_CPUID: {
4594                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4595                 struct kvm_cpuid2 cpuid;
4596
4597                 r = -EFAULT;
4598                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4599                         goto out;
4600
4601                 r = kvm_vcpu_ioctl_get_hv_cpuid(vcpu, &cpuid,
4602                                                 cpuid_arg->entries);
4603                 if (r)
4604                         goto out;
4605
4606                 r = -EFAULT;
4607                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4608                         goto out;
4609                 r = 0;
4610                 break;
4611         }
4612         default:
4613                 r = -EINVAL;
4614         }
4615 out:
4616         kfree(u.buffer);
4617 out_nofree:
4618         vcpu_put(vcpu);
4619         return r;
4620 }
4621
4622 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
4623 {
4624         return VM_FAULT_SIGBUS;
4625 }
4626
4627 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
4628 {
4629         int ret;
4630
4631         if (addr > (unsigned int)(-3 * PAGE_SIZE))
4632                 return -EINVAL;
4633         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
4634         return ret;
4635 }
4636
4637 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
4638                                               u64 ident_addr)
4639 {
4640         return kvm_x86_ops->set_identity_map_addr(kvm, ident_addr);
4641 }
4642
4643 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
4644                                          unsigned long kvm_nr_mmu_pages)
4645 {
4646         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
4647                 return -EINVAL;
4648
4649         mutex_lock(&kvm->slots_lock);
4650
4651         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
4652         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
4653
4654         mutex_unlock(&kvm->slots_lock);
4655         return 0;
4656 }
4657
4658 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
4659 {
4660         return kvm->arch.n_max_mmu_pages;
4661 }
4662
4663 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4664 {
4665         struct kvm_pic *pic = kvm->arch.vpic;
4666         int r;
4667
4668         r = 0;
4669         switch (chip->chip_id) {
4670         case KVM_IRQCHIP_PIC_MASTER:
4671                 memcpy(&chip->chip.pic, &pic->pics[0],
4672                         sizeof(struct kvm_pic_state));
4673                 break;
4674         case KVM_IRQCHIP_PIC_SLAVE:
4675                 memcpy(&chip->chip.pic, &pic->pics[1],
4676                         sizeof(struct kvm_pic_state));
4677                 break;
4678         case KVM_IRQCHIP_IOAPIC:
4679                 kvm_get_ioapic(kvm, &chip->chip.ioapic);
4680                 break;
4681         default:
4682                 r = -EINVAL;
4683                 break;
4684         }
4685         return r;
4686 }
4687
4688 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4689 {
4690         struct kvm_pic *pic = kvm->arch.vpic;
4691         int r;
4692
4693         r = 0;
4694         switch (chip->chip_id) {
4695         case KVM_IRQCHIP_PIC_MASTER:
4696                 spin_lock(&pic->lock);
4697                 memcpy(&pic->pics[0], &chip->chip.pic,
4698                         sizeof(struct kvm_pic_state));
4699                 spin_unlock(&pic->lock);
4700                 break;
4701         case KVM_IRQCHIP_PIC_SLAVE:
4702                 spin_lock(&pic->lock);
4703                 memcpy(&pic->pics[1], &chip->chip.pic,
4704                         sizeof(struct kvm_pic_state));
4705                 spin_unlock(&pic->lock);
4706                 break;
4707         case KVM_IRQCHIP_IOAPIC:
4708                 kvm_set_ioapic(kvm, &chip->chip.ioapic);
4709                 break;
4710         default:
4711                 r = -EINVAL;
4712                 break;
4713         }
4714         kvm_pic_update_irq(pic);
4715         return r;
4716 }
4717
4718 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4719 {
4720         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
4721
4722         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
4723
4724         mutex_lock(&kps->lock);
4725         memcpy(ps, &kps->channels, sizeof(*ps));
4726         mutex_unlock(&kps->lock);
4727         return 0;
4728 }
4729
4730 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4731 {
4732         int i;
4733         struct kvm_pit *pit = kvm->arch.vpit;
4734
4735         mutex_lock(&pit->pit_state.lock);
4736         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
4737         for (i = 0; i < 3; i++)
4738                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
4739         mutex_unlock(&pit->pit_state.lock);
4740         return 0;
4741 }
4742
4743 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4744 {
4745         mutex_lock(&kvm->arch.vpit->pit_state.lock);
4746         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
4747                 sizeof(ps->channels));
4748         ps->flags = kvm->arch.vpit->pit_state.flags;
4749         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
4750         memset(&ps->reserved, 0, sizeof(ps->reserved));
4751         return 0;
4752 }
4753
4754 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4755 {
4756         int start = 0;
4757         int i;
4758         u32 prev_legacy, cur_legacy;
4759         struct kvm_pit *pit = kvm->arch.vpit;
4760
4761         mutex_lock(&pit->pit_state.lock);
4762         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
4763         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
4764         if (!prev_legacy && cur_legacy)
4765                 start = 1;
4766         memcpy(&pit->pit_state.channels, &ps->channels,
4767                sizeof(pit->pit_state.channels));
4768         pit->pit_state.flags = ps->flags;
4769         for (i = 0; i < 3; i++)
4770                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
4771                                    start && i == 0);
4772         mutex_unlock(&pit->pit_state.lock);
4773         return 0;
4774 }
4775
4776 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
4777                                  struct kvm_reinject_control *control)
4778 {
4779         struct kvm_pit *pit = kvm->arch.vpit;
4780
4781         /* pit->pit_state.lock was overloaded to prevent userspace from getting
4782          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
4783          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
4784          */
4785         mutex_lock(&pit->pit_state.lock);
4786         kvm_pit_set_reinject(pit, control->pit_reinject);
4787         mutex_unlock(&pit->pit_state.lock);
4788
4789         return 0;
4790 }
4791
4792 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
4793 {
4794         /*
4795          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4796          */
4797         if (kvm_x86_ops->flush_log_dirty)
4798                 kvm_x86_ops->flush_log_dirty(kvm);
4799 }
4800
4801 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
4802                         bool line_status)
4803 {
4804         if (!irqchip_in_kernel(kvm))
4805                 return -ENXIO;
4806
4807         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
4808                                         irq_event->irq, irq_event->level,
4809                                         line_status);
4810         return 0;
4811 }
4812
4813 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4814                             struct kvm_enable_cap *cap)
4815 {
4816         int r;
4817
4818         if (cap->flags)
4819                 return -EINVAL;
4820
4821         switch (cap->cap) {
4822         case KVM_CAP_DISABLE_QUIRKS:
4823                 kvm->arch.disabled_quirks = cap->args[0];
4824                 r = 0;
4825                 break;
4826         case KVM_CAP_SPLIT_IRQCHIP: {
4827                 mutex_lock(&kvm->lock);
4828                 r = -EINVAL;
4829                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
4830                         goto split_irqchip_unlock;
4831                 r = -EEXIST;
4832                 if (irqchip_in_kernel(kvm))
4833                         goto split_irqchip_unlock;
4834                 if (kvm->created_vcpus)
4835                         goto split_irqchip_unlock;
4836                 r = kvm_setup_empty_irq_routing(kvm);
4837                 if (r)
4838                         goto split_irqchip_unlock;
4839                 /* Pairs with irqchip_in_kernel. */
4840                 smp_wmb();
4841                 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4842                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4843                 r = 0;
4844 split_irqchip_unlock:
4845                 mutex_unlock(&kvm->lock);
4846                 break;
4847         }
4848         case KVM_CAP_X2APIC_API:
4849                 r = -EINVAL;
4850                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4851                         break;
4852
4853                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4854                         kvm->arch.x2apic_format = true;
4855                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4856                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
4857
4858                 r = 0;
4859                 break;
4860         case KVM_CAP_X86_DISABLE_EXITS:
4861                 r = -EINVAL;
4862                 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
4863                         break;
4864
4865                 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
4866                         kvm_can_mwait_in_guest())
4867                         kvm->arch.mwait_in_guest = true;
4868                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
4869                         kvm->arch.hlt_in_guest = true;
4870                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
4871                         kvm->arch.pause_in_guest = true;
4872                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
4873                         kvm->arch.cstate_in_guest = true;
4874                 r = 0;
4875                 break;
4876         case KVM_CAP_MSR_PLATFORM_INFO:
4877                 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
4878                 r = 0;
4879                 break;
4880         case KVM_CAP_EXCEPTION_PAYLOAD:
4881                 kvm->arch.exception_payload_enabled = cap->args[0];
4882                 r = 0;
4883                 break;
4884         default:
4885                 r = -EINVAL;
4886                 break;
4887         }
4888         return r;
4889 }
4890
4891 long kvm_arch_vm_ioctl(struct file *filp,
4892                        unsigned int ioctl, unsigned long arg)
4893 {
4894         struct kvm *kvm = filp->private_data;
4895         void __user *argp = (void __user *)arg;
4896         int r = -ENOTTY;
4897         /*
4898          * This union makes it completely explicit to gcc-3.x
4899          * that these two variables' stack usage should be
4900          * combined, not added together.
4901          */
4902         union {
4903                 struct kvm_pit_state ps;
4904                 struct kvm_pit_state2 ps2;
4905                 struct kvm_pit_config pit_config;
4906         } u;
4907
4908         switch (ioctl) {
4909         case KVM_SET_TSS_ADDR:
4910                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4911                 break;
4912         case KVM_SET_IDENTITY_MAP_ADDR: {
4913                 u64 ident_addr;
4914
4915                 mutex_lock(&kvm->lock);
4916                 r = -EINVAL;
4917                 if (kvm->created_vcpus)
4918                         goto set_identity_unlock;
4919                 r = -EFAULT;
4920                 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
4921                         goto set_identity_unlock;
4922                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4923 set_identity_unlock:
4924                 mutex_unlock(&kvm->lock);
4925                 break;
4926         }
4927         case KVM_SET_NR_MMU_PAGES:
4928                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4929                 break;
4930         case KVM_GET_NR_MMU_PAGES:
4931                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4932                 break;
4933         case KVM_CREATE_IRQCHIP: {
4934                 mutex_lock(&kvm->lock);
4935
4936                 r = -EEXIST;
4937                 if (irqchip_in_kernel(kvm))
4938                         goto create_irqchip_unlock;
4939
4940                 r = -EINVAL;
4941                 if (kvm->created_vcpus)
4942                         goto create_irqchip_unlock;
4943
4944                 r = kvm_pic_init(kvm);
4945                 if (r)
4946                         goto create_irqchip_unlock;
4947
4948                 r = kvm_ioapic_init(kvm);
4949                 if (r) {
4950                         kvm_pic_destroy(kvm);
4951                         goto create_irqchip_unlock;
4952                 }
4953
4954                 r = kvm_setup_default_irq_routing(kvm);
4955                 if (r) {
4956                         kvm_ioapic_destroy(kvm);
4957                         kvm_pic_destroy(kvm);
4958                         goto create_irqchip_unlock;
4959                 }
4960                 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4961                 smp_wmb();
4962                 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4963         create_irqchip_unlock:
4964                 mutex_unlock(&kvm->lock);
4965                 break;
4966         }
4967         case KVM_CREATE_PIT:
4968                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4969                 goto create_pit;
4970         case KVM_CREATE_PIT2:
4971                 r = -EFAULT;
4972                 if (copy_from_user(&u.pit_config, argp,
4973                                    sizeof(struct kvm_pit_config)))
4974                         goto out;
4975         create_pit:
4976                 mutex_lock(&kvm->lock);
4977                 r = -EEXIST;
4978                 if (kvm->arch.vpit)
4979                         goto create_pit_unlock;
4980                 r = -ENOMEM;
4981                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4982                 if (kvm->arch.vpit)
4983                         r = 0;
4984         create_pit_unlock:
4985                 mutex_unlock(&kvm->lock);
4986                 break;
4987         case KVM_GET_IRQCHIP: {
4988                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4989                 struct kvm_irqchip *chip;
4990
4991                 chip = memdup_user(argp, sizeof(*chip));
4992                 if (IS_ERR(chip)) {
4993                         r = PTR_ERR(chip);
4994                         goto out;
4995                 }
4996
4997                 r = -ENXIO;
4998                 if (!irqchip_kernel(kvm))
4999                         goto get_irqchip_out;
5000                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
5001                 if (r)
5002                         goto get_irqchip_out;
5003                 r = -EFAULT;
5004                 if (copy_to_user(argp, chip, sizeof(*chip)))
5005                         goto get_irqchip_out;
5006                 r = 0;
5007         get_irqchip_out:
5008                 kfree(chip);
5009                 break;
5010         }
5011         case KVM_SET_IRQCHIP: {
5012                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5013                 struct kvm_irqchip *chip;
5014
5015                 chip = memdup_user(argp, sizeof(*chip));
5016                 if (IS_ERR(chip)) {
5017                         r = PTR_ERR(chip);
5018                         goto out;
5019                 }
5020
5021                 r = -ENXIO;
5022                 if (!irqchip_kernel(kvm))
5023                         goto set_irqchip_out;
5024                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
5025         set_irqchip_out:
5026                 kfree(chip);
5027                 break;
5028         }
5029         case KVM_GET_PIT: {
5030                 r = -EFAULT;
5031                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
5032                         goto out;
5033                 r = -ENXIO;
5034                 if (!kvm->arch.vpit)
5035                         goto out;
5036                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
5037                 if (r)
5038                         goto out;
5039                 r = -EFAULT;
5040                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
5041                         goto out;
5042                 r = 0;
5043                 break;
5044         }
5045         case KVM_SET_PIT: {
5046                 r = -EFAULT;
5047                 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
5048                         goto out;
5049                 r = -ENXIO;
5050                 if (!kvm->arch.vpit)
5051                         goto out;
5052                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
5053                 break;
5054         }
5055         case KVM_GET_PIT2: {
5056                 r = -ENXIO;
5057                 if (!kvm->arch.vpit)
5058                         goto out;
5059                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
5060                 if (r)
5061                         goto out;
5062                 r = -EFAULT;
5063                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
5064                         goto out;
5065                 r = 0;
5066                 break;
5067         }
5068         case KVM_SET_PIT2: {
5069                 r = -EFAULT;
5070                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
5071                         goto out;
5072                 r = -ENXIO;
5073                 if (!kvm->arch.vpit)
5074                         goto out;
5075                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
5076                 break;
5077         }
5078         case KVM_REINJECT_CONTROL: {
5079                 struct kvm_reinject_control control;
5080                 r =  -EFAULT;
5081                 if (copy_from_user(&control, argp, sizeof(control)))
5082                         goto out;
5083                 r = -ENXIO;
5084                 if (!kvm->arch.vpit)
5085                         goto out;
5086                 r = kvm_vm_ioctl_reinject(kvm, &control);
5087                 break;
5088         }
5089         case KVM_SET_BOOT_CPU_ID:
5090                 r = 0;
5091                 mutex_lock(&kvm->lock);
5092                 if (kvm->created_vcpus)
5093                         r = -EBUSY;
5094                 else
5095                         kvm->arch.bsp_vcpu_id = arg;
5096                 mutex_unlock(&kvm->lock);
5097                 break;
5098         case KVM_XEN_HVM_CONFIG: {
5099                 struct kvm_xen_hvm_config xhc;
5100                 r = -EFAULT;
5101                 if (copy_from_user(&xhc, argp, sizeof(xhc)))
5102                         goto out;
5103                 r = -EINVAL;
5104                 if (xhc.flags)
5105                         goto out;
5106                 memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
5107                 r = 0;
5108                 break;
5109         }
5110         case KVM_SET_CLOCK: {
5111                 struct kvm_clock_data user_ns;
5112                 u64 now_ns;
5113
5114                 r = -EFAULT;
5115                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
5116                         goto out;
5117
5118                 r = -EINVAL;
5119                 if (user_ns.flags)
5120                         goto out;
5121
5122                 r = 0;
5123                 /*
5124                  * TODO: userspace has to take care of races with VCPU_RUN, so
5125                  * kvm_gen_update_masterclock() can be cut down to locked
5126                  * pvclock_update_vm_gtod_copy().
5127                  */
5128                 kvm_gen_update_masterclock(kvm);
5129                 now_ns = get_kvmclock_ns(kvm);
5130                 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
5131                 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
5132                 break;
5133         }
5134         case KVM_GET_CLOCK: {
5135                 struct kvm_clock_data user_ns;
5136                 u64 now_ns;
5137
5138                 now_ns = get_kvmclock_ns(kvm);
5139                 user_ns.clock = now_ns;
5140                 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
5141                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
5142
5143                 r = -EFAULT;
5144                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
5145                         goto out;
5146                 r = 0;
5147                 break;
5148         }
5149         case KVM_MEMORY_ENCRYPT_OP: {
5150                 r = -ENOTTY;
5151                 if (kvm_x86_ops->mem_enc_op)
5152                         r = kvm_x86_ops->mem_enc_op(kvm, argp);
5153                 break;
5154         }
5155         case KVM_MEMORY_ENCRYPT_REG_REGION: {
5156                 struct kvm_enc_region region;
5157
5158                 r = -EFAULT;
5159                 if (copy_from_user(&region, argp, sizeof(region)))
5160                         goto out;
5161
5162                 r = -ENOTTY;
5163                 if (kvm_x86_ops->mem_enc_reg_region)
5164                         r = kvm_x86_ops->mem_enc_reg_region(kvm, &region);
5165                 break;
5166         }
5167         case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
5168                 struct kvm_enc_region region;
5169
5170                 r = -EFAULT;
5171                 if (copy_from_user(&region, argp, sizeof(region)))
5172                         goto out;
5173
5174                 r = -ENOTTY;
5175                 if (kvm_x86_ops->mem_enc_unreg_region)
5176                         r = kvm_x86_ops->mem_enc_unreg_region(kvm, &region);
5177                 break;
5178         }
5179         case KVM_HYPERV_EVENTFD: {
5180                 struct kvm_hyperv_eventfd hvevfd;
5181
5182                 r = -EFAULT;
5183                 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
5184                         goto out;
5185                 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
5186                 break;
5187         }
5188         case KVM_SET_PMU_EVENT_FILTER:
5189                 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
5190                 break;
5191         default:
5192                 r = -ENOTTY;
5193         }
5194 out:
5195         return r;
5196 }
5197
5198 static void kvm_init_msr_list(void)
5199 {
5200         struct x86_pmu_capability x86_pmu;
5201         u32 dummy[2];
5202         unsigned i;
5203
5204         BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
5205                          "Please update the fixed PMCs in msrs_to_saved_all[]");
5206
5207         perf_get_x86_pmu_capability(&x86_pmu);
5208
5209         num_msrs_to_save = 0;
5210         num_emulated_msrs = 0;
5211         num_msr_based_features = 0;
5212
5213         for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
5214                 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
5215                         continue;
5216
5217                 /*
5218                  * Even MSRs that are valid in the host may not be exposed
5219                  * to the guests in some cases.
5220                  */
5221                 switch (msrs_to_save_all[i]) {
5222                 case MSR_IA32_BNDCFGS:
5223                         if (!kvm_mpx_supported())
5224                                 continue;
5225                         break;
5226                 case MSR_TSC_AUX:
5227                         if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
5228                                 continue;
5229                         break;
5230                 case MSR_IA32_RTIT_CTL:
5231                 case MSR_IA32_RTIT_STATUS:
5232                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
5233                                 continue;
5234                         break;
5235                 case MSR_IA32_RTIT_CR3_MATCH:
5236                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5237                             !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
5238                                 continue;
5239                         break;
5240                 case MSR_IA32_RTIT_OUTPUT_BASE:
5241                 case MSR_IA32_RTIT_OUTPUT_MASK:
5242                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5243                                 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
5244                                  !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
5245                                 continue;
5246                         break;
5247                 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: {
5248                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5249                                 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
5250                                 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
5251                                 continue;
5252                         break;
5253                 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
5254                         if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
5255                             min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5256                                 continue;
5257                         break;
5258                 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
5259                         if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
5260                             min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5261                                 continue;
5262                 }
5263                 default:
5264                         break;
5265                 }
5266
5267                 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
5268         }
5269
5270         for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
5271                 if (!kvm_x86_ops->has_emulated_msr(emulated_msrs_all[i]))
5272                         continue;
5273
5274                 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
5275         }
5276
5277         for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
5278                 struct kvm_msr_entry msr;
5279
5280                 msr.index = msr_based_features_all[i];
5281                 if (kvm_get_msr_feature(&msr))
5282                         continue;
5283
5284                 msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
5285         }
5286 }
5287
5288 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
5289                            const void *v)
5290 {
5291         int handled = 0;
5292         int n;
5293
5294         do {
5295                 n = min(len, 8);
5296                 if (!(lapic_in_kernel(vcpu) &&
5297                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
5298                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
5299                         break;
5300                 handled += n;
5301                 addr += n;
5302                 len -= n;
5303                 v += n;
5304         } while (len);
5305
5306         return handled;
5307 }
5308
5309 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
5310 {
5311         int handled = 0;
5312         int n;
5313
5314         do {
5315                 n = min(len, 8);
5316                 if (!(lapic_in_kernel(vcpu) &&
5317                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
5318                                          addr, n, v))
5319                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
5320                         break;
5321                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
5322                 handled += n;
5323                 addr += n;
5324                 len -= n;
5325                 v += n;
5326         } while (len);
5327
5328         return handled;
5329 }
5330
5331 static void kvm_set_segment(struct kvm_vcpu *vcpu,
5332                         struct kvm_segment *var, int seg)
5333 {
5334         kvm_x86_ops->set_segment(vcpu, var, seg);
5335 }
5336
5337 void kvm_get_segment(struct kvm_vcpu *vcpu,
5338                      struct kvm_segment *var, int seg)
5339 {
5340         kvm_x86_ops->get_segment(vcpu, var, seg);
5341 }
5342
5343 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
5344                            struct x86_exception *exception)
5345 {
5346         gpa_t t_gpa;
5347
5348         BUG_ON(!mmu_is_nested(vcpu));
5349
5350         /* NPT walks are always user-walks */
5351         access |= PFERR_USER_MASK;
5352         t_gpa  = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
5353
5354         return t_gpa;
5355 }
5356
5357 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
5358                               struct x86_exception *exception)
5359 {
5360         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5361         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5362 }
5363
5364  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
5365                                 struct x86_exception *exception)
5366 {
5367         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5368         access |= PFERR_FETCH_MASK;
5369         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5370 }
5371
5372 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
5373                                struct x86_exception *exception)
5374 {
5375         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5376         access |= PFERR_WRITE_MASK;
5377         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5378 }
5379
5380 /* uses this to access any guest's mapped memory without checking CPL */
5381 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
5382                                 struct x86_exception *exception)
5383 {
5384         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
5385 }
5386
5387 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5388                                       struct kvm_vcpu *vcpu, u32 access,
5389                                       struct x86_exception *exception)
5390 {
5391         void *data = val;
5392         int r = X86EMUL_CONTINUE;
5393
5394         while (bytes) {
5395                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
5396                                                             exception);
5397                 unsigned offset = addr & (PAGE_SIZE-1);
5398                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
5399                 int ret;
5400
5401                 if (gpa == UNMAPPED_GVA)
5402                         return X86EMUL_PROPAGATE_FAULT;
5403                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
5404                                                offset, toread);
5405                 if (ret < 0) {
5406                         r = X86EMUL_IO_NEEDED;
5407                         goto out;
5408                 }
5409
5410                 bytes -= toread;
5411                 data += toread;
5412                 addr += toread;
5413         }
5414 out:
5415         return r;
5416 }
5417
5418 /* used for instruction fetching */
5419 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
5420                                 gva_t addr, void *val, unsigned int bytes,
5421                                 struct x86_exception *exception)
5422 {
5423         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5424         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5425         unsigned offset;
5426         int ret;
5427
5428         /* Inline kvm_read_guest_virt_helper for speed.  */
5429         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
5430                                                     exception);
5431         if (unlikely(gpa == UNMAPPED_GVA))
5432                 return X86EMUL_PROPAGATE_FAULT;
5433
5434         offset = addr & (PAGE_SIZE-1);
5435         if (WARN_ON(offset + bytes > PAGE_SIZE))
5436                 bytes = (unsigned)PAGE_SIZE - offset;
5437         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
5438                                        offset, bytes);
5439         if (unlikely(ret < 0))
5440                 return X86EMUL_IO_NEEDED;
5441
5442         return X86EMUL_CONTINUE;
5443 }
5444
5445 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
5446                                gva_t addr, void *val, unsigned int bytes,
5447                                struct x86_exception *exception)
5448 {
5449         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5450
5451         /*
5452          * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5453          * is returned, but our callers are not ready for that and they blindly
5454          * call kvm_inject_page_fault.  Ensure that they at least do not leak
5455          * uninitialized kernel stack memory into cr2 and error code.
5456          */
5457         memset(exception, 0, sizeof(*exception));
5458         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
5459                                           exception);
5460 }
5461 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
5462
5463 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
5464                              gva_t addr, void *val, unsigned int bytes,
5465                              struct x86_exception *exception, bool system)
5466 {
5467         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5468         u32 access = 0;
5469
5470         if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
5471                 access |= PFERR_USER_MASK;
5472
5473         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
5474 }
5475
5476 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
5477                 unsigned long addr, void *val, unsigned int bytes)
5478 {
5479         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5480         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
5481
5482         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
5483 }
5484
5485 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5486                                       struct kvm_vcpu *vcpu, u32 access,
5487                                       struct x86_exception *exception)
5488 {
5489         void *data = val;
5490         int r = X86EMUL_CONTINUE;
5491
5492         while (bytes) {
5493                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
5494                                                              access,
5495                                                              exception);
5496                 unsigned offset = addr & (PAGE_SIZE-1);
5497                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
5498                 int ret;
5499
5500                 if (gpa == UNMAPPED_GVA)
5501                         return X86EMUL_PROPAGATE_FAULT;
5502                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
5503                 if (ret < 0) {
5504                         r = X86EMUL_IO_NEEDED;
5505                         goto out;
5506                 }
5507
5508                 bytes -= towrite;
5509                 data += towrite;
5510                 addr += towrite;
5511         }
5512 out:
5513         return r;
5514 }
5515
5516 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
5517                               unsigned int bytes, struct x86_exception *exception,
5518                               bool system)
5519 {
5520         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5521         u32 access = PFERR_WRITE_MASK;
5522
5523         if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
5524                 access |= PFERR_USER_MASK;
5525
5526         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5527                                            access, exception);
5528 }
5529
5530 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
5531                                 unsigned int bytes, struct x86_exception *exception)
5532 {
5533         /* kvm_write_guest_virt_system can pull in tons of pages. */
5534         vcpu->arch.l1tf_flush_l1d = true;
5535
5536         /*
5537          * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5538          * is returned, but our callers are not ready for that and they blindly
5539          * call kvm_inject_page_fault.  Ensure that they at least do not leak
5540          * uninitialized kernel stack memory into cr2 and error code.
5541          */
5542         memset(exception, 0, sizeof(*exception));
5543         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5544                                            PFERR_WRITE_MASK, exception);
5545 }
5546 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
5547
5548 int handle_ud(struct kvm_vcpu *vcpu)
5549 {
5550         static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
5551         int emul_type = EMULTYPE_TRAP_UD;
5552         char sig[5]; /* ud2; .ascii "kvm" */
5553         struct x86_exception e;
5554
5555         if (force_emulation_prefix &&
5556             kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
5557                                 sig, sizeof(sig), &e) == 0 &&
5558             memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
5559                 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
5560                 emul_type = EMULTYPE_TRAP_UD_FORCED;
5561         }
5562
5563         return kvm_emulate_instruction(vcpu, emul_type);
5564 }
5565 EXPORT_SYMBOL_GPL(handle_ud);
5566
5567 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5568                             gpa_t gpa, bool write)
5569 {
5570         /* For APIC access vmexit */
5571         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5572                 return 1;
5573
5574         if (vcpu_match_mmio_gpa(vcpu, gpa)) {
5575                 trace_vcpu_match_mmio(gva, gpa, write, true);
5576                 return 1;
5577         }
5578
5579         return 0;
5580 }
5581
5582 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5583                                 gpa_t *gpa, struct x86_exception *exception,
5584                                 bool write)
5585 {
5586         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
5587                 | (write ? PFERR_WRITE_MASK : 0);
5588
5589         /*
5590          * currently PKRU is only applied to ept enabled guest so
5591          * there is no pkey in EPT page table for L1 guest or EPT
5592          * shadow page table for L2 guest.
5593          */
5594         if (vcpu_match_mmio_gva(vcpu, gva)
5595             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
5596                                  vcpu->arch.mmio_access, 0, access)) {
5597                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
5598                                         (gva & (PAGE_SIZE - 1));
5599                 trace_vcpu_match_mmio(gva, *gpa, write, false);
5600                 return 1;
5601         }
5602
5603         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5604
5605         if (*gpa == UNMAPPED_GVA)
5606                 return -1;
5607
5608         return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
5609 }
5610
5611 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
5612                         const void *val, int bytes)
5613 {
5614         int ret;
5615
5616         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
5617         if (ret < 0)
5618                 return 0;
5619         kvm_page_track_write(vcpu, gpa, val, bytes);
5620         return 1;
5621 }
5622
5623 struct read_write_emulator_ops {
5624         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
5625                                   int bytes);
5626         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
5627                                   void *val, int bytes);
5628         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5629                                int bytes, void *val);
5630         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5631                                     void *val, int bytes);
5632         bool write;
5633 };
5634
5635 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
5636 {
5637         if (vcpu->mmio_read_completed) {
5638                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
5639                                vcpu->mmio_fragments[0].gpa, val);
5640                 vcpu->mmio_read_completed = 0;
5641                 return 1;
5642         }
5643
5644         return 0;
5645 }
5646
5647 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5648                         void *val, int bytes)
5649 {
5650         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
5651 }
5652
5653 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5654                          void *val, int bytes)
5655 {
5656         return emulator_write_phys(vcpu, gpa, val, bytes);
5657 }
5658
5659 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
5660 {
5661         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
5662         return vcpu_mmio_write(vcpu, gpa, bytes, val);
5663 }
5664
5665 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5666                           void *val, int bytes)
5667 {
5668         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
5669         return X86EMUL_IO_NEEDED;
5670 }
5671
5672 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5673                            void *val, int bytes)
5674 {
5675         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
5676
5677         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
5678         return X86EMUL_CONTINUE;
5679 }
5680
5681 static const struct read_write_emulator_ops read_emultor = {
5682         .read_write_prepare = read_prepare,
5683         .read_write_emulate = read_emulate,
5684         .read_write_mmio = vcpu_mmio_read,
5685         .read_write_exit_mmio = read_exit_mmio,
5686 };
5687
5688 static const struct read_write_emulator_ops write_emultor = {
5689         .read_write_emulate = write_emulate,
5690         .read_write_mmio = write_mmio,
5691         .read_write_exit_mmio = write_exit_mmio,
5692         .write = true,
5693 };
5694
5695 static int emulator_read_write_onepage(unsigned long addr, void *val,
5696                                        unsigned int bytes,
5697                                        struct x86_exception *exception,
5698                                        struct kvm_vcpu *vcpu,
5699                                        const struct read_write_emulator_ops *ops)
5700 {
5701         gpa_t gpa;
5702         int handled, ret;
5703         bool write = ops->write;
5704         struct kvm_mmio_fragment *frag;
5705         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
5706
5707         /*
5708          * If the exit was due to a NPF we may already have a GPA.
5709          * If the GPA is present, use it to avoid the GVA to GPA table walk.
5710          * Note, this cannot be used on string operations since string
5711          * operation using rep will only have the initial GPA from the NPF
5712          * occurred.
5713          */
5714         if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
5715             (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
5716                 gpa = ctxt->gpa_val;
5717                 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
5718         } else {
5719                 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
5720                 if (ret < 0)
5721                         return X86EMUL_PROPAGATE_FAULT;
5722         }
5723
5724         if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
5725                 return X86EMUL_CONTINUE;
5726
5727         /*
5728          * Is this MMIO handled locally?
5729          */
5730         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
5731         if (handled == bytes)
5732                 return X86EMUL_CONTINUE;
5733
5734         gpa += handled;
5735         bytes -= handled;
5736         val += handled;
5737
5738         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
5739         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
5740         frag->gpa = gpa;
5741         frag->data = val;
5742         frag->len = bytes;
5743         return X86EMUL_CONTINUE;
5744 }
5745
5746 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
5747                         unsigned long addr,
5748                         void *val, unsigned int bytes,
5749                         struct x86_exception *exception,
5750                         const struct read_write_emulator_ops *ops)
5751 {
5752         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5753         gpa_t gpa;
5754         int rc;
5755
5756         if (ops->read_write_prepare &&
5757                   ops->read_write_prepare(vcpu, val, bytes))
5758                 return X86EMUL_CONTINUE;
5759
5760         vcpu->mmio_nr_fragments = 0;
5761
5762         /* Crossing a page boundary? */
5763         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
5764                 int now;
5765
5766                 now = -addr & ~PAGE_MASK;
5767                 rc = emulator_read_write_onepage(addr, val, now, exception,
5768                                                  vcpu, ops);
5769
5770                 if (rc != X86EMUL_CONTINUE)
5771                         return rc;
5772                 addr += now;
5773                 if (ctxt->mode != X86EMUL_MODE_PROT64)
5774                         addr = (u32)addr;
5775                 val += now;
5776                 bytes -= now;
5777         }
5778
5779         rc = emulator_read_write_onepage(addr, val, bytes, exception,
5780                                          vcpu, ops);
5781         if (rc != X86EMUL_CONTINUE)
5782                 return rc;
5783
5784         if (!vcpu->mmio_nr_fragments)
5785                 return rc;
5786
5787         gpa = vcpu->mmio_fragments[0].gpa;
5788
5789         vcpu->mmio_needed = 1;
5790         vcpu->mmio_cur_fragment = 0;
5791
5792         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
5793         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
5794         vcpu->run->exit_reason = KVM_EXIT_MMIO;
5795         vcpu->run->mmio.phys_addr = gpa;
5796
5797         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
5798 }
5799
5800 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
5801                                   unsigned long addr,
5802                                   void *val,
5803                                   unsigned int bytes,
5804                                   struct x86_exception *exception)
5805 {
5806         return emulator_read_write(ctxt, addr, val, bytes,
5807                                    exception, &read_emultor);
5808 }
5809
5810 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
5811                             unsigned long addr,
5812                             const void *val,
5813                             unsigned int bytes,
5814                             struct x86_exception *exception)
5815 {
5816         return emulator_read_write(ctxt, addr, (void *)val, bytes,
5817                                    exception, &write_emultor);
5818 }
5819
5820 #define CMPXCHG_TYPE(t, ptr, old, new) \
5821         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
5822
5823 #ifdef CONFIG_X86_64
5824 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
5825 #else
5826 #  define CMPXCHG64(ptr, old, new) \
5827         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
5828 #endif
5829
5830 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
5831                                      unsigned long addr,
5832                                      const void *old,
5833                                      const void *new,
5834                                      unsigned int bytes,
5835                                      struct x86_exception *exception)
5836 {
5837         struct kvm_host_map map;
5838         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5839         gpa_t gpa;
5840         char *kaddr;
5841         bool exchanged;
5842
5843         /* guests cmpxchg8b have to be emulated atomically */
5844         if (bytes > 8 || (bytes & (bytes - 1)))
5845                 goto emul_write;
5846
5847         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
5848
5849         if (gpa == UNMAPPED_GVA ||
5850             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5851                 goto emul_write;
5852
5853         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
5854                 goto emul_write;
5855
5856         if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
5857                 goto emul_write;
5858
5859         kaddr = map.hva + offset_in_page(gpa);
5860
5861         switch (bytes) {
5862         case 1:
5863                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
5864                 break;
5865         case 2:
5866                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
5867                 break;
5868         case 4:
5869                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
5870                 break;
5871         case 8:
5872                 exchanged = CMPXCHG64(kaddr, old, new);
5873                 break;
5874         default:
5875                 BUG();
5876         }
5877
5878         kvm_vcpu_unmap(vcpu, &map, true);
5879
5880         if (!exchanged)
5881                 return X86EMUL_CMPXCHG_FAILED;
5882
5883         kvm_page_track_write(vcpu, gpa, new, bytes);
5884
5885         return X86EMUL_CONTINUE;
5886
5887 emul_write:
5888         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
5889
5890         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
5891 }
5892
5893 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
5894 {
5895         int r = 0, i;
5896
5897         for (i = 0; i < vcpu->arch.pio.count; i++) {
5898                 if (vcpu->arch.pio.in)
5899                         r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
5900                                             vcpu->arch.pio.size, pd);
5901                 else
5902                         r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
5903                                              vcpu->arch.pio.port, vcpu->arch.pio.size,
5904                                              pd);
5905                 if (r)
5906                         break;
5907                 pd += vcpu->arch.pio.size;
5908         }
5909         return r;
5910 }
5911
5912 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
5913                                unsigned short port, void *val,
5914                                unsigned int count, bool in)
5915 {
5916         vcpu->arch.pio.port = port;
5917         vcpu->arch.pio.in = in;
5918         vcpu->arch.pio.count  = count;
5919         vcpu->arch.pio.size = size;
5920
5921         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
5922                 vcpu->arch.pio.count = 0;
5923                 return 1;
5924         }
5925
5926         vcpu->run->exit_reason = KVM_EXIT_IO;
5927         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
5928         vcpu->run->io.size = size;
5929         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
5930         vcpu->run->io.count = count;
5931         vcpu->run->io.port = port;
5932
5933         return 0;
5934 }
5935
5936 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
5937                            unsigned short port, void *val, unsigned int count)
5938 {
5939         int ret;
5940
5941         if (vcpu->arch.pio.count)
5942                 goto data_avail;
5943
5944         memset(vcpu->arch.pio_data, 0, size * count);
5945
5946         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
5947         if (ret) {
5948 data_avail:
5949                 memcpy(val, vcpu->arch.pio_data, size * count);
5950                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
5951                 vcpu->arch.pio.count = 0;
5952                 return 1;
5953         }
5954
5955         return 0;
5956 }
5957
5958 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
5959                                     int size, unsigned short port, void *val,
5960                                     unsigned int count)
5961 {
5962         return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
5963
5964 }
5965
5966 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
5967                             unsigned short port, const void *val,
5968                             unsigned int count)
5969 {
5970         memcpy(vcpu->arch.pio_data, val, size * count);
5971         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
5972         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
5973 }
5974
5975 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
5976                                      int size, unsigned short port,
5977                                      const void *val, unsigned int count)
5978 {
5979         return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
5980 }
5981
5982 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
5983 {
5984         return kvm_x86_ops->get_segment_base(vcpu, seg);
5985 }
5986
5987 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
5988 {
5989         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
5990 }
5991
5992 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
5993 {
5994         if (!need_emulate_wbinvd(vcpu))
5995                 return X86EMUL_CONTINUE;
5996
5997         if (kvm_x86_ops->has_wbinvd_exit()) {
5998                 int cpu = get_cpu();
5999
6000                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
6001                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
6002                                 wbinvd_ipi, NULL, 1);
6003                 put_cpu();
6004                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
6005         } else
6006                 wbinvd();
6007         return X86EMUL_CONTINUE;
6008 }
6009
6010 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
6011 {
6012         kvm_emulate_wbinvd_noskip(vcpu);
6013         return kvm_skip_emulated_instruction(vcpu);
6014 }
6015 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
6016
6017
6018
6019 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
6020 {
6021         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
6022 }
6023
6024 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
6025                            unsigned long *dest)
6026 {
6027         return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
6028 }
6029
6030 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
6031                            unsigned long value)
6032 {
6033
6034         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
6035 }
6036
6037 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
6038 {
6039         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
6040 }
6041
6042 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
6043 {
6044         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6045         unsigned long value;
6046
6047         switch (cr) {
6048         case 0:
6049                 value = kvm_read_cr0(vcpu);
6050                 break;
6051         case 2:
6052                 value = vcpu->arch.cr2;
6053                 break;
6054         case 3:
6055                 value = kvm_read_cr3(vcpu);
6056                 break;
6057         case 4:
6058                 value = kvm_read_cr4(vcpu);
6059                 break;
6060         case 8:
6061                 value = kvm_get_cr8(vcpu);
6062                 break;
6063         default:
6064                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
6065                 return 0;
6066         }
6067
6068         return value;
6069 }
6070
6071 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
6072 {
6073         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6074         int res = 0;
6075
6076         switch (cr) {
6077         case 0:
6078                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
6079                 break;
6080         case 2:
6081                 vcpu->arch.cr2 = val;
6082                 break;
6083         case 3:
6084                 res = kvm_set_cr3(vcpu, val);
6085                 break;
6086         case 4:
6087                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
6088                 break;
6089         case 8:
6090                 res = kvm_set_cr8(vcpu, val);
6091                 break;
6092         default:
6093                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
6094                 res = -1;
6095         }
6096
6097         return res;
6098 }
6099
6100 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
6101 {
6102         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
6103 }
6104
6105 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6106 {
6107         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
6108 }
6109
6110 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6111 {
6112         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
6113 }
6114
6115 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6116 {
6117         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
6118 }
6119
6120 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6121 {
6122         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
6123 }
6124
6125 static unsigned long emulator_get_cached_segment_base(
6126         struct x86_emulate_ctxt *ctxt, int seg)
6127 {
6128         return get_segment_base(emul_to_vcpu(ctxt), seg);
6129 }
6130
6131 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
6132                                  struct desc_struct *desc, u32 *base3,
6133                                  int seg)
6134 {
6135         struct kvm_segment var;
6136
6137         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
6138         *selector = var.selector;
6139
6140         if (var.unusable) {
6141                 memset(desc, 0, sizeof(*desc));
6142                 if (base3)
6143                         *base3 = 0;
6144                 return false;
6145         }
6146
6147         if (var.g)
6148                 var.limit >>= 12;
6149         set_desc_limit(desc, var.limit);
6150         set_desc_base(desc, (unsigned long)var.base);
6151 #ifdef CONFIG_X86_64
6152         if (base3)
6153                 *base3 = var.base >> 32;
6154 #endif
6155         desc->type = var.type;
6156         desc->s = var.s;
6157         desc->dpl = var.dpl;
6158         desc->p = var.present;
6159         desc->avl = var.avl;
6160         desc->l = var.l;
6161         desc->d = var.db;
6162         desc->g = var.g;
6163
6164         return true;
6165 }
6166
6167 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
6168                                  struct desc_struct *desc, u32 base3,
6169                                  int seg)
6170 {
6171         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6172         struct kvm_segment var;
6173
6174         var.selector = selector;
6175         var.base = get_desc_base(desc);
6176 #ifdef CONFIG_X86_64
6177         var.base |= ((u64)base3) << 32;
6178 #endif
6179         var.limit = get_desc_limit(desc);
6180         if (desc->g)
6181                 var.limit = (var.limit << 12) | 0xfff;
6182         var.type = desc->type;
6183         var.dpl = desc->dpl;
6184         var.db = desc->d;
6185         var.s = desc->s;
6186         var.l = desc->l;
6187         var.g = desc->g;
6188         var.avl = desc->avl;
6189         var.present = desc->p;
6190         var.unusable = !var.present;
6191         var.padding = 0;
6192
6193         kvm_set_segment(vcpu, &var, seg);
6194         return;
6195 }
6196
6197 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
6198                             u32 msr_index, u64 *pdata)
6199 {
6200         return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
6201 }
6202
6203 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
6204                             u32 msr_index, u64 data)
6205 {
6206         return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
6207 }
6208
6209 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
6210 {
6211         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6212
6213         return vcpu->arch.smbase;
6214 }
6215
6216 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
6217 {
6218         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6219
6220         vcpu->arch.smbase = smbase;
6221 }
6222
6223 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
6224                               u32 pmc)
6225 {
6226         return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc);
6227 }
6228
6229 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
6230                              u32 pmc, u64 *pdata)
6231 {
6232         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
6233 }
6234
6235 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
6236 {
6237         emul_to_vcpu(ctxt)->arch.halt_request = 1;
6238 }
6239
6240 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
6241                               struct x86_instruction_info *info,
6242                               enum x86_intercept_stage stage)
6243 {
6244         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage,
6245                                             &ctxt->exception);
6246 }
6247
6248 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
6249                               u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
6250                               bool exact_only)
6251 {
6252         return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
6253 }
6254
6255 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
6256 {
6257         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
6258 }
6259
6260 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
6261 {
6262         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
6263 }
6264
6265 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
6266 {
6267         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
6268 }
6269
6270 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
6271 {
6272         return kvm_register_read(emul_to_vcpu(ctxt), reg);
6273 }
6274
6275 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
6276 {
6277         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
6278 }
6279
6280 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
6281 {
6282         kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
6283 }
6284
6285 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
6286 {
6287         return emul_to_vcpu(ctxt)->arch.hflags;
6288 }
6289
6290 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
6291 {
6292         emul_to_vcpu(ctxt)->arch.hflags = emul_flags;
6293 }
6294
6295 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt,
6296                                   const char *smstate)
6297 {
6298         return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smstate);
6299 }
6300
6301 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt)
6302 {
6303         kvm_smm_changed(emul_to_vcpu(ctxt));
6304 }
6305
6306 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
6307 {
6308         return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
6309 }
6310
6311 static const struct x86_emulate_ops emulate_ops = {
6312         .read_gpr            = emulator_read_gpr,
6313         .write_gpr           = emulator_write_gpr,
6314         .read_std            = emulator_read_std,
6315         .write_std           = emulator_write_std,
6316         .read_phys           = kvm_read_guest_phys_system,
6317         .fetch               = kvm_fetch_guest_virt,
6318         .read_emulated       = emulator_read_emulated,
6319         .write_emulated      = emulator_write_emulated,
6320         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
6321         .invlpg              = emulator_invlpg,
6322         .pio_in_emulated     = emulator_pio_in_emulated,
6323         .pio_out_emulated    = emulator_pio_out_emulated,
6324         .get_segment         = emulator_get_segment,
6325         .set_segment         = emulator_set_segment,
6326         .get_cached_segment_base = emulator_get_cached_segment_base,
6327         .get_gdt             = emulator_get_gdt,
6328         .get_idt             = emulator_get_idt,
6329         .set_gdt             = emulator_set_gdt,
6330         .set_idt             = emulator_set_idt,
6331         .get_cr              = emulator_get_cr,
6332         .set_cr              = emulator_set_cr,
6333         .cpl                 = emulator_get_cpl,
6334         .get_dr              = emulator_get_dr,
6335         .set_dr              = emulator_set_dr,
6336         .get_smbase          = emulator_get_smbase,
6337         .set_smbase          = emulator_set_smbase,
6338         .set_msr             = emulator_set_msr,
6339         .get_msr             = emulator_get_msr,
6340         .check_pmc           = emulator_check_pmc,
6341         .read_pmc            = emulator_read_pmc,
6342         .halt                = emulator_halt,
6343         .wbinvd              = emulator_wbinvd,
6344         .fix_hypercall       = emulator_fix_hypercall,
6345         .intercept           = emulator_intercept,
6346         .get_cpuid           = emulator_get_cpuid,
6347         .guest_has_long_mode = emulator_guest_has_long_mode,
6348         .guest_has_movbe     = emulator_guest_has_movbe,
6349         .guest_has_fxsr      = emulator_guest_has_fxsr,
6350         .set_nmi_mask        = emulator_set_nmi_mask,
6351         .get_hflags          = emulator_get_hflags,
6352         .set_hflags          = emulator_set_hflags,
6353         .pre_leave_smm       = emulator_pre_leave_smm,
6354         .post_leave_smm      = emulator_post_leave_smm,
6355         .set_xcr             = emulator_set_xcr,
6356 };
6357
6358 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
6359 {
6360         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
6361         /*
6362          * an sti; sti; sequence only disable interrupts for the first
6363          * instruction. So, if the last instruction, be it emulated or
6364          * not, left the system with the INT_STI flag enabled, it
6365          * means that the last instruction is an sti. We should not
6366          * leave the flag on in this case. The same goes for mov ss
6367          */
6368         if (int_shadow & mask)
6369                 mask = 0;
6370         if (unlikely(int_shadow || mask)) {
6371                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
6372                 if (!mask)
6373                         kvm_make_request(KVM_REQ_EVENT, vcpu);
6374         }
6375 }
6376
6377 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
6378 {
6379         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6380         if (ctxt->exception.vector == PF_VECTOR)
6381                 return kvm_propagate_fault(vcpu, &ctxt->exception);
6382
6383         if (ctxt->exception.error_code_valid)
6384                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
6385                                       ctxt->exception.error_code);
6386         else
6387                 kvm_queue_exception(vcpu, ctxt->exception.vector);
6388         return false;
6389 }
6390
6391 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
6392 {
6393         struct x86_emulate_ctxt *ctxt;
6394
6395         ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
6396         if (!ctxt) {
6397                 pr_err("kvm: failed to allocate vcpu's emulator\n");
6398                 return NULL;
6399         }
6400
6401         ctxt->vcpu = vcpu;
6402         ctxt->ops = &emulate_ops;
6403         vcpu->arch.emulate_ctxt = ctxt;
6404
6405         return ctxt;
6406 }
6407
6408 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
6409 {
6410         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6411         int cs_db, cs_l;
6412
6413         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
6414
6415         ctxt->gpa_available = false;
6416         ctxt->eflags = kvm_get_rflags(vcpu);
6417         ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
6418
6419         ctxt->eip = kvm_rip_read(vcpu);
6420         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
6421                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
6422                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
6423                      cs_db                              ? X86EMUL_MODE_PROT32 :
6424                                                           X86EMUL_MODE_PROT16;
6425         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
6426         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
6427         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
6428
6429         init_decode_cache(ctxt);
6430         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6431 }
6432
6433 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
6434 {
6435         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6436         int ret;
6437
6438         init_emulate_ctxt(vcpu);
6439
6440         ctxt->op_bytes = 2;
6441         ctxt->ad_bytes = 2;
6442         ctxt->_eip = ctxt->eip + inc_eip;
6443         ret = emulate_int_real(ctxt, irq);
6444
6445         if (ret != X86EMUL_CONTINUE) {
6446                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6447         } else {
6448                 ctxt->eip = ctxt->_eip;
6449                 kvm_rip_write(vcpu, ctxt->eip);
6450                 kvm_set_rflags(vcpu, ctxt->eflags);
6451         }
6452 }
6453 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
6454
6455 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
6456 {
6457         ++vcpu->stat.insn_emulation_fail;
6458         trace_kvm_emulate_insn_failed(vcpu);
6459
6460         if (emulation_type & EMULTYPE_VMWARE_GP) {
6461                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6462                 return 1;
6463         }
6464
6465         if (emulation_type & EMULTYPE_SKIP) {
6466                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6467                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6468                 vcpu->run->internal.ndata = 0;
6469                 return 0;
6470         }
6471
6472         kvm_queue_exception(vcpu, UD_VECTOR);
6473
6474         if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
6475                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6476                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6477                 vcpu->run->internal.ndata = 0;
6478                 return 0;
6479         }
6480
6481         return 1;
6482 }
6483
6484 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
6485                                   bool write_fault_to_shadow_pgtable,
6486                                   int emulation_type)
6487 {
6488         gpa_t gpa = cr2_or_gpa;
6489         kvm_pfn_t pfn;
6490
6491         if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
6492                 return false;
6493
6494         if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
6495             WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
6496                 return false;
6497
6498         if (!vcpu->arch.mmu->direct_map) {
6499                 /*
6500                  * Write permission should be allowed since only
6501                  * write access need to be emulated.
6502                  */
6503                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
6504
6505                 /*
6506                  * If the mapping is invalid in guest, let cpu retry
6507                  * it to generate fault.
6508                  */
6509                 if (gpa == UNMAPPED_GVA)
6510                         return true;
6511         }
6512
6513         /*
6514          * Do not retry the unhandleable instruction if it faults on the
6515          * readonly host memory, otherwise it will goto a infinite loop:
6516          * retry instruction -> write #PF -> emulation fail -> retry
6517          * instruction -> ...
6518          */
6519         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
6520
6521         /*
6522          * If the instruction failed on the error pfn, it can not be fixed,
6523          * report the error to userspace.
6524          */
6525         if (is_error_noslot_pfn(pfn))
6526                 return false;
6527
6528         kvm_release_pfn_clean(pfn);
6529
6530         /* The instructions are well-emulated on direct mmu. */
6531         if (vcpu->arch.mmu->direct_map) {
6532                 unsigned int indirect_shadow_pages;
6533
6534                 spin_lock(&vcpu->kvm->mmu_lock);
6535                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
6536                 spin_unlock(&vcpu->kvm->mmu_lock);
6537
6538                 if (indirect_shadow_pages)
6539                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6540
6541                 return true;
6542         }
6543
6544         /*
6545          * if emulation was due to access to shadowed page table
6546          * and it failed try to unshadow page and re-enter the
6547          * guest to let CPU execute the instruction.
6548          */
6549         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6550
6551         /*
6552          * If the access faults on its page table, it can not
6553          * be fixed by unprotecting shadow page and it should
6554          * be reported to userspace.
6555          */
6556         return !write_fault_to_shadow_pgtable;
6557 }
6558
6559 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
6560                               gpa_t cr2_or_gpa,  int emulation_type)
6561 {
6562         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6563         unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
6564
6565         last_retry_eip = vcpu->arch.last_retry_eip;
6566         last_retry_addr = vcpu->arch.last_retry_addr;
6567
6568         /*
6569          * If the emulation is caused by #PF and it is non-page_table
6570          * writing instruction, it means the VM-EXIT is caused by shadow
6571          * page protected, we can zap the shadow page and retry this
6572          * instruction directly.
6573          *
6574          * Note: if the guest uses a non-page-table modifying instruction
6575          * on the PDE that points to the instruction, then we will unmap
6576          * the instruction and go to an infinite loop. So, we cache the
6577          * last retried eip and the last fault address, if we meet the eip
6578          * and the address again, we can break out of the potential infinite
6579          * loop.
6580          */
6581         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
6582
6583         if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
6584                 return false;
6585
6586         if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
6587             WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
6588                 return false;
6589
6590         if (x86_page_table_writing_insn(ctxt))
6591                 return false;
6592
6593         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
6594                 return false;
6595
6596         vcpu->arch.last_retry_eip = ctxt->eip;
6597         vcpu->arch.last_retry_addr = cr2_or_gpa;
6598
6599         if (!vcpu->arch.mmu->direct_map)
6600                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
6601
6602         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6603
6604         return true;
6605 }
6606
6607 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
6608 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
6609
6610 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
6611 {
6612         if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
6613                 /* This is a good place to trace that we are exiting SMM.  */
6614                 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
6615
6616                 /* Process a latched INIT or SMI, if any.  */
6617                 kvm_make_request(KVM_REQ_EVENT, vcpu);
6618         }
6619
6620         kvm_mmu_reset_context(vcpu);
6621 }
6622
6623 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
6624                                 unsigned long *db)
6625 {
6626         u32 dr6 = 0;
6627         int i;
6628         u32 enable, rwlen;
6629
6630         enable = dr7;
6631         rwlen = dr7 >> 16;
6632         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
6633                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
6634                         dr6 |= (1 << i);
6635         return dr6;
6636 }
6637
6638 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
6639 {
6640         struct kvm_run *kvm_run = vcpu->run;
6641
6642         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
6643                 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
6644                 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
6645                 kvm_run->debug.arch.exception = DB_VECTOR;
6646                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
6647                 return 0;
6648         }
6649         kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
6650         return 1;
6651 }
6652
6653 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
6654 {
6655         unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6656         int r;
6657
6658         r = kvm_x86_ops->skip_emulated_instruction(vcpu);
6659         if (unlikely(!r))
6660                 return 0;
6661
6662         /*
6663          * rflags is the old, "raw" value of the flags.  The new value has
6664          * not been saved yet.
6665          *
6666          * This is correct even for TF set by the guest, because "the
6667          * processor will not generate this exception after the instruction
6668          * that sets the TF flag".
6669          */
6670         if (unlikely(rflags & X86_EFLAGS_TF))
6671                 r = kvm_vcpu_do_singlestep(vcpu);
6672         return r;
6673 }
6674 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
6675
6676 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
6677 {
6678         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
6679             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
6680                 struct kvm_run *kvm_run = vcpu->run;
6681                 unsigned long eip = kvm_get_linear_rip(vcpu);
6682                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6683                                            vcpu->arch.guest_debug_dr7,
6684                                            vcpu->arch.eff_db);
6685
6686                 if (dr6 != 0) {
6687                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
6688                         kvm_run->debug.arch.pc = eip;
6689                         kvm_run->debug.arch.exception = DB_VECTOR;
6690                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
6691                         *r = 0;
6692                         return true;
6693                 }
6694         }
6695
6696         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
6697             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
6698                 unsigned long eip = kvm_get_linear_rip(vcpu);
6699                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6700                                            vcpu->arch.dr7,
6701                                            vcpu->arch.db);
6702
6703                 if (dr6 != 0) {
6704                         vcpu->arch.dr6 &= ~DR_TRAP_BITS;
6705                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
6706                         kvm_queue_exception(vcpu, DB_VECTOR);
6707                         *r = 1;
6708                         return true;
6709                 }
6710         }
6711
6712         return false;
6713 }
6714
6715 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
6716 {
6717         switch (ctxt->opcode_len) {
6718         case 1:
6719                 switch (ctxt->b) {
6720                 case 0xe4:      /* IN */
6721                 case 0xe5:
6722                 case 0xec:
6723                 case 0xed:
6724                 case 0xe6:      /* OUT */
6725                 case 0xe7:
6726                 case 0xee:
6727                 case 0xef:
6728                 case 0x6c:      /* INS */
6729                 case 0x6d:
6730                 case 0x6e:      /* OUTS */
6731                 case 0x6f:
6732                         return true;
6733                 }
6734                 break;
6735         case 2:
6736                 switch (ctxt->b) {
6737                 case 0x33:      /* RDPMC */
6738                         return true;
6739                 }
6740                 break;
6741         }
6742
6743         return false;
6744 }
6745
6746 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
6747                             int emulation_type, void *insn, int insn_len)
6748 {
6749         int r;
6750         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6751         bool writeback = true;
6752         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
6753
6754         vcpu->arch.l1tf_flush_l1d = true;
6755
6756         /*
6757          * Clear write_fault_to_shadow_pgtable here to ensure it is
6758          * never reused.
6759          */
6760         vcpu->arch.write_fault_to_shadow_pgtable = false;
6761         kvm_clear_exception_queue(vcpu);
6762
6763         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
6764                 init_emulate_ctxt(vcpu);
6765
6766                 /*
6767                  * We will reenter on the same instruction since
6768                  * we do not set complete_userspace_io.  This does not
6769                  * handle watchpoints yet, those would be handled in
6770                  * the emulate_ops.
6771                  */
6772                 if (!(emulation_type & EMULTYPE_SKIP) &&
6773                     kvm_vcpu_check_breakpoint(vcpu, &r))
6774                         return r;
6775
6776                 ctxt->interruptibility = 0;
6777                 ctxt->have_exception = false;
6778                 ctxt->exception.vector = -1;
6779                 ctxt->perm_ok = false;
6780
6781                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
6782
6783                 r = x86_decode_insn(ctxt, insn, insn_len);
6784
6785                 trace_kvm_emulate_insn_start(vcpu);
6786                 ++vcpu->stat.insn_emulation;
6787                 if (r != EMULATION_OK)  {
6788                         if ((emulation_type & EMULTYPE_TRAP_UD) ||
6789                             (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
6790                                 kvm_queue_exception(vcpu, UD_VECTOR);
6791                                 return 1;
6792                         }
6793                         if (reexecute_instruction(vcpu, cr2_or_gpa,
6794                                                   write_fault_to_spt,
6795                                                   emulation_type))
6796                                 return 1;
6797                         if (ctxt->have_exception) {
6798                                 /*
6799                                  * #UD should result in just EMULATION_FAILED, and trap-like
6800                                  * exception should not be encountered during decode.
6801                                  */
6802                                 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
6803                                              exception_type(ctxt->exception.vector) == EXCPT_TRAP);
6804                                 inject_emulated_exception(vcpu);
6805                                 return 1;
6806                         }
6807                         return handle_emulation_failure(vcpu, emulation_type);
6808                 }
6809         }
6810
6811         if ((emulation_type & EMULTYPE_VMWARE_GP) &&
6812             !is_vmware_backdoor_opcode(ctxt)) {
6813                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6814                 return 1;
6815         }
6816
6817         /*
6818          * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
6819          * for kvm_skip_emulated_instruction().  The caller is responsible for
6820          * updating interruptibility state and injecting single-step #DBs.
6821          */
6822         if (emulation_type & EMULTYPE_SKIP) {
6823                 kvm_rip_write(vcpu, ctxt->_eip);
6824                 if (ctxt->eflags & X86_EFLAGS_RF)
6825                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
6826                 return 1;
6827         }
6828
6829         if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
6830                 return 1;
6831
6832         /* this is needed for vmware backdoor interface to work since it
6833            changes registers values  during IO operation */
6834         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
6835                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6836                 emulator_invalidate_register_cache(ctxt);
6837         }
6838
6839 restart:
6840         if (emulation_type & EMULTYPE_PF) {
6841                 /* Save the faulting GPA (cr2) in the address field */
6842                 ctxt->exception.address = cr2_or_gpa;
6843
6844                 /* With shadow page tables, cr2 contains a GVA or nGPA. */
6845                 if (vcpu->arch.mmu->direct_map) {
6846                         ctxt->gpa_available = true;
6847                         ctxt->gpa_val = cr2_or_gpa;
6848                 }
6849         } else {
6850                 /* Sanitize the address out of an abundance of paranoia. */
6851                 ctxt->exception.address = 0;
6852         }
6853
6854         r = x86_emulate_insn(ctxt);
6855
6856         if (r == EMULATION_INTERCEPTED)
6857                 return 1;
6858
6859         if (r == EMULATION_FAILED) {
6860                 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
6861                                         emulation_type))
6862                         return 1;
6863
6864                 return handle_emulation_failure(vcpu, emulation_type);
6865         }
6866
6867         if (ctxt->have_exception) {
6868                 r = 1;
6869                 if (inject_emulated_exception(vcpu))
6870                         return r;
6871         } else if (vcpu->arch.pio.count) {
6872                 if (!vcpu->arch.pio.in) {
6873                         /* FIXME: return into emulator if single-stepping.  */
6874                         vcpu->arch.pio.count = 0;
6875                 } else {
6876                         writeback = false;
6877                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
6878                 }
6879                 r = 0;
6880         } else if (vcpu->mmio_needed) {
6881                 ++vcpu->stat.mmio_exits;
6882
6883                 if (!vcpu->mmio_is_write)
6884                         writeback = false;
6885                 r = 0;
6886                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6887         } else if (r == EMULATION_RESTART)
6888                 goto restart;
6889         else
6890                 r = 1;
6891
6892         if (writeback) {
6893                 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6894                 toggle_interruptibility(vcpu, ctxt->interruptibility);
6895                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6896                 if (!ctxt->have_exception ||
6897                     exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
6898                         kvm_rip_write(vcpu, ctxt->eip);
6899                         if (r && ctxt->tf)
6900                                 r = kvm_vcpu_do_singlestep(vcpu);
6901                         if (kvm_x86_ops->update_emulated_instruction)
6902                                 kvm_x86_ops->update_emulated_instruction(vcpu);
6903                         __kvm_set_rflags(vcpu, ctxt->eflags);
6904                 }
6905
6906                 /*
6907                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
6908                  * do nothing, and it will be requested again as soon as
6909                  * the shadow expires.  But we still need to check here,
6910                  * because POPF has no interrupt shadow.
6911                  */
6912                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
6913                         kvm_make_request(KVM_REQ_EVENT, vcpu);
6914         } else
6915                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
6916
6917         return r;
6918 }
6919
6920 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
6921 {
6922         return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
6923 }
6924 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
6925
6926 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
6927                                         void *insn, int insn_len)
6928 {
6929         return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
6930 }
6931 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
6932
6933 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
6934 {
6935         vcpu->arch.pio.count = 0;
6936         return 1;
6937 }
6938
6939 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
6940 {
6941         vcpu->arch.pio.count = 0;
6942
6943         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
6944                 return 1;
6945
6946         return kvm_skip_emulated_instruction(vcpu);
6947 }
6948
6949 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
6950                             unsigned short port)
6951 {
6952         unsigned long val = kvm_rax_read(vcpu);
6953         int ret = emulator_pio_out(vcpu, size, port, &val, 1);
6954
6955         if (ret)
6956                 return ret;
6957
6958         /*
6959          * Workaround userspace that relies on old KVM behavior of %rip being
6960          * incremented prior to exiting to userspace to handle "OUT 0x7e".
6961          */
6962         if (port == 0x7e &&
6963             kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
6964                 vcpu->arch.complete_userspace_io =
6965                         complete_fast_pio_out_port_0x7e;
6966                 kvm_skip_emulated_instruction(vcpu);
6967         } else {
6968                 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
6969                 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
6970         }
6971         return 0;
6972 }
6973
6974 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
6975 {
6976         unsigned long val;
6977
6978         /* We should only ever be called with arch.pio.count equal to 1 */
6979         BUG_ON(vcpu->arch.pio.count != 1);
6980
6981         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
6982                 vcpu->arch.pio.count = 0;
6983                 return 1;
6984         }
6985
6986         /* For size less than 4 we merge, else we zero extend */
6987         val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
6988
6989         /*
6990          * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
6991          * the copy and tracing
6992          */
6993         emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
6994         kvm_rax_write(vcpu, val);
6995
6996         return kvm_skip_emulated_instruction(vcpu);
6997 }
6998
6999 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
7000                            unsigned short port)
7001 {
7002         unsigned long val;
7003         int ret;
7004
7005         /* For size less than 4 we merge, else we zero extend */
7006         val = (size < 4) ? kvm_rax_read(vcpu) : 0;
7007
7008         ret = emulator_pio_in(vcpu, size, port, &val, 1);
7009         if (ret) {
7010                 kvm_rax_write(vcpu, val);
7011                 return ret;
7012         }
7013
7014         vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7015         vcpu->arch.complete_userspace_io = complete_fast_pio_in;
7016
7017         return 0;
7018 }
7019
7020 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
7021 {
7022         int ret;
7023
7024         if (in)
7025                 ret = kvm_fast_pio_in(vcpu, size, port);
7026         else
7027                 ret = kvm_fast_pio_out(vcpu, size, port);
7028         return ret && kvm_skip_emulated_instruction(vcpu);
7029 }
7030 EXPORT_SYMBOL_GPL(kvm_fast_pio);
7031
7032 static int kvmclock_cpu_down_prep(unsigned int cpu)
7033 {
7034         __this_cpu_write(cpu_tsc_khz, 0);
7035         return 0;
7036 }
7037
7038 static void tsc_khz_changed(void *data)
7039 {
7040         struct cpufreq_freqs *freq = data;
7041         unsigned long khz = 0;
7042
7043         if (data)
7044                 khz = freq->new;
7045         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7046                 khz = cpufreq_quick_get(raw_smp_processor_id());
7047         if (!khz)
7048                 khz = tsc_khz;
7049         __this_cpu_write(cpu_tsc_khz, khz);
7050 }
7051
7052 #ifdef CONFIG_X86_64
7053 static void kvm_hyperv_tsc_notifier(void)
7054 {
7055         struct kvm *kvm;
7056         struct kvm_vcpu *vcpu;
7057         int cpu;
7058
7059         mutex_lock(&kvm_lock);
7060         list_for_each_entry(kvm, &vm_list, vm_list)
7061                 kvm_make_mclock_inprogress_request(kvm);
7062
7063         hyperv_stop_tsc_emulation();
7064
7065         /* TSC frequency always matches when on Hyper-V */
7066         for_each_present_cpu(cpu)
7067                 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
7068         kvm_max_guest_tsc_khz = tsc_khz;
7069
7070         list_for_each_entry(kvm, &vm_list, vm_list) {
7071                 struct kvm_arch *ka = &kvm->arch;
7072
7073                 spin_lock(&ka->pvclock_gtod_sync_lock);
7074
7075                 pvclock_update_vm_gtod_copy(kvm);
7076
7077                 kvm_for_each_vcpu(cpu, vcpu, kvm)
7078                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7079
7080                 kvm_for_each_vcpu(cpu, vcpu, kvm)
7081                         kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
7082
7083                 spin_unlock(&ka->pvclock_gtod_sync_lock);
7084         }
7085         mutex_unlock(&kvm_lock);
7086 }
7087 #endif
7088
7089 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
7090 {
7091         struct kvm *kvm;
7092         struct kvm_vcpu *vcpu;
7093         int i, send_ipi = 0;
7094
7095         /*
7096          * We allow guests to temporarily run on slowing clocks,
7097          * provided we notify them after, or to run on accelerating
7098          * clocks, provided we notify them before.  Thus time never
7099          * goes backwards.
7100          *
7101          * However, we have a problem.  We can't atomically update
7102          * the frequency of a given CPU from this function; it is
7103          * merely a notifier, which can be called from any CPU.
7104          * Changing the TSC frequency at arbitrary points in time
7105          * requires a recomputation of local variables related to
7106          * the TSC for each VCPU.  We must flag these local variables
7107          * to be updated and be sure the update takes place with the
7108          * new frequency before any guests proceed.
7109          *
7110          * Unfortunately, the combination of hotplug CPU and frequency
7111          * change creates an intractable locking scenario; the order
7112          * of when these callouts happen is undefined with respect to
7113          * CPU hotplug, and they can race with each other.  As such,
7114          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
7115          * undefined; you can actually have a CPU frequency change take
7116          * place in between the computation of X and the setting of the
7117          * variable.  To protect against this problem, all updates of
7118          * the per_cpu tsc_khz variable are done in an interrupt
7119          * protected IPI, and all callers wishing to update the value
7120          * must wait for a synchronous IPI to complete (which is trivial
7121          * if the caller is on the CPU already).  This establishes the
7122          * necessary total order on variable updates.
7123          *
7124          * Note that because a guest time update may take place
7125          * anytime after the setting of the VCPU's request bit, the
7126          * correct TSC value must be set before the request.  However,
7127          * to ensure the update actually makes it to any guest which
7128          * starts running in hardware virtualization between the set
7129          * and the acquisition of the spinlock, we must also ping the
7130          * CPU after setting the request bit.
7131          *
7132          */
7133
7134         smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7135
7136         mutex_lock(&kvm_lock);
7137         list_for_each_entry(kvm, &vm_list, vm_list) {
7138                 kvm_for_each_vcpu(i, vcpu, kvm) {
7139                         if (vcpu->cpu != cpu)
7140                                 continue;
7141                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7142                         if (vcpu->cpu != raw_smp_processor_id())
7143                                 send_ipi = 1;
7144                 }
7145         }
7146         mutex_unlock(&kvm_lock);
7147
7148         if (freq->old < freq->new && send_ipi) {
7149                 /*
7150                  * We upscale the frequency.  Must make the guest
7151                  * doesn't see old kvmclock values while running with
7152                  * the new frequency, otherwise we risk the guest sees
7153                  * time go backwards.
7154                  *
7155                  * In case we update the frequency for another cpu
7156                  * (which might be in guest context) send an interrupt
7157                  * to kick the cpu out of guest context.  Next time
7158                  * guest context is entered kvmclock will be updated,
7159                  * so the guest will not see stale values.
7160                  */
7161                 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7162         }
7163 }
7164
7165 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
7166                                      void *data)
7167 {
7168         struct cpufreq_freqs *freq = data;
7169         int cpu;
7170
7171         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
7172                 return 0;
7173         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
7174                 return 0;
7175
7176         for_each_cpu(cpu, freq->policy->cpus)
7177                 __kvmclock_cpufreq_notifier(freq, cpu);
7178
7179         return 0;
7180 }
7181
7182 static struct notifier_block kvmclock_cpufreq_notifier_block = {
7183         .notifier_call  = kvmclock_cpufreq_notifier
7184 };
7185
7186 static int kvmclock_cpu_online(unsigned int cpu)
7187 {
7188         tsc_khz_changed(NULL);
7189         return 0;
7190 }
7191
7192 static void kvm_timer_init(void)
7193 {
7194         max_tsc_khz = tsc_khz;
7195
7196         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
7197 #ifdef CONFIG_CPU_FREQ
7198                 struct cpufreq_policy policy;
7199                 int cpu;
7200
7201                 memset(&policy, 0, sizeof(policy));
7202                 cpu = get_cpu();
7203                 cpufreq_get_policy(&policy, cpu);
7204                 if (policy.cpuinfo.max_freq)
7205                         max_tsc_khz = policy.cpuinfo.max_freq;
7206                 put_cpu();
7207 #endif
7208                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
7209                                           CPUFREQ_TRANSITION_NOTIFIER);
7210         }
7211
7212         cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
7213                           kvmclock_cpu_online, kvmclock_cpu_down_prep);
7214 }
7215
7216 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
7217 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
7218
7219 int kvm_is_in_guest(void)
7220 {
7221         return __this_cpu_read(current_vcpu) != NULL;
7222 }
7223
7224 static int kvm_is_user_mode(void)
7225 {
7226         int user_mode = 3;
7227
7228         if (__this_cpu_read(current_vcpu))
7229                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
7230
7231         return user_mode != 0;
7232 }
7233
7234 static unsigned long kvm_get_guest_ip(void)
7235 {
7236         unsigned long ip = 0;
7237
7238         if (__this_cpu_read(current_vcpu))
7239                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
7240
7241         return ip;
7242 }
7243
7244 static void kvm_handle_intel_pt_intr(void)
7245 {
7246         struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
7247
7248         kvm_make_request(KVM_REQ_PMI, vcpu);
7249         __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
7250                         (unsigned long *)&vcpu->arch.pmu.global_status);
7251 }
7252
7253 static struct perf_guest_info_callbacks kvm_guest_cbs = {
7254         .is_in_guest            = kvm_is_in_guest,
7255         .is_user_mode           = kvm_is_user_mode,
7256         .get_guest_ip           = kvm_get_guest_ip,
7257         .handle_intel_pt_intr   = kvm_handle_intel_pt_intr,
7258 };
7259
7260 #ifdef CONFIG_X86_64
7261 static void pvclock_gtod_update_fn(struct work_struct *work)
7262 {
7263         struct kvm *kvm;
7264
7265         struct kvm_vcpu *vcpu;
7266         int i;
7267
7268         mutex_lock(&kvm_lock);
7269         list_for_each_entry(kvm, &vm_list, vm_list)
7270                 kvm_for_each_vcpu(i, vcpu, kvm)
7271                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7272         atomic_set(&kvm_guest_has_master_clock, 0);
7273         mutex_unlock(&kvm_lock);
7274 }
7275
7276 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
7277
7278 /*
7279  * Notification about pvclock gtod data update.
7280  */
7281 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
7282                                void *priv)
7283 {
7284         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
7285         struct timekeeper *tk = priv;
7286
7287         update_pvclock_gtod(tk);
7288
7289         /* disable master clock if host does not trust, or does not
7290          * use, TSC based clocksource.
7291          */
7292         if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
7293             atomic_read(&kvm_guest_has_master_clock) != 0)
7294                 queue_work(system_long_wq, &pvclock_gtod_work);
7295
7296         return 0;
7297 }
7298
7299 static struct notifier_block pvclock_gtod_notifier = {
7300         .notifier_call = pvclock_gtod_notify,
7301 };
7302 #endif
7303
7304 int kvm_arch_init(void *opaque)
7305 {
7306         int r;
7307         struct kvm_x86_ops *ops = opaque;
7308
7309         if (kvm_x86_ops) {
7310                 printk(KERN_ERR "kvm: already loaded the other module\n");
7311                 r = -EEXIST;
7312                 goto out;
7313         }
7314
7315         if (!ops->cpu_has_kvm_support()) {
7316                 printk(KERN_ERR "kvm: no hardware support\n");
7317                 r = -EOPNOTSUPP;
7318                 goto out;
7319         }
7320         if (ops->disabled_by_bios()) {
7321                 printk(KERN_ERR "kvm: disabled by bios\n");
7322                 r = -EOPNOTSUPP;
7323                 goto out;
7324         }
7325
7326         /*
7327          * KVM explicitly assumes that the guest has an FPU and
7328          * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
7329          * vCPU's FPU state as a fxregs_state struct.
7330          */
7331         if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
7332                 printk(KERN_ERR "kvm: inadequate fpu\n");
7333                 r = -EOPNOTSUPP;
7334                 goto out;
7335         }
7336
7337         r = -ENOMEM;
7338         x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
7339                                           __alignof__(struct fpu), SLAB_ACCOUNT,
7340                                           NULL);
7341         if (!x86_fpu_cache) {
7342                 printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
7343                 goto out;
7344         }
7345
7346         x86_emulator_cache = kvm_alloc_emulator_cache();
7347         if (!x86_emulator_cache) {
7348                 pr_err("kvm: failed to allocate cache for x86 emulator\n");
7349                 goto out_free_x86_fpu_cache;
7350         }
7351
7352         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
7353         if (!shared_msrs) {
7354                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
7355                 goto out_free_x86_emulator_cache;
7356         }
7357
7358         r = kvm_mmu_module_init();
7359         if (r)
7360                 goto out_free_percpu;
7361
7362         kvm_x86_ops = ops;
7363
7364         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
7365                         PT_DIRTY_MASK, PT64_NX_MASK, 0,
7366                         PT_PRESENT_MASK, 0, sme_me_mask);
7367         kvm_timer_init();
7368
7369         perf_register_guest_info_callbacks(&kvm_guest_cbs);
7370
7371         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
7372                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
7373                 supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
7374         }
7375
7376         kvm_lapic_init();
7377         if (pi_inject_timer == -1)
7378                 pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
7379 #ifdef CONFIG_X86_64
7380         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
7381
7382         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7383                 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
7384 #endif
7385
7386         return 0;
7387
7388 out_free_percpu:
7389         free_percpu(shared_msrs);
7390 out_free_x86_emulator_cache:
7391         kmem_cache_destroy(x86_emulator_cache);
7392 out_free_x86_fpu_cache:
7393         kmem_cache_destroy(x86_fpu_cache);
7394 out:
7395         return r;
7396 }
7397
7398 void kvm_arch_exit(void)
7399 {
7400 #ifdef CONFIG_X86_64
7401         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7402                 clear_hv_tscchange_cb();
7403 #endif
7404         kvm_lapic_exit();
7405         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
7406
7407         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7408                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
7409                                             CPUFREQ_TRANSITION_NOTIFIER);
7410         cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
7411 #ifdef CONFIG_X86_64
7412         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
7413 #endif
7414         kvm_x86_ops = NULL;
7415         kvm_mmu_module_exit();
7416         free_percpu(shared_msrs);
7417         kmem_cache_destroy(x86_fpu_cache);
7418 }
7419
7420 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
7421 {
7422         ++vcpu->stat.halt_exits;
7423         if (lapic_in_kernel(vcpu)) {
7424                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
7425                 return 1;
7426         } else {
7427                 vcpu->run->exit_reason = KVM_EXIT_HLT;
7428                 return 0;
7429         }
7430 }
7431 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
7432
7433 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
7434 {
7435         int ret = kvm_skip_emulated_instruction(vcpu);
7436         /*
7437          * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
7438          * KVM_EXIT_DEBUG here.
7439          */
7440         return kvm_vcpu_halt(vcpu) && ret;
7441 }
7442 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
7443
7444 #ifdef CONFIG_X86_64
7445 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
7446                                 unsigned long clock_type)
7447 {
7448         struct kvm_clock_pairing clock_pairing;
7449         struct timespec64 ts;
7450         u64 cycle;
7451         int ret;
7452
7453         if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
7454                 return -KVM_EOPNOTSUPP;
7455
7456         if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
7457                 return -KVM_EOPNOTSUPP;
7458
7459         clock_pairing.sec = ts.tv_sec;
7460         clock_pairing.nsec = ts.tv_nsec;
7461         clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
7462         clock_pairing.flags = 0;
7463         memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
7464
7465         ret = 0;
7466         if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
7467                             sizeof(struct kvm_clock_pairing)))
7468                 ret = -KVM_EFAULT;
7469
7470         return ret;
7471 }
7472 #endif
7473
7474 /*
7475  * kvm_pv_kick_cpu_op:  Kick a vcpu.
7476  *
7477  * @apicid - apicid of vcpu to be kicked.
7478  */
7479 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
7480 {
7481         struct kvm_lapic_irq lapic_irq;
7482
7483         lapic_irq.shorthand = APIC_DEST_NOSHORT;
7484         lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
7485         lapic_irq.level = 0;
7486         lapic_irq.dest_id = apicid;
7487         lapic_irq.msi_redir_hint = false;
7488
7489         lapic_irq.delivery_mode = APIC_DM_REMRD;
7490         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
7491 }
7492
7493 bool kvm_apicv_activated(struct kvm *kvm)
7494 {
7495         return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
7496 }
7497 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
7498
7499 void kvm_apicv_init(struct kvm *kvm, bool enable)
7500 {
7501         if (enable)
7502                 clear_bit(APICV_INHIBIT_REASON_DISABLE,
7503                           &kvm->arch.apicv_inhibit_reasons);
7504         else
7505                 set_bit(APICV_INHIBIT_REASON_DISABLE,
7506                         &kvm->arch.apicv_inhibit_reasons);
7507 }
7508 EXPORT_SYMBOL_GPL(kvm_apicv_init);
7509
7510 static void kvm_sched_yield(struct kvm *kvm, unsigned long dest_id)
7511 {
7512         struct kvm_vcpu *target = NULL;
7513         struct kvm_apic_map *map;
7514
7515         rcu_read_lock();
7516         map = rcu_dereference(kvm->arch.apic_map);
7517
7518         if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
7519                 target = map->phys_map[dest_id]->vcpu;
7520
7521         rcu_read_unlock();
7522
7523         if (target && READ_ONCE(target->ready))
7524                 kvm_vcpu_yield_to(target);
7525 }
7526
7527 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
7528 {
7529         unsigned long nr, a0, a1, a2, a3, ret;
7530         int op_64_bit;
7531
7532         if (kvm_hv_hypercall_enabled(vcpu->kvm))
7533                 return kvm_hv_hypercall(vcpu);
7534
7535         nr = kvm_rax_read(vcpu);
7536         a0 = kvm_rbx_read(vcpu);
7537         a1 = kvm_rcx_read(vcpu);
7538         a2 = kvm_rdx_read(vcpu);
7539         a3 = kvm_rsi_read(vcpu);
7540
7541         trace_kvm_hypercall(nr, a0, a1, a2, a3);
7542
7543         op_64_bit = is_64_bit_mode(vcpu);
7544         if (!op_64_bit) {
7545                 nr &= 0xFFFFFFFF;
7546                 a0 &= 0xFFFFFFFF;
7547                 a1 &= 0xFFFFFFFF;
7548                 a2 &= 0xFFFFFFFF;
7549                 a3 &= 0xFFFFFFFF;
7550         }
7551
7552         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
7553                 ret = -KVM_EPERM;
7554                 goto out;
7555         }
7556
7557         switch (nr) {
7558         case KVM_HC_VAPIC_POLL_IRQ:
7559                 ret = 0;
7560                 break;
7561         case KVM_HC_KICK_CPU:
7562                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
7563                 kvm_sched_yield(vcpu->kvm, a1);
7564                 ret = 0;
7565                 break;
7566 #ifdef CONFIG_X86_64
7567         case KVM_HC_CLOCK_PAIRING:
7568                 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
7569                 break;
7570 #endif
7571         case KVM_HC_SEND_IPI:
7572                 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
7573                 break;
7574         case KVM_HC_SCHED_YIELD:
7575                 kvm_sched_yield(vcpu->kvm, a0);
7576                 ret = 0;
7577                 break;
7578         default:
7579                 ret = -KVM_ENOSYS;
7580                 break;
7581         }
7582 out:
7583         if (!op_64_bit)
7584                 ret = (u32)ret;
7585         kvm_rax_write(vcpu, ret);
7586
7587         ++vcpu->stat.hypercalls;
7588         return kvm_skip_emulated_instruction(vcpu);
7589 }
7590 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
7591
7592 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
7593 {
7594         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7595         char instruction[3];
7596         unsigned long rip = kvm_rip_read(vcpu);
7597
7598         kvm_x86_ops->patch_hypercall(vcpu, instruction);
7599
7600         return emulator_write_emulated(ctxt, rip, instruction, 3,
7601                 &ctxt->exception);
7602 }
7603
7604 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
7605 {
7606         return vcpu->run->request_interrupt_window &&
7607                 likely(!pic_in_kernel(vcpu->kvm));
7608 }
7609
7610 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
7611 {
7612         struct kvm_run *kvm_run = vcpu->run;
7613
7614         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
7615         kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
7616         kvm_run->cr8 = kvm_get_cr8(vcpu);
7617         kvm_run->apic_base = kvm_get_apic_base(vcpu);
7618         kvm_run->ready_for_interrupt_injection =
7619                 pic_in_kernel(vcpu->kvm) ||
7620                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
7621 }
7622
7623 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
7624 {
7625         int max_irr, tpr;
7626
7627         if (!kvm_x86_ops->update_cr8_intercept)
7628                 return;
7629
7630         if (!lapic_in_kernel(vcpu))
7631                 return;
7632
7633         if (vcpu->arch.apicv_active)
7634                 return;
7635
7636         if (!vcpu->arch.apic->vapic_addr)
7637                 max_irr = kvm_lapic_find_highest_irr(vcpu);
7638         else
7639                 max_irr = -1;
7640
7641         if (max_irr != -1)
7642                 max_irr >>= 4;
7643
7644         tpr = kvm_lapic_get_cr8(vcpu);
7645
7646         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
7647 }
7648
7649 static int inject_pending_event(struct kvm_vcpu *vcpu)
7650 {
7651         int r;
7652
7653         /* try to reinject previous events if any */
7654
7655         if (vcpu->arch.exception.injected)
7656                 kvm_x86_ops->queue_exception(vcpu);
7657         /*
7658          * Do not inject an NMI or interrupt if there is a pending
7659          * exception.  Exceptions and interrupts are recognized at
7660          * instruction boundaries, i.e. the start of an instruction.
7661          * Trap-like exceptions, e.g. #DB, have higher priority than
7662          * NMIs and interrupts, i.e. traps are recognized before an
7663          * NMI/interrupt that's pending on the same instruction.
7664          * Fault-like exceptions, e.g. #GP and #PF, are the lowest
7665          * priority, but are only generated (pended) during instruction
7666          * execution, i.e. a pending fault-like exception means the
7667          * fault occurred on the *previous* instruction and must be
7668          * serviced prior to recognizing any new events in order to
7669          * fully complete the previous instruction.
7670          */
7671         else if (!vcpu->arch.exception.pending) {
7672                 if (vcpu->arch.nmi_injected)
7673                         kvm_x86_ops->set_nmi(vcpu);
7674                 else if (vcpu->arch.interrupt.injected)
7675                         kvm_x86_ops->set_irq(vcpu);
7676         }
7677
7678         /*
7679          * Call check_nested_events() even if we reinjected a previous event
7680          * in order for caller to determine if it should require immediate-exit
7681          * from L2 to L1 due to pending L1 events which require exit
7682          * from L2 to L1.
7683          */
7684         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7685                 r = kvm_x86_ops->check_nested_events(vcpu);
7686                 if (r != 0)
7687                         return r;
7688         }
7689
7690         /* try to inject new event if pending */
7691         if (vcpu->arch.exception.pending) {
7692                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
7693                                         vcpu->arch.exception.has_error_code,
7694                                         vcpu->arch.exception.error_code);
7695
7696                 WARN_ON_ONCE(vcpu->arch.exception.injected);
7697                 vcpu->arch.exception.pending = false;
7698                 vcpu->arch.exception.injected = true;
7699
7700                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
7701                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
7702                                              X86_EFLAGS_RF);
7703
7704                 if (vcpu->arch.exception.nr == DB_VECTOR) {
7705                         /*
7706                          * This code assumes that nSVM doesn't use
7707                          * check_nested_events(). If it does, the
7708                          * DR6/DR7 changes should happen before L1
7709                          * gets a #VMEXIT for an intercepted #DB in
7710                          * L2.  (Under VMX, on the other hand, the
7711                          * DR6/DR7 changes should not happen in the
7712                          * event of a VM-exit to L1 for an intercepted
7713                          * #DB in L2.)
7714                          */
7715                         kvm_deliver_exception_payload(vcpu);
7716                         if (vcpu->arch.dr7 & DR7_GD) {
7717                                 vcpu->arch.dr7 &= ~DR7_GD;
7718                                 kvm_update_dr7(vcpu);
7719                         }
7720                 }
7721
7722                 kvm_x86_ops->queue_exception(vcpu);
7723         }
7724
7725         /* Don't consider new event if we re-injected an event */
7726         if (kvm_event_needs_reinjection(vcpu))
7727                 return 0;
7728
7729         if (vcpu->arch.smi_pending && !is_smm(vcpu) &&
7730             kvm_x86_ops->smi_allowed(vcpu)) {
7731                 vcpu->arch.smi_pending = false;
7732                 ++vcpu->arch.smi_count;
7733                 enter_smm(vcpu);
7734         } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
7735                 --vcpu->arch.nmi_pending;
7736                 vcpu->arch.nmi_injected = true;
7737                 kvm_x86_ops->set_nmi(vcpu);
7738         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
7739                 /*
7740                  * Because interrupts can be injected asynchronously, we are
7741                  * calling check_nested_events again here to avoid a race condition.
7742                  * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
7743                  * proposal and current concerns.  Perhaps we should be setting
7744                  * KVM_REQ_EVENT only on certain events and not unconditionally?
7745                  */
7746                 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7747                         r = kvm_x86_ops->check_nested_events(vcpu);
7748                         if (r != 0)
7749                                 return r;
7750                 }
7751                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
7752                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
7753                                             false);
7754                         kvm_x86_ops->set_irq(vcpu);
7755                 }
7756         }
7757
7758         return 0;
7759 }
7760
7761 static void process_nmi(struct kvm_vcpu *vcpu)
7762 {
7763         unsigned limit = 2;
7764
7765         /*
7766          * x86 is limited to one NMI running, and one NMI pending after it.
7767          * If an NMI is already in progress, limit further NMIs to just one.
7768          * Otherwise, allow two (and we'll inject the first one immediately).
7769          */
7770         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
7771                 limit = 1;
7772
7773         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
7774         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
7775         kvm_make_request(KVM_REQ_EVENT, vcpu);
7776 }
7777
7778 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
7779 {
7780         u32 flags = 0;
7781         flags |= seg->g       << 23;
7782         flags |= seg->db      << 22;
7783         flags |= seg->l       << 21;
7784         flags |= seg->avl     << 20;
7785         flags |= seg->present << 15;
7786         flags |= seg->dpl     << 13;
7787         flags |= seg->s       << 12;
7788         flags |= seg->type    << 8;
7789         return flags;
7790 }
7791
7792 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
7793 {
7794         struct kvm_segment seg;
7795         int offset;
7796
7797         kvm_get_segment(vcpu, &seg, n);
7798         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
7799
7800         if (n < 3)
7801                 offset = 0x7f84 + n * 12;
7802         else
7803                 offset = 0x7f2c + (n - 3) * 12;
7804
7805         put_smstate(u32, buf, offset + 8, seg.base);
7806         put_smstate(u32, buf, offset + 4, seg.limit);
7807         put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
7808 }
7809
7810 #ifdef CONFIG_X86_64
7811 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
7812 {
7813         struct kvm_segment seg;
7814         int offset;
7815         u16 flags;
7816
7817         kvm_get_segment(vcpu, &seg, n);
7818         offset = 0x7e00 + n * 16;
7819
7820         flags = enter_smm_get_segment_flags(&seg) >> 8;
7821         put_smstate(u16, buf, offset, seg.selector);
7822         put_smstate(u16, buf, offset + 2, flags);
7823         put_smstate(u32, buf, offset + 4, seg.limit);
7824         put_smstate(u64, buf, offset + 8, seg.base);
7825 }
7826 #endif
7827
7828 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
7829 {
7830         struct desc_ptr dt;
7831         struct kvm_segment seg;
7832         unsigned long val;
7833         int i;
7834
7835         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
7836         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
7837         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
7838         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
7839
7840         for (i = 0; i < 8; i++)
7841                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
7842
7843         kvm_get_dr(vcpu, 6, &val);
7844         put_smstate(u32, buf, 0x7fcc, (u32)val);
7845         kvm_get_dr(vcpu, 7, &val);
7846         put_smstate(u32, buf, 0x7fc8, (u32)val);
7847
7848         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7849         put_smstate(u32, buf, 0x7fc4, seg.selector);
7850         put_smstate(u32, buf, 0x7f64, seg.base);
7851         put_smstate(u32, buf, 0x7f60, seg.limit);
7852         put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
7853
7854         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7855         put_smstate(u32, buf, 0x7fc0, seg.selector);
7856         put_smstate(u32, buf, 0x7f80, seg.base);
7857         put_smstate(u32, buf, 0x7f7c, seg.limit);
7858         put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
7859
7860         kvm_x86_ops->get_gdt(vcpu, &dt);
7861         put_smstate(u32, buf, 0x7f74, dt.address);
7862         put_smstate(u32, buf, 0x7f70, dt.size);
7863
7864         kvm_x86_ops->get_idt(vcpu, &dt);
7865         put_smstate(u32, buf, 0x7f58, dt.address);
7866         put_smstate(u32, buf, 0x7f54, dt.size);
7867
7868         for (i = 0; i < 6; i++)
7869                 enter_smm_save_seg_32(vcpu, buf, i);
7870
7871         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
7872
7873         /* revision id */
7874         put_smstate(u32, buf, 0x7efc, 0x00020000);
7875         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
7876 }
7877
7878 #ifdef CONFIG_X86_64
7879 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
7880 {
7881         struct desc_ptr dt;
7882         struct kvm_segment seg;
7883         unsigned long val;
7884         int i;
7885
7886         for (i = 0; i < 16; i++)
7887                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
7888
7889         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
7890         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
7891
7892         kvm_get_dr(vcpu, 6, &val);
7893         put_smstate(u64, buf, 0x7f68, val);
7894         kvm_get_dr(vcpu, 7, &val);
7895         put_smstate(u64, buf, 0x7f60, val);
7896
7897         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
7898         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
7899         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
7900
7901         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
7902
7903         /* revision id */
7904         put_smstate(u32, buf, 0x7efc, 0x00020064);
7905
7906         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
7907
7908         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7909         put_smstate(u16, buf, 0x7e90, seg.selector);
7910         put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
7911         put_smstate(u32, buf, 0x7e94, seg.limit);
7912         put_smstate(u64, buf, 0x7e98, seg.base);
7913
7914         kvm_x86_ops->get_idt(vcpu, &dt);
7915         put_smstate(u32, buf, 0x7e84, dt.size);
7916         put_smstate(u64, buf, 0x7e88, dt.address);
7917
7918         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7919         put_smstate(u16, buf, 0x7e70, seg.selector);
7920         put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
7921         put_smstate(u32, buf, 0x7e74, seg.limit);
7922         put_smstate(u64, buf, 0x7e78, seg.base);
7923
7924         kvm_x86_ops->get_gdt(vcpu, &dt);
7925         put_smstate(u32, buf, 0x7e64, dt.size);
7926         put_smstate(u64, buf, 0x7e68, dt.address);
7927
7928         for (i = 0; i < 6; i++)
7929                 enter_smm_save_seg_64(vcpu, buf, i);
7930 }
7931 #endif
7932
7933 static void enter_smm(struct kvm_vcpu *vcpu)
7934 {
7935         struct kvm_segment cs, ds;
7936         struct desc_ptr dt;
7937         char buf[512];
7938         u32 cr0;
7939
7940         trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
7941         memset(buf, 0, 512);
7942 #ifdef CONFIG_X86_64
7943         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7944                 enter_smm_save_state_64(vcpu, buf);
7945         else
7946 #endif
7947                 enter_smm_save_state_32(vcpu, buf);
7948
7949         /*
7950          * Give pre_enter_smm() a chance to make ISA-specific changes to the
7951          * vCPU state (e.g. leave guest mode) after we've saved the state into
7952          * the SMM state-save area.
7953          */
7954         kvm_x86_ops->pre_enter_smm(vcpu, buf);
7955
7956         vcpu->arch.hflags |= HF_SMM_MASK;
7957         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
7958
7959         if (kvm_x86_ops->get_nmi_mask(vcpu))
7960                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
7961         else
7962                 kvm_x86_ops->set_nmi_mask(vcpu, true);
7963
7964         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
7965         kvm_rip_write(vcpu, 0x8000);
7966
7967         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
7968         kvm_x86_ops->set_cr0(vcpu, cr0);
7969         vcpu->arch.cr0 = cr0;
7970
7971         kvm_x86_ops->set_cr4(vcpu, 0);
7972
7973         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
7974         dt.address = dt.size = 0;
7975         kvm_x86_ops->set_idt(vcpu, &dt);
7976
7977         __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
7978
7979         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
7980         cs.base = vcpu->arch.smbase;
7981
7982         ds.selector = 0;
7983         ds.base = 0;
7984
7985         cs.limit    = ds.limit = 0xffffffff;
7986         cs.type     = ds.type = 0x3;
7987         cs.dpl      = ds.dpl = 0;
7988         cs.db       = ds.db = 0;
7989         cs.s        = ds.s = 1;
7990         cs.l        = ds.l = 0;
7991         cs.g        = ds.g = 1;
7992         cs.avl      = ds.avl = 0;
7993         cs.present  = ds.present = 1;
7994         cs.unusable = ds.unusable = 0;
7995         cs.padding  = ds.padding = 0;
7996
7997         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7998         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
7999         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
8000         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
8001         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
8002         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
8003
8004 #ifdef CONFIG_X86_64
8005         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
8006                 kvm_x86_ops->set_efer(vcpu, 0);
8007 #endif
8008
8009         kvm_update_cpuid(vcpu);
8010         kvm_mmu_reset_context(vcpu);
8011 }
8012
8013 static void process_smi(struct kvm_vcpu *vcpu)
8014 {
8015         vcpu->arch.smi_pending = true;
8016         kvm_make_request(KVM_REQ_EVENT, vcpu);
8017 }
8018
8019 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
8020                                        unsigned long *vcpu_bitmap)
8021 {
8022         cpumask_var_t cpus;
8023
8024         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
8025
8026         kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC,
8027                                     vcpu_bitmap, cpus);
8028
8029         free_cpumask_var(cpus);
8030 }
8031
8032 void kvm_make_scan_ioapic_request(struct kvm *kvm)
8033 {
8034         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
8035 }
8036
8037 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
8038 {
8039         if (!lapic_in_kernel(vcpu))
8040                 return;
8041
8042         vcpu->arch.apicv_active = kvm_apicv_activated(vcpu->kvm);
8043         kvm_apic_update_apicv(vcpu);
8044         kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
8045 }
8046 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
8047
8048 /*
8049  * NOTE: Do not hold any lock prior to calling this.
8050  *
8051  * In particular, kvm_request_apicv_update() expects kvm->srcu not to be
8052  * locked, because it calls __x86_set_memory_region() which does
8053  * synchronize_srcu(&kvm->srcu).
8054  */
8055 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
8056 {
8057         unsigned long old, new, expected;
8058
8059         if (!kvm_x86_ops->check_apicv_inhibit_reasons ||
8060             !kvm_x86_ops->check_apicv_inhibit_reasons(bit))
8061                 return;
8062
8063         old = READ_ONCE(kvm->arch.apicv_inhibit_reasons);
8064         do {
8065                 expected = new = old;
8066                 if (activate)
8067                         __clear_bit(bit, &new);
8068                 else
8069                         __set_bit(bit, &new);
8070                 if (new == old)
8071                         break;
8072                 old = cmpxchg(&kvm->arch.apicv_inhibit_reasons, expected, new);
8073         } while (old != expected);
8074
8075         if (!!old == !!new)
8076                 return;
8077
8078         trace_kvm_apicv_update_request(activate, bit);
8079         if (kvm_x86_ops->pre_update_apicv_exec_ctrl)
8080                 kvm_x86_ops->pre_update_apicv_exec_ctrl(kvm, activate);
8081         kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
8082 }
8083 EXPORT_SYMBOL_GPL(kvm_request_apicv_update);
8084
8085 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
8086 {
8087         if (!kvm_apic_present(vcpu))
8088                 return;
8089
8090         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
8091
8092         if (irqchip_split(vcpu->kvm))
8093                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
8094         else {
8095                 if (vcpu->arch.apicv_active)
8096                         kvm_x86_ops->sync_pir_to_irr(vcpu);
8097                 if (ioapic_in_kernel(vcpu->kvm))
8098                         kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
8099         }
8100
8101         if (is_guest_mode(vcpu))
8102                 vcpu->arch.load_eoi_exitmap_pending = true;
8103         else
8104                 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
8105 }
8106
8107 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
8108 {
8109         u64 eoi_exit_bitmap[4];
8110
8111         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
8112                 return;
8113
8114         bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
8115                   vcpu_to_synic(vcpu)->vec_bitmap, 256);
8116         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
8117 }
8118
8119 int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
8120                 unsigned long start, unsigned long end,
8121                 bool blockable)
8122 {
8123         unsigned long apic_address;
8124
8125         /*
8126          * The physical address of apic access page is stored in the VMCS.
8127          * Update it when it becomes invalid.
8128          */
8129         apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
8130         if (start <= apic_address && apic_address < end)
8131                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
8132
8133         return 0;
8134 }
8135
8136 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
8137 {
8138         struct page *page = NULL;
8139
8140         if (!lapic_in_kernel(vcpu))
8141                 return;
8142
8143         if (!kvm_x86_ops->set_apic_access_page_addr)
8144                 return;
8145
8146         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
8147         if (is_error_page(page))
8148                 return;
8149         kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
8150
8151         /*
8152          * Do not pin apic access page in memory, the MMU notifier
8153          * will call us again if it is migrated or swapped out.
8154          */
8155         put_page(page);
8156 }
8157
8158 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
8159 {
8160         smp_send_reschedule(vcpu->cpu);
8161 }
8162 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
8163
8164 /*
8165  * Returns 1 to let vcpu_run() continue the guest execution loop without
8166  * exiting to the userspace.  Otherwise, the value will be returned to the
8167  * userspace.
8168  */
8169 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
8170 {
8171         int r;
8172         bool req_int_win =
8173                 dm_request_for_irq_injection(vcpu) &&
8174                 kvm_cpu_accept_dm_intr(vcpu);
8175         enum exit_fastpath_completion exit_fastpath = EXIT_FASTPATH_NONE;
8176
8177         bool req_immediate_exit = false;
8178
8179         if (kvm_request_pending(vcpu)) {
8180                 if (kvm_check_request(KVM_REQ_GET_VMCS12_PAGES, vcpu)) {
8181                         if (unlikely(!kvm_x86_ops->get_vmcs12_pages(vcpu))) {
8182                                 r = 0;
8183                                 goto out;
8184                         }
8185                 }
8186                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
8187                         kvm_mmu_unload(vcpu);
8188                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
8189                         __kvm_migrate_timers(vcpu);
8190                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
8191                         kvm_gen_update_masterclock(vcpu->kvm);
8192                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
8193                         kvm_gen_kvmclock_update(vcpu);
8194                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
8195                         r = kvm_guest_time_update(vcpu);
8196                         if (unlikely(r))
8197                                 goto out;
8198                 }
8199                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
8200                         kvm_mmu_sync_roots(vcpu);
8201                 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
8202                         kvm_mmu_load_pgd(vcpu);
8203                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
8204                         kvm_vcpu_flush_tlb(vcpu, true);
8205                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
8206                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
8207                         r = 0;
8208                         goto out;
8209                 }
8210                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
8211                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
8212                         vcpu->mmio_needed = 0;
8213                         r = 0;
8214                         goto out;
8215                 }
8216                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
8217                         /* Page is swapped out. Do synthetic halt */
8218                         vcpu->arch.apf.halted = true;
8219                         r = 1;
8220                         goto out;
8221                 }
8222                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
8223                         record_steal_time(vcpu);
8224                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
8225                         process_smi(vcpu);
8226                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
8227                         process_nmi(vcpu);
8228                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
8229                         kvm_pmu_handle_event(vcpu);
8230                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
8231                         kvm_pmu_deliver_pmi(vcpu);
8232                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
8233                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
8234                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
8235                                      vcpu->arch.ioapic_handled_vectors)) {
8236                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
8237                                 vcpu->run->eoi.vector =
8238                                                 vcpu->arch.pending_ioapic_eoi;
8239                                 r = 0;
8240                                 goto out;
8241                         }
8242                 }
8243                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
8244                         vcpu_scan_ioapic(vcpu);
8245                 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
8246                         vcpu_load_eoi_exitmap(vcpu);
8247                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
8248                         kvm_vcpu_reload_apic_access_page(vcpu);
8249                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
8250                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8251                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
8252                         r = 0;
8253                         goto out;
8254                 }
8255                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
8256                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8257                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
8258                         r = 0;
8259                         goto out;
8260                 }
8261                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
8262                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
8263                         vcpu->run->hyperv = vcpu->arch.hyperv.exit;
8264                         r = 0;
8265                         goto out;
8266                 }
8267
8268                 /*
8269                  * KVM_REQ_HV_STIMER has to be processed after
8270                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
8271                  * depend on the guest clock being up-to-date
8272                  */
8273                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
8274                         kvm_hv_process_stimers(vcpu);
8275                 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
8276                         kvm_vcpu_update_apicv(vcpu);
8277         }
8278
8279         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
8280                 ++vcpu->stat.req_event;
8281                 kvm_apic_accept_events(vcpu);
8282                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
8283                         r = 1;
8284                         goto out;
8285                 }
8286
8287                 if (inject_pending_event(vcpu) != 0)
8288                         req_immediate_exit = true;
8289                 else {
8290                         /* Enable SMI/NMI/IRQ window open exits if needed.
8291                          *
8292                          * SMIs have three cases:
8293                          * 1) They can be nested, and then there is nothing to
8294                          *    do here because RSM will cause a vmexit anyway.
8295                          * 2) There is an ISA-specific reason why SMI cannot be
8296                          *    injected, and the moment when this changes can be
8297                          *    intercepted.
8298                          * 3) Or the SMI can be pending because
8299                          *    inject_pending_event has completed the injection
8300                          *    of an IRQ or NMI from the previous vmexit, and
8301                          *    then we request an immediate exit to inject the
8302                          *    SMI.
8303                          */
8304                         if (vcpu->arch.smi_pending && !is_smm(vcpu))
8305                                 if (!kvm_x86_ops->enable_smi_window(vcpu))
8306                                         req_immediate_exit = true;
8307                         if (vcpu->arch.nmi_pending)
8308                                 kvm_x86_ops->enable_nmi_window(vcpu);
8309                         if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
8310                                 kvm_x86_ops->enable_irq_window(vcpu);
8311                         WARN_ON(vcpu->arch.exception.pending);
8312                 }
8313
8314                 if (kvm_lapic_enabled(vcpu)) {
8315                         update_cr8_intercept(vcpu);
8316                         kvm_lapic_sync_to_vapic(vcpu);
8317                 }
8318         }
8319
8320         r = kvm_mmu_reload(vcpu);
8321         if (unlikely(r)) {
8322                 goto cancel_injection;
8323         }
8324
8325         preempt_disable();
8326
8327         kvm_x86_ops->prepare_guest_switch(vcpu);
8328
8329         /*
8330          * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
8331          * IPI are then delayed after guest entry, which ensures that they
8332          * result in virtual interrupt delivery.
8333          */
8334         local_irq_disable();
8335         vcpu->mode = IN_GUEST_MODE;
8336
8337         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8338
8339         /*
8340          * 1) We should set ->mode before checking ->requests.  Please see
8341          * the comment in kvm_vcpu_exiting_guest_mode().
8342          *
8343          * 2) For APICv, we should set ->mode before checking PID.ON. This
8344          * pairs with the memory barrier implicit in pi_test_and_set_on
8345          * (see vmx_deliver_posted_interrupt).
8346          *
8347          * 3) This also orders the write to mode from any reads to the page
8348          * tables done while the VCPU is running.  Please see the comment
8349          * in kvm_flush_remote_tlbs.
8350          */
8351         smp_mb__after_srcu_read_unlock();
8352
8353         /*
8354          * This handles the case where a posted interrupt was
8355          * notified with kvm_vcpu_kick.
8356          */
8357         if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
8358                 kvm_x86_ops->sync_pir_to_irr(vcpu);
8359
8360         if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
8361             || need_resched() || signal_pending(current)) {
8362                 vcpu->mode = OUTSIDE_GUEST_MODE;
8363                 smp_wmb();
8364                 local_irq_enable();
8365                 preempt_enable();
8366                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8367                 r = 1;
8368                 goto cancel_injection;
8369         }
8370
8371         if (req_immediate_exit) {
8372                 kvm_make_request(KVM_REQ_EVENT, vcpu);
8373                 kvm_x86_ops->request_immediate_exit(vcpu);
8374         }
8375
8376         trace_kvm_entry(vcpu->vcpu_id);
8377         guest_enter_irqoff();
8378
8379         fpregs_assert_state_consistent();
8380         if (test_thread_flag(TIF_NEED_FPU_LOAD))
8381                 switch_fpu_return();
8382
8383         if (unlikely(vcpu->arch.switch_db_regs)) {
8384                 set_debugreg(0, 7);
8385                 set_debugreg(vcpu->arch.eff_db[0], 0);
8386                 set_debugreg(vcpu->arch.eff_db[1], 1);
8387                 set_debugreg(vcpu->arch.eff_db[2], 2);
8388                 set_debugreg(vcpu->arch.eff_db[3], 3);
8389                 set_debugreg(vcpu->arch.dr6, 6);
8390                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
8391         }
8392
8393         kvm_x86_ops->run(vcpu);
8394
8395         /*
8396          * Do this here before restoring debug registers on the host.  And
8397          * since we do this before handling the vmexit, a DR access vmexit
8398          * can (a) read the correct value of the debug registers, (b) set
8399          * KVM_DEBUGREG_WONT_EXIT again.
8400          */
8401         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
8402                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
8403                 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
8404                 kvm_update_dr0123(vcpu);
8405                 kvm_update_dr6(vcpu);
8406                 kvm_update_dr7(vcpu);
8407                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
8408         }
8409
8410         /*
8411          * If the guest has used debug registers, at least dr7
8412          * will be disabled while returning to the host.
8413          * If we don't have active breakpoints in the host, we don't
8414          * care about the messed up debug address registers. But if
8415          * we have some of them active, restore the old state.
8416          */
8417         if (hw_breakpoint_active())
8418                 hw_breakpoint_restore();
8419
8420         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
8421
8422         vcpu->mode = OUTSIDE_GUEST_MODE;
8423         smp_wmb();
8424
8425         kvm_x86_ops->handle_exit_irqoff(vcpu, &exit_fastpath);
8426
8427         /*
8428          * Consume any pending interrupts, including the possible source of
8429          * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
8430          * An instruction is required after local_irq_enable() to fully unblock
8431          * interrupts on processors that implement an interrupt shadow, the
8432          * stat.exits increment will do nicely.
8433          */
8434         kvm_before_interrupt(vcpu);
8435         local_irq_enable();
8436         ++vcpu->stat.exits;
8437         local_irq_disable();
8438         kvm_after_interrupt(vcpu);
8439
8440         guest_exit_irqoff();
8441         if (lapic_in_kernel(vcpu)) {
8442                 s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
8443                 if (delta != S64_MIN) {
8444                         trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
8445                         vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
8446                 }
8447         }
8448
8449         local_irq_enable();
8450         preempt_enable();
8451
8452         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8453
8454         /*
8455          * Profile KVM exit RIPs:
8456          */
8457         if (unlikely(prof_on == KVM_PROFILING)) {
8458                 unsigned long rip = kvm_rip_read(vcpu);
8459                 profile_hit(KVM_PROFILING, (void *)rip);
8460         }
8461
8462         if (unlikely(vcpu->arch.tsc_always_catchup))
8463                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8464
8465         if (vcpu->arch.apic_attention)
8466                 kvm_lapic_sync_from_vapic(vcpu);
8467
8468         r = kvm_x86_ops->handle_exit(vcpu, exit_fastpath);
8469         return r;
8470
8471 cancel_injection:
8472         kvm_x86_ops->cancel_injection(vcpu);
8473         if (unlikely(vcpu->arch.apic_attention))
8474                 kvm_lapic_sync_from_vapic(vcpu);
8475 out:
8476         return r;
8477 }
8478
8479 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
8480 {
8481         if (!kvm_arch_vcpu_runnable(vcpu) &&
8482             (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
8483                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8484                 kvm_vcpu_block(vcpu);
8485                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8486
8487                 if (kvm_x86_ops->post_block)
8488                         kvm_x86_ops->post_block(vcpu);
8489
8490                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
8491                         return 1;
8492         }
8493
8494         kvm_apic_accept_events(vcpu);
8495         switch(vcpu->arch.mp_state) {
8496         case KVM_MP_STATE_HALTED:
8497                 vcpu->arch.pv.pv_unhalted = false;
8498                 vcpu->arch.mp_state =
8499                         KVM_MP_STATE_RUNNABLE;
8500                 /* fall through */
8501         case KVM_MP_STATE_RUNNABLE:
8502                 vcpu->arch.apf.halted = false;
8503                 break;
8504         case KVM_MP_STATE_INIT_RECEIVED:
8505                 break;
8506         default:
8507                 return -EINTR;
8508         }
8509         return 1;
8510 }
8511
8512 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
8513 {
8514         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
8515                 kvm_x86_ops->check_nested_events(vcpu);
8516
8517         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
8518                 !vcpu->arch.apf.halted);
8519 }
8520
8521 static int vcpu_run(struct kvm_vcpu *vcpu)
8522 {
8523         int r;
8524         struct kvm *kvm = vcpu->kvm;
8525
8526         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8527         vcpu->arch.l1tf_flush_l1d = true;
8528
8529         for (;;) {
8530                 if (kvm_vcpu_running(vcpu)) {
8531                         r = vcpu_enter_guest(vcpu);
8532                 } else {
8533                         r = vcpu_block(kvm, vcpu);
8534                 }
8535
8536                 if (r <= 0)
8537                         break;
8538
8539                 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
8540                 if (kvm_cpu_has_pending_timer(vcpu))
8541                         kvm_inject_pending_timer_irqs(vcpu);
8542
8543                 if (dm_request_for_irq_injection(vcpu) &&
8544                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
8545                         r = 0;
8546                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
8547                         ++vcpu->stat.request_irq_exits;
8548                         break;
8549                 }
8550
8551                 kvm_check_async_pf_completion(vcpu);
8552
8553                 if (signal_pending(current)) {
8554                         r = -EINTR;
8555                         vcpu->run->exit_reason = KVM_EXIT_INTR;
8556                         ++vcpu->stat.signal_exits;
8557                         break;
8558                 }
8559                 if (need_resched()) {
8560                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8561                         cond_resched();
8562                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8563                 }
8564         }
8565
8566         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8567
8568         return r;
8569 }
8570
8571 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
8572 {
8573         int r;
8574
8575         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8576         r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
8577         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8578         return r;
8579 }
8580
8581 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
8582 {
8583         BUG_ON(!vcpu->arch.pio.count);
8584
8585         return complete_emulated_io(vcpu);
8586 }
8587
8588 /*
8589  * Implements the following, as a state machine:
8590  *
8591  * read:
8592  *   for each fragment
8593  *     for each mmio piece in the fragment
8594  *       write gpa, len
8595  *       exit
8596  *       copy data
8597  *   execute insn
8598  *
8599  * write:
8600  *   for each fragment
8601  *     for each mmio piece in the fragment
8602  *       write gpa, len
8603  *       copy data
8604  *       exit
8605  */
8606 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
8607 {
8608         struct kvm_run *run = vcpu->run;
8609         struct kvm_mmio_fragment *frag;
8610         unsigned len;
8611
8612         BUG_ON(!vcpu->mmio_needed);
8613
8614         /* Complete previous fragment */
8615         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
8616         len = min(8u, frag->len);
8617         if (!vcpu->mmio_is_write)
8618                 memcpy(frag->data, run->mmio.data, len);
8619
8620         if (frag->len <= 8) {
8621                 /* Switch to the next fragment. */
8622                 frag++;
8623                 vcpu->mmio_cur_fragment++;
8624         } else {
8625                 /* Go forward to the next mmio piece. */
8626                 frag->data += len;
8627                 frag->gpa += len;
8628                 frag->len -= len;
8629         }
8630
8631         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
8632                 vcpu->mmio_needed = 0;
8633
8634                 /* FIXME: return into emulator if single-stepping.  */
8635                 if (vcpu->mmio_is_write)
8636                         return 1;
8637                 vcpu->mmio_read_completed = 1;
8638                 return complete_emulated_io(vcpu);
8639         }
8640
8641         run->exit_reason = KVM_EXIT_MMIO;
8642         run->mmio.phys_addr = frag->gpa;
8643         if (vcpu->mmio_is_write)
8644                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
8645         run->mmio.len = min(8u, frag->len);
8646         run->mmio.is_write = vcpu->mmio_is_write;
8647         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8648         return 0;
8649 }
8650
8651 static void kvm_save_current_fpu(struct fpu *fpu)
8652 {
8653         /*
8654          * If the target FPU state is not resident in the CPU registers, just
8655          * memcpy() from current, else save CPU state directly to the target.
8656          */
8657         if (test_thread_flag(TIF_NEED_FPU_LOAD))
8658                 memcpy(&fpu->state, &current->thread.fpu.state,
8659                        fpu_kernel_xstate_size);
8660         else
8661                 copy_fpregs_to_fpstate(fpu);
8662 }
8663
8664 /* Swap (qemu) user FPU context for the guest FPU context. */
8665 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
8666 {
8667         fpregs_lock();
8668
8669         kvm_save_current_fpu(vcpu->arch.user_fpu);
8670
8671         /* PKRU is separately restored in kvm_x86_ops->run.  */
8672         __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state,
8673                                 ~XFEATURE_MASK_PKRU);
8674
8675         fpregs_mark_activate();
8676         fpregs_unlock();
8677
8678         trace_kvm_fpu(1);
8679 }
8680
8681 /* When vcpu_run ends, restore user space FPU context. */
8682 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
8683 {
8684         fpregs_lock();
8685
8686         kvm_save_current_fpu(vcpu->arch.guest_fpu);
8687
8688         copy_kernel_to_fpregs(&vcpu->arch.user_fpu->state);
8689
8690         fpregs_mark_activate();
8691         fpregs_unlock();
8692
8693         ++vcpu->stat.fpu_reload;
8694         trace_kvm_fpu(0);
8695 }
8696
8697 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
8698 {
8699         int r;
8700
8701         vcpu_load(vcpu);
8702         kvm_sigset_activate(vcpu);
8703         kvm_load_guest_fpu(vcpu);
8704
8705         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
8706                 if (kvm_run->immediate_exit) {
8707                         r = -EINTR;
8708                         goto out;
8709                 }
8710                 kvm_vcpu_block(vcpu);
8711                 kvm_apic_accept_events(vcpu);
8712                 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
8713                 r = -EAGAIN;
8714                 if (signal_pending(current)) {
8715                         r = -EINTR;
8716                         vcpu->run->exit_reason = KVM_EXIT_INTR;
8717                         ++vcpu->stat.signal_exits;
8718                 }
8719                 goto out;
8720         }
8721
8722         if (vcpu->run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
8723                 r = -EINVAL;
8724                 goto out;
8725         }
8726
8727         if (vcpu->run->kvm_dirty_regs) {
8728                 r = sync_regs(vcpu);
8729                 if (r != 0)
8730                         goto out;
8731         }
8732
8733         /* re-sync apic's tpr */
8734         if (!lapic_in_kernel(vcpu)) {
8735                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
8736                         r = -EINVAL;
8737                         goto out;
8738                 }
8739         }
8740
8741         if (unlikely(vcpu->arch.complete_userspace_io)) {
8742                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
8743                 vcpu->arch.complete_userspace_io = NULL;
8744                 r = cui(vcpu);
8745                 if (r <= 0)
8746                         goto out;
8747         } else
8748                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
8749
8750         if (kvm_run->immediate_exit)
8751                 r = -EINTR;
8752         else
8753                 r = vcpu_run(vcpu);
8754
8755 out:
8756         kvm_put_guest_fpu(vcpu);
8757         if (vcpu->run->kvm_valid_regs)
8758                 store_regs(vcpu);
8759         post_kvm_run_save(vcpu);
8760         kvm_sigset_deactivate(vcpu);
8761
8762         vcpu_put(vcpu);
8763         return r;
8764 }
8765
8766 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8767 {
8768         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
8769                 /*
8770                  * We are here if userspace calls get_regs() in the middle of
8771                  * instruction emulation. Registers state needs to be copied
8772                  * back from emulation context to vcpu. Userspace shouldn't do
8773                  * that usually, but some bad designed PV devices (vmware
8774                  * backdoor interface) need this to work
8775                  */
8776                 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
8777                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8778         }
8779         regs->rax = kvm_rax_read(vcpu);
8780         regs->rbx = kvm_rbx_read(vcpu);
8781         regs->rcx = kvm_rcx_read(vcpu);
8782         regs->rdx = kvm_rdx_read(vcpu);
8783         regs->rsi = kvm_rsi_read(vcpu);
8784         regs->rdi = kvm_rdi_read(vcpu);
8785         regs->rsp = kvm_rsp_read(vcpu);
8786         regs->rbp = kvm_rbp_read(vcpu);
8787 #ifdef CONFIG_X86_64
8788         regs->r8 = kvm_r8_read(vcpu);
8789         regs->r9 = kvm_r9_read(vcpu);
8790         regs->r10 = kvm_r10_read(vcpu);
8791         regs->r11 = kvm_r11_read(vcpu);
8792         regs->r12 = kvm_r12_read(vcpu);
8793         regs->r13 = kvm_r13_read(vcpu);
8794         regs->r14 = kvm_r14_read(vcpu);
8795         regs->r15 = kvm_r15_read(vcpu);
8796 #endif
8797
8798         regs->rip = kvm_rip_read(vcpu);
8799         regs->rflags = kvm_get_rflags(vcpu);
8800 }
8801
8802 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8803 {
8804         vcpu_load(vcpu);
8805         __get_regs(vcpu, regs);
8806         vcpu_put(vcpu);
8807         return 0;
8808 }
8809
8810 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8811 {
8812         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
8813         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8814
8815         kvm_rax_write(vcpu, regs->rax);
8816         kvm_rbx_write(vcpu, regs->rbx);
8817         kvm_rcx_write(vcpu, regs->rcx);
8818         kvm_rdx_write(vcpu, regs->rdx);
8819         kvm_rsi_write(vcpu, regs->rsi);
8820         kvm_rdi_write(vcpu, regs->rdi);
8821         kvm_rsp_write(vcpu, regs->rsp);
8822         kvm_rbp_write(vcpu, regs->rbp);
8823 #ifdef CONFIG_X86_64
8824         kvm_r8_write(vcpu, regs->r8);
8825         kvm_r9_write(vcpu, regs->r9);
8826         kvm_r10_write(vcpu, regs->r10);
8827         kvm_r11_write(vcpu, regs->r11);
8828         kvm_r12_write(vcpu, regs->r12);
8829         kvm_r13_write(vcpu, regs->r13);
8830         kvm_r14_write(vcpu, regs->r14);
8831         kvm_r15_write(vcpu, regs->r15);
8832 #endif
8833
8834         kvm_rip_write(vcpu, regs->rip);
8835         kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
8836
8837         vcpu->arch.exception.pending = false;
8838
8839         kvm_make_request(KVM_REQ_EVENT, vcpu);
8840 }
8841
8842 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8843 {
8844         vcpu_load(vcpu);
8845         __set_regs(vcpu, regs);
8846         vcpu_put(vcpu);
8847         return 0;
8848 }
8849
8850 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
8851 {
8852         struct kvm_segment cs;
8853
8854         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8855         *db = cs.db;
8856         *l = cs.l;
8857 }
8858 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
8859
8860 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8861 {
8862         struct desc_ptr dt;
8863
8864         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8865         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8866         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8867         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8868         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8869         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8870
8871         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8872         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8873
8874         kvm_x86_ops->get_idt(vcpu, &dt);
8875         sregs->idt.limit = dt.size;
8876         sregs->idt.base = dt.address;
8877         kvm_x86_ops->get_gdt(vcpu, &dt);
8878         sregs->gdt.limit = dt.size;
8879         sregs->gdt.base = dt.address;
8880
8881         sregs->cr0 = kvm_read_cr0(vcpu);
8882         sregs->cr2 = vcpu->arch.cr2;
8883         sregs->cr3 = kvm_read_cr3(vcpu);
8884         sregs->cr4 = kvm_read_cr4(vcpu);
8885         sregs->cr8 = kvm_get_cr8(vcpu);
8886         sregs->efer = vcpu->arch.efer;
8887         sregs->apic_base = kvm_get_apic_base(vcpu);
8888
8889         memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
8890
8891         if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
8892                 set_bit(vcpu->arch.interrupt.nr,
8893                         (unsigned long *)sregs->interrupt_bitmap);
8894 }
8895
8896 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
8897                                   struct kvm_sregs *sregs)
8898 {
8899         vcpu_load(vcpu);
8900         __get_sregs(vcpu, sregs);
8901         vcpu_put(vcpu);
8902         return 0;
8903 }
8904
8905 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
8906                                     struct kvm_mp_state *mp_state)
8907 {
8908         vcpu_load(vcpu);
8909         if (kvm_mpx_supported())
8910                 kvm_load_guest_fpu(vcpu);
8911
8912         kvm_apic_accept_events(vcpu);
8913         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
8914                                         vcpu->arch.pv.pv_unhalted)
8915                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
8916         else
8917                 mp_state->mp_state = vcpu->arch.mp_state;
8918
8919         if (kvm_mpx_supported())
8920                 kvm_put_guest_fpu(vcpu);
8921         vcpu_put(vcpu);
8922         return 0;
8923 }
8924
8925 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
8926                                     struct kvm_mp_state *mp_state)
8927 {
8928         int ret = -EINVAL;
8929
8930         vcpu_load(vcpu);
8931
8932         if (!lapic_in_kernel(vcpu) &&
8933             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
8934                 goto out;
8935
8936         /*
8937          * KVM_MP_STATE_INIT_RECEIVED means the processor is in
8938          * INIT state; latched init should be reported using
8939          * KVM_SET_VCPU_EVENTS, so reject it here.
8940          */
8941         if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
8942             (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
8943              mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
8944                 goto out;
8945
8946         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
8947                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
8948                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
8949         } else
8950                 vcpu->arch.mp_state = mp_state->mp_state;
8951         kvm_make_request(KVM_REQ_EVENT, vcpu);
8952
8953         ret = 0;
8954 out:
8955         vcpu_put(vcpu);
8956         return ret;
8957 }
8958
8959 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
8960                     int reason, bool has_error_code, u32 error_code)
8961 {
8962         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8963         int ret;
8964
8965         init_emulate_ctxt(vcpu);
8966
8967         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
8968                                    has_error_code, error_code);
8969         if (ret) {
8970                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8971                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
8972                 vcpu->run->internal.ndata = 0;
8973                 return 0;
8974         }
8975
8976         kvm_rip_write(vcpu, ctxt->eip);
8977         kvm_set_rflags(vcpu, ctxt->eflags);
8978         return 1;
8979 }
8980 EXPORT_SYMBOL_GPL(kvm_task_switch);
8981
8982 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8983 {
8984         if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
8985                 /*
8986                  * When EFER.LME and CR0.PG are set, the processor is in
8987                  * 64-bit mode (though maybe in a 32-bit code segment).
8988                  * CR4.PAE and EFER.LMA must be set.
8989                  */
8990                 if (!(sregs->cr4 & X86_CR4_PAE)
8991                     || !(sregs->efer & EFER_LMA))
8992                         return -EINVAL;
8993         } else {
8994                 /*
8995                  * Not in 64-bit mode: EFER.LMA is clear and the code
8996                  * segment cannot be 64-bit.
8997                  */
8998                 if (sregs->efer & EFER_LMA || sregs->cs.l)
8999                         return -EINVAL;
9000         }
9001
9002         return kvm_valid_cr4(vcpu, sregs->cr4);
9003 }
9004
9005 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9006 {
9007         struct msr_data apic_base_msr;
9008         int mmu_reset_needed = 0;
9009         int cpuid_update_needed = 0;
9010         int pending_vec, max_bits, idx;
9011         struct desc_ptr dt;
9012         int ret = -EINVAL;
9013
9014         if (kvm_valid_sregs(vcpu, sregs))
9015                 goto out;
9016
9017         apic_base_msr.data = sregs->apic_base;
9018         apic_base_msr.host_initiated = true;
9019         if (kvm_set_apic_base(vcpu, &apic_base_msr))
9020                 goto out;
9021
9022         dt.size = sregs->idt.limit;
9023         dt.address = sregs->idt.base;
9024         kvm_x86_ops->set_idt(vcpu, &dt);
9025         dt.size = sregs->gdt.limit;
9026         dt.address = sregs->gdt.base;
9027         kvm_x86_ops->set_gdt(vcpu, &dt);
9028
9029         vcpu->arch.cr2 = sregs->cr2;
9030         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
9031         vcpu->arch.cr3 = sregs->cr3;
9032         kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
9033
9034         kvm_set_cr8(vcpu, sregs->cr8);
9035
9036         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
9037         kvm_x86_ops->set_efer(vcpu, sregs->efer);
9038
9039         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
9040         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
9041         vcpu->arch.cr0 = sregs->cr0;
9042
9043         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
9044         cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
9045                                 (X86_CR4_OSXSAVE | X86_CR4_PKE));
9046         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
9047         if (cpuid_update_needed)
9048                 kvm_update_cpuid(vcpu);
9049
9050         idx = srcu_read_lock(&vcpu->kvm->srcu);
9051         if (is_pae_paging(vcpu)) {
9052                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
9053                 mmu_reset_needed = 1;
9054         }
9055         srcu_read_unlock(&vcpu->kvm->srcu, idx);
9056
9057         if (mmu_reset_needed)
9058                 kvm_mmu_reset_context(vcpu);
9059
9060         max_bits = KVM_NR_INTERRUPTS;
9061         pending_vec = find_first_bit(
9062                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
9063         if (pending_vec < max_bits) {
9064                 kvm_queue_interrupt(vcpu, pending_vec, false);
9065                 pr_debug("Set back pending irq %d\n", pending_vec);
9066         }
9067
9068         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
9069         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
9070         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
9071         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9072         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9073         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
9074
9075         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9076         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
9077
9078         update_cr8_intercept(vcpu);
9079
9080         /* Older userspace won't unhalt the vcpu on reset. */
9081         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
9082             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
9083             !is_protmode(vcpu))
9084                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9085
9086         kvm_make_request(KVM_REQ_EVENT, vcpu);
9087
9088         ret = 0;
9089 out:
9090         return ret;
9091 }
9092
9093 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
9094                                   struct kvm_sregs *sregs)
9095 {
9096         int ret;
9097
9098         vcpu_load(vcpu);
9099         ret = __set_sregs(vcpu, sregs);
9100         vcpu_put(vcpu);
9101         return ret;
9102 }
9103
9104 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
9105                                         struct kvm_guest_debug *dbg)
9106 {
9107         unsigned long rflags;
9108         int i, r;
9109
9110         vcpu_load(vcpu);
9111
9112         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
9113                 r = -EBUSY;
9114                 if (vcpu->arch.exception.pending)
9115                         goto out;
9116                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
9117                         kvm_queue_exception(vcpu, DB_VECTOR);
9118                 else
9119                         kvm_queue_exception(vcpu, BP_VECTOR);
9120         }
9121
9122         /*
9123          * Read rflags as long as potentially injected trace flags are still
9124          * filtered out.
9125          */
9126         rflags = kvm_get_rflags(vcpu);
9127
9128         vcpu->guest_debug = dbg->control;
9129         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
9130                 vcpu->guest_debug = 0;
9131
9132         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
9133                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
9134                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
9135                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
9136         } else {
9137                 for (i = 0; i < KVM_NR_DB_REGS; i++)
9138                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
9139         }
9140         kvm_update_dr7(vcpu);
9141
9142         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9143                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
9144                         get_segment_base(vcpu, VCPU_SREG_CS);
9145
9146         /*
9147          * Trigger an rflags update that will inject or remove the trace
9148          * flags.
9149          */
9150         kvm_set_rflags(vcpu, rflags);
9151
9152         kvm_x86_ops->update_bp_intercept(vcpu);
9153
9154         r = 0;
9155
9156 out:
9157         vcpu_put(vcpu);
9158         return r;
9159 }
9160
9161 /*
9162  * Translate a guest virtual address to a guest physical address.
9163  */
9164 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
9165                                     struct kvm_translation *tr)
9166 {
9167         unsigned long vaddr = tr->linear_address;
9168         gpa_t gpa;
9169         int idx;
9170
9171         vcpu_load(vcpu);
9172
9173         idx = srcu_read_lock(&vcpu->kvm->srcu);
9174         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
9175         srcu_read_unlock(&vcpu->kvm->srcu, idx);
9176         tr->physical_address = gpa;
9177         tr->valid = gpa != UNMAPPED_GVA;
9178         tr->writeable = 1;
9179         tr->usermode = 0;
9180
9181         vcpu_put(vcpu);
9182         return 0;
9183 }
9184
9185 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9186 {
9187         struct fxregs_state *fxsave;
9188
9189         vcpu_load(vcpu);
9190
9191         fxsave = &vcpu->arch.guest_fpu->state.fxsave;
9192         memcpy(fpu->fpr, fxsave->st_space, 128);
9193         fpu->fcw = fxsave->cwd;
9194         fpu->fsw = fxsave->swd;
9195         fpu->ftwx = fxsave->twd;
9196         fpu->last_opcode = fxsave->fop;
9197         fpu->last_ip = fxsave->rip;
9198         fpu->last_dp = fxsave->rdp;
9199         memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
9200
9201         vcpu_put(vcpu);
9202         return 0;
9203 }
9204
9205 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9206 {
9207         struct fxregs_state *fxsave;
9208
9209         vcpu_load(vcpu);
9210
9211         fxsave = &vcpu->arch.guest_fpu->state.fxsave;
9212
9213         memcpy(fxsave->st_space, fpu->fpr, 128);
9214         fxsave->cwd = fpu->fcw;
9215         fxsave->swd = fpu->fsw;
9216         fxsave->twd = fpu->ftwx;
9217         fxsave->fop = fpu->last_opcode;
9218         fxsave->rip = fpu->last_ip;
9219         fxsave->rdp = fpu->last_dp;
9220         memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
9221
9222         vcpu_put(vcpu);
9223         return 0;
9224 }
9225
9226 static void store_regs(struct kvm_vcpu *vcpu)
9227 {
9228         BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
9229
9230         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
9231                 __get_regs(vcpu, &vcpu->run->s.regs.regs);
9232
9233         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
9234                 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
9235
9236         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
9237                 kvm_vcpu_ioctl_x86_get_vcpu_events(
9238                                 vcpu, &vcpu->run->s.regs.events);
9239 }
9240
9241 static int sync_regs(struct kvm_vcpu *vcpu)
9242 {
9243         if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
9244                 return -EINVAL;
9245
9246         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
9247                 __set_regs(vcpu, &vcpu->run->s.regs.regs);
9248                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
9249         }
9250         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
9251                 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
9252                         return -EINVAL;
9253                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
9254         }
9255         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
9256                 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
9257                                 vcpu, &vcpu->run->s.regs.events))
9258                         return -EINVAL;
9259                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
9260         }
9261
9262         return 0;
9263 }
9264
9265 static void fx_init(struct kvm_vcpu *vcpu)
9266 {
9267         fpstate_init(&vcpu->arch.guest_fpu->state);
9268         if (boot_cpu_has(X86_FEATURE_XSAVES))
9269                 vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
9270                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
9271
9272         /*
9273          * Ensure guest xcr0 is valid for loading
9274          */
9275         vcpu->arch.xcr0 = XFEATURE_MASK_FP;
9276
9277         vcpu->arch.cr0 |= X86_CR0_ET;
9278 }
9279
9280 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
9281 {
9282         if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
9283                 pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
9284                              "guest TSC will not be reliable\n");
9285
9286         return 0;
9287 }
9288
9289 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
9290 {
9291         struct page *page;
9292         int r;
9293
9294         if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
9295                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9296         else
9297                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
9298
9299         kvm_set_tsc_khz(vcpu, max_tsc_khz);
9300
9301         r = kvm_mmu_create(vcpu);
9302         if (r < 0)
9303                 return r;
9304
9305         if (irqchip_in_kernel(vcpu->kvm)) {
9306                 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
9307                 if (r < 0)
9308                         goto fail_mmu_destroy;
9309                 if (kvm_apicv_activated(vcpu->kvm))
9310                         vcpu->arch.apicv_active = true;
9311         } else
9312                 static_key_slow_inc(&kvm_no_apic_vcpu);
9313
9314         r = -ENOMEM;
9315
9316         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
9317         if (!page)
9318                 goto fail_free_lapic;
9319         vcpu->arch.pio_data = page_address(page);
9320
9321         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
9322                                        GFP_KERNEL_ACCOUNT);
9323         if (!vcpu->arch.mce_banks)
9324                 goto fail_free_pio_data;
9325         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
9326
9327         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
9328                                 GFP_KERNEL_ACCOUNT))
9329                 goto fail_free_mce_banks;
9330
9331         if (!alloc_emulate_ctxt(vcpu))
9332                 goto free_wbinvd_dirty_mask;
9333
9334         vcpu->arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
9335                                                 GFP_KERNEL_ACCOUNT);
9336         if (!vcpu->arch.user_fpu) {
9337                 pr_err("kvm: failed to allocate userspace's fpu\n");
9338                 goto free_emulate_ctxt;
9339         }
9340
9341         vcpu->arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
9342                                                  GFP_KERNEL_ACCOUNT);
9343         if (!vcpu->arch.guest_fpu) {
9344                 pr_err("kvm: failed to allocate vcpu's fpu\n");
9345                 goto free_user_fpu;
9346         }
9347         fx_init(vcpu);
9348
9349         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
9350
9351         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
9352
9353         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
9354
9355         kvm_async_pf_hash_reset(vcpu);
9356         kvm_pmu_init(vcpu);
9357
9358         vcpu->arch.pending_external_vector = -1;
9359         vcpu->arch.preempted_in_kernel = false;
9360
9361         kvm_hv_vcpu_init(vcpu);
9362
9363         r = kvm_x86_ops->vcpu_create(vcpu);
9364         if (r)
9365                 goto free_guest_fpu;
9366
9367         vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
9368         vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
9369         kvm_vcpu_mtrr_init(vcpu);
9370         vcpu_load(vcpu);
9371         kvm_vcpu_reset(vcpu, false);
9372         kvm_init_mmu(vcpu, false);
9373         vcpu_put(vcpu);
9374         return 0;
9375
9376 free_guest_fpu:
9377         kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
9378 free_user_fpu:
9379         kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
9380 free_emulate_ctxt:
9381         kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
9382 free_wbinvd_dirty_mask:
9383         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
9384 fail_free_mce_banks:
9385         kfree(vcpu->arch.mce_banks);
9386 fail_free_pio_data:
9387         free_page((unsigned long)vcpu->arch.pio_data);
9388 fail_free_lapic:
9389         kvm_free_lapic(vcpu);
9390 fail_mmu_destroy:
9391         kvm_mmu_destroy(vcpu);
9392         return r;
9393 }
9394
9395 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
9396 {
9397         struct msr_data msr;
9398         struct kvm *kvm = vcpu->kvm;
9399
9400         kvm_hv_vcpu_postcreate(vcpu);
9401
9402         if (mutex_lock_killable(&vcpu->mutex))
9403                 return;
9404         vcpu_load(vcpu);
9405         msr.data = 0x0;
9406         msr.index = MSR_IA32_TSC;
9407         msr.host_initiated = true;
9408         kvm_write_tsc(vcpu, &msr);
9409         vcpu_put(vcpu);
9410
9411         /* poll control enabled by default */
9412         vcpu->arch.msr_kvm_poll_control = 1;
9413
9414         mutex_unlock(&vcpu->mutex);
9415
9416         if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
9417                 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
9418                                                 KVMCLOCK_SYNC_PERIOD);
9419 }
9420
9421 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
9422 {
9423         struct gfn_to_pfn_cache *cache = &vcpu->arch.st.cache;
9424         int idx;
9425
9426         kvm_release_pfn(cache->pfn, cache->dirty, cache);
9427
9428         kvmclock_reset(vcpu);
9429
9430         kvm_x86_ops->vcpu_free(vcpu);
9431
9432         kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
9433         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
9434         kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
9435         kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
9436
9437         kvm_hv_vcpu_uninit(vcpu);
9438         kvm_pmu_destroy(vcpu);
9439         kfree(vcpu->arch.mce_banks);
9440         kvm_free_lapic(vcpu);
9441         idx = srcu_read_lock(&vcpu->kvm->srcu);
9442         kvm_mmu_destroy(vcpu);
9443         srcu_read_unlock(&vcpu->kvm->srcu, idx);
9444         free_page((unsigned long)vcpu->arch.pio_data);
9445         if (!lapic_in_kernel(vcpu))
9446                 static_key_slow_dec(&kvm_no_apic_vcpu);
9447 }
9448
9449 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
9450 {
9451         kvm_lapic_reset(vcpu, init_event);
9452
9453         vcpu->arch.hflags = 0;
9454
9455         vcpu->arch.smi_pending = 0;
9456         vcpu->arch.smi_count = 0;
9457         atomic_set(&vcpu->arch.nmi_queued, 0);
9458         vcpu->arch.nmi_pending = 0;
9459         vcpu->arch.nmi_injected = false;
9460         kvm_clear_interrupt_queue(vcpu);
9461         kvm_clear_exception_queue(vcpu);
9462
9463         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
9464         kvm_update_dr0123(vcpu);
9465         vcpu->arch.dr6 = DR6_INIT;
9466         kvm_update_dr6(vcpu);
9467         vcpu->arch.dr7 = DR7_FIXED_1;
9468         kvm_update_dr7(vcpu);
9469
9470         vcpu->arch.cr2 = 0;
9471
9472         kvm_make_request(KVM_REQ_EVENT, vcpu);
9473         vcpu->arch.apf.msr_val = 0;
9474         vcpu->arch.st.msr_val = 0;
9475
9476         kvmclock_reset(vcpu);
9477
9478         kvm_clear_async_pf_completion_queue(vcpu);
9479         kvm_async_pf_hash_reset(vcpu);
9480         vcpu->arch.apf.halted = false;
9481
9482         if (kvm_mpx_supported()) {
9483                 void *mpx_state_buffer;
9484
9485                 /*
9486                  * To avoid have the INIT path from kvm_apic_has_events() that be
9487                  * called with loaded FPU and does not let userspace fix the state.
9488                  */
9489                 if (init_event)
9490                         kvm_put_guest_fpu(vcpu);
9491                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
9492                                         XFEATURE_BNDREGS);
9493                 if (mpx_state_buffer)
9494                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
9495                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
9496                                         XFEATURE_BNDCSR);
9497                 if (mpx_state_buffer)
9498                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
9499                 if (init_event)
9500                         kvm_load_guest_fpu(vcpu);
9501         }
9502
9503         if (!init_event) {
9504                 kvm_pmu_reset(vcpu);
9505                 vcpu->arch.smbase = 0x30000;
9506
9507                 vcpu->arch.msr_misc_features_enables = 0;
9508
9509                 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
9510         }
9511
9512         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
9513         vcpu->arch.regs_avail = ~0;
9514         vcpu->arch.regs_dirty = ~0;
9515
9516         vcpu->arch.ia32_xss = 0;
9517
9518         kvm_x86_ops->vcpu_reset(vcpu, init_event);
9519 }
9520
9521 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
9522 {
9523         struct kvm_segment cs;
9524
9525         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
9526         cs.selector = vector << 8;
9527         cs.base = vector << 12;
9528         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
9529         kvm_rip_write(vcpu, 0);
9530 }
9531
9532 int kvm_arch_hardware_enable(void)
9533 {
9534         struct kvm *kvm;
9535         struct kvm_vcpu *vcpu;
9536         int i;
9537         int ret;
9538         u64 local_tsc;
9539         u64 max_tsc = 0;
9540         bool stable, backwards_tsc = false;
9541
9542         kvm_shared_msr_cpu_online();
9543         ret = kvm_x86_ops->hardware_enable();
9544         if (ret != 0)
9545                 return ret;
9546
9547         local_tsc = rdtsc();
9548         stable = !kvm_check_tsc_unstable();
9549         list_for_each_entry(kvm, &vm_list, vm_list) {
9550                 kvm_for_each_vcpu(i, vcpu, kvm) {
9551                         if (!stable && vcpu->cpu == smp_processor_id())
9552                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9553                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
9554                                 backwards_tsc = true;
9555                                 if (vcpu->arch.last_host_tsc > max_tsc)
9556                                         max_tsc = vcpu->arch.last_host_tsc;
9557                         }
9558                 }
9559         }
9560
9561         /*
9562          * Sometimes, even reliable TSCs go backwards.  This happens on
9563          * platforms that reset TSC during suspend or hibernate actions, but
9564          * maintain synchronization.  We must compensate.  Fortunately, we can
9565          * detect that condition here, which happens early in CPU bringup,
9566          * before any KVM threads can be running.  Unfortunately, we can't
9567          * bring the TSCs fully up to date with real time, as we aren't yet far
9568          * enough into CPU bringup that we know how much real time has actually
9569          * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
9570          * variables that haven't been updated yet.
9571          *
9572          * So we simply find the maximum observed TSC above, then record the
9573          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
9574          * the adjustment will be applied.  Note that we accumulate
9575          * adjustments, in case multiple suspend cycles happen before some VCPU
9576          * gets a chance to run again.  In the event that no KVM threads get a
9577          * chance to run, we will miss the entire elapsed period, as we'll have
9578          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
9579          * loose cycle time.  This isn't too big a deal, since the loss will be
9580          * uniform across all VCPUs (not to mention the scenario is extremely
9581          * unlikely). It is possible that a second hibernate recovery happens
9582          * much faster than a first, causing the observed TSC here to be
9583          * smaller; this would require additional padding adjustment, which is
9584          * why we set last_host_tsc to the local tsc observed here.
9585          *
9586          * N.B. - this code below runs only on platforms with reliable TSC,
9587          * as that is the only way backwards_tsc is set above.  Also note
9588          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
9589          * have the same delta_cyc adjustment applied if backwards_tsc
9590          * is detected.  Note further, this adjustment is only done once,
9591          * as we reset last_host_tsc on all VCPUs to stop this from being
9592          * called multiple times (one for each physical CPU bringup).
9593          *
9594          * Platforms with unreliable TSCs don't have to deal with this, they
9595          * will be compensated by the logic in vcpu_load, which sets the TSC to
9596          * catchup mode.  This will catchup all VCPUs to real time, but cannot
9597          * guarantee that they stay in perfect synchronization.
9598          */
9599         if (backwards_tsc) {
9600                 u64 delta_cyc = max_tsc - local_tsc;
9601                 list_for_each_entry(kvm, &vm_list, vm_list) {
9602                         kvm->arch.backwards_tsc_observed = true;
9603                         kvm_for_each_vcpu(i, vcpu, kvm) {
9604                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
9605                                 vcpu->arch.last_host_tsc = local_tsc;
9606                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9607                         }
9608
9609                         /*
9610                          * We have to disable TSC offset matching.. if you were
9611                          * booting a VM while issuing an S4 host suspend....
9612                          * you may have some problem.  Solving this issue is
9613                          * left as an exercise to the reader.
9614                          */
9615                         kvm->arch.last_tsc_nsec = 0;
9616                         kvm->arch.last_tsc_write = 0;
9617                 }
9618
9619         }
9620         return 0;
9621 }
9622
9623 void kvm_arch_hardware_disable(void)
9624 {
9625         kvm_x86_ops->hardware_disable();
9626         drop_user_return_notifiers();
9627 }
9628
9629 int kvm_arch_hardware_setup(void)
9630 {
9631         int r;
9632
9633         rdmsrl_safe(MSR_EFER, &host_efer);
9634
9635         if (boot_cpu_has(X86_FEATURE_XSAVES))
9636                 rdmsrl(MSR_IA32_XSS, host_xss);
9637
9638         r = kvm_x86_ops->hardware_setup();
9639         if (r != 0)
9640                 return r;
9641
9642         if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
9643                 supported_xss = 0;
9644
9645         cr4_reserved_bits = kvm_host_cr4_reserved_bits(&boot_cpu_data);
9646
9647         if (kvm_has_tsc_control) {
9648                 /*
9649                  * Make sure the user can only configure tsc_khz values that
9650                  * fit into a signed integer.
9651                  * A min value is not calculated because it will always
9652                  * be 1 on all machines.
9653                  */
9654                 u64 max = min(0x7fffffffULL,
9655                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
9656                 kvm_max_guest_tsc_khz = max;
9657
9658                 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
9659         }
9660
9661         kvm_init_msr_list();
9662         return 0;
9663 }
9664
9665 void kvm_arch_hardware_unsetup(void)
9666 {
9667         kvm_x86_ops->hardware_unsetup();
9668 }
9669
9670 int kvm_arch_check_processor_compat(void)
9671 {
9672         struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
9673
9674         WARN_ON(!irqs_disabled());
9675
9676         if (kvm_host_cr4_reserved_bits(c) != cr4_reserved_bits)
9677                 return -EIO;
9678
9679         return kvm_x86_ops->check_processor_compatibility();
9680 }
9681
9682 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
9683 {
9684         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
9685 }
9686 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
9687
9688 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
9689 {
9690         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
9691 }
9692
9693 struct static_key kvm_no_apic_vcpu __read_mostly;
9694 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
9695
9696 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
9697 {
9698         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
9699
9700         vcpu->arch.l1tf_flush_l1d = true;
9701         if (pmu->version && unlikely(pmu->event_count)) {
9702                 pmu->need_cleanup = true;
9703                 kvm_make_request(KVM_REQ_PMU, vcpu);
9704         }
9705         kvm_x86_ops->sched_in(vcpu, cpu);
9706 }
9707
9708 void kvm_arch_free_vm(struct kvm *kvm)
9709 {
9710         kfree(kvm->arch.hyperv.hv_pa_pg);
9711         vfree(kvm);
9712 }
9713
9714
9715 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
9716 {
9717         if (type)
9718                 return -EINVAL;
9719
9720         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
9721         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
9722         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
9723         INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
9724         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
9725         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
9726
9727         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
9728         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
9729         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
9730         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
9731                 &kvm->arch.irq_sources_bitmap);
9732
9733         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
9734         mutex_init(&kvm->arch.apic_map_lock);
9735         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
9736
9737         kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
9738         pvclock_update_vm_gtod_copy(kvm);
9739
9740         kvm->arch.guest_can_read_msr_platform_info = true;
9741
9742         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
9743         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
9744
9745         kvm_hv_init_vm(kvm);
9746         kvm_page_track_init(kvm);
9747         kvm_mmu_init_vm(kvm);
9748
9749         return kvm_x86_ops->vm_init(kvm);
9750 }
9751
9752 int kvm_arch_post_init_vm(struct kvm *kvm)
9753 {
9754         return kvm_mmu_post_init_vm(kvm);
9755 }
9756
9757 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
9758 {
9759         vcpu_load(vcpu);
9760         kvm_mmu_unload(vcpu);
9761         vcpu_put(vcpu);
9762 }
9763
9764 static void kvm_free_vcpus(struct kvm *kvm)
9765 {
9766         unsigned int i;
9767         struct kvm_vcpu *vcpu;
9768
9769         /*
9770          * Unpin any mmu pages first.
9771          */
9772         kvm_for_each_vcpu(i, vcpu, kvm) {
9773                 kvm_clear_async_pf_completion_queue(vcpu);
9774                 kvm_unload_vcpu_mmu(vcpu);
9775         }
9776         kvm_for_each_vcpu(i, vcpu, kvm)
9777                 kvm_vcpu_destroy(vcpu);
9778
9779         mutex_lock(&kvm->lock);
9780         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
9781                 kvm->vcpus[i] = NULL;
9782
9783         atomic_set(&kvm->online_vcpus, 0);
9784         mutex_unlock(&kvm->lock);
9785 }
9786
9787 void kvm_arch_sync_events(struct kvm *kvm)
9788 {
9789         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
9790         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
9791         kvm_free_pit(kvm);
9792 }
9793
9794 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9795 {
9796         int i, r;
9797         unsigned long hva, uninitialized_var(old_npages);
9798         struct kvm_memslots *slots = kvm_memslots(kvm);
9799         struct kvm_memory_slot *slot;
9800
9801         /* Called with kvm->slots_lock held.  */
9802         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
9803                 return -EINVAL;
9804
9805         slot = id_to_memslot(slots, id);
9806         if (size) {
9807                 if (slot && slot->npages)
9808                         return -EEXIST;
9809
9810                 /*
9811                  * MAP_SHARED to prevent internal slot pages from being moved
9812                  * by fork()/COW.
9813                  */
9814                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
9815                               MAP_SHARED | MAP_ANONYMOUS, 0);
9816                 if (IS_ERR((void *)hva))
9817                         return PTR_ERR((void *)hva);
9818         } else {
9819                 if (!slot || !slot->npages)
9820                         return 0;
9821
9822                 /*
9823                  * Stuff a non-canonical value to catch use-after-delete.  This
9824                  * ends up being 0 on 32-bit KVM, but there's no better
9825                  * alternative.
9826                  */
9827                 hva = (unsigned long)(0xdeadull << 48);
9828                 old_npages = slot->npages;
9829         }
9830
9831         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
9832                 struct kvm_userspace_memory_region m;
9833
9834                 m.slot = id | (i << 16);
9835                 m.flags = 0;
9836                 m.guest_phys_addr = gpa;
9837                 m.userspace_addr = hva;
9838                 m.memory_size = size;
9839                 r = __kvm_set_memory_region(kvm, &m);
9840                 if (r < 0)
9841                         return r;
9842         }
9843
9844         if (!size)
9845                 vm_munmap(hva, old_npages * PAGE_SIZE);
9846
9847         return 0;
9848 }
9849 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
9850
9851 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
9852 {
9853         kvm_mmu_pre_destroy_vm(kvm);
9854 }
9855
9856 void kvm_arch_destroy_vm(struct kvm *kvm)
9857 {
9858         if (current->mm == kvm->mm) {
9859                 /*
9860                  * Free memory regions allocated on behalf of userspace,
9861                  * unless the the memory map has changed due to process exit
9862                  * or fd copying.
9863                  */
9864                 mutex_lock(&kvm->slots_lock);
9865                 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
9866                                         0, 0);
9867                 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
9868                                         0, 0);
9869                 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
9870                 mutex_unlock(&kvm->slots_lock);
9871         }
9872         if (kvm_x86_ops->vm_destroy)
9873                 kvm_x86_ops->vm_destroy(kvm);
9874         kvm_pic_destroy(kvm);
9875         kvm_ioapic_destroy(kvm);
9876         kvm_free_vcpus(kvm);
9877         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
9878         kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
9879         kvm_mmu_uninit_vm(kvm);
9880         kvm_page_track_cleanup(kvm);
9881         kvm_hv_destroy_vm(kvm);
9882 }
9883
9884 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
9885 {
9886         int i;
9887
9888         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9889                 kvfree(slot->arch.rmap[i]);
9890                 slot->arch.rmap[i] = NULL;
9891
9892                 if (i == 0)
9893                         continue;
9894
9895                 kvfree(slot->arch.lpage_info[i - 1]);
9896                 slot->arch.lpage_info[i - 1] = NULL;
9897         }
9898
9899         kvm_page_track_free_memslot(slot);
9900 }
9901
9902 static int kvm_alloc_memslot_metadata(struct kvm_memory_slot *slot,
9903                                       unsigned long npages)
9904 {
9905         int i;
9906
9907         /*
9908          * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
9909          * old arrays will be freed by __kvm_set_memory_region() if installing
9910          * the new memslot is successful.
9911          */
9912         memset(&slot->arch, 0, sizeof(slot->arch));
9913
9914         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9915                 struct kvm_lpage_info *linfo;
9916                 unsigned long ugfn;
9917                 int lpages;
9918                 int level = i + 1;
9919
9920                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
9921                                       slot->base_gfn, level) + 1;
9922
9923                 slot->arch.rmap[i] =
9924                         kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
9925                                  GFP_KERNEL_ACCOUNT);
9926                 if (!slot->arch.rmap[i])
9927                         goto out_free;
9928                 if (i == 0)
9929                         continue;
9930
9931                 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
9932                 if (!linfo)
9933                         goto out_free;
9934
9935                 slot->arch.lpage_info[i - 1] = linfo;
9936
9937                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
9938                         linfo[0].disallow_lpage = 1;
9939                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
9940                         linfo[lpages - 1].disallow_lpage = 1;
9941                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
9942                 /*
9943                  * If the gfn and userspace address are not aligned wrt each
9944                  * other, disable large page support for this slot.
9945                  */
9946                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
9947                         unsigned long j;
9948
9949                         for (j = 0; j < lpages; ++j)
9950                                 linfo[j].disallow_lpage = 1;
9951                 }
9952         }
9953
9954         if (kvm_page_track_create_memslot(slot, npages))
9955                 goto out_free;
9956
9957         return 0;
9958
9959 out_free:
9960         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9961                 kvfree(slot->arch.rmap[i]);
9962                 slot->arch.rmap[i] = NULL;
9963                 if (i == 0)
9964                         continue;
9965
9966                 kvfree(slot->arch.lpage_info[i - 1]);
9967                 slot->arch.lpage_info[i - 1] = NULL;
9968         }
9969         return -ENOMEM;
9970 }
9971
9972 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
9973 {
9974         struct kvm_vcpu *vcpu;
9975         int i;
9976
9977         /*
9978          * memslots->generation has been incremented.
9979          * mmio generation may have reached its maximum value.
9980          */
9981         kvm_mmu_invalidate_mmio_sptes(kvm, gen);
9982
9983         /* Force re-initialization of steal_time cache */
9984         kvm_for_each_vcpu(i, vcpu, kvm)
9985                 kvm_vcpu_kick(vcpu);
9986 }
9987
9988 int kvm_arch_prepare_memory_region(struct kvm *kvm,
9989                                 struct kvm_memory_slot *memslot,
9990                                 const struct kvm_userspace_memory_region *mem,
9991                                 enum kvm_mr_change change)
9992 {
9993         if (change == KVM_MR_CREATE || change == KVM_MR_MOVE)
9994                 return kvm_alloc_memslot_metadata(memslot,
9995                                                   mem->memory_size >> PAGE_SHIFT);
9996         return 0;
9997 }
9998
9999 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
10000                                      struct kvm_memory_slot *new)
10001 {
10002         /* Still write protect RO slot */
10003         if (new->flags & KVM_MEM_READONLY) {
10004                 kvm_mmu_slot_remove_write_access(kvm, new, PT_PAGE_TABLE_LEVEL);
10005                 return;
10006         }
10007
10008         /*
10009          * Call kvm_x86_ops dirty logging hooks when they are valid.
10010          *
10011          * kvm_x86_ops->slot_disable_log_dirty is called when:
10012          *
10013          *  - KVM_MR_CREATE with dirty logging is disabled
10014          *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
10015          *
10016          * The reason is, in case of PML, we need to set D-bit for any slots
10017          * with dirty logging disabled in order to eliminate unnecessary GPA
10018          * logging in PML buffer (and potential PML buffer full VMEXIT). This
10019          * guarantees leaving PML enabled during guest's lifetime won't have
10020          * any additional overhead from PML when guest is running with dirty
10021          * logging disabled for memory slots.
10022          *
10023          * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
10024          * to dirty logging mode.
10025          *
10026          * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
10027          *
10028          * In case of write protect:
10029          *
10030          * Write protect all pages for dirty logging.
10031          *
10032          * All the sptes including the large sptes which point to this
10033          * slot are set to readonly. We can not create any new large
10034          * spte on this slot until the end of the logging.
10035          *
10036          * See the comments in fast_page_fault().
10037          */
10038         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
10039                 if (kvm_x86_ops->slot_enable_log_dirty) {
10040                         kvm_x86_ops->slot_enable_log_dirty(kvm, new);
10041                 } else {
10042                         int level =
10043                                 kvm_dirty_log_manual_protect_and_init_set(kvm) ?
10044                                 PT_DIRECTORY_LEVEL : PT_PAGE_TABLE_LEVEL;
10045
10046                         /*
10047                          * If we're with initial-all-set, we don't need
10048                          * to write protect any small page because
10049                          * they're reported as dirty already.  However
10050                          * we still need to write-protect huge pages
10051                          * so that the page split can happen lazily on
10052                          * the first write to the huge page.
10053                          */
10054                         kvm_mmu_slot_remove_write_access(kvm, new, level);
10055                 }
10056         } else {
10057                 if (kvm_x86_ops->slot_disable_log_dirty)
10058                         kvm_x86_ops->slot_disable_log_dirty(kvm, new);
10059         }
10060 }
10061
10062 void kvm_arch_commit_memory_region(struct kvm *kvm,
10063                                 const struct kvm_userspace_memory_region *mem,
10064                                 struct kvm_memory_slot *old,
10065                                 const struct kvm_memory_slot *new,
10066                                 enum kvm_mr_change change)
10067 {
10068         if (!kvm->arch.n_requested_mmu_pages)
10069                 kvm_mmu_change_mmu_pages(kvm,
10070                                 kvm_mmu_calculate_default_mmu_pages(kvm));
10071
10072         /*
10073          * Dirty logging tracks sptes in 4k granularity, meaning that large
10074          * sptes have to be split.  If live migration is successful, the guest
10075          * in the source machine will be destroyed and large sptes will be
10076          * created in the destination. However, if the guest continues to run
10077          * in the source machine (for example if live migration fails), small
10078          * sptes will remain around and cause bad performance.
10079          *
10080          * Scan sptes if dirty logging has been stopped, dropping those
10081          * which can be collapsed into a single large-page spte.  Later
10082          * page faults will create the large-page sptes.
10083          *
10084          * There is no need to do this in any of the following cases:
10085          * CREATE:      No dirty mappings will already exist.
10086          * MOVE/DELETE: The old mappings will already have been cleaned up by
10087          *              kvm_arch_flush_shadow_memslot()
10088          */
10089         if (change == KVM_MR_FLAGS_ONLY &&
10090                 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
10091                 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
10092                 kvm_mmu_zap_collapsible_sptes(kvm, new);
10093
10094         /*
10095          * Set up write protection and/or dirty logging for the new slot.
10096          *
10097          * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
10098          * been zapped so no dirty logging staff is needed for old slot. For
10099          * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
10100          * new and it's also covered when dealing with the new slot.
10101          *
10102          * FIXME: const-ify all uses of struct kvm_memory_slot.
10103          */
10104         if (change != KVM_MR_DELETE)
10105                 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
10106
10107         /* Free the arrays associated with the old memslot. */
10108         if (change == KVM_MR_MOVE)
10109                 kvm_arch_free_memslot(kvm, old);
10110 }
10111
10112 void kvm_arch_flush_shadow_all(struct kvm *kvm)
10113 {
10114         kvm_mmu_zap_all(kvm);
10115 }
10116
10117 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
10118                                    struct kvm_memory_slot *slot)
10119 {
10120         kvm_page_track_flush_slot(kvm, slot);
10121 }
10122
10123 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
10124 {
10125         return (is_guest_mode(vcpu) &&
10126                         kvm_x86_ops->guest_apic_has_interrupt &&
10127                         kvm_x86_ops->guest_apic_has_interrupt(vcpu));
10128 }
10129
10130 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
10131 {
10132         if (!list_empty_careful(&vcpu->async_pf.done))
10133                 return true;
10134
10135         if (kvm_apic_has_events(vcpu))
10136                 return true;
10137
10138         if (vcpu->arch.pv.pv_unhalted)
10139                 return true;
10140
10141         if (vcpu->arch.exception.pending)
10142                 return true;
10143
10144         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
10145             (vcpu->arch.nmi_pending &&
10146              kvm_x86_ops->nmi_allowed(vcpu)))
10147                 return true;
10148
10149         if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
10150             (vcpu->arch.smi_pending && !is_smm(vcpu)))
10151                 return true;
10152
10153         if (kvm_arch_interrupt_allowed(vcpu) &&
10154             (kvm_cpu_has_interrupt(vcpu) ||
10155             kvm_guest_apic_has_interrupt(vcpu)))
10156                 return true;
10157
10158         if (kvm_hv_has_stimer_pending(vcpu))
10159                 return true;
10160
10161         return false;
10162 }
10163
10164 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
10165 {
10166         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
10167 }
10168
10169 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
10170 {
10171         if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
10172                 return true;
10173
10174         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
10175                 kvm_test_request(KVM_REQ_SMI, vcpu) ||
10176                  kvm_test_request(KVM_REQ_EVENT, vcpu))
10177                 return true;
10178
10179         if (vcpu->arch.apicv_active && kvm_x86_ops->dy_apicv_has_pending_interrupt(vcpu))
10180                 return true;
10181
10182         return false;
10183 }
10184
10185 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
10186 {
10187         return vcpu->arch.preempted_in_kernel;
10188 }
10189
10190 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
10191 {
10192         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
10193 }
10194
10195 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
10196 {
10197         return kvm_x86_ops->interrupt_allowed(vcpu);
10198 }
10199
10200 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
10201 {
10202         if (is_64_bit_mode(vcpu))
10203                 return kvm_rip_read(vcpu);
10204         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
10205                      kvm_rip_read(vcpu));
10206 }
10207 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
10208
10209 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
10210 {
10211         return kvm_get_linear_rip(vcpu) == linear_rip;
10212 }
10213 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
10214
10215 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
10216 {
10217         unsigned long rflags;
10218
10219         rflags = kvm_x86_ops->get_rflags(vcpu);
10220         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
10221                 rflags &= ~X86_EFLAGS_TF;
10222         return rflags;
10223 }
10224 EXPORT_SYMBOL_GPL(kvm_get_rflags);
10225
10226 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
10227 {
10228         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
10229             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
10230                 rflags |= X86_EFLAGS_TF;
10231         kvm_x86_ops->set_rflags(vcpu, rflags);
10232 }
10233
10234 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
10235 {
10236         __kvm_set_rflags(vcpu, rflags);
10237         kvm_make_request(KVM_REQ_EVENT, vcpu);
10238 }
10239 EXPORT_SYMBOL_GPL(kvm_set_rflags);
10240
10241 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
10242 {
10243         int r;
10244
10245         if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
10246               work->wakeup_all)
10247                 return;
10248
10249         r = kvm_mmu_reload(vcpu);
10250         if (unlikely(r))
10251                 return;
10252
10253         if (!vcpu->arch.mmu->direct_map &&
10254               work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
10255                 return;
10256
10257         kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
10258 }
10259
10260 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
10261 {
10262         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
10263 }
10264
10265 static inline u32 kvm_async_pf_next_probe(u32 key)
10266 {
10267         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
10268 }
10269
10270 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10271 {
10272         u32 key = kvm_async_pf_hash_fn(gfn);
10273
10274         while (vcpu->arch.apf.gfns[key] != ~0)
10275                 key = kvm_async_pf_next_probe(key);
10276
10277         vcpu->arch.apf.gfns[key] = gfn;
10278 }
10279
10280 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
10281 {
10282         int i;
10283         u32 key = kvm_async_pf_hash_fn(gfn);
10284
10285         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
10286                      (vcpu->arch.apf.gfns[key] != gfn &&
10287                       vcpu->arch.apf.gfns[key] != ~0); i++)
10288                 key = kvm_async_pf_next_probe(key);
10289
10290         return key;
10291 }
10292
10293 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10294 {
10295         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
10296 }
10297
10298 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10299 {
10300         u32 i, j, k;
10301
10302         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
10303         while (true) {
10304                 vcpu->arch.apf.gfns[i] = ~0;
10305                 do {
10306                         j = kvm_async_pf_next_probe(j);
10307                         if (vcpu->arch.apf.gfns[j] == ~0)
10308                                 return;
10309                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
10310                         /*
10311                          * k lies cyclically in ]i,j]
10312                          * |    i.k.j |
10313                          * |....j i.k.| or  |.k..j i...|
10314                          */
10315                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
10316                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
10317                 i = j;
10318         }
10319 }
10320
10321 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
10322 {
10323
10324         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
10325                                       sizeof(val));
10326 }
10327
10328 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
10329 {
10330
10331         return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
10332                                       sizeof(u32));
10333 }
10334
10335 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
10336 {
10337         if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
10338                 return false;
10339
10340         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
10341             (vcpu->arch.apf.send_user_only &&
10342              kvm_x86_ops->get_cpl(vcpu) == 0))
10343                 return false;
10344
10345         return true;
10346 }
10347
10348 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
10349 {
10350         if (unlikely(!lapic_in_kernel(vcpu) ||
10351                      kvm_event_needs_reinjection(vcpu) ||
10352                      vcpu->arch.exception.pending))
10353                 return false;
10354
10355         if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
10356                 return false;
10357
10358         /*
10359          * If interrupts are off we cannot even use an artificial
10360          * halt state.
10361          */
10362         return kvm_x86_ops->interrupt_allowed(vcpu);
10363 }
10364
10365 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
10366                                      struct kvm_async_pf *work)
10367 {
10368         struct x86_exception fault;
10369
10370         trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
10371         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
10372
10373         if (kvm_can_deliver_async_pf(vcpu) &&
10374             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
10375                 fault.vector = PF_VECTOR;
10376                 fault.error_code_valid = true;
10377                 fault.error_code = 0;
10378                 fault.nested_page_fault = false;
10379                 fault.address = work->arch.token;
10380                 fault.async_page_fault = true;
10381                 kvm_inject_page_fault(vcpu, &fault);
10382         } else {
10383                 /*
10384                  * It is not possible to deliver a paravirtualized asynchronous
10385                  * page fault, but putting the guest in an artificial halt state
10386                  * can be beneficial nevertheless: if an interrupt arrives, we
10387                  * can deliver it timely and perhaps the guest will schedule
10388                  * another process.  When the instruction that triggered a page
10389                  * fault is retried, hopefully the page will be ready in the host.
10390                  */
10391                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
10392         }
10393 }
10394
10395 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
10396                                  struct kvm_async_pf *work)
10397 {
10398         struct x86_exception fault;
10399         u32 val;
10400
10401         if (work->wakeup_all)
10402                 work->arch.token = ~0; /* broadcast wakeup */
10403         else
10404                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
10405         trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
10406
10407         if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
10408             !apf_get_user(vcpu, &val)) {
10409                 if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
10410                     vcpu->arch.exception.pending &&
10411                     vcpu->arch.exception.nr == PF_VECTOR &&
10412                     !apf_put_user(vcpu, 0)) {
10413                         vcpu->arch.exception.injected = false;
10414                         vcpu->arch.exception.pending = false;
10415                         vcpu->arch.exception.nr = 0;
10416                         vcpu->arch.exception.has_error_code = false;
10417                         vcpu->arch.exception.error_code = 0;
10418                         vcpu->arch.exception.has_payload = false;
10419                         vcpu->arch.exception.payload = 0;
10420                 } else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
10421                         fault.vector = PF_VECTOR;
10422                         fault.error_code_valid = true;
10423                         fault.error_code = 0;
10424                         fault.nested_page_fault = false;
10425                         fault.address = work->arch.token;
10426                         fault.async_page_fault = true;
10427                         kvm_inject_page_fault(vcpu, &fault);
10428                 }
10429         }
10430         vcpu->arch.apf.halted = false;
10431         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10432 }
10433
10434 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
10435 {
10436         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
10437                 return true;
10438         else
10439                 return kvm_can_do_async_pf(vcpu);
10440 }
10441
10442 void kvm_arch_start_assignment(struct kvm *kvm)
10443 {
10444         atomic_inc(&kvm->arch.assigned_device_count);
10445 }
10446 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
10447
10448 void kvm_arch_end_assignment(struct kvm *kvm)
10449 {
10450         atomic_dec(&kvm->arch.assigned_device_count);
10451 }
10452 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
10453
10454 bool kvm_arch_has_assigned_device(struct kvm *kvm)
10455 {
10456         return atomic_read(&kvm->arch.assigned_device_count);
10457 }
10458 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
10459
10460 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
10461 {
10462         atomic_inc(&kvm->arch.noncoherent_dma_count);
10463 }
10464 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
10465
10466 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
10467 {
10468         atomic_dec(&kvm->arch.noncoherent_dma_count);
10469 }
10470 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
10471
10472 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
10473 {
10474         return atomic_read(&kvm->arch.noncoherent_dma_count);
10475 }
10476 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
10477
10478 bool kvm_arch_has_irq_bypass(void)
10479 {
10480         return true;
10481 }
10482
10483 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
10484                                       struct irq_bypass_producer *prod)
10485 {
10486         struct kvm_kernel_irqfd *irqfd =
10487                 container_of(cons, struct kvm_kernel_irqfd, consumer);
10488
10489         irqfd->producer = prod;
10490
10491         return kvm_x86_ops->update_pi_irte(irqfd->kvm,
10492                                            prod->irq, irqfd->gsi, 1);
10493 }
10494
10495 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
10496                                       struct irq_bypass_producer *prod)
10497 {
10498         int ret;
10499         struct kvm_kernel_irqfd *irqfd =
10500                 container_of(cons, struct kvm_kernel_irqfd, consumer);
10501
10502         WARN_ON(irqfd->producer != prod);
10503         irqfd->producer = NULL;
10504
10505         /*
10506          * When producer of consumer is unregistered, we change back to
10507          * remapped mode, so we can re-use the current implementation
10508          * when the irq is masked/disabled or the consumer side (KVM
10509          * int this case doesn't want to receive the interrupts.
10510         */
10511         ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
10512         if (ret)
10513                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
10514                        " fails: %d\n", irqfd->consumer.token, ret);
10515 }
10516
10517 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
10518                                    uint32_t guest_irq, bool set)
10519 {
10520         return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
10521 }
10522
10523 bool kvm_vector_hashing_enabled(void)
10524 {
10525         return vector_hashing;
10526 }
10527
10528 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
10529 {
10530         return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
10531 }
10532 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
10533
10534 u64 kvm_spec_ctrl_valid_bits(struct kvm_vcpu *vcpu)
10535 {
10536         uint64_t bits = SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD;
10537
10538         /* The STIBP bit doesn't fault even if it's not advertised */
10539         if (!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) &&
10540             !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS))
10541                 bits &= ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP);
10542         if (!boot_cpu_has(X86_FEATURE_SPEC_CTRL) &&
10543             !boot_cpu_has(X86_FEATURE_AMD_IBRS))
10544                 bits &= ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP);
10545
10546         if (!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL_SSBD) &&
10547             !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
10548                 bits &= ~SPEC_CTRL_SSBD;
10549         if (!boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) &&
10550             !boot_cpu_has(X86_FEATURE_AMD_SSBD))
10551                 bits &= ~SPEC_CTRL_SSBD;
10552
10553         return bits;
10554 }
10555 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_valid_bits);
10556
10557 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
10558 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
10559 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
10560 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
10561 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
10562 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
10563 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
10564 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
10565 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
10566 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
10567 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
10568 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
10569 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
10570 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
10571 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
10572 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
10573 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
10574 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
10575 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
10576 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
10577 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
10578 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request);