usb: phy: rcar-gen2-usb: always use 'dev' variable in probe() method
[platform/adaptation/renesas_rcar/renesas_kernel.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30
31 #include <linux/clocksource.h>
32 #include <linux/interrupt.h>
33 #include <linux/kvm.h>
34 #include <linux/fs.h>
35 #include <linux/vmalloc.h>
36 #include <linux/module.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <linux/timekeeper_internal.h>
50 #include <linux/pvclock_gtod.h>
51 #include <trace/events/kvm.h>
52
53 #define CREATE_TRACE_POINTS
54 #include "trace.h"
55
56 #include <asm/debugreg.h>
57 #include <asm/msr.h>
58 #include <asm/desc.h>
59 #include <asm/mtrr.h>
60 #include <asm/mce.h>
61 #include <asm/i387.h>
62 #include <asm/fpu-internal.h> /* Ugh! */
63 #include <asm/xcr.h>
64 #include <asm/pvclock.h>
65 #include <asm/div64.h>
66
67 #define MAX_IO_MSRS 256
68 #define KVM_MAX_MCE_BANKS 32
69 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
70
71 #define emul_to_vcpu(ctxt) \
72         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
73
74 /* EFER defaults:
75  * - enable syscall per default because its emulated by KVM
76  * - enable LME and LMA per default on 64 bit KVM
77  */
78 #ifdef CONFIG_X86_64
79 static
80 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
81 #else
82 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
83 #endif
84
85 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
86 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
87
88 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
89 static void process_nmi(struct kvm_vcpu *vcpu);
90
91 struct kvm_x86_ops *kvm_x86_ops;
92 EXPORT_SYMBOL_GPL(kvm_x86_ops);
93
94 static bool ignore_msrs = 0;
95 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
96
97 unsigned int min_timer_period_us = 500;
98 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
99
100 bool kvm_has_tsc_control;
101 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
102 u32  kvm_max_guest_tsc_khz;
103 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
104
105 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
106 static u32 tsc_tolerance_ppm = 250;
107 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
108
109 #define KVM_NR_SHARED_MSRS 16
110
111 struct kvm_shared_msrs_global {
112         int nr;
113         u32 msrs[KVM_NR_SHARED_MSRS];
114 };
115
116 struct kvm_shared_msrs {
117         struct user_return_notifier urn;
118         bool registered;
119         struct kvm_shared_msr_values {
120                 u64 host;
121                 u64 curr;
122         } values[KVM_NR_SHARED_MSRS];
123 };
124
125 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
126 static struct kvm_shared_msrs __percpu *shared_msrs;
127
128 struct kvm_stats_debugfs_item debugfs_entries[] = {
129         { "pf_fixed", VCPU_STAT(pf_fixed) },
130         { "pf_guest", VCPU_STAT(pf_guest) },
131         { "tlb_flush", VCPU_STAT(tlb_flush) },
132         { "invlpg", VCPU_STAT(invlpg) },
133         { "exits", VCPU_STAT(exits) },
134         { "io_exits", VCPU_STAT(io_exits) },
135         { "mmio_exits", VCPU_STAT(mmio_exits) },
136         { "signal_exits", VCPU_STAT(signal_exits) },
137         { "irq_window", VCPU_STAT(irq_window_exits) },
138         { "nmi_window", VCPU_STAT(nmi_window_exits) },
139         { "halt_exits", VCPU_STAT(halt_exits) },
140         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
141         { "hypercalls", VCPU_STAT(hypercalls) },
142         { "request_irq", VCPU_STAT(request_irq_exits) },
143         { "irq_exits", VCPU_STAT(irq_exits) },
144         { "host_state_reload", VCPU_STAT(host_state_reload) },
145         { "efer_reload", VCPU_STAT(efer_reload) },
146         { "fpu_reload", VCPU_STAT(fpu_reload) },
147         { "insn_emulation", VCPU_STAT(insn_emulation) },
148         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
149         { "irq_injections", VCPU_STAT(irq_injections) },
150         { "nmi_injections", VCPU_STAT(nmi_injections) },
151         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
152         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
153         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
154         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
155         { "mmu_flooded", VM_STAT(mmu_flooded) },
156         { "mmu_recycled", VM_STAT(mmu_recycled) },
157         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
158         { "mmu_unsync", VM_STAT(mmu_unsync) },
159         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
160         { "largepages", VM_STAT(lpages) },
161         { NULL }
162 };
163
164 u64 __read_mostly host_xcr0;
165
166 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
167
168 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
169 {
170         int i;
171         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
172                 vcpu->arch.apf.gfns[i] = ~0;
173 }
174
175 static void kvm_on_user_return(struct user_return_notifier *urn)
176 {
177         unsigned slot;
178         struct kvm_shared_msrs *locals
179                 = container_of(urn, struct kvm_shared_msrs, urn);
180         struct kvm_shared_msr_values *values;
181
182         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
183                 values = &locals->values[slot];
184                 if (values->host != values->curr) {
185                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
186                         values->curr = values->host;
187                 }
188         }
189         locals->registered = false;
190         user_return_notifier_unregister(urn);
191 }
192
193 static void shared_msr_update(unsigned slot, u32 msr)
194 {
195         u64 value;
196         unsigned int cpu = smp_processor_id();
197         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
198
199         /* only read, and nobody should modify it at this time,
200          * so don't need lock */
201         if (slot >= shared_msrs_global.nr) {
202                 printk(KERN_ERR "kvm: invalid MSR slot!");
203                 return;
204         }
205         rdmsrl_safe(msr, &value);
206         smsr->values[slot].host = value;
207         smsr->values[slot].curr = value;
208 }
209
210 void kvm_define_shared_msr(unsigned slot, u32 msr)
211 {
212         if (slot >= shared_msrs_global.nr)
213                 shared_msrs_global.nr = slot + 1;
214         shared_msrs_global.msrs[slot] = msr;
215         /* we need ensured the shared_msr_global have been updated */
216         smp_wmb();
217 }
218 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
219
220 static void kvm_shared_msr_cpu_online(void)
221 {
222         unsigned i;
223
224         for (i = 0; i < shared_msrs_global.nr; ++i)
225                 shared_msr_update(i, shared_msrs_global.msrs[i]);
226 }
227
228 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
229 {
230         unsigned int cpu = smp_processor_id();
231         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
232         int err;
233
234         if (((value ^ smsr->values[slot].curr) & mask) == 0)
235                 return 0;
236         smsr->values[slot].curr = value;
237         err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
238         if (err)
239                 return 1;
240
241         if (!smsr->registered) {
242                 smsr->urn.on_user_return = kvm_on_user_return;
243                 user_return_notifier_register(&smsr->urn);
244                 smsr->registered = true;
245         }
246         return 0;
247 }
248 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
249
250 static void drop_user_return_notifiers(void *ignore)
251 {
252         unsigned int cpu = smp_processor_id();
253         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
254
255         if (smsr->registered)
256                 kvm_on_user_return(&smsr->urn);
257 }
258
259 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
260 {
261         return vcpu->arch.apic_base;
262 }
263 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
264
265 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
266 {
267         u64 old_state = vcpu->arch.apic_base &
268                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
269         u64 new_state = msr_info->data &
270                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
271         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
272                 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
273
274         if (!msr_info->host_initiated &&
275             ((msr_info->data & reserved_bits) != 0 ||
276              new_state == X2APIC_ENABLE ||
277              (new_state == MSR_IA32_APICBASE_ENABLE &&
278               old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
279              (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
280               old_state == 0)))
281                 return 1;
282
283         kvm_lapic_set_base(vcpu, msr_info->data);
284         return 0;
285 }
286 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
287
288 asmlinkage void kvm_spurious_fault(void)
289 {
290         /* Fault while not rebooting.  We want the trace. */
291         BUG();
292 }
293 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
294
295 #define EXCPT_BENIGN            0
296 #define EXCPT_CONTRIBUTORY      1
297 #define EXCPT_PF                2
298
299 static int exception_class(int vector)
300 {
301         switch (vector) {
302         case PF_VECTOR:
303                 return EXCPT_PF;
304         case DE_VECTOR:
305         case TS_VECTOR:
306         case NP_VECTOR:
307         case SS_VECTOR:
308         case GP_VECTOR:
309                 return EXCPT_CONTRIBUTORY;
310         default:
311                 break;
312         }
313         return EXCPT_BENIGN;
314 }
315
316 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
317                 unsigned nr, bool has_error, u32 error_code,
318                 bool reinject)
319 {
320         u32 prev_nr;
321         int class1, class2;
322
323         kvm_make_request(KVM_REQ_EVENT, vcpu);
324
325         if (!vcpu->arch.exception.pending) {
326         queue:
327                 vcpu->arch.exception.pending = true;
328                 vcpu->arch.exception.has_error_code = has_error;
329                 vcpu->arch.exception.nr = nr;
330                 vcpu->arch.exception.error_code = error_code;
331                 vcpu->arch.exception.reinject = reinject;
332                 return;
333         }
334
335         /* to check exception */
336         prev_nr = vcpu->arch.exception.nr;
337         if (prev_nr == DF_VECTOR) {
338                 /* triple fault -> shutdown */
339                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
340                 return;
341         }
342         class1 = exception_class(prev_nr);
343         class2 = exception_class(nr);
344         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
345                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
346                 /* generate double fault per SDM Table 5-5 */
347                 vcpu->arch.exception.pending = true;
348                 vcpu->arch.exception.has_error_code = true;
349                 vcpu->arch.exception.nr = DF_VECTOR;
350                 vcpu->arch.exception.error_code = 0;
351         } else
352                 /* replace previous exception with a new one in a hope
353                    that instruction re-execution will regenerate lost
354                    exception */
355                 goto queue;
356 }
357
358 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
359 {
360         kvm_multiple_exception(vcpu, nr, false, 0, false);
361 }
362 EXPORT_SYMBOL_GPL(kvm_queue_exception);
363
364 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
365 {
366         kvm_multiple_exception(vcpu, nr, false, 0, true);
367 }
368 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
369
370 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
371 {
372         if (err)
373                 kvm_inject_gp(vcpu, 0);
374         else
375                 kvm_x86_ops->skip_emulated_instruction(vcpu);
376 }
377 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
378
379 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
380 {
381         ++vcpu->stat.pf_guest;
382         vcpu->arch.cr2 = fault->address;
383         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
384 }
385 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
386
387 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
388 {
389         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
390                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
391         else
392                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
393 }
394
395 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
396 {
397         atomic_inc(&vcpu->arch.nmi_queued);
398         kvm_make_request(KVM_REQ_NMI, vcpu);
399 }
400 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
401
402 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
403 {
404         kvm_multiple_exception(vcpu, nr, true, error_code, false);
405 }
406 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
407
408 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
409 {
410         kvm_multiple_exception(vcpu, nr, true, error_code, true);
411 }
412 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
413
414 /*
415  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
416  * a #GP and return false.
417  */
418 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
419 {
420         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
421                 return true;
422         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
423         return false;
424 }
425 EXPORT_SYMBOL_GPL(kvm_require_cpl);
426
427 /*
428  * This function will be used to read from the physical memory of the currently
429  * running guest. The difference to kvm_read_guest_page is that this function
430  * can read from guest physical or from the guest's guest physical memory.
431  */
432 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
433                             gfn_t ngfn, void *data, int offset, int len,
434                             u32 access)
435 {
436         gfn_t real_gfn;
437         gpa_t ngpa;
438
439         ngpa     = gfn_to_gpa(ngfn);
440         real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
441         if (real_gfn == UNMAPPED_GVA)
442                 return -EFAULT;
443
444         real_gfn = gpa_to_gfn(real_gfn);
445
446         return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
447 }
448 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
449
450 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
451                                void *data, int offset, int len, u32 access)
452 {
453         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
454                                        data, offset, len, access);
455 }
456
457 /*
458  * Load the pae pdptrs.  Return true is they are all valid.
459  */
460 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
461 {
462         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
463         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
464         int i;
465         int ret;
466         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
467
468         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
469                                       offset * sizeof(u64), sizeof(pdpte),
470                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
471         if (ret < 0) {
472                 ret = 0;
473                 goto out;
474         }
475         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
476                 if (is_present_gpte(pdpte[i]) &&
477                     (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
478                         ret = 0;
479                         goto out;
480                 }
481         }
482         ret = 1;
483
484         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
485         __set_bit(VCPU_EXREG_PDPTR,
486                   (unsigned long *)&vcpu->arch.regs_avail);
487         __set_bit(VCPU_EXREG_PDPTR,
488                   (unsigned long *)&vcpu->arch.regs_dirty);
489 out:
490
491         return ret;
492 }
493 EXPORT_SYMBOL_GPL(load_pdptrs);
494
495 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
496 {
497         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
498         bool changed = true;
499         int offset;
500         gfn_t gfn;
501         int r;
502
503         if (is_long_mode(vcpu) || !is_pae(vcpu))
504                 return false;
505
506         if (!test_bit(VCPU_EXREG_PDPTR,
507                       (unsigned long *)&vcpu->arch.regs_avail))
508                 return true;
509
510         gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
511         offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
512         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
513                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
514         if (r < 0)
515                 goto out;
516         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
517 out:
518
519         return changed;
520 }
521
522 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
523 {
524         unsigned long old_cr0 = kvm_read_cr0(vcpu);
525         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
526                                     X86_CR0_CD | X86_CR0_NW;
527
528         cr0 |= X86_CR0_ET;
529
530 #ifdef CONFIG_X86_64
531         if (cr0 & 0xffffffff00000000UL)
532                 return 1;
533 #endif
534
535         cr0 &= ~CR0_RESERVED_BITS;
536
537         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
538                 return 1;
539
540         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
541                 return 1;
542
543         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
544 #ifdef CONFIG_X86_64
545                 if ((vcpu->arch.efer & EFER_LME)) {
546                         int cs_db, cs_l;
547
548                         if (!is_pae(vcpu))
549                                 return 1;
550                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
551                         if (cs_l)
552                                 return 1;
553                 } else
554 #endif
555                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
556                                                  kvm_read_cr3(vcpu)))
557                         return 1;
558         }
559
560         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
561                 return 1;
562
563         kvm_x86_ops->set_cr0(vcpu, cr0);
564
565         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
566                 kvm_clear_async_pf_completion_queue(vcpu);
567                 kvm_async_pf_hash_reset(vcpu);
568         }
569
570         if ((cr0 ^ old_cr0) & update_bits)
571                 kvm_mmu_reset_context(vcpu);
572         return 0;
573 }
574 EXPORT_SYMBOL_GPL(kvm_set_cr0);
575
576 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
577 {
578         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
579 }
580 EXPORT_SYMBOL_GPL(kvm_lmsw);
581
582 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
583 {
584         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
585                         !vcpu->guest_xcr0_loaded) {
586                 /* kvm_set_xcr() also depends on this */
587                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
588                 vcpu->guest_xcr0_loaded = 1;
589         }
590 }
591
592 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
593 {
594         if (vcpu->guest_xcr0_loaded) {
595                 if (vcpu->arch.xcr0 != host_xcr0)
596                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
597                 vcpu->guest_xcr0_loaded = 0;
598         }
599 }
600
601 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
602 {
603         u64 xcr0;
604         u64 valid_bits;
605
606         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
607         if (index != XCR_XFEATURE_ENABLED_MASK)
608                 return 1;
609         xcr0 = xcr;
610         if (!(xcr0 & XSTATE_FP))
611                 return 1;
612         if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
613                 return 1;
614
615         /*
616          * Do not allow the guest to set bits that we do not support
617          * saving.  However, xcr0 bit 0 is always set, even if the
618          * emulated CPU does not support XSAVE (see fx_init).
619          */
620         valid_bits = vcpu->arch.guest_supported_xcr0 | XSTATE_FP;
621         if (xcr0 & ~valid_bits)
622                 return 1;
623
624         kvm_put_guest_xcr0(vcpu);
625         vcpu->arch.xcr0 = xcr0;
626         return 0;
627 }
628
629 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
630 {
631         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
632             __kvm_set_xcr(vcpu, index, xcr)) {
633                 kvm_inject_gp(vcpu, 0);
634                 return 1;
635         }
636         return 0;
637 }
638 EXPORT_SYMBOL_GPL(kvm_set_xcr);
639
640 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
641 {
642         unsigned long old_cr4 = kvm_read_cr4(vcpu);
643         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
644                                    X86_CR4_PAE | X86_CR4_SMEP;
645         if (cr4 & CR4_RESERVED_BITS)
646                 return 1;
647
648         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
649                 return 1;
650
651         if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
652                 return 1;
653
654         if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
655                 return 1;
656
657         if (is_long_mode(vcpu)) {
658                 if (!(cr4 & X86_CR4_PAE))
659                         return 1;
660         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
661                    && ((cr4 ^ old_cr4) & pdptr_bits)
662                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
663                                    kvm_read_cr3(vcpu)))
664                 return 1;
665
666         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
667                 if (!guest_cpuid_has_pcid(vcpu))
668                         return 1;
669
670                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
671                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
672                         return 1;
673         }
674
675         if (kvm_x86_ops->set_cr4(vcpu, cr4))
676                 return 1;
677
678         if (((cr4 ^ old_cr4) & pdptr_bits) ||
679             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
680                 kvm_mmu_reset_context(vcpu);
681
682         if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
683                 kvm_update_cpuid(vcpu);
684
685         return 0;
686 }
687 EXPORT_SYMBOL_GPL(kvm_set_cr4);
688
689 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
690 {
691         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
692                 kvm_mmu_sync_roots(vcpu);
693                 kvm_mmu_flush_tlb(vcpu);
694                 return 0;
695         }
696
697         if (is_long_mode(vcpu)) {
698                 if (kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) {
699                         if (cr3 & CR3_PCID_ENABLED_RESERVED_BITS)
700                                 return 1;
701                 } else
702                         if (cr3 & CR3_L_MODE_RESERVED_BITS)
703                                 return 1;
704         } else {
705                 if (is_pae(vcpu)) {
706                         if (cr3 & CR3_PAE_RESERVED_BITS)
707                                 return 1;
708                         if (is_paging(vcpu) &&
709                             !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
710                                 return 1;
711                 }
712                 /*
713                  * We don't check reserved bits in nonpae mode, because
714                  * this isn't enforced, and VMware depends on this.
715                  */
716         }
717
718         vcpu->arch.cr3 = cr3;
719         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
720         kvm_mmu_new_cr3(vcpu);
721         return 0;
722 }
723 EXPORT_SYMBOL_GPL(kvm_set_cr3);
724
725 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
726 {
727         if (cr8 & CR8_RESERVED_BITS)
728                 return 1;
729         if (irqchip_in_kernel(vcpu->kvm))
730                 kvm_lapic_set_tpr(vcpu, cr8);
731         else
732                 vcpu->arch.cr8 = cr8;
733         return 0;
734 }
735 EXPORT_SYMBOL_GPL(kvm_set_cr8);
736
737 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
738 {
739         if (irqchip_in_kernel(vcpu->kvm))
740                 return kvm_lapic_get_cr8(vcpu);
741         else
742                 return vcpu->arch.cr8;
743 }
744 EXPORT_SYMBOL_GPL(kvm_get_cr8);
745
746 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
747 {
748         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
749                 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
750 }
751
752 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
753 {
754         unsigned long dr7;
755
756         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
757                 dr7 = vcpu->arch.guest_debug_dr7;
758         else
759                 dr7 = vcpu->arch.dr7;
760         kvm_x86_ops->set_dr7(vcpu, dr7);
761         vcpu->arch.switch_db_regs = (dr7 & DR7_BP_EN_MASK);
762 }
763
764 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
765 {
766         switch (dr) {
767         case 0 ... 3:
768                 vcpu->arch.db[dr] = val;
769                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
770                         vcpu->arch.eff_db[dr] = val;
771                 break;
772         case 4:
773                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
774                         return 1; /* #UD */
775                 /* fall through */
776         case 6:
777                 if (val & 0xffffffff00000000ULL)
778                         return -1; /* #GP */
779                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
780                 kvm_update_dr6(vcpu);
781                 break;
782         case 5:
783                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
784                         return 1; /* #UD */
785                 /* fall through */
786         default: /* 7 */
787                 if (val & 0xffffffff00000000ULL)
788                         return -1; /* #GP */
789                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
790                 kvm_update_dr7(vcpu);
791                 break;
792         }
793
794         return 0;
795 }
796
797 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
798 {
799         int res;
800
801         res = __kvm_set_dr(vcpu, dr, val);
802         if (res > 0)
803                 kvm_queue_exception(vcpu, UD_VECTOR);
804         else if (res < 0)
805                 kvm_inject_gp(vcpu, 0);
806
807         return res;
808 }
809 EXPORT_SYMBOL_GPL(kvm_set_dr);
810
811 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
812 {
813         switch (dr) {
814         case 0 ... 3:
815                 *val = vcpu->arch.db[dr];
816                 break;
817         case 4:
818                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
819                         return 1;
820                 /* fall through */
821         case 6:
822                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
823                         *val = vcpu->arch.dr6;
824                 else
825                         *val = kvm_x86_ops->get_dr6(vcpu);
826                 break;
827         case 5:
828                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
829                         return 1;
830                 /* fall through */
831         default: /* 7 */
832                 *val = vcpu->arch.dr7;
833                 break;
834         }
835
836         return 0;
837 }
838
839 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
840 {
841         if (_kvm_get_dr(vcpu, dr, val)) {
842                 kvm_queue_exception(vcpu, UD_VECTOR);
843                 return 1;
844         }
845         return 0;
846 }
847 EXPORT_SYMBOL_GPL(kvm_get_dr);
848
849 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
850 {
851         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
852         u64 data;
853         int err;
854
855         err = kvm_pmu_read_pmc(vcpu, ecx, &data);
856         if (err)
857                 return err;
858         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
859         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
860         return err;
861 }
862 EXPORT_SYMBOL_GPL(kvm_rdpmc);
863
864 /*
865  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
866  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
867  *
868  * This list is modified at module load time to reflect the
869  * capabilities of the host cpu. This capabilities test skips MSRs that are
870  * kvm-specific. Those are put in the beginning of the list.
871  */
872
873 #define KVM_SAVE_MSRS_BEGIN     12
874 static u32 msrs_to_save[] = {
875         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
876         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
877         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
878         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
879         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
880         MSR_KVM_PV_EOI_EN,
881         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
882         MSR_STAR,
883 #ifdef CONFIG_X86_64
884         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
885 #endif
886         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
887         MSR_IA32_FEATURE_CONTROL
888 };
889
890 static unsigned num_msrs_to_save;
891
892 static const u32 emulated_msrs[] = {
893         MSR_IA32_TSC_ADJUST,
894         MSR_IA32_TSCDEADLINE,
895         MSR_IA32_MISC_ENABLE,
896         MSR_IA32_MCG_STATUS,
897         MSR_IA32_MCG_CTL,
898 };
899
900 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
901 {
902         if (efer & efer_reserved_bits)
903                 return false;
904
905         if (efer & EFER_FFXSR) {
906                 struct kvm_cpuid_entry2 *feat;
907
908                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
909                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
910                         return false;
911         }
912
913         if (efer & EFER_SVME) {
914                 struct kvm_cpuid_entry2 *feat;
915
916                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
917                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
918                         return false;
919         }
920
921         return true;
922 }
923 EXPORT_SYMBOL_GPL(kvm_valid_efer);
924
925 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
926 {
927         u64 old_efer = vcpu->arch.efer;
928
929         if (!kvm_valid_efer(vcpu, efer))
930                 return 1;
931
932         if (is_paging(vcpu)
933             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
934                 return 1;
935
936         efer &= ~EFER_LMA;
937         efer |= vcpu->arch.efer & EFER_LMA;
938
939         kvm_x86_ops->set_efer(vcpu, efer);
940
941         /* Update reserved bits */
942         if ((efer ^ old_efer) & EFER_NX)
943                 kvm_mmu_reset_context(vcpu);
944
945         return 0;
946 }
947
948 void kvm_enable_efer_bits(u64 mask)
949 {
950        efer_reserved_bits &= ~mask;
951 }
952 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
953
954 /*
955  * Writes msr value into into the appropriate "register".
956  * Returns 0 on success, non-0 otherwise.
957  * Assumes vcpu_load() was already called.
958  */
959 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
960 {
961         switch (msr->index) {
962         case MSR_FS_BASE:
963         case MSR_GS_BASE:
964         case MSR_KERNEL_GS_BASE:
965         case MSR_CSTAR:
966         case MSR_LSTAR:
967                 if (is_noncanonical_address(msr->data))
968                         return 1;
969                 break;
970         case MSR_IA32_SYSENTER_EIP:
971         case MSR_IA32_SYSENTER_ESP:
972                 /*
973                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
974                  * non-canonical address is written on Intel but not on
975                  * AMD (which ignores the top 32-bits, because it does
976                  * not implement 64-bit SYSENTER).
977                  *
978                  * 64-bit code should hence be able to write a non-canonical
979                  * value on AMD.  Making the address canonical ensures that
980                  * vmentry does not fail on Intel after writing a non-canonical
981                  * value, and that something deterministic happens if the guest
982                  * invokes 64-bit SYSENTER.
983                  */
984                 msr->data = get_canonical(msr->data);
985         }
986         return kvm_x86_ops->set_msr(vcpu, msr);
987 }
988 EXPORT_SYMBOL_GPL(kvm_set_msr);
989
990 /*
991  * Adapt set_msr() to msr_io()'s calling convention
992  */
993 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
994 {
995         struct msr_data msr;
996
997         msr.data = *data;
998         msr.index = index;
999         msr.host_initiated = true;
1000         return kvm_set_msr(vcpu, &msr);
1001 }
1002
1003 #ifdef CONFIG_X86_64
1004 struct pvclock_gtod_data {
1005         seqcount_t      seq;
1006
1007         struct { /* extract of a clocksource struct */
1008                 int vclock_mode;
1009                 cycle_t cycle_last;
1010                 cycle_t mask;
1011                 u32     mult;
1012                 u32     shift;
1013         } clock;
1014
1015         /* open coded 'struct timespec' */
1016         u64             monotonic_time_snsec;
1017         time_t          monotonic_time_sec;
1018 };
1019
1020 static struct pvclock_gtod_data pvclock_gtod_data;
1021
1022 static void update_pvclock_gtod(struct timekeeper *tk)
1023 {
1024         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1025
1026         write_seqcount_begin(&vdata->seq);
1027
1028         /* copy pvclock gtod data */
1029         vdata->clock.vclock_mode        = tk->clock->archdata.vclock_mode;
1030         vdata->clock.cycle_last         = tk->clock->cycle_last;
1031         vdata->clock.mask               = tk->clock->mask;
1032         vdata->clock.mult               = tk->mult;
1033         vdata->clock.shift              = tk->shift;
1034
1035         vdata->monotonic_time_sec       = tk->xtime_sec
1036                                         + tk->wall_to_monotonic.tv_sec;
1037         vdata->monotonic_time_snsec     = tk->xtime_nsec
1038                                         + (tk->wall_to_monotonic.tv_nsec
1039                                                 << tk->shift);
1040         while (vdata->monotonic_time_snsec >=
1041                                         (((u64)NSEC_PER_SEC) << tk->shift)) {
1042                 vdata->monotonic_time_snsec -=
1043                                         ((u64)NSEC_PER_SEC) << tk->shift;
1044                 vdata->monotonic_time_sec++;
1045         }
1046
1047         write_seqcount_end(&vdata->seq);
1048 }
1049 #endif
1050
1051
1052 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1053 {
1054         int version;
1055         int r;
1056         struct pvclock_wall_clock wc;
1057         struct timespec boot;
1058
1059         if (!wall_clock)
1060                 return;
1061
1062         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1063         if (r)
1064                 return;
1065
1066         if (version & 1)
1067                 ++version;  /* first time write, random junk */
1068
1069         ++version;
1070
1071         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1072
1073         /*
1074          * The guest calculates current wall clock time by adding
1075          * system time (updated by kvm_guest_time_update below) to the
1076          * wall clock specified here.  guest system time equals host
1077          * system time for us, thus we must fill in host boot time here.
1078          */
1079         getboottime(&boot);
1080
1081         if (kvm->arch.kvmclock_offset) {
1082                 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1083                 boot = timespec_sub(boot, ts);
1084         }
1085         wc.sec = boot.tv_sec;
1086         wc.nsec = boot.tv_nsec;
1087         wc.version = version;
1088
1089         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1090
1091         version++;
1092         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1093 }
1094
1095 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1096 {
1097         uint32_t quotient, remainder;
1098
1099         /* Don't try to replace with do_div(), this one calculates
1100          * "(dividend << 32) / divisor" */
1101         __asm__ ( "divl %4"
1102                   : "=a" (quotient), "=d" (remainder)
1103                   : "0" (0), "1" (dividend), "r" (divisor) );
1104         return quotient;
1105 }
1106
1107 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1108                                s8 *pshift, u32 *pmultiplier)
1109 {
1110         uint64_t scaled64;
1111         int32_t  shift = 0;
1112         uint64_t tps64;
1113         uint32_t tps32;
1114
1115         tps64 = base_khz * 1000LL;
1116         scaled64 = scaled_khz * 1000LL;
1117         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1118                 tps64 >>= 1;
1119                 shift--;
1120         }
1121
1122         tps32 = (uint32_t)tps64;
1123         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1124                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1125                         scaled64 >>= 1;
1126                 else
1127                         tps32 <<= 1;
1128                 shift++;
1129         }
1130
1131         *pshift = shift;
1132         *pmultiplier = div_frac(scaled64, tps32);
1133
1134         pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1135                  __func__, base_khz, scaled_khz, shift, *pmultiplier);
1136 }
1137
1138 static inline u64 get_kernel_ns(void)
1139 {
1140         struct timespec ts;
1141
1142         ktime_get_ts(&ts);
1143         monotonic_to_bootbased(&ts);
1144         return timespec_to_ns(&ts);
1145 }
1146
1147 #ifdef CONFIG_X86_64
1148 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1149 #endif
1150
1151 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1152 unsigned long max_tsc_khz;
1153
1154 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1155 {
1156         return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1157                                    vcpu->arch.virtual_tsc_shift);
1158 }
1159
1160 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1161 {
1162         u64 v = (u64)khz * (1000000 + ppm);
1163         do_div(v, 1000000);
1164         return v;
1165 }
1166
1167 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1168 {
1169         u32 thresh_lo, thresh_hi;
1170         int use_scaling = 0;
1171
1172         /* tsc_khz can be zero if TSC calibration fails */
1173         if (this_tsc_khz == 0)
1174                 return;
1175
1176         /* Compute a scale to convert nanoseconds in TSC cycles */
1177         kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1178                            &vcpu->arch.virtual_tsc_shift,
1179                            &vcpu->arch.virtual_tsc_mult);
1180         vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1181
1182         /*
1183          * Compute the variation in TSC rate which is acceptable
1184          * within the range of tolerance and decide if the
1185          * rate being applied is within that bounds of the hardware
1186          * rate.  If so, no scaling or compensation need be done.
1187          */
1188         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1189         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1190         if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1191                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1192                 use_scaling = 1;
1193         }
1194         kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1195 }
1196
1197 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1198 {
1199         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1200                                       vcpu->arch.virtual_tsc_mult,
1201                                       vcpu->arch.virtual_tsc_shift);
1202         tsc += vcpu->arch.this_tsc_write;
1203         return tsc;
1204 }
1205
1206 void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1207 {
1208 #ifdef CONFIG_X86_64
1209         bool vcpus_matched;
1210         bool do_request = false;
1211         struct kvm_arch *ka = &vcpu->kvm->arch;
1212         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1213
1214         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1215                          atomic_read(&vcpu->kvm->online_vcpus));
1216
1217         if (vcpus_matched && gtod->clock.vclock_mode == VCLOCK_TSC)
1218                 if (!ka->use_master_clock)
1219                         do_request = 1;
1220
1221         if (!vcpus_matched && ka->use_master_clock)
1222                         do_request = 1;
1223
1224         if (do_request)
1225                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1226
1227         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1228                             atomic_read(&vcpu->kvm->online_vcpus),
1229                             ka->use_master_clock, gtod->clock.vclock_mode);
1230 #endif
1231 }
1232
1233 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1234 {
1235         u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1236         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1237 }
1238
1239 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1240 {
1241         struct kvm *kvm = vcpu->kvm;
1242         u64 offset, ns, elapsed;
1243         unsigned long flags;
1244         s64 usdiff;
1245         bool matched;
1246         u64 data = msr->data;
1247
1248         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1249         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1250         ns = get_kernel_ns();
1251         elapsed = ns - kvm->arch.last_tsc_nsec;
1252
1253         if (vcpu->arch.virtual_tsc_khz) {
1254                 int faulted = 0;
1255
1256                 /* n.b - signed multiplication and division required */
1257                 usdiff = data - kvm->arch.last_tsc_write;
1258 #ifdef CONFIG_X86_64
1259                 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1260 #else
1261                 /* do_div() only does unsigned */
1262                 asm("1: idivl %[divisor]\n"
1263                     "2: xor %%edx, %%edx\n"
1264                     "   movl $0, %[faulted]\n"
1265                     "3:\n"
1266                     ".section .fixup,\"ax\"\n"
1267                     "4: movl $1, %[faulted]\n"
1268                     "   jmp  3b\n"
1269                     ".previous\n"
1270
1271                 _ASM_EXTABLE(1b, 4b)
1272
1273                 : "=A"(usdiff), [faulted] "=r" (faulted)
1274                 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1275
1276 #endif
1277                 do_div(elapsed, 1000);
1278                 usdiff -= elapsed;
1279                 if (usdiff < 0)
1280                         usdiff = -usdiff;
1281
1282                 /* idivl overflow => difference is larger than USEC_PER_SEC */
1283                 if (faulted)
1284                         usdiff = USEC_PER_SEC;
1285         } else
1286                 usdiff = USEC_PER_SEC; /* disable TSC match window below */
1287
1288         /*
1289          * Special case: TSC write with a small delta (1 second) of virtual
1290          * cycle time against real time is interpreted as an attempt to
1291          * synchronize the CPU.
1292          *
1293          * For a reliable TSC, we can match TSC offsets, and for an unstable
1294          * TSC, we add elapsed time in this computation.  We could let the
1295          * compensation code attempt to catch up if we fall behind, but
1296          * it's better to try to match offsets from the beginning.
1297          */
1298         if (usdiff < USEC_PER_SEC &&
1299             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1300                 if (!check_tsc_unstable()) {
1301                         offset = kvm->arch.cur_tsc_offset;
1302                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1303                 } else {
1304                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1305                         data += delta;
1306                         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1307                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1308                 }
1309                 matched = true;
1310         } else {
1311                 /*
1312                  * We split periods of matched TSC writes into generations.
1313                  * For each generation, we track the original measured
1314                  * nanosecond time, offset, and write, so if TSCs are in
1315                  * sync, we can match exact offset, and if not, we can match
1316                  * exact software computation in compute_guest_tsc()
1317                  *
1318                  * These values are tracked in kvm->arch.cur_xxx variables.
1319                  */
1320                 kvm->arch.cur_tsc_generation++;
1321                 kvm->arch.cur_tsc_nsec = ns;
1322                 kvm->arch.cur_tsc_write = data;
1323                 kvm->arch.cur_tsc_offset = offset;
1324                 matched = false;
1325                 pr_debug("kvm: new tsc generation %u, clock %llu\n",
1326                          kvm->arch.cur_tsc_generation, data);
1327         }
1328
1329         /*
1330          * We also track th most recent recorded KHZ, write and time to
1331          * allow the matching interval to be extended at each write.
1332          */
1333         kvm->arch.last_tsc_nsec = ns;
1334         kvm->arch.last_tsc_write = data;
1335         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1336
1337         vcpu->arch.last_guest_tsc = data;
1338
1339         /* Keep track of which generation this VCPU has synchronized to */
1340         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1341         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1342         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1343
1344         if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1345                 update_ia32_tsc_adjust_msr(vcpu, offset);
1346         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1347         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1348
1349         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1350         if (matched)
1351                 kvm->arch.nr_vcpus_matched_tsc++;
1352         else
1353                 kvm->arch.nr_vcpus_matched_tsc = 0;
1354
1355         kvm_track_tsc_matching(vcpu);
1356         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1357 }
1358
1359 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1360
1361 #ifdef CONFIG_X86_64
1362
1363 static cycle_t read_tsc(void)
1364 {
1365         cycle_t ret;
1366         u64 last;
1367
1368         /*
1369          * Empirically, a fence (of type that depends on the CPU)
1370          * before rdtsc is enough to ensure that rdtsc is ordered
1371          * with respect to loads.  The various CPU manuals are unclear
1372          * as to whether rdtsc can be reordered with later loads,
1373          * but no one has ever seen it happen.
1374          */
1375         rdtsc_barrier();
1376         ret = (cycle_t)vget_cycles();
1377
1378         last = pvclock_gtod_data.clock.cycle_last;
1379
1380         if (likely(ret >= last))
1381                 return ret;
1382
1383         /*
1384          * GCC likes to generate cmov here, but this branch is extremely
1385          * predictable (it's just a funciton of time and the likely is
1386          * very likely) and there's a data dependence, so force GCC
1387          * to generate a branch instead.  I don't barrier() because
1388          * we don't actually need a barrier, and if this function
1389          * ever gets inlined it will generate worse code.
1390          */
1391         asm volatile ("");
1392         return last;
1393 }
1394
1395 static inline u64 vgettsc(cycle_t *cycle_now)
1396 {
1397         long v;
1398         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1399
1400         *cycle_now = read_tsc();
1401
1402         v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1403         return v * gtod->clock.mult;
1404 }
1405
1406 static int do_monotonic(struct timespec *ts, cycle_t *cycle_now)
1407 {
1408         unsigned long seq;
1409         u64 ns;
1410         int mode;
1411         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1412
1413         ts->tv_nsec = 0;
1414         do {
1415                 seq = read_seqcount_begin(&gtod->seq);
1416                 mode = gtod->clock.vclock_mode;
1417                 ts->tv_sec = gtod->monotonic_time_sec;
1418                 ns = gtod->monotonic_time_snsec;
1419                 ns += vgettsc(cycle_now);
1420                 ns >>= gtod->clock.shift;
1421         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1422         timespec_add_ns(ts, ns);
1423
1424         return mode;
1425 }
1426
1427 /* returns true if host is using tsc clocksource */
1428 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1429 {
1430         struct timespec ts;
1431
1432         /* checked again under seqlock below */
1433         if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1434                 return false;
1435
1436         if (do_monotonic(&ts, cycle_now) != VCLOCK_TSC)
1437                 return false;
1438
1439         monotonic_to_bootbased(&ts);
1440         *kernel_ns = timespec_to_ns(&ts);
1441
1442         return true;
1443 }
1444 #endif
1445
1446 /*
1447  *
1448  * Assuming a stable TSC across physical CPUS, and a stable TSC
1449  * across virtual CPUs, the following condition is possible.
1450  * Each numbered line represents an event visible to both
1451  * CPUs at the next numbered event.
1452  *
1453  * "timespecX" represents host monotonic time. "tscX" represents
1454  * RDTSC value.
1455  *
1456  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1457  *
1458  * 1.  read timespec0,tsc0
1459  * 2.                                   | timespec1 = timespec0 + N
1460  *                                      | tsc1 = tsc0 + M
1461  * 3. transition to guest               | transition to guest
1462  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1463  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1464  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1465  *
1466  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1467  *
1468  *      - ret0 < ret1
1469  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1470  *              ...
1471  *      - 0 < N - M => M < N
1472  *
1473  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1474  * always the case (the difference between two distinct xtime instances
1475  * might be smaller then the difference between corresponding TSC reads,
1476  * when updating guest vcpus pvclock areas).
1477  *
1478  * To avoid that problem, do not allow visibility of distinct
1479  * system_timestamp/tsc_timestamp values simultaneously: use a master
1480  * copy of host monotonic time values. Update that master copy
1481  * in lockstep.
1482  *
1483  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1484  *
1485  */
1486
1487 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1488 {
1489 #ifdef CONFIG_X86_64
1490         struct kvm_arch *ka = &kvm->arch;
1491         int vclock_mode;
1492         bool host_tsc_clocksource, vcpus_matched;
1493
1494         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1495                         atomic_read(&kvm->online_vcpus));
1496
1497         /*
1498          * If the host uses TSC clock, then passthrough TSC as stable
1499          * to the guest.
1500          */
1501         host_tsc_clocksource = kvm_get_time_and_clockread(
1502                                         &ka->master_kernel_ns,
1503                                         &ka->master_cycle_now);
1504
1505         ka->use_master_clock = host_tsc_clocksource & vcpus_matched;
1506
1507         if (ka->use_master_clock)
1508                 atomic_set(&kvm_guest_has_master_clock, 1);
1509
1510         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1511         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1512                                         vcpus_matched);
1513 #endif
1514 }
1515
1516 static void kvm_gen_update_masterclock(struct kvm *kvm)
1517 {
1518 #ifdef CONFIG_X86_64
1519         int i;
1520         struct kvm_vcpu *vcpu;
1521         struct kvm_arch *ka = &kvm->arch;
1522
1523         spin_lock(&ka->pvclock_gtod_sync_lock);
1524         kvm_make_mclock_inprogress_request(kvm);
1525         /* no guest entries from this point */
1526         pvclock_update_vm_gtod_copy(kvm);
1527
1528         kvm_for_each_vcpu(i, vcpu, kvm)
1529                 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
1530
1531         /* guest entries allowed */
1532         kvm_for_each_vcpu(i, vcpu, kvm)
1533                 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1534
1535         spin_unlock(&ka->pvclock_gtod_sync_lock);
1536 #endif
1537 }
1538
1539 static int kvm_guest_time_update(struct kvm_vcpu *v)
1540 {
1541         unsigned long flags, this_tsc_khz;
1542         struct kvm_vcpu_arch *vcpu = &v->arch;
1543         struct kvm_arch *ka = &v->kvm->arch;
1544         s64 kernel_ns;
1545         u64 tsc_timestamp, host_tsc;
1546         struct pvclock_vcpu_time_info guest_hv_clock;
1547         u8 pvclock_flags;
1548         bool use_master_clock;
1549
1550         kernel_ns = 0;
1551         host_tsc = 0;
1552
1553         /*
1554          * If the host uses TSC clock, then passthrough TSC as stable
1555          * to the guest.
1556          */
1557         spin_lock(&ka->pvclock_gtod_sync_lock);
1558         use_master_clock = ka->use_master_clock;
1559         if (use_master_clock) {
1560                 host_tsc = ka->master_cycle_now;
1561                 kernel_ns = ka->master_kernel_ns;
1562         }
1563         spin_unlock(&ka->pvclock_gtod_sync_lock);
1564
1565         /* Keep irq disabled to prevent changes to the clock */
1566         local_irq_save(flags);
1567         this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
1568         if (unlikely(this_tsc_khz == 0)) {
1569                 local_irq_restore(flags);
1570                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1571                 return 1;
1572         }
1573         if (!use_master_clock) {
1574                 host_tsc = native_read_tsc();
1575                 kernel_ns = get_kernel_ns();
1576         }
1577
1578         tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
1579
1580         /*
1581          * We may have to catch up the TSC to match elapsed wall clock
1582          * time for two reasons, even if kvmclock is used.
1583          *   1) CPU could have been running below the maximum TSC rate
1584          *   2) Broken TSC compensation resets the base at each VCPU
1585          *      entry to avoid unknown leaps of TSC even when running
1586          *      again on the same CPU.  This may cause apparent elapsed
1587          *      time to disappear, and the guest to stand still or run
1588          *      very slowly.
1589          */
1590         if (vcpu->tsc_catchup) {
1591                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1592                 if (tsc > tsc_timestamp) {
1593                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1594                         tsc_timestamp = tsc;
1595                 }
1596         }
1597
1598         local_irq_restore(flags);
1599
1600         if (!vcpu->pv_time_enabled)
1601                 return 0;
1602
1603         if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1604                 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1605                                    &vcpu->hv_clock.tsc_shift,
1606                                    &vcpu->hv_clock.tsc_to_system_mul);
1607                 vcpu->hw_tsc_khz = this_tsc_khz;
1608         }
1609
1610         /* With all the info we got, fill in the values */
1611         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1612         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1613         vcpu->last_kernel_ns = kernel_ns;
1614         vcpu->last_guest_tsc = tsc_timestamp;
1615
1616         /*
1617          * The interface expects us to write an even number signaling that the
1618          * update is finished. Since the guest won't see the intermediate
1619          * state, we just increase by 2 at the end.
1620          */
1621         vcpu->hv_clock.version += 2;
1622
1623         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1624                 &guest_hv_clock, sizeof(guest_hv_clock))))
1625                 return 0;
1626
1627         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1628         pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1629
1630         if (vcpu->pvclock_set_guest_stopped_request) {
1631                 pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1632                 vcpu->pvclock_set_guest_stopped_request = false;
1633         }
1634
1635         /* If the host uses TSC clocksource, then it is stable */
1636         if (use_master_clock)
1637                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1638
1639         vcpu->hv_clock.flags = pvclock_flags;
1640
1641         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1642                                 &vcpu->hv_clock,
1643                                 sizeof(vcpu->hv_clock));
1644         return 0;
1645 }
1646
1647 /*
1648  * kvmclock updates which are isolated to a given vcpu, such as
1649  * vcpu->cpu migration, should not allow system_timestamp from
1650  * the rest of the vcpus to remain static. Otherwise ntp frequency
1651  * correction applies to one vcpu's system_timestamp but not
1652  * the others.
1653  *
1654  * So in those cases, request a kvmclock update for all vcpus.
1655  * The worst case for a remote vcpu to update its kvmclock
1656  * is then bounded by maximum nohz sleep latency.
1657  */
1658
1659 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1660 {
1661         int i;
1662         struct kvm *kvm = v->kvm;
1663         struct kvm_vcpu *vcpu;
1664
1665         kvm_for_each_vcpu(i, vcpu, kvm) {
1666                 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
1667                 kvm_vcpu_kick(vcpu);
1668         }
1669 }
1670
1671 static bool msr_mtrr_valid(unsigned msr)
1672 {
1673         switch (msr) {
1674         case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1675         case MSR_MTRRfix64K_00000:
1676         case MSR_MTRRfix16K_80000:
1677         case MSR_MTRRfix16K_A0000:
1678         case MSR_MTRRfix4K_C0000:
1679         case MSR_MTRRfix4K_C8000:
1680         case MSR_MTRRfix4K_D0000:
1681         case MSR_MTRRfix4K_D8000:
1682         case MSR_MTRRfix4K_E0000:
1683         case MSR_MTRRfix4K_E8000:
1684         case MSR_MTRRfix4K_F0000:
1685         case MSR_MTRRfix4K_F8000:
1686         case MSR_MTRRdefType:
1687         case MSR_IA32_CR_PAT:
1688                 return true;
1689         case 0x2f8:
1690                 return true;
1691         }
1692         return false;
1693 }
1694
1695 static bool valid_pat_type(unsigned t)
1696 {
1697         return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1698 }
1699
1700 static bool valid_mtrr_type(unsigned t)
1701 {
1702         return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1703 }
1704
1705 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1706 {
1707         int i;
1708
1709         if (!msr_mtrr_valid(msr))
1710                 return false;
1711
1712         if (msr == MSR_IA32_CR_PAT) {
1713                 for (i = 0; i < 8; i++)
1714                         if (!valid_pat_type((data >> (i * 8)) & 0xff))
1715                                 return false;
1716                 return true;
1717         } else if (msr == MSR_MTRRdefType) {
1718                 if (data & ~0xcff)
1719                         return false;
1720                 return valid_mtrr_type(data & 0xff);
1721         } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1722                 for (i = 0; i < 8 ; i++)
1723                         if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1724                                 return false;
1725                 return true;
1726         }
1727
1728         /* variable MTRRs */
1729         return valid_mtrr_type(data & 0xff);
1730 }
1731
1732 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1733 {
1734         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1735
1736         if (!mtrr_valid(vcpu, msr, data))
1737                 return 1;
1738
1739         if (msr == MSR_MTRRdefType) {
1740                 vcpu->arch.mtrr_state.def_type = data;
1741                 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1742         } else if (msr == MSR_MTRRfix64K_00000)
1743                 p[0] = data;
1744         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1745                 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1746         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1747                 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1748         else if (msr == MSR_IA32_CR_PAT)
1749                 vcpu->arch.pat = data;
1750         else {  /* Variable MTRRs */
1751                 int idx, is_mtrr_mask;
1752                 u64 *pt;
1753
1754                 idx = (msr - 0x200) / 2;
1755                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1756                 if (!is_mtrr_mask)
1757                         pt =
1758                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1759                 else
1760                         pt =
1761                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1762                 *pt = data;
1763         }
1764
1765         kvm_mmu_reset_context(vcpu);
1766         return 0;
1767 }
1768
1769 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1770 {
1771         u64 mcg_cap = vcpu->arch.mcg_cap;
1772         unsigned bank_num = mcg_cap & 0xff;
1773
1774         switch (msr) {
1775         case MSR_IA32_MCG_STATUS:
1776                 vcpu->arch.mcg_status = data;
1777                 break;
1778         case MSR_IA32_MCG_CTL:
1779                 if (!(mcg_cap & MCG_CTL_P))
1780                         return 1;
1781                 if (data != 0 && data != ~(u64)0)
1782                         return -1;
1783                 vcpu->arch.mcg_ctl = data;
1784                 break;
1785         default:
1786                 if (msr >= MSR_IA32_MC0_CTL &&
1787                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1788                         u32 offset = msr - MSR_IA32_MC0_CTL;
1789                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1790                          * some Linux kernels though clear bit 10 in bank 4 to
1791                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1792                          * this to avoid an uncatched #GP in the guest
1793                          */
1794                         if ((offset & 0x3) == 0 &&
1795                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1796                                 return -1;
1797                         vcpu->arch.mce_banks[offset] = data;
1798                         break;
1799                 }
1800                 return 1;
1801         }
1802         return 0;
1803 }
1804
1805 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1806 {
1807         struct kvm *kvm = vcpu->kvm;
1808         int lm = is_long_mode(vcpu);
1809         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1810                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1811         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1812                 : kvm->arch.xen_hvm_config.blob_size_32;
1813         u32 page_num = data & ~PAGE_MASK;
1814         u64 page_addr = data & PAGE_MASK;
1815         u8 *page;
1816         int r;
1817
1818         r = -E2BIG;
1819         if (page_num >= blob_size)
1820                 goto out;
1821         r = -ENOMEM;
1822         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1823         if (IS_ERR(page)) {
1824                 r = PTR_ERR(page);
1825                 goto out;
1826         }
1827         if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1828                 goto out_free;
1829         r = 0;
1830 out_free:
1831         kfree(page);
1832 out:
1833         return r;
1834 }
1835
1836 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1837 {
1838         return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1839 }
1840
1841 static bool kvm_hv_msr_partition_wide(u32 msr)
1842 {
1843         bool r = false;
1844         switch (msr) {
1845         case HV_X64_MSR_GUEST_OS_ID:
1846         case HV_X64_MSR_HYPERCALL:
1847         case HV_X64_MSR_REFERENCE_TSC:
1848         case HV_X64_MSR_TIME_REF_COUNT:
1849                 r = true;
1850                 break;
1851         }
1852
1853         return r;
1854 }
1855
1856 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1857 {
1858         struct kvm *kvm = vcpu->kvm;
1859
1860         switch (msr) {
1861         case HV_X64_MSR_GUEST_OS_ID:
1862                 kvm->arch.hv_guest_os_id = data;
1863                 /* setting guest os id to zero disables hypercall page */
1864                 if (!kvm->arch.hv_guest_os_id)
1865                         kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1866                 break;
1867         case HV_X64_MSR_HYPERCALL: {
1868                 u64 gfn;
1869                 unsigned long addr;
1870                 u8 instructions[4];
1871
1872                 /* if guest os id is not set hypercall should remain disabled */
1873                 if (!kvm->arch.hv_guest_os_id)
1874                         break;
1875                 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1876                         kvm->arch.hv_hypercall = data;
1877                         break;
1878                 }
1879                 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1880                 addr = gfn_to_hva(kvm, gfn);
1881                 if (kvm_is_error_hva(addr))
1882                         return 1;
1883                 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1884                 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1885                 if (__copy_to_user((void __user *)addr, instructions, 4))
1886                         return 1;
1887                 kvm->arch.hv_hypercall = data;
1888                 mark_page_dirty(kvm, gfn);
1889                 break;
1890         }
1891         case HV_X64_MSR_REFERENCE_TSC: {
1892                 u64 gfn;
1893                 HV_REFERENCE_TSC_PAGE tsc_ref;
1894                 memset(&tsc_ref, 0, sizeof(tsc_ref));
1895                 kvm->arch.hv_tsc_page = data;
1896                 if (!(data & HV_X64_MSR_TSC_REFERENCE_ENABLE))
1897                         break;
1898                 gfn = data >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
1899                 if (kvm_write_guest(kvm, gfn << HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT,
1900                         &tsc_ref, sizeof(tsc_ref)))
1901                         return 1;
1902                 mark_page_dirty(kvm, gfn);
1903                 break;
1904         }
1905         default:
1906                 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1907                             "data 0x%llx\n", msr, data);
1908                 return 1;
1909         }
1910         return 0;
1911 }
1912
1913 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1914 {
1915         switch (msr) {
1916         case HV_X64_MSR_APIC_ASSIST_PAGE: {
1917                 u64 gfn;
1918                 unsigned long addr;
1919
1920                 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1921                         vcpu->arch.hv_vapic = data;
1922                         break;
1923                 }
1924                 gfn = data >> HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT;
1925                 addr = gfn_to_hva(vcpu->kvm, gfn);
1926                 if (kvm_is_error_hva(addr))
1927                         return 1;
1928                 if (__clear_user((void __user *)addr, PAGE_SIZE))
1929                         return 1;
1930                 vcpu->arch.hv_vapic = data;
1931                 mark_page_dirty(vcpu->kvm, gfn);
1932                 break;
1933         }
1934         case HV_X64_MSR_EOI:
1935                 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1936         case HV_X64_MSR_ICR:
1937                 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1938         case HV_X64_MSR_TPR:
1939                 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1940         default:
1941                 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1942                             "data 0x%llx\n", msr, data);
1943                 return 1;
1944         }
1945
1946         return 0;
1947 }
1948
1949 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1950 {
1951         gpa_t gpa = data & ~0x3f;
1952
1953         /* Bits 2:5 are reserved, Should be zero */
1954         if (data & 0x3c)
1955                 return 1;
1956
1957         vcpu->arch.apf.msr_val = data;
1958
1959         if (!(data & KVM_ASYNC_PF_ENABLED)) {
1960                 kvm_clear_async_pf_completion_queue(vcpu);
1961                 kvm_async_pf_hash_reset(vcpu);
1962                 return 0;
1963         }
1964
1965         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
1966                                         sizeof(u32)))
1967                 return 1;
1968
1969         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1970         kvm_async_pf_wakeup_all(vcpu);
1971         return 0;
1972 }
1973
1974 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1975 {
1976         vcpu->arch.pv_time_enabled = false;
1977 }
1978
1979 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1980 {
1981         u64 delta;
1982
1983         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1984                 return;
1985
1986         delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
1987         vcpu->arch.st.last_steal = current->sched_info.run_delay;
1988         vcpu->arch.st.accum_steal = delta;
1989 }
1990
1991 static void record_steal_time(struct kvm_vcpu *vcpu)
1992 {
1993         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1994                 return;
1995
1996         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1997                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
1998                 return;
1999
2000         vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
2001         vcpu->arch.st.steal.version += 2;
2002         vcpu->arch.st.accum_steal = 0;
2003
2004         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2005                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2006 }
2007
2008 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2009 {
2010         bool pr = false;
2011         u32 msr = msr_info->index;
2012         u64 data = msr_info->data;
2013
2014         switch (msr) {
2015         case MSR_AMD64_NB_CFG:
2016         case MSR_IA32_UCODE_REV:
2017         case MSR_IA32_UCODE_WRITE:
2018         case MSR_VM_HSAVE_PA:
2019         case MSR_AMD64_PATCH_LOADER:
2020         case MSR_AMD64_BU_CFG2:
2021                 break;
2022
2023         case MSR_EFER:
2024                 return set_efer(vcpu, data);
2025         case MSR_K7_HWCR:
2026                 data &= ~(u64)0x40;     /* ignore flush filter disable */
2027                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2028                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
2029                 if (data != 0) {
2030                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2031                                     data);
2032                         return 1;
2033                 }
2034                 break;
2035         case MSR_FAM10H_MMIO_CONF_BASE:
2036                 if (data != 0) {
2037                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2038                                     "0x%llx\n", data);
2039                         return 1;
2040                 }
2041                 break;
2042         case MSR_IA32_DEBUGCTLMSR:
2043                 if (!data) {
2044                         /* We support the non-activated case already */
2045                         break;
2046                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2047                         /* Values other than LBR and BTF are vendor-specific,
2048                            thus reserved and should throw a #GP */
2049                         return 1;
2050                 }
2051                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2052                             __func__, data);
2053                 break;
2054         case 0x200 ... 0x2ff:
2055                 return set_msr_mtrr(vcpu, msr, data);
2056         case MSR_IA32_APICBASE:
2057                 return kvm_set_apic_base(vcpu, msr_info);
2058         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2059                 return kvm_x2apic_msr_write(vcpu, msr, data);
2060         case MSR_IA32_TSCDEADLINE:
2061                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2062                 break;
2063         case MSR_IA32_TSC_ADJUST:
2064                 if (guest_cpuid_has_tsc_adjust(vcpu)) {
2065                         if (!msr_info->host_initiated) {
2066                                 u64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2067                                 kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true);
2068                         }
2069                         vcpu->arch.ia32_tsc_adjust_msr = data;
2070                 }
2071                 break;
2072         case MSR_IA32_MISC_ENABLE:
2073                 vcpu->arch.ia32_misc_enable_msr = data;
2074                 break;
2075         case MSR_KVM_WALL_CLOCK_NEW:
2076         case MSR_KVM_WALL_CLOCK:
2077                 vcpu->kvm->arch.wall_clock = data;
2078                 kvm_write_wall_clock(vcpu->kvm, data);
2079                 break;
2080         case MSR_KVM_SYSTEM_TIME_NEW:
2081         case MSR_KVM_SYSTEM_TIME: {
2082                 u64 gpa_offset;
2083                 kvmclock_reset(vcpu);
2084
2085                 vcpu->arch.time = data;
2086                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2087
2088                 /* we verify if the enable bit is set... */
2089                 if (!(data & 1))
2090                         break;
2091
2092                 gpa_offset = data & ~(PAGE_MASK | 1);
2093
2094                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2095                      &vcpu->arch.pv_time, data & ~1ULL,
2096                      sizeof(struct pvclock_vcpu_time_info)))
2097                         vcpu->arch.pv_time_enabled = false;
2098                 else
2099                         vcpu->arch.pv_time_enabled = true;
2100
2101                 break;
2102         }
2103         case MSR_KVM_ASYNC_PF_EN:
2104                 if (kvm_pv_enable_async_pf(vcpu, data))
2105                         return 1;
2106                 break;
2107         case MSR_KVM_STEAL_TIME:
2108
2109                 if (unlikely(!sched_info_on()))
2110                         return 1;
2111
2112                 if (data & KVM_STEAL_RESERVED_MASK)
2113                         return 1;
2114
2115                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2116                                                 data & KVM_STEAL_VALID_BITS,
2117                                                 sizeof(struct kvm_steal_time)))
2118                         return 1;
2119
2120                 vcpu->arch.st.msr_val = data;
2121
2122                 if (!(data & KVM_MSR_ENABLED))
2123                         break;
2124
2125                 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2126
2127                 preempt_disable();
2128                 accumulate_steal_time(vcpu);
2129                 preempt_enable();
2130
2131                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2132
2133                 break;
2134         case MSR_KVM_PV_EOI_EN:
2135                 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2136                         return 1;
2137                 break;
2138
2139         case MSR_IA32_MCG_CTL:
2140         case MSR_IA32_MCG_STATUS:
2141         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2142                 return set_msr_mce(vcpu, msr, data);
2143
2144         /* Performance counters are not protected by a CPUID bit,
2145          * so we should check all of them in the generic path for the sake of
2146          * cross vendor migration.
2147          * Writing a zero into the event select MSRs disables them,
2148          * which we perfectly emulate ;-). Any other value should be at least
2149          * reported, some guests depend on them.
2150          */
2151         case MSR_K7_EVNTSEL0:
2152         case MSR_K7_EVNTSEL1:
2153         case MSR_K7_EVNTSEL2:
2154         case MSR_K7_EVNTSEL3:
2155                 if (data != 0)
2156                         vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2157                                     "0x%x data 0x%llx\n", msr, data);
2158                 break;
2159         /* at least RHEL 4 unconditionally writes to the perfctr registers,
2160          * so we ignore writes to make it happy.
2161          */
2162         case MSR_K7_PERFCTR0:
2163         case MSR_K7_PERFCTR1:
2164         case MSR_K7_PERFCTR2:
2165         case MSR_K7_PERFCTR3:
2166                 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2167                             "0x%x data 0x%llx\n", msr, data);
2168                 break;
2169         case MSR_P6_PERFCTR0:
2170         case MSR_P6_PERFCTR1:
2171                 pr = true;
2172         case MSR_P6_EVNTSEL0:
2173         case MSR_P6_EVNTSEL1:
2174                 if (kvm_pmu_msr(vcpu, msr))
2175                         return kvm_pmu_set_msr(vcpu, msr_info);
2176
2177                 if (pr || data != 0)
2178                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2179                                     "0x%x data 0x%llx\n", msr, data);
2180                 break;
2181         case MSR_K7_CLK_CTL:
2182                 /*
2183                  * Ignore all writes to this no longer documented MSR.
2184                  * Writes are only relevant for old K7 processors,
2185                  * all pre-dating SVM, but a recommended workaround from
2186                  * AMD for these chips. It is possible to specify the
2187                  * affected processor models on the command line, hence
2188                  * the need to ignore the workaround.
2189                  */
2190                 break;
2191         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2192                 if (kvm_hv_msr_partition_wide(msr)) {
2193                         int r;
2194                         mutex_lock(&vcpu->kvm->lock);
2195                         r = set_msr_hyperv_pw(vcpu, msr, data);
2196                         mutex_unlock(&vcpu->kvm->lock);
2197                         return r;
2198                 } else
2199                         return set_msr_hyperv(vcpu, msr, data);
2200                 break;
2201         case MSR_IA32_BBL_CR_CTL3:
2202                 /* Drop writes to this legacy MSR -- see rdmsr
2203                  * counterpart for further detail.
2204                  */
2205                 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2206                 break;
2207         case MSR_AMD64_OSVW_ID_LENGTH:
2208                 if (!guest_cpuid_has_osvw(vcpu))
2209                         return 1;
2210                 vcpu->arch.osvw.length = data;
2211                 break;
2212         case MSR_AMD64_OSVW_STATUS:
2213                 if (!guest_cpuid_has_osvw(vcpu))
2214                         return 1;
2215                 vcpu->arch.osvw.status = data;
2216                 break;
2217         default:
2218                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2219                         return xen_hvm_config(vcpu, data);
2220                 if (kvm_pmu_msr(vcpu, msr))
2221                         return kvm_pmu_set_msr(vcpu, msr_info);
2222                 if (!ignore_msrs) {
2223                         vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2224                                     msr, data);
2225                         return 1;
2226                 } else {
2227                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2228                                     msr, data);
2229                         break;
2230                 }
2231         }
2232         return 0;
2233 }
2234 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2235
2236
2237 /*
2238  * Reads an msr value (of 'msr_index') into 'pdata'.
2239  * Returns 0 on success, non-0 otherwise.
2240  * Assumes vcpu_load() was already called.
2241  */
2242 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2243 {
2244         return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
2245 }
2246
2247 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2248 {
2249         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
2250
2251         if (!msr_mtrr_valid(msr))
2252                 return 1;
2253
2254         if (msr == MSR_MTRRdefType)
2255                 *pdata = vcpu->arch.mtrr_state.def_type +
2256                          (vcpu->arch.mtrr_state.enabled << 10);
2257         else if (msr == MSR_MTRRfix64K_00000)
2258                 *pdata = p[0];
2259         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
2260                 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
2261         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
2262                 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
2263         else if (msr == MSR_IA32_CR_PAT)
2264                 *pdata = vcpu->arch.pat;
2265         else {  /* Variable MTRRs */
2266                 int idx, is_mtrr_mask;
2267                 u64 *pt;
2268
2269                 idx = (msr - 0x200) / 2;
2270                 is_mtrr_mask = msr - 0x200 - 2 * idx;
2271                 if (!is_mtrr_mask)
2272                         pt =
2273                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
2274                 else
2275                         pt =
2276                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
2277                 *pdata = *pt;
2278         }
2279
2280         return 0;
2281 }
2282
2283 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2284 {
2285         u64 data;
2286         u64 mcg_cap = vcpu->arch.mcg_cap;
2287         unsigned bank_num = mcg_cap & 0xff;
2288
2289         switch (msr) {
2290         case MSR_IA32_P5_MC_ADDR:
2291         case MSR_IA32_P5_MC_TYPE:
2292                 data = 0;
2293                 break;
2294         case MSR_IA32_MCG_CAP:
2295                 data = vcpu->arch.mcg_cap;
2296                 break;
2297         case MSR_IA32_MCG_CTL:
2298                 if (!(mcg_cap & MCG_CTL_P))
2299                         return 1;
2300                 data = vcpu->arch.mcg_ctl;
2301                 break;
2302         case MSR_IA32_MCG_STATUS:
2303                 data = vcpu->arch.mcg_status;
2304                 break;
2305         default:
2306                 if (msr >= MSR_IA32_MC0_CTL &&
2307                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
2308                         u32 offset = msr - MSR_IA32_MC0_CTL;
2309                         data = vcpu->arch.mce_banks[offset];
2310                         break;
2311                 }
2312                 return 1;
2313         }
2314         *pdata = data;
2315         return 0;
2316 }
2317
2318 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2319 {
2320         u64 data = 0;
2321         struct kvm *kvm = vcpu->kvm;
2322
2323         switch (msr) {
2324         case HV_X64_MSR_GUEST_OS_ID:
2325                 data = kvm->arch.hv_guest_os_id;
2326                 break;
2327         case HV_X64_MSR_HYPERCALL:
2328                 data = kvm->arch.hv_hypercall;
2329                 break;
2330         case HV_X64_MSR_TIME_REF_COUNT: {
2331                 data =
2332                      div_u64(get_kernel_ns() + kvm->arch.kvmclock_offset, 100);
2333                 break;
2334         }
2335         case HV_X64_MSR_REFERENCE_TSC:
2336                 data = kvm->arch.hv_tsc_page;
2337                 break;
2338         default:
2339                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2340                 return 1;
2341         }
2342
2343         *pdata = data;
2344         return 0;
2345 }
2346
2347 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2348 {
2349         u64 data = 0;
2350
2351         switch (msr) {
2352         case HV_X64_MSR_VP_INDEX: {
2353                 int r;
2354                 struct kvm_vcpu *v;
2355                 kvm_for_each_vcpu(r, v, vcpu->kvm)
2356                         if (v == vcpu)
2357                                 data = r;
2358                 break;
2359         }
2360         case HV_X64_MSR_EOI:
2361                 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
2362         case HV_X64_MSR_ICR:
2363                 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
2364         case HV_X64_MSR_TPR:
2365                 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
2366         case HV_X64_MSR_APIC_ASSIST_PAGE:
2367                 data = vcpu->arch.hv_vapic;
2368                 break;
2369         default:
2370                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2371                 return 1;
2372         }
2373         *pdata = data;
2374         return 0;
2375 }
2376
2377 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2378 {
2379         u64 data;
2380
2381         switch (msr) {
2382         case MSR_IA32_PLATFORM_ID:
2383         case MSR_IA32_EBL_CR_POWERON:
2384         case MSR_IA32_DEBUGCTLMSR:
2385         case MSR_IA32_LASTBRANCHFROMIP:
2386         case MSR_IA32_LASTBRANCHTOIP:
2387         case MSR_IA32_LASTINTFROMIP:
2388         case MSR_IA32_LASTINTTOIP:
2389         case MSR_K8_SYSCFG:
2390         case MSR_K7_HWCR:
2391         case MSR_VM_HSAVE_PA:
2392         case MSR_K7_EVNTSEL0:
2393         case MSR_K7_PERFCTR0:
2394         case MSR_K8_INT_PENDING_MSG:
2395         case MSR_AMD64_NB_CFG:
2396         case MSR_FAM10H_MMIO_CONF_BASE:
2397         case MSR_AMD64_BU_CFG2:
2398                 data = 0;
2399                 break;
2400         case MSR_P6_PERFCTR0:
2401         case MSR_P6_PERFCTR1:
2402         case MSR_P6_EVNTSEL0:
2403         case MSR_P6_EVNTSEL1:
2404                 if (kvm_pmu_msr(vcpu, msr))
2405                         return kvm_pmu_get_msr(vcpu, msr, pdata);
2406                 data = 0;
2407                 break;
2408         case MSR_IA32_UCODE_REV:
2409                 data = 0x100000000ULL;
2410                 break;
2411         case MSR_MTRRcap:
2412                 data = 0x500 | KVM_NR_VAR_MTRR;
2413                 break;
2414         case 0x200 ... 0x2ff:
2415                 return get_msr_mtrr(vcpu, msr, pdata);
2416         case 0xcd: /* fsb frequency */
2417                 data = 3;
2418                 break;
2419                 /*
2420                  * MSR_EBC_FREQUENCY_ID
2421                  * Conservative value valid for even the basic CPU models.
2422                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2423                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2424                  * and 266MHz for model 3, or 4. Set Core Clock
2425                  * Frequency to System Bus Frequency Ratio to 1 (bits
2426                  * 31:24) even though these are only valid for CPU
2427                  * models > 2, however guests may end up dividing or
2428                  * multiplying by zero otherwise.
2429                  */
2430         case MSR_EBC_FREQUENCY_ID:
2431                 data = 1 << 24;
2432                 break;
2433         case MSR_IA32_APICBASE:
2434                 data = kvm_get_apic_base(vcpu);
2435                 break;
2436         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2437                 return kvm_x2apic_msr_read(vcpu, msr, pdata);
2438                 break;
2439         case MSR_IA32_TSCDEADLINE:
2440                 data = kvm_get_lapic_tscdeadline_msr(vcpu);
2441                 break;
2442         case MSR_IA32_TSC_ADJUST:
2443                 data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2444                 break;
2445         case MSR_IA32_MISC_ENABLE:
2446                 data = vcpu->arch.ia32_misc_enable_msr;
2447                 break;
2448         case MSR_IA32_PERF_STATUS:
2449                 /* TSC increment by tick */
2450                 data = 1000ULL;
2451                 /* CPU multiplier */
2452                 data |= (((uint64_t)4ULL) << 40);
2453                 break;
2454         case MSR_EFER:
2455                 data = vcpu->arch.efer;
2456                 break;
2457         case MSR_KVM_WALL_CLOCK:
2458         case MSR_KVM_WALL_CLOCK_NEW:
2459                 data = vcpu->kvm->arch.wall_clock;
2460                 break;
2461         case MSR_KVM_SYSTEM_TIME:
2462         case MSR_KVM_SYSTEM_TIME_NEW:
2463                 data = vcpu->arch.time;
2464                 break;
2465         case MSR_KVM_ASYNC_PF_EN:
2466                 data = vcpu->arch.apf.msr_val;
2467                 break;
2468         case MSR_KVM_STEAL_TIME:
2469                 data = vcpu->arch.st.msr_val;
2470                 break;
2471         case MSR_KVM_PV_EOI_EN:
2472                 data = vcpu->arch.pv_eoi.msr_val;
2473                 break;
2474         case MSR_IA32_P5_MC_ADDR:
2475         case MSR_IA32_P5_MC_TYPE:
2476         case MSR_IA32_MCG_CAP:
2477         case MSR_IA32_MCG_CTL:
2478         case MSR_IA32_MCG_STATUS:
2479         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2480                 return get_msr_mce(vcpu, msr, pdata);
2481         case MSR_K7_CLK_CTL:
2482                 /*
2483                  * Provide expected ramp-up count for K7. All other
2484                  * are set to zero, indicating minimum divisors for
2485                  * every field.
2486                  *
2487                  * This prevents guest kernels on AMD host with CPU
2488                  * type 6, model 8 and higher from exploding due to
2489                  * the rdmsr failing.
2490                  */
2491                 data = 0x20000000;
2492                 break;
2493         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2494                 if (kvm_hv_msr_partition_wide(msr)) {
2495                         int r;
2496                         mutex_lock(&vcpu->kvm->lock);
2497                         r = get_msr_hyperv_pw(vcpu, msr, pdata);
2498                         mutex_unlock(&vcpu->kvm->lock);
2499                         return r;
2500                 } else
2501                         return get_msr_hyperv(vcpu, msr, pdata);
2502                 break;
2503         case MSR_IA32_BBL_CR_CTL3:
2504                 /* This legacy MSR exists but isn't fully documented in current
2505                  * silicon.  It is however accessed by winxp in very narrow
2506                  * scenarios where it sets bit #19, itself documented as
2507                  * a "reserved" bit.  Best effort attempt to source coherent
2508                  * read data here should the balance of the register be
2509                  * interpreted by the guest:
2510                  *
2511                  * L2 cache control register 3: 64GB range, 256KB size,
2512                  * enabled, latency 0x1, configured
2513                  */
2514                 data = 0xbe702111;
2515                 break;
2516         case MSR_AMD64_OSVW_ID_LENGTH:
2517                 if (!guest_cpuid_has_osvw(vcpu))
2518                         return 1;
2519                 data = vcpu->arch.osvw.length;
2520                 break;
2521         case MSR_AMD64_OSVW_STATUS:
2522                 if (!guest_cpuid_has_osvw(vcpu))
2523                         return 1;
2524                 data = vcpu->arch.osvw.status;
2525                 break;
2526         default:
2527                 if (kvm_pmu_msr(vcpu, msr))
2528                         return kvm_pmu_get_msr(vcpu, msr, pdata);
2529                 if (!ignore_msrs) {
2530                         vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
2531                         return 1;
2532                 } else {
2533                         vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
2534                         data = 0;
2535                 }
2536                 break;
2537         }
2538         *pdata = data;
2539         return 0;
2540 }
2541 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2542
2543 /*
2544  * Read or write a bunch of msrs. All parameters are kernel addresses.
2545  *
2546  * @return number of msrs set successfully.
2547  */
2548 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2549                     struct kvm_msr_entry *entries,
2550                     int (*do_msr)(struct kvm_vcpu *vcpu,
2551                                   unsigned index, u64 *data))
2552 {
2553         int i, idx;
2554
2555         idx = srcu_read_lock(&vcpu->kvm->srcu);
2556         for (i = 0; i < msrs->nmsrs; ++i)
2557                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2558                         break;
2559         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2560
2561         return i;
2562 }
2563
2564 /*
2565  * Read or write a bunch of msrs. Parameters are user addresses.
2566  *
2567  * @return number of msrs set successfully.
2568  */
2569 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2570                   int (*do_msr)(struct kvm_vcpu *vcpu,
2571                                 unsigned index, u64 *data),
2572                   int writeback)
2573 {
2574         struct kvm_msrs msrs;
2575         struct kvm_msr_entry *entries;
2576         int r, n;
2577         unsigned size;
2578
2579         r = -EFAULT;
2580         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2581                 goto out;
2582
2583         r = -E2BIG;
2584         if (msrs.nmsrs >= MAX_IO_MSRS)
2585                 goto out;
2586
2587         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2588         entries = memdup_user(user_msrs->entries, size);
2589         if (IS_ERR(entries)) {
2590                 r = PTR_ERR(entries);
2591                 goto out;
2592         }
2593
2594         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2595         if (r < 0)
2596                 goto out_free;
2597
2598         r = -EFAULT;
2599         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2600                 goto out_free;
2601
2602         r = n;
2603
2604 out_free:
2605         kfree(entries);
2606 out:
2607         return r;
2608 }
2609
2610 int kvm_dev_ioctl_check_extension(long ext)
2611 {
2612         int r;
2613
2614         switch (ext) {
2615         case KVM_CAP_IRQCHIP:
2616         case KVM_CAP_HLT:
2617         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2618         case KVM_CAP_SET_TSS_ADDR:
2619         case KVM_CAP_EXT_CPUID:
2620         case KVM_CAP_EXT_EMUL_CPUID:
2621         case KVM_CAP_CLOCKSOURCE:
2622         case KVM_CAP_PIT:
2623         case KVM_CAP_NOP_IO_DELAY:
2624         case KVM_CAP_MP_STATE:
2625         case KVM_CAP_SYNC_MMU:
2626         case KVM_CAP_USER_NMI:
2627         case KVM_CAP_REINJECT_CONTROL:
2628         case KVM_CAP_IRQ_INJECT_STATUS:
2629         case KVM_CAP_IRQFD:
2630         case KVM_CAP_IOEVENTFD:
2631         case KVM_CAP_PIT2:
2632         case KVM_CAP_PIT_STATE2:
2633         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2634         case KVM_CAP_XEN_HVM:
2635         case KVM_CAP_ADJUST_CLOCK:
2636         case KVM_CAP_VCPU_EVENTS:
2637         case KVM_CAP_HYPERV:
2638         case KVM_CAP_HYPERV_VAPIC:
2639         case KVM_CAP_HYPERV_SPIN:
2640         case KVM_CAP_PCI_SEGMENT:
2641         case KVM_CAP_DEBUGREGS:
2642         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2643         case KVM_CAP_XSAVE:
2644         case KVM_CAP_ASYNC_PF:
2645         case KVM_CAP_GET_TSC_KHZ:
2646         case KVM_CAP_KVMCLOCK_CTRL:
2647         case KVM_CAP_READONLY_MEM:
2648         case KVM_CAP_HYPERV_TIME:
2649 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2650         case KVM_CAP_ASSIGN_DEV_IRQ:
2651         case KVM_CAP_PCI_2_3:
2652 #endif
2653                 r = 1;
2654                 break;
2655         case KVM_CAP_COALESCED_MMIO:
2656                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2657                 break;
2658         case KVM_CAP_VAPIC:
2659                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2660                 break;
2661         case KVM_CAP_NR_VCPUS:
2662                 r = KVM_SOFT_MAX_VCPUS;
2663                 break;
2664         case KVM_CAP_MAX_VCPUS:
2665                 r = KVM_MAX_VCPUS;
2666                 break;
2667         case KVM_CAP_NR_MEMSLOTS:
2668                 r = KVM_USER_MEM_SLOTS;
2669                 break;
2670         case KVM_CAP_PV_MMU:    /* obsolete */
2671                 r = 0;
2672                 break;
2673 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2674         case KVM_CAP_IOMMU:
2675                 r = iommu_present(&pci_bus_type);
2676                 break;
2677 #endif
2678         case KVM_CAP_MCE:
2679                 r = KVM_MAX_MCE_BANKS;
2680                 break;
2681         case KVM_CAP_XCRS:
2682                 r = cpu_has_xsave;
2683                 break;
2684         case KVM_CAP_TSC_CONTROL:
2685                 r = kvm_has_tsc_control;
2686                 break;
2687         case KVM_CAP_TSC_DEADLINE_TIMER:
2688                 r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER);
2689                 break;
2690         default:
2691                 r = 0;
2692                 break;
2693         }
2694         return r;
2695
2696 }
2697
2698 long kvm_arch_dev_ioctl(struct file *filp,
2699                         unsigned int ioctl, unsigned long arg)
2700 {
2701         void __user *argp = (void __user *)arg;
2702         long r;
2703
2704         switch (ioctl) {
2705         case KVM_GET_MSR_INDEX_LIST: {
2706                 struct kvm_msr_list __user *user_msr_list = argp;
2707                 struct kvm_msr_list msr_list;
2708                 unsigned n;
2709
2710                 r = -EFAULT;
2711                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2712                         goto out;
2713                 n = msr_list.nmsrs;
2714                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2715                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2716                         goto out;
2717                 r = -E2BIG;
2718                 if (n < msr_list.nmsrs)
2719                         goto out;
2720                 r = -EFAULT;
2721                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2722                                  num_msrs_to_save * sizeof(u32)))
2723                         goto out;
2724                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2725                                  &emulated_msrs,
2726                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2727                         goto out;
2728                 r = 0;
2729                 break;
2730         }
2731         case KVM_GET_SUPPORTED_CPUID:
2732         case KVM_GET_EMULATED_CPUID: {
2733                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2734                 struct kvm_cpuid2 cpuid;
2735
2736                 r = -EFAULT;
2737                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2738                         goto out;
2739
2740                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2741                                             ioctl);
2742                 if (r)
2743                         goto out;
2744
2745                 r = -EFAULT;
2746                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2747                         goto out;
2748                 r = 0;
2749                 break;
2750         }
2751         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2752                 u64 mce_cap;
2753
2754                 mce_cap = KVM_MCE_CAP_SUPPORTED;
2755                 r = -EFAULT;
2756                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2757                         goto out;
2758                 r = 0;
2759                 break;
2760         }
2761         default:
2762                 r = -EINVAL;
2763         }
2764 out:
2765         return r;
2766 }
2767
2768 static void wbinvd_ipi(void *garbage)
2769 {
2770         wbinvd();
2771 }
2772
2773 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2774 {
2775         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2776 }
2777
2778 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2779 {
2780         /* Address WBINVD may be executed by guest */
2781         if (need_emulate_wbinvd(vcpu)) {
2782                 if (kvm_x86_ops->has_wbinvd_exit())
2783                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2784                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2785                         smp_call_function_single(vcpu->cpu,
2786                                         wbinvd_ipi, NULL, 1);
2787         }
2788
2789         kvm_x86_ops->vcpu_load(vcpu, cpu);
2790
2791         /* Apply any externally detected TSC adjustments (due to suspend) */
2792         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2793                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2794                 vcpu->arch.tsc_offset_adjustment = 0;
2795                 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
2796         }
2797
2798         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2799                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2800                                 native_read_tsc() - vcpu->arch.last_host_tsc;
2801                 if (tsc_delta < 0)
2802                         mark_tsc_unstable("KVM discovered backwards TSC");
2803                 if (check_tsc_unstable()) {
2804                         u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2805                                                 vcpu->arch.last_guest_tsc);
2806                         kvm_x86_ops->write_tsc_offset(vcpu, offset);
2807                         vcpu->arch.tsc_catchup = 1;
2808                 }
2809                 /*
2810                  * On a host with synchronized TSC, there is no need to update
2811                  * kvmclock on vcpu->cpu migration
2812                  */
2813                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2814                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2815                 if (vcpu->cpu != cpu)
2816                         kvm_migrate_timers(vcpu);
2817                 vcpu->cpu = cpu;
2818         }
2819
2820         accumulate_steal_time(vcpu);
2821         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2822 }
2823
2824 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2825 {
2826         kvm_x86_ops->vcpu_put(vcpu);
2827         kvm_put_guest_fpu(vcpu);
2828         vcpu->arch.last_host_tsc = native_read_tsc();
2829 }
2830
2831 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2832                                     struct kvm_lapic_state *s)
2833 {
2834         kvm_x86_ops->sync_pir_to_irr(vcpu);
2835         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2836
2837         return 0;
2838 }
2839
2840 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2841                                     struct kvm_lapic_state *s)
2842 {
2843         kvm_apic_post_state_restore(vcpu, s);
2844         update_cr8_intercept(vcpu);
2845
2846         return 0;
2847 }
2848
2849 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2850                                     struct kvm_interrupt *irq)
2851 {
2852         if (irq->irq >= KVM_NR_INTERRUPTS)
2853                 return -EINVAL;
2854         if (irqchip_in_kernel(vcpu->kvm))
2855                 return -ENXIO;
2856
2857         kvm_queue_interrupt(vcpu, irq->irq, false);
2858         kvm_make_request(KVM_REQ_EVENT, vcpu);
2859
2860         return 0;
2861 }
2862
2863 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2864 {
2865         kvm_inject_nmi(vcpu);
2866
2867         return 0;
2868 }
2869
2870 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2871                                            struct kvm_tpr_access_ctl *tac)
2872 {
2873         if (tac->flags)
2874                 return -EINVAL;
2875         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2876         return 0;
2877 }
2878
2879 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2880                                         u64 mcg_cap)
2881 {
2882         int r;
2883         unsigned bank_num = mcg_cap & 0xff, bank;
2884
2885         r = -EINVAL;
2886         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2887                 goto out;
2888         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2889                 goto out;
2890         r = 0;
2891         vcpu->arch.mcg_cap = mcg_cap;
2892         /* Init IA32_MCG_CTL to all 1s */
2893         if (mcg_cap & MCG_CTL_P)
2894                 vcpu->arch.mcg_ctl = ~(u64)0;
2895         /* Init IA32_MCi_CTL to all 1s */
2896         for (bank = 0; bank < bank_num; bank++)
2897                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2898 out:
2899         return r;
2900 }
2901
2902 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2903                                       struct kvm_x86_mce *mce)
2904 {
2905         u64 mcg_cap = vcpu->arch.mcg_cap;
2906         unsigned bank_num = mcg_cap & 0xff;
2907         u64 *banks = vcpu->arch.mce_banks;
2908
2909         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2910                 return -EINVAL;
2911         /*
2912          * if IA32_MCG_CTL is not all 1s, the uncorrected error
2913          * reporting is disabled
2914          */
2915         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2916             vcpu->arch.mcg_ctl != ~(u64)0)
2917                 return 0;
2918         banks += 4 * mce->bank;
2919         /*
2920          * if IA32_MCi_CTL is not all 1s, the uncorrected error
2921          * reporting is disabled for the bank
2922          */
2923         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2924                 return 0;
2925         if (mce->status & MCI_STATUS_UC) {
2926                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2927                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2928                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2929                         return 0;
2930                 }
2931                 if (banks[1] & MCI_STATUS_VAL)
2932                         mce->status |= MCI_STATUS_OVER;
2933                 banks[2] = mce->addr;
2934                 banks[3] = mce->misc;
2935                 vcpu->arch.mcg_status = mce->mcg_status;
2936                 banks[1] = mce->status;
2937                 kvm_queue_exception(vcpu, MC_VECTOR);
2938         } else if (!(banks[1] & MCI_STATUS_VAL)
2939                    || !(banks[1] & MCI_STATUS_UC)) {
2940                 if (banks[1] & MCI_STATUS_VAL)
2941                         mce->status |= MCI_STATUS_OVER;
2942                 banks[2] = mce->addr;
2943                 banks[3] = mce->misc;
2944                 banks[1] = mce->status;
2945         } else
2946                 banks[1] |= MCI_STATUS_OVER;
2947         return 0;
2948 }
2949
2950 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2951                                                struct kvm_vcpu_events *events)
2952 {
2953         process_nmi(vcpu);
2954         events->exception.injected =
2955                 vcpu->arch.exception.pending &&
2956                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2957         events->exception.nr = vcpu->arch.exception.nr;
2958         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2959         events->exception.pad = 0;
2960         events->exception.error_code = vcpu->arch.exception.error_code;
2961
2962         events->interrupt.injected =
2963                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2964         events->interrupt.nr = vcpu->arch.interrupt.nr;
2965         events->interrupt.soft = 0;
2966         events->interrupt.shadow =
2967                 kvm_x86_ops->get_interrupt_shadow(vcpu,
2968                         KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2969
2970         events->nmi.injected = vcpu->arch.nmi_injected;
2971         events->nmi.pending = vcpu->arch.nmi_pending != 0;
2972         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2973         events->nmi.pad = 0;
2974
2975         events->sipi_vector = 0; /* never valid when reporting to user space */
2976
2977         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2978                          | KVM_VCPUEVENT_VALID_SHADOW);
2979         memset(&events->reserved, 0, sizeof(events->reserved));
2980 }
2981
2982 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2983                                               struct kvm_vcpu_events *events)
2984 {
2985         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2986                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2987                               | KVM_VCPUEVENT_VALID_SHADOW))
2988                 return -EINVAL;
2989
2990         process_nmi(vcpu);
2991         vcpu->arch.exception.pending = events->exception.injected;
2992         vcpu->arch.exception.nr = events->exception.nr;
2993         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2994         vcpu->arch.exception.error_code = events->exception.error_code;
2995
2996         vcpu->arch.interrupt.pending = events->interrupt.injected;
2997         vcpu->arch.interrupt.nr = events->interrupt.nr;
2998         vcpu->arch.interrupt.soft = events->interrupt.soft;
2999         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3000                 kvm_x86_ops->set_interrupt_shadow(vcpu,
3001                                                   events->interrupt.shadow);
3002
3003         vcpu->arch.nmi_injected = events->nmi.injected;
3004         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3005                 vcpu->arch.nmi_pending = events->nmi.pending;
3006         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3007
3008         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3009             kvm_vcpu_has_lapic(vcpu))
3010                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3011
3012         kvm_make_request(KVM_REQ_EVENT, vcpu);
3013
3014         return 0;
3015 }
3016
3017 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3018                                              struct kvm_debugregs *dbgregs)
3019 {
3020         unsigned long val;
3021
3022         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3023         _kvm_get_dr(vcpu, 6, &val);
3024         dbgregs->dr6 = val;
3025         dbgregs->dr7 = vcpu->arch.dr7;
3026         dbgregs->flags = 0;
3027         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3028 }
3029
3030 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3031                                             struct kvm_debugregs *dbgregs)
3032 {
3033         if (dbgregs->flags)
3034                 return -EINVAL;
3035
3036         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3037         vcpu->arch.dr6 = dbgregs->dr6;
3038         kvm_update_dr6(vcpu);
3039         vcpu->arch.dr7 = dbgregs->dr7;
3040         kvm_update_dr7(vcpu);
3041
3042         return 0;
3043 }
3044
3045 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3046                                          struct kvm_xsave *guest_xsave)
3047 {
3048         if (cpu_has_xsave) {
3049                 memcpy(guest_xsave->region,
3050                         &vcpu->arch.guest_fpu.state->xsave,
3051                         vcpu->arch.guest_xstate_size);
3052                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] &=
3053                         vcpu->arch.guest_supported_xcr0 | XSTATE_FPSSE;
3054         } else {
3055                 memcpy(guest_xsave->region,
3056                         &vcpu->arch.guest_fpu.state->fxsave,
3057                         sizeof(struct i387_fxsave_struct));
3058                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3059                         XSTATE_FPSSE;
3060         }
3061 }
3062
3063 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3064                                         struct kvm_xsave *guest_xsave)
3065 {
3066         u64 xstate_bv =
3067                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3068
3069         if (cpu_has_xsave) {
3070                 /*
3071                  * Here we allow setting states that are not present in
3072                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3073                  * with old userspace.
3074                  */
3075                 if (xstate_bv & ~KVM_SUPPORTED_XCR0)
3076                         return -EINVAL;
3077                 if (xstate_bv & ~host_xcr0)
3078                         return -EINVAL;
3079                 memcpy(&vcpu->arch.guest_fpu.state->xsave,
3080                         guest_xsave->region, vcpu->arch.guest_xstate_size);
3081         } else {
3082                 if (xstate_bv & ~XSTATE_FPSSE)
3083                         return -EINVAL;
3084                 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
3085                         guest_xsave->region, sizeof(struct i387_fxsave_struct));
3086         }
3087         return 0;
3088 }
3089
3090 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3091                                         struct kvm_xcrs *guest_xcrs)
3092 {
3093         if (!cpu_has_xsave) {
3094                 guest_xcrs->nr_xcrs = 0;
3095                 return;
3096         }
3097
3098         guest_xcrs->nr_xcrs = 1;
3099         guest_xcrs->flags = 0;
3100         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3101         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3102 }
3103
3104 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3105                                        struct kvm_xcrs *guest_xcrs)
3106 {
3107         int i, r = 0;
3108
3109         if (!cpu_has_xsave)
3110                 return -EINVAL;
3111
3112         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3113                 return -EINVAL;
3114
3115         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3116                 /* Only support XCR0 currently */
3117                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3118                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3119                                 guest_xcrs->xcrs[i].value);
3120                         break;
3121                 }
3122         if (r)
3123                 r = -EINVAL;
3124         return r;
3125 }
3126
3127 /*
3128  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3129  * stopped by the hypervisor.  This function will be called from the host only.
3130  * EINVAL is returned when the host attempts to set the flag for a guest that
3131  * does not support pv clocks.
3132  */
3133 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3134 {
3135         if (!vcpu->arch.pv_time_enabled)
3136                 return -EINVAL;
3137         vcpu->arch.pvclock_set_guest_stopped_request = true;
3138         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3139         return 0;
3140 }
3141
3142 long kvm_arch_vcpu_ioctl(struct file *filp,
3143                          unsigned int ioctl, unsigned long arg)
3144 {
3145         struct kvm_vcpu *vcpu = filp->private_data;
3146         void __user *argp = (void __user *)arg;
3147         int r;
3148         union {
3149                 struct kvm_lapic_state *lapic;
3150                 struct kvm_xsave *xsave;
3151                 struct kvm_xcrs *xcrs;
3152                 void *buffer;
3153         } u;
3154
3155         u.buffer = NULL;
3156         switch (ioctl) {
3157         case KVM_GET_LAPIC: {
3158                 r = -EINVAL;
3159                 if (!vcpu->arch.apic)
3160                         goto out;
3161                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3162
3163                 r = -ENOMEM;
3164                 if (!u.lapic)
3165                         goto out;
3166                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3167                 if (r)
3168                         goto out;
3169                 r = -EFAULT;
3170                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3171                         goto out;
3172                 r = 0;
3173                 break;
3174         }
3175         case KVM_SET_LAPIC: {
3176                 r = -EINVAL;
3177                 if (!vcpu->arch.apic)
3178                         goto out;
3179                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3180                 if (IS_ERR(u.lapic))
3181                         return PTR_ERR(u.lapic);
3182
3183                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3184                 break;
3185         }
3186         case KVM_INTERRUPT: {
3187                 struct kvm_interrupt irq;
3188
3189                 r = -EFAULT;
3190                 if (copy_from_user(&irq, argp, sizeof irq))
3191                         goto out;
3192                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3193                 break;
3194         }
3195         case KVM_NMI: {
3196                 r = kvm_vcpu_ioctl_nmi(vcpu);
3197                 break;
3198         }
3199         case KVM_SET_CPUID: {
3200                 struct kvm_cpuid __user *cpuid_arg = argp;
3201                 struct kvm_cpuid cpuid;
3202
3203                 r = -EFAULT;
3204                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3205                         goto out;
3206                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3207                 break;
3208         }
3209         case KVM_SET_CPUID2: {
3210                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3211                 struct kvm_cpuid2 cpuid;
3212
3213                 r = -EFAULT;
3214                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3215                         goto out;
3216                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3217                                               cpuid_arg->entries);
3218                 break;
3219         }
3220         case KVM_GET_CPUID2: {
3221                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3222                 struct kvm_cpuid2 cpuid;
3223
3224                 r = -EFAULT;
3225                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3226                         goto out;
3227                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3228                                               cpuid_arg->entries);
3229                 if (r)
3230                         goto out;
3231                 r = -EFAULT;
3232                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3233                         goto out;
3234                 r = 0;
3235                 break;
3236         }
3237         case KVM_GET_MSRS:
3238                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
3239                 break;
3240         case KVM_SET_MSRS:
3241                 r = msr_io(vcpu, argp, do_set_msr, 0);
3242                 break;
3243         case KVM_TPR_ACCESS_REPORTING: {
3244                 struct kvm_tpr_access_ctl tac;
3245
3246                 r = -EFAULT;
3247                 if (copy_from_user(&tac, argp, sizeof tac))
3248                         goto out;
3249                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3250                 if (r)
3251                         goto out;
3252                 r = -EFAULT;
3253                 if (copy_to_user(argp, &tac, sizeof tac))
3254                         goto out;
3255                 r = 0;
3256                 break;
3257         };
3258         case KVM_SET_VAPIC_ADDR: {
3259                 struct kvm_vapic_addr va;
3260
3261                 r = -EINVAL;
3262                 if (!irqchip_in_kernel(vcpu->kvm))
3263                         goto out;
3264                 r = -EFAULT;
3265                 if (copy_from_user(&va, argp, sizeof va))
3266                         goto out;
3267                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3268                 break;
3269         }
3270         case KVM_X86_SETUP_MCE: {
3271                 u64 mcg_cap;
3272
3273                 r = -EFAULT;
3274                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3275                         goto out;
3276                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3277                 break;
3278         }
3279         case KVM_X86_SET_MCE: {
3280                 struct kvm_x86_mce mce;
3281
3282                 r = -EFAULT;
3283                 if (copy_from_user(&mce, argp, sizeof mce))
3284                         goto out;
3285                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3286                 break;
3287         }
3288         case KVM_GET_VCPU_EVENTS: {
3289                 struct kvm_vcpu_events events;
3290
3291                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3292
3293                 r = -EFAULT;
3294                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3295                         break;
3296                 r = 0;
3297                 break;
3298         }
3299         case KVM_SET_VCPU_EVENTS: {
3300                 struct kvm_vcpu_events events;
3301
3302                 r = -EFAULT;
3303                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3304                         break;
3305
3306                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3307                 break;
3308         }
3309         case KVM_GET_DEBUGREGS: {
3310                 struct kvm_debugregs dbgregs;
3311
3312                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3313
3314                 r = -EFAULT;
3315                 if (copy_to_user(argp, &dbgregs,
3316                                  sizeof(struct kvm_debugregs)))
3317                         break;
3318                 r = 0;
3319                 break;
3320         }
3321         case KVM_SET_DEBUGREGS: {
3322                 struct kvm_debugregs dbgregs;
3323
3324                 r = -EFAULT;
3325                 if (copy_from_user(&dbgregs, argp,
3326                                    sizeof(struct kvm_debugregs)))
3327                         break;
3328
3329                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3330                 break;
3331         }
3332         case KVM_GET_XSAVE: {
3333                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3334                 r = -ENOMEM;
3335                 if (!u.xsave)
3336                         break;
3337
3338                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3339
3340                 r = -EFAULT;
3341                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3342                         break;
3343                 r = 0;
3344                 break;
3345         }
3346         case KVM_SET_XSAVE: {
3347                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3348                 if (IS_ERR(u.xsave))
3349                         return PTR_ERR(u.xsave);
3350
3351                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3352                 break;
3353         }
3354         case KVM_GET_XCRS: {
3355                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3356                 r = -ENOMEM;
3357                 if (!u.xcrs)
3358                         break;
3359
3360                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3361
3362                 r = -EFAULT;
3363                 if (copy_to_user(argp, u.xcrs,
3364                                  sizeof(struct kvm_xcrs)))
3365                         break;
3366                 r = 0;
3367                 break;
3368         }
3369         case KVM_SET_XCRS: {
3370                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3371                 if (IS_ERR(u.xcrs))
3372                         return PTR_ERR(u.xcrs);
3373
3374                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3375                 break;
3376         }
3377         case KVM_SET_TSC_KHZ: {
3378                 u32 user_tsc_khz;
3379
3380                 r = -EINVAL;
3381                 user_tsc_khz = (u32)arg;
3382
3383                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3384                         goto out;
3385
3386                 if (user_tsc_khz == 0)
3387                         user_tsc_khz = tsc_khz;
3388
3389                 kvm_set_tsc_khz(vcpu, user_tsc_khz);
3390
3391                 r = 0;
3392                 goto out;
3393         }
3394         case KVM_GET_TSC_KHZ: {
3395                 r = vcpu->arch.virtual_tsc_khz;
3396                 goto out;
3397         }
3398         case KVM_KVMCLOCK_CTRL: {
3399                 r = kvm_set_guest_paused(vcpu);
3400                 goto out;
3401         }
3402         default:
3403                 r = -EINVAL;
3404         }
3405 out:
3406         kfree(u.buffer);
3407         return r;
3408 }
3409
3410 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3411 {
3412         return VM_FAULT_SIGBUS;
3413 }
3414
3415 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3416 {
3417         int ret;
3418
3419         if (addr > (unsigned int)(-3 * PAGE_SIZE))
3420                 return -EINVAL;
3421         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3422         return ret;
3423 }
3424
3425 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3426                                               u64 ident_addr)
3427 {
3428         kvm->arch.ept_identity_map_addr = ident_addr;
3429         return 0;
3430 }
3431
3432 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3433                                           u32 kvm_nr_mmu_pages)
3434 {
3435         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3436                 return -EINVAL;
3437
3438         mutex_lock(&kvm->slots_lock);
3439
3440         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3441         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3442
3443         mutex_unlock(&kvm->slots_lock);
3444         return 0;
3445 }
3446
3447 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3448 {
3449         return kvm->arch.n_max_mmu_pages;
3450 }
3451
3452 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3453 {
3454         int r;
3455
3456         r = 0;
3457         switch (chip->chip_id) {
3458         case KVM_IRQCHIP_PIC_MASTER:
3459                 memcpy(&chip->chip.pic,
3460                         &pic_irqchip(kvm)->pics[0],
3461                         sizeof(struct kvm_pic_state));
3462                 break;
3463         case KVM_IRQCHIP_PIC_SLAVE:
3464                 memcpy(&chip->chip.pic,
3465                         &pic_irqchip(kvm)->pics[1],
3466                         sizeof(struct kvm_pic_state));
3467                 break;
3468         case KVM_IRQCHIP_IOAPIC:
3469                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3470                 break;
3471         default:
3472                 r = -EINVAL;
3473                 break;
3474         }
3475         return r;
3476 }
3477
3478 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3479 {
3480         int r;
3481
3482         r = 0;
3483         switch (chip->chip_id) {
3484         case KVM_IRQCHIP_PIC_MASTER:
3485                 spin_lock(&pic_irqchip(kvm)->lock);
3486                 memcpy(&pic_irqchip(kvm)->pics[0],
3487                         &chip->chip.pic,
3488                         sizeof(struct kvm_pic_state));
3489                 spin_unlock(&pic_irqchip(kvm)->lock);
3490                 break;
3491         case KVM_IRQCHIP_PIC_SLAVE:
3492                 spin_lock(&pic_irqchip(kvm)->lock);
3493                 memcpy(&pic_irqchip(kvm)->pics[1],
3494                         &chip->chip.pic,
3495                         sizeof(struct kvm_pic_state));
3496                 spin_unlock(&pic_irqchip(kvm)->lock);
3497                 break;
3498         case KVM_IRQCHIP_IOAPIC:
3499                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3500                 break;
3501         default:
3502                 r = -EINVAL;
3503                 break;
3504         }
3505         kvm_pic_update_irq(pic_irqchip(kvm));
3506         return r;
3507 }
3508
3509 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3510 {
3511         int r = 0;
3512
3513         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3514         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3515         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3516         return r;
3517 }
3518
3519 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3520 {
3521         int r = 0;
3522
3523         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3524         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3525         kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3526         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3527         return r;
3528 }
3529
3530 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3531 {
3532         int r = 0;
3533
3534         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3535         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3536                 sizeof(ps->channels));
3537         ps->flags = kvm->arch.vpit->pit_state.flags;
3538         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3539         memset(&ps->reserved, 0, sizeof(ps->reserved));
3540         return r;
3541 }
3542
3543 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3544 {
3545         int r = 0, start = 0;
3546         u32 prev_legacy, cur_legacy;
3547         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3548         prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3549         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3550         if (!prev_legacy && cur_legacy)
3551                 start = 1;
3552         memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3553                sizeof(kvm->arch.vpit->pit_state.channels));
3554         kvm->arch.vpit->pit_state.flags = ps->flags;
3555         kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3556         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3557         return r;
3558 }
3559
3560 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3561                                  struct kvm_reinject_control *control)
3562 {
3563         if (!kvm->arch.vpit)
3564                 return -ENXIO;
3565         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3566         kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3567         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3568         return 0;
3569 }
3570
3571 /**
3572  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3573  * @kvm: kvm instance
3574  * @log: slot id and address to which we copy the log
3575  *
3576  * We need to keep it in mind that VCPU threads can write to the bitmap
3577  * concurrently.  So, to avoid losing data, we keep the following order for
3578  * each bit:
3579  *
3580  *   1. Take a snapshot of the bit and clear it if needed.
3581  *   2. Write protect the corresponding page.
3582  *   3. Flush TLB's if needed.
3583  *   4. Copy the snapshot to the userspace.
3584  *
3585  * Between 2 and 3, the guest may write to the page using the remaining TLB
3586  * entry.  This is not a problem because the page will be reported dirty at
3587  * step 4 using the snapshot taken before and step 3 ensures that successive
3588  * writes will be logged for the next call.
3589  */
3590 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3591 {
3592         int r;
3593         struct kvm_memory_slot *memslot;
3594         unsigned long n, i;
3595         unsigned long *dirty_bitmap;
3596         unsigned long *dirty_bitmap_buffer;
3597         bool is_dirty = false;
3598
3599         mutex_lock(&kvm->slots_lock);
3600
3601         r = -EINVAL;
3602         if (log->slot >= KVM_USER_MEM_SLOTS)
3603                 goto out;
3604
3605         memslot = id_to_memslot(kvm->memslots, log->slot);
3606
3607         dirty_bitmap = memslot->dirty_bitmap;
3608         r = -ENOENT;
3609         if (!dirty_bitmap)
3610                 goto out;
3611
3612         n = kvm_dirty_bitmap_bytes(memslot);
3613
3614         dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
3615         memset(dirty_bitmap_buffer, 0, n);
3616
3617         spin_lock(&kvm->mmu_lock);
3618
3619         for (i = 0; i < n / sizeof(long); i++) {
3620                 unsigned long mask;
3621                 gfn_t offset;
3622
3623                 if (!dirty_bitmap[i])
3624                         continue;
3625
3626                 is_dirty = true;
3627
3628                 mask = xchg(&dirty_bitmap[i], 0);
3629                 dirty_bitmap_buffer[i] = mask;
3630
3631                 offset = i * BITS_PER_LONG;
3632                 kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask);
3633         }
3634         if (is_dirty)
3635                 kvm_flush_remote_tlbs(kvm);
3636
3637         spin_unlock(&kvm->mmu_lock);
3638
3639         r = -EFAULT;
3640         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
3641                 goto out;
3642
3643         r = 0;
3644 out:
3645         mutex_unlock(&kvm->slots_lock);
3646         return r;
3647 }
3648
3649 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3650                         bool line_status)
3651 {
3652         if (!irqchip_in_kernel(kvm))
3653                 return -ENXIO;
3654
3655         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3656                                         irq_event->irq, irq_event->level,
3657                                         line_status);
3658         return 0;
3659 }
3660
3661 long kvm_arch_vm_ioctl(struct file *filp,
3662                        unsigned int ioctl, unsigned long arg)
3663 {
3664         struct kvm *kvm = filp->private_data;
3665         void __user *argp = (void __user *)arg;
3666         int r = -ENOTTY;
3667         /*
3668          * This union makes it completely explicit to gcc-3.x
3669          * that these two variables' stack usage should be
3670          * combined, not added together.
3671          */
3672         union {
3673                 struct kvm_pit_state ps;
3674                 struct kvm_pit_state2 ps2;
3675                 struct kvm_pit_config pit_config;
3676         } u;
3677
3678         switch (ioctl) {
3679         case KVM_SET_TSS_ADDR:
3680                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3681                 break;
3682         case KVM_SET_IDENTITY_MAP_ADDR: {
3683                 u64 ident_addr;
3684
3685                 r = -EFAULT;
3686                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3687                         goto out;
3688                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3689                 break;
3690         }
3691         case KVM_SET_NR_MMU_PAGES:
3692                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3693                 break;
3694         case KVM_GET_NR_MMU_PAGES:
3695                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3696                 break;
3697         case KVM_CREATE_IRQCHIP: {
3698                 struct kvm_pic *vpic;
3699
3700                 mutex_lock(&kvm->lock);
3701                 r = -EEXIST;
3702                 if (kvm->arch.vpic)
3703                         goto create_irqchip_unlock;
3704                 r = -EINVAL;
3705                 if (atomic_read(&kvm->online_vcpus))
3706                         goto create_irqchip_unlock;
3707                 r = -ENOMEM;
3708                 vpic = kvm_create_pic(kvm);
3709                 if (vpic) {
3710                         r = kvm_ioapic_init(kvm);
3711                         if (r) {
3712                                 mutex_lock(&kvm->slots_lock);
3713                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3714                                                           &vpic->dev_master);
3715                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3716                                                           &vpic->dev_slave);
3717                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3718                                                           &vpic->dev_eclr);
3719                                 mutex_unlock(&kvm->slots_lock);
3720                                 kfree(vpic);
3721                                 goto create_irqchip_unlock;
3722                         }
3723                 } else
3724                         goto create_irqchip_unlock;
3725                 smp_wmb();
3726                 kvm->arch.vpic = vpic;
3727                 smp_wmb();
3728                 r = kvm_setup_default_irq_routing(kvm);
3729                 if (r) {
3730                         mutex_lock(&kvm->slots_lock);
3731                         mutex_lock(&kvm->irq_lock);
3732                         kvm_ioapic_destroy(kvm);
3733                         kvm_destroy_pic(kvm);
3734                         mutex_unlock(&kvm->irq_lock);
3735                         mutex_unlock(&kvm->slots_lock);
3736                 }
3737         create_irqchip_unlock:
3738                 mutex_unlock(&kvm->lock);
3739                 break;
3740         }
3741         case KVM_CREATE_PIT:
3742                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3743                 goto create_pit;
3744         case KVM_CREATE_PIT2:
3745                 r = -EFAULT;
3746                 if (copy_from_user(&u.pit_config, argp,
3747                                    sizeof(struct kvm_pit_config)))
3748                         goto out;
3749         create_pit:
3750                 mutex_lock(&kvm->slots_lock);
3751                 r = -EEXIST;
3752                 if (kvm->arch.vpit)
3753                         goto create_pit_unlock;
3754                 r = -ENOMEM;
3755                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3756                 if (kvm->arch.vpit)
3757                         r = 0;
3758         create_pit_unlock:
3759                 mutex_unlock(&kvm->slots_lock);
3760                 break;
3761         case KVM_GET_IRQCHIP: {
3762                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3763                 struct kvm_irqchip *chip;
3764
3765                 chip = memdup_user(argp, sizeof(*chip));
3766                 if (IS_ERR(chip)) {
3767                         r = PTR_ERR(chip);
3768                         goto out;
3769                 }
3770
3771                 r = -ENXIO;
3772                 if (!irqchip_in_kernel(kvm))
3773                         goto get_irqchip_out;
3774                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3775                 if (r)
3776                         goto get_irqchip_out;
3777                 r = -EFAULT;
3778                 if (copy_to_user(argp, chip, sizeof *chip))
3779                         goto get_irqchip_out;
3780                 r = 0;
3781         get_irqchip_out:
3782                 kfree(chip);
3783                 break;
3784         }
3785         case KVM_SET_IRQCHIP: {
3786                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3787                 struct kvm_irqchip *chip;
3788
3789                 chip = memdup_user(argp, sizeof(*chip));
3790                 if (IS_ERR(chip)) {
3791                         r = PTR_ERR(chip);
3792                         goto out;
3793                 }
3794
3795                 r = -ENXIO;
3796                 if (!irqchip_in_kernel(kvm))
3797                         goto set_irqchip_out;
3798                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3799                 if (r)
3800                         goto set_irqchip_out;
3801                 r = 0;
3802         set_irqchip_out:
3803                 kfree(chip);
3804                 break;
3805         }
3806         case KVM_GET_PIT: {
3807                 r = -EFAULT;
3808                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3809                         goto out;
3810                 r = -ENXIO;
3811                 if (!kvm->arch.vpit)
3812                         goto out;
3813                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3814                 if (r)
3815                         goto out;
3816                 r = -EFAULT;
3817                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3818                         goto out;
3819                 r = 0;
3820                 break;
3821         }
3822         case KVM_SET_PIT: {
3823                 r = -EFAULT;
3824                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3825                         goto out;
3826                 r = -ENXIO;
3827                 if (!kvm->arch.vpit)
3828                         goto out;
3829                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3830                 break;
3831         }
3832         case KVM_GET_PIT2: {
3833                 r = -ENXIO;
3834                 if (!kvm->arch.vpit)
3835                         goto out;
3836                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3837                 if (r)
3838                         goto out;
3839                 r = -EFAULT;
3840                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3841                         goto out;
3842                 r = 0;
3843                 break;
3844         }
3845         case KVM_SET_PIT2: {
3846                 r = -EFAULT;
3847                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3848                         goto out;
3849                 r = -ENXIO;
3850                 if (!kvm->arch.vpit)
3851                         goto out;
3852                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3853                 break;
3854         }
3855         case KVM_REINJECT_CONTROL: {
3856                 struct kvm_reinject_control control;
3857                 r =  -EFAULT;
3858                 if (copy_from_user(&control, argp, sizeof(control)))
3859                         goto out;
3860                 r = kvm_vm_ioctl_reinject(kvm, &control);
3861                 break;
3862         }
3863         case KVM_XEN_HVM_CONFIG: {
3864                 r = -EFAULT;
3865                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3866                                    sizeof(struct kvm_xen_hvm_config)))
3867                         goto out;
3868                 r = -EINVAL;
3869                 if (kvm->arch.xen_hvm_config.flags)
3870                         goto out;
3871                 r = 0;
3872                 break;
3873         }
3874         case KVM_SET_CLOCK: {
3875                 struct kvm_clock_data user_ns;
3876                 u64 now_ns;
3877                 s64 delta;
3878
3879                 r = -EFAULT;
3880                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3881                         goto out;
3882
3883                 r = -EINVAL;
3884                 if (user_ns.flags)
3885                         goto out;
3886
3887                 r = 0;
3888                 local_irq_disable();
3889                 now_ns = get_kernel_ns();
3890                 delta = user_ns.clock - now_ns;
3891                 local_irq_enable();
3892                 kvm->arch.kvmclock_offset = delta;
3893                 kvm_gen_update_masterclock(kvm);
3894                 break;
3895         }
3896         case KVM_GET_CLOCK: {
3897                 struct kvm_clock_data user_ns;
3898                 u64 now_ns;
3899
3900                 local_irq_disable();
3901                 now_ns = get_kernel_ns();
3902                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3903                 local_irq_enable();
3904                 user_ns.flags = 0;
3905                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3906
3907                 r = -EFAULT;
3908                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3909                         goto out;
3910                 r = 0;
3911                 break;
3912         }
3913
3914         default:
3915                 ;
3916         }
3917 out:
3918         return r;
3919 }
3920
3921 static void kvm_init_msr_list(void)
3922 {
3923         u32 dummy[2];
3924         unsigned i, j;
3925
3926         /* skip the first msrs in the list. KVM-specific */
3927         for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3928                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3929                         continue;
3930                 if (j < i)
3931                         msrs_to_save[j] = msrs_to_save[i];
3932                 j++;
3933         }
3934         num_msrs_to_save = j;
3935 }
3936
3937 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3938                            const void *v)
3939 {
3940         int handled = 0;
3941         int n;
3942
3943         do {
3944                 n = min(len, 8);
3945                 if (!(vcpu->arch.apic &&
3946                       !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
3947                     && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3948                         break;
3949                 handled += n;
3950                 addr += n;
3951                 len -= n;
3952                 v += n;
3953         } while (len);
3954
3955         return handled;
3956 }
3957
3958 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3959 {
3960         int handled = 0;
3961         int n;
3962
3963         do {
3964                 n = min(len, 8);
3965                 if (!(vcpu->arch.apic &&
3966                       !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
3967                     && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3968                         break;
3969                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
3970                 handled += n;
3971                 addr += n;
3972                 len -= n;
3973                 v += n;
3974         } while (len);
3975
3976         return handled;
3977 }
3978
3979 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3980                         struct kvm_segment *var, int seg)
3981 {
3982         kvm_x86_ops->set_segment(vcpu, var, seg);
3983 }
3984
3985 void kvm_get_segment(struct kvm_vcpu *vcpu,
3986                      struct kvm_segment *var, int seg)
3987 {
3988         kvm_x86_ops->get_segment(vcpu, var, seg);
3989 }
3990
3991 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3992 {
3993         gpa_t t_gpa;
3994         struct x86_exception exception;
3995
3996         BUG_ON(!mmu_is_nested(vcpu));
3997
3998         /* NPT walks are always user-walks */
3999         access |= PFERR_USER_MASK;
4000         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
4001
4002         return t_gpa;
4003 }
4004
4005 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4006                               struct x86_exception *exception)
4007 {
4008         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4009         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4010 }
4011
4012  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4013                                 struct x86_exception *exception)
4014 {
4015         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4016         access |= PFERR_FETCH_MASK;
4017         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4018 }
4019
4020 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4021                                struct x86_exception *exception)
4022 {
4023         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4024         access |= PFERR_WRITE_MASK;
4025         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4026 }
4027
4028 /* uses this to access any guest's mapped memory without checking CPL */
4029 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4030                                 struct x86_exception *exception)
4031 {
4032         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4033 }
4034
4035 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4036                                       struct kvm_vcpu *vcpu, u32 access,
4037                                       struct x86_exception *exception)
4038 {
4039         void *data = val;
4040         int r = X86EMUL_CONTINUE;
4041
4042         while (bytes) {
4043                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4044                                                             exception);
4045                 unsigned offset = addr & (PAGE_SIZE-1);
4046                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4047                 int ret;
4048
4049                 if (gpa == UNMAPPED_GVA)
4050                         return X86EMUL_PROPAGATE_FAULT;
4051                 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
4052                 if (ret < 0) {
4053                         r = X86EMUL_IO_NEEDED;
4054                         goto out;
4055                 }
4056
4057                 bytes -= toread;
4058                 data += toread;
4059                 addr += toread;
4060         }
4061 out:
4062         return r;
4063 }
4064
4065 /* used for instruction fetching */
4066 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4067                                 gva_t addr, void *val, unsigned int bytes,
4068                                 struct x86_exception *exception)
4069 {
4070         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4071         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4072
4073         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
4074                                           access | PFERR_FETCH_MASK,
4075                                           exception);
4076 }
4077
4078 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4079                                gva_t addr, void *val, unsigned int bytes,
4080                                struct x86_exception *exception)
4081 {
4082         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4083         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4084
4085         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4086                                           exception);
4087 }
4088 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4089
4090 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4091                                       gva_t addr, void *val, unsigned int bytes,
4092                                       struct x86_exception *exception)
4093 {
4094         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4095         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4096 }
4097
4098 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4099                                        gva_t addr, void *val,
4100                                        unsigned int bytes,
4101                                        struct x86_exception *exception)
4102 {
4103         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4104         void *data = val;
4105         int r = X86EMUL_CONTINUE;
4106
4107         while (bytes) {
4108                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4109                                                              PFERR_WRITE_MASK,
4110                                                              exception);
4111                 unsigned offset = addr & (PAGE_SIZE-1);
4112                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4113                 int ret;
4114
4115                 if (gpa == UNMAPPED_GVA)
4116                         return X86EMUL_PROPAGATE_FAULT;
4117                 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
4118                 if (ret < 0) {
4119                         r = X86EMUL_IO_NEEDED;
4120                         goto out;
4121                 }
4122
4123                 bytes -= towrite;
4124                 data += towrite;
4125                 addr += towrite;
4126         }
4127 out:
4128         return r;
4129 }
4130 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4131
4132 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4133                                 gpa_t *gpa, struct x86_exception *exception,
4134                                 bool write)
4135 {
4136         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4137                 | (write ? PFERR_WRITE_MASK : 0);
4138
4139         if (vcpu_match_mmio_gva(vcpu, gva)
4140             && !permission_fault(vcpu->arch.walk_mmu, vcpu->arch.access, access)) {
4141                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4142                                         (gva & (PAGE_SIZE - 1));
4143                 trace_vcpu_match_mmio(gva, *gpa, write, false);
4144                 return 1;
4145         }
4146
4147         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4148
4149         if (*gpa == UNMAPPED_GVA)
4150                 return -1;
4151
4152         /* For APIC access vmexit */
4153         if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4154                 return 1;
4155
4156         if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4157                 trace_vcpu_match_mmio(gva, *gpa, write, true);
4158                 return 1;
4159         }
4160
4161         return 0;
4162 }
4163
4164 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4165                         const void *val, int bytes)
4166 {
4167         int ret;
4168
4169         ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
4170         if (ret < 0)
4171                 return 0;
4172         kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4173         return 1;
4174 }
4175
4176 struct read_write_emulator_ops {
4177         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4178                                   int bytes);
4179         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4180                                   void *val, int bytes);
4181         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4182                                int bytes, void *val);
4183         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4184                                     void *val, int bytes);
4185         bool write;
4186 };
4187
4188 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4189 {
4190         if (vcpu->mmio_read_completed) {
4191                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4192                                vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4193                 vcpu->mmio_read_completed = 0;
4194                 return 1;
4195         }
4196
4197         return 0;
4198 }
4199
4200 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4201                         void *val, int bytes)
4202 {
4203         return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
4204 }
4205
4206 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4207                          void *val, int bytes)
4208 {
4209         return emulator_write_phys(vcpu, gpa, val, bytes);
4210 }
4211
4212 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4213 {
4214         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4215         return vcpu_mmio_write(vcpu, gpa, bytes, val);
4216 }
4217
4218 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4219                           void *val, int bytes)
4220 {
4221         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4222         return X86EMUL_IO_NEEDED;
4223 }
4224
4225 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4226                            void *val, int bytes)
4227 {
4228         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4229
4230         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4231         return X86EMUL_CONTINUE;
4232 }
4233
4234 static const struct read_write_emulator_ops read_emultor = {
4235         .read_write_prepare = read_prepare,
4236         .read_write_emulate = read_emulate,
4237         .read_write_mmio = vcpu_mmio_read,
4238         .read_write_exit_mmio = read_exit_mmio,
4239 };
4240
4241 static const struct read_write_emulator_ops write_emultor = {
4242         .read_write_emulate = write_emulate,
4243         .read_write_mmio = write_mmio,
4244         .read_write_exit_mmio = write_exit_mmio,
4245         .write = true,
4246 };
4247
4248 static int emulator_read_write_onepage(unsigned long addr, void *val,
4249                                        unsigned int bytes,
4250                                        struct x86_exception *exception,
4251                                        struct kvm_vcpu *vcpu,
4252                                        const struct read_write_emulator_ops *ops)
4253 {
4254         gpa_t gpa;
4255         int handled, ret;
4256         bool write = ops->write;
4257         struct kvm_mmio_fragment *frag;
4258
4259         ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4260
4261         if (ret < 0)
4262                 return X86EMUL_PROPAGATE_FAULT;
4263
4264         /* For APIC access vmexit */
4265         if (ret)
4266                 goto mmio;
4267
4268         if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4269                 return X86EMUL_CONTINUE;
4270
4271 mmio:
4272         /*
4273          * Is this MMIO handled locally?
4274          */
4275         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4276         if (handled == bytes)
4277                 return X86EMUL_CONTINUE;
4278
4279         gpa += handled;
4280         bytes -= handled;
4281         val += handled;
4282
4283         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4284         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4285         frag->gpa = gpa;
4286         frag->data = val;
4287         frag->len = bytes;
4288         return X86EMUL_CONTINUE;
4289 }
4290
4291 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
4292                         void *val, unsigned int bytes,
4293                         struct x86_exception *exception,
4294                         const struct read_write_emulator_ops *ops)
4295 {
4296         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4297         gpa_t gpa;
4298         int rc;
4299
4300         if (ops->read_write_prepare &&
4301                   ops->read_write_prepare(vcpu, val, bytes))
4302                 return X86EMUL_CONTINUE;
4303
4304         vcpu->mmio_nr_fragments = 0;
4305
4306         /* Crossing a page boundary? */
4307         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4308                 int now;
4309
4310                 now = -addr & ~PAGE_MASK;
4311                 rc = emulator_read_write_onepage(addr, val, now, exception,
4312                                                  vcpu, ops);
4313
4314                 if (rc != X86EMUL_CONTINUE)
4315                         return rc;
4316                 addr += now;
4317                 val += now;
4318                 bytes -= now;
4319         }
4320
4321         rc = emulator_read_write_onepage(addr, val, bytes, exception,
4322                                          vcpu, ops);
4323         if (rc != X86EMUL_CONTINUE)
4324                 return rc;
4325
4326         if (!vcpu->mmio_nr_fragments)
4327                 return rc;
4328
4329         gpa = vcpu->mmio_fragments[0].gpa;
4330
4331         vcpu->mmio_needed = 1;
4332         vcpu->mmio_cur_fragment = 0;
4333
4334         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4335         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4336         vcpu->run->exit_reason = KVM_EXIT_MMIO;
4337         vcpu->run->mmio.phys_addr = gpa;
4338
4339         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4340 }
4341
4342 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4343                                   unsigned long addr,
4344                                   void *val,
4345                                   unsigned int bytes,
4346                                   struct x86_exception *exception)
4347 {
4348         return emulator_read_write(ctxt, addr, val, bytes,
4349                                    exception, &read_emultor);
4350 }
4351
4352 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4353                             unsigned long addr,
4354                             const void *val,
4355                             unsigned int bytes,
4356                             struct x86_exception *exception)
4357 {
4358         return emulator_read_write(ctxt, addr, (void *)val, bytes,
4359                                    exception, &write_emultor);
4360 }
4361
4362 #define CMPXCHG_TYPE(t, ptr, old, new) \
4363         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4364
4365 #ifdef CONFIG_X86_64
4366 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4367 #else
4368 #  define CMPXCHG64(ptr, old, new) \
4369         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4370 #endif
4371
4372 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4373                                      unsigned long addr,
4374                                      const void *old,
4375                                      const void *new,
4376                                      unsigned int bytes,
4377                                      struct x86_exception *exception)
4378 {
4379         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4380         gpa_t gpa;
4381         struct page *page;
4382         char *kaddr;
4383         bool exchanged;
4384
4385         /* guests cmpxchg8b have to be emulated atomically */
4386         if (bytes > 8 || (bytes & (bytes - 1)))
4387                 goto emul_write;
4388
4389         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4390
4391         if (gpa == UNMAPPED_GVA ||
4392             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4393                 goto emul_write;
4394
4395         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4396                 goto emul_write;
4397
4398         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4399         if (is_error_page(page))
4400                 goto emul_write;
4401
4402         kaddr = kmap_atomic(page);
4403         kaddr += offset_in_page(gpa);
4404         switch (bytes) {
4405         case 1:
4406                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4407                 break;
4408         case 2:
4409                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4410                 break;
4411         case 4:
4412                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4413                 break;
4414         case 8:
4415                 exchanged = CMPXCHG64(kaddr, old, new);
4416                 break;
4417         default:
4418                 BUG();
4419         }
4420         kunmap_atomic(kaddr);
4421         kvm_release_page_dirty(page);
4422
4423         if (!exchanged)
4424                 return X86EMUL_CMPXCHG_FAILED;
4425
4426         kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4427
4428         return X86EMUL_CONTINUE;
4429
4430 emul_write:
4431         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4432
4433         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4434 }
4435
4436 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4437 {
4438         /* TODO: String I/O for in kernel device */
4439         int r;
4440
4441         if (vcpu->arch.pio.in)
4442                 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
4443                                     vcpu->arch.pio.size, pd);
4444         else
4445                 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
4446                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
4447                                      pd);
4448         return r;
4449 }
4450
4451 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4452                                unsigned short port, void *val,
4453                                unsigned int count, bool in)
4454 {
4455         trace_kvm_pio(!in, port, size, count);
4456
4457         vcpu->arch.pio.port = port;
4458         vcpu->arch.pio.in = in;
4459         vcpu->arch.pio.count  = count;
4460         vcpu->arch.pio.size = size;
4461
4462         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4463                 vcpu->arch.pio.count = 0;
4464                 return 1;
4465         }
4466
4467         vcpu->run->exit_reason = KVM_EXIT_IO;
4468         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4469         vcpu->run->io.size = size;
4470         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4471         vcpu->run->io.count = count;
4472         vcpu->run->io.port = port;
4473
4474         return 0;
4475 }
4476
4477 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4478                                     int size, unsigned short port, void *val,
4479                                     unsigned int count)
4480 {
4481         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4482         int ret;
4483
4484         if (vcpu->arch.pio.count)
4485                 goto data_avail;
4486
4487         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4488         if (ret) {
4489 data_avail:
4490                 memcpy(val, vcpu->arch.pio_data, size * count);
4491                 vcpu->arch.pio.count = 0;
4492                 return 1;
4493         }
4494
4495         return 0;
4496 }
4497
4498 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4499                                      int size, unsigned short port,
4500                                      const void *val, unsigned int count)
4501 {
4502         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4503
4504         memcpy(vcpu->arch.pio_data, val, size * count);
4505         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4506 }
4507
4508 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4509 {
4510         return kvm_x86_ops->get_segment_base(vcpu, seg);
4511 }
4512
4513 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4514 {
4515         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4516 }
4517
4518 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4519 {
4520         if (!need_emulate_wbinvd(vcpu))
4521                 return X86EMUL_CONTINUE;
4522
4523         if (kvm_x86_ops->has_wbinvd_exit()) {
4524                 int cpu = get_cpu();
4525
4526                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4527                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4528                                 wbinvd_ipi, NULL, 1);
4529                 put_cpu();
4530                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4531         } else
4532                 wbinvd();
4533         return X86EMUL_CONTINUE;
4534 }
4535 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4536
4537 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4538 {
4539         kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
4540 }
4541
4542 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
4543 {
4544         return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4545 }
4546
4547 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
4548 {
4549
4550         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4551 }
4552
4553 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4554 {
4555         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4556 }
4557
4558 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4559 {
4560         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4561         unsigned long value;
4562
4563         switch (cr) {
4564         case 0:
4565                 value = kvm_read_cr0(vcpu);
4566                 break;
4567         case 2:
4568                 value = vcpu->arch.cr2;
4569                 break;
4570         case 3:
4571                 value = kvm_read_cr3(vcpu);
4572                 break;
4573         case 4:
4574                 value = kvm_read_cr4(vcpu);
4575                 break;
4576         case 8:
4577                 value = kvm_get_cr8(vcpu);
4578                 break;
4579         default:
4580                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4581                 return 0;
4582         }
4583
4584         return value;
4585 }
4586
4587 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4588 {
4589         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4590         int res = 0;
4591
4592         switch (cr) {
4593         case 0:
4594                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4595                 break;
4596         case 2:
4597                 vcpu->arch.cr2 = val;
4598                 break;
4599         case 3:
4600                 res = kvm_set_cr3(vcpu, val);
4601                 break;
4602         case 4:
4603                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4604                 break;
4605         case 8:
4606                 res = kvm_set_cr8(vcpu, val);
4607                 break;
4608         default:
4609                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4610                 res = -1;
4611         }
4612
4613         return res;
4614 }
4615
4616 static void emulator_set_rflags(struct x86_emulate_ctxt *ctxt, ulong val)
4617 {
4618         kvm_set_rflags(emul_to_vcpu(ctxt), val);
4619 }
4620
4621 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4622 {
4623         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4624 }
4625
4626 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4627 {
4628         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4629 }
4630
4631 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4632 {
4633         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4634 }
4635
4636 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4637 {
4638         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4639 }
4640
4641 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4642 {
4643         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4644 }
4645
4646 static unsigned long emulator_get_cached_segment_base(
4647         struct x86_emulate_ctxt *ctxt, int seg)
4648 {
4649         return get_segment_base(emul_to_vcpu(ctxt), seg);
4650 }
4651
4652 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4653                                  struct desc_struct *desc, u32 *base3,
4654                                  int seg)
4655 {
4656         struct kvm_segment var;
4657
4658         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4659         *selector = var.selector;
4660
4661         if (var.unusable) {
4662                 memset(desc, 0, sizeof(*desc));
4663                 return false;
4664         }
4665
4666         if (var.g)
4667                 var.limit >>= 12;
4668         set_desc_limit(desc, var.limit);
4669         set_desc_base(desc, (unsigned long)var.base);
4670 #ifdef CONFIG_X86_64
4671         if (base3)
4672                 *base3 = var.base >> 32;
4673 #endif
4674         desc->type = var.type;
4675         desc->s = var.s;
4676         desc->dpl = var.dpl;
4677         desc->p = var.present;
4678         desc->avl = var.avl;
4679         desc->l = var.l;
4680         desc->d = var.db;
4681         desc->g = var.g;
4682
4683         return true;
4684 }
4685
4686 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4687                                  struct desc_struct *desc, u32 base3,
4688                                  int seg)
4689 {
4690         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4691         struct kvm_segment var;
4692
4693         var.selector = selector;
4694         var.base = get_desc_base(desc);
4695 #ifdef CONFIG_X86_64
4696         var.base |= ((u64)base3) << 32;
4697 #endif
4698         var.limit = get_desc_limit(desc);
4699         if (desc->g)
4700                 var.limit = (var.limit << 12) | 0xfff;
4701         var.type = desc->type;
4702         var.present = desc->p;
4703         var.dpl = desc->dpl;
4704         var.db = desc->d;
4705         var.s = desc->s;
4706         var.l = desc->l;
4707         var.g = desc->g;
4708         var.avl = desc->avl;
4709         var.present = desc->p;
4710         var.unusable = !var.present;
4711         var.padding = 0;
4712
4713         kvm_set_segment(vcpu, &var, seg);
4714         return;
4715 }
4716
4717 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4718                             u32 msr_index, u64 *pdata)
4719 {
4720         return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4721 }
4722
4723 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4724                             u32 msr_index, u64 data)
4725 {
4726         struct msr_data msr;
4727
4728         msr.data = data;
4729         msr.index = msr_index;
4730         msr.host_initiated = false;
4731         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4732 }
4733
4734 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4735                              u32 pmc, u64 *pdata)
4736 {
4737         return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
4738 }
4739
4740 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4741 {
4742         emul_to_vcpu(ctxt)->arch.halt_request = 1;
4743 }
4744
4745 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4746 {
4747         preempt_disable();
4748         kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4749         /*
4750          * CR0.TS may reference the host fpu state, not the guest fpu state,
4751          * so it may be clear at this point.
4752          */
4753         clts();
4754 }
4755
4756 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4757 {
4758         preempt_enable();
4759 }
4760
4761 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4762                               struct x86_instruction_info *info,
4763                               enum x86_intercept_stage stage)
4764 {
4765         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4766 }
4767
4768 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4769                                u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4770 {
4771         kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4772 }
4773
4774 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4775 {
4776         return kvm_register_read(emul_to_vcpu(ctxt), reg);
4777 }
4778
4779 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4780 {
4781         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4782 }
4783
4784 static const struct x86_emulate_ops emulate_ops = {
4785         .read_gpr            = emulator_read_gpr,
4786         .write_gpr           = emulator_write_gpr,
4787         .read_std            = kvm_read_guest_virt_system,
4788         .write_std           = kvm_write_guest_virt_system,
4789         .fetch               = kvm_fetch_guest_virt,
4790         .read_emulated       = emulator_read_emulated,
4791         .write_emulated      = emulator_write_emulated,
4792         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
4793         .invlpg              = emulator_invlpg,
4794         .pio_in_emulated     = emulator_pio_in_emulated,
4795         .pio_out_emulated    = emulator_pio_out_emulated,
4796         .get_segment         = emulator_get_segment,
4797         .set_segment         = emulator_set_segment,
4798         .get_cached_segment_base = emulator_get_cached_segment_base,
4799         .get_gdt             = emulator_get_gdt,
4800         .get_idt             = emulator_get_idt,
4801         .set_gdt             = emulator_set_gdt,
4802         .set_idt             = emulator_set_idt,
4803         .get_cr              = emulator_get_cr,
4804         .set_cr              = emulator_set_cr,
4805         .set_rflags          = emulator_set_rflags,
4806         .cpl                 = emulator_get_cpl,
4807         .get_dr              = emulator_get_dr,
4808         .set_dr              = emulator_set_dr,
4809         .set_msr             = emulator_set_msr,
4810         .get_msr             = emulator_get_msr,
4811         .read_pmc            = emulator_read_pmc,
4812         .halt                = emulator_halt,
4813         .wbinvd              = emulator_wbinvd,
4814         .fix_hypercall       = emulator_fix_hypercall,
4815         .get_fpu             = emulator_get_fpu,
4816         .put_fpu             = emulator_put_fpu,
4817         .intercept           = emulator_intercept,
4818         .get_cpuid           = emulator_get_cpuid,
4819 };
4820
4821 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4822 {
4823         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4824         /*
4825          * an sti; sti; sequence only disable interrupts for the first
4826          * instruction. So, if the last instruction, be it emulated or
4827          * not, left the system with the INT_STI flag enabled, it
4828          * means that the last instruction is an sti. We should not
4829          * leave the flag on in this case. The same goes for mov ss
4830          */
4831         if (!(int_shadow & mask))
4832                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4833 }
4834
4835 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4836 {
4837         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4838         if (ctxt->exception.vector == PF_VECTOR)
4839                 kvm_propagate_fault(vcpu, &ctxt->exception);
4840         else if (ctxt->exception.error_code_valid)
4841                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4842                                       ctxt->exception.error_code);
4843         else
4844                 kvm_queue_exception(vcpu, ctxt->exception.vector);
4845 }
4846
4847 static void init_decode_cache(struct x86_emulate_ctxt *ctxt)
4848 {
4849         memset(&ctxt->opcode_len, 0,
4850                (void *)&ctxt->_regs - (void *)&ctxt->opcode_len);
4851
4852         ctxt->fetch.start = 0;
4853         ctxt->fetch.end = 0;
4854         ctxt->io_read.pos = 0;
4855         ctxt->io_read.end = 0;
4856         ctxt->mem_read.pos = 0;
4857         ctxt->mem_read.end = 0;
4858 }
4859
4860 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4861 {
4862         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4863         int cs_db, cs_l;
4864
4865         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4866
4867         ctxt->eflags = kvm_get_rflags(vcpu);
4868         ctxt->eip = kvm_rip_read(vcpu);
4869         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
4870                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
4871                      cs_l                               ? X86EMUL_MODE_PROT64 :
4872                      cs_db                              ? X86EMUL_MODE_PROT32 :
4873                                                           X86EMUL_MODE_PROT16;
4874         ctxt->guest_mode = is_guest_mode(vcpu);
4875
4876         init_decode_cache(ctxt);
4877         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4878 }
4879
4880 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4881 {
4882         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4883         int ret;
4884
4885         init_emulate_ctxt(vcpu);
4886
4887         ctxt->op_bytes = 2;
4888         ctxt->ad_bytes = 2;
4889         ctxt->_eip = ctxt->eip + inc_eip;
4890         ret = emulate_int_real(ctxt, irq);
4891
4892         if (ret != X86EMUL_CONTINUE)
4893                 return EMULATE_FAIL;
4894
4895         ctxt->eip = ctxt->_eip;
4896         kvm_rip_write(vcpu, ctxt->eip);
4897         kvm_set_rflags(vcpu, ctxt->eflags);
4898
4899         if (irq == NMI_VECTOR)
4900                 vcpu->arch.nmi_pending = 0;
4901         else
4902                 vcpu->arch.interrupt.pending = false;
4903
4904         return EMULATE_DONE;
4905 }
4906 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4907
4908 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4909 {
4910         int r = EMULATE_DONE;
4911
4912         ++vcpu->stat.insn_emulation_fail;
4913         trace_kvm_emulate_insn_failed(vcpu);
4914         if (!is_guest_mode(vcpu)) {
4915                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4916                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4917                 vcpu->run->internal.ndata = 0;
4918                 r = EMULATE_FAIL;
4919         }
4920         kvm_queue_exception(vcpu, UD_VECTOR);
4921
4922         return r;
4923 }
4924
4925 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
4926                                   bool write_fault_to_shadow_pgtable,
4927                                   int emulation_type)
4928 {
4929         gpa_t gpa = cr2;
4930         pfn_t pfn;
4931
4932         if (emulation_type & EMULTYPE_NO_REEXECUTE)
4933                 return false;
4934
4935         if (!vcpu->arch.mmu.direct_map) {
4936                 /*
4937                  * Write permission should be allowed since only
4938                  * write access need to be emulated.
4939                  */
4940                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4941
4942                 /*
4943                  * If the mapping is invalid in guest, let cpu retry
4944                  * it to generate fault.
4945                  */
4946                 if (gpa == UNMAPPED_GVA)
4947                         return true;
4948         }
4949
4950         /*
4951          * Do not retry the unhandleable instruction if it faults on the
4952          * readonly host memory, otherwise it will goto a infinite loop:
4953          * retry instruction -> write #PF -> emulation fail -> retry
4954          * instruction -> ...
4955          */
4956         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
4957
4958         /*
4959          * If the instruction failed on the error pfn, it can not be fixed,
4960          * report the error to userspace.
4961          */
4962         if (is_error_noslot_pfn(pfn))
4963                 return false;
4964
4965         kvm_release_pfn_clean(pfn);
4966
4967         /* The instructions are well-emulated on direct mmu. */
4968         if (vcpu->arch.mmu.direct_map) {
4969                 unsigned int indirect_shadow_pages;
4970
4971                 spin_lock(&vcpu->kvm->mmu_lock);
4972                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
4973                 spin_unlock(&vcpu->kvm->mmu_lock);
4974
4975                 if (indirect_shadow_pages)
4976                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4977
4978                 return true;
4979         }
4980
4981         /*
4982          * if emulation was due to access to shadowed page table
4983          * and it failed try to unshadow page and re-enter the
4984          * guest to let CPU execute the instruction.
4985          */
4986         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4987
4988         /*
4989          * If the access faults on its page table, it can not
4990          * be fixed by unprotecting shadow page and it should
4991          * be reported to userspace.
4992          */
4993         return !write_fault_to_shadow_pgtable;
4994 }
4995
4996 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
4997                               unsigned long cr2,  int emulation_type)
4998 {
4999         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5000         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5001
5002         last_retry_eip = vcpu->arch.last_retry_eip;
5003         last_retry_addr = vcpu->arch.last_retry_addr;
5004
5005         /*
5006          * If the emulation is caused by #PF and it is non-page_table
5007          * writing instruction, it means the VM-EXIT is caused by shadow
5008          * page protected, we can zap the shadow page and retry this
5009          * instruction directly.
5010          *
5011          * Note: if the guest uses a non-page-table modifying instruction
5012          * on the PDE that points to the instruction, then we will unmap
5013          * the instruction and go to an infinite loop. So, we cache the
5014          * last retried eip and the last fault address, if we meet the eip
5015          * and the address again, we can break out of the potential infinite
5016          * loop.
5017          */
5018         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5019
5020         if (!(emulation_type & EMULTYPE_RETRY))
5021                 return false;
5022
5023         if (x86_page_table_writing_insn(ctxt))
5024                 return false;
5025
5026         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5027                 return false;
5028
5029         vcpu->arch.last_retry_eip = ctxt->eip;
5030         vcpu->arch.last_retry_addr = cr2;
5031
5032         if (!vcpu->arch.mmu.direct_map)
5033                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5034
5035         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5036
5037         return true;
5038 }
5039
5040 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5041 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5042
5043 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5044                                 unsigned long *db)
5045 {
5046         u32 dr6 = 0;
5047         int i;
5048         u32 enable, rwlen;
5049
5050         enable = dr7;
5051         rwlen = dr7 >> 16;
5052         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5053                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5054                         dr6 |= (1 << i);
5055         return dr6;
5056 }
5057
5058 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, int *r)
5059 {
5060         struct kvm_run *kvm_run = vcpu->run;
5061
5062         /*
5063          * Use the "raw" value to see if TF was passed to the processor.
5064          * Note that the new value of the flags has not been saved yet.
5065          *
5066          * This is correct even for TF set by the guest, because "the
5067          * processor will not generate this exception after the instruction
5068          * that sets the TF flag".
5069          */
5070         unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5071
5072         if (unlikely(rflags & X86_EFLAGS_TF)) {
5073                 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5074                         kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1;
5075                         kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5076                         kvm_run->debug.arch.exception = DB_VECTOR;
5077                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5078                         *r = EMULATE_USER_EXIT;
5079                 } else {
5080                         vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5081                         /*
5082                          * "Certain debug exceptions may clear bit 0-3.  The
5083                          * remaining contents of the DR6 register are never
5084                          * cleared by the processor".
5085                          */
5086                         vcpu->arch.dr6 &= ~15;
5087                         vcpu->arch.dr6 |= DR6_BS;
5088                         kvm_queue_exception(vcpu, DB_VECTOR);
5089                 }
5090         }
5091 }
5092
5093 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5094 {
5095         struct kvm_run *kvm_run = vcpu->run;
5096         unsigned long eip = vcpu->arch.emulate_ctxt.eip;
5097         u32 dr6 = 0;
5098
5099         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5100             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5101                 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5102                                            vcpu->arch.guest_debug_dr7,
5103                                            vcpu->arch.eff_db);
5104
5105                 if (dr6 != 0) {
5106                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
5107                         kvm_run->debug.arch.pc = kvm_rip_read(vcpu) +
5108                                 get_segment_base(vcpu, VCPU_SREG_CS);
5109
5110                         kvm_run->debug.arch.exception = DB_VECTOR;
5111                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5112                         *r = EMULATE_USER_EXIT;
5113                         return true;
5114                 }
5115         }
5116
5117         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK)) {
5118                 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5119                                            vcpu->arch.dr7,
5120                                            vcpu->arch.db);
5121
5122                 if (dr6 != 0) {
5123                         vcpu->arch.dr6 &= ~15;
5124                         vcpu->arch.dr6 |= dr6;
5125                         kvm_queue_exception(vcpu, DB_VECTOR);
5126                         *r = EMULATE_DONE;
5127                         return true;
5128                 }
5129         }
5130
5131         return false;
5132 }
5133
5134 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5135                             unsigned long cr2,
5136                             int emulation_type,
5137                             void *insn,
5138                             int insn_len)
5139 {
5140         int r;
5141         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5142         bool writeback = true;
5143         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5144
5145         /*
5146          * Clear write_fault_to_shadow_pgtable here to ensure it is
5147          * never reused.
5148          */
5149         vcpu->arch.write_fault_to_shadow_pgtable = false;
5150         kvm_clear_exception_queue(vcpu);
5151
5152         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5153                 init_emulate_ctxt(vcpu);
5154
5155                 /*
5156                  * We will reenter on the same instruction since
5157                  * we do not set complete_userspace_io.  This does not
5158                  * handle watchpoints yet, those would be handled in
5159                  * the emulate_ops.
5160                  */
5161                 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5162                         return r;
5163
5164                 ctxt->interruptibility = 0;
5165                 ctxt->have_exception = false;
5166                 ctxt->perm_ok = false;
5167
5168                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5169
5170                 r = x86_decode_insn(ctxt, insn, insn_len);
5171
5172                 trace_kvm_emulate_insn_start(vcpu);
5173                 ++vcpu->stat.insn_emulation;
5174                 if (r != EMULATION_OK)  {
5175                         if (emulation_type & EMULTYPE_TRAP_UD)
5176                                 return EMULATE_FAIL;
5177                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5178                                                 emulation_type))
5179                                 return EMULATE_DONE;
5180                         if (emulation_type & EMULTYPE_SKIP)
5181                                 return EMULATE_FAIL;
5182                         return handle_emulation_failure(vcpu);
5183                 }
5184         }
5185
5186         if (emulation_type & EMULTYPE_SKIP) {
5187                 kvm_rip_write(vcpu, ctxt->_eip);
5188                 return EMULATE_DONE;
5189         }
5190
5191         if (retry_instruction(ctxt, cr2, emulation_type))
5192                 return EMULATE_DONE;
5193
5194         /* this is needed for vmware backdoor interface to work since it
5195            changes registers values  during IO operation */
5196         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5197                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5198                 emulator_invalidate_register_cache(ctxt);
5199         }
5200
5201 restart:
5202         r = x86_emulate_insn(ctxt);
5203
5204         if (r == EMULATION_INTERCEPTED)
5205                 return EMULATE_DONE;
5206
5207         if (r == EMULATION_FAILED) {
5208                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5209                                         emulation_type))
5210                         return EMULATE_DONE;
5211
5212                 return handle_emulation_failure(vcpu);
5213         }
5214
5215         if (ctxt->have_exception) {
5216                 inject_emulated_exception(vcpu);
5217                 r = EMULATE_DONE;
5218         } else if (vcpu->arch.pio.count) {
5219                 if (!vcpu->arch.pio.in) {
5220                         /* FIXME: return into emulator if single-stepping.  */
5221                         vcpu->arch.pio.count = 0;
5222                 } else {
5223                         writeback = false;
5224                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
5225                 }
5226                 r = EMULATE_USER_EXIT;
5227         } else if (vcpu->mmio_needed) {
5228                 if (!vcpu->mmio_is_write)
5229                         writeback = false;
5230                 r = EMULATE_USER_EXIT;
5231                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5232         } else if (r == EMULATION_RESTART)
5233                 goto restart;
5234         else
5235                 r = EMULATE_DONE;
5236
5237         if (writeback) {
5238                 toggle_interruptibility(vcpu, ctxt->interruptibility);
5239                 kvm_make_request(KVM_REQ_EVENT, vcpu);
5240                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5241                 kvm_rip_write(vcpu, ctxt->eip);
5242                 if (r == EMULATE_DONE)
5243                         kvm_vcpu_check_singlestep(vcpu, &r);
5244                 kvm_set_rflags(vcpu, ctxt->eflags);
5245         } else
5246                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5247
5248         return r;
5249 }
5250 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5251
5252 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5253 {
5254         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5255         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5256                                             size, port, &val, 1);
5257         /* do not return to emulator after return from userspace */
5258         vcpu->arch.pio.count = 0;
5259         return ret;
5260 }
5261 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5262
5263 static void tsc_bad(void *info)
5264 {
5265         __this_cpu_write(cpu_tsc_khz, 0);
5266 }
5267
5268 static void tsc_khz_changed(void *data)
5269 {
5270         struct cpufreq_freqs *freq = data;
5271         unsigned long khz = 0;
5272
5273         if (data)
5274                 khz = freq->new;
5275         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5276                 khz = cpufreq_quick_get(raw_smp_processor_id());
5277         if (!khz)
5278                 khz = tsc_khz;
5279         __this_cpu_write(cpu_tsc_khz, khz);
5280 }
5281
5282 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5283                                      void *data)
5284 {
5285         struct cpufreq_freqs *freq = data;
5286         struct kvm *kvm;
5287         struct kvm_vcpu *vcpu;
5288         int i, send_ipi = 0;
5289
5290         /*
5291          * We allow guests to temporarily run on slowing clocks,
5292          * provided we notify them after, or to run on accelerating
5293          * clocks, provided we notify them before.  Thus time never
5294          * goes backwards.
5295          *
5296          * However, we have a problem.  We can't atomically update
5297          * the frequency of a given CPU from this function; it is
5298          * merely a notifier, which can be called from any CPU.
5299          * Changing the TSC frequency at arbitrary points in time
5300          * requires a recomputation of local variables related to
5301          * the TSC for each VCPU.  We must flag these local variables
5302          * to be updated and be sure the update takes place with the
5303          * new frequency before any guests proceed.
5304          *
5305          * Unfortunately, the combination of hotplug CPU and frequency
5306          * change creates an intractable locking scenario; the order
5307          * of when these callouts happen is undefined with respect to
5308          * CPU hotplug, and they can race with each other.  As such,
5309          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5310          * undefined; you can actually have a CPU frequency change take
5311          * place in between the computation of X and the setting of the
5312          * variable.  To protect against this problem, all updates of
5313          * the per_cpu tsc_khz variable are done in an interrupt
5314          * protected IPI, and all callers wishing to update the value
5315          * must wait for a synchronous IPI to complete (which is trivial
5316          * if the caller is on the CPU already).  This establishes the
5317          * necessary total order on variable updates.
5318          *
5319          * Note that because a guest time update may take place
5320          * anytime after the setting of the VCPU's request bit, the
5321          * correct TSC value must be set before the request.  However,
5322          * to ensure the update actually makes it to any guest which
5323          * starts running in hardware virtualization between the set
5324          * and the acquisition of the spinlock, we must also ping the
5325          * CPU after setting the request bit.
5326          *
5327          */
5328
5329         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5330                 return 0;
5331         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5332                 return 0;
5333
5334         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5335
5336         spin_lock(&kvm_lock);
5337         list_for_each_entry(kvm, &vm_list, vm_list) {
5338                 kvm_for_each_vcpu(i, vcpu, kvm) {
5339                         if (vcpu->cpu != freq->cpu)
5340                                 continue;
5341                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5342                         if (vcpu->cpu != smp_processor_id())
5343                                 send_ipi = 1;
5344                 }
5345         }
5346         spin_unlock(&kvm_lock);
5347
5348         if (freq->old < freq->new && send_ipi) {
5349                 /*
5350                  * We upscale the frequency.  Must make the guest
5351                  * doesn't see old kvmclock values while running with
5352                  * the new frequency, otherwise we risk the guest sees
5353                  * time go backwards.
5354                  *
5355                  * In case we update the frequency for another cpu
5356                  * (which might be in guest context) send an interrupt
5357                  * to kick the cpu out of guest context.  Next time
5358                  * guest context is entered kvmclock will be updated,
5359                  * so the guest will not see stale values.
5360                  */
5361                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5362         }
5363         return 0;
5364 }
5365
5366 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5367         .notifier_call  = kvmclock_cpufreq_notifier
5368 };
5369
5370 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5371                                         unsigned long action, void *hcpu)
5372 {
5373         unsigned int cpu = (unsigned long)hcpu;
5374
5375         switch (action) {
5376                 case CPU_ONLINE:
5377                 case CPU_DOWN_FAILED:
5378                         smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5379                         break;
5380                 case CPU_DOWN_PREPARE:
5381                         smp_call_function_single(cpu, tsc_bad, NULL, 1);
5382                         break;
5383         }
5384         return NOTIFY_OK;
5385 }
5386
5387 static struct notifier_block kvmclock_cpu_notifier_block = {
5388         .notifier_call  = kvmclock_cpu_notifier,
5389         .priority = -INT_MAX
5390 };
5391
5392 static void kvm_timer_init(void)
5393 {
5394         int cpu;
5395
5396         max_tsc_khz = tsc_khz;
5397         register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5398         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5399 #ifdef CONFIG_CPU_FREQ
5400                 struct cpufreq_policy policy;
5401                 memset(&policy, 0, sizeof(policy));
5402                 cpu = get_cpu();
5403                 cpufreq_get_policy(&policy, cpu);
5404                 if (policy.cpuinfo.max_freq)
5405                         max_tsc_khz = policy.cpuinfo.max_freq;
5406                 put_cpu();
5407 #endif
5408                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5409                                           CPUFREQ_TRANSITION_NOTIFIER);
5410         }
5411         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5412         for_each_online_cpu(cpu)
5413                 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5414 }
5415
5416 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5417
5418 int kvm_is_in_guest(void)
5419 {
5420         return __this_cpu_read(current_vcpu) != NULL;
5421 }
5422
5423 static int kvm_is_user_mode(void)
5424 {
5425         int user_mode = 3;
5426
5427         if (__this_cpu_read(current_vcpu))
5428                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5429
5430         return user_mode != 0;
5431 }
5432
5433 static unsigned long kvm_get_guest_ip(void)
5434 {
5435         unsigned long ip = 0;
5436
5437         if (__this_cpu_read(current_vcpu))
5438                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5439
5440         return ip;
5441 }
5442
5443 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5444         .is_in_guest            = kvm_is_in_guest,
5445         .is_user_mode           = kvm_is_user_mode,
5446         .get_guest_ip           = kvm_get_guest_ip,
5447 };
5448
5449 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5450 {
5451         __this_cpu_write(current_vcpu, vcpu);
5452 }
5453 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5454
5455 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5456 {
5457         __this_cpu_write(current_vcpu, NULL);
5458 }
5459 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5460
5461 static void kvm_set_mmio_spte_mask(void)
5462 {
5463         u64 mask;
5464         int maxphyaddr = boot_cpu_data.x86_phys_bits;
5465
5466         /*
5467          * Set the reserved bits and the present bit of an paging-structure
5468          * entry to generate page fault with PFER.RSV = 1.
5469          */
5470          /* Mask the reserved physical address bits. */
5471         mask = ((1ull << (51 - maxphyaddr + 1)) - 1) << maxphyaddr;
5472
5473         /* Bit 62 is always reserved for 32bit host. */
5474         mask |= 0x3ull << 62;
5475
5476         /* Set the present bit. */
5477         mask |= 1ull;
5478
5479 #ifdef CONFIG_X86_64
5480         /*
5481          * If reserved bit is not supported, clear the present bit to disable
5482          * mmio page fault.
5483          */
5484         if (maxphyaddr == 52)
5485                 mask &= ~1ull;
5486 #endif
5487
5488         kvm_mmu_set_mmio_spte_mask(mask);
5489 }
5490
5491 #ifdef CONFIG_X86_64
5492 static void pvclock_gtod_update_fn(struct work_struct *work)
5493 {
5494         struct kvm *kvm;
5495
5496         struct kvm_vcpu *vcpu;
5497         int i;
5498
5499         spin_lock(&kvm_lock);
5500         list_for_each_entry(kvm, &vm_list, vm_list)
5501                 kvm_for_each_vcpu(i, vcpu, kvm)
5502                         set_bit(KVM_REQ_MASTERCLOCK_UPDATE, &vcpu->requests);
5503         atomic_set(&kvm_guest_has_master_clock, 0);
5504         spin_unlock(&kvm_lock);
5505 }
5506
5507 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5508
5509 /*
5510  * Notification about pvclock gtod data update.
5511  */
5512 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5513                                void *priv)
5514 {
5515         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5516         struct timekeeper *tk = priv;
5517
5518         update_pvclock_gtod(tk);
5519
5520         /* disable master clock if host does not trust, or does not
5521          * use, TSC clocksource
5522          */
5523         if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5524             atomic_read(&kvm_guest_has_master_clock) != 0)
5525                 queue_work(system_long_wq, &pvclock_gtod_work);
5526
5527         return 0;
5528 }
5529
5530 static struct notifier_block pvclock_gtod_notifier = {
5531         .notifier_call = pvclock_gtod_notify,
5532 };
5533 #endif
5534
5535 int kvm_arch_init(void *opaque)
5536 {
5537         int r;
5538         struct kvm_x86_ops *ops = opaque;
5539
5540         if (kvm_x86_ops) {
5541                 printk(KERN_ERR "kvm: already loaded the other module\n");
5542                 r = -EEXIST;
5543                 goto out;
5544         }
5545
5546         if (!ops->cpu_has_kvm_support()) {
5547                 printk(KERN_ERR "kvm: no hardware support\n");
5548                 r = -EOPNOTSUPP;
5549                 goto out;
5550         }
5551         if (ops->disabled_by_bios()) {
5552                 printk(KERN_ERR "kvm: disabled by bios\n");
5553                 r = -EOPNOTSUPP;
5554                 goto out;
5555         }
5556
5557         r = -ENOMEM;
5558         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5559         if (!shared_msrs) {
5560                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5561                 goto out;
5562         }
5563
5564         r = kvm_mmu_module_init();
5565         if (r)
5566                 goto out_free_percpu;
5567
5568         kvm_set_mmio_spte_mask();
5569         kvm_init_msr_list();
5570
5571         kvm_x86_ops = ops;
5572         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5573                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
5574
5575         kvm_timer_init();
5576
5577         perf_register_guest_info_callbacks(&kvm_guest_cbs);
5578
5579         if (cpu_has_xsave)
5580                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5581
5582         kvm_lapic_init();
5583 #ifdef CONFIG_X86_64
5584         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5585 #endif
5586
5587         return 0;
5588
5589 out_free_percpu:
5590         free_percpu(shared_msrs);
5591 out:
5592         return r;
5593 }
5594
5595 void kvm_arch_exit(void)
5596 {
5597         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5598
5599         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5600                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5601                                             CPUFREQ_TRANSITION_NOTIFIER);
5602         unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5603 #ifdef CONFIG_X86_64
5604         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5605 #endif
5606         kvm_x86_ops = NULL;
5607         kvm_mmu_module_exit();
5608         free_percpu(shared_msrs);
5609 }
5610
5611 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5612 {
5613         ++vcpu->stat.halt_exits;
5614         if (irqchip_in_kernel(vcpu->kvm)) {
5615                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5616                 return 1;
5617         } else {
5618                 vcpu->run->exit_reason = KVM_EXIT_HLT;
5619                 return 0;
5620         }
5621 }
5622 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5623
5624 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
5625 {
5626         u64 param, ingpa, outgpa, ret;
5627         uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
5628         bool fast, longmode;
5629         int cs_db, cs_l;
5630
5631         /*
5632          * hypercall generates UD from non zero cpl and real mode
5633          * per HYPER-V spec
5634          */
5635         if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
5636                 kvm_queue_exception(vcpu, UD_VECTOR);
5637                 return 0;
5638         }
5639
5640         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5641         longmode = is_long_mode(vcpu) && cs_l == 1;
5642
5643         if (!longmode) {
5644                 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
5645                         (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
5646                 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
5647                         (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
5648                 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
5649                         (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
5650         }
5651 #ifdef CONFIG_X86_64
5652         else {
5653                 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
5654                 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
5655                 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
5656         }
5657 #endif
5658
5659         code = param & 0xffff;
5660         fast = (param >> 16) & 0x1;
5661         rep_cnt = (param >> 32) & 0xfff;
5662         rep_idx = (param >> 48) & 0xfff;
5663
5664         trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
5665
5666         switch (code) {
5667         case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5668                 kvm_vcpu_on_spin(vcpu);
5669                 break;
5670         default:
5671                 res = HV_STATUS_INVALID_HYPERCALL_CODE;
5672                 break;
5673         }
5674
5675         ret = res | (((u64)rep_done & 0xfff) << 32);
5676         if (longmode) {
5677                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5678         } else {
5679                 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5680                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5681         }
5682
5683         return 1;
5684 }
5685
5686 /*
5687  * kvm_pv_kick_cpu_op:  Kick a vcpu.
5688  *
5689  * @apicid - apicid of vcpu to be kicked.
5690  */
5691 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5692 {
5693         struct kvm_lapic_irq lapic_irq;
5694
5695         lapic_irq.shorthand = 0;
5696         lapic_irq.dest_mode = 0;
5697         lapic_irq.dest_id = apicid;
5698
5699         lapic_irq.delivery_mode = APIC_DM_REMRD;
5700         kvm_irq_delivery_to_apic(kvm, 0, &lapic_irq, NULL);
5701 }
5702
5703 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5704 {
5705         unsigned long nr, a0, a1, a2, a3, ret;
5706         int r = 1;
5707
5708         if (kvm_hv_hypercall_enabled(vcpu->kvm))
5709                 return kvm_hv_hypercall(vcpu);
5710
5711         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5712         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5713         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5714         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5715         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5716
5717         trace_kvm_hypercall(nr, a0, a1, a2, a3);
5718
5719         if (!is_long_mode(vcpu)) {
5720                 nr &= 0xFFFFFFFF;
5721                 a0 &= 0xFFFFFFFF;
5722                 a1 &= 0xFFFFFFFF;
5723                 a2 &= 0xFFFFFFFF;
5724                 a3 &= 0xFFFFFFFF;
5725         }
5726
5727         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5728                 ret = -KVM_EPERM;
5729                 goto out;
5730         }
5731
5732         switch (nr) {
5733         case KVM_HC_VAPIC_POLL_IRQ:
5734                 ret = 0;
5735                 break;
5736         case KVM_HC_KICK_CPU:
5737                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
5738                 ret = 0;
5739                 break;
5740         default:
5741                 ret = -KVM_ENOSYS;
5742                 break;
5743         }
5744 out:
5745         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5746         ++vcpu->stat.hypercalls;
5747         return r;
5748 }
5749 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5750
5751 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5752 {
5753         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5754         char instruction[3];
5755         unsigned long rip = kvm_rip_read(vcpu);
5756
5757         kvm_x86_ops->patch_hypercall(vcpu, instruction);
5758
5759         return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5760 }
5761
5762 /*
5763  * Check if userspace requested an interrupt window, and that the
5764  * interrupt window is open.
5765  *
5766  * No need to exit to userspace if we already have an interrupt queued.
5767  */
5768 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5769 {
5770         return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5771                 vcpu->run->request_interrupt_window &&
5772                 kvm_arch_interrupt_allowed(vcpu));
5773 }
5774
5775 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5776 {
5777         struct kvm_run *kvm_run = vcpu->run;
5778
5779         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5780         kvm_run->cr8 = kvm_get_cr8(vcpu);
5781         kvm_run->apic_base = kvm_get_apic_base(vcpu);
5782         if (irqchip_in_kernel(vcpu->kvm))
5783                 kvm_run->ready_for_interrupt_injection = 1;
5784         else
5785                 kvm_run->ready_for_interrupt_injection =
5786                         kvm_arch_interrupt_allowed(vcpu) &&
5787                         !kvm_cpu_has_interrupt(vcpu) &&
5788                         !kvm_event_needs_reinjection(vcpu);
5789 }
5790
5791 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5792 {
5793         int max_irr, tpr;
5794
5795         if (!kvm_x86_ops->update_cr8_intercept)
5796                 return;
5797
5798         if (!vcpu->arch.apic)
5799                 return;
5800
5801         if (!vcpu->arch.apic->vapic_addr)
5802                 max_irr = kvm_lapic_find_highest_irr(vcpu);
5803         else
5804                 max_irr = -1;
5805
5806         if (max_irr != -1)
5807                 max_irr >>= 4;
5808
5809         tpr = kvm_lapic_get_cr8(vcpu);
5810
5811         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5812 }
5813
5814 static void inject_pending_event(struct kvm_vcpu *vcpu)
5815 {
5816         /* try to reinject previous events if any */
5817         if (vcpu->arch.exception.pending) {
5818                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
5819                                         vcpu->arch.exception.has_error_code,
5820                                         vcpu->arch.exception.error_code);
5821                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5822                                           vcpu->arch.exception.has_error_code,
5823                                           vcpu->arch.exception.error_code,
5824                                           vcpu->arch.exception.reinject);
5825                 return;
5826         }
5827
5828         if (vcpu->arch.nmi_injected) {
5829                 kvm_x86_ops->set_nmi(vcpu);
5830                 return;
5831         }
5832
5833         if (vcpu->arch.interrupt.pending) {
5834                 kvm_x86_ops->set_irq(vcpu);
5835                 return;
5836         }
5837
5838         /* try to inject new event if pending */
5839         if (vcpu->arch.nmi_pending) {
5840                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
5841                         --vcpu->arch.nmi_pending;
5842                         vcpu->arch.nmi_injected = true;
5843                         kvm_x86_ops->set_nmi(vcpu);
5844                 }
5845         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
5846                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5847                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5848                                             false);
5849                         kvm_x86_ops->set_irq(vcpu);
5850                 }
5851         }
5852 }
5853
5854 static void process_nmi(struct kvm_vcpu *vcpu)
5855 {
5856         unsigned limit = 2;
5857
5858         /*
5859          * x86 is limited to one NMI running, and one NMI pending after it.
5860          * If an NMI is already in progress, limit further NMIs to just one.
5861          * Otherwise, allow two (and we'll inject the first one immediately).
5862          */
5863         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
5864                 limit = 1;
5865
5866         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
5867         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
5868         kvm_make_request(KVM_REQ_EVENT, vcpu);
5869 }
5870
5871 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
5872 {
5873         u64 eoi_exit_bitmap[4];
5874         u32 tmr[8];
5875
5876         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
5877                 return;
5878
5879         memset(eoi_exit_bitmap, 0, 32);
5880         memset(tmr, 0, 32);
5881
5882         kvm_ioapic_scan_entry(vcpu, eoi_exit_bitmap, tmr);
5883         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
5884         kvm_apic_update_tmr(vcpu, tmr);
5885 }
5886
5887 /*
5888  * Returns 1 to let __vcpu_run() continue the guest execution loop without
5889  * exiting to the userspace.  Otherwise, the value will be returned to the
5890  * userspace.
5891  */
5892 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5893 {
5894         int r;
5895         bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5896                 vcpu->run->request_interrupt_window;
5897         bool req_immediate_exit = false;
5898
5899         if (vcpu->requests) {
5900                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5901                         kvm_mmu_unload(vcpu);
5902                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5903                         __kvm_migrate_timers(vcpu);
5904                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
5905                         kvm_gen_update_masterclock(vcpu->kvm);
5906                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
5907                         kvm_gen_kvmclock_update(vcpu);
5908                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5909                         r = kvm_guest_time_update(vcpu);
5910                         if (unlikely(r))
5911                                 goto out;
5912                 }
5913                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5914                         kvm_mmu_sync_roots(vcpu);
5915                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5916                         kvm_x86_ops->tlb_flush(vcpu);
5917                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5918                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5919                         r = 0;
5920                         goto out;
5921                 }
5922                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5923                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5924                         r = 0;
5925                         goto out;
5926                 }
5927                 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5928                         vcpu->fpu_active = 0;
5929                         kvm_x86_ops->fpu_deactivate(vcpu);
5930                 }
5931                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5932                         /* Page is swapped out. Do synthetic halt */
5933                         vcpu->arch.apf.halted = true;
5934                         r = 1;
5935                         goto out;
5936                 }
5937                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
5938                         record_steal_time(vcpu);
5939                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
5940                         process_nmi(vcpu);
5941                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
5942                         kvm_handle_pmu_event(vcpu);
5943                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
5944                         kvm_deliver_pmi(vcpu);
5945                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
5946                         vcpu_scan_ioapic(vcpu);
5947         }
5948
5949         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5950                 kvm_apic_accept_events(vcpu);
5951                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
5952                         r = 1;
5953                         goto out;
5954                 }
5955
5956                 inject_pending_event(vcpu);
5957
5958                 /* enable NMI/IRQ window open exits if needed */
5959                 if (vcpu->arch.nmi_pending)
5960                         req_immediate_exit =
5961                                 kvm_x86_ops->enable_nmi_window(vcpu) != 0;
5962                 else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
5963                         req_immediate_exit =
5964                                 kvm_x86_ops->enable_irq_window(vcpu) != 0;
5965
5966                 if (kvm_lapic_enabled(vcpu)) {
5967                         /*
5968                          * Update architecture specific hints for APIC
5969                          * virtual interrupt delivery.
5970                          */
5971                         if (kvm_x86_ops->hwapic_irr_update)
5972                                 kvm_x86_ops->hwapic_irr_update(vcpu,
5973                                         kvm_lapic_find_highest_irr(vcpu));
5974                         update_cr8_intercept(vcpu);
5975                         kvm_lapic_sync_to_vapic(vcpu);
5976                 }
5977         }
5978
5979         r = kvm_mmu_reload(vcpu);
5980         if (unlikely(r)) {
5981                 goto cancel_injection;
5982         }
5983
5984         preempt_disable();
5985
5986         kvm_x86_ops->prepare_guest_switch(vcpu);
5987         if (vcpu->fpu_active)
5988                 kvm_load_guest_fpu(vcpu);
5989         kvm_load_guest_xcr0(vcpu);
5990
5991         vcpu->mode = IN_GUEST_MODE;
5992
5993         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5994
5995         /* We should set ->mode before check ->requests,
5996          * see the comment in make_all_cpus_request.
5997          */
5998         smp_mb__after_srcu_read_unlock();
5999
6000         local_irq_disable();
6001
6002         if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6003             || need_resched() || signal_pending(current)) {
6004                 vcpu->mode = OUTSIDE_GUEST_MODE;
6005                 smp_wmb();
6006                 local_irq_enable();
6007                 preempt_enable();
6008                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6009                 r = 1;
6010                 goto cancel_injection;
6011         }
6012
6013         if (req_immediate_exit)
6014                 smp_send_reschedule(vcpu->cpu);
6015
6016         kvm_guest_enter();
6017
6018         if (unlikely(vcpu->arch.switch_db_regs)) {
6019                 set_debugreg(0, 7);
6020                 set_debugreg(vcpu->arch.eff_db[0], 0);
6021                 set_debugreg(vcpu->arch.eff_db[1], 1);
6022                 set_debugreg(vcpu->arch.eff_db[2], 2);
6023                 set_debugreg(vcpu->arch.eff_db[3], 3);
6024         }
6025
6026         trace_kvm_entry(vcpu->vcpu_id);
6027         kvm_x86_ops->run(vcpu);
6028
6029         /*
6030          * If the guest has used debug registers, at least dr7
6031          * will be disabled while returning to the host.
6032          * If we don't have active breakpoints in the host, we don't
6033          * care about the messed up debug address registers. But if
6034          * we have some of them active, restore the old state.
6035          */
6036         if (hw_breakpoint_active())
6037                 hw_breakpoint_restore();
6038
6039         vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
6040                                                            native_read_tsc());
6041
6042         vcpu->mode = OUTSIDE_GUEST_MODE;
6043         smp_wmb();
6044
6045         /* Interrupt is enabled by handle_external_intr() */
6046         kvm_x86_ops->handle_external_intr(vcpu);
6047
6048         ++vcpu->stat.exits;
6049
6050         /*
6051          * We must have an instruction between local_irq_enable() and
6052          * kvm_guest_exit(), so the timer interrupt isn't delayed by
6053          * the interrupt shadow.  The stat.exits increment will do nicely.
6054          * But we need to prevent reordering, hence this barrier():
6055          */
6056         barrier();
6057
6058         kvm_guest_exit();
6059
6060         preempt_enable();
6061
6062         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6063
6064         /*
6065          * Profile KVM exit RIPs:
6066          */
6067         if (unlikely(prof_on == KVM_PROFILING)) {
6068                 unsigned long rip = kvm_rip_read(vcpu);
6069                 profile_hit(KVM_PROFILING, (void *)rip);
6070         }
6071
6072         if (unlikely(vcpu->arch.tsc_always_catchup))
6073                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6074
6075         if (vcpu->arch.apic_attention)
6076                 kvm_lapic_sync_from_vapic(vcpu);
6077
6078         r = kvm_x86_ops->handle_exit(vcpu);
6079         return r;
6080
6081 cancel_injection:
6082         kvm_x86_ops->cancel_injection(vcpu);
6083         if (unlikely(vcpu->arch.apic_attention))
6084                 kvm_lapic_sync_from_vapic(vcpu);
6085 out:
6086         return r;
6087 }
6088
6089
6090 static int __vcpu_run(struct kvm_vcpu *vcpu)
6091 {
6092         int r;
6093         struct kvm *kvm = vcpu->kvm;
6094
6095         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6096
6097         r = 1;
6098         while (r > 0) {
6099                 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6100                     !vcpu->arch.apf.halted)
6101                         r = vcpu_enter_guest(vcpu);
6102                 else {
6103                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6104                         kvm_vcpu_block(vcpu);
6105                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6106                         if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
6107                                 kvm_apic_accept_events(vcpu);
6108                                 switch(vcpu->arch.mp_state) {
6109                                 case KVM_MP_STATE_HALTED:
6110                                         vcpu->arch.pv.pv_unhalted = false;
6111                                         vcpu->arch.mp_state =
6112                                                 KVM_MP_STATE_RUNNABLE;
6113                                 case KVM_MP_STATE_RUNNABLE:
6114                                         vcpu->arch.apf.halted = false;
6115                                         break;
6116                                 case KVM_MP_STATE_INIT_RECEIVED:
6117                                         break;
6118                                 default:
6119                                         r = -EINTR;
6120                                         break;
6121                                 }
6122                         }
6123                 }
6124
6125                 if (r <= 0)
6126                         break;
6127
6128                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6129                 if (kvm_cpu_has_pending_timer(vcpu))
6130                         kvm_inject_pending_timer_irqs(vcpu);
6131
6132                 if (dm_request_for_irq_injection(vcpu)) {
6133                         r = -EINTR;
6134                         vcpu->run->exit_reason = KVM_EXIT_INTR;
6135                         ++vcpu->stat.request_irq_exits;
6136                 }
6137
6138                 kvm_check_async_pf_completion(vcpu);
6139
6140                 if (signal_pending(current)) {
6141                         r = -EINTR;
6142                         vcpu->run->exit_reason = KVM_EXIT_INTR;
6143                         ++vcpu->stat.signal_exits;
6144                 }
6145                 if (need_resched()) {
6146                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6147                         cond_resched();
6148                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6149                 }
6150         }
6151
6152         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6153
6154         return r;
6155 }
6156
6157 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6158 {
6159         int r;
6160         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6161         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6162         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6163         if (r != EMULATE_DONE)
6164                 return 0;
6165         return 1;
6166 }
6167
6168 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6169 {
6170         BUG_ON(!vcpu->arch.pio.count);
6171
6172         return complete_emulated_io(vcpu);
6173 }
6174
6175 /*
6176  * Implements the following, as a state machine:
6177  *
6178  * read:
6179  *   for each fragment
6180  *     for each mmio piece in the fragment
6181  *       write gpa, len
6182  *       exit
6183  *       copy data
6184  *   execute insn
6185  *
6186  * write:
6187  *   for each fragment
6188  *     for each mmio piece in the fragment
6189  *       write gpa, len
6190  *       copy data
6191  *       exit
6192  */
6193 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6194 {
6195         struct kvm_run *run = vcpu->run;
6196         struct kvm_mmio_fragment *frag;
6197         unsigned len;
6198
6199         BUG_ON(!vcpu->mmio_needed);
6200
6201         /* Complete previous fragment */
6202         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6203         len = min(8u, frag->len);
6204         if (!vcpu->mmio_is_write)
6205                 memcpy(frag->data, run->mmio.data, len);
6206
6207         if (frag->len <= 8) {
6208                 /* Switch to the next fragment. */
6209                 frag++;
6210                 vcpu->mmio_cur_fragment++;
6211         } else {
6212                 /* Go forward to the next mmio piece. */
6213                 frag->data += len;
6214                 frag->gpa += len;
6215                 frag->len -= len;
6216         }
6217
6218         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
6219                 vcpu->mmio_needed = 0;
6220
6221                 /* FIXME: return into emulator if single-stepping.  */
6222                 if (vcpu->mmio_is_write)
6223                         return 1;
6224                 vcpu->mmio_read_completed = 1;
6225                 return complete_emulated_io(vcpu);
6226         }
6227
6228         run->exit_reason = KVM_EXIT_MMIO;
6229         run->mmio.phys_addr = frag->gpa;
6230         if (vcpu->mmio_is_write)
6231                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6232         run->mmio.len = min(8u, frag->len);
6233         run->mmio.is_write = vcpu->mmio_is_write;
6234         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6235         return 0;
6236 }
6237
6238
6239 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6240 {
6241         int r;
6242         sigset_t sigsaved;
6243
6244         if (!tsk_used_math(current) && init_fpu(current))
6245                 return -ENOMEM;
6246
6247         if (vcpu->sigset_active)
6248                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6249
6250         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6251                 kvm_vcpu_block(vcpu);
6252                 kvm_apic_accept_events(vcpu);
6253                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6254                 r = -EAGAIN;
6255                 goto out;
6256         }
6257
6258         /* re-sync apic's tpr */
6259         if (!irqchip_in_kernel(vcpu->kvm)) {
6260                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6261                         r = -EINVAL;
6262                         goto out;
6263                 }
6264         }
6265
6266         if (unlikely(vcpu->arch.complete_userspace_io)) {
6267                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6268                 vcpu->arch.complete_userspace_io = NULL;
6269                 r = cui(vcpu);
6270                 if (r <= 0)
6271                         goto out;
6272         } else
6273                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6274
6275         r = __vcpu_run(vcpu);
6276
6277 out:
6278         post_kvm_run_save(vcpu);
6279         if (vcpu->sigset_active)
6280                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6281
6282         return r;
6283 }
6284
6285 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6286 {
6287         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6288                 /*
6289                  * We are here if userspace calls get_regs() in the middle of
6290                  * instruction emulation. Registers state needs to be copied
6291                  * back from emulation context to vcpu. Userspace shouldn't do
6292                  * that usually, but some bad designed PV devices (vmware
6293                  * backdoor interface) need this to work
6294                  */
6295                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6296                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6297         }
6298         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6299         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6300         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6301         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6302         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6303         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6304         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6305         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6306 #ifdef CONFIG_X86_64
6307         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6308         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6309         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6310         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6311         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6312         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6313         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6314         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6315 #endif
6316
6317         regs->rip = kvm_rip_read(vcpu);
6318         regs->rflags = kvm_get_rflags(vcpu);
6319
6320         return 0;
6321 }
6322
6323 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6324 {
6325         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6326         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6327
6328         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6329         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6330         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6331         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6332         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6333         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6334         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6335         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6336 #ifdef CONFIG_X86_64
6337         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6338         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6339         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6340         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6341         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6342         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6343         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6344         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6345 #endif
6346
6347         kvm_rip_write(vcpu, regs->rip);
6348         kvm_set_rflags(vcpu, regs->rflags);
6349
6350         vcpu->arch.exception.pending = false;
6351
6352         kvm_make_request(KVM_REQ_EVENT, vcpu);
6353
6354         return 0;
6355 }
6356
6357 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6358 {
6359         struct kvm_segment cs;
6360
6361         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6362         *db = cs.db;
6363         *l = cs.l;
6364 }
6365 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6366
6367 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6368                                   struct kvm_sregs *sregs)
6369 {
6370         struct desc_ptr dt;
6371
6372         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6373         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6374         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6375         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6376         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6377         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6378
6379         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6380         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6381
6382         kvm_x86_ops->get_idt(vcpu, &dt);
6383         sregs->idt.limit = dt.size;
6384         sregs->idt.base = dt.address;
6385         kvm_x86_ops->get_gdt(vcpu, &dt);
6386         sregs->gdt.limit = dt.size;
6387         sregs->gdt.base = dt.address;
6388
6389         sregs->cr0 = kvm_read_cr0(vcpu);
6390         sregs->cr2 = vcpu->arch.cr2;
6391         sregs->cr3 = kvm_read_cr3(vcpu);
6392         sregs->cr4 = kvm_read_cr4(vcpu);
6393         sregs->cr8 = kvm_get_cr8(vcpu);
6394         sregs->efer = vcpu->arch.efer;
6395         sregs->apic_base = kvm_get_apic_base(vcpu);
6396
6397         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6398
6399         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6400                 set_bit(vcpu->arch.interrupt.nr,
6401                         (unsigned long *)sregs->interrupt_bitmap);
6402
6403         return 0;
6404 }
6405
6406 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6407                                     struct kvm_mp_state *mp_state)
6408 {
6409         kvm_apic_accept_events(vcpu);
6410         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
6411                                         vcpu->arch.pv.pv_unhalted)
6412                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
6413         else
6414                 mp_state->mp_state = vcpu->arch.mp_state;
6415
6416         return 0;
6417 }
6418
6419 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
6420                                     struct kvm_mp_state *mp_state)
6421 {
6422         if (!kvm_vcpu_has_lapic(vcpu) &&
6423             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
6424                 return -EINVAL;
6425
6426         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
6427                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
6428                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
6429         } else
6430                 vcpu->arch.mp_state = mp_state->mp_state;
6431         kvm_make_request(KVM_REQ_EVENT, vcpu);
6432         return 0;
6433 }
6434
6435 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
6436                     int reason, bool has_error_code, u32 error_code)
6437 {
6438         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6439         int ret;
6440
6441         init_emulate_ctxt(vcpu);
6442
6443         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
6444                                    has_error_code, error_code);
6445
6446         if (ret)
6447                 return EMULATE_FAIL;
6448
6449         kvm_rip_write(vcpu, ctxt->eip);
6450         kvm_set_rflags(vcpu, ctxt->eflags);
6451         kvm_make_request(KVM_REQ_EVENT, vcpu);
6452         return EMULATE_DONE;
6453 }
6454 EXPORT_SYMBOL_GPL(kvm_task_switch);
6455
6456 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
6457                                   struct kvm_sregs *sregs)
6458 {
6459         struct msr_data apic_base_msr;
6460         int mmu_reset_needed = 0;
6461         int pending_vec, max_bits, idx;
6462         struct desc_ptr dt;
6463
6464         if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
6465                 return -EINVAL;
6466
6467         dt.size = sregs->idt.limit;
6468         dt.address = sregs->idt.base;
6469         kvm_x86_ops->set_idt(vcpu, &dt);
6470         dt.size = sregs->gdt.limit;
6471         dt.address = sregs->gdt.base;
6472         kvm_x86_ops->set_gdt(vcpu, &dt);
6473
6474         vcpu->arch.cr2 = sregs->cr2;
6475         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
6476         vcpu->arch.cr3 = sregs->cr3;
6477         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
6478
6479         kvm_set_cr8(vcpu, sregs->cr8);
6480
6481         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
6482         kvm_x86_ops->set_efer(vcpu, sregs->efer);
6483         apic_base_msr.data = sregs->apic_base;
6484         apic_base_msr.host_initiated = true;
6485         kvm_set_apic_base(vcpu, &apic_base_msr);
6486
6487         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
6488         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
6489         vcpu->arch.cr0 = sregs->cr0;
6490
6491         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
6492         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
6493         if (sregs->cr4 & X86_CR4_OSXSAVE)
6494                 kvm_update_cpuid(vcpu);
6495
6496         idx = srcu_read_lock(&vcpu->kvm->srcu);
6497         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
6498                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
6499                 mmu_reset_needed = 1;
6500         }
6501         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6502
6503         if (mmu_reset_needed)
6504                 kvm_mmu_reset_context(vcpu);
6505
6506         max_bits = KVM_NR_INTERRUPTS;
6507         pending_vec = find_first_bit(
6508                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
6509         if (pending_vec < max_bits) {
6510                 kvm_queue_interrupt(vcpu, pending_vec, false);
6511                 pr_debug("Set back pending irq %d\n", pending_vec);
6512         }
6513
6514         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6515         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6516         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6517         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6518         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6519         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6520
6521         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6522         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6523
6524         update_cr8_intercept(vcpu);
6525
6526         /* Older userspace won't unhalt the vcpu on reset. */
6527         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
6528             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
6529             !is_protmode(vcpu))
6530                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6531
6532         kvm_make_request(KVM_REQ_EVENT, vcpu);
6533
6534         return 0;
6535 }
6536
6537 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
6538                                         struct kvm_guest_debug *dbg)
6539 {
6540         unsigned long rflags;
6541         int i, r;
6542
6543         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
6544                 r = -EBUSY;
6545                 if (vcpu->arch.exception.pending)
6546                         goto out;
6547                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
6548                         kvm_queue_exception(vcpu, DB_VECTOR);
6549                 else
6550                         kvm_queue_exception(vcpu, BP_VECTOR);
6551         }
6552
6553         /*
6554          * Read rflags as long as potentially injected trace flags are still
6555          * filtered out.
6556          */
6557         rflags = kvm_get_rflags(vcpu);
6558
6559         vcpu->guest_debug = dbg->control;
6560         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
6561                 vcpu->guest_debug = 0;
6562
6563         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6564                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
6565                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
6566                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
6567         } else {
6568                 for (i = 0; i < KVM_NR_DB_REGS; i++)
6569                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6570         }
6571         kvm_update_dr7(vcpu);
6572
6573         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6574                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
6575                         get_segment_base(vcpu, VCPU_SREG_CS);
6576
6577         /*
6578          * Trigger an rflags update that will inject or remove the trace
6579          * flags.
6580          */
6581         kvm_set_rflags(vcpu, rflags);
6582
6583         kvm_x86_ops->update_db_bp_intercept(vcpu);
6584
6585         r = 0;
6586
6587 out:
6588
6589         return r;
6590 }
6591
6592 /*
6593  * Translate a guest virtual address to a guest physical address.
6594  */
6595 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
6596                                     struct kvm_translation *tr)
6597 {
6598         unsigned long vaddr = tr->linear_address;
6599         gpa_t gpa;
6600         int idx;
6601
6602         idx = srcu_read_lock(&vcpu->kvm->srcu);
6603         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
6604         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6605         tr->physical_address = gpa;
6606         tr->valid = gpa != UNMAPPED_GVA;
6607         tr->writeable = 1;
6608         tr->usermode = 0;
6609
6610         return 0;
6611 }
6612
6613 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6614 {
6615         struct i387_fxsave_struct *fxsave =
6616                         &vcpu->arch.guest_fpu.state->fxsave;
6617
6618         memcpy(fpu->fpr, fxsave->st_space, 128);
6619         fpu->fcw = fxsave->cwd;
6620         fpu->fsw = fxsave->swd;
6621         fpu->ftwx = fxsave->twd;
6622         fpu->last_opcode = fxsave->fop;
6623         fpu->last_ip = fxsave->rip;
6624         fpu->last_dp = fxsave->rdp;
6625         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
6626
6627         return 0;
6628 }
6629
6630 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6631 {
6632         struct i387_fxsave_struct *fxsave =
6633                         &vcpu->arch.guest_fpu.state->fxsave;
6634
6635         memcpy(fxsave->st_space, fpu->fpr, 128);
6636         fxsave->cwd = fpu->fcw;
6637         fxsave->swd = fpu->fsw;
6638         fxsave->twd = fpu->ftwx;
6639         fxsave->fop = fpu->last_opcode;
6640         fxsave->rip = fpu->last_ip;
6641         fxsave->rdp = fpu->last_dp;
6642         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
6643
6644         return 0;
6645 }
6646
6647 int fx_init(struct kvm_vcpu *vcpu)
6648 {
6649         int err;
6650
6651         err = fpu_alloc(&vcpu->arch.guest_fpu);
6652         if (err)
6653                 return err;
6654
6655         fpu_finit(&vcpu->arch.guest_fpu);
6656
6657         /*
6658          * Ensure guest xcr0 is valid for loading
6659          */
6660         vcpu->arch.xcr0 = XSTATE_FP;
6661
6662         vcpu->arch.cr0 |= X86_CR0_ET;
6663
6664         return 0;
6665 }
6666 EXPORT_SYMBOL_GPL(fx_init);
6667
6668 static void fx_free(struct kvm_vcpu *vcpu)
6669 {
6670         fpu_free(&vcpu->arch.guest_fpu);
6671 }
6672
6673 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
6674 {
6675         if (vcpu->guest_fpu_loaded)
6676                 return;
6677
6678         /*
6679          * Restore all possible states in the guest,
6680          * and assume host would use all available bits.
6681          * Guest xcr0 would be loaded later.
6682          */
6683         kvm_put_guest_xcr0(vcpu);
6684         vcpu->guest_fpu_loaded = 1;
6685         __kernel_fpu_begin();
6686         fpu_restore_checking(&vcpu->arch.guest_fpu);
6687         trace_kvm_fpu(1);
6688 }
6689
6690 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
6691 {
6692         kvm_put_guest_xcr0(vcpu);
6693
6694         if (!vcpu->guest_fpu_loaded)
6695                 return;
6696
6697         vcpu->guest_fpu_loaded = 0;
6698         fpu_save_init(&vcpu->arch.guest_fpu);
6699         __kernel_fpu_end();
6700         ++vcpu->stat.fpu_reload;
6701         kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
6702         trace_kvm_fpu(0);
6703 }
6704
6705 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
6706 {
6707         kvmclock_reset(vcpu);
6708
6709         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6710         fx_free(vcpu);
6711         kvm_x86_ops->vcpu_free(vcpu);
6712 }
6713
6714 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
6715                                                 unsigned int id)
6716 {
6717         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
6718                 printk_once(KERN_WARNING
6719                 "kvm: SMP vm created on host with unstable TSC; "
6720                 "guest TSC will not be reliable\n");
6721         return kvm_x86_ops->vcpu_create(kvm, id);
6722 }
6723
6724 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
6725 {
6726         int r;
6727
6728         vcpu->arch.mtrr_state.have_fixed = 1;
6729         r = vcpu_load(vcpu);
6730         if (r)
6731                 return r;
6732         kvm_vcpu_reset(vcpu);
6733         kvm_mmu_setup(vcpu);
6734         vcpu_put(vcpu);
6735
6736         return r;
6737 }
6738
6739 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
6740 {
6741         int r;
6742         struct msr_data msr;
6743
6744         r = vcpu_load(vcpu);
6745         if (r)
6746                 return r;
6747         msr.data = 0x0;
6748         msr.index = MSR_IA32_TSC;
6749         msr.host_initiated = true;
6750         kvm_write_tsc(vcpu, &msr);
6751         vcpu_put(vcpu);
6752
6753         return r;
6754 }
6755
6756 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
6757 {
6758         int r;
6759         vcpu->arch.apf.msr_val = 0;
6760
6761         r = vcpu_load(vcpu);
6762         BUG_ON(r);
6763         kvm_mmu_unload(vcpu);
6764         vcpu_put(vcpu);
6765
6766         fx_free(vcpu);
6767         kvm_x86_ops->vcpu_free(vcpu);
6768 }
6769
6770 void kvm_vcpu_reset(struct kvm_vcpu *vcpu)
6771 {
6772         atomic_set(&vcpu->arch.nmi_queued, 0);
6773         vcpu->arch.nmi_pending = 0;
6774         vcpu->arch.nmi_injected = false;
6775
6776         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
6777         vcpu->arch.dr6 = DR6_FIXED_1;
6778         kvm_update_dr6(vcpu);
6779         vcpu->arch.dr7 = DR7_FIXED_1;
6780         kvm_update_dr7(vcpu);
6781
6782         kvm_make_request(KVM_REQ_EVENT, vcpu);
6783         vcpu->arch.apf.msr_val = 0;
6784         vcpu->arch.st.msr_val = 0;
6785
6786         kvmclock_reset(vcpu);
6787
6788         kvm_clear_async_pf_completion_queue(vcpu);
6789         kvm_async_pf_hash_reset(vcpu);
6790         vcpu->arch.apf.halted = false;
6791
6792         kvm_pmu_reset(vcpu);
6793
6794         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
6795         vcpu->arch.regs_avail = ~0;
6796         vcpu->arch.regs_dirty = ~0;
6797
6798         kvm_x86_ops->vcpu_reset(vcpu);
6799 }
6800
6801 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, unsigned int vector)
6802 {
6803         struct kvm_segment cs;
6804
6805         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6806         cs.selector = vector << 8;
6807         cs.base = vector << 12;
6808         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6809         kvm_rip_write(vcpu, 0);
6810 }
6811
6812 int kvm_arch_hardware_enable(void *garbage)
6813 {
6814         struct kvm *kvm;
6815         struct kvm_vcpu *vcpu;
6816         int i;
6817         int ret;
6818         u64 local_tsc;
6819         u64 max_tsc = 0;
6820         bool stable, backwards_tsc = false;
6821
6822         kvm_shared_msr_cpu_online();
6823         ret = kvm_x86_ops->hardware_enable(garbage);
6824         if (ret != 0)
6825                 return ret;
6826
6827         local_tsc = native_read_tsc();
6828         stable = !check_tsc_unstable();
6829         list_for_each_entry(kvm, &vm_list, vm_list) {
6830                 kvm_for_each_vcpu(i, vcpu, kvm) {
6831                         if (!stable && vcpu->cpu == smp_processor_id())
6832                                 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
6833                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
6834                                 backwards_tsc = true;
6835                                 if (vcpu->arch.last_host_tsc > max_tsc)
6836                                         max_tsc = vcpu->arch.last_host_tsc;
6837                         }
6838                 }
6839         }
6840
6841         /*
6842          * Sometimes, even reliable TSCs go backwards.  This happens on
6843          * platforms that reset TSC during suspend or hibernate actions, but
6844          * maintain synchronization.  We must compensate.  Fortunately, we can
6845          * detect that condition here, which happens early in CPU bringup,
6846          * before any KVM threads can be running.  Unfortunately, we can't
6847          * bring the TSCs fully up to date with real time, as we aren't yet far
6848          * enough into CPU bringup that we know how much real time has actually
6849          * elapsed; our helper function, get_kernel_ns() will be using boot
6850          * variables that haven't been updated yet.
6851          *
6852          * So we simply find the maximum observed TSC above, then record the
6853          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
6854          * the adjustment will be applied.  Note that we accumulate
6855          * adjustments, in case multiple suspend cycles happen before some VCPU
6856          * gets a chance to run again.  In the event that no KVM threads get a
6857          * chance to run, we will miss the entire elapsed period, as we'll have
6858          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
6859          * loose cycle time.  This isn't too big a deal, since the loss will be
6860          * uniform across all VCPUs (not to mention the scenario is extremely
6861          * unlikely). It is possible that a second hibernate recovery happens
6862          * much faster than a first, causing the observed TSC here to be
6863          * smaller; this would require additional padding adjustment, which is
6864          * why we set last_host_tsc to the local tsc observed here.
6865          *
6866          * N.B. - this code below runs only on platforms with reliable TSC,
6867          * as that is the only way backwards_tsc is set above.  Also note
6868          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
6869          * have the same delta_cyc adjustment applied if backwards_tsc
6870          * is detected.  Note further, this adjustment is only done once,
6871          * as we reset last_host_tsc on all VCPUs to stop this from being
6872          * called multiple times (one for each physical CPU bringup).
6873          *
6874          * Platforms with unreliable TSCs don't have to deal with this, they
6875          * will be compensated by the logic in vcpu_load, which sets the TSC to
6876          * catchup mode.  This will catchup all VCPUs to real time, but cannot
6877          * guarantee that they stay in perfect synchronization.
6878          */
6879         if (backwards_tsc) {
6880                 u64 delta_cyc = max_tsc - local_tsc;
6881                 list_for_each_entry(kvm, &vm_list, vm_list) {
6882                         kvm_for_each_vcpu(i, vcpu, kvm) {
6883                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
6884                                 vcpu->arch.last_host_tsc = local_tsc;
6885                                 set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
6886                                         &vcpu->requests);
6887                         }
6888
6889                         /*
6890                          * We have to disable TSC offset matching.. if you were
6891                          * booting a VM while issuing an S4 host suspend....
6892                          * you may have some problem.  Solving this issue is
6893                          * left as an exercise to the reader.
6894                          */
6895                         kvm->arch.last_tsc_nsec = 0;
6896                         kvm->arch.last_tsc_write = 0;
6897                 }
6898
6899         }
6900         return 0;
6901 }
6902
6903 void kvm_arch_hardware_disable(void *garbage)
6904 {
6905         kvm_x86_ops->hardware_disable(garbage);
6906         drop_user_return_notifiers(garbage);
6907 }
6908
6909 int kvm_arch_hardware_setup(void)
6910 {
6911         return kvm_x86_ops->hardware_setup();
6912 }
6913
6914 void kvm_arch_hardware_unsetup(void)
6915 {
6916         kvm_x86_ops->hardware_unsetup();
6917 }
6918
6919 void kvm_arch_check_processor_compat(void *rtn)
6920 {
6921         kvm_x86_ops->check_processor_compatibility(rtn);
6922 }
6923
6924 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
6925 {
6926         return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
6927 }
6928
6929 struct static_key kvm_no_apic_vcpu __read_mostly;
6930
6931 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
6932 {
6933         struct page *page;
6934         struct kvm *kvm;
6935         int r;
6936
6937         BUG_ON(vcpu->kvm == NULL);
6938         kvm = vcpu->kvm;
6939
6940         vcpu->arch.pv.pv_unhalted = false;
6941         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
6942         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
6943                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6944         else
6945                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
6946
6947         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
6948         if (!page) {
6949                 r = -ENOMEM;
6950                 goto fail;
6951         }
6952         vcpu->arch.pio_data = page_address(page);
6953
6954         kvm_set_tsc_khz(vcpu, max_tsc_khz);
6955
6956         r = kvm_mmu_create(vcpu);
6957         if (r < 0)
6958                 goto fail_free_pio_data;
6959
6960         if (irqchip_in_kernel(kvm)) {
6961                 r = kvm_create_lapic(vcpu);
6962                 if (r < 0)
6963                         goto fail_mmu_destroy;
6964         } else
6965                 static_key_slow_inc(&kvm_no_apic_vcpu);
6966
6967         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
6968                                        GFP_KERNEL);
6969         if (!vcpu->arch.mce_banks) {
6970                 r = -ENOMEM;
6971                 goto fail_free_lapic;
6972         }
6973         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
6974
6975         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
6976                 r = -ENOMEM;
6977                 goto fail_free_mce_banks;
6978         }
6979
6980         r = fx_init(vcpu);
6981         if (r)
6982                 goto fail_free_wbinvd_dirty_mask;
6983
6984         vcpu->arch.ia32_tsc_adjust_msr = 0x0;
6985         vcpu->arch.pv_time_enabled = false;
6986
6987         vcpu->arch.guest_supported_xcr0 = 0;
6988         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
6989
6990         kvm_async_pf_hash_reset(vcpu);
6991         kvm_pmu_init(vcpu);
6992
6993         return 0;
6994 fail_free_wbinvd_dirty_mask:
6995         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6996 fail_free_mce_banks:
6997         kfree(vcpu->arch.mce_banks);
6998 fail_free_lapic:
6999         kvm_free_lapic(vcpu);
7000 fail_mmu_destroy:
7001         kvm_mmu_destroy(vcpu);
7002 fail_free_pio_data:
7003         free_page((unsigned long)vcpu->arch.pio_data);
7004 fail:
7005         return r;
7006 }
7007
7008 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7009 {
7010         int idx;
7011
7012         kvm_pmu_destroy(vcpu);
7013         kfree(vcpu->arch.mce_banks);
7014         kvm_free_lapic(vcpu);
7015         idx = srcu_read_lock(&vcpu->kvm->srcu);
7016         kvm_mmu_destroy(vcpu);
7017         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7018         free_page((unsigned long)vcpu->arch.pio_data);
7019         if (!irqchip_in_kernel(vcpu->kvm))
7020                 static_key_slow_dec(&kvm_no_apic_vcpu);
7021 }
7022
7023 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7024 {
7025         if (type)
7026                 return -EINVAL;
7027
7028         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7029         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7030         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7031         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7032
7033         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7034         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7035         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7036         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7037                 &kvm->arch.irq_sources_bitmap);
7038
7039         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7040         mutex_init(&kvm->arch.apic_map_lock);
7041         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7042
7043         pvclock_update_vm_gtod_copy(kvm);
7044
7045         return 0;
7046 }
7047
7048 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7049 {
7050         int r;
7051         r = vcpu_load(vcpu);
7052         BUG_ON(r);
7053         kvm_mmu_unload(vcpu);
7054         vcpu_put(vcpu);
7055 }
7056
7057 static void kvm_free_vcpus(struct kvm *kvm)
7058 {
7059         unsigned int i;
7060         struct kvm_vcpu *vcpu;
7061
7062         /*
7063          * Unpin any mmu pages first.
7064          */
7065         kvm_for_each_vcpu(i, vcpu, kvm) {
7066                 kvm_clear_async_pf_completion_queue(vcpu);
7067                 kvm_unload_vcpu_mmu(vcpu);
7068         }
7069         kvm_for_each_vcpu(i, vcpu, kvm)
7070                 kvm_arch_vcpu_free(vcpu);
7071
7072         mutex_lock(&kvm->lock);
7073         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7074                 kvm->vcpus[i] = NULL;
7075
7076         atomic_set(&kvm->online_vcpus, 0);
7077         mutex_unlock(&kvm->lock);
7078 }
7079
7080 void kvm_arch_sync_events(struct kvm *kvm)
7081 {
7082         kvm_free_all_assigned_devices(kvm);
7083         kvm_free_pit(kvm);
7084 }
7085
7086 void kvm_arch_destroy_vm(struct kvm *kvm)
7087 {
7088         if (current->mm == kvm->mm) {
7089                 /*
7090                  * Free memory regions allocated on behalf of userspace,
7091                  * unless the the memory map has changed due to process exit
7092                  * or fd copying.
7093                  */
7094                 struct kvm_userspace_memory_region mem;
7095                 memset(&mem, 0, sizeof(mem));
7096                 mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
7097                 kvm_set_memory_region(kvm, &mem);
7098
7099                 mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
7100                 kvm_set_memory_region(kvm, &mem);
7101
7102                 mem.slot = TSS_PRIVATE_MEMSLOT;
7103                 kvm_set_memory_region(kvm, &mem);
7104         }
7105         kvm_iommu_unmap_guest(kvm);
7106         kfree(kvm->arch.vpic);
7107         kfree(kvm->arch.vioapic);
7108         kvm_free_vcpus(kvm);
7109         if (kvm->arch.apic_access_page)
7110                 put_page(kvm->arch.apic_access_page);
7111         if (kvm->arch.ept_identity_pagetable)
7112                 put_page(kvm->arch.ept_identity_pagetable);
7113         kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7114 }
7115
7116 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7117                            struct kvm_memory_slot *dont)
7118 {
7119         int i;
7120
7121         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7122                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7123                         kvm_kvfree(free->arch.rmap[i]);
7124                         free->arch.rmap[i] = NULL;
7125                 }
7126                 if (i == 0)
7127                         continue;
7128
7129                 if (!dont || free->arch.lpage_info[i - 1] !=
7130                              dont->arch.lpage_info[i - 1]) {
7131                         kvm_kvfree(free->arch.lpage_info[i - 1]);
7132                         free->arch.lpage_info[i - 1] = NULL;
7133                 }
7134         }
7135 }
7136
7137 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7138                             unsigned long npages)
7139 {
7140         int i;
7141
7142         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7143                 unsigned long ugfn;
7144                 int lpages;
7145                 int level = i + 1;
7146
7147                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
7148                                       slot->base_gfn, level) + 1;
7149
7150                 slot->arch.rmap[i] =
7151                         kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7152                 if (!slot->arch.rmap[i])
7153                         goto out_free;
7154                 if (i == 0)
7155                         continue;
7156
7157                 slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
7158                                         sizeof(*slot->arch.lpage_info[i - 1]));
7159                 if (!slot->arch.lpage_info[i - 1])
7160                         goto out_free;
7161
7162                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7163                         slot->arch.lpage_info[i - 1][0].write_count = 1;
7164                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7165                         slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
7166                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
7167                 /*
7168                  * If the gfn and userspace address are not aligned wrt each
7169                  * other, or if explicitly asked to, disable large page
7170                  * support for this slot
7171                  */
7172                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7173                     !kvm_largepages_enabled()) {
7174                         unsigned long j;
7175
7176                         for (j = 0; j < lpages; ++j)
7177                                 slot->arch.lpage_info[i - 1][j].write_count = 1;
7178                 }
7179         }
7180
7181         return 0;
7182
7183 out_free:
7184         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7185                 kvm_kvfree(slot->arch.rmap[i]);
7186                 slot->arch.rmap[i] = NULL;
7187                 if (i == 0)
7188                         continue;
7189
7190                 kvm_kvfree(slot->arch.lpage_info[i - 1]);
7191                 slot->arch.lpage_info[i - 1] = NULL;
7192         }
7193         return -ENOMEM;
7194 }
7195
7196 void kvm_arch_memslots_updated(struct kvm *kvm)
7197 {
7198         /*
7199          * memslots->generation has been incremented.
7200          * mmio generation may have reached its maximum value.
7201          */
7202         kvm_mmu_invalidate_mmio_sptes(kvm);
7203 }
7204
7205 int kvm_arch_prepare_memory_region(struct kvm *kvm,
7206                                 struct kvm_memory_slot *memslot,
7207                                 struct kvm_userspace_memory_region *mem,
7208                                 enum kvm_mr_change change)
7209 {
7210         /*
7211          * Only private memory slots need to be mapped here since
7212          * KVM_SET_MEMORY_REGION ioctl is no longer supported.
7213          */
7214         if ((memslot->id >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_CREATE)) {
7215                 unsigned long userspace_addr;
7216
7217                 /*
7218                  * MAP_SHARED to prevent internal slot pages from being moved
7219                  * by fork()/COW.
7220                  */
7221                 userspace_addr = vm_mmap(NULL, 0, memslot->npages * PAGE_SIZE,
7222                                          PROT_READ | PROT_WRITE,
7223                                          MAP_SHARED | MAP_ANONYMOUS, 0);
7224
7225                 if (IS_ERR((void *)userspace_addr))
7226                         return PTR_ERR((void *)userspace_addr);
7227
7228                 memslot->userspace_addr = userspace_addr;
7229         }
7230
7231         return 0;
7232 }
7233
7234 void kvm_arch_commit_memory_region(struct kvm *kvm,
7235                                 struct kvm_userspace_memory_region *mem,
7236                                 const struct kvm_memory_slot *old,
7237                                 enum kvm_mr_change change)
7238 {
7239
7240         int nr_mmu_pages = 0;
7241
7242         if ((mem->slot >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_DELETE)) {
7243                 int ret;
7244
7245                 ret = vm_munmap(old->userspace_addr,
7246                                 old->npages * PAGE_SIZE);
7247                 if (ret < 0)
7248                         printk(KERN_WARNING
7249                                "kvm_vm_ioctl_set_memory_region: "
7250                                "failed to munmap memory\n");
7251         }
7252
7253         if (!kvm->arch.n_requested_mmu_pages)
7254                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
7255
7256         if (nr_mmu_pages)
7257                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
7258         /*
7259          * Write protect all pages for dirty logging.
7260          * Existing largepage mappings are destroyed here and new ones will
7261          * not be created until the end of the logging.
7262          */
7263         if ((change != KVM_MR_DELETE) && (mem->flags & KVM_MEM_LOG_DIRTY_PAGES))
7264                 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
7265 }
7266
7267 void kvm_arch_flush_shadow_all(struct kvm *kvm)
7268 {
7269         kvm_mmu_invalidate_zap_all_pages(kvm);
7270 }
7271
7272 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
7273                                    struct kvm_memory_slot *slot)
7274 {
7275         kvm_mmu_invalidate_zap_all_pages(kvm);
7276 }
7277
7278 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
7279 {
7280         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7281                 !vcpu->arch.apf.halted)
7282                 || !list_empty_careful(&vcpu->async_pf.done)
7283                 || kvm_apic_has_events(vcpu)
7284                 || vcpu->arch.pv.pv_unhalted
7285                 || atomic_read(&vcpu->arch.nmi_queued) ||
7286                 (kvm_arch_interrupt_allowed(vcpu) &&
7287                  kvm_cpu_has_interrupt(vcpu));
7288 }
7289
7290 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
7291 {
7292         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
7293 }
7294
7295 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
7296 {
7297         return kvm_x86_ops->interrupt_allowed(vcpu);
7298 }
7299
7300 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
7301 {
7302         unsigned long current_rip = kvm_rip_read(vcpu) +
7303                 get_segment_base(vcpu, VCPU_SREG_CS);
7304
7305         return current_rip == linear_rip;
7306 }
7307 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
7308
7309 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
7310 {
7311         unsigned long rflags;
7312
7313         rflags = kvm_x86_ops->get_rflags(vcpu);
7314         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7315                 rflags &= ~X86_EFLAGS_TF;
7316         return rflags;
7317 }
7318 EXPORT_SYMBOL_GPL(kvm_get_rflags);
7319
7320 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7321 {
7322         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
7323             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
7324                 rflags |= X86_EFLAGS_TF;
7325         kvm_x86_ops->set_rflags(vcpu, rflags);
7326         kvm_make_request(KVM_REQ_EVENT, vcpu);
7327 }
7328 EXPORT_SYMBOL_GPL(kvm_set_rflags);
7329
7330 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
7331 {
7332         int r;
7333
7334         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
7335               work->wakeup_all)
7336                 return;
7337
7338         r = kvm_mmu_reload(vcpu);
7339         if (unlikely(r))
7340                 return;
7341
7342         if (!vcpu->arch.mmu.direct_map &&
7343               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
7344                 return;
7345
7346         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
7347 }
7348
7349 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
7350 {
7351         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
7352 }
7353
7354 static inline u32 kvm_async_pf_next_probe(u32 key)
7355 {
7356         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
7357 }
7358
7359 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7360 {
7361         u32 key = kvm_async_pf_hash_fn(gfn);
7362
7363         while (vcpu->arch.apf.gfns[key] != ~0)
7364                 key = kvm_async_pf_next_probe(key);
7365
7366         vcpu->arch.apf.gfns[key] = gfn;
7367 }
7368
7369 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
7370 {
7371         int i;
7372         u32 key = kvm_async_pf_hash_fn(gfn);
7373
7374         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
7375                      (vcpu->arch.apf.gfns[key] != gfn &&
7376                       vcpu->arch.apf.gfns[key] != ~0); i++)
7377                 key = kvm_async_pf_next_probe(key);
7378
7379         return key;
7380 }
7381
7382 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7383 {
7384         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
7385 }
7386
7387 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7388 {
7389         u32 i, j, k;
7390
7391         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
7392         while (true) {
7393                 vcpu->arch.apf.gfns[i] = ~0;
7394                 do {
7395                         j = kvm_async_pf_next_probe(j);
7396                         if (vcpu->arch.apf.gfns[j] == ~0)
7397                                 return;
7398                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
7399                         /*
7400                          * k lies cyclically in ]i,j]
7401                          * |    i.k.j |
7402                          * |....j i.k.| or  |.k..j i...|
7403                          */
7404                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
7405                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
7406                 i = j;
7407         }
7408 }
7409
7410 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
7411 {
7412
7413         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
7414                                       sizeof(val));
7415 }
7416
7417 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
7418                                      struct kvm_async_pf *work)
7419 {
7420         struct x86_exception fault;
7421
7422         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
7423         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
7424
7425         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
7426             (vcpu->arch.apf.send_user_only &&
7427              kvm_x86_ops->get_cpl(vcpu) == 0))
7428                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
7429         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
7430                 fault.vector = PF_VECTOR;
7431                 fault.error_code_valid = true;
7432                 fault.error_code = 0;
7433                 fault.nested_page_fault = false;
7434                 fault.address = work->arch.token;
7435                 kvm_inject_page_fault(vcpu, &fault);
7436         }
7437 }
7438
7439 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
7440                                  struct kvm_async_pf *work)
7441 {
7442         struct x86_exception fault;
7443
7444         trace_kvm_async_pf_ready(work->arch.token, work->gva);
7445         if (work->wakeup_all)
7446                 work->arch.token = ~0; /* broadcast wakeup */
7447         else
7448                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
7449
7450         if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
7451             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
7452                 fault.vector = PF_VECTOR;
7453                 fault.error_code_valid = true;
7454                 fault.error_code = 0;
7455                 fault.nested_page_fault = false;
7456                 fault.address = work->arch.token;
7457                 kvm_inject_page_fault(vcpu, &fault);
7458         }
7459         vcpu->arch.apf.halted = false;
7460         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7461 }
7462
7463 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
7464 {
7465         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
7466                 return true;
7467         else
7468                 return !kvm_event_needs_reinjection(vcpu) &&
7469                         kvm_x86_ops->interrupt_allowed(vcpu);
7470 }
7471
7472 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
7473 {
7474         atomic_inc(&kvm->arch.noncoherent_dma_count);
7475 }
7476 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
7477
7478 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
7479 {
7480         atomic_dec(&kvm->arch.noncoherent_dma_count);
7481 }
7482 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
7483
7484 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
7485 {
7486         return atomic_read(&kvm->arch.noncoherent_dma_count);
7487 }
7488 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
7489
7490 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
7491 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
7492 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
7493 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
7494 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
7495 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
7496 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
7497 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
7498 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
7499 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
7500 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
7501 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
7502 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);