KVM: Dont mark TSC unstable due to S4 suspend
[platform/adaptation/renesas_rcar/renesas_kernel.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30
31 #include <linux/clocksource.h>
32 #include <linux/interrupt.h>
33 #include <linux/kvm.h>
34 #include <linux/fs.h>
35 #include <linux/vmalloc.h>
36 #include <linux/module.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <trace/events/kvm.h>
50
51 #define CREATE_TRACE_POINTS
52 #include "trace.h"
53
54 #include <asm/debugreg.h>
55 #include <asm/msr.h>
56 #include <asm/desc.h>
57 #include <asm/mtrr.h>
58 #include <asm/mce.h>
59 #include <asm/i387.h>
60 #include <asm/xcr.h>
61 #include <asm/pvclock.h>
62 #include <asm/div64.h>
63
64 #define MAX_IO_MSRS 256
65 #define KVM_MAX_MCE_BANKS 32
66 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
67
68 #define emul_to_vcpu(ctxt) \
69         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
70
71 /* EFER defaults:
72  * - enable syscall per default because its emulated by KVM
73  * - enable LME and LMA per default on 64 bit KVM
74  */
75 #ifdef CONFIG_X86_64
76 static
77 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
78 #else
79 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
80 #endif
81
82 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
83 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
84
85 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
86 static void process_nmi(struct kvm_vcpu *vcpu);
87
88 struct kvm_x86_ops *kvm_x86_ops;
89 EXPORT_SYMBOL_GPL(kvm_x86_ops);
90
91 static bool ignore_msrs = 0;
92 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
93
94 bool kvm_has_tsc_control;
95 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
96 u32  kvm_max_guest_tsc_khz;
97 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
98
99 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
100 static u32 tsc_tolerance_ppm = 250;
101 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
102
103 #define KVM_NR_SHARED_MSRS 16
104
105 struct kvm_shared_msrs_global {
106         int nr;
107         u32 msrs[KVM_NR_SHARED_MSRS];
108 };
109
110 struct kvm_shared_msrs {
111         struct user_return_notifier urn;
112         bool registered;
113         struct kvm_shared_msr_values {
114                 u64 host;
115                 u64 curr;
116         } values[KVM_NR_SHARED_MSRS];
117 };
118
119 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
120 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
121
122 struct kvm_stats_debugfs_item debugfs_entries[] = {
123         { "pf_fixed", VCPU_STAT(pf_fixed) },
124         { "pf_guest", VCPU_STAT(pf_guest) },
125         { "tlb_flush", VCPU_STAT(tlb_flush) },
126         { "invlpg", VCPU_STAT(invlpg) },
127         { "exits", VCPU_STAT(exits) },
128         { "io_exits", VCPU_STAT(io_exits) },
129         { "mmio_exits", VCPU_STAT(mmio_exits) },
130         { "signal_exits", VCPU_STAT(signal_exits) },
131         { "irq_window", VCPU_STAT(irq_window_exits) },
132         { "nmi_window", VCPU_STAT(nmi_window_exits) },
133         { "halt_exits", VCPU_STAT(halt_exits) },
134         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
135         { "hypercalls", VCPU_STAT(hypercalls) },
136         { "request_irq", VCPU_STAT(request_irq_exits) },
137         { "irq_exits", VCPU_STAT(irq_exits) },
138         { "host_state_reload", VCPU_STAT(host_state_reload) },
139         { "efer_reload", VCPU_STAT(efer_reload) },
140         { "fpu_reload", VCPU_STAT(fpu_reload) },
141         { "insn_emulation", VCPU_STAT(insn_emulation) },
142         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
143         { "irq_injections", VCPU_STAT(irq_injections) },
144         { "nmi_injections", VCPU_STAT(nmi_injections) },
145         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
146         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
147         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
148         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
149         { "mmu_flooded", VM_STAT(mmu_flooded) },
150         { "mmu_recycled", VM_STAT(mmu_recycled) },
151         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
152         { "mmu_unsync", VM_STAT(mmu_unsync) },
153         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
154         { "largepages", VM_STAT(lpages) },
155         { NULL }
156 };
157
158 u64 __read_mostly host_xcr0;
159
160 int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
161
162 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
163 {
164         int i;
165         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
166                 vcpu->arch.apf.gfns[i] = ~0;
167 }
168
169 static void kvm_on_user_return(struct user_return_notifier *urn)
170 {
171         unsigned slot;
172         struct kvm_shared_msrs *locals
173                 = container_of(urn, struct kvm_shared_msrs, urn);
174         struct kvm_shared_msr_values *values;
175
176         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
177                 values = &locals->values[slot];
178                 if (values->host != values->curr) {
179                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
180                         values->curr = values->host;
181                 }
182         }
183         locals->registered = false;
184         user_return_notifier_unregister(urn);
185 }
186
187 static void shared_msr_update(unsigned slot, u32 msr)
188 {
189         struct kvm_shared_msrs *smsr;
190         u64 value;
191
192         smsr = &__get_cpu_var(shared_msrs);
193         /* only read, and nobody should modify it at this time,
194          * so don't need lock */
195         if (slot >= shared_msrs_global.nr) {
196                 printk(KERN_ERR "kvm: invalid MSR slot!");
197                 return;
198         }
199         rdmsrl_safe(msr, &value);
200         smsr->values[slot].host = value;
201         smsr->values[slot].curr = value;
202 }
203
204 void kvm_define_shared_msr(unsigned slot, u32 msr)
205 {
206         if (slot >= shared_msrs_global.nr)
207                 shared_msrs_global.nr = slot + 1;
208         shared_msrs_global.msrs[slot] = msr;
209         /* we need ensured the shared_msr_global have been updated */
210         smp_wmb();
211 }
212 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
213
214 static void kvm_shared_msr_cpu_online(void)
215 {
216         unsigned i;
217
218         for (i = 0; i < shared_msrs_global.nr; ++i)
219                 shared_msr_update(i, shared_msrs_global.msrs[i]);
220 }
221
222 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
223 {
224         struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
225
226         if (((value ^ smsr->values[slot].curr) & mask) == 0)
227                 return;
228         smsr->values[slot].curr = value;
229         wrmsrl(shared_msrs_global.msrs[slot], value);
230         if (!smsr->registered) {
231                 smsr->urn.on_user_return = kvm_on_user_return;
232                 user_return_notifier_register(&smsr->urn);
233                 smsr->registered = true;
234         }
235 }
236 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
237
238 static void drop_user_return_notifiers(void *ignore)
239 {
240         struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
241
242         if (smsr->registered)
243                 kvm_on_user_return(&smsr->urn);
244 }
245
246 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
247 {
248         if (irqchip_in_kernel(vcpu->kvm))
249                 return vcpu->arch.apic_base;
250         else
251                 return vcpu->arch.apic_base;
252 }
253 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
254
255 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
256 {
257         /* TODO: reserve bits check */
258         if (irqchip_in_kernel(vcpu->kvm))
259                 kvm_lapic_set_base(vcpu, data);
260         else
261                 vcpu->arch.apic_base = data;
262 }
263 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
264
265 #define EXCPT_BENIGN            0
266 #define EXCPT_CONTRIBUTORY      1
267 #define EXCPT_PF                2
268
269 static int exception_class(int vector)
270 {
271         switch (vector) {
272         case PF_VECTOR:
273                 return EXCPT_PF;
274         case DE_VECTOR:
275         case TS_VECTOR:
276         case NP_VECTOR:
277         case SS_VECTOR:
278         case GP_VECTOR:
279                 return EXCPT_CONTRIBUTORY;
280         default:
281                 break;
282         }
283         return EXCPT_BENIGN;
284 }
285
286 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
287                 unsigned nr, bool has_error, u32 error_code,
288                 bool reinject)
289 {
290         u32 prev_nr;
291         int class1, class2;
292
293         kvm_make_request(KVM_REQ_EVENT, vcpu);
294
295         if (!vcpu->arch.exception.pending) {
296         queue:
297                 vcpu->arch.exception.pending = true;
298                 vcpu->arch.exception.has_error_code = has_error;
299                 vcpu->arch.exception.nr = nr;
300                 vcpu->arch.exception.error_code = error_code;
301                 vcpu->arch.exception.reinject = reinject;
302                 return;
303         }
304
305         /* to check exception */
306         prev_nr = vcpu->arch.exception.nr;
307         if (prev_nr == DF_VECTOR) {
308                 /* triple fault -> shutdown */
309                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
310                 return;
311         }
312         class1 = exception_class(prev_nr);
313         class2 = exception_class(nr);
314         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
315                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
316                 /* generate double fault per SDM Table 5-5 */
317                 vcpu->arch.exception.pending = true;
318                 vcpu->arch.exception.has_error_code = true;
319                 vcpu->arch.exception.nr = DF_VECTOR;
320                 vcpu->arch.exception.error_code = 0;
321         } else
322                 /* replace previous exception with a new one in a hope
323                    that instruction re-execution will regenerate lost
324                    exception */
325                 goto queue;
326 }
327
328 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
329 {
330         kvm_multiple_exception(vcpu, nr, false, 0, false);
331 }
332 EXPORT_SYMBOL_GPL(kvm_queue_exception);
333
334 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
335 {
336         kvm_multiple_exception(vcpu, nr, false, 0, true);
337 }
338 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
339
340 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
341 {
342         if (err)
343                 kvm_inject_gp(vcpu, 0);
344         else
345                 kvm_x86_ops->skip_emulated_instruction(vcpu);
346 }
347 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
348
349 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
350 {
351         ++vcpu->stat.pf_guest;
352         vcpu->arch.cr2 = fault->address;
353         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
354 }
355 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
356
357 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
358 {
359         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
360                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
361         else
362                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
363 }
364
365 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
366 {
367         atomic_inc(&vcpu->arch.nmi_queued);
368         kvm_make_request(KVM_REQ_NMI, vcpu);
369 }
370 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
371
372 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
373 {
374         kvm_multiple_exception(vcpu, nr, true, error_code, false);
375 }
376 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
377
378 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
379 {
380         kvm_multiple_exception(vcpu, nr, true, error_code, true);
381 }
382 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
383
384 /*
385  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
386  * a #GP and return false.
387  */
388 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
389 {
390         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
391                 return true;
392         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
393         return false;
394 }
395 EXPORT_SYMBOL_GPL(kvm_require_cpl);
396
397 /*
398  * This function will be used to read from the physical memory of the currently
399  * running guest. The difference to kvm_read_guest_page is that this function
400  * can read from guest physical or from the guest's guest physical memory.
401  */
402 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
403                             gfn_t ngfn, void *data, int offset, int len,
404                             u32 access)
405 {
406         gfn_t real_gfn;
407         gpa_t ngpa;
408
409         ngpa     = gfn_to_gpa(ngfn);
410         real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
411         if (real_gfn == UNMAPPED_GVA)
412                 return -EFAULT;
413
414         real_gfn = gpa_to_gfn(real_gfn);
415
416         return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
417 }
418 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
419
420 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
421                                void *data, int offset, int len, u32 access)
422 {
423         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
424                                        data, offset, len, access);
425 }
426
427 /*
428  * Load the pae pdptrs.  Return true is they are all valid.
429  */
430 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
431 {
432         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
433         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
434         int i;
435         int ret;
436         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
437
438         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
439                                       offset * sizeof(u64), sizeof(pdpte),
440                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
441         if (ret < 0) {
442                 ret = 0;
443                 goto out;
444         }
445         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
446                 if (is_present_gpte(pdpte[i]) &&
447                     (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
448                         ret = 0;
449                         goto out;
450                 }
451         }
452         ret = 1;
453
454         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
455         __set_bit(VCPU_EXREG_PDPTR,
456                   (unsigned long *)&vcpu->arch.regs_avail);
457         __set_bit(VCPU_EXREG_PDPTR,
458                   (unsigned long *)&vcpu->arch.regs_dirty);
459 out:
460
461         return ret;
462 }
463 EXPORT_SYMBOL_GPL(load_pdptrs);
464
465 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
466 {
467         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
468         bool changed = true;
469         int offset;
470         gfn_t gfn;
471         int r;
472
473         if (is_long_mode(vcpu) || !is_pae(vcpu))
474                 return false;
475
476         if (!test_bit(VCPU_EXREG_PDPTR,
477                       (unsigned long *)&vcpu->arch.regs_avail))
478                 return true;
479
480         gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
481         offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
482         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
483                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
484         if (r < 0)
485                 goto out;
486         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
487 out:
488
489         return changed;
490 }
491
492 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
493 {
494         unsigned long old_cr0 = kvm_read_cr0(vcpu);
495         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
496                                     X86_CR0_CD | X86_CR0_NW;
497
498         cr0 |= X86_CR0_ET;
499
500 #ifdef CONFIG_X86_64
501         if (cr0 & 0xffffffff00000000UL)
502                 return 1;
503 #endif
504
505         cr0 &= ~CR0_RESERVED_BITS;
506
507         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
508                 return 1;
509
510         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
511                 return 1;
512
513         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
514 #ifdef CONFIG_X86_64
515                 if ((vcpu->arch.efer & EFER_LME)) {
516                         int cs_db, cs_l;
517
518                         if (!is_pae(vcpu))
519                                 return 1;
520                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
521                         if (cs_l)
522                                 return 1;
523                 } else
524 #endif
525                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
526                                                  kvm_read_cr3(vcpu)))
527                         return 1;
528         }
529
530         kvm_x86_ops->set_cr0(vcpu, cr0);
531
532         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
533                 kvm_clear_async_pf_completion_queue(vcpu);
534                 kvm_async_pf_hash_reset(vcpu);
535         }
536
537         if ((cr0 ^ old_cr0) & update_bits)
538                 kvm_mmu_reset_context(vcpu);
539         return 0;
540 }
541 EXPORT_SYMBOL_GPL(kvm_set_cr0);
542
543 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
544 {
545         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
546 }
547 EXPORT_SYMBOL_GPL(kvm_lmsw);
548
549 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
550 {
551         u64 xcr0;
552
553         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
554         if (index != XCR_XFEATURE_ENABLED_MASK)
555                 return 1;
556         xcr0 = xcr;
557         if (kvm_x86_ops->get_cpl(vcpu) != 0)
558                 return 1;
559         if (!(xcr0 & XSTATE_FP))
560                 return 1;
561         if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
562                 return 1;
563         if (xcr0 & ~host_xcr0)
564                 return 1;
565         vcpu->arch.xcr0 = xcr0;
566         vcpu->guest_xcr0_loaded = 0;
567         return 0;
568 }
569
570 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
571 {
572         if (__kvm_set_xcr(vcpu, index, xcr)) {
573                 kvm_inject_gp(vcpu, 0);
574                 return 1;
575         }
576         return 0;
577 }
578 EXPORT_SYMBOL_GPL(kvm_set_xcr);
579
580 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
581 {
582         unsigned long old_cr4 = kvm_read_cr4(vcpu);
583         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
584                                    X86_CR4_PAE | X86_CR4_SMEP;
585         if (cr4 & CR4_RESERVED_BITS)
586                 return 1;
587
588         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
589                 return 1;
590
591         if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
592                 return 1;
593
594         if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_RDWRGSFS))
595                 return 1;
596
597         if (is_long_mode(vcpu)) {
598                 if (!(cr4 & X86_CR4_PAE))
599                         return 1;
600         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
601                    && ((cr4 ^ old_cr4) & pdptr_bits)
602                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
603                                    kvm_read_cr3(vcpu)))
604                 return 1;
605
606         if (kvm_x86_ops->set_cr4(vcpu, cr4))
607                 return 1;
608
609         if ((cr4 ^ old_cr4) & pdptr_bits)
610                 kvm_mmu_reset_context(vcpu);
611
612         if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
613                 kvm_update_cpuid(vcpu);
614
615         return 0;
616 }
617 EXPORT_SYMBOL_GPL(kvm_set_cr4);
618
619 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
620 {
621         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
622                 kvm_mmu_sync_roots(vcpu);
623                 kvm_mmu_flush_tlb(vcpu);
624                 return 0;
625         }
626
627         if (is_long_mode(vcpu)) {
628                 if (cr3 & CR3_L_MODE_RESERVED_BITS)
629                         return 1;
630         } else {
631                 if (is_pae(vcpu)) {
632                         if (cr3 & CR3_PAE_RESERVED_BITS)
633                                 return 1;
634                         if (is_paging(vcpu) &&
635                             !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
636                                 return 1;
637                 }
638                 /*
639                  * We don't check reserved bits in nonpae mode, because
640                  * this isn't enforced, and VMware depends on this.
641                  */
642         }
643
644         /*
645          * Does the new cr3 value map to physical memory? (Note, we
646          * catch an invalid cr3 even in real-mode, because it would
647          * cause trouble later on when we turn on paging anyway.)
648          *
649          * A real CPU would silently accept an invalid cr3 and would
650          * attempt to use it - with largely undefined (and often hard
651          * to debug) behavior on the guest side.
652          */
653         if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
654                 return 1;
655         vcpu->arch.cr3 = cr3;
656         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
657         vcpu->arch.mmu.new_cr3(vcpu);
658         return 0;
659 }
660 EXPORT_SYMBOL_GPL(kvm_set_cr3);
661
662 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
663 {
664         if (cr8 & CR8_RESERVED_BITS)
665                 return 1;
666         if (irqchip_in_kernel(vcpu->kvm))
667                 kvm_lapic_set_tpr(vcpu, cr8);
668         else
669                 vcpu->arch.cr8 = cr8;
670         return 0;
671 }
672 EXPORT_SYMBOL_GPL(kvm_set_cr8);
673
674 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
675 {
676         if (irqchip_in_kernel(vcpu->kvm))
677                 return kvm_lapic_get_cr8(vcpu);
678         else
679                 return vcpu->arch.cr8;
680 }
681 EXPORT_SYMBOL_GPL(kvm_get_cr8);
682
683 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
684 {
685         switch (dr) {
686         case 0 ... 3:
687                 vcpu->arch.db[dr] = val;
688                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
689                         vcpu->arch.eff_db[dr] = val;
690                 break;
691         case 4:
692                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
693                         return 1; /* #UD */
694                 /* fall through */
695         case 6:
696                 if (val & 0xffffffff00000000ULL)
697                         return -1; /* #GP */
698                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
699                 break;
700         case 5:
701                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
702                         return 1; /* #UD */
703                 /* fall through */
704         default: /* 7 */
705                 if (val & 0xffffffff00000000ULL)
706                         return -1; /* #GP */
707                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
708                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
709                         kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
710                         vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
711                 }
712                 break;
713         }
714
715         return 0;
716 }
717
718 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
719 {
720         int res;
721
722         res = __kvm_set_dr(vcpu, dr, val);
723         if (res > 0)
724                 kvm_queue_exception(vcpu, UD_VECTOR);
725         else if (res < 0)
726                 kvm_inject_gp(vcpu, 0);
727
728         return res;
729 }
730 EXPORT_SYMBOL_GPL(kvm_set_dr);
731
732 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
733 {
734         switch (dr) {
735         case 0 ... 3:
736                 *val = vcpu->arch.db[dr];
737                 break;
738         case 4:
739                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
740                         return 1;
741                 /* fall through */
742         case 6:
743                 *val = vcpu->arch.dr6;
744                 break;
745         case 5:
746                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
747                         return 1;
748                 /* fall through */
749         default: /* 7 */
750                 *val = vcpu->arch.dr7;
751                 break;
752         }
753
754         return 0;
755 }
756
757 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
758 {
759         if (_kvm_get_dr(vcpu, dr, val)) {
760                 kvm_queue_exception(vcpu, UD_VECTOR);
761                 return 1;
762         }
763         return 0;
764 }
765 EXPORT_SYMBOL_GPL(kvm_get_dr);
766
767 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
768 {
769         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
770         u64 data;
771         int err;
772
773         err = kvm_pmu_read_pmc(vcpu, ecx, &data);
774         if (err)
775                 return err;
776         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
777         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
778         return err;
779 }
780 EXPORT_SYMBOL_GPL(kvm_rdpmc);
781
782 /*
783  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
784  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
785  *
786  * This list is modified at module load time to reflect the
787  * capabilities of the host cpu. This capabilities test skips MSRs that are
788  * kvm-specific. Those are put in the beginning of the list.
789  */
790
791 #define KVM_SAVE_MSRS_BEGIN     9
792 static u32 msrs_to_save[] = {
793         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
794         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
795         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
796         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
797         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
798         MSR_STAR,
799 #ifdef CONFIG_X86_64
800         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
801 #endif
802         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
803 };
804
805 static unsigned num_msrs_to_save;
806
807 static u32 emulated_msrs[] = {
808         MSR_IA32_TSCDEADLINE,
809         MSR_IA32_MISC_ENABLE,
810         MSR_IA32_MCG_STATUS,
811         MSR_IA32_MCG_CTL,
812 };
813
814 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
815 {
816         u64 old_efer = vcpu->arch.efer;
817
818         if (efer & efer_reserved_bits)
819                 return 1;
820
821         if (is_paging(vcpu)
822             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
823                 return 1;
824
825         if (efer & EFER_FFXSR) {
826                 struct kvm_cpuid_entry2 *feat;
827
828                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
829                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
830                         return 1;
831         }
832
833         if (efer & EFER_SVME) {
834                 struct kvm_cpuid_entry2 *feat;
835
836                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
837                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
838                         return 1;
839         }
840
841         efer &= ~EFER_LMA;
842         efer |= vcpu->arch.efer & EFER_LMA;
843
844         kvm_x86_ops->set_efer(vcpu, efer);
845
846         vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
847
848         /* Update reserved bits */
849         if ((efer ^ old_efer) & EFER_NX)
850                 kvm_mmu_reset_context(vcpu);
851
852         return 0;
853 }
854
855 void kvm_enable_efer_bits(u64 mask)
856 {
857        efer_reserved_bits &= ~mask;
858 }
859 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
860
861
862 /*
863  * Writes msr value into into the appropriate "register".
864  * Returns 0 on success, non-0 otherwise.
865  * Assumes vcpu_load() was already called.
866  */
867 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
868 {
869         return kvm_x86_ops->set_msr(vcpu, msr_index, data);
870 }
871
872 /*
873  * Adapt set_msr() to msr_io()'s calling convention
874  */
875 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
876 {
877         return kvm_set_msr(vcpu, index, *data);
878 }
879
880 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
881 {
882         int version;
883         int r;
884         struct pvclock_wall_clock wc;
885         struct timespec boot;
886
887         if (!wall_clock)
888                 return;
889
890         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
891         if (r)
892                 return;
893
894         if (version & 1)
895                 ++version;  /* first time write, random junk */
896
897         ++version;
898
899         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
900
901         /*
902          * The guest calculates current wall clock time by adding
903          * system time (updated by kvm_guest_time_update below) to the
904          * wall clock specified here.  guest system time equals host
905          * system time for us, thus we must fill in host boot time here.
906          */
907         getboottime(&boot);
908
909         wc.sec = boot.tv_sec;
910         wc.nsec = boot.tv_nsec;
911         wc.version = version;
912
913         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
914
915         version++;
916         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
917 }
918
919 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
920 {
921         uint32_t quotient, remainder;
922
923         /* Don't try to replace with do_div(), this one calculates
924          * "(dividend << 32) / divisor" */
925         __asm__ ( "divl %4"
926                   : "=a" (quotient), "=d" (remainder)
927                   : "0" (0), "1" (dividend), "r" (divisor) );
928         return quotient;
929 }
930
931 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
932                                s8 *pshift, u32 *pmultiplier)
933 {
934         uint64_t scaled64;
935         int32_t  shift = 0;
936         uint64_t tps64;
937         uint32_t tps32;
938
939         tps64 = base_khz * 1000LL;
940         scaled64 = scaled_khz * 1000LL;
941         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
942                 tps64 >>= 1;
943                 shift--;
944         }
945
946         tps32 = (uint32_t)tps64;
947         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
948                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
949                         scaled64 >>= 1;
950                 else
951                         tps32 <<= 1;
952                 shift++;
953         }
954
955         *pshift = shift;
956         *pmultiplier = div_frac(scaled64, tps32);
957
958         pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
959                  __func__, base_khz, scaled_khz, shift, *pmultiplier);
960 }
961
962 static inline u64 get_kernel_ns(void)
963 {
964         struct timespec ts;
965
966         WARN_ON(preemptible());
967         ktime_get_ts(&ts);
968         monotonic_to_bootbased(&ts);
969         return timespec_to_ns(&ts);
970 }
971
972 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
973 unsigned long max_tsc_khz;
974
975 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
976 {
977         return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
978                                    vcpu->arch.virtual_tsc_shift);
979 }
980
981 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
982 {
983         u64 v = (u64)khz * (1000000 + ppm);
984         do_div(v, 1000000);
985         return v;
986 }
987
988 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
989 {
990         u32 thresh_lo, thresh_hi;
991         int use_scaling = 0;
992
993         /* Compute a scale to convert nanoseconds in TSC cycles */
994         kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
995                            &vcpu->arch.virtual_tsc_shift,
996                            &vcpu->arch.virtual_tsc_mult);
997         vcpu->arch.virtual_tsc_khz = this_tsc_khz;
998
999         /*
1000          * Compute the variation in TSC rate which is acceptable
1001          * within the range of tolerance and decide if the
1002          * rate being applied is within that bounds of the hardware
1003          * rate.  If so, no scaling or compensation need be done.
1004          */
1005         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1006         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1007         if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1008                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1009                 use_scaling = 1;
1010         }
1011         kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1012 }
1013
1014 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1015 {
1016         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.last_tsc_nsec,
1017                                       vcpu->arch.virtual_tsc_mult,
1018                                       vcpu->arch.virtual_tsc_shift);
1019         tsc += vcpu->arch.last_tsc_write;
1020         return tsc;
1021 }
1022
1023 void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data)
1024 {
1025         struct kvm *kvm = vcpu->kvm;
1026         u64 offset, ns, elapsed;
1027         unsigned long flags;
1028         s64 nsdiff;
1029
1030         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1031         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1032         ns = get_kernel_ns();
1033         elapsed = ns - kvm->arch.last_tsc_nsec;
1034
1035         /* n.b - signed multiplication and division required */
1036         nsdiff = data - kvm->arch.last_tsc_write;
1037 #ifdef CONFIG_X86_64
1038         nsdiff = (nsdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1039 #else
1040         /* do_div() only does unsigned */
1041         asm("idivl %2; xor %%edx, %%edx"
1042             : "=A"(nsdiff)
1043             : "A"(nsdiff * 1000), "rm"(vcpu->arch.virtual_tsc_khz));
1044 #endif
1045         nsdiff -= elapsed;
1046         if (nsdiff < 0)
1047                 nsdiff = -nsdiff;
1048
1049         /*
1050          * Special case: TSC write with a small delta (1 second) of virtual
1051          * cycle time against real time is interpreted as an attempt to
1052          * synchronize the CPU.
1053          *
1054          * For a reliable TSC, we can match TSC offsets, and for an unstable
1055          * TSC, we add elapsed time in this computation.  We could let the
1056          * compensation code attempt to catch up if we fall behind, but
1057          * it's better to try to match offsets from the beginning.
1058          */
1059         if (nsdiff < NSEC_PER_SEC &&
1060             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1061                 if (!check_tsc_unstable()) {
1062                         offset = kvm->arch.last_tsc_offset;
1063                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1064                 } else {
1065                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1066                         data += delta;
1067                         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1068                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1069                 }
1070         }
1071         kvm->arch.last_tsc_nsec = ns;
1072         kvm->arch.last_tsc_write = data;
1073         kvm->arch.last_tsc_offset = offset;
1074         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1075         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1076         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1077
1078         /* Reset of TSC must disable overshoot protection below */
1079         vcpu->arch.hv_clock.tsc_timestamp = 0;
1080         vcpu->arch.last_tsc_write = data;
1081         vcpu->arch.last_tsc_nsec = ns;
1082         vcpu->arch.last_guest_tsc = data;
1083 }
1084 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1085
1086 static int kvm_guest_time_update(struct kvm_vcpu *v)
1087 {
1088         unsigned long flags;
1089         struct kvm_vcpu_arch *vcpu = &v->arch;
1090         void *shared_kaddr;
1091         unsigned long this_tsc_khz;
1092         s64 kernel_ns, max_kernel_ns;
1093         u64 tsc_timestamp;
1094
1095         /* Keep irq disabled to prevent changes to the clock */
1096         local_irq_save(flags);
1097         tsc_timestamp = kvm_x86_ops->read_l1_tsc(v);
1098         kernel_ns = get_kernel_ns();
1099         this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
1100         if (unlikely(this_tsc_khz == 0)) {
1101                 local_irq_restore(flags);
1102                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1103                 return 1;
1104         }
1105
1106         /*
1107          * We may have to catch up the TSC to match elapsed wall clock
1108          * time for two reasons, even if kvmclock is used.
1109          *   1) CPU could have been running below the maximum TSC rate
1110          *   2) Broken TSC compensation resets the base at each VCPU
1111          *      entry to avoid unknown leaps of TSC even when running
1112          *      again on the same CPU.  This may cause apparent elapsed
1113          *      time to disappear, and the guest to stand still or run
1114          *      very slowly.
1115          */
1116         if (vcpu->tsc_catchup) {
1117                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1118                 if (tsc > tsc_timestamp) {
1119                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1120                         tsc_timestamp = tsc;
1121                 }
1122         }
1123
1124         local_irq_restore(flags);
1125
1126         if (!vcpu->time_page)
1127                 return 0;
1128
1129         /*
1130          * Time as measured by the TSC may go backwards when resetting the base
1131          * tsc_timestamp.  The reason for this is that the TSC resolution is
1132          * higher than the resolution of the other clock scales.  Thus, many
1133          * possible measurments of the TSC correspond to one measurement of any
1134          * other clock, and so a spread of values is possible.  This is not a
1135          * problem for the computation of the nanosecond clock; with TSC rates
1136          * around 1GHZ, there can only be a few cycles which correspond to one
1137          * nanosecond value, and any path through this code will inevitably
1138          * take longer than that.  However, with the kernel_ns value itself,
1139          * the precision may be much lower, down to HZ granularity.  If the
1140          * first sampling of TSC against kernel_ns ends in the low part of the
1141          * range, and the second in the high end of the range, we can get:
1142          *
1143          * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1144          *
1145          * As the sampling errors potentially range in the thousands of cycles,
1146          * it is possible such a time value has already been observed by the
1147          * guest.  To protect against this, we must compute the system time as
1148          * observed by the guest and ensure the new system time is greater.
1149          */
1150         max_kernel_ns = 0;
1151         if (vcpu->hv_clock.tsc_timestamp) {
1152                 max_kernel_ns = vcpu->last_guest_tsc -
1153                                 vcpu->hv_clock.tsc_timestamp;
1154                 max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1155                                     vcpu->hv_clock.tsc_to_system_mul,
1156                                     vcpu->hv_clock.tsc_shift);
1157                 max_kernel_ns += vcpu->last_kernel_ns;
1158         }
1159
1160         if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1161                 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1162                                    &vcpu->hv_clock.tsc_shift,
1163                                    &vcpu->hv_clock.tsc_to_system_mul);
1164                 vcpu->hw_tsc_khz = this_tsc_khz;
1165         }
1166
1167         if (max_kernel_ns > kernel_ns)
1168                 kernel_ns = max_kernel_ns;
1169
1170         /* With all the info we got, fill in the values */
1171         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1172         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1173         vcpu->last_kernel_ns = kernel_ns;
1174         vcpu->last_guest_tsc = tsc_timestamp;
1175         vcpu->hv_clock.flags = 0;
1176
1177         /*
1178          * The interface expects us to write an even number signaling that the
1179          * update is finished. Since the guest won't see the intermediate
1180          * state, we just increase by 2 at the end.
1181          */
1182         vcpu->hv_clock.version += 2;
1183
1184         shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
1185
1186         memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
1187                sizeof(vcpu->hv_clock));
1188
1189         kunmap_atomic(shared_kaddr, KM_USER0);
1190
1191         mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
1192         return 0;
1193 }
1194
1195 static bool msr_mtrr_valid(unsigned msr)
1196 {
1197         switch (msr) {
1198         case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1199         case MSR_MTRRfix64K_00000:
1200         case MSR_MTRRfix16K_80000:
1201         case MSR_MTRRfix16K_A0000:
1202         case MSR_MTRRfix4K_C0000:
1203         case MSR_MTRRfix4K_C8000:
1204         case MSR_MTRRfix4K_D0000:
1205         case MSR_MTRRfix4K_D8000:
1206         case MSR_MTRRfix4K_E0000:
1207         case MSR_MTRRfix4K_E8000:
1208         case MSR_MTRRfix4K_F0000:
1209         case MSR_MTRRfix4K_F8000:
1210         case MSR_MTRRdefType:
1211         case MSR_IA32_CR_PAT:
1212                 return true;
1213         case 0x2f8:
1214                 return true;
1215         }
1216         return false;
1217 }
1218
1219 static bool valid_pat_type(unsigned t)
1220 {
1221         return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1222 }
1223
1224 static bool valid_mtrr_type(unsigned t)
1225 {
1226         return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1227 }
1228
1229 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1230 {
1231         int i;
1232
1233         if (!msr_mtrr_valid(msr))
1234                 return false;
1235
1236         if (msr == MSR_IA32_CR_PAT) {
1237                 for (i = 0; i < 8; i++)
1238                         if (!valid_pat_type((data >> (i * 8)) & 0xff))
1239                                 return false;
1240                 return true;
1241         } else if (msr == MSR_MTRRdefType) {
1242                 if (data & ~0xcff)
1243                         return false;
1244                 return valid_mtrr_type(data & 0xff);
1245         } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1246                 for (i = 0; i < 8 ; i++)
1247                         if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1248                                 return false;
1249                 return true;
1250         }
1251
1252         /* variable MTRRs */
1253         return valid_mtrr_type(data & 0xff);
1254 }
1255
1256 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1257 {
1258         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1259
1260         if (!mtrr_valid(vcpu, msr, data))
1261                 return 1;
1262
1263         if (msr == MSR_MTRRdefType) {
1264                 vcpu->arch.mtrr_state.def_type = data;
1265                 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1266         } else if (msr == MSR_MTRRfix64K_00000)
1267                 p[0] = data;
1268         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1269                 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1270         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1271                 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1272         else if (msr == MSR_IA32_CR_PAT)
1273                 vcpu->arch.pat = data;
1274         else {  /* Variable MTRRs */
1275                 int idx, is_mtrr_mask;
1276                 u64 *pt;
1277
1278                 idx = (msr - 0x200) / 2;
1279                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1280                 if (!is_mtrr_mask)
1281                         pt =
1282                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1283                 else
1284                         pt =
1285                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1286                 *pt = data;
1287         }
1288
1289         kvm_mmu_reset_context(vcpu);
1290         return 0;
1291 }
1292
1293 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1294 {
1295         u64 mcg_cap = vcpu->arch.mcg_cap;
1296         unsigned bank_num = mcg_cap & 0xff;
1297
1298         switch (msr) {
1299         case MSR_IA32_MCG_STATUS:
1300                 vcpu->arch.mcg_status = data;
1301                 break;
1302         case MSR_IA32_MCG_CTL:
1303                 if (!(mcg_cap & MCG_CTL_P))
1304                         return 1;
1305                 if (data != 0 && data != ~(u64)0)
1306                         return -1;
1307                 vcpu->arch.mcg_ctl = data;
1308                 break;
1309         default:
1310                 if (msr >= MSR_IA32_MC0_CTL &&
1311                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1312                         u32 offset = msr - MSR_IA32_MC0_CTL;
1313                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1314                          * some Linux kernels though clear bit 10 in bank 4 to
1315                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1316                          * this to avoid an uncatched #GP in the guest
1317                          */
1318                         if ((offset & 0x3) == 0 &&
1319                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1320                                 return -1;
1321                         vcpu->arch.mce_banks[offset] = data;
1322                         break;
1323                 }
1324                 return 1;
1325         }
1326         return 0;
1327 }
1328
1329 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1330 {
1331         struct kvm *kvm = vcpu->kvm;
1332         int lm = is_long_mode(vcpu);
1333         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1334                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1335         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1336                 : kvm->arch.xen_hvm_config.blob_size_32;
1337         u32 page_num = data & ~PAGE_MASK;
1338         u64 page_addr = data & PAGE_MASK;
1339         u8 *page;
1340         int r;
1341
1342         r = -E2BIG;
1343         if (page_num >= blob_size)
1344                 goto out;
1345         r = -ENOMEM;
1346         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1347         if (IS_ERR(page)) {
1348                 r = PTR_ERR(page);
1349                 goto out;
1350         }
1351         if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1352                 goto out_free;
1353         r = 0;
1354 out_free:
1355         kfree(page);
1356 out:
1357         return r;
1358 }
1359
1360 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1361 {
1362         return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1363 }
1364
1365 static bool kvm_hv_msr_partition_wide(u32 msr)
1366 {
1367         bool r = false;
1368         switch (msr) {
1369         case HV_X64_MSR_GUEST_OS_ID:
1370         case HV_X64_MSR_HYPERCALL:
1371                 r = true;
1372                 break;
1373         }
1374
1375         return r;
1376 }
1377
1378 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1379 {
1380         struct kvm *kvm = vcpu->kvm;
1381
1382         switch (msr) {
1383         case HV_X64_MSR_GUEST_OS_ID:
1384                 kvm->arch.hv_guest_os_id = data;
1385                 /* setting guest os id to zero disables hypercall page */
1386                 if (!kvm->arch.hv_guest_os_id)
1387                         kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1388                 break;
1389         case HV_X64_MSR_HYPERCALL: {
1390                 u64 gfn;
1391                 unsigned long addr;
1392                 u8 instructions[4];
1393
1394                 /* if guest os id is not set hypercall should remain disabled */
1395                 if (!kvm->arch.hv_guest_os_id)
1396                         break;
1397                 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1398                         kvm->arch.hv_hypercall = data;
1399                         break;
1400                 }
1401                 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1402                 addr = gfn_to_hva(kvm, gfn);
1403                 if (kvm_is_error_hva(addr))
1404                         return 1;
1405                 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1406                 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1407                 if (__copy_to_user((void __user *)addr, instructions, 4))
1408                         return 1;
1409                 kvm->arch.hv_hypercall = data;
1410                 break;
1411         }
1412         default:
1413                 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1414                           "data 0x%llx\n", msr, data);
1415                 return 1;
1416         }
1417         return 0;
1418 }
1419
1420 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1421 {
1422         switch (msr) {
1423         case HV_X64_MSR_APIC_ASSIST_PAGE: {
1424                 unsigned long addr;
1425
1426                 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1427                         vcpu->arch.hv_vapic = data;
1428                         break;
1429                 }
1430                 addr = gfn_to_hva(vcpu->kvm, data >>
1431                                   HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1432                 if (kvm_is_error_hva(addr))
1433                         return 1;
1434                 if (__clear_user((void __user *)addr, PAGE_SIZE))
1435                         return 1;
1436                 vcpu->arch.hv_vapic = data;
1437                 break;
1438         }
1439         case HV_X64_MSR_EOI:
1440                 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1441         case HV_X64_MSR_ICR:
1442                 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1443         case HV_X64_MSR_TPR:
1444                 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1445         default:
1446                 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1447                           "data 0x%llx\n", msr, data);
1448                 return 1;
1449         }
1450
1451         return 0;
1452 }
1453
1454 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1455 {
1456         gpa_t gpa = data & ~0x3f;
1457
1458         /* Bits 2:5 are resrved, Should be zero */
1459         if (data & 0x3c)
1460                 return 1;
1461
1462         vcpu->arch.apf.msr_val = data;
1463
1464         if (!(data & KVM_ASYNC_PF_ENABLED)) {
1465                 kvm_clear_async_pf_completion_queue(vcpu);
1466                 kvm_async_pf_hash_reset(vcpu);
1467                 return 0;
1468         }
1469
1470         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa))
1471                 return 1;
1472
1473         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1474         kvm_async_pf_wakeup_all(vcpu);
1475         return 0;
1476 }
1477
1478 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1479 {
1480         if (vcpu->arch.time_page) {
1481                 kvm_release_page_dirty(vcpu->arch.time_page);
1482                 vcpu->arch.time_page = NULL;
1483         }
1484 }
1485
1486 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1487 {
1488         u64 delta;
1489
1490         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1491                 return;
1492
1493         delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
1494         vcpu->arch.st.last_steal = current->sched_info.run_delay;
1495         vcpu->arch.st.accum_steal = delta;
1496 }
1497
1498 static void record_steal_time(struct kvm_vcpu *vcpu)
1499 {
1500         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1501                 return;
1502
1503         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1504                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
1505                 return;
1506
1507         vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
1508         vcpu->arch.st.steal.version += 2;
1509         vcpu->arch.st.accum_steal = 0;
1510
1511         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1512                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
1513 }
1514
1515 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1516 {
1517         bool pr = false;
1518
1519         switch (msr) {
1520         case MSR_EFER:
1521                 return set_efer(vcpu, data);
1522         case MSR_K7_HWCR:
1523                 data &= ~(u64)0x40;     /* ignore flush filter disable */
1524                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
1525                 if (data != 0) {
1526                         pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1527                                 data);
1528                         return 1;
1529                 }
1530                 break;
1531         case MSR_FAM10H_MMIO_CONF_BASE:
1532                 if (data != 0) {
1533                         pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1534                                 "0x%llx\n", data);
1535                         return 1;
1536                 }
1537                 break;
1538         case MSR_AMD64_NB_CFG:
1539                 break;
1540         case MSR_IA32_DEBUGCTLMSR:
1541                 if (!data) {
1542                         /* We support the non-activated case already */
1543                         break;
1544                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1545                         /* Values other than LBR and BTF are vendor-specific,
1546                            thus reserved and should throw a #GP */
1547                         return 1;
1548                 }
1549                 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1550                         __func__, data);
1551                 break;
1552         case MSR_IA32_UCODE_REV:
1553         case MSR_IA32_UCODE_WRITE:
1554         case MSR_VM_HSAVE_PA:
1555         case MSR_AMD64_PATCH_LOADER:
1556                 break;
1557         case 0x200 ... 0x2ff:
1558                 return set_msr_mtrr(vcpu, msr, data);
1559         case MSR_IA32_APICBASE:
1560                 kvm_set_apic_base(vcpu, data);
1561                 break;
1562         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1563                 return kvm_x2apic_msr_write(vcpu, msr, data);
1564         case MSR_IA32_TSCDEADLINE:
1565                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
1566                 break;
1567         case MSR_IA32_MISC_ENABLE:
1568                 vcpu->arch.ia32_misc_enable_msr = data;
1569                 break;
1570         case MSR_KVM_WALL_CLOCK_NEW:
1571         case MSR_KVM_WALL_CLOCK:
1572                 vcpu->kvm->arch.wall_clock = data;
1573                 kvm_write_wall_clock(vcpu->kvm, data);
1574                 break;
1575         case MSR_KVM_SYSTEM_TIME_NEW:
1576         case MSR_KVM_SYSTEM_TIME: {
1577                 kvmclock_reset(vcpu);
1578
1579                 vcpu->arch.time = data;
1580                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1581
1582                 /* we verify if the enable bit is set... */
1583                 if (!(data & 1))
1584                         break;
1585
1586                 /* ...but clean it before doing the actual write */
1587                 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1588
1589                 vcpu->arch.time_page =
1590                                 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1591
1592                 if (is_error_page(vcpu->arch.time_page)) {
1593                         kvm_release_page_clean(vcpu->arch.time_page);
1594                         vcpu->arch.time_page = NULL;
1595                 }
1596                 break;
1597         }
1598         case MSR_KVM_ASYNC_PF_EN:
1599                 if (kvm_pv_enable_async_pf(vcpu, data))
1600                         return 1;
1601                 break;
1602         case MSR_KVM_STEAL_TIME:
1603
1604                 if (unlikely(!sched_info_on()))
1605                         return 1;
1606
1607                 if (data & KVM_STEAL_RESERVED_MASK)
1608                         return 1;
1609
1610                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
1611                                                         data & KVM_STEAL_VALID_BITS))
1612                         return 1;
1613
1614                 vcpu->arch.st.msr_val = data;
1615
1616                 if (!(data & KVM_MSR_ENABLED))
1617                         break;
1618
1619                 vcpu->arch.st.last_steal = current->sched_info.run_delay;
1620
1621                 preempt_disable();
1622                 accumulate_steal_time(vcpu);
1623                 preempt_enable();
1624
1625                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
1626
1627                 break;
1628
1629         case MSR_IA32_MCG_CTL:
1630         case MSR_IA32_MCG_STATUS:
1631         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1632                 return set_msr_mce(vcpu, msr, data);
1633
1634         /* Performance counters are not protected by a CPUID bit,
1635          * so we should check all of them in the generic path for the sake of
1636          * cross vendor migration.
1637          * Writing a zero into the event select MSRs disables them,
1638          * which we perfectly emulate ;-). Any other value should be at least
1639          * reported, some guests depend on them.
1640          */
1641         case MSR_K7_EVNTSEL0:
1642         case MSR_K7_EVNTSEL1:
1643         case MSR_K7_EVNTSEL2:
1644         case MSR_K7_EVNTSEL3:
1645                 if (data != 0)
1646                         pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1647                                 "0x%x data 0x%llx\n", msr, data);
1648                 break;
1649         /* at least RHEL 4 unconditionally writes to the perfctr registers,
1650          * so we ignore writes to make it happy.
1651          */
1652         case MSR_K7_PERFCTR0:
1653         case MSR_K7_PERFCTR1:
1654         case MSR_K7_PERFCTR2:
1655         case MSR_K7_PERFCTR3:
1656                 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1657                         "0x%x data 0x%llx\n", msr, data);
1658                 break;
1659         case MSR_P6_PERFCTR0:
1660         case MSR_P6_PERFCTR1:
1661                 pr = true;
1662         case MSR_P6_EVNTSEL0:
1663         case MSR_P6_EVNTSEL1:
1664                 if (kvm_pmu_msr(vcpu, msr))
1665                         return kvm_pmu_set_msr(vcpu, msr, data);
1666
1667                 if (pr || data != 0)
1668                         pr_unimpl(vcpu, "disabled perfctr wrmsr: "
1669                                 "0x%x data 0x%llx\n", msr, data);
1670                 break;
1671         case MSR_K7_CLK_CTL:
1672                 /*
1673                  * Ignore all writes to this no longer documented MSR.
1674                  * Writes are only relevant for old K7 processors,
1675                  * all pre-dating SVM, but a recommended workaround from
1676                  * AMD for these chips. It is possible to speicify the
1677                  * affected processor models on the command line, hence
1678                  * the need to ignore the workaround.
1679                  */
1680                 break;
1681         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1682                 if (kvm_hv_msr_partition_wide(msr)) {
1683                         int r;
1684                         mutex_lock(&vcpu->kvm->lock);
1685                         r = set_msr_hyperv_pw(vcpu, msr, data);
1686                         mutex_unlock(&vcpu->kvm->lock);
1687                         return r;
1688                 } else
1689                         return set_msr_hyperv(vcpu, msr, data);
1690                 break;
1691         case MSR_IA32_BBL_CR_CTL3:
1692                 /* Drop writes to this legacy MSR -- see rdmsr
1693                  * counterpart for further detail.
1694                  */
1695                 pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
1696                 break;
1697         case MSR_AMD64_OSVW_ID_LENGTH:
1698                 if (!guest_cpuid_has_osvw(vcpu))
1699                         return 1;
1700                 vcpu->arch.osvw.length = data;
1701                 break;
1702         case MSR_AMD64_OSVW_STATUS:
1703                 if (!guest_cpuid_has_osvw(vcpu))
1704                         return 1;
1705                 vcpu->arch.osvw.status = data;
1706                 break;
1707         default:
1708                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1709                         return xen_hvm_config(vcpu, data);
1710                 if (kvm_pmu_msr(vcpu, msr))
1711                         return kvm_pmu_set_msr(vcpu, msr, data);
1712                 if (!ignore_msrs) {
1713                         pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1714                                 msr, data);
1715                         return 1;
1716                 } else {
1717                         pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1718                                 msr, data);
1719                         break;
1720                 }
1721         }
1722         return 0;
1723 }
1724 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1725
1726
1727 /*
1728  * Reads an msr value (of 'msr_index') into 'pdata'.
1729  * Returns 0 on success, non-0 otherwise.
1730  * Assumes vcpu_load() was already called.
1731  */
1732 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1733 {
1734         return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1735 }
1736
1737 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1738 {
1739         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1740
1741         if (!msr_mtrr_valid(msr))
1742                 return 1;
1743
1744         if (msr == MSR_MTRRdefType)
1745                 *pdata = vcpu->arch.mtrr_state.def_type +
1746                          (vcpu->arch.mtrr_state.enabled << 10);
1747         else if (msr == MSR_MTRRfix64K_00000)
1748                 *pdata = p[0];
1749         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1750                 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1751         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1752                 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1753         else if (msr == MSR_IA32_CR_PAT)
1754                 *pdata = vcpu->arch.pat;
1755         else {  /* Variable MTRRs */
1756                 int idx, is_mtrr_mask;
1757                 u64 *pt;
1758
1759                 idx = (msr - 0x200) / 2;
1760                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1761                 if (!is_mtrr_mask)
1762                         pt =
1763                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1764                 else
1765                         pt =
1766                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1767                 *pdata = *pt;
1768         }
1769
1770         return 0;
1771 }
1772
1773 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1774 {
1775         u64 data;
1776         u64 mcg_cap = vcpu->arch.mcg_cap;
1777         unsigned bank_num = mcg_cap & 0xff;
1778
1779         switch (msr) {
1780         case MSR_IA32_P5_MC_ADDR:
1781         case MSR_IA32_P5_MC_TYPE:
1782                 data = 0;
1783                 break;
1784         case MSR_IA32_MCG_CAP:
1785                 data = vcpu->arch.mcg_cap;
1786                 break;
1787         case MSR_IA32_MCG_CTL:
1788                 if (!(mcg_cap & MCG_CTL_P))
1789                         return 1;
1790                 data = vcpu->arch.mcg_ctl;
1791                 break;
1792         case MSR_IA32_MCG_STATUS:
1793                 data = vcpu->arch.mcg_status;
1794                 break;
1795         default:
1796                 if (msr >= MSR_IA32_MC0_CTL &&
1797                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1798                         u32 offset = msr - MSR_IA32_MC0_CTL;
1799                         data = vcpu->arch.mce_banks[offset];
1800                         break;
1801                 }
1802                 return 1;
1803         }
1804         *pdata = data;
1805         return 0;
1806 }
1807
1808 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1809 {
1810         u64 data = 0;
1811         struct kvm *kvm = vcpu->kvm;
1812
1813         switch (msr) {
1814         case HV_X64_MSR_GUEST_OS_ID:
1815                 data = kvm->arch.hv_guest_os_id;
1816                 break;
1817         case HV_X64_MSR_HYPERCALL:
1818                 data = kvm->arch.hv_hypercall;
1819                 break;
1820         default:
1821                 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1822                 return 1;
1823         }
1824
1825         *pdata = data;
1826         return 0;
1827 }
1828
1829 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1830 {
1831         u64 data = 0;
1832
1833         switch (msr) {
1834         case HV_X64_MSR_VP_INDEX: {
1835                 int r;
1836                 struct kvm_vcpu *v;
1837                 kvm_for_each_vcpu(r, v, vcpu->kvm)
1838                         if (v == vcpu)
1839                                 data = r;
1840                 break;
1841         }
1842         case HV_X64_MSR_EOI:
1843                 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1844         case HV_X64_MSR_ICR:
1845                 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1846         case HV_X64_MSR_TPR:
1847                 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1848         case HV_X64_MSR_APIC_ASSIST_PAGE:
1849                 data = vcpu->arch.hv_vapic;
1850                 break;
1851         default:
1852                 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1853                 return 1;
1854         }
1855         *pdata = data;
1856         return 0;
1857 }
1858
1859 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1860 {
1861         u64 data;
1862
1863         switch (msr) {
1864         case MSR_IA32_PLATFORM_ID:
1865         case MSR_IA32_EBL_CR_POWERON:
1866         case MSR_IA32_DEBUGCTLMSR:
1867         case MSR_IA32_LASTBRANCHFROMIP:
1868         case MSR_IA32_LASTBRANCHTOIP:
1869         case MSR_IA32_LASTINTFROMIP:
1870         case MSR_IA32_LASTINTTOIP:
1871         case MSR_K8_SYSCFG:
1872         case MSR_K7_HWCR:
1873         case MSR_VM_HSAVE_PA:
1874         case MSR_K7_EVNTSEL0:
1875         case MSR_K7_PERFCTR0:
1876         case MSR_K8_INT_PENDING_MSG:
1877         case MSR_AMD64_NB_CFG:
1878         case MSR_FAM10H_MMIO_CONF_BASE:
1879                 data = 0;
1880                 break;
1881         case MSR_P6_PERFCTR0:
1882         case MSR_P6_PERFCTR1:
1883         case MSR_P6_EVNTSEL0:
1884         case MSR_P6_EVNTSEL1:
1885                 if (kvm_pmu_msr(vcpu, msr))
1886                         return kvm_pmu_get_msr(vcpu, msr, pdata);
1887                 data = 0;
1888                 break;
1889         case MSR_IA32_UCODE_REV:
1890                 data = 0x100000000ULL;
1891                 break;
1892         case MSR_MTRRcap:
1893                 data = 0x500 | KVM_NR_VAR_MTRR;
1894                 break;
1895         case 0x200 ... 0x2ff:
1896                 return get_msr_mtrr(vcpu, msr, pdata);
1897         case 0xcd: /* fsb frequency */
1898                 data = 3;
1899                 break;
1900                 /*
1901                  * MSR_EBC_FREQUENCY_ID
1902                  * Conservative value valid for even the basic CPU models.
1903                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
1904                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
1905                  * and 266MHz for model 3, or 4. Set Core Clock
1906                  * Frequency to System Bus Frequency Ratio to 1 (bits
1907                  * 31:24) even though these are only valid for CPU
1908                  * models > 2, however guests may end up dividing or
1909                  * multiplying by zero otherwise.
1910                  */
1911         case MSR_EBC_FREQUENCY_ID:
1912                 data = 1 << 24;
1913                 break;
1914         case MSR_IA32_APICBASE:
1915                 data = kvm_get_apic_base(vcpu);
1916                 break;
1917         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1918                 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1919                 break;
1920         case MSR_IA32_TSCDEADLINE:
1921                 data = kvm_get_lapic_tscdeadline_msr(vcpu);
1922                 break;
1923         case MSR_IA32_MISC_ENABLE:
1924                 data = vcpu->arch.ia32_misc_enable_msr;
1925                 break;
1926         case MSR_IA32_PERF_STATUS:
1927                 /* TSC increment by tick */
1928                 data = 1000ULL;
1929                 /* CPU multiplier */
1930                 data |= (((uint64_t)4ULL) << 40);
1931                 break;
1932         case MSR_EFER:
1933                 data = vcpu->arch.efer;
1934                 break;
1935         case MSR_KVM_WALL_CLOCK:
1936         case MSR_KVM_WALL_CLOCK_NEW:
1937                 data = vcpu->kvm->arch.wall_clock;
1938                 break;
1939         case MSR_KVM_SYSTEM_TIME:
1940         case MSR_KVM_SYSTEM_TIME_NEW:
1941                 data = vcpu->arch.time;
1942                 break;
1943         case MSR_KVM_ASYNC_PF_EN:
1944                 data = vcpu->arch.apf.msr_val;
1945                 break;
1946         case MSR_KVM_STEAL_TIME:
1947                 data = vcpu->arch.st.msr_val;
1948                 break;
1949         case MSR_IA32_P5_MC_ADDR:
1950         case MSR_IA32_P5_MC_TYPE:
1951         case MSR_IA32_MCG_CAP:
1952         case MSR_IA32_MCG_CTL:
1953         case MSR_IA32_MCG_STATUS:
1954         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1955                 return get_msr_mce(vcpu, msr, pdata);
1956         case MSR_K7_CLK_CTL:
1957                 /*
1958                  * Provide expected ramp-up count for K7. All other
1959                  * are set to zero, indicating minimum divisors for
1960                  * every field.
1961                  *
1962                  * This prevents guest kernels on AMD host with CPU
1963                  * type 6, model 8 and higher from exploding due to
1964                  * the rdmsr failing.
1965                  */
1966                 data = 0x20000000;
1967                 break;
1968         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1969                 if (kvm_hv_msr_partition_wide(msr)) {
1970                         int r;
1971                         mutex_lock(&vcpu->kvm->lock);
1972                         r = get_msr_hyperv_pw(vcpu, msr, pdata);
1973                         mutex_unlock(&vcpu->kvm->lock);
1974                         return r;
1975                 } else
1976                         return get_msr_hyperv(vcpu, msr, pdata);
1977                 break;
1978         case MSR_IA32_BBL_CR_CTL3:
1979                 /* This legacy MSR exists but isn't fully documented in current
1980                  * silicon.  It is however accessed by winxp in very narrow
1981                  * scenarios where it sets bit #19, itself documented as
1982                  * a "reserved" bit.  Best effort attempt to source coherent
1983                  * read data here should the balance of the register be
1984                  * interpreted by the guest:
1985                  *
1986                  * L2 cache control register 3: 64GB range, 256KB size,
1987                  * enabled, latency 0x1, configured
1988                  */
1989                 data = 0xbe702111;
1990                 break;
1991         case MSR_AMD64_OSVW_ID_LENGTH:
1992                 if (!guest_cpuid_has_osvw(vcpu))
1993                         return 1;
1994                 data = vcpu->arch.osvw.length;
1995                 break;
1996         case MSR_AMD64_OSVW_STATUS:
1997                 if (!guest_cpuid_has_osvw(vcpu))
1998                         return 1;
1999                 data = vcpu->arch.osvw.status;
2000                 break;
2001         default:
2002                 if (kvm_pmu_msr(vcpu, msr))
2003                         return kvm_pmu_get_msr(vcpu, msr, pdata);
2004                 if (!ignore_msrs) {
2005                         pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
2006                         return 1;
2007                 } else {
2008                         pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
2009                         data = 0;
2010                 }
2011                 break;
2012         }
2013         *pdata = data;
2014         return 0;
2015 }
2016 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2017
2018 /*
2019  * Read or write a bunch of msrs. All parameters are kernel addresses.
2020  *
2021  * @return number of msrs set successfully.
2022  */
2023 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2024                     struct kvm_msr_entry *entries,
2025                     int (*do_msr)(struct kvm_vcpu *vcpu,
2026                                   unsigned index, u64 *data))
2027 {
2028         int i, idx;
2029
2030         idx = srcu_read_lock(&vcpu->kvm->srcu);
2031         for (i = 0; i < msrs->nmsrs; ++i)
2032                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2033                         break;
2034         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2035
2036         return i;
2037 }
2038
2039 /*
2040  * Read or write a bunch of msrs. Parameters are user addresses.
2041  *
2042  * @return number of msrs set successfully.
2043  */
2044 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2045                   int (*do_msr)(struct kvm_vcpu *vcpu,
2046                                 unsigned index, u64 *data),
2047                   int writeback)
2048 {
2049         struct kvm_msrs msrs;
2050         struct kvm_msr_entry *entries;
2051         int r, n;
2052         unsigned size;
2053
2054         r = -EFAULT;
2055         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2056                 goto out;
2057
2058         r = -E2BIG;
2059         if (msrs.nmsrs >= MAX_IO_MSRS)
2060                 goto out;
2061
2062         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2063         entries = memdup_user(user_msrs->entries, size);
2064         if (IS_ERR(entries)) {
2065                 r = PTR_ERR(entries);
2066                 goto out;
2067         }
2068
2069         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2070         if (r < 0)
2071                 goto out_free;
2072
2073         r = -EFAULT;
2074         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2075                 goto out_free;
2076
2077         r = n;
2078
2079 out_free:
2080         kfree(entries);
2081 out:
2082         return r;
2083 }
2084
2085 int kvm_dev_ioctl_check_extension(long ext)
2086 {
2087         int r;
2088
2089         switch (ext) {
2090         case KVM_CAP_IRQCHIP:
2091         case KVM_CAP_HLT:
2092         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2093         case KVM_CAP_SET_TSS_ADDR:
2094         case KVM_CAP_EXT_CPUID:
2095         case KVM_CAP_CLOCKSOURCE:
2096         case KVM_CAP_PIT:
2097         case KVM_CAP_NOP_IO_DELAY:
2098         case KVM_CAP_MP_STATE:
2099         case KVM_CAP_SYNC_MMU:
2100         case KVM_CAP_USER_NMI:
2101         case KVM_CAP_REINJECT_CONTROL:
2102         case KVM_CAP_IRQ_INJECT_STATUS:
2103         case KVM_CAP_ASSIGN_DEV_IRQ:
2104         case KVM_CAP_IRQFD:
2105         case KVM_CAP_IOEVENTFD:
2106         case KVM_CAP_PIT2:
2107         case KVM_CAP_PIT_STATE2:
2108         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2109         case KVM_CAP_XEN_HVM:
2110         case KVM_CAP_ADJUST_CLOCK:
2111         case KVM_CAP_VCPU_EVENTS:
2112         case KVM_CAP_HYPERV:
2113         case KVM_CAP_HYPERV_VAPIC:
2114         case KVM_CAP_HYPERV_SPIN:
2115         case KVM_CAP_PCI_SEGMENT:
2116         case KVM_CAP_DEBUGREGS:
2117         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2118         case KVM_CAP_XSAVE:
2119         case KVM_CAP_ASYNC_PF:
2120         case KVM_CAP_GET_TSC_KHZ:
2121                 r = 1;
2122                 break;
2123         case KVM_CAP_COALESCED_MMIO:
2124                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2125                 break;
2126         case KVM_CAP_VAPIC:
2127                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2128                 break;
2129         case KVM_CAP_NR_VCPUS:
2130                 r = KVM_SOFT_MAX_VCPUS;
2131                 break;
2132         case KVM_CAP_MAX_VCPUS:
2133                 r = KVM_MAX_VCPUS;
2134                 break;
2135         case KVM_CAP_NR_MEMSLOTS:
2136                 r = KVM_MEMORY_SLOTS;
2137                 break;
2138         case KVM_CAP_PV_MMU:    /* obsolete */
2139                 r = 0;
2140                 break;
2141         case KVM_CAP_IOMMU:
2142                 r = iommu_present(&pci_bus_type);
2143                 break;
2144         case KVM_CAP_MCE:
2145                 r = KVM_MAX_MCE_BANKS;
2146                 break;
2147         case KVM_CAP_XCRS:
2148                 r = cpu_has_xsave;
2149                 break;
2150         case KVM_CAP_TSC_CONTROL:
2151                 r = kvm_has_tsc_control;
2152                 break;
2153         case KVM_CAP_TSC_DEADLINE_TIMER:
2154                 r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER);
2155                 break;
2156         default:
2157                 r = 0;
2158                 break;
2159         }
2160         return r;
2161
2162 }
2163
2164 long kvm_arch_dev_ioctl(struct file *filp,
2165                         unsigned int ioctl, unsigned long arg)
2166 {
2167         void __user *argp = (void __user *)arg;
2168         long r;
2169
2170         switch (ioctl) {
2171         case KVM_GET_MSR_INDEX_LIST: {
2172                 struct kvm_msr_list __user *user_msr_list = argp;
2173                 struct kvm_msr_list msr_list;
2174                 unsigned n;
2175
2176                 r = -EFAULT;
2177                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2178                         goto out;
2179                 n = msr_list.nmsrs;
2180                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2181                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2182                         goto out;
2183                 r = -E2BIG;
2184                 if (n < msr_list.nmsrs)
2185                         goto out;
2186                 r = -EFAULT;
2187                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2188                                  num_msrs_to_save * sizeof(u32)))
2189                         goto out;
2190                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2191                                  &emulated_msrs,
2192                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2193                         goto out;
2194                 r = 0;
2195                 break;
2196         }
2197         case KVM_GET_SUPPORTED_CPUID: {
2198                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2199                 struct kvm_cpuid2 cpuid;
2200
2201                 r = -EFAULT;
2202                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2203                         goto out;
2204                 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
2205                                                       cpuid_arg->entries);
2206                 if (r)
2207                         goto out;
2208
2209                 r = -EFAULT;
2210                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2211                         goto out;
2212                 r = 0;
2213                 break;
2214         }
2215         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2216                 u64 mce_cap;
2217
2218                 mce_cap = KVM_MCE_CAP_SUPPORTED;
2219                 r = -EFAULT;
2220                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2221                         goto out;
2222                 r = 0;
2223                 break;
2224         }
2225         default:
2226                 r = -EINVAL;
2227         }
2228 out:
2229         return r;
2230 }
2231
2232 static void wbinvd_ipi(void *garbage)
2233 {
2234         wbinvd();
2235 }
2236
2237 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2238 {
2239         return vcpu->kvm->arch.iommu_domain &&
2240                 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
2241 }
2242
2243 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2244 {
2245         /* Address WBINVD may be executed by guest */
2246         if (need_emulate_wbinvd(vcpu)) {
2247                 if (kvm_x86_ops->has_wbinvd_exit())
2248                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2249                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2250                         smp_call_function_single(vcpu->cpu,
2251                                         wbinvd_ipi, NULL, 1);
2252         }
2253
2254         kvm_x86_ops->vcpu_load(vcpu, cpu);
2255
2256         /* Apply any externally detected TSC adjustments (due to suspend) */
2257         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2258                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2259                 vcpu->arch.tsc_offset_adjustment = 0;
2260                 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
2261         }
2262
2263         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2264                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2265                                 native_read_tsc() - vcpu->arch.last_host_tsc;
2266                 if (tsc_delta < 0)
2267                         mark_tsc_unstable("KVM discovered backwards TSC");
2268                 if (check_tsc_unstable()) {
2269                         u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2270                                                 vcpu->arch.last_guest_tsc);
2271                         kvm_x86_ops->write_tsc_offset(vcpu, offset);
2272                         vcpu->arch.tsc_catchup = 1;
2273                 }
2274                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2275                 if (vcpu->cpu != cpu)
2276                         kvm_migrate_timers(vcpu);
2277                 vcpu->cpu = cpu;
2278         }
2279
2280         accumulate_steal_time(vcpu);
2281         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2282 }
2283
2284 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2285 {
2286         kvm_x86_ops->vcpu_put(vcpu);
2287         kvm_put_guest_fpu(vcpu);
2288         vcpu->arch.last_host_tsc = native_read_tsc();
2289 }
2290
2291 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2292                                     struct kvm_lapic_state *s)
2293 {
2294         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2295
2296         return 0;
2297 }
2298
2299 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2300                                     struct kvm_lapic_state *s)
2301 {
2302         memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
2303         kvm_apic_post_state_restore(vcpu);
2304         update_cr8_intercept(vcpu);
2305
2306         return 0;
2307 }
2308
2309 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2310                                     struct kvm_interrupt *irq)
2311 {
2312         if (irq->irq < 0 || irq->irq >= 256)
2313                 return -EINVAL;
2314         if (irqchip_in_kernel(vcpu->kvm))
2315                 return -ENXIO;
2316
2317         kvm_queue_interrupt(vcpu, irq->irq, false);
2318         kvm_make_request(KVM_REQ_EVENT, vcpu);
2319
2320         return 0;
2321 }
2322
2323 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2324 {
2325         kvm_inject_nmi(vcpu);
2326
2327         return 0;
2328 }
2329
2330 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2331                                            struct kvm_tpr_access_ctl *tac)
2332 {
2333         if (tac->flags)
2334                 return -EINVAL;
2335         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2336         return 0;
2337 }
2338
2339 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2340                                         u64 mcg_cap)
2341 {
2342         int r;
2343         unsigned bank_num = mcg_cap & 0xff, bank;
2344
2345         r = -EINVAL;
2346         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2347                 goto out;
2348         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2349                 goto out;
2350         r = 0;
2351         vcpu->arch.mcg_cap = mcg_cap;
2352         /* Init IA32_MCG_CTL to all 1s */
2353         if (mcg_cap & MCG_CTL_P)
2354                 vcpu->arch.mcg_ctl = ~(u64)0;
2355         /* Init IA32_MCi_CTL to all 1s */
2356         for (bank = 0; bank < bank_num; bank++)
2357                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2358 out:
2359         return r;
2360 }
2361
2362 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2363                                       struct kvm_x86_mce *mce)
2364 {
2365         u64 mcg_cap = vcpu->arch.mcg_cap;
2366         unsigned bank_num = mcg_cap & 0xff;
2367         u64 *banks = vcpu->arch.mce_banks;
2368
2369         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2370                 return -EINVAL;
2371         /*
2372          * if IA32_MCG_CTL is not all 1s, the uncorrected error
2373          * reporting is disabled
2374          */
2375         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2376             vcpu->arch.mcg_ctl != ~(u64)0)
2377                 return 0;
2378         banks += 4 * mce->bank;
2379         /*
2380          * if IA32_MCi_CTL is not all 1s, the uncorrected error
2381          * reporting is disabled for the bank
2382          */
2383         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2384                 return 0;
2385         if (mce->status & MCI_STATUS_UC) {
2386                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2387                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2388                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2389                         return 0;
2390                 }
2391                 if (banks[1] & MCI_STATUS_VAL)
2392                         mce->status |= MCI_STATUS_OVER;
2393                 banks[2] = mce->addr;
2394                 banks[3] = mce->misc;
2395                 vcpu->arch.mcg_status = mce->mcg_status;
2396                 banks[1] = mce->status;
2397                 kvm_queue_exception(vcpu, MC_VECTOR);
2398         } else if (!(banks[1] & MCI_STATUS_VAL)
2399                    || !(banks[1] & MCI_STATUS_UC)) {
2400                 if (banks[1] & MCI_STATUS_VAL)
2401                         mce->status |= MCI_STATUS_OVER;
2402                 banks[2] = mce->addr;
2403                 banks[3] = mce->misc;
2404                 banks[1] = mce->status;
2405         } else
2406                 banks[1] |= MCI_STATUS_OVER;
2407         return 0;
2408 }
2409
2410 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2411                                                struct kvm_vcpu_events *events)
2412 {
2413         process_nmi(vcpu);
2414         events->exception.injected =
2415                 vcpu->arch.exception.pending &&
2416                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2417         events->exception.nr = vcpu->arch.exception.nr;
2418         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2419         events->exception.pad = 0;
2420         events->exception.error_code = vcpu->arch.exception.error_code;
2421
2422         events->interrupt.injected =
2423                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2424         events->interrupt.nr = vcpu->arch.interrupt.nr;
2425         events->interrupt.soft = 0;
2426         events->interrupt.shadow =
2427                 kvm_x86_ops->get_interrupt_shadow(vcpu,
2428                         KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2429
2430         events->nmi.injected = vcpu->arch.nmi_injected;
2431         events->nmi.pending = vcpu->arch.nmi_pending != 0;
2432         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2433         events->nmi.pad = 0;
2434
2435         events->sipi_vector = vcpu->arch.sipi_vector;
2436
2437         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2438                          | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2439                          | KVM_VCPUEVENT_VALID_SHADOW);
2440         memset(&events->reserved, 0, sizeof(events->reserved));
2441 }
2442
2443 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2444                                               struct kvm_vcpu_events *events)
2445 {
2446         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2447                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2448                               | KVM_VCPUEVENT_VALID_SHADOW))
2449                 return -EINVAL;
2450
2451         process_nmi(vcpu);
2452         vcpu->arch.exception.pending = events->exception.injected;
2453         vcpu->arch.exception.nr = events->exception.nr;
2454         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2455         vcpu->arch.exception.error_code = events->exception.error_code;
2456
2457         vcpu->arch.interrupt.pending = events->interrupt.injected;
2458         vcpu->arch.interrupt.nr = events->interrupt.nr;
2459         vcpu->arch.interrupt.soft = events->interrupt.soft;
2460         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2461                 kvm_x86_ops->set_interrupt_shadow(vcpu,
2462                                                   events->interrupt.shadow);
2463
2464         vcpu->arch.nmi_injected = events->nmi.injected;
2465         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2466                 vcpu->arch.nmi_pending = events->nmi.pending;
2467         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2468
2469         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2470                 vcpu->arch.sipi_vector = events->sipi_vector;
2471
2472         kvm_make_request(KVM_REQ_EVENT, vcpu);
2473
2474         return 0;
2475 }
2476
2477 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2478                                              struct kvm_debugregs *dbgregs)
2479 {
2480         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2481         dbgregs->dr6 = vcpu->arch.dr6;
2482         dbgregs->dr7 = vcpu->arch.dr7;
2483         dbgregs->flags = 0;
2484         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2485 }
2486
2487 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2488                                             struct kvm_debugregs *dbgregs)
2489 {
2490         if (dbgregs->flags)
2491                 return -EINVAL;
2492
2493         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2494         vcpu->arch.dr6 = dbgregs->dr6;
2495         vcpu->arch.dr7 = dbgregs->dr7;
2496
2497         return 0;
2498 }
2499
2500 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2501                                          struct kvm_xsave *guest_xsave)
2502 {
2503         if (cpu_has_xsave)
2504                 memcpy(guest_xsave->region,
2505                         &vcpu->arch.guest_fpu.state->xsave,
2506                         xstate_size);
2507         else {
2508                 memcpy(guest_xsave->region,
2509                         &vcpu->arch.guest_fpu.state->fxsave,
2510                         sizeof(struct i387_fxsave_struct));
2511                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2512                         XSTATE_FPSSE;
2513         }
2514 }
2515
2516 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2517                                         struct kvm_xsave *guest_xsave)
2518 {
2519         u64 xstate_bv =
2520                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2521
2522         if (cpu_has_xsave)
2523                 memcpy(&vcpu->arch.guest_fpu.state->xsave,
2524                         guest_xsave->region, xstate_size);
2525         else {
2526                 if (xstate_bv & ~XSTATE_FPSSE)
2527                         return -EINVAL;
2528                 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2529                         guest_xsave->region, sizeof(struct i387_fxsave_struct));
2530         }
2531         return 0;
2532 }
2533
2534 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2535                                         struct kvm_xcrs *guest_xcrs)
2536 {
2537         if (!cpu_has_xsave) {
2538                 guest_xcrs->nr_xcrs = 0;
2539                 return;
2540         }
2541
2542         guest_xcrs->nr_xcrs = 1;
2543         guest_xcrs->flags = 0;
2544         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2545         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2546 }
2547
2548 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2549                                        struct kvm_xcrs *guest_xcrs)
2550 {
2551         int i, r = 0;
2552
2553         if (!cpu_has_xsave)
2554                 return -EINVAL;
2555
2556         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2557                 return -EINVAL;
2558
2559         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2560                 /* Only support XCR0 currently */
2561                 if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
2562                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
2563                                 guest_xcrs->xcrs[0].value);
2564                         break;
2565                 }
2566         if (r)
2567                 r = -EINVAL;
2568         return r;
2569 }
2570
2571 long kvm_arch_vcpu_ioctl(struct file *filp,
2572                          unsigned int ioctl, unsigned long arg)
2573 {
2574         struct kvm_vcpu *vcpu = filp->private_data;
2575         void __user *argp = (void __user *)arg;
2576         int r;
2577         union {
2578                 struct kvm_lapic_state *lapic;
2579                 struct kvm_xsave *xsave;
2580                 struct kvm_xcrs *xcrs;
2581                 void *buffer;
2582         } u;
2583
2584         u.buffer = NULL;
2585         switch (ioctl) {
2586         case KVM_GET_LAPIC: {
2587                 r = -EINVAL;
2588                 if (!vcpu->arch.apic)
2589                         goto out;
2590                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2591
2592                 r = -ENOMEM;
2593                 if (!u.lapic)
2594                         goto out;
2595                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
2596                 if (r)
2597                         goto out;
2598                 r = -EFAULT;
2599                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
2600                         goto out;
2601                 r = 0;
2602                 break;
2603         }
2604         case KVM_SET_LAPIC: {
2605                 r = -EINVAL;
2606                 if (!vcpu->arch.apic)
2607                         goto out;
2608                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
2609                 if (IS_ERR(u.lapic)) {
2610                         r = PTR_ERR(u.lapic);
2611                         goto out;
2612                 }
2613
2614                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
2615                 if (r)
2616                         goto out;
2617                 r = 0;
2618                 break;
2619         }
2620         case KVM_INTERRUPT: {
2621                 struct kvm_interrupt irq;
2622
2623                 r = -EFAULT;
2624                 if (copy_from_user(&irq, argp, sizeof irq))
2625                         goto out;
2626                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2627                 if (r)
2628                         goto out;
2629                 r = 0;
2630                 break;
2631         }
2632         case KVM_NMI: {
2633                 r = kvm_vcpu_ioctl_nmi(vcpu);
2634                 if (r)
2635                         goto out;
2636                 r = 0;
2637                 break;
2638         }
2639         case KVM_SET_CPUID: {
2640                 struct kvm_cpuid __user *cpuid_arg = argp;
2641                 struct kvm_cpuid cpuid;
2642
2643                 r = -EFAULT;
2644                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2645                         goto out;
2646                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2647                 if (r)
2648                         goto out;
2649                 break;
2650         }
2651         case KVM_SET_CPUID2: {
2652                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2653                 struct kvm_cpuid2 cpuid;
2654
2655                 r = -EFAULT;
2656                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2657                         goto out;
2658                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
2659                                               cpuid_arg->entries);
2660                 if (r)
2661                         goto out;
2662                 break;
2663         }
2664         case KVM_GET_CPUID2: {
2665                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2666                 struct kvm_cpuid2 cpuid;
2667
2668                 r = -EFAULT;
2669                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2670                         goto out;
2671                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
2672                                               cpuid_arg->entries);
2673                 if (r)
2674                         goto out;
2675                 r = -EFAULT;
2676                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2677                         goto out;
2678                 r = 0;
2679                 break;
2680         }
2681         case KVM_GET_MSRS:
2682                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2683                 break;
2684         case KVM_SET_MSRS:
2685                 r = msr_io(vcpu, argp, do_set_msr, 0);
2686                 break;
2687         case KVM_TPR_ACCESS_REPORTING: {
2688                 struct kvm_tpr_access_ctl tac;
2689
2690                 r = -EFAULT;
2691                 if (copy_from_user(&tac, argp, sizeof tac))
2692                         goto out;
2693                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
2694                 if (r)
2695                         goto out;
2696                 r = -EFAULT;
2697                 if (copy_to_user(argp, &tac, sizeof tac))
2698                         goto out;
2699                 r = 0;
2700                 break;
2701         };
2702         case KVM_SET_VAPIC_ADDR: {
2703                 struct kvm_vapic_addr va;
2704
2705                 r = -EINVAL;
2706                 if (!irqchip_in_kernel(vcpu->kvm))
2707                         goto out;
2708                 r = -EFAULT;
2709                 if (copy_from_user(&va, argp, sizeof va))
2710                         goto out;
2711                 r = 0;
2712                 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
2713                 break;
2714         }
2715         case KVM_X86_SETUP_MCE: {
2716                 u64 mcg_cap;
2717
2718                 r = -EFAULT;
2719                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
2720                         goto out;
2721                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
2722                 break;
2723         }
2724         case KVM_X86_SET_MCE: {
2725                 struct kvm_x86_mce mce;
2726
2727                 r = -EFAULT;
2728                 if (copy_from_user(&mce, argp, sizeof mce))
2729                         goto out;
2730                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
2731                 break;
2732         }
2733         case KVM_GET_VCPU_EVENTS: {
2734                 struct kvm_vcpu_events events;
2735
2736                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
2737
2738                 r = -EFAULT;
2739                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
2740                         break;
2741                 r = 0;
2742                 break;
2743         }
2744         case KVM_SET_VCPU_EVENTS: {
2745                 struct kvm_vcpu_events events;
2746
2747                 r = -EFAULT;
2748                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
2749                         break;
2750
2751                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
2752                 break;
2753         }
2754         case KVM_GET_DEBUGREGS: {
2755                 struct kvm_debugregs dbgregs;
2756
2757                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
2758
2759                 r = -EFAULT;
2760                 if (copy_to_user(argp, &dbgregs,
2761                                  sizeof(struct kvm_debugregs)))
2762                         break;
2763                 r = 0;
2764                 break;
2765         }
2766         case KVM_SET_DEBUGREGS: {
2767                 struct kvm_debugregs dbgregs;
2768
2769                 r = -EFAULT;
2770                 if (copy_from_user(&dbgregs, argp,
2771                                    sizeof(struct kvm_debugregs)))
2772                         break;
2773
2774                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
2775                 break;
2776         }
2777         case KVM_GET_XSAVE: {
2778                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
2779                 r = -ENOMEM;
2780                 if (!u.xsave)
2781                         break;
2782
2783                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
2784
2785                 r = -EFAULT;
2786                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
2787                         break;
2788                 r = 0;
2789                 break;
2790         }
2791         case KVM_SET_XSAVE: {
2792                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
2793                 if (IS_ERR(u.xsave)) {
2794                         r = PTR_ERR(u.xsave);
2795                         goto out;
2796                 }
2797
2798                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
2799                 break;
2800         }
2801         case KVM_GET_XCRS: {
2802                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
2803                 r = -ENOMEM;
2804                 if (!u.xcrs)
2805                         break;
2806
2807                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
2808
2809                 r = -EFAULT;
2810                 if (copy_to_user(argp, u.xcrs,
2811                                  sizeof(struct kvm_xcrs)))
2812                         break;
2813                 r = 0;
2814                 break;
2815         }
2816         case KVM_SET_XCRS: {
2817                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
2818                 if (IS_ERR(u.xcrs)) {
2819                         r = PTR_ERR(u.xcrs);
2820                         goto out;
2821                 }
2822
2823                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
2824                 break;
2825         }
2826         case KVM_SET_TSC_KHZ: {
2827                 u32 user_tsc_khz;
2828
2829                 r = -EINVAL;
2830                 user_tsc_khz = (u32)arg;
2831
2832                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
2833                         goto out;
2834
2835                 if (user_tsc_khz == 0)
2836                         user_tsc_khz = tsc_khz;
2837
2838                 kvm_set_tsc_khz(vcpu, user_tsc_khz);
2839
2840                 r = 0;
2841                 goto out;
2842         }
2843         case KVM_GET_TSC_KHZ: {
2844                 r = vcpu->arch.virtual_tsc_khz;
2845                 goto out;
2846         }
2847         default:
2848                 r = -EINVAL;
2849         }
2850 out:
2851         kfree(u.buffer);
2852         return r;
2853 }
2854
2855 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
2856 {
2857         return VM_FAULT_SIGBUS;
2858 }
2859
2860 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
2861 {
2862         int ret;
2863
2864         if (addr > (unsigned int)(-3 * PAGE_SIZE))
2865                 return -1;
2866         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
2867         return ret;
2868 }
2869
2870 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
2871                                               u64 ident_addr)
2872 {
2873         kvm->arch.ept_identity_map_addr = ident_addr;
2874         return 0;
2875 }
2876
2877 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
2878                                           u32 kvm_nr_mmu_pages)
2879 {
2880         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
2881                 return -EINVAL;
2882
2883         mutex_lock(&kvm->slots_lock);
2884         spin_lock(&kvm->mmu_lock);
2885
2886         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
2887         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
2888
2889         spin_unlock(&kvm->mmu_lock);
2890         mutex_unlock(&kvm->slots_lock);
2891         return 0;
2892 }
2893
2894 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
2895 {
2896         return kvm->arch.n_max_mmu_pages;
2897 }
2898
2899 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2900 {
2901         int r;
2902
2903         r = 0;
2904         switch (chip->chip_id) {
2905         case KVM_IRQCHIP_PIC_MASTER:
2906                 memcpy(&chip->chip.pic,
2907                         &pic_irqchip(kvm)->pics[0],
2908                         sizeof(struct kvm_pic_state));
2909                 break;
2910         case KVM_IRQCHIP_PIC_SLAVE:
2911                 memcpy(&chip->chip.pic,
2912                         &pic_irqchip(kvm)->pics[1],
2913                         sizeof(struct kvm_pic_state));
2914                 break;
2915         case KVM_IRQCHIP_IOAPIC:
2916                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
2917                 break;
2918         default:
2919                 r = -EINVAL;
2920                 break;
2921         }
2922         return r;
2923 }
2924
2925 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2926 {
2927         int r;
2928
2929         r = 0;
2930         switch (chip->chip_id) {
2931         case KVM_IRQCHIP_PIC_MASTER:
2932                 spin_lock(&pic_irqchip(kvm)->lock);
2933                 memcpy(&pic_irqchip(kvm)->pics[0],
2934                         &chip->chip.pic,
2935                         sizeof(struct kvm_pic_state));
2936                 spin_unlock(&pic_irqchip(kvm)->lock);
2937                 break;
2938         case KVM_IRQCHIP_PIC_SLAVE:
2939                 spin_lock(&pic_irqchip(kvm)->lock);
2940                 memcpy(&pic_irqchip(kvm)->pics[1],
2941                         &chip->chip.pic,
2942                         sizeof(struct kvm_pic_state));
2943                 spin_unlock(&pic_irqchip(kvm)->lock);
2944                 break;
2945         case KVM_IRQCHIP_IOAPIC:
2946                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
2947                 break;
2948         default:
2949                 r = -EINVAL;
2950                 break;
2951         }
2952         kvm_pic_update_irq(pic_irqchip(kvm));
2953         return r;
2954 }
2955
2956 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2957 {
2958         int r = 0;
2959
2960         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2961         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
2962         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2963         return r;
2964 }
2965
2966 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2967 {
2968         int r = 0;
2969
2970         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2971         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
2972         kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
2973         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2974         return r;
2975 }
2976
2977 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2978 {
2979         int r = 0;
2980
2981         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2982         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
2983                 sizeof(ps->channels));
2984         ps->flags = kvm->arch.vpit->pit_state.flags;
2985         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2986         memset(&ps->reserved, 0, sizeof(ps->reserved));
2987         return r;
2988 }
2989
2990 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2991 {
2992         int r = 0, start = 0;
2993         u32 prev_legacy, cur_legacy;
2994         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2995         prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
2996         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
2997         if (!prev_legacy && cur_legacy)
2998                 start = 1;
2999         memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3000                sizeof(kvm->arch.vpit->pit_state.channels));
3001         kvm->arch.vpit->pit_state.flags = ps->flags;
3002         kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3003         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3004         return r;
3005 }
3006
3007 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3008                                  struct kvm_reinject_control *control)
3009 {
3010         if (!kvm->arch.vpit)
3011                 return -ENXIO;
3012         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3013         kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
3014         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3015         return 0;
3016 }
3017
3018 /**
3019  * write_protect_slot - write protect a slot for dirty logging
3020  * @kvm: the kvm instance
3021  * @memslot: the slot we protect
3022  * @dirty_bitmap: the bitmap indicating which pages are dirty
3023  * @nr_dirty_pages: the number of dirty pages
3024  *
3025  * We have two ways to find all sptes to protect:
3026  * 1. Use kvm_mmu_slot_remove_write_access() which walks all shadow pages and
3027  *    checks ones that have a spte mapping a page in the slot.
3028  * 2. Use kvm_mmu_rmap_write_protect() for each gfn found in the bitmap.
3029  *
3030  * Generally speaking, if there are not so many dirty pages compared to the
3031  * number of shadow pages, we should use the latter.
3032  *
3033  * Note that letting others write into a page marked dirty in the old bitmap
3034  * by using the remaining tlb entry is not a problem.  That page will become
3035  * write protected again when we flush the tlb and then be reported dirty to
3036  * the user space by copying the old bitmap.
3037  */
3038 static void write_protect_slot(struct kvm *kvm,
3039                                struct kvm_memory_slot *memslot,
3040                                unsigned long *dirty_bitmap,
3041                                unsigned long nr_dirty_pages)
3042 {
3043         /* Not many dirty pages compared to # of shadow pages. */
3044         if (nr_dirty_pages < kvm->arch.n_used_mmu_pages) {
3045                 unsigned long gfn_offset;
3046
3047                 for_each_set_bit(gfn_offset, dirty_bitmap, memslot->npages) {
3048                         unsigned long gfn = memslot->base_gfn + gfn_offset;
3049
3050                         spin_lock(&kvm->mmu_lock);
3051                         kvm_mmu_rmap_write_protect(kvm, gfn, memslot);
3052                         spin_unlock(&kvm->mmu_lock);
3053                 }
3054                 kvm_flush_remote_tlbs(kvm);
3055         } else {
3056                 spin_lock(&kvm->mmu_lock);
3057                 kvm_mmu_slot_remove_write_access(kvm, memslot->id);
3058                 spin_unlock(&kvm->mmu_lock);
3059         }
3060 }
3061
3062 /*
3063  * Get (and clear) the dirty memory log for a memory slot.
3064  */
3065 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
3066                                       struct kvm_dirty_log *log)
3067 {
3068         int r;
3069         struct kvm_memory_slot *memslot;
3070         unsigned long n, nr_dirty_pages;
3071
3072         mutex_lock(&kvm->slots_lock);
3073
3074         r = -EINVAL;
3075         if (log->slot >= KVM_MEMORY_SLOTS)
3076                 goto out;
3077
3078         memslot = id_to_memslot(kvm->memslots, log->slot);
3079         r = -ENOENT;
3080         if (!memslot->dirty_bitmap)
3081                 goto out;
3082
3083         n = kvm_dirty_bitmap_bytes(memslot);
3084         nr_dirty_pages = memslot->nr_dirty_pages;
3085
3086         /* If nothing is dirty, don't bother messing with page tables. */
3087         if (nr_dirty_pages) {
3088                 struct kvm_memslots *slots, *old_slots;
3089                 unsigned long *dirty_bitmap, *dirty_bitmap_head;
3090
3091                 dirty_bitmap = memslot->dirty_bitmap;
3092                 dirty_bitmap_head = memslot->dirty_bitmap_head;
3093                 if (dirty_bitmap == dirty_bitmap_head)
3094                         dirty_bitmap_head += n / sizeof(long);
3095                 memset(dirty_bitmap_head, 0, n);
3096
3097                 r = -ENOMEM;
3098                 slots = kmemdup(kvm->memslots, sizeof(*kvm->memslots), GFP_KERNEL);
3099                 if (!slots)
3100                         goto out;
3101
3102                 memslot = id_to_memslot(slots, log->slot);
3103                 memslot->nr_dirty_pages = 0;
3104                 memslot->dirty_bitmap = dirty_bitmap_head;
3105                 update_memslots(slots, NULL);
3106
3107                 old_slots = kvm->memslots;
3108                 rcu_assign_pointer(kvm->memslots, slots);
3109                 synchronize_srcu_expedited(&kvm->srcu);
3110                 kfree(old_slots);
3111
3112                 write_protect_slot(kvm, memslot, dirty_bitmap, nr_dirty_pages);
3113
3114                 r = -EFAULT;
3115                 if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n))
3116                         goto out;
3117         } else {
3118                 r = -EFAULT;
3119                 if (clear_user(log->dirty_bitmap, n))
3120                         goto out;
3121         }
3122
3123         r = 0;
3124 out:
3125         mutex_unlock(&kvm->slots_lock);
3126         return r;
3127 }
3128
3129 long kvm_arch_vm_ioctl(struct file *filp,
3130                        unsigned int ioctl, unsigned long arg)
3131 {
3132         struct kvm *kvm = filp->private_data;
3133         void __user *argp = (void __user *)arg;
3134         int r = -ENOTTY;
3135         /*
3136          * This union makes it completely explicit to gcc-3.x
3137          * that these two variables' stack usage should be
3138          * combined, not added together.
3139          */
3140         union {
3141                 struct kvm_pit_state ps;
3142                 struct kvm_pit_state2 ps2;
3143                 struct kvm_pit_config pit_config;
3144         } u;
3145
3146         switch (ioctl) {
3147         case KVM_SET_TSS_ADDR:
3148                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3149                 if (r < 0)
3150                         goto out;
3151                 break;
3152         case KVM_SET_IDENTITY_MAP_ADDR: {
3153                 u64 ident_addr;
3154
3155                 r = -EFAULT;
3156                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3157                         goto out;
3158                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3159                 if (r < 0)
3160                         goto out;
3161                 break;
3162         }
3163         case KVM_SET_NR_MMU_PAGES:
3164                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3165                 if (r)
3166                         goto out;
3167                 break;
3168         case KVM_GET_NR_MMU_PAGES:
3169                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3170                 break;
3171         case KVM_CREATE_IRQCHIP: {
3172                 struct kvm_pic *vpic;
3173
3174                 mutex_lock(&kvm->lock);
3175                 r = -EEXIST;
3176                 if (kvm->arch.vpic)
3177                         goto create_irqchip_unlock;
3178                 r = -ENOMEM;
3179                 vpic = kvm_create_pic(kvm);
3180                 if (vpic) {
3181                         r = kvm_ioapic_init(kvm);
3182                         if (r) {
3183                                 mutex_lock(&kvm->slots_lock);
3184                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3185                                                           &vpic->dev_master);
3186                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3187                                                           &vpic->dev_slave);
3188                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3189                                                           &vpic->dev_eclr);
3190                                 mutex_unlock(&kvm->slots_lock);
3191                                 kfree(vpic);
3192                                 goto create_irqchip_unlock;
3193                         }
3194                 } else
3195                         goto create_irqchip_unlock;
3196                 smp_wmb();
3197                 kvm->arch.vpic = vpic;
3198                 smp_wmb();
3199                 r = kvm_setup_default_irq_routing(kvm);
3200                 if (r) {
3201                         mutex_lock(&kvm->slots_lock);
3202                         mutex_lock(&kvm->irq_lock);
3203                         kvm_ioapic_destroy(kvm);
3204                         kvm_destroy_pic(kvm);
3205                         mutex_unlock(&kvm->irq_lock);
3206                         mutex_unlock(&kvm->slots_lock);
3207                 }
3208         create_irqchip_unlock:
3209                 mutex_unlock(&kvm->lock);
3210                 break;
3211         }
3212         case KVM_CREATE_PIT:
3213                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3214                 goto create_pit;
3215         case KVM_CREATE_PIT2:
3216                 r = -EFAULT;
3217                 if (copy_from_user(&u.pit_config, argp,
3218                                    sizeof(struct kvm_pit_config)))
3219                         goto out;
3220         create_pit:
3221                 mutex_lock(&kvm->slots_lock);
3222                 r = -EEXIST;
3223                 if (kvm->arch.vpit)
3224                         goto create_pit_unlock;
3225                 r = -ENOMEM;
3226                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3227                 if (kvm->arch.vpit)
3228                         r = 0;
3229         create_pit_unlock:
3230                 mutex_unlock(&kvm->slots_lock);
3231                 break;
3232         case KVM_IRQ_LINE_STATUS:
3233         case KVM_IRQ_LINE: {
3234                 struct kvm_irq_level irq_event;
3235
3236                 r = -EFAULT;
3237                 if (copy_from_user(&irq_event, argp, sizeof irq_event))
3238                         goto out;
3239                 r = -ENXIO;
3240                 if (irqchip_in_kernel(kvm)) {
3241                         __s32 status;
3242                         status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3243                                         irq_event.irq, irq_event.level);
3244                         if (ioctl == KVM_IRQ_LINE_STATUS) {
3245                                 r = -EFAULT;
3246                                 irq_event.status = status;
3247                                 if (copy_to_user(argp, &irq_event,
3248                                                         sizeof irq_event))
3249                                         goto out;
3250                         }
3251                         r = 0;
3252                 }
3253                 break;
3254         }
3255         case KVM_GET_IRQCHIP: {
3256                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3257                 struct kvm_irqchip *chip;
3258
3259                 chip = memdup_user(argp, sizeof(*chip));
3260                 if (IS_ERR(chip)) {
3261                         r = PTR_ERR(chip);
3262                         goto out;
3263                 }
3264
3265                 r = -ENXIO;
3266                 if (!irqchip_in_kernel(kvm))
3267                         goto get_irqchip_out;
3268                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3269                 if (r)
3270                         goto get_irqchip_out;
3271                 r = -EFAULT;
3272                 if (copy_to_user(argp, chip, sizeof *chip))
3273                         goto get_irqchip_out;
3274                 r = 0;
3275         get_irqchip_out:
3276                 kfree(chip);
3277                 if (r)
3278                         goto out;
3279                 break;
3280         }
3281         case KVM_SET_IRQCHIP: {
3282                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3283                 struct kvm_irqchip *chip;
3284
3285                 chip = memdup_user(argp, sizeof(*chip));
3286                 if (IS_ERR(chip)) {
3287                         r = PTR_ERR(chip);
3288                         goto out;
3289                 }
3290
3291                 r = -ENXIO;
3292                 if (!irqchip_in_kernel(kvm))
3293                         goto set_irqchip_out;
3294                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3295                 if (r)
3296                         goto set_irqchip_out;
3297                 r = 0;
3298         set_irqchip_out:
3299                 kfree(chip);
3300                 if (r)
3301                         goto out;
3302                 break;
3303         }
3304         case KVM_GET_PIT: {
3305                 r = -EFAULT;
3306                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3307                         goto out;
3308                 r = -ENXIO;
3309                 if (!kvm->arch.vpit)
3310                         goto out;
3311                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3312                 if (r)
3313                         goto out;
3314                 r = -EFAULT;
3315                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3316                         goto out;
3317                 r = 0;
3318                 break;
3319         }
3320         case KVM_SET_PIT: {
3321                 r = -EFAULT;
3322                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3323                         goto out;
3324                 r = -ENXIO;
3325                 if (!kvm->arch.vpit)
3326                         goto out;
3327                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3328                 if (r)
3329                         goto out;
3330                 r = 0;
3331                 break;
3332         }
3333         case KVM_GET_PIT2: {
3334                 r = -ENXIO;
3335                 if (!kvm->arch.vpit)
3336                         goto out;
3337                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3338                 if (r)
3339                         goto out;
3340                 r = -EFAULT;
3341                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3342                         goto out;
3343                 r = 0;
3344                 break;
3345         }
3346         case KVM_SET_PIT2: {
3347                 r = -EFAULT;
3348                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3349                         goto out;
3350                 r = -ENXIO;
3351                 if (!kvm->arch.vpit)
3352                         goto out;
3353                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3354                 if (r)
3355                         goto out;
3356                 r = 0;
3357                 break;
3358         }
3359         case KVM_REINJECT_CONTROL: {
3360                 struct kvm_reinject_control control;
3361                 r =  -EFAULT;
3362                 if (copy_from_user(&control, argp, sizeof(control)))
3363                         goto out;
3364                 r = kvm_vm_ioctl_reinject(kvm, &control);
3365                 if (r)
3366                         goto out;
3367                 r = 0;
3368                 break;
3369         }
3370         case KVM_XEN_HVM_CONFIG: {
3371                 r = -EFAULT;
3372                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3373                                    sizeof(struct kvm_xen_hvm_config)))
3374                         goto out;
3375                 r = -EINVAL;
3376                 if (kvm->arch.xen_hvm_config.flags)
3377                         goto out;
3378                 r = 0;
3379                 break;
3380         }
3381         case KVM_SET_CLOCK: {
3382                 struct kvm_clock_data user_ns;
3383                 u64 now_ns;
3384                 s64 delta;
3385
3386                 r = -EFAULT;
3387                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3388                         goto out;
3389
3390                 r = -EINVAL;
3391                 if (user_ns.flags)
3392                         goto out;
3393
3394                 r = 0;
3395                 local_irq_disable();
3396                 now_ns = get_kernel_ns();
3397                 delta = user_ns.clock - now_ns;
3398                 local_irq_enable();
3399                 kvm->arch.kvmclock_offset = delta;
3400                 break;
3401         }
3402         case KVM_GET_CLOCK: {
3403                 struct kvm_clock_data user_ns;
3404                 u64 now_ns;
3405
3406                 local_irq_disable();
3407                 now_ns = get_kernel_ns();
3408                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3409                 local_irq_enable();
3410                 user_ns.flags = 0;
3411                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3412
3413                 r = -EFAULT;
3414                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3415                         goto out;
3416                 r = 0;
3417                 break;
3418         }
3419
3420         default:
3421                 ;
3422         }
3423 out:
3424         return r;
3425 }
3426
3427 static void kvm_init_msr_list(void)
3428 {
3429         u32 dummy[2];
3430         unsigned i, j;
3431
3432         /* skip the first msrs in the list. KVM-specific */
3433         for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3434                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3435                         continue;
3436                 if (j < i)
3437                         msrs_to_save[j] = msrs_to_save[i];
3438                 j++;
3439         }
3440         num_msrs_to_save = j;
3441 }
3442
3443 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3444                            const void *v)
3445 {
3446         int handled = 0;
3447         int n;
3448
3449         do {
3450                 n = min(len, 8);
3451                 if (!(vcpu->arch.apic &&
3452                       !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
3453                     && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3454                         break;
3455                 handled += n;
3456                 addr += n;
3457                 len -= n;
3458                 v += n;
3459         } while (len);
3460
3461         return handled;
3462 }
3463
3464 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3465 {
3466         int handled = 0;
3467         int n;
3468
3469         do {
3470                 n = min(len, 8);
3471                 if (!(vcpu->arch.apic &&
3472                       !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
3473                     && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3474                         break;
3475                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
3476                 handled += n;
3477                 addr += n;
3478                 len -= n;
3479                 v += n;
3480         } while (len);
3481
3482         return handled;
3483 }
3484
3485 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3486                         struct kvm_segment *var, int seg)
3487 {
3488         kvm_x86_ops->set_segment(vcpu, var, seg);
3489 }
3490
3491 void kvm_get_segment(struct kvm_vcpu *vcpu,
3492                      struct kvm_segment *var, int seg)
3493 {
3494         kvm_x86_ops->get_segment(vcpu, var, seg);
3495 }
3496
3497 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3498 {
3499         gpa_t t_gpa;
3500         struct x86_exception exception;
3501
3502         BUG_ON(!mmu_is_nested(vcpu));
3503
3504         /* NPT walks are always user-walks */
3505         access |= PFERR_USER_MASK;
3506         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
3507
3508         return t_gpa;
3509 }
3510
3511 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3512                               struct x86_exception *exception)
3513 {
3514         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3515         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3516 }
3517
3518  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3519                                 struct x86_exception *exception)
3520 {
3521         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3522         access |= PFERR_FETCH_MASK;
3523         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3524 }
3525
3526 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3527                                struct x86_exception *exception)
3528 {
3529         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3530         access |= PFERR_WRITE_MASK;
3531         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3532 }
3533
3534 /* uses this to access any guest's mapped memory without checking CPL */
3535 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
3536                                 struct x86_exception *exception)
3537 {
3538         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3539 }
3540
3541 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3542                                       struct kvm_vcpu *vcpu, u32 access,
3543                                       struct x86_exception *exception)
3544 {
3545         void *data = val;
3546         int r = X86EMUL_CONTINUE;
3547
3548         while (bytes) {
3549                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3550                                                             exception);
3551                 unsigned offset = addr & (PAGE_SIZE-1);
3552                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3553                 int ret;
3554
3555                 if (gpa == UNMAPPED_GVA)
3556                         return X86EMUL_PROPAGATE_FAULT;
3557                 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3558                 if (ret < 0) {
3559                         r = X86EMUL_IO_NEEDED;
3560                         goto out;
3561                 }
3562
3563                 bytes -= toread;
3564                 data += toread;
3565                 addr += toread;
3566         }
3567 out:
3568         return r;
3569 }
3570
3571 /* used for instruction fetching */
3572 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
3573                                 gva_t addr, void *val, unsigned int bytes,
3574                                 struct x86_exception *exception)
3575 {
3576         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3577         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3578
3579         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3580                                           access | PFERR_FETCH_MASK,
3581                                           exception);
3582 }
3583
3584 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
3585                                gva_t addr, void *val, unsigned int bytes,
3586                                struct x86_exception *exception)
3587 {
3588         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3589         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3590
3591         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3592                                           exception);
3593 }
3594 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
3595
3596 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3597                                       gva_t addr, void *val, unsigned int bytes,
3598                                       struct x86_exception *exception)
3599 {
3600         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3601         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
3602 }
3603
3604 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3605                                        gva_t addr, void *val,
3606                                        unsigned int bytes,
3607                                        struct x86_exception *exception)
3608 {
3609         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3610         void *data = val;
3611         int r = X86EMUL_CONTINUE;
3612
3613         while (bytes) {
3614                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
3615                                                              PFERR_WRITE_MASK,
3616                                                              exception);
3617                 unsigned offset = addr & (PAGE_SIZE-1);
3618                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3619                 int ret;
3620
3621                 if (gpa == UNMAPPED_GVA)
3622                         return X86EMUL_PROPAGATE_FAULT;
3623                 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3624                 if (ret < 0) {
3625                         r = X86EMUL_IO_NEEDED;
3626                         goto out;
3627                 }
3628
3629                 bytes -= towrite;
3630                 data += towrite;
3631                 addr += towrite;
3632         }
3633 out:
3634         return r;
3635 }
3636 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
3637
3638 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
3639                                 gpa_t *gpa, struct x86_exception *exception,
3640                                 bool write)
3641 {
3642         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3643
3644         if (vcpu_match_mmio_gva(vcpu, gva) &&
3645                   check_write_user_access(vcpu, write, access,
3646                   vcpu->arch.access)) {
3647                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
3648                                         (gva & (PAGE_SIZE - 1));
3649                 trace_vcpu_match_mmio(gva, *gpa, write, false);
3650                 return 1;
3651         }
3652
3653         if (write)
3654                 access |= PFERR_WRITE_MASK;
3655
3656         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3657
3658         if (*gpa == UNMAPPED_GVA)
3659                 return -1;
3660
3661         /* For APIC access vmexit */
3662         if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3663                 return 1;
3664
3665         if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
3666                 trace_vcpu_match_mmio(gva, *gpa, write, true);
3667                 return 1;
3668         }
3669
3670         return 0;
3671 }
3672
3673 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
3674                         const void *val, int bytes)
3675 {
3676         int ret;
3677
3678         ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
3679         if (ret < 0)
3680                 return 0;
3681         kvm_mmu_pte_write(vcpu, gpa, val, bytes);
3682         return 1;
3683 }
3684
3685 struct read_write_emulator_ops {
3686         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
3687                                   int bytes);
3688         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
3689                                   void *val, int bytes);
3690         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
3691                                int bytes, void *val);
3692         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
3693                                     void *val, int bytes);
3694         bool write;
3695 };
3696
3697 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
3698 {
3699         if (vcpu->mmio_read_completed) {
3700                 memcpy(val, vcpu->mmio_data, bytes);
3701                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
3702                                vcpu->mmio_phys_addr, *(u64 *)val);
3703                 vcpu->mmio_read_completed = 0;
3704                 return 1;
3705         }
3706
3707         return 0;
3708 }
3709
3710 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
3711                         void *val, int bytes)
3712 {
3713         return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
3714 }
3715
3716 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
3717                          void *val, int bytes)
3718 {
3719         return emulator_write_phys(vcpu, gpa, val, bytes);
3720 }
3721
3722 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
3723 {
3724         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
3725         return vcpu_mmio_write(vcpu, gpa, bytes, val);
3726 }
3727
3728 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
3729                           void *val, int bytes)
3730 {
3731         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
3732         return X86EMUL_IO_NEEDED;
3733 }
3734
3735 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
3736                            void *val, int bytes)
3737 {
3738         memcpy(vcpu->mmio_data, val, bytes);
3739         memcpy(vcpu->run->mmio.data, vcpu->mmio_data, 8);
3740         return X86EMUL_CONTINUE;
3741 }
3742
3743 static struct read_write_emulator_ops read_emultor = {
3744         .read_write_prepare = read_prepare,
3745         .read_write_emulate = read_emulate,
3746         .read_write_mmio = vcpu_mmio_read,
3747         .read_write_exit_mmio = read_exit_mmio,
3748 };
3749
3750 static struct read_write_emulator_ops write_emultor = {
3751         .read_write_emulate = write_emulate,
3752         .read_write_mmio = write_mmio,
3753         .read_write_exit_mmio = write_exit_mmio,
3754         .write = true,
3755 };
3756
3757 static int emulator_read_write_onepage(unsigned long addr, void *val,
3758                                        unsigned int bytes,
3759                                        struct x86_exception *exception,
3760                                        struct kvm_vcpu *vcpu,
3761                                        struct read_write_emulator_ops *ops)
3762 {
3763         gpa_t gpa;
3764         int handled, ret;
3765         bool write = ops->write;
3766
3767         if (ops->read_write_prepare &&
3768                   ops->read_write_prepare(vcpu, val, bytes))
3769                 return X86EMUL_CONTINUE;
3770
3771         ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
3772
3773         if (ret < 0)
3774                 return X86EMUL_PROPAGATE_FAULT;
3775
3776         /* For APIC access vmexit */
3777         if (ret)
3778                 goto mmio;
3779
3780         if (ops->read_write_emulate(vcpu, gpa, val, bytes))
3781                 return X86EMUL_CONTINUE;
3782
3783 mmio:
3784         /*
3785          * Is this MMIO handled locally?
3786          */
3787         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
3788         if (handled == bytes)
3789                 return X86EMUL_CONTINUE;
3790
3791         gpa += handled;
3792         bytes -= handled;
3793         val += handled;
3794
3795         vcpu->mmio_needed = 1;
3796         vcpu->run->exit_reason = KVM_EXIT_MMIO;
3797         vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
3798         vcpu->mmio_size = bytes;
3799         vcpu->run->mmio.len = min(vcpu->mmio_size, 8);
3800         vcpu->run->mmio.is_write = vcpu->mmio_is_write = write;
3801         vcpu->mmio_index = 0;
3802
3803         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
3804 }
3805
3806 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
3807                         void *val, unsigned int bytes,
3808                         struct x86_exception *exception,
3809                         struct read_write_emulator_ops *ops)
3810 {
3811         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3812
3813         /* Crossing a page boundary? */
3814         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
3815                 int rc, now;
3816
3817                 now = -addr & ~PAGE_MASK;
3818                 rc = emulator_read_write_onepage(addr, val, now, exception,
3819                                                  vcpu, ops);
3820
3821                 if (rc != X86EMUL_CONTINUE)
3822                         return rc;
3823                 addr += now;
3824                 val += now;
3825                 bytes -= now;
3826         }
3827
3828         return emulator_read_write_onepage(addr, val, bytes, exception,
3829                                            vcpu, ops);
3830 }
3831
3832 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
3833                                   unsigned long addr,
3834                                   void *val,
3835                                   unsigned int bytes,
3836                                   struct x86_exception *exception)
3837 {
3838         return emulator_read_write(ctxt, addr, val, bytes,
3839                                    exception, &read_emultor);
3840 }
3841
3842 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
3843                             unsigned long addr,
3844                             const void *val,
3845                             unsigned int bytes,
3846                             struct x86_exception *exception)
3847 {
3848         return emulator_read_write(ctxt, addr, (void *)val, bytes,
3849                                    exception, &write_emultor);
3850 }
3851
3852 #define CMPXCHG_TYPE(t, ptr, old, new) \
3853         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
3854
3855 #ifdef CONFIG_X86_64
3856 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
3857 #else
3858 #  define CMPXCHG64(ptr, old, new) \
3859         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
3860 #endif
3861
3862 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
3863                                      unsigned long addr,
3864                                      const void *old,
3865                                      const void *new,
3866                                      unsigned int bytes,
3867                                      struct x86_exception *exception)
3868 {
3869         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3870         gpa_t gpa;
3871         struct page *page;
3872         char *kaddr;
3873         bool exchanged;
3874
3875         /* guests cmpxchg8b have to be emulated atomically */
3876         if (bytes > 8 || (bytes & (bytes - 1)))
3877                 goto emul_write;
3878
3879         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
3880
3881         if (gpa == UNMAPPED_GVA ||
3882             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3883                 goto emul_write;
3884
3885         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
3886                 goto emul_write;
3887
3888         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3889         if (is_error_page(page)) {
3890                 kvm_release_page_clean(page);
3891                 goto emul_write;
3892         }
3893
3894         kaddr = kmap_atomic(page, KM_USER0);
3895         kaddr += offset_in_page(gpa);
3896         switch (bytes) {
3897         case 1:
3898                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
3899                 break;
3900         case 2:
3901                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
3902                 break;
3903         case 4:
3904                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
3905                 break;
3906         case 8:
3907                 exchanged = CMPXCHG64(kaddr, old, new);
3908                 break;
3909         default:
3910                 BUG();
3911         }
3912         kunmap_atomic(kaddr, KM_USER0);
3913         kvm_release_page_dirty(page);
3914
3915         if (!exchanged)
3916                 return X86EMUL_CMPXCHG_FAILED;
3917
3918         kvm_mmu_pte_write(vcpu, gpa, new, bytes);
3919
3920         return X86EMUL_CONTINUE;
3921
3922 emul_write:
3923         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
3924
3925         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
3926 }
3927
3928 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
3929 {
3930         /* TODO: String I/O for in kernel device */
3931         int r;
3932
3933         if (vcpu->arch.pio.in)
3934                 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
3935                                     vcpu->arch.pio.size, pd);
3936         else
3937                 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
3938                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
3939                                      pd);
3940         return r;
3941 }
3942
3943 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
3944                                unsigned short port, void *val,
3945                                unsigned int count, bool in)
3946 {
3947         trace_kvm_pio(!in, port, size, count);
3948
3949         vcpu->arch.pio.port = port;
3950         vcpu->arch.pio.in = in;
3951         vcpu->arch.pio.count  = count;
3952         vcpu->arch.pio.size = size;
3953
3954         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3955                 vcpu->arch.pio.count = 0;
3956                 return 1;
3957         }
3958
3959         vcpu->run->exit_reason = KVM_EXIT_IO;
3960         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
3961         vcpu->run->io.size = size;
3962         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3963         vcpu->run->io.count = count;
3964         vcpu->run->io.port = port;
3965
3966         return 0;
3967 }
3968
3969 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
3970                                     int size, unsigned short port, void *val,
3971                                     unsigned int count)
3972 {
3973         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3974         int ret;
3975
3976         if (vcpu->arch.pio.count)
3977                 goto data_avail;
3978
3979         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
3980         if (ret) {
3981 data_avail:
3982                 memcpy(val, vcpu->arch.pio_data, size * count);
3983                 vcpu->arch.pio.count = 0;
3984                 return 1;
3985         }
3986
3987         return 0;
3988 }
3989
3990 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
3991                                      int size, unsigned short port,
3992                                      const void *val, unsigned int count)
3993 {
3994         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3995
3996         memcpy(vcpu->arch.pio_data, val, size * count);
3997         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
3998 }
3999
4000 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4001 {
4002         return kvm_x86_ops->get_segment_base(vcpu, seg);
4003 }
4004
4005 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4006 {
4007         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4008 }
4009
4010 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4011 {
4012         if (!need_emulate_wbinvd(vcpu))
4013                 return X86EMUL_CONTINUE;
4014
4015         if (kvm_x86_ops->has_wbinvd_exit()) {
4016                 int cpu = get_cpu();
4017
4018                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4019                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4020                                 wbinvd_ipi, NULL, 1);
4021                 put_cpu();
4022                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4023         } else
4024                 wbinvd();
4025         return X86EMUL_CONTINUE;
4026 }
4027 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4028
4029 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4030 {
4031         kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
4032 }
4033
4034 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
4035 {
4036         return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4037 }
4038
4039 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
4040 {
4041
4042         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4043 }
4044
4045 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4046 {
4047         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4048 }
4049
4050 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4051 {
4052         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4053         unsigned long value;
4054
4055         switch (cr) {
4056         case 0:
4057                 value = kvm_read_cr0(vcpu);
4058                 break;
4059         case 2:
4060                 value = vcpu->arch.cr2;
4061                 break;
4062         case 3:
4063                 value = kvm_read_cr3(vcpu);
4064                 break;
4065         case 4:
4066                 value = kvm_read_cr4(vcpu);
4067                 break;
4068         case 8:
4069                 value = kvm_get_cr8(vcpu);
4070                 break;
4071         default:
4072                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4073                 return 0;
4074         }
4075
4076         return value;
4077 }
4078
4079 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4080 {
4081         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4082         int res = 0;
4083
4084         switch (cr) {
4085         case 0:
4086                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4087                 break;
4088         case 2:
4089                 vcpu->arch.cr2 = val;
4090                 break;
4091         case 3:
4092                 res = kvm_set_cr3(vcpu, val);
4093                 break;
4094         case 4:
4095                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4096                 break;
4097         case 8:
4098                 res = kvm_set_cr8(vcpu, val);
4099                 break;
4100         default:
4101                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4102                 res = -1;
4103         }
4104
4105         return res;
4106 }
4107
4108 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4109 {
4110         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4111 }
4112
4113 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4114 {
4115         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4116 }
4117
4118 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4119 {
4120         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4121 }
4122
4123 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4124 {
4125         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4126 }
4127
4128 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4129 {
4130         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4131 }
4132
4133 static unsigned long emulator_get_cached_segment_base(
4134         struct x86_emulate_ctxt *ctxt, int seg)
4135 {
4136         return get_segment_base(emul_to_vcpu(ctxt), seg);
4137 }
4138
4139 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4140                                  struct desc_struct *desc, u32 *base3,
4141                                  int seg)
4142 {
4143         struct kvm_segment var;
4144
4145         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4146         *selector = var.selector;
4147
4148         if (var.unusable)
4149                 return false;
4150
4151         if (var.g)
4152                 var.limit >>= 12;
4153         set_desc_limit(desc, var.limit);
4154         set_desc_base(desc, (unsigned long)var.base);
4155 #ifdef CONFIG_X86_64
4156         if (base3)
4157                 *base3 = var.base >> 32;
4158 #endif
4159         desc->type = var.type;
4160         desc->s = var.s;
4161         desc->dpl = var.dpl;
4162         desc->p = var.present;
4163         desc->avl = var.avl;
4164         desc->l = var.l;
4165         desc->d = var.db;
4166         desc->g = var.g;
4167
4168         return true;
4169 }
4170
4171 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4172                                  struct desc_struct *desc, u32 base3,
4173                                  int seg)
4174 {
4175         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4176         struct kvm_segment var;
4177
4178         var.selector = selector;
4179         var.base = get_desc_base(desc);
4180 #ifdef CONFIG_X86_64
4181         var.base |= ((u64)base3) << 32;
4182 #endif
4183         var.limit = get_desc_limit(desc);
4184         if (desc->g)
4185                 var.limit = (var.limit << 12) | 0xfff;
4186         var.type = desc->type;
4187         var.present = desc->p;
4188         var.dpl = desc->dpl;
4189         var.db = desc->d;
4190         var.s = desc->s;
4191         var.l = desc->l;
4192         var.g = desc->g;
4193         var.avl = desc->avl;
4194         var.present = desc->p;
4195         var.unusable = !var.present;
4196         var.padding = 0;
4197
4198         kvm_set_segment(vcpu, &var, seg);
4199         return;
4200 }
4201
4202 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4203                             u32 msr_index, u64 *pdata)
4204 {
4205         return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4206 }
4207
4208 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4209                             u32 msr_index, u64 data)
4210 {
4211         return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
4212 }
4213
4214 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4215                              u32 pmc, u64 *pdata)
4216 {
4217         return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
4218 }
4219
4220 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4221 {
4222         emul_to_vcpu(ctxt)->arch.halt_request = 1;
4223 }
4224
4225 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4226 {
4227         preempt_disable();
4228         kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4229         /*
4230          * CR0.TS may reference the host fpu state, not the guest fpu state,
4231          * so it may be clear at this point.
4232          */
4233         clts();
4234 }
4235
4236 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4237 {
4238         preempt_enable();
4239 }
4240
4241 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4242                               struct x86_instruction_info *info,
4243                               enum x86_intercept_stage stage)
4244 {
4245         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4246 }
4247
4248 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4249                                u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4250 {
4251         struct kvm_cpuid_entry2 *cpuid = NULL;
4252
4253         if (eax && ecx)
4254                 cpuid = kvm_find_cpuid_entry(emul_to_vcpu(ctxt),
4255                                             *eax, *ecx);
4256
4257         if (cpuid) {
4258                 *eax = cpuid->eax;
4259                 *ecx = cpuid->ecx;
4260                 if (ebx)
4261                         *ebx = cpuid->ebx;
4262                 if (edx)
4263                         *edx = cpuid->edx;
4264                 return true;
4265         }
4266
4267         return false;
4268 }
4269
4270 static struct x86_emulate_ops emulate_ops = {
4271         .read_std            = kvm_read_guest_virt_system,
4272         .write_std           = kvm_write_guest_virt_system,
4273         .fetch               = kvm_fetch_guest_virt,
4274         .read_emulated       = emulator_read_emulated,
4275         .write_emulated      = emulator_write_emulated,
4276         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
4277         .invlpg              = emulator_invlpg,
4278         .pio_in_emulated     = emulator_pio_in_emulated,
4279         .pio_out_emulated    = emulator_pio_out_emulated,
4280         .get_segment         = emulator_get_segment,
4281         .set_segment         = emulator_set_segment,
4282         .get_cached_segment_base = emulator_get_cached_segment_base,
4283         .get_gdt             = emulator_get_gdt,
4284         .get_idt             = emulator_get_idt,
4285         .set_gdt             = emulator_set_gdt,
4286         .set_idt             = emulator_set_idt,
4287         .get_cr              = emulator_get_cr,
4288         .set_cr              = emulator_set_cr,
4289         .cpl                 = emulator_get_cpl,
4290         .get_dr              = emulator_get_dr,
4291         .set_dr              = emulator_set_dr,
4292         .set_msr             = emulator_set_msr,
4293         .get_msr             = emulator_get_msr,
4294         .read_pmc            = emulator_read_pmc,
4295         .halt                = emulator_halt,
4296         .wbinvd              = emulator_wbinvd,
4297         .fix_hypercall       = emulator_fix_hypercall,
4298         .get_fpu             = emulator_get_fpu,
4299         .put_fpu             = emulator_put_fpu,
4300         .intercept           = emulator_intercept,
4301         .get_cpuid           = emulator_get_cpuid,
4302 };
4303
4304 static void cache_all_regs(struct kvm_vcpu *vcpu)
4305 {
4306         kvm_register_read(vcpu, VCPU_REGS_RAX);
4307         kvm_register_read(vcpu, VCPU_REGS_RSP);
4308         kvm_register_read(vcpu, VCPU_REGS_RIP);
4309         vcpu->arch.regs_dirty = ~0;
4310 }
4311
4312 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4313 {
4314         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4315         /*
4316          * an sti; sti; sequence only disable interrupts for the first
4317          * instruction. So, if the last instruction, be it emulated or
4318          * not, left the system with the INT_STI flag enabled, it
4319          * means that the last instruction is an sti. We should not
4320          * leave the flag on in this case. The same goes for mov ss
4321          */
4322         if (!(int_shadow & mask))
4323                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4324 }
4325
4326 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4327 {
4328         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4329         if (ctxt->exception.vector == PF_VECTOR)
4330                 kvm_propagate_fault(vcpu, &ctxt->exception);
4331         else if (ctxt->exception.error_code_valid)
4332                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4333                                       ctxt->exception.error_code);
4334         else
4335                 kvm_queue_exception(vcpu, ctxt->exception.vector);
4336 }
4337
4338 static void init_decode_cache(struct x86_emulate_ctxt *ctxt,
4339                               const unsigned long *regs)
4340 {
4341         memset(&ctxt->twobyte, 0,
4342                (void *)&ctxt->regs - (void *)&ctxt->twobyte);
4343         memcpy(ctxt->regs, regs, sizeof(ctxt->regs));
4344
4345         ctxt->fetch.start = 0;
4346         ctxt->fetch.end = 0;
4347         ctxt->io_read.pos = 0;
4348         ctxt->io_read.end = 0;
4349         ctxt->mem_read.pos = 0;
4350         ctxt->mem_read.end = 0;
4351 }
4352
4353 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4354 {
4355         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4356         int cs_db, cs_l;
4357
4358         /*
4359          * TODO: fix emulate.c to use guest_read/write_register
4360          * instead of direct ->regs accesses, can save hundred cycles
4361          * on Intel for instructions that don't read/change RSP, for
4362          * for example.
4363          */
4364         cache_all_regs(vcpu);
4365
4366         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4367
4368         ctxt->eflags = kvm_get_rflags(vcpu);
4369         ctxt->eip = kvm_rip_read(vcpu);
4370         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
4371                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
4372                      cs_l                               ? X86EMUL_MODE_PROT64 :
4373                      cs_db                              ? X86EMUL_MODE_PROT32 :
4374                                                           X86EMUL_MODE_PROT16;
4375         ctxt->guest_mode = is_guest_mode(vcpu);
4376
4377         init_decode_cache(ctxt, vcpu->arch.regs);
4378         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4379 }
4380
4381 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4382 {
4383         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4384         int ret;
4385
4386         init_emulate_ctxt(vcpu);
4387
4388         ctxt->op_bytes = 2;
4389         ctxt->ad_bytes = 2;
4390         ctxt->_eip = ctxt->eip + inc_eip;
4391         ret = emulate_int_real(ctxt, irq);
4392
4393         if (ret != X86EMUL_CONTINUE)
4394                 return EMULATE_FAIL;
4395
4396         ctxt->eip = ctxt->_eip;
4397         memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
4398         kvm_rip_write(vcpu, ctxt->eip);
4399         kvm_set_rflags(vcpu, ctxt->eflags);
4400
4401         if (irq == NMI_VECTOR)
4402                 vcpu->arch.nmi_pending = 0;
4403         else
4404                 vcpu->arch.interrupt.pending = false;
4405
4406         return EMULATE_DONE;
4407 }
4408 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4409
4410 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4411 {
4412         int r = EMULATE_DONE;
4413
4414         ++vcpu->stat.insn_emulation_fail;
4415         trace_kvm_emulate_insn_failed(vcpu);
4416         if (!is_guest_mode(vcpu)) {
4417                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4418                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4419                 vcpu->run->internal.ndata = 0;
4420                 r = EMULATE_FAIL;
4421         }
4422         kvm_queue_exception(vcpu, UD_VECTOR);
4423
4424         return r;
4425 }
4426
4427 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
4428 {
4429         gpa_t gpa;
4430
4431         if (tdp_enabled)
4432                 return false;
4433
4434         /*
4435          * if emulation was due to access to shadowed page table
4436          * and it failed try to unshadow page and re-entetr the
4437          * guest to let CPU execute the instruction.
4438          */
4439         if (kvm_mmu_unprotect_page_virt(vcpu, gva))
4440                 return true;
4441
4442         gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
4443
4444         if (gpa == UNMAPPED_GVA)
4445                 return true; /* let cpu generate fault */
4446
4447         if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT)))
4448                 return true;
4449
4450         return false;
4451 }
4452
4453 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
4454                               unsigned long cr2,  int emulation_type)
4455 {
4456         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4457         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
4458
4459         last_retry_eip = vcpu->arch.last_retry_eip;
4460         last_retry_addr = vcpu->arch.last_retry_addr;
4461
4462         /*
4463          * If the emulation is caused by #PF and it is non-page_table
4464          * writing instruction, it means the VM-EXIT is caused by shadow
4465          * page protected, we can zap the shadow page and retry this
4466          * instruction directly.
4467          *
4468          * Note: if the guest uses a non-page-table modifying instruction
4469          * on the PDE that points to the instruction, then we will unmap
4470          * the instruction and go to an infinite loop. So, we cache the
4471          * last retried eip and the last fault address, if we meet the eip
4472          * and the address again, we can break out of the potential infinite
4473          * loop.
4474          */
4475         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
4476
4477         if (!(emulation_type & EMULTYPE_RETRY))
4478                 return false;
4479
4480         if (x86_page_table_writing_insn(ctxt))
4481                 return false;
4482
4483         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
4484                 return false;
4485
4486         vcpu->arch.last_retry_eip = ctxt->eip;
4487         vcpu->arch.last_retry_addr = cr2;
4488
4489         if (!vcpu->arch.mmu.direct_map)
4490                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4491
4492         kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4493
4494         return true;
4495 }
4496
4497 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
4498                             unsigned long cr2,
4499                             int emulation_type,
4500                             void *insn,
4501                             int insn_len)
4502 {
4503         int r;
4504         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4505         bool writeback = true;
4506
4507         kvm_clear_exception_queue(vcpu);
4508
4509         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
4510                 init_emulate_ctxt(vcpu);
4511                 ctxt->interruptibility = 0;
4512                 ctxt->have_exception = false;
4513                 ctxt->perm_ok = false;
4514
4515                 ctxt->only_vendor_specific_insn
4516                         = emulation_type & EMULTYPE_TRAP_UD;
4517
4518                 r = x86_decode_insn(ctxt, insn, insn_len);
4519
4520                 trace_kvm_emulate_insn_start(vcpu);
4521                 ++vcpu->stat.insn_emulation;
4522                 if (r != EMULATION_OK)  {
4523                         if (emulation_type & EMULTYPE_TRAP_UD)
4524                                 return EMULATE_FAIL;
4525                         if (reexecute_instruction(vcpu, cr2))
4526                                 return EMULATE_DONE;
4527                         if (emulation_type & EMULTYPE_SKIP)
4528                                 return EMULATE_FAIL;
4529                         return handle_emulation_failure(vcpu);
4530                 }
4531         }
4532
4533         if (emulation_type & EMULTYPE_SKIP) {
4534                 kvm_rip_write(vcpu, ctxt->_eip);
4535                 return EMULATE_DONE;
4536         }
4537
4538         if (retry_instruction(ctxt, cr2, emulation_type))
4539                 return EMULATE_DONE;
4540
4541         /* this is needed for vmware backdoor interface to work since it
4542            changes registers values  during IO operation */
4543         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
4544                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4545                 memcpy(ctxt->regs, vcpu->arch.regs, sizeof ctxt->regs);
4546         }
4547
4548 restart:
4549         r = x86_emulate_insn(ctxt);
4550
4551         if (r == EMULATION_INTERCEPTED)
4552                 return EMULATE_DONE;
4553
4554         if (r == EMULATION_FAILED) {
4555                 if (reexecute_instruction(vcpu, cr2))
4556                         return EMULATE_DONE;
4557
4558                 return handle_emulation_failure(vcpu);
4559         }
4560
4561         if (ctxt->have_exception) {
4562                 inject_emulated_exception(vcpu);
4563                 r = EMULATE_DONE;
4564         } else if (vcpu->arch.pio.count) {
4565                 if (!vcpu->arch.pio.in)
4566                         vcpu->arch.pio.count = 0;
4567                 else
4568                         writeback = false;
4569                 r = EMULATE_DO_MMIO;
4570         } else if (vcpu->mmio_needed) {
4571                 if (!vcpu->mmio_is_write)
4572                         writeback = false;
4573                 r = EMULATE_DO_MMIO;
4574         } else if (r == EMULATION_RESTART)
4575                 goto restart;
4576         else
4577                 r = EMULATE_DONE;
4578
4579         if (writeback) {
4580                 toggle_interruptibility(vcpu, ctxt->interruptibility);
4581                 kvm_set_rflags(vcpu, ctxt->eflags);
4582                 kvm_make_request(KVM_REQ_EVENT, vcpu);
4583                 memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
4584                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
4585                 kvm_rip_write(vcpu, ctxt->eip);
4586         } else
4587                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
4588
4589         return r;
4590 }
4591 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
4592
4593 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
4594 {
4595         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
4596         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
4597                                             size, port, &val, 1);
4598         /* do not return to emulator after return from userspace */
4599         vcpu->arch.pio.count = 0;
4600         return ret;
4601 }
4602 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
4603
4604 static void tsc_bad(void *info)
4605 {
4606         __this_cpu_write(cpu_tsc_khz, 0);
4607 }
4608
4609 static void tsc_khz_changed(void *data)
4610 {
4611         struct cpufreq_freqs *freq = data;
4612         unsigned long khz = 0;
4613
4614         if (data)
4615                 khz = freq->new;
4616         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4617                 khz = cpufreq_quick_get(raw_smp_processor_id());
4618         if (!khz)
4619                 khz = tsc_khz;
4620         __this_cpu_write(cpu_tsc_khz, khz);
4621 }
4622
4623 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
4624                                      void *data)
4625 {
4626         struct cpufreq_freqs *freq = data;
4627         struct kvm *kvm;
4628         struct kvm_vcpu *vcpu;
4629         int i, send_ipi = 0;
4630
4631         /*
4632          * We allow guests to temporarily run on slowing clocks,
4633          * provided we notify them after, or to run on accelerating
4634          * clocks, provided we notify them before.  Thus time never
4635          * goes backwards.
4636          *
4637          * However, we have a problem.  We can't atomically update
4638          * the frequency of a given CPU from this function; it is
4639          * merely a notifier, which can be called from any CPU.
4640          * Changing the TSC frequency at arbitrary points in time
4641          * requires a recomputation of local variables related to
4642          * the TSC for each VCPU.  We must flag these local variables
4643          * to be updated and be sure the update takes place with the
4644          * new frequency before any guests proceed.
4645          *
4646          * Unfortunately, the combination of hotplug CPU and frequency
4647          * change creates an intractable locking scenario; the order
4648          * of when these callouts happen is undefined with respect to
4649          * CPU hotplug, and they can race with each other.  As such,
4650          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
4651          * undefined; you can actually have a CPU frequency change take
4652          * place in between the computation of X and the setting of the
4653          * variable.  To protect against this problem, all updates of
4654          * the per_cpu tsc_khz variable are done in an interrupt
4655          * protected IPI, and all callers wishing to update the value
4656          * must wait for a synchronous IPI to complete (which is trivial
4657          * if the caller is on the CPU already).  This establishes the
4658          * necessary total order on variable updates.
4659          *
4660          * Note that because a guest time update may take place
4661          * anytime after the setting of the VCPU's request bit, the
4662          * correct TSC value must be set before the request.  However,
4663          * to ensure the update actually makes it to any guest which
4664          * starts running in hardware virtualization between the set
4665          * and the acquisition of the spinlock, we must also ping the
4666          * CPU after setting the request bit.
4667          *
4668          */
4669
4670         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
4671                 return 0;
4672         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
4673                 return 0;
4674
4675         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4676
4677         raw_spin_lock(&kvm_lock);
4678         list_for_each_entry(kvm, &vm_list, vm_list) {
4679                 kvm_for_each_vcpu(i, vcpu, kvm) {
4680                         if (vcpu->cpu != freq->cpu)
4681                                 continue;
4682                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4683                         if (vcpu->cpu != smp_processor_id())
4684                                 send_ipi = 1;
4685                 }
4686         }
4687         raw_spin_unlock(&kvm_lock);
4688
4689         if (freq->old < freq->new && send_ipi) {
4690                 /*
4691                  * We upscale the frequency.  Must make the guest
4692                  * doesn't see old kvmclock values while running with
4693                  * the new frequency, otherwise we risk the guest sees
4694                  * time go backwards.
4695                  *
4696                  * In case we update the frequency for another cpu
4697                  * (which might be in guest context) send an interrupt
4698                  * to kick the cpu out of guest context.  Next time
4699                  * guest context is entered kvmclock will be updated,
4700                  * so the guest will not see stale values.
4701                  */
4702                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4703         }
4704         return 0;
4705 }
4706
4707 static struct notifier_block kvmclock_cpufreq_notifier_block = {
4708         .notifier_call  = kvmclock_cpufreq_notifier
4709 };
4710
4711 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
4712                                         unsigned long action, void *hcpu)
4713 {
4714         unsigned int cpu = (unsigned long)hcpu;
4715
4716         switch (action) {
4717                 case CPU_ONLINE:
4718                 case CPU_DOWN_FAILED:
4719                         smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4720                         break;
4721                 case CPU_DOWN_PREPARE:
4722                         smp_call_function_single(cpu, tsc_bad, NULL, 1);
4723                         break;
4724         }
4725         return NOTIFY_OK;
4726 }
4727
4728 static struct notifier_block kvmclock_cpu_notifier_block = {
4729         .notifier_call  = kvmclock_cpu_notifier,
4730         .priority = -INT_MAX
4731 };
4732
4733 static void kvm_timer_init(void)
4734 {
4735         int cpu;
4736
4737         max_tsc_khz = tsc_khz;
4738         register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4739         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
4740 #ifdef CONFIG_CPU_FREQ
4741                 struct cpufreq_policy policy;
4742                 memset(&policy, 0, sizeof(policy));
4743                 cpu = get_cpu();
4744                 cpufreq_get_policy(&policy, cpu);
4745                 if (policy.cpuinfo.max_freq)
4746                         max_tsc_khz = policy.cpuinfo.max_freq;
4747                 put_cpu();
4748 #endif
4749                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
4750                                           CPUFREQ_TRANSITION_NOTIFIER);
4751         }
4752         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
4753         for_each_online_cpu(cpu)
4754                 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4755 }
4756
4757 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
4758
4759 int kvm_is_in_guest(void)
4760 {
4761         return __this_cpu_read(current_vcpu) != NULL;
4762 }
4763
4764 static int kvm_is_user_mode(void)
4765 {
4766         int user_mode = 3;
4767
4768         if (__this_cpu_read(current_vcpu))
4769                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
4770
4771         return user_mode != 0;
4772 }
4773
4774 static unsigned long kvm_get_guest_ip(void)
4775 {
4776         unsigned long ip = 0;
4777
4778         if (__this_cpu_read(current_vcpu))
4779                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
4780
4781         return ip;
4782 }
4783
4784 static struct perf_guest_info_callbacks kvm_guest_cbs = {
4785         .is_in_guest            = kvm_is_in_guest,
4786         .is_user_mode           = kvm_is_user_mode,
4787         .get_guest_ip           = kvm_get_guest_ip,
4788 };
4789
4790 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
4791 {
4792         __this_cpu_write(current_vcpu, vcpu);
4793 }
4794 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
4795
4796 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
4797 {
4798         __this_cpu_write(current_vcpu, NULL);
4799 }
4800 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
4801
4802 static void kvm_set_mmio_spte_mask(void)
4803 {
4804         u64 mask;
4805         int maxphyaddr = boot_cpu_data.x86_phys_bits;
4806
4807         /*
4808          * Set the reserved bits and the present bit of an paging-structure
4809          * entry to generate page fault with PFER.RSV = 1.
4810          */
4811         mask = ((1ull << (62 - maxphyaddr + 1)) - 1) << maxphyaddr;
4812         mask |= 1ull;
4813
4814 #ifdef CONFIG_X86_64
4815         /*
4816          * If reserved bit is not supported, clear the present bit to disable
4817          * mmio page fault.
4818          */
4819         if (maxphyaddr == 52)
4820                 mask &= ~1ull;
4821 #endif
4822
4823         kvm_mmu_set_mmio_spte_mask(mask);
4824 }
4825
4826 int kvm_arch_init(void *opaque)
4827 {
4828         int r;
4829         struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
4830
4831         if (kvm_x86_ops) {
4832                 printk(KERN_ERR "kvm: already loaded the other module\n");
4833                 r = -EEXIST;
4834                 goto out;
4835         }
4836
4837         if (!ops->cpu_has_kvm_support()) {
4838                 printk(KERN_ERR "kvm: no hardware support\n");
4839                 r = -EOPNOTSUPP;
4840                 goto out;
4841         }
4842         if (ops->disabled_by_bios()) {
4843                 printk(KERN_ERR "kvm: disabled by bios\n");
4844                 r = -EOPNOTSUPP;
4845                 goto out;
4846         }
4847
4848         r = kvm_mmu_module_init();
4849         if (r)
4850                 goto out;
4851
4852         kvm_set_mmio_spte_mask();
4853         kvm_init_msr_list();
4854
4855         kvm_x86_ops = ops;
4856         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
4857                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
4858
4859         kvm_timer_init();
4860
4861         perf_register_guest_info_callbacks(&kvm_guest_cbs);
4862
4863         if (cpu_has_xsave)
4864                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
4865
4866         return 0;
4867
4868 out:
4869         return r;
4870 }
4871
4872 void kvm_arch_exit(void)
4873 {
4874         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
4875
4876         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4877                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
4878                                             CPUFREQ_TRANSITION_NOTIFIER);
4879         unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4880         kvm_x86_ops = NULL;
4881         kvm_mmu_module_exit();
4882 }
4883
4884 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
4885 {
4886         ++vcpu->stat.halt_exits;
4887         if (irqchip_in_kernel(vcpu->kvm)) {
4888                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
4889                 return 1;
4890         } else {
4891                 vcpu->run->exit_reason = KVM_EXIT_HLT;
4892                 return 0;
4893         }
4894 }
4895 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
4896
4897 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
4898 {
4899         u64 param, ingpa, outgpa, ret;
4900         uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
4901         bool fast, longmode;
4902         int cs_db, cs_l;
4903
4904         /*
4905          * hypercall generates UD from non zero cpl and real mode
4906          * per HYPER-V spec
4907          */
4908         if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
4909                 kvm_queue_exception(vcpu, UD_VECTOR);
4910                 return 0;
4911         }
4912
4913         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4914         longmode = is_long_mode(vcpu) && cs_l == 1;
4915
4916         if (!longmode) {
4917                 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
4918                         (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
4919                 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
4920                         (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
4921                 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
4922                         (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
4923         }
4924 #ifdef CONFIG_X86_64
4925         else {
4926                 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
4927                 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
4928                 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
4929         }
4930 #endif
4931
4932         code = param & 0xffff;
4933         fast = (param >> 16) & 0x1;
4934         rep_cnt = (param >> 32) & 0xfff;
4935         rep_idx = (param >> 48) & 0xfff;
4936
4937         trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
4938
4939         switch (code) {
4940         case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
4941                 kvm_vcpu_on_spin(vcpu);
4942                 break;
4943         default:
4944                 res = HV_STATUS_INVALID_HYPERCALL_CODE;
4945                 break;
4946         }
4947
4948         ret = res | (((u64)rep_done & 0xfff) << 32);
4949         if (longmode) {
4950                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4951         } else {
4952                 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
4953                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
4954         }
4955
4956         return 1;
4957 }
4958
4959 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
4960 {
4961         unsigned long nr, a0, a1, a2, a3, ret;
4962         int r = 1;
4963
4964         if (kvm_hv_hypercall_enabled(vcpu->kvm))
4965                 return kvm_hv_hypercall(vcpu);
4966
4967         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
4968         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
4969         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
4970         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
4971         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
4972
4973         trace_kvm_hypercall(nr, a0, a1, a2, a3);
4974
4975         if (!is_long_mode(vcpu)) {
4976                 nr &= 0xFFFFFFFF;
4977                 a0 &= 0xFFFFFFFF;
4978                 a1 &= 0xFFFFFFFF;
4979                 a2 &= 0xFFFFFFFF;
4980                 a3 &= 0xFFFFFFFF;
4981         }
4982
4983         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
4984                 ret = -KVM_EPERM;
4985                 goto out;
4986         }
4987
4988         switch (nr) {
4989         case KVM_HC_VAPIC_POLL_IRQ:
4990                 ret = 0;
4991                 break;
4992         default:
4993                 ret = -KVM_ENOSYS;
4994                 break;
4995         }
4996 out:
4997         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4998         ++vcpu->stat.hypercalls;
4999         return r;
5000 }
5001 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5002
5003 int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5004 {
5005         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5006         char instruction[3];
5007         unsigned long rip = kvm_rip_read(vcpu);
5008
5009         /*
5010          * Blow out the MMU to ensure that no other VCPU has an active mapping
5011          * to ensure that the updated hypercall appears atomically across all
5012          * VCPUs.
5013          */
5014         kvm_mmu_zap_all(vcpu->kvm);
5015
5016         kvm_x86_ops->patch_hypercall(vcpu, instruction);
5017
5018         return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5019 }
5020
5021 /*
5022  * Check if userspace requested an interrupt window, and that the
5023  * interrupt window is open.
5024  *
5025  * No need to exit to userspace if we already have an interrupt queued.
5026  */
5027 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5028 {
5029         return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5030                 vcpu->run->request_interrupt_window &&
5031                 kvm_arch_interrupt_allowed(vcpu));
5032 }
5033
5034 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5035 {
5036         struct kvm_run *kvm_run = vcpu->run;
5037
5038         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5039         kvm_run->cr8 = kvm_get_cr8(vcpu);
5040         kvm_run->apic_base = kvm_get_apic_base(vcpu);
5041         if (irqchip_in_kernel(vcpu->kvm))
5042                 kvm_run->ready_for_interrupt_injection = 1;
5043         else
5044                 kvm_run->ready_for_interrupt_injection =
5045                         kvm_arch_interrupt_allowed(vcpu) &&
5046                         !kvm_cpu_has_interrupt(vcpu) &&
5047                         !kvm_event_needs_reinjection(vcpu);
5048 }
5049
5050 static void vapic_enter(struct kvm_vcpu *vcpu)
5051 {
5052         struct kvm_lapic *apic = vcpu->arch.apic;
5053         struct page *page;
5054
5055         if (!apic || !apic->vapic_addr)
5056                 return;
5057
5058         page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5059
5060         vcpu->arch.apic->vapic_page = page;
5061 }
5062
5063 static void vapic_exit(struct kvm_vcpu *vcpu)
5064 {
5065         struct kvm_lapic *apic = vcpu->arch.apic;
5066         int idx;
5067
5068         if (!apic || !apic->vapic_addr)
5069                 return;
5070
5071         idx = srcu_read_lock(&vcpu->kvm->srcu);
5072         kvm_release_page_dirty(apic->vapic_page);
5073         mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5074         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5075 }
5076
5077 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5078 {
5079         int max_irr, tpr;
5080
5081         if (!kvm_x86_ops->update_cr8_intercept)
5082                 return;
5083
5084         if (!vcpu->arch.apic)
5085                 return;
5086
5087         if (!vcpu->arch.apic->vapic_addr)
5088                 max_irr = kvm_lapic_find_highest_irr(vcpu);
5089         else
5090                 max_irr = -1;
5091
5092         if (max_irr != -1)
5093                 max_irr >>= 4;
5094
5095         tpr = kvm_lapic_get_cr8(vcpu);
5096
5097         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5098 }
5099
5100 static void inject_pending_event(struct kvm_vcpu *vcpu)
5101 {
5102         /* try to reinject previous events if any */
5103         if (vcpu->arch.exception.pending) {
5104                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
5105                                         vcpu->arch.exception.has_error_code,
5106                                         vcpu->arch.exception.error_code);
5107                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5108                                           vcpu->arch.exception.has_error_code,
5109                                           vcpu->arch.exception.error_code,
5110                                           vcpu->arch.exception.reinject);
5111                 return;
5112         }
5113
5114         if (vcpu->arch.nmi_injected) {
5115                 kvm_x86_ops->set_nmi(vcpu);
5116                 return;
5117         }
5118
5119         if (vcpu->arch.interrupt.pending) {
5120                 kvm_x86_ops->set_irq(vcpu);
5121                 return;
5122         }
5123
5124         /* try to inject new event if pending */
5125         if (vcpu->arch.nmi_pending) {
5126                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
5127                         --vcpu->arch.nmi_pending;
5128                         vcpu->arch.nmi_injected = true;
5129                         kvm_x86_ops->set_nmi(vcpu);
5130                 }
5131         } else if (kvm_cpu_has_interrupt(vcpu)) {
5132                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5133                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5134                                             false);
5135                         kvm_x86_ops->set_irq(vcpu);
5136                 }
5137         }
5138 }
5139
5140 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
5141 {
5142         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
5143                         !vcpu->guest_xcr0_loaded) {
5144                 /* kvm_set_xcr() also depends on this */
5145                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
5146                 vcpu->guest_xcr0_loaded = 1;
5147         }
5148 }
5149
5150 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
5151 {
5152         if (vcpu->guest_xcr0_loaded) {
5153                 if (vcpu->arch.xcr0 != host_xcr0)
5154                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
5155                 vcpu->guest_xcr0_loaded = 0;
5156         }
5157 }
5158
5159 static void process_nmi(struct kvm_vcpu *vcpu)
5160 {
5161         unsigned limit = 2;
5162
5163         /*
5164          * x86 is limited to one NMI running, and one NMI pending after it.
5165          * If an NMI is already in progress, limit further NMIs to just one.
5166          * Otherwise, allow two (and we'll inject the first one immediately).
5167          */
5168         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
5169                 limit = 1;
5170
5171         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
5172         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
5173         kvm_make_request(KVM_REQ_EVENT, vcpu);
5174 }
5175
5176 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5177 {
5178         int r;
5179         bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5180                 vcpu->run->request_interrupt_window;
5181         bool req_immediate_exit = 0;
5182
5183         if (vcpu->requests) {
5184                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5185                         kvm_mmu_unload(vcpu);
5186                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5187                         __kvm_migrate_timers(vcpu);
5188                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5189                         r = kvm_guest_time_update(vcpu);
5190                         if (unlikely(r))
5191                                 goto out;
5192                 }
5193                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5194                         kvm_mmu_sync_roots(vcpu);
5195                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5196                         kvm_x86_ops->tlb_flush(vcpu);
5197                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5198                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5199                         r = 0;
5200                         goto out;
5201                 }
5202                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5203                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5204                         r = 0;
5205                         goto out;
5206                 }
5207                 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5208                         vcpu->fpu_active = 0;
5209                         kvm_x86_ops->fpu_deactivate(vcpu);
5210                 }
5211                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5212                         /* Page is swapped out. Do synthetic halt */
5213                         vcpu->arch.apf.halted = true;
5214                         r = 1;
5215                         goto out;
5216                 }
5217                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
5218                         record_steal_time(vcpu);
5219                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
5220                         process_nmi(vcpu);
5221                 req_immediate_exit =
5222                         kvm_check_request(KVM_REQ_IMMEDIATE_EXIT, vcpu);
5223                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
5224                         kvm_handle_pmu_event(vcpu);
5225                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
5226                         kvm_deliver_pmi(vcpu);
5227         }
5228
5229         r = kvm_mmu_reload(vcpu);
5230         if (unlikely(r))
5231                 goto out;
5232
5233         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5234                 inject_pending_event(vcpu);
5235
5236                 /* enable NMI/IRQ window open exits if needed */
5237                 if (vcpu->arch.nmi_pending)
5238                         kvm_x86_ops->enable_nmi_window(vcpu);
5239                 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
5240                         kvm_x86_ops->enable_irq_window(vcpu);
5241
5242                 if (kvm_lapic_enabled(vcpu)) {
5243                         update_cr8_intercept(vcpu);
5244                         kvm_lapic_sync_to_vapic(vcpu);
5245                 }
5246         }
5247
5248         preempt_disable();
5249
5250         kvm_x86_ops->prepare_guest_switch(vcpu);
5251         if (vcpu->fpu_active)
5252                 kvm_load_guest_fpu(vcpu);
5253         kvm_load_guest_xcr0(vcpu);
5254
5255         vcpu->mode = IN_GUEST_MODE;
5256
5257         /* We should set ->mode before check ->requests,
5258          * see the comment in make_all_cpus_request.
5259          */
5260         smp_mb();
5261
5262         local_irq_disable();
5263
5264         if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
5265             || need_resched() || signal_pending(current)) {
5266                 vcpu->mode = OUTSIDE_GUEST_MODE;
5267                 smp_wmb();
5268                 local_irq_enable();
5269                 preempt_enable();
5270                 kvm_x86_ops->cancel_injection(vcpu);
5271                 r = 1;
5272                 goto out;
5273         }
5274
5275         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5276
5277         if (req_immediate_exit)
5278                 smp_send_reschedule(vcpu->cpu);
5279
5280         kvm_guest_enter();
5281
5282         if (unlikely(vcpu->arch.switch_db_regs)) {
5283                 set_debugreg(0, 7);
5284                 set_debugreg(vcpu->arch.eff_db[0], 0);
5285                 set_debugreg(vcpu->arch.eff_db[1], 1);
5286                 set_debugreg(vcpu->arch.eff_db[2], 2);
5287                 set_debugreg(vcpu->arch.eff_db[3], 3);
5288         }
5289
5290         trace_kvm_entry(vcpu->vcpu_id);
5291         kvm_x86_ops->run(vcpu);
5292
5293         /*
5294          * If the guest has used debug registers, at least dr7
5295          * will be disabled while returning to the host.
5296          * If we don't have active breakpoints in the host, we don't
5297          * care about the messed up debug address registers. But if
5298          * we have some of them active, restore the old state.
5299          */
5300         if (hw_breakpoint_active())
5301                 hw_breakpoint_restore();
5302
5303         vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu);
5304
5305         vcpu->mode = OUTSIDE_GUEST_MODE;
5306         smp_wmb();
5307         local_irq_enable();
5308
5309         ++vcpu->stat.exits;
5310
5311         /*
5312          * We must have an instruction between local_irq_enable() and
5313          * kvm_guest_exit(), so the timer interrupt isn't delayed by
5314          * the interrupt shadow.  The stat.exits increment will do nicely.
5315          * But we need to prevent reordering, hence this barrier():
5316          */
5317         barrier();
5318
5319         kvm_guest_exit();
5320
5321         preempt_enable();
5322
5323         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5324
5325         /*
5326          * Profile KVM exit RIPs:
5327          */
5328         if (unlikely(prof_on == KVM_PROFILING)) {
5329                 unsigned long rip = kvm_rip_read(vcpu);
5330                 profile_hit(KVM_PROFILING, (void *)rip);
5331         }
5332
5333         if (unlikely(vcpu->arch.tsc_always_catchup))
5334                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5335
5336         kvm_lapic_sync_from_vapic(vcpu);
5337
5338         r = kvm_x86_ops->handle_exit(vcpu);
5339 out:
5340         return r;
5341 }
5342
5343
5344 static int __vcpu_run(struct kvm_vcpu *vcpu)
5345 {
5346         int r;
5347         struct kvm *kvm = vcpu->kvm;
5348
5349         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
5350                 pr_debug("vcpu %d received sipi with vector # %x\n",
5351                          vcpu->vcpu_id, vcpu->arch.sipi_vector);
5352                 kvm_lapic_reset(vcpu);
5353                 r = kvm_arch_vcpu_reset(vcpu);
5354                 if (r)
5355                         return r;
5356                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5357         }
5358
5359         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5360         vapic_enter(vcpu);
5361
5362         r = 1;
5363         while (r > 0) {
5364                 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
5365                     !vcpu->arch.apf.halted)
5366                         r = vcpu_enter_guest(vcpu);
5367                 else {
5368                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5369                         kvm_vcpu_block(vcpu);
5370                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5371                         if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
5372                         {
5373                                 switch(vcpu->arch.mp_state) {
5374                                 case KVM_MP_STATE_HALTED:
5375                                         vcpu->arch.mp_state =
5376                                                 KVM_MP_STATE_RUNNABLE;
5377                                 case KVM_MP_STATE_RUNNABLE:
5378                                         vcpu->arch.apf.halted = false;
5379                                         break;
5380                                 case KVM_MP_STATE_SIPI_RECEIVED:
5381                                 default:
5382                                         r = -EINTR;
5383                                         break;
5384                                 }
5385                         }
5386                 }
5387
5388                 if (r <= 0)
5389                         break;
5390
5391                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
5392                 if (kvm_cpu_has_pending_timer(vcpu))
5393                         kvm_inject_pending_timer_irqs(vcpu);
5394
5395                 if (dm_request_for_irq_injection(vcpu)) {
5396                         r = -EINTR;
5397                         vcpu->run->exit_reason = KVM_EXIT_INTR;
5398                         ++vcpu->stat.request_irq_exits;
5399                 }
5400
5401                 kvm_check_async_pf_completion(vcpu);
5402
5403                 if (signal_pending(current)) {
5404                         r = -EINTR;
5405                         vcpu->run->exit_reason = KVM_EXIT_INTR;
5406                         ++vcpu->stat.signal_exits;
5407                 }
5408                 if (need_resched()) {
5409                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5410                         kvm_resched(vcpu);
5411                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5412                 }
5413         }
5414
5415         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5416
5417         vapic_exit(vcpu);
5418
5419         return r;
5420 }
5421
5422 static int complete_mmio(struct kvm_vcpu *vcpu)
5423 {
5424         struct kvm_run *run = vcpu->run;
5425         int r;
5426
5427         if (!(vcpu->arch.pio.count || vcpu->mmio_needed))
5428                 return 1;
5429
5430         if (vcpu->mmio_needed) {
5431                 vcpu->mmio_needed = 0;
5432                 if (!vcpu->mmio_is_write)
5433                         memcpy(vcpu->mmio_data + vcpu->mmio_index,
5434                                run->mmio.data, 8);
5435                 vcpu->mmio_index += 8;
5436                 if (vcpu->mmio_index < vcpu->mmio_size) {
5437                         run->exit_reason = KVM_EXIT_MMIO;
5438                         run->mmio.phys_addr = vcpu->mmio_phys_addr + vcpu->mmio_index;
5439                         memcpy(run->mmio.data, vcpu->mmio_data + vcpu->mmio_index, 8);
5440                         run->mmio.len = min(vcpu->mmio_size - vcpu->mmio_index, 8);
5441                         run->mmio.is_write = vcpu->mmio_is_write;
5442                         vcpu->mmio_needed = 1;
5443                         return 0;
5444                 }
5445                 if (vcpu->mmio_is_write)
5446                         return 1;
5447                 vcpu->mmio_read_completed = 1;
5448         }
5449         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5450         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
5451         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5452         if (r != EMULATE_DONE)
5453                 return 0;
5454         return 1;
5455 }
5456
5457 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
5458 {
5459         int r;
5460         sigset_t sigsaved;
5461
5462         if (!tsk_used_math(current) && init_fpu(current))
5463                 return -ENOMEM;
5464
5465         if (vcpu->sigset_active)
5466                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
5467
5468         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
5469                 kvm_vcpu_block(vcpu);
5470                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
5471                 r = -EAGAIN;
5472                 goto out;
5473         }
5474
5475         /* re-sync apic's tpr */
5476         if (!irqchip_in_kernel(vcpu->kvm)) {
5477                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
5478                         r = -EINVAL;
5479                         goto out;
5480                 }
5481         }
5482
5483         r = complete_mmio(vcpu);
5484         if (r <= 0)
5485                 goto out;
5486
5487         r = __vcpu_run(vcpu);
5488
5489 out:
5490         post_kvm_run_save(vcpu);
5491         if (vcpu->sigset_active)
5492                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
5493
5494         return r;
5495 }
5496
5497 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5498 {
5499         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
5500                 /*
5501                  * We are here if userspace calls get_regs() in the middle of
5502                  * instruction emulation. Registers state needs to be copied
5503                  * back from emulation context to vcpu. Usrapace shouldn't do
5504                  * that usually, but some bad designed PV devices (vmware
5505                  * backdoor interface) need this to work
5506                  */
5507                 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5508                 memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
5509                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5510         }
5511         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
5512         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
5513         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
5514         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
5515         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
5516         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
5517         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
5518         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
5519 #ifdef CONFIG_X86_64
5520         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
5521         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
5522         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
5523         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
5524         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
5525         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
5526         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
5527         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
5528 #endif
5529
5530         regs->rip = kvm_rip_read(vcpu);
5531         regs->rflags = kvm_get_rflags(vcpu);
5532
5533         return 0;
5534 }
5535
5536 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5537 {
5538         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
5539         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5540
5541         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
5542         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
5543         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
5544         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
5545         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
5546         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
5547         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
5548         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
5549 #ifdef CONFIG_X86_64
5550         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
5551         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
5552         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
5553         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
5554         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
5555         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
5556         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
5557         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
5558 #endif
5559
5560         kvm_rip_write(vcpu, regs->rip);
5561         kvm_set_rflags(vcpu, regs->rflags);
5562
5563         vcpu->arch.exception.pending = false;
5564
5565         kvm_make_request(KVM_REQ_EVENT, vcpu);
5566
5567         return 0;
5568 }
5569
5570 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
5571 {
5572         struct kvm_segment cs;
5573
5574         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
5575         *db = cs.db;
5576         *l = cs.l;
5577 }
5578 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
5579
5580 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
5581                                   struct kvm_sregs *sregs)
5582 {
5583         struct desc_ptr dt;
5584
5585         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5586         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5587         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5588         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5589         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5590         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5591
5592         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5593         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5594
5595         kvm_x86_ops->get_idt(vcpu, &dt);
5596         sregs->idt.limit = dt.size;
5597         sregs->idt.base = dt.address;
5598         kvm_x86_ops->get_gdt(vcpu, &dt);
5599         sregs->gdt.limit = dt.size;
5600         sregs->gdt.base = dt.address;
5601
5602         sregs->cr0 = kvm_read_cr0(vcpu);
5603         sregs->cr2 = vcpu->arch.cr2;
5604         sregs->cr3 = kvm_read_cr3(vcpu);
5605         sregs->cr4 = kvm_read_cr4(vcpu);
5606         sregs->cr8 = kvm_get_cr8(vcpu);
5607         sregs->efer = vcpu->arch.efer;
5608         sregs->apic_base = kvm_get_apic_base(vcpu);
5609
5610         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
5611
5612         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
5613                 set_bit(vcpu->arch.interrupt.nr,
5614                         (unsigned long *)sregs->interrupt_bitmap);
5615
5616         return 0;
5617 }
5618
5619 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
5620                                     struct kvm_mp_state *mp_state)
5621 {
5622         mp_state->mp_state = vcpu->arch.mp_state;
5623         return 0;
5624 }
5625
5626 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
5627                                     struct kvm_mp_state *mp_state)
5628 {
5629         vcpu->arch.mp_state = mp_state->mp_state;
5630         kvm_make_request(KVM_REQ_EVENT, vcpu);
5631         return 0;
5632 }
5633
5634 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason,
5635                     bool has_error_code, u32 error_code)
5636 {
5637         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5638         int ret;
5639
5640         init_emulate_ctxt(vcpu);
5641
5642         ret = emulator_task_switch(ctxt, tss_selector, reason,
5643                                    has_error_code, error_code);
5644
5645         if (ret)
5646                 return EMULATE_FAIL;
5647
5648         memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
5649         kvm_rip_write(vcpu, ctxt->eip);
5650         kvm_set_rflags(vcpu, ctxt->eflags);
5651         kvm_make_request(KVM_REQ_EVENT, vcpu);
5652         return EMULATE_DONE;
5653 }
5654 EXPORT_SYMBOL_GPL(kvm_task_switch);
5655
5656 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
5657                                   struct kvm_sregs *sregs)
5658 {
5659         int mmu_reset_needed = 0;
5660         int pending_vec, max_bits, idx;
5661         struct desc_ptr dt;
5662
5663         dt.size = sregs->idt.limit;
5664         dt.address = sregs->idt.base;
5665         kvm_x86_ops->set_idt(vcpu, &dt);
5666         dt.size = sregs->gdt.limit;
5667         dt.address = sregs->gdt.base;
5668         kvm_x86_ops->set_gdt(vcpu, &dt);
5669
5670         vcpu->arch.cr2 = sregs->cr2;
5671         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
5672         vcpu->arch.cr3 = sregs->cr3;
5673         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
5674
5675         kvm_set_cr8(vcpu, sregs->cr8);
5676
5677         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
5678         kvm_x86_ops->set_efer(vcpu, sregs->efer);
5679         kvm_set_apic_base(vcpu, sregs->apic_base);
5680
5681         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
5682         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
5683         vcpu->arch.cr0 = sregs->cr0;
5684
5685         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
5686         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
5687         if (sregs->cr4 & X86_CR4_OSXSAVE)
5688                 kvm_update_cpuid(vcpu);
5689
5690         idx = srcu_read_lock(&vcpu->kvm->srcu);
5691         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
5692                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
5693                 mmu_reset_needed = 1;
5694         }
5695         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5696
5697         if (mmu_reset_needed)
5698                 kvm_mmu_reset_context(vcpu);
5699
5700         max_bits = (sizeof sregs->interrupt_bitmap) << 3;
5701         pending_vec = find_first_bit(
5702                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
5703         if (pending_vec < max_bits) {
5704                 kvm_queue_interrupt(vcpu, pending_vec, false);
5705                 pr_debug("Set back pending irq %d\n", pending_vec);
5706         }
5707
5708         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5709         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5710         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5711         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5712         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5713         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5714
5715         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5716         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5717
5718         update_cr8_intercept(vcpu);
5719
5720         /* Older userspace won't unhalt the vcpu on reset. */
5721         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
5722             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
5723             !is_protmode(vcpu))
5724                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5725
5726         kvm_make_request(KVM_REQ_EVENT, vcpu);
5727
5728         return 0;
5729 }
5730
5731 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
5732                                         struct kvm_guest_debug *dbg)
5733 {
5734         unsigned long rflags;
5735         int i, r;
5736
5737         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
5738                 r = -EBUSY;
5739                 if (vcpu->arch.exception.pending)
5740                         goto out;
5741                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
5742                         kvm_queue_exception(vcpu, DB_VECTOR);
5743                 else
5744                         kvm_queue_exception(vcpu, BP_VECTOR);
5745         }
5746
5747         /*
5748          * Read rflags as long as potentially injected trace flags are still
5749          * filtered out.
5750          */
5751         rflags = kvm_get_rflags(vcpu);
5752
5753         vcpu->guest_debug = dbg->control;
5754         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
5755                 vcpu->guest_debug = 0;
5756
5757         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5758                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
5759                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
5760                 vcpu->arch.switch_db_regs =
5761                         (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
5762         } else {
5763                 for (i = 0; i < KVM_NR_DB_REGS; i++)
5764                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
5765                 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
5766         }
5767
5768         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5769                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
5770                         get_segment_base(vcpu, VCPU_SREG_CS);
5771
5772         /*
5773          * Trigger an rflags update that will inject or remove the trace
5774          * flags.
5775          */
5776         kvm_set_rflags(vcpu, rflags);
5777
5778         kvm_x86_ops->set_guest_debug(vcpu, dbg);
5779
5780         r = 0;
5781
5782 out:
5783
5784         return r;
5785 }
5786
5787 /*
5788  * Translate a guest virtual address to a guest physical address.
5789  */
5790 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
5791                                     struct kvm_translation *tr)
5792 {
5793         unsigned long vaddr = tr->linear_address;
5794         gpa_t gpa;
5795         int idx;
5796
5797         idx = srcu_read_lock(&vcpu->kvm->srcu);
5798         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
5799         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5800         tr->physical_address = gpa;
5801         tr->valid = gpa != UNMAPPED_GVA;
5802         tr->writeable = 1;
5803         tr->usermode = 0;
5804
5805         return 0;
5806 }
5807
5808 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5809 {
5810         struct i387_fxsave_struct *fxsave =
5811                         &vcpu->arch.guest_fpu.state->fxsave;
5812
5813         memcpy(fpu->fpr, fxsave->st_space, 128);
5814         fpu->fcw = fxsave->cwd;
5815         fpu->fsw = fxsave->swd;
5816         fpu->ftwx = fxsave->twd;
5817         fpu->last_opcode = fxsave->fop;
5818         fpu->last_ip = fxsave->rip;
5819         fpu->last_dp = fxsave->rdp;
5820         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
5821
5822         return 0;
5823 }
5824
5825 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5826 {
5827         struct i387_fxsave_struct *fxsave =
5828                         &vcpu->arch.guest_fpu.state->fxsave;
5829
5830         memcpy(fxsave->st_space, fpu->fpr, 128);
5831         fxsave->cwd = fpu->fcw;
5832         fxsave->swd = fpu->fsw;
5833         fxsave->twd = fpu->ftwx;
5834         fxsave->fop = fpu->last_opcode;
5835         fxsave->rip = fpu->last_ip;
5836         fxsave->rdp = fpu->last_dp;
5837         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
5838
5839         return 0;
5840 }
5841
5842 int fx_init(struct kvm_vcpu *vcpu)
5843 {
5844         int err;
5845
5846         err = fpu_alloc(&vcpu->arch.guest_fpu);
5847         if (err)
5848                 return err;
5849
5850         fpu_finit(&vcpu->arch.guest_fpu);
5851
5852         /*
5853          * Ensure guest xcr0 is valid for loading
5854          */
5855         vcpu->arch.xcr0 = XSTATE_FP;
5856
5857         vcpu->arch.cr0 |= X86_CR0_ET;
5858
5859         return 0;
5860 }
5861 EXPORT_SYMBOL_GPL(fx_init);
5862
5863 static void fx_free(struct kvm_vcpu *vcpu)
5864 {
5865         fpu_free(&vcpu->arch.guest_fpu);
5866 }
5867
5868 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
5869 {
5870         if (vcpu->guest_fpu_loaded)
5871                 return;
5872
5873         /*
5874          * Restore all possible states in the guest,
5875          * and assume host would use all available bits.
5876          * Guest xcr0 would be loaded later.
5877          */
5878         kvm_put_guest_xcr0(vcpu);
5879         vcpu->guest_fpu_loaded = 1;
5880         unlazy_fpu(current);
5881         fpu_restore_checking(&vcpu->arch.guest_fpu);
5882         trace_kvm_fpu(1);
5883 }
5884
5885 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
5886 {
5887         kvm_put_guest_xcr0(vcpu);
5888
5889         if (!vcpu->guest_fpu_loaded)
5890                 return;
5891
5892         vcpu->guest_fpu_loaded = 0;
5893         fpu_save_init(&vcpu->arch.guest_fpu);
5894         ++vcpu->stat.fpu_reload;
5895         kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
5896         trace_kvm_fpu(0);
5897 }
5898
5899 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
5900 {
5901         kvmclock_reset(vcpu);
5902
5903         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
5904         fx_free(vcpu);
5905         kvm_x86_ops->vcpu_free(vcpu);
5906 }
5907
5908 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
5909                                                 unsigned int id)
5910 {
5911         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
5912                 printk_once(KERN_WARNING
5913                 "kvm: SMP vm created on host with unstable TSC; "
5914                 "guest TSC will not be reliable\n");
5915         return kvm_x86_ops->vcpu_create(kvm, id);
5916 }
5917
5918 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
5919 {
5920         int r;
5921
5922         vcpu->arch.mtrr_state.have_fixed = 1;
5923         vcpu_load(vcpu);
5924         r = kvm_arch_vcpu_reset(vcpu);
5925         if (r == 0)
5926                 r = kvm_mmu_setup(vcpu);
5927         vcpu_put(vcpu);
5928
5929         return r;
5930 }
5931
5932 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
5933 {
5934         vcpu->arch.apf.msr_val = 0;
5935
5936         vcpu_load(vcpu);
5937         kvm_mmu_unload(vcpu);
5938         vcpu_put(vcpu);
5939
5940         fx_free(vcpu);
5941         kvm_x86_ops->vcpu_free(vcpu);
5942 }
5943
5944 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
5945 {
5946         atomic_set(&vcpu->arch.nmi_queued, 0);
5947         vcpu->arch.nmi_pending = 0;
5948         vcpu->arch.nmi_injected = false;
5949
5950         vcpu->arch.switch_db_regs = 0;
5951         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
5952         vcpu->arch.dr6 = DR6_FIXED_1;
5953         vcpu->arch.dr7 = DR7_FIXED_1;
5954
5955         kvm_make_request(KVM_REQ_EVENT, vcpu);
5956         vcpu->arch.apf.msr_val = 0;
5957         vcpu->arch.st.msr_val = 0;
5958
5959         kvmclock_reset(vcpu);
5960
5961         kvm_clear_async_pf_completion_queue(vcpu);
5962         kvm_async_pf_hash_reset(vcpu);
5963         vcpu->arch.apf.halted = false;
5964
5965         kvm_pmu_reset(vcpu);
5966
5967         return kvm_x86_ops->vcpu_reset(vcpu);
5968 }
5969
5970 int kvm_arch_hardware_enable(void *garbage)
5971 {
5972         struct kvm *kvm;
5973         struct kvm_vcpu *vcpu;
5974         int i;
5975         int ret;
5976         u64 local_tsc;
5977         u64 max_tsc = 0;
5978         bool stable, backwards_tsc = false;
5979
5980         kvm_shared_msr_cpu_online();
5981         ret = kvm_x86_ops->hardware_enable(garbage);
5982         if (ret != 0)
5983                 return ret;
5984
5985         local_tsc = native_read_tsc();
5986         stable = !check_tsc_unstable();
5987         list_for_each_entry(kvm, &vm_list, vm_list) {
5988                 kvm_for_each_vcpu(i, vcpu, kvm) {
5989                         if (!stable && vcpu->cpu == smp_processor_id())
5990                                 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
5991                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
5992                                 backwards_tsc = true;
5993                                 if (vcpu->arch.last_host_tsc > max_tsc)
5994                                         max_tsc = vcpu->arch.last_host_tsc;
5995                         }
5996                 }
5997         }
5998
5999         /*
6000          * Sometimes, even reliable TSCs go backwards.  This happens on
6001          * platforms that reset TSC during suspend or hibernate actions, but
6002          * maintain synchronization.  We must compensate.  Fortunately, we can
6003          * detect that condition here, which happens early in CPU bringup,
6004          * before any KVM threads can be running.  Unfortunately, we can't
6005          * bring the TSCs fully up to date with real time, as we aren't yet far
6006          * enough into CPU bringup that we know how much real time has actually
6007          * elapsed; our helper function, get_kernel_ns() will be using boot
6008          * variables that haven't been updated yet.
6009          *
6010          * So we simply find the maximum observed TSC above, then record the
6011          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
6012          * the adjustment will be applied.  Note that we accumulate
6013          * adjustments, in case multiple suspend cycles happen before some VCPU
6014          * gets a chance to run again.  In the event that no KVM threads get a
6015          * chance to run, we will miss the entire elapsed period, as we'll have
6016          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
6017          * loose cycle time.  This isn't too big a deal, since the loss will be
6018          * uniform across all VCPUs (not to mention the scenario is extremely
6019          * unlikely). It is possible that a second hibernate recovery happens
6020          * much faster than a first, causing the observed TSC here to be
6021          * smaller; this would require additional padding adjustment, which is
6022          * why we set last_host_tsc to the local tsc observed here.
6023          *
6024          * N.B. - this code below runs only on platforms with reliable TSC,
6025          * as that is the only way backwards_tsc is set above.  Also note
6026          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
6027          * have the same delta_cyc adjustment applied if backwards_tsc
6028          * is detected.  Note further, this adjustment is only done once,
6029          * as we reset last_host_tsc on all VCPUs to stop this from being
6030          * called multiple times (one for each physical CPU bringup).
6031          *
6032          * Platforms with unnreliable TSCs don't have to deal with this, they
6033          * will be compensated by the logic in vcpu_load, which sets the TSC to
6034          * catchup mode.  This will catchup all VCPUs to real time, but cannot
6035          * guarantee that they stay in perfect synchronization.
6036          */
6037         if (backwards_tsc) {
6038                 u64 delta_cyc = max_tsc - local_tsc;
6039                 list_for_each_entry(kvm, &vm_list, vm_list) {
6040                         kvm_for_each_vcpu(i, vcpu, kvm) {
6041                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
6042                                 vcpu->arch.last_host_tsc = local_tsc;
6043                         }
6044
6045                         /*
6046                          * We have to disable TSC offset matching.. if you were
6047                          * booting a VM while issuing an S4 host suspend....
6048                          * you may have some problem.  Solving this issue is
6049                          * left as an exercise to the reader.
6050                          */
6051                         kvm->arch.last_tsc_nsec = 0;
6052                         kvm->arch.last_tsc_write = 0;
6053                 }
6054
6055         }
6056         return 0;
6057 }
6058
6059 void kvm_arch_hardware_disable(void *garbage)
6060 {
6061         kvm_x86_ops->hardware_disable(garbage);
6062         drop_user_return_notifiers(garbage);
6063 }
6064
6065 int kvm_arch_hardware_setup(void)
6066 {
6067         return kvm_x86_ops->hardware_setup();
6068 }
6069
6070 void kvm_arch_hardware_unsetup(void)
6071 {
6072         kvm_x86_ops->hardware_unsetup();
6073 }
6074
6075 void kvm_arch_check_processor_compat(void *rtn)
6076 {
6077         kvm_x86_ops->check_processor_compatibility(rtn);
6078 }
6079
6080 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
6081 {
6082         struct page *page;
6083         struct kvm *kvm;
6084         int r;
6085
6086         BUG_ON(vcpu->kvm == NULL);
6087         kvm = vcpu->kvm;
6088
6089         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
6090         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
6091                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6092         else
6093                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
6094
6095         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
6096         if (!page) {
6097                 r = -ENOMEM;
6098                 goto fail;
6099         }
6100         vcpu->arch.pio_data = page_address(page);
6101
6102         kvm_set_tsc_khz(vcpu, max_tsc_khz);
6103
6104         r = kvm_mmu_create(vcpu);
6105         if (r < 0)
6106                 goto fail_free_pio_data;
6107
6108         if (irqchip_in_kernel(kvm)) {
6109                 r = kvm_create_lapic(vcpu);
6110                 if (r < 0)
6111                         goto fail_mmu_destroy;
6112         }
6113
6114         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
6115                                        GFP_KERNEL);
6116         if (!vcpu->arch.mce_banks) {
6117                 r = -ENOMEM;
6118                 goto fail_free_lapic;
6119         }
6120         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
6121
6122         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
6123                 goto fail_free_mce_banks;
6124
6125         kvm_async_pf_hash_reset(vcpu);
6126         kvm_pmu_init(vcpu);
6127
6128         return 0;
6129 fail_free_mce_banks:
6130         kfree(vcpu->arch.mce_banks);
6131 fail_free_lapic:
6132         kvm_free_lapic(vcpu);
6133 fail_mmu_destroy:
6134         kvm_mmu_destroy(vcpu);
6135 fail_free_pio_data:
6136         free_page((unsigned long)vcpu->arch.pio_data);
6137 fail:
6138         return r;
6139 }
6140
6141 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
6142 {
6143         int idx;
6144
6145         kvm_pmu_destroy(vcpu);
6146         kfree(vcpu->arch.mce_banks);
6147         kvm_free_lapic(vcpu);
6148         idx = srcu_read_lock(&vcpu->kvm->srcu);
6149         kvm_mmu_destroy(vcpu);
6150         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6151         free_page((unsigned long)vcpu->arch.pio_data);
6152 }
6153
6154 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
6155 {
6156         if (type)
6157                 return -EINVAL;
6158
6159         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
6160         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
6161
6162         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
6163         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
6164
6165         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
6166
6167         return 0;
6168 }
6169
6170 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
6171 {
6172         vcpu_load(vcpu);
6173         kvm_mmu_unload(vcpu);
6174         vcpu_put(vcpu);
6175 }
6176
6177 static void kvm_free_vcpus(struct kvm *kvm)
6178 {
6179         unsigned int i;
6180         struct kvm_vcpu *vcpu;
6181
6182         /*
6183          * Unpin any mmu pages first.
6184          */
6185         kvm_for_each_vcpu(i, vcpu, kvm) {
6186                 kvm_clear_async_pf_completion_queue(vcpu);
6187                 kvm_unload_vcpu_mmu(vcpu);
6188         }
6189         kvm_for_each_vcpu(i, vcpu, kvm)
6190                 kvm_arch_vcpu_free(vcpu);
6191
6192         mutex_lock(&kvm->lock);
6193         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
6194                 kvm->vcpus[i] = NULL;
6195
6196         atomic_set(&kvm->online_vcpus, 0);
6197         mutex_unlock(&kvm->lock);
6198 }
6199
6200 void kvm_arch_sync_events(struct kvm *kvm)
6201 {
6202         kvm_free_all_assigned_devices(kvm);
6203         kvm_free_pit(kvm);
6204 }
6205
6206 void kvm_arch_destroy_vm(struct kvm *kvm)
6207 {
6208         kvm_iommu_unmap_guest(kvm);
6209         kfree(kvm->arch.vpic);
6210         kfree(kvm->arch.vioapic);
6211         kvm_free_vcpus(kvm);
6212         if (kvm->arch.apic_access_page)
6213                 put_page(kvm->arch.apic_access_page);
6214         if (kvm->arch.ept_identity_pagetable)
6215                 put_page(kvm->arch.ept_identity_pagetable);
6216 }
6217
6218 int kvm_arch_prepare_memory_region(struct kvm *kvm,
6219                                 struct kvm_memory_slot *memslot,
6220                                 struct kvm_memory_slot old,
6221                                 struct kvm_userspace_memory_region *mem,
6222                                 int user_alloc)
6223 {
6224         int npages = memslot->npages;
6225         int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
6226
6227         /* Prevent internal slot pages from being moved by fork()/COW. */
6228         if (memslot->id >= KVM_MEMORY_SLOTS)
6229                 map_flags = MAP_SHARED | MAP_ANONYMOUS;
6230
6231         /*To keep backward compatibility with older userspace,
6232          *x86 needs to hanlde !user_alloc case.
6233          */
6234         if (!user_alloc) {
6235                 if (npages && !old.rmap) {
6236                         unsigned long userspace_addr;
6237
6238                         down_write(&current->mm->mmap_sem);
6239                         userspace_addr = do_mmap(NULL, 0,
6240                                                  npages * PAGE_SIZE,
6241                                                  PROT_READ | PROT_WRITE,
6242                                                  map_flags,
6243                                                  0);
6244                         up_write(&current->mm->mmap_sem);
6245
6246                         if (IS_ERR((void *)userspace_addr))
6247                                 return PTR_ERR((void *)userspace_addr);
6248
6249                         memslot->userspace_addr = userspace_addr;
6250                 }
6251         }
6252
6253
6254         return 0;
6255 }
6256
6257 void kvm_arch_commit_memory_region(struct kvm *kvm,
6258                                 struct kvm_userspace_memory_region *mem,
6259                                 struct kvm_memory_slot old,
6260                                 int user_alloc)
6261 {
6262
6263         int nr_mmu_pages = 0, npages = mem->memory_size >> PAGE_SHIFT;
6264
6265         if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
6266                 int ret;
6267
6268                 down_write(&current->mm->mmap_sem);
6269                 ret = do_munmap(current->mm, old.userspace_addr,
6270                                 old.npages * PAGE_SIZE);
6271                 up_write(&current->mm->mmap_sem);
6272                 if (ret < 0)
6273                         printk(KERN_WARNING
6274                                "kvm_vm_ioctl_set_memory_region: "
6275                                "failed to munmap memory\n");
6276         }
6277
6278         if (!kvm->arch.n_requested_mmu_pages)
6279                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
6280
6281         spin_lock(&kvm->mmu_lock);
6282         if (nr_mmu_pages)
6283                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
6284         kvm_mmu_slot_remove_write_access(kvm, mem->slot);
6285         spin_unlock(&kvm->mmu_lock);
6286 }
6287
6288 void kvm_arch_flush_shadow(struct kvm *kvm)
6289 {
6290         kvm_mmu_zap_all(kvm);
6291         kvm_reload_remote_mmus(kvm);
6292 }
6293
6294 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
6295 {
6296         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6297                 !vcpu->arch.apf.halted)
6298                 || !list_empty_careful(&vcpu->async_pf.done)
6299                 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
6300                 || atomic_read(&vcpu->arch.nmi_queued) ||
6301                 (kvm_arch_interrupt_allowed(vcpu) &&
6302                  kvm_cpu_has_interrupt(vcpu));
6303 }
6304
6305 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
6306 {
6307         int me;
6308         int cpu = vcpu->cpu;
6309
6310         if (waitqueue_active(&vcpu->wq)) {
6311                 wake_up_interruptible(&vcpu->wq);
6312                 ++vcpu->stat.halt_wakeup;
6313         }
6314
6315         me = get_cpu();
6316         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
6317                 if (kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE)
6318                         smp_send_reschedule(cpu);
6319         put_cpu();
6320 }
6321
6322 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
6323 {
6324         return kvm_x86_ops->interrupt_allowed(vcpu);
6325 }
6326
6327 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
6328 {
6329         unsigned long current_rip = kvm_rip_read(vcpu) +
6330                 get_segment_base(vcpu, VCPU_SREG_CS);
6331
6332         return current_rip == linear_rip;
6333 }
6334 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
6335
6336 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
6337 {
6338         unsigned long rflags;
6339
6340         rflags = kvm_x86_ops->get_rflags(vcpu);
6341         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6342                 rflags &= ~X86_EFLAGS_TF;
6343         return rflags;
6344 }
6345 EXPORT_SYMBOL_GPL(kvm_get_rflags);
6346
6347 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
6348 {
6349         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
6350             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
6351                 rflags |= X86_EFLAGS_TF;
6352         kvm_x86_ops->set_rflags(vcpu, rflags);
6353         kvm_make_request(KVM_REQ_EVENT, vcpu);
6354 }
6355 EXPORT_SYMBOL_GPL(kvm_set_rflags);
6356
6357 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
6358 {
6359         int r;
6360
6361         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
6362               is_error_page(work->page))
6363                 return;
6364
6365         r = kvm_mmu_reload(vcpu);
6366         if (unlikely(r))
6367                 return;
6368
6369         if (!vcpu->arch.mmu.direct_map &&
6370               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
6371                 return;
6372
6373         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
6374 }
6375
6376 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
6377 {
6378         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
6379 }
6380
6381 static inline u32 kvm_async_pf_next_probe(u32 key)
6382 {
6383         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
6384 }
6385
6386 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6387 {
6388         u32 key = kvm_async_pf_hash_fn(gfn);
6389
6390         while (vcpu->arch.apf.gfns[key] != ~0)
6391                 key = kvm_async_pf_next_probe(key);
6392
6393         vcpu->arch.apf.gfns[key] = gfn;
6394 }
6395
6396 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
6397 {
6398         int i;
6399         u32 key = kvm_async_pf_hash_fn(gfn);
6400
6401         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
6402                      (vcpu->arch.apf.gfns[key] != gfn &&
6403                       vcpu->arch.apf.gfns[key] != ~0); i++)
6404                 key = kvm_async_pf_next_probe(key);
6405
6406         return key;
6407 }
6408
6409 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6410 {
6411         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
6412 }
6413
6414 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6415 {
6416         u32 i, j, k;
6417
6418         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
6419         while (true) {
6420                 vcpu->arch.apf.gfns[i] = ~0;
6421                 do {
6422                         j = kvm_async_pf_next_probe(j);
6423                         if (vcpu->arch.apf.gfns[j] == ~0)
6424                                 return;
6425                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
6426                         /*
6427                          * k lies cyclically in ]i,j]
6428                          * |    i.k.j |
6429                          * |....j i.k.| or  |.k..j i...|
6430                          */
6431                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
6432                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
6433                 i = j;
6434         }
6435 }
6436
6437 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
6438 {
6439
6440         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
6441                                       sizeof(val));
6442 }
6443
6444 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
6445                                      struct kvm_async_pf *work)
6446 {
6447         struct x86_exception fault;
6448
6449         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
6450         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
6451
6452         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
6453             (vcpu->arch.apf.send_user_only &&
6454              kvm_x86_ops->get_cpl(vcpu) == 0))
6455                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
6456         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
6457                 fault.vector = PF_VECTOR;
6458                 fault.error_code_valid = true;
6459                 fault.error_code = 0;
6460                 fault.nested_page_fault = false;
6461                 fault.address = work->arch.token;
6462                 kvm_inject_page_fault(vcpu, &fault);
6463         }
6464 }
6465
6466 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
6467                                  struct kvm_async_pf *work)
6468 {
6469         struct x86_exception fault;
6470
6471         trace_kvm_async_pf_ready(work->arch.token, work->gva);
6472         if (is_error_page(work->page))
6473                 work->arch.token = ~0; /* broadcast wakeup */
6474         else
6475                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
6476
6477         if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
6478             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
6479                 fault.vector = PF_VECTOR;
6480                 fault.error_code_valid = true;
6481                 fault.error_code = 0;
6482                 fault.nested_page_fault = false;
6483                 fault.address = work->arch.token;
6484                 kvm_inject_page_fault(vcpu, &fault);
6485         }
6486         vcpu->arch.apf.halted = false;
6487 }
6488
6489 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
6490 {
6491         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
6492                 return true;
6493         else
6494                 return !kvm_event_needs_reinjection(vcpu) &&
6495                         kvm_x86_ops->interrupt_allowed(vcpu);
6496 }
6497
6498 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
6499 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
6500 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
6501 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
6502 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
6503 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
6504 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
6505 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
6506 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
6507 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
6508 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
6509 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);