Merge tag 'kvmarm-fixes-5.9-1' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmar...
[platform/kernel/linux-starfive.git] / arch / x86 / kvm / x86.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/sched/isolation.h>
58 #include <linux/mem_encrypt.h>
59 #include <linux/entry-kvm.h>
60
61 #include <trace/events/kvm.h>
62
63 #include <asm/debugreg.h>
64 #include <asm/msr.h>
65 #include <asm/desc.h>
66 #include <asm/mce.h>
67 #include <linux/kernel_stat.h>
68 #include <asm/fpu/internal.h> /* Ugh! */
69 #include <asm/pvclock.h>
70 #include <asm/div64.h>
71 #include <asm/irq_remapping.h>
72 #include <asm/mshyperv.h>
73 #include <asm/hypervisor.h>
74 #include <asm/intel_pt.h>
75 #include <asm/emulate_prefix.h>
76 #include <clocksource/hyperv_timer.h>
77
78 #define CREATE_TRACE_POINTS
79 #include "trace.h"
80
81 #define MAX_IO_MSRS 256
82 #define KVM_MAX_MCE_BANKS 32
83 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
84 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
85
86 #define emul_to_vcpu(ctxt) \
87         ((struct kvm_vcpu *)(ctxt)->vcpu)
88
89 /* EFER defaults:
90  * - enable syscall per default because its emulated by KVM
91  * - enable LME and LMA per default on 64 bit KVM
92  */
93 #ifdef CONFIG_X86_64
94 static
95 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
96 #else
97 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
98 #endif
99
100 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
101
102 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
103                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
104
105 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
106 static void process_nmi(struct kvm_vcpu *vcpu);
107 static void enter_smm(struct kvm_vcpu *vcpu);
108 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
109 static void store_regs(struct kvm_vcpu *vcpu);
110 static int sync_regs(struct kvm_vcpu *vcpu);
111
112 struct kvm_x86_ops kvm_x86_ops __read_mostly;
113 EXPORT_SYMBOL_GPL(kvm_x86_ops);
114
115 static bool __read_mostly ignore_msrs = 0;
116 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
117
118 static bool __read_mostly report_ignored_msrs = true;
119 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
120
121 unsigned int min_timer_period_us = 200;
122 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
123
124 static bool __read_mostly kvmclock_periodic_sync = true;
125 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
126
127 bool __read_mostly kvm_has_tsc_control;
128 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
129 u32  __read_mostly kvm_max_guest_tsc_khz;
130 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
131 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
132 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
133 u64  __read_mostly kvm_max_tsc_scaling_ratio;
134 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
135 u64 __read_mostly kvm_default_tsc_scaling_ratio;
136 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
137
138 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
139 static u32 __read_mostly tsc_tolerance_ppm = 250;
140 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
141
142 /*
143  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
144  * adaptive tuning starting from default advancment of 1000ns.  '0' disables
145  * advancement entirely.  Any other value is used as-is and disables adaptive
146  * tuning, i.e. allows priveleged userspace to set an exact advancement time.
147  */
148 static int __read_mostly lapic_timer_advance_ns = -1;
149 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
150
151 static bool __read_mostly vector_hashing = true;
152 module_param(vector_hashing, bool, S_IRUGO);
153
154 bool __read_mostly enable_vmware_backdoor = false;
155 module_param(enable_vmware_backdoor, bool, S_IRUGO);
156 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
157
158 static bool __read_mostly force_emulation_prefix = false;
159 module_param(force_emulation_prefix, bool, S_IRUGO);
160
161 int __read_mostly pi_inject_timer = -1;
162 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
163
164 #define KVM_NR_SHARED_MSRS 16
165
166 struct kvm_shared_msrs_global {
167         int nr;
168         u32 msrs[KVM_NR_SHARED_MSRS];
169 };
170
171 struct kvm_shared_msrs {
172         struct user_return_notifier urn;
173         bool registered;
174         struct kvm_shared_msr_values {
175                 u64 host;
176                 u64 curr;
177         } values[KVM_NR_SHARED_MSRS];
178 };
179
180 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
181 static struct kvm_shared_msrs __percpu *shared_msrs;
182
183 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
184                                 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
185                                 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
186                                 | XFEATURE_MASK_PKRU)
187
188 u64 __read_mostly host_efer;
189 EXPORT_SYMBOL_GPL(host_efer);
190
191 bool __read_mostly allow_smaller_maxphyaddr;
192 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
193
194 static u64 __read_mostly host_xss;
195 u64 __read_mostly supported_xss;
196 EXPORT_SYMBOL_GPL(supported_xss);
197
198 struct kvm_stats_debugfs_item debugfs_entries[] = {
199         VCPU_STAT("pf_fixed", pf_fixed),
200         VCPU_STAT("pf_guest", pf_guest),
201         VCPU_STAT("tlb_flush", tlb_flush),
202         VCPU_STAT("invlpg", invlpg),
203         VCPU_STAT("exits", exits),
204         VCPU_STAT("io_exits", io_exits),
205         VCPU_STAT("mmio_exits", mmio_exits),
206         VCPU_STAT("signal_exits", signal_exits),
207         VCPU_STAT("irq_window", irq_window_exits),
208         VCPU_STAT("nmi_window", nmi_window_exits),
209         VCPU_STAT("halt_exits", halt_exits),
210         VCPU_STAT("halt_successful_poll", halt_successful_poll),
211         VCPU_STAT("halt_attempted_poll", halt_attempted_poll),
212         VCPU_STAT("halt_poll_invalid", halt_poll_invalid),
213         VCPU_STAT("halt_wakeup", halt_wakeup),
214         VCPU_STAT("hypercalls", hypercalls),
215         VCPU_STAT("request_irq", request_irq_exits),
216         VCPU_STAT("irq_exits", irq_exits),
217         VCPU_STAT("host_state_reload", host_state_reload),
218         VCPU_STAT("fpu_reload", fpu_reload),
219         VCPU_STAT("insn_emulation", insn_emulation),
220         VCPU_STAT("insn_emulation_fail", insn_emulation_fail),
221         VCPU_STAT("irq_injections", irq_injections),
222         VCPU_STAT("nmi_injections", nmi_injections),
223         VCPU_STAT("req_event", req_event),
224         VCPU_STAT("l1d_flush", l1d_flush),
225         VCPU_STAT("halt_poll_success_ns", halt_poll_success_ns),
226         VCPU_STAT("halt_poll_fail_ns", halt_poll_fail_ns),
227         VM_STAT("mmu_shadow_zapped", mmu_shadow_zapped),
228         VM_STAT("mmu_pte_write", mmu_pte_write),
229         VM_STAT("mmu_pte_updated", mmu_pte_updated),
230         VM_STAT("mmu_pde_zapped", mmu_pde_zapped),
231         VM_STAT("mmu_flooded", mmu_flooded),
232         VM_STAT("mmu_recycled", mmu_recycled),
233         VM_STAT("mmu_cache_miss", mmu_cache_miss),
234         VM_STAT("mmu_unsync", mmu_unsync),
235         VM_STAT("remote_tlb_flush", remote_tlb_flush),
236         VM_STAT("largepages", lpages, .mode = 0444),
237         VM_STAT("nx_largepages_splitted", nx_lpage_splits, .mode = 0444),
238         VM_STAT("max_mmu_page_hash_collisions", max_mmu_page_hash_collisions),
239         { NULL }
240 };
241
242 u64 __read_mostly host_xcr0;
243 u64 __read_mostly supported_xcr0;
244 EXPORT_SYMBOL_GPL(supported_xcr0);
245
246 static struct kmem_cache *x86_fpu_cache;
247
248 static struct kmem_cache *x86_emulator_cache;
249
250 /*
251  * When called, it means the previous get/set msr reached an invalid msr.
252  * Return 0 if we want to ignore/silent this failed msr access, or 1 if we want
253  * to fail the caller.
254  */
255 static int kvm_msr_ignored_check(struct kvm_vcpu *vcpu, u32 msr,
256                                  u64 data, bool write)
257 {
258         const char *op = write ? "wrmsr" : "rdmsr";
259
260         if (ignore_msrs) {
261                 if (report_ignored_msrs)
262                         vcpu_unimpl(vcpu, "ignored %s: 0x%x data 0x%llx\n",
263                                     op, msr, data);
264                 /* Mask the error */
265                 return 0;
266         } else {
267                 vcpu_debug_ratelimited(vcpu, "unhandled %s: 0x%x data 0x%llx\n",
268                                        op, msr, data);
269                 return 1;
270         }
271 }
272
273 static struct kmem_cache *kvm_alloc_emulator_cache(void)
274 {
275         unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
276         unsigned int size = sizeof(struct x86_emulate_ctxt);
277
278         return kmem_cache_create_usercopy("x86_emulator", size,
279                                           __alignof__(struct x86_emulate_ctxt),
280                                           SLAB_ACCOUNT, useroffset,
281                                           size - useroffset, NULL);
282 }
283
284 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
285
286 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
287 {
288         int i;
289         for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
290                 vcpu->arch.apf.gfns[i] = ~0;
291 }
292
293 static void kvm_on_user_return(struct user_return_notifier *urn)
294 {
295         unsigned slot;
296         struct kvm_shared_msrs *locals
297                 = container_of(urn, struct kvm_shared_msrs, urn);
298         struct kvm_shared_msr_values *values;
299         unsigned long flags;
300
301         /*
302          * Disabling irqs at this point since the following code could be
303          * interrupted and executed through kvm_arch_hardware_disable()
304          */
305         local_irq_save(flags);
306         if (locals->registered) {
307                 locals->registered = false;
308                 user_return_notifier_unregister(urn);
309         }
310         local_irq_restore(flags);
311         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
312                 values = &locals->values[slot];
313                 if (values->host != values->curr) {
314                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
315                         values->curr = values->host;
316                 }
317         }
318 }
319
320 void kvm_define_shared_msr(unsigned slot, u32 msr)
321 {
322         BUG_ON(slot >= KVM_NR_SHARED_MSRS);
323         shared_msrs_global.msrs[slot] = msr;
324         if (slot >= shared_msrs_global.nr)
325                 shared_msrs_global.nr = slot + 1;
326 }
327 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
328
329 static void kvm_shared_msr_cpu_online(void)
330 {
331         unsigned int cpu = smp_processor_id();
332         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
333         u64 value;
334         int i;
335
336         for (i = 0; i < shared_msrs_global.nr; ++i) {
337                 rdmsrl_safe(shared_msrs_global.msrs[i], &value);
338                 smsr->values[i].host = value;
339                 smsr->values[i].curr = value;
340         }
341 }
342
343 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
344 {
345         unsigned int cpu = smp_processor_id();
346         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
347         int err;
348
349         value = (value & mask) | (smsr->values[slot].host & ~mask);
350         if (value == smsr->values[slot].curr)
351                 return 0;
352         err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
353         if (err)
354                 return 1;
355
356         smsr->values[slot].curr = value;
357         if (!smsr->registered) {
358                 smsr->urn.on_user_return = kvm_on_user_return;
359                 user_return_notifier_register(&smsr->urn);
360                 smsr->registered = true;
361         }
362         return 0;
363 }
364 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
365
366 static void drop_user_return_notifiers(void)
367 {
368         unsigned int cpu = smp_processor_id();
369         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
370
371         if (smsr->registered)
372                 kvm_on_user_return(&smsr->urn);
373 }
374
375 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
376 {
377         return vcpu->arch.apic_base;
378 }
379 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
380
381 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
382 {
383         return kvm_apic_mode(kvm_get_apic_base(vcpu));
384 }
385 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
386
387 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
388 {
389         enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
390         enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
391         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
392                 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
393
394         if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
395                 return 1;
396         if (!msr_info->host_initiated) {
397                 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
398                         return 1;
399                 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
400                         return 1;
401         }
402
403         kvm_lapic_set_base(vcpu, msr_info->data);
404         kvm_recalculate_apic_map(vcpu->kvm);
405         return 0;
406 }
407 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
408
409 asmlinkage __visible noinstr void kvm_spurious_fault(void)
410 {
411         /* Fault while not rebooting.  We want the trace. */
412         BUG_ON(!kvm_rebooting);
413 }
414 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
415
416 #define EXCPT_BENIGN            0
417 #define EXCPT_CONTRIBUTORY      1
418 #define EXCPT_PF                2
419
420 static int exception_class(int vector)
421 {
422         switch (vector) {
423         case PF_VECTOR:
424                 return EXCPT_PF;
425         case DE_VECTOR:
426         case TS_VECTOR:
427         case NP_VECTOR:
428         case SS_VECTOR:
429         case GP_VECTOR:
430                 return EXCPT_CONTRIBUTORY;
431         default:
432                 break;
433         }
434         return EXCPT_BENIGN;
435 }
436
437 #define EXCPT_FAULT             0
438 #define EXCPT_TRAP              1
439 #define EXCPT_ABORT             2
440 #define EXCPT_INTERRUPT         3
441
442 static int exception_type(int vector)
443 {
444         unsigned int mask;
445
446         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
447                 return EXCPT_INTERRUPT;
448
449         mask = 1 << vector;
450
451         /* #DB is trap, as instruction watchpoints are handled elsewhere */
452         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
453                 return EXCPT_TRAP;
454
455         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
456                 return EXCPT_ABORT;
457
458         /* Reserved exceptions will result in fault */
459         return EXCPT_FAULT;
460 }
461
462 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
463 {
464         unsigned nr = vcpu->arch.exception.nr;
465         bool has_payload = vcpu->arch.exception.has_payload;
466         unsigned long payload = vcpu->arch.exception.payload;
467
468         if (!has_payload)
469                 return;
470
471         switch (nr) {
472         case DB_VECTOR:
473                 /*
474                  * "Certain debug exceptions may clear bit 0-3.  The
475                  * remaining contents of the DR6 register are never
476                  * cleared by the processor".
477                  */
478                 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
479                 /*
480                  * DR6.RTM is set by all #DB exceptions that don't clear it.
481                  */
482                 vcpu->arch.dr6 |= DR6_RTM;
483                 vcpu->arch.dr6 |= payload;
484                 /*
485                  * Bit 16 should be set in the payload whenever the #DB
486                  * exception should clear DR6.RTM. This makes the payload
487                  * compatible with the pending debug exceptions under VMX.
488                  * Though not currently documented in the SDM, this also
489                  * makes the payload compatible with the exit qualification
490                  * for #DB exceptions under VMX.
491                  */
492                 vcpu->arch.dr6 ^= payload & DR6_RTM;
493
494                 /*
495                  * The #DB payload is defined as compatible with the 'pending
496                  * debug exceptions' field under VMX, not DR6. While bit 12 is
497                  * defined in the 'pending debug exceptions' field (enabled
498                  * breakpoint), it is reserved and must be zero in DR6.
499                  */
500                 vcpu->arch.dr6 &= ~BIT(12);
501                 break;
502         case PF_VECTOR:
503                 vcpu->arch.cr2 = payload;
504                 break;
505         }
506
507         vcpu->arch.exception.has_payload = false;
508         vcpu->arch.exception.payload = 0;
509 }
510 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
511
512 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
513                 unsigned nr, bool has_error, u32 error_code,
514                 bool has_payload, unsigned long payload, bool reinject)
515 {
516         u32 prev_nr;
517         int class1, class2;
518
519         kvm_make_request(KVM_REQ_EVENT, vcpu);
520
521         if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
522         queue:
523                 if (has_error && !is_protmode(vcpu))
524                         has_error = false;
525                 if (reinject) {
526                         /*
527                          * On vmentry, vcpu->arch.exception.pending is only
528                          * true if an event injection was blocked by
529                          * nested_run_pending.  In that case, however,
530                          * vcpu_enter_guest requests an immediate exit,
531                          * and the guest shouldn't proceed far enough to
532                          * need reinjection.
533                          */
534                         WARN_ON_ONCE(vcpu->arch.exception.pending);
535                         vcpu->arch.exception.injected = true;
536                         if (WARN_ON_ONCE(has_payload)) {
537                                 /*
538                                  * A reinjected event has already
539                                  * delivered its payload.
540                                  */
541                                 has_payload = false;
542                                 payload = 0;
543                         }
544                 } else {
545                         vcpu->arch.exception.pending = true;
546                         vcpu->arch.exception.injected = false;
547                 }
548                 vcpu->arch.exception.has_error_code = has_error;
549                 vcpu->arch.exception.nr = nr;
550                 vcpu->arch.exception.error_code = error_code;
551                 vcpu->arch.exception.has_payload = has_payload;
552                 vcpu->arch.exception.payload = payload;
553                 if (!is_guest_mode(vcpu))
554                         kvm_deliver_exception_payload(vcpu);
555                 return;
556         }
557
558         /* to check exception */
559         prev_nr = vcpu->arch.exception.nr;
560         if (prev_nr == DF_VECTOR) {
561                 /* triple fault -> shutdown */
562                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
563                 return;
564         }
565         class1 = exception_class(prev_nr);
566         class2 = exception_class(nr);
567         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
568                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
569                 /*
570                  * Generate double fault per SDM Table 5-5.  Set
571                  * exception.pending = true so that the double fault
572                  * can trigger a nested vmexit.
573                  */
574                 vcpu->arch.exception.pending = true;
575                 vcpu->arch.exception.injected = false;
576                 vcpu->arch.exception.has_error_code = true;
577                 vcpu->arch.exception.nr = DF_VECTOR;
578                 vcpu->arch.exception.error_code = 0;
579                 vcpu->arch.exception.has_payload = false;
580                 vcpu->arch.exception.payload = 0;
581         } else
582                 /* replace previous exception with a new one in a hope
583                    that instruction re-execution will regenerate lost
584                    exception */
585                 goto queue;
586 }
587
588 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
589 {
590         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
591 }
592 EXPORT_SYMBOL_GPL(kvm_queue_exception);
593
594 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
595 {
596         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
597 }
598 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
599
600 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
601                            unsigned long payload)
602 {
603         kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
604 }
605 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
606
607 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
608                                     u32 error_code, unsigned long payload)
609 {
610         kvm_multiple_exception(vcpu, nr, true, error_code,
611                                true, payload, false);
612 }
613
614 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
615 {
616         if (err)
617                 kvm_inject_gp(vcpu, 0);
618         else
619                 return kvm_skip_emulated_instruction(vcpu);
620
621         return 1;
622 }
623 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
624
625 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
626 {
627         ++vcpu->stat.pf_guest;
628         vcpu->arch.exception.nested_apf =
629                 is_guest_mode(vcpu) && fault->async_page_fault;
630         if (vcpu->arch.exception.nested_apf) {
631                 vcpu->arch.apf.nested_apf_token = fault->address;
632                 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
633         } else {
634                 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
635                                         fault->address);
636         }
637 }
638 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
639
640 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
641                                     struct x86_exception *fault)
642 {
643         struct kvm_mmu *fault_mmu;
644         WARN_ON_ONCE(fault->vector != PF_VECTOR);
645
646         fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
647                                                vcpu->arch.walk_mmu;
648
649         /*
650          * Invalidate the TLB entry for the faulting address, if it exists,
651          * else the access will fault indefinitely (and to emulate hardware).
652          */
653         if ((fault->error_code & PFERR_PRESENT_MASK) &&
654             !(fault->error_code & PFERR_RSVD_MASK))
655                 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
656                                        fault_mmu->root_hpa);
657
658         fault_mmu->inject_page_fault(vcpu, fault);
659         return fault->nested_page_fault;
660 }
661 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
662
663 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
664 {
665         atomic_inc(&vcpu->arch.nmi_queued);
666         kvm_make_request(KVM_REQ_NMI, vcpu);
667 }
668 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
669
670 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
671 {
672         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
673 }
674 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
675
676 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
677 {
678         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
679 }
680 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
681
682 /*
683  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
684  * a #GP and return false.
685  */
686 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
687 {
688         if (kvm_x86_ops.get_cpl(vcpu) <= required_cpl)
689                 return true;
690         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
691         return false;
692 }
693 EXPORT_SYMBOL_GPL(kvm_require_cpl);
694
695 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
696 {
697         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
698                 return true;
699
700         kvm_queue_exception(vcpu, UD_VECTOR);
701         return false;
702 }
703 EXPORT_SYMBOL_GPL(kvm_require_dr);
704
705 /*
706  * This function will be used to read from the physical memory of the currently
707  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
708  * can read from guest physical or from the guest's guest physical memory.
709  */
710 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
711                             gfn_t ngfn, void *data, int offset, int len,
712                             u32 access)
713 {
714         struct x86_exception exception;
715         gfn_t real_gfn;
716         gpa_t ngpa;
717
718         ngpa     = gfn_to_gpa(ngfn);
719         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
720         if (real_gfn == UNMAPPED_GVA)
721                 return -EFAULT;
722
723         real_gfn = gpa_to_gfn(real_gfn);
724
725         return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
726 }
727 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
728
729 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
730                                void *data, int offset, int len, u32 access)
731 {
732         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
733                                        data, offset, len, access);
734 }
735
736 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
737 {
738         return rsvd_bits(cpuid_maxphyaddr(vcpu), 63) | rsvd_bits(5, 8) |
739                rsvd_bits(1, 2);
740 }
741
742 /*
743  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
744  */
745 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
746 {
747         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
748         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
749         int i;
750         int ret;
751         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
752
753         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
754                                       offset * sizeof(u64), sizeof(pdpte),
755                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
756         if (ret < 0) {
757                 ret = 0;
758                 goto out;
759         }
760         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
761                 if ((pdpte[i] & PT_PRESENT_MASK) &&
762                     (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
763                         ret = 0;
764                         goto out;
765                 }
766         }
767         ret = 1;
768
769         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
770         kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
771
772 out:
773
774         return ret;
775 }
776 EXPORT_SYMBOL_GPL(load_pdptrs);
777
778 bool pdptrs_changed(struct kvm_vcpu *vcpu)
779 {
780         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
781         int offset;
782         gfn_t gfn;
783         int r;
784
785         if (!is_pae_paging(vcpu))
786                 return false;
787
788         if (!kvm_register_is_available(vcpu, VCPU_EXREG_PDPTR))
789                 return true;
790
791         gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
792         offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
793         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
794                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
795         if (r < 0)
796                 return true;
797
798         return memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
799 }
800 EXPORT_SYMBOL_GPL(pdptrs_changed);
801
802 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
803 {
804         unsigned long old_cr0 = kvm_read_cr0(vcpu);
805         unsigned long pdptr_bits = X86_CR0_CD | X86_CR0_NW | X86_CR0_PG;
806         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
807
808         cr0 |= X86_CR0_ET;
809
810 #ifdef CONFIG_X86_64
811         if (cr0 & 0xffffffff00000000UL)
812                 return 1;
813 #endif
814
815         cr0 &= ~CR0_RESERVED_BITS;
816
817         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
818                 return 1;
819
820         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
821                 return 1;
822
823 #ifdef CONFIG_X86_64
824         if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
825             (cr0 & X86_CR0_PG)) {
826                 int cs_db, cs_l;
827
828                 if (!is_pae(vcpu))
829                         return 1;
830                 kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
831                 if (cs_l)
832                         return 1;
833         }
834 #endif
835         if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
836             is_pae(vcpu) && ((cr0 ^ old_cr0) & pdptr_bits) &&
837             !load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)))
838                 return 1;
839
840         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
841                 return 1;
842
843         kvm_x86_ops.set_cr0(vcpu, cr0);
844
845         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
846                 kvm_clear_async_pf_completion_queue(vcpu);
847                 kvm_async_pf_hash_reset(vcpu);
848         }
849
850         if ((cr0 ^ old_cr0) & update_bits)
851                 kvm_mmu_reset_context(vcpu);
852
853         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
854             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
855             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
856                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
857
858         return 0;
859 }
860 EXPORT_SYMBOL_GPL(kvm_set_cr0);
861
862 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
863 {
864         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
865 }
866 EXPORT_SYMBOL_GPL(kvm_lmsw);
867
868 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
869 {
870         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
871
872                 if (vcpu->arch.xcr0 != host_xcr0)
873                         xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
874
875                 if (vcpu->arch.xsaves_enabled &&
876                     vcpu->arch.ia32_xss != host_xss)
877                         wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
878         }
879
880         if (static_cpu_has(X86_FEATURE_PKU) &&
881             (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
882              (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) &&
883             vcpu->arch.pkru != vcpu->arch.host_pkru)
884                 __write_pkru(vcpu->arch.pkru);
885 }
886 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
887
888 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
889 {
890         if (static_cpu_has(X86_FEATURE_PKU) &&
891             (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
892              (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) {
893                 vcpu->arch.pkru = rdpkru();
894                 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
895                         __write_pkru(vcpu->arch.host_pkru);
896         }
897
898         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
899
900                 if (vcpu->arch.xcr0 != host_xcr0)
901                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
902
903                 if (vcpu->arch.xsaves_enabled &&
904                     vcpu->arch.ia32_xss != host_xss)
905                         wrmsrl(MSR_IA32_XSS, host_xss);
906         }
907
908 }
909 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
910
911 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
912 {
913         u64 xcr0 = xcr;
914         u64 old_xcr0 = vcpu->arch.xcr0;
915         u64 valid_bits;
916
917         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
918         if (index != XCR_XFEATURE_ENABLED_MASK)
919                 return 1;
920         if (!(xcr0 & XFEATURE_MASK_FP))
921                 return 1;
922         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
923                 return 1;
924
925         /*
926          * Do not allow the guest to set bits that we do not support
927          * saving.  However, xcr0 bit 0 is always set, even if the
928          * emulated CPU does not support XSAVE (see fx_init).
929          */
930         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
931         if (xcr0 & ~valid_bits)
932                 return 1;
933
934         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
935             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
936                 return 1;
937
938         if (xcr0 & XFEATURE_MASK_AVX512) {
939                 if (!(xcr0 & XFEATURE_MASK_YMM))
940                         return 1;
941                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
942                         return 1;
943         }
944         vcpu->arch.xcr0 = xcr0;
945
946         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
947                 kvm_update_cpuid_runtime(vcpu);
948         return 0;
949 }
950
951 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
952 {
953         if (kvm_x86_ops.get_cpl(vcpu) != 0 ||
954             __kvm_set_xcr(vcpu, index, xcr)) {
955                 kvm_inject_gp(vcpu, 0);
956                 return 1;
957         }
958         return 0;
959 }
960 EXPORT_SYMBOL_GPL(kvm_set_xcr);
961
962 int kvm_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
963 {
964         if (cr4 & cr4_reserved_bits)
965                 return -EINVAL;
966
967         if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
968                 return -EINVAL;
969
970         return 0;
971 }
972 EXPORT_SYMBOL_GPL(kvm_valid_cr4);
973
974 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
975 {
976         unsigned long old_cr4 = kvm_read_cr4(vcpu);
977         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
978                                    X86_CR4_SMEP;
979
980         if (kvm_valid_cr4(vcpu, cr4))
981                 return 1;
982
983         if (is_long_mode(vcpu)) {
984                 if (!(cr4 & X86_CR4_PAE))
985                         return 1;
986                 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
987                         return 1;
988         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
989                    && ((cr4 ^ old_cr4) & pdptr_bits)
990                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
991                                    kvm_read_cr3(vcpu)))
992                 return 1;
993
994         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
995                 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
996                         return 1;
997
998                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
999                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1000                         return 1;
1001         }
1002
1003         if (kvm_x86_ops.set_cr4(vcpu, cr4))
1004                 return 1;
1005
1006         if (((cr4 ^ old_cr4) & pdptr_bits) ||
1007             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1008                 kvm_mmu_reset_context(vcpu);
1009
1010         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
1011                 kvm_update_cpuid_runtime(vcpu);
1012
1013         return 0;
1014 }
1015 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1016
1017 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1018 {
1019         bool skip_tlb_flush = false;
1020 #ifdef CONFIG_X86_64
1021         bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1022
1023         if (pcid_enabled) {
1024                 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1025                 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1026         }
1027 #endif
1028
1029         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
1030                 if (!skip_tlb_flush) {
1031                         kvm_mmu_sync_roots(vcpu);
1032                         kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1033                 }
1034                 return 0;
1035         }
1036
1037         if (is_long_mode(vcpu) &&
1038             (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63)))
1039                 return 1;
1040         else if (is_pae_paging(vcpu) &&
1041                  !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
1042                 return 1;
1043
1044         kvm_mmu_new_pgd(vcpu, cr3, skip_tlb_flush, skip_tlb_flush);
1045         vcpu->arch.cr3 = cr3;
1046         kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1047
1048         return 0;
1049 }
1050 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1051
1052 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1053 {
1054         if (cr8 & CR8_RESERVED_BITS)
1055                 return 1;
1056         if (lapic_in_kernel(vcpu))
1057                 kvm_lapic_set_tpr(vcpu, cr8);
1058         else
1059                 vcpu->arch.cr8 = cr8;
1060         return 0;
1061 }
1062 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1063
1064 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1065 {
1066         if (lapic_in_kernel(vcpu))
1067                 return kvm_lapic_get_cr8(vcpu);
1068         else
1069                 return vcpu->arch.cr8;
1070 }
1071 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1072
1073 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1074 {
1075         int i;
1076
1077         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1078                 for (i = 0; i < KVM_NR_DB_REGS; i++)
1079                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1080                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
1081         }
1082 }
1083
1084 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1085 {
1086         unsigned long dr7;
1087
1088         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1089                 dr7 = vcpu->arch.guest_debug_dr7;
1090         else
1091                 dr7 = vcpu->arch.dr7;
1092         kvm_x86_ops.set_dr7(vcpu, dr7);
1093         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1094         if (dr7 & DR7_BP_EN_MASK)
1095                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1096 }
1097 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1098
1099 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1100 {
1101         u64 fixed = DR6_FIXED_1;
1102
1103         if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1104                 fixed |= DR6_RTM;
1105         return fixed;
1106 }
1107
1108 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1109 {
1110         size_t size = ARRAY_SIZE(vcpu->arch.db);
1111
1112         switch (dr) {
1113         case 0 ... 3:
1114                 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1115                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1116                         vcpu->arch.eff_db[dr] = val;
1117                 break;
1118         case 4:
1119                 /* fall through */
1120         case 6:
1121                 if (!kvm_dr6_valid(val))
1122                         return -1; /* #GP */
1123                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1124                 break;
1125         case 5:
1126                 /* fall through */
1127         default: /* 7 */
1128                 if (!kvm_dr7_valid(val))
1129                         return -1; /* #GP */
1130                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1131                 kvm_update_dr7(vcpu);
1132                 break;
1133         }
1134
1135         return 0;
1136 }
1137
1138 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1139 {
1140         if (__kvm_set_dr(vcpu, dr, val)) {
1141                 kvm_inject_gp(vcpu, 0);
1142                 return 1;
1143         }
1144         return 0;
1145 }
1146 EXPORT_SYMBOL_GPL(kvm_set_dr);
1147
1148 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1149 {
1150         size_t size = ARRAY_SIZE(vcpu->arch.db);
1151
1152         switch (dr) {
1153         case 0 ... 3:
1154                 *val = vcpu->arch.db[array_index_nospec(dr, size)];
1155                 break;
1156         case 4:
1157                 /* fall through */
1158         case 6:
1159                 *val = vcpu->arch.dr6;
1160                 break;
1161         case 5:
1162                 /* fall through */
1163         default: /* 7 */
1164                 *val = vcpu->arch.dr7;
1165                 break;
1166         }
1167         return 0;
1168 }
1169 EXPORT_SYMBOL_GPL(kvm_get_dr);
1170
1171 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1172 {
1173         u32 ecx = kvm_rcx_read(vcpu);
1174         u64 data;
1175         int err;
1176
1177         err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1178         if (err)
1179                 return err;
1180         kvm_rax_write(vcpu, (u32)data);
1181         kvm_rdx_write(vcpu, data >> 32);
1182         return err;
1183 }
1184 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1185
1186 /*
1187  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1188  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1189  *
1190  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1191  * extract the supported MSRs from the related const lists.
1192  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1193  * capabilities of the host cpu. This capabilities test skips MSRs that are
1194  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1195  * may depend on host virtualization features rather than host cpu features.
1196  */
1197
1198 static const u32 msrs_to_save_all[] = {
1199         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1200         MSR_STAR,
1201 #ifdef CONFIG_X86_64
1202         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1203 #endif
1204         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1205         MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1206         MSR_IA32_SPEC_CTRL,
1207         MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1208         MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1209         MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1210         MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1211         MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1212         MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1213         MSR_IA32_UMWAIT_CONTROL,
1214
1215         MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1216         MSR_ARCH_PERFMON_FIXED_CTR0 + 2, MSR_ARCH_PERFMON_FIXED_CTR0 + 3,
1217         MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1218         MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1219         MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1220         MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1221         MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1222         MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1223         MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1224         MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1225         MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1226         MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1227         MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1228         MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1229         MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1230         MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1231         MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1232         MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1233         MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1234         MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1235         MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1236         MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1237 };
1238
1239 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1240 static unsigned num_msrs_to_save;
1241
1242 static const u32 emulated_msrs_all[] = {
1243         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1244         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1245         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1246         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1247         HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1248         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1249         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1250         HV_X64_MSR_RESET,
1251         HV_X64_MSR_VP_INDEX,
1252         HV_X64_MSR_VP_RUNTIME,
1253         HV_X64_MSR_SCONTROL,
1254         HV_X64_MSR_STIMER0_CONFIG,
1255         HV_X64_MSR_VP_ASSIST_PAGE,
1256         HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1257         HV_X64_MSR_TSC_EMULATION_STATUS,
1258         HV_X64_MSR_SYNDBG_OPTIONS,
1259         HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1260         HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1261         HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1262
1263         MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1264         MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1265
1266         MSR_IA32_TSC_ADJUST,
1267         MSR_IA32_TSCDEADLINE,
1268         MSR_IA32_ARCH_CAPABILITIES,
1269         MSR_IA32_PERF_CAPABILITIES,
1270         MSR_IA32_MISC_ENABLE,
1271         MSR_IA32_MCG_STATUS,
1272         MSR_IA32_MCG_CTL,
1273         MSR_IA32_MCG_EXT_CTL,
1274         MSR_IA32_SMBASE,
1275         MSR_SMI_COUNT,
1276         MSR_PLATFORM_INFO,
1277         MSR_MISC_FEATURES_ENABLES,
1278         MSR_AMD64_VIRT_SPEC_CTRL,
1279         MSR_IA32_POWER_CTL,
1280         MSR_IA32_UCODE_REV,
1281
1282         /*
1283          * The following list leaves out MSRs whose values are determined
1284          * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1285          * We always support the "true" VMX control MSRs, even if the host
1286          * processor does not, so I am putting these registers here rather
1287          * than in msrs_to_save_all.
1288          */
1289         MSR_IA32_VMX_BASIC,
1290         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1291         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1292         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1293         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1294         MSR_IA32_VMX_MISC,
1295         MSR_IA32_VMX_CR0_FIXED0,
1296         MSR_IA32_VMX_CR4_FIXED0,
1297         MSR_IA32_VMX_VMCS_ENUM,
1298         MSR_IA32_VMX_PROCBASED_CTLS2,
1299         MSR_IA32_VMX_EPT_VPID_CAP,
1300         MSR_IA32_VMX_VMFUNC,
1301
1302         MSR_K7_HWCR,
1303         MSR_KVM_POLL_CONTROL,
1304 };
1305
1306 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1307 static unsigned num_emulated_msrs;
1308
1309 /*
1310  * List of msr numbers which are used to expose MSR-based features that
1311  * can be used by a hypervisor to validate requested CPU features.
1312  */
1313 static const u32 msr_based_features_all[] = {
1314         MSR_IA32_VMX_BASIC,
1315         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1316         MSR_IA32_VMX_PINBASED_CTLS,
1317         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1318         MSR_IA32_VMX_PROCBASED_CTLS,
1319         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1320         MSR_IA32_VMX_EXIT_CTLS,
1321         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1322         MSR_IA32_VMX_ENTRY_CTLS,
1323         MSR_IA32_VMX_MISC,
1324         MSR_IA32_VMX_CR0_FIXED0,
1325         MSR_IA32_VMX_CR0_FIXED1,
1326         MSR_IA32_VMX_CR4_FIXED0,
1327         MSR_IA32_VMX_CR4_FIXED1,
1328         MSR_IA32_VMX_VMCS_ENUM,
1329         MSR_IA32_VMX_PROCBASED_CTLS2,
1330         MSR_IA32_VMX_EPT_VPID_CAP,
1331         MSR_IA32_VMX_VMFUNC,
1332
1333         MSR_F10H_DECFG,
1334         MSR_IA32_UCODE_REV,
1335         MSR_IA32_ARCH_CAPABILITIES,
1336         MSR_IA32_PERF_CAPABILITIES,
1337 };
1338
1339 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1340 static unsigned int num_msr_based_features;
1341
1342 static u64 kvm_get_arch_capabilities(void)
1343 {
1344         u64 data = 0;
1345
1346         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1347                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1348
1349         /*
1350          * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1351          * the nested hypervisor runs with NX huge pages.  If it is not,
1352          * L1 is anyway vulnerable to ITLB_MULTIHIT explots from other
1353          * L1 guests, so it need not worry about its own (L2) guests.
1354          */
1355         data |= ARCH_CAP_PSCHANGE_MC_NO;
1356
1357         /*
1358          * If we're doing cache flushes (either "always" or "cond")
1359          * we will do one whenever the guest does a vmlaunch/vmresume.
1360          * If an outer hypervisor is doing the cache flush for us
1361          * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1362          * capability to the guest too, and if EPT is disabled we're not
1363          * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1364          * require a nested hypervisor to do a flush of its own.
1365          */
1366         if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1367                 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1368
1369         if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1370                 data |= ARCH_CAP_RDCL_NO;
1371         if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1372                 data |= ARCH_CAP_SSB_NO;
1373         if (!boot_cpu_has_bug(X86_BUG_MDS))
1374                 data |= ARCH_CAP_MDS_NO;
1375
1376         /*
1377          * On TAA affected systems:
1378          *      - nothing to do if TSX is disabled on the host.
1379          *      - we emulate TSX_CTRL if present on the host.
1380          *        This lets the guest use VERW to clear CPU buffers.
1381          */
1382         if (!boot_cpu_has(X86_FEATURE_RTM))
1383                 data &= ~(ARCH_CAP_TAA_NO | ARCH_CAP_TSX_CTRL_MSR);
1384         else if (!boot_cpu_has_bug(X86_BUG_TAA))
1385                 data |= ARCH_CAP_TAA_NO;
1386
1387         return data;
1388 }
1389
1390 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1391 {
1392         switch (msr->index) {
1393         case MSR_IA32_ARCH_CAPABILITIES:
1394                 msr->data = kvm_get_arch_capabilities();
1395                 break;
1396         case MSR_IA32_UCODE_REV:
1397                 rdmsrl_safe(msr->index, &msr->data);
1398                 break;
1399         default:
1400                 return kvm_x86_ops.get_msr_feature(msr);
1401         }
1402         return 0;
1403 }
1404
1405 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1406 {
1407         struct kvm_msr_entry msr;
1408         int r;
1409
1410         msr.index = index;
1411         r = kvm_get_msr_feature(&msr);
1412
1413         if (r == KVM_MSR_RET_INVALID) {
1414                 /* Unconditionally clear the output for simplicity */
1415                 *data = 0;
1416                 r = kvm_msr_ignored_check(vcpu, index, 0, false);
1417         }
1418
1419         if (r)
1420                 return r;
1421
1422         *data = msr.data;
1423
1424         return 0;
1425 }
1426
1427 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1428 {
1429         if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1430                 return false;
1431
1432         if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1433                 return false;
1434
1435         if (efer & (EFER_LME | EFER_LMA) &&
1436             !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1437                 return false;
1438
1439         if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1440                 return false;
1441
1442         return true;
1443
1444 }
1445 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1446 {
1447         if (efer & efer_reserved_bits)
1448                 return false;
1449
1450         return __kvm_valid_efer(vcpu, efer);
1451 }
1452 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1453
1454 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1455 {
1456         u64 old_efer = vcpu->arch.efer;
1457         u64 efer = msr_info->data;
1458
1459         if (efer & efer_reserved_bits)
1460                 return 1;
1461
1462         if (!msr_info->host_initiated) {
1463                 if (!__kvm_valid_efer(vcpu, efer))
1464                         return 1;
1465
1466                 if (is_paging(vcpu) &&
1467                     (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1468                         return 1;
1469         }
1470
1471         efer &= ~EFER_LMA;
1472         efer |= vcpu->arch.efer & EFER_LMA;
1473
1474         kvm_x86_ops.set_efer(vcpu, efer);
1475
1476         /* Update reserved bits */
1477         if ((efer ^ old_efer) & EFER_NX)
1478                 kvm_mmu_reset_context(vcpu);
1479
1480         return 0;
1481 }
1482
1483 void kvm_enable_efer_bits(u64 mask)
1484 {
1485        efer_reserved_bits &= ~mask;
1486 }
1487 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1488
1489 /*
1490  * Write @data into the MSR specified by @index.  Select MSR specific fault
1491  * checks are bypassed if @host_initiated is %true.
1492  * Returns 0 on success, non-0 otherwise.
1493  * Assumes vcpu_load() was already called.
1494  */
1495 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1496                          bool host_initiated)
1497 {
1498         struct msr_data msr;
1499
1500         switch (index) {
1501         case MSR_FS_BASE:
1502         case MSR_GS_BASE:
1503         case MSR_KERNEL_GS_BASE:
1504         case MSR_CSTAR:
1505         case MSR_LSTAR:
1506                 if (is_noncanonical_address(data, vcpu))
1507                         return 1;
1508                 break;
1509         case MSR_IA32_SYSENTER_EIP:
1510         case MSR_IA32_SYSENTER_ESP:
1511                 /*
1512                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1513                  * non-canonical address is written on Intel but not on
1514                  * AMD (which ignores the top 32-bits, because it does
1515                  * not implement 64-bit SYSENTER).
1516                  *
1517                  * 64-bit code should hence be able to write a non-canonical
1518                  * value on AMD.  Making the address canonical ensures that
1519                  * vmentry does not fail on Intel after writing a non-canonical
1520                  * value, and that something deterministic happens if the guest
1521                  * invokes 64-bit SYSENTER.
1522                  */
1523                 data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1524         }
1525
1526         msr.data = data;
1527         msr.index = index;
1528         msr.host_initiated = host_initiated;
1529
1530         return kvm_x86_ops.set_msr(vcpu, &msr);
1531 }
1532
1533 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1534                                      u32 index, u64 data, bool host_initiated)
1535 {
1536         int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1537
1538         if (ret == KVM_MSR_RET_INVALID)
1539                 ret = kvm_msr_ignored_check(vcpu, index, data, true);
1540
1541         return ret;
1542 }
1543
1544 /*
1545  * Read the MSR specified by @index into @data.  Select MSR specific fault
1546  * checks are bypassed if @host_initiated is %true.
1547  * Returns 0 on success, non-0 otherwise.
1548  * Assumes vcpu_load() was already called.
1549  */
1550 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1551                   bool host_initiated)
1552 {
1553         struct msr_data msr;
1554         int ret;
1555
1556         msr.index = index;
1557         msr.host_initiated = host_initiated;
1558
1559         ret = kvm_x86_ops.get_msr(vcpu, &msr);
1560         if (!ret)
1561                 *data = msr.data;
1562         return ret;
1563 }
1564
1565 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1566                                      u32 index, u64 *data, bool host_initiated)
1567 {
1568         int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1569
1570         if (ret == KVM_MSR_RET_INVALID) {
1571                 /* Unconditionally clear *data for simplicity */
1572                 *data = 0;
1573                 ret = kvm_msr_ignored_check(vcpu, index, 0, false);
1574         }
1575
1576         return ret;
1577 }
1578
1579 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1580 {
1581         return kvm_get_msr_ignored_check(vcpu, index, data, false);
1582 }
1583 EXPORT_SYMBOL_GPL(kvm_get_msr);
1584
1585 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1586 {
1587         return kvm_set_msr_ignored_check(vcpu, index, data, false);
1588 }
1589 EXPORT_SYMBOL_GPL(kvm_set_msr);
1590
1591 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1592 {
1593         u32 ecx = kvm_rcx_read(vcpu);
1594         u64 data;
1595
1596         if (kvm_get_msr(vcpu, ecx, &data)) {
1597                 trace_kvm_msr_read_ex(ecx);
1598                 kvm_inject_gp(vcpu, 0);
1599                 return 1;
1600         }
1601
1602         trace_kvm_msr_read(ecx, data);
1603
1604         kvm_rax_write(vcpu, data & -1u);
1605         kvm_rdx_write(vcpu, (data >> 32) & -1u);
1606         return kvm_skip_emulated_instruction(vcpu);
1607 }
1608 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1609
1610 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1611 {
1612         u32 ecx = kvm_rcx_read(vcpu);
1613         u64 data = kvm_read_edx_eax(vcpu);
1614
1615         if (kvm_set_msr(vcpu, ecx, data)) {
1616                 trace_kvm_msr_write_ex(ecx, data);
1617                 kvm_inject_gp(vcpu, 0);
1618                 return 1;
1619         }
1620
1621         trace_kvm_msr_write(ecx, data);
1622         return kvm_skip_emulated_instruction(vcpu);
1623 }
1624 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1625
1626 bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
1627 {
1628         return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
1629                 xfer_to_guest_mode_work_pending();
1630 }
1631 EXPORT_SYMBOL_GPL(kvm_vcpu_exit_request);
1632
1633 /*
1634  * The fast path for frequent and performance sensitive wrmsr emulation,
1635  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
1636  * the latency of virtual IPI by avoiding the expensive bits of transitioning
1637  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
1638  * other cases which must be called after interrupts are enabled on the host.
1639  */
1640 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
1641 {
1642         if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
1643                 return 1;
1644
1645         if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
1646                 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
1647                 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
1648                 ((u32)(data >> 32) != X2APIC_BROADCAST)) {
1649
1650                 data &= ~(1 << 12);
1651                 kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32));
1652                 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
1653                 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data);
1654                 trace_kvm_apic_write(APIC_ICR, (u32)data);
1655                 return 0;
1656         }
1657
1658         return 1;
1659 }
1660
1661 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
1662 {
1663         if (!kvm_can_use_hv_timer(vcpu))
1664                 return 1;
1665
1666         kvm_set_lapic_tscdeadline_msr(vcpu, data);
1667         return 0;
1668 }
1669
1670 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
1671 {
1672         u32 msr = kvm_rcx_read(vcpu);
1673         u64 data;
1674         fastpath_t ret = EXIT_FASTPATH_NONE;
1675
1676         switch (msr) {
1677         case APIC_BASE_MSR + (APIC_ICR >> 4):
1678                 data = kvm_read_edx_eax(vcpu);
1679                 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
1680                         kvm_skip_emulated_instruction(vcpu);
1681                         ret = EXIT_FASTPATH_EXIT_HANDLED;
1682                 }
1683                 break;
1684         case MSR_IA32_TSCDEADLINE:
1685                 data = kvm_read_edx_eax(vcpu);
1686                 if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
1687                         kvm_skip_emulated_instruction(vcpu);
1688                         ret = EXIT_FASTPATH_REENTER_GUEST;
1689                 }
1690                 break;
1691         default:
1692                 break;
1693         }
1694
1695         if (ret != EXIT_FASTPATH_NONE)
1696                 trace_kvm_msr_write(msr, data);
1697
1698         return ret;
1699 }
1700 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
1701
1702 /*
1703  * Adapt set_msr() to msr_io()'s calling convention
1704  */
1705 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1706 {
1707         return kvm_get_msr_ignored_check(vcpu, index, data, true);
1708 }
1709
1710 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1711 {
1712         return kvm_set_msr_ignored_check(vcpu, index, *data, true);
1713 }
1714
1715 #ifdef CONFIG_X86_64
1716 struct pvclock_clock {
1717         int vclock_mode;
1718         u64 cycle_last;
1719         u64 mask;
1720         u32 mult;
1721         u32 shift;
1722         u64 base_cycles;
1723         u64 offset;
1724 };
1725
1726 struct pvclock_gtod_data {
1727         seqcount_t      seq;
1728
1729         struct pvclock_clock clock; /* extract of a clocksource struct */
1730         struct pvclock_clock raw_clock; /* extract of a clocksource struct */
1731
1732         ktime_t         offs_boot;
1733         u64             wall_time_sec;
1734 };
1735
1736 static struct pvclock_gtod_data pvclock_gtod_data;
1737
1738 static void update_pvclock_gtod(struct timekeeper *tk)
1739 {
1740         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1741
1742         write_seqcount_begin(&vdata->seq);
1743
1744         /* copy pvclock gtod data */
1745         vdata->clock.vclock_mode        = tk->tkr_mono.clock->vdso_clock_mode;
1746         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1747         vdata->clock.mask               = tk->tkr_mono.mask;
1748         vdata->clock.mult               = tk->tkr_mono.mult;
1749         vdata->clock.shift              = tk->tkr_mono.shift;
1750         vdata->clock.base_cycles        = tk->tkr_mono.xtime_nsec;
1751         vdata->clock.offset             = tk->tkr_mono.base;
1752
1753         vdata->raw_clock.vclock_mode    = tk->tkr_raw.clock->vdso_clock_mode;
1754         vdata->raw_clock.cycle_last     = tk->tkr_raw.cycle_last;
1755         vdata->raw_clock.mask           = tk->tkr_raw.mask;
1756         vdata->raw_clock.mult           = tk->tkr_raw.mult;
1757         vdata->raw_clock.shift          = tk->tkr_raw.shift;
1758         vdata->raw_clock.base_cycles    = tk->tkr_raw.xtime_nsec;
1759         vdata->raw_clock.offset         = tk->tkr_raw.base;
1760
1761         vdata->wall_time_sec            = tk->xtime_sec;
1762
1763         vdata->offs_boot                = tk->offs_boot;
1764
1765         write_seqcount_end(&vdata->seq);
1766 }
1767
1768 static s64 get_kvmclock_base_ns(void)
1769 {
1770         /* Count up from boot time, but with the frequency of the raw clock.  */
1771         return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
1772 }
1773 #else
1774 static s64 get_kvmclock_base_ns(void)
1775 {
1776         /* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
1777         return ktime_get_boottime_ns();
1778 }
1779 #endif
1780
1781 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1782 {
1783         kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1784         kvm_vcpu_kick(vcpu);
1785 }
1786
1787 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1788 {
1789         int version;
1790         int r;
1791         struct pvclock_wall_clock wc;
1792         u64 wall_nsec;
1793
1794         if (!wall_clock)
1795                 return;
1796
1797         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1798         if (r)
1799                 return;
1800
1801         if (version & 1)
1802                 ++version;  /* first time write, random junk */
1803
1804         ++version;
1805
1806         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1807                 return;
1808
1809         /*
1810          * The guest calculates current wall clock time by adding
1811          * system time (updated by kvm_guest_time_update below) to the
1812          * wall clock specified here.  We do the reverse here.
1813          */
1814         wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
1815
1816         wc.nsec = do_div(wall_nsec, 1000000000);
1817         wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
1818         wc.version = version;
1819
1820         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1821
1822         version++;
1823         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1824 }
1825
1826 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1827 {
1828         do_shl32_div32(dividend, divisor);
1829         return dividend;
1830 }
1831
1832 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1833                                s8 *pshift, u32 *pmultiplier)
1834 {
1835         uint64_t scaled64;
1836         int32_t  shift = 0;
1837         uint64_t tps64;
1838         uint32_t tps32;
1839
1840         tps64 = base_hz;
1841         scaled64 = scaled_hz;
1842         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1843                 tps64 >>= 1;
1844                 shift--;
1845         }
1846
1847         tps32 = (uint32_t)tps64;
1848         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1849                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1850                         scaled64 >>= 1;
1851                 else
1852                         tps32 <<= 1;
1853                 shift++;
1854         }
1855
1856         *pshift = shift;
1857         *pmultiplier = div_frac(scaled64, tps32);
1858 }
1859
1860 #ifdef CONFIG_X86_64
1861 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1862 #endif
1863
1864 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1865 static unsigned long max_tsc_khz;
1866
1867 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1868 {
1869         u64 v = (u64)khz * (1000000 + ppm);
1870         do_div(v, 1000000);
1871         return v;
1872 }
1873
1874 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1875 {
1876         u64 ratio;
1877
1878         /* Guest TSC same frequency as host TSC? */
1879         if (!scale) {
1880                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1881                 return 0;
1882         }
1883
1884         /* TSC scaling supported? */
1885         if (!kvm_has_tsc_control) {
1886                 if (user_tsc_khz > tsc_khz) {
1887                         vcpu->arch.tsc_catchup = 1;
1888                         vcpu->arch.tsc_always_catchup = 1;
1889                         return 0;
1890                 } else {
1891                         pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
1892                         return -1;
1893                 }
1894         }
1895
1896         /* TSC scaling required  - calculate ratio */
1897         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1898                                 user_tsc_khz, tsc_khz);
1899
1900         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1901                 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1902                                     user_tsc_khz);
1903                 return -1;
1904         }
1905
1906         vcpu->arch.tsc_scaling_ratio = ratio;
1907         return 0;
1908 }
1909
1910 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1911 {
1912         u32 thresh_lo, thresh_hi;
1913         int use_scaling = 0;
1914
1915         /* tsc_khz can be zero if TSC calibration fails */
1916         if (user_tsc_khz == 0) {
1917                 /* set tsc_scaling_ratio to a safe value */
1918                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1919                 return -1;
1920         }
1921
1922         /* Compute a scale to convert nanoseconds in TSC cycles */
1923         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1924                            &vcpu->arch.virtual_tsc_shift,
1925                            &vcpu->arch.virtual_tsc_mult);
1926         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1927
1928         /*
1929          * Compute the variation in TSC rate which is acceptable
1930          * within the range of tolerance and decide if the
1931          * rate being applied is within that bounds of the hardware
1932          * rate.  If so, no scaling or compensation need be done.
1933          */
1934         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1935         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1936         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1937                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1938                 use_scaling = 1;
1939         }
1940         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1941 }
1942
1943 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1944 {
1945         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1946                                       vcpu->arch.virtual_tsc_mult,
1947                                       vcpu->arch.virtual_tsc_shift);
1948         tsc += vcpu->arch.this_tsc_write;
1949         return tsc;
1950 }
1951
1952 static inline int gtod_is_based_on_tsc(int mode)
1953 {
1954         return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
1955 }
1956
1957 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1958 {
1959 #ifdef CONFIG_X86_64
1960         bool vcpus_matched;
1961         struct kvm_arch *ka = &vcpu->kvm->arch;
1962         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1963
1964         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1965                          atomic_read(&vcpu->kvm->online_vcpus));
1966
1967         /*
1968          * Once the masterclock is enabled, always perform request in
1969          * order to update it.
1970          *
1971          * In order to enable masterclock, the host clocksource must be TSC
1972          * and the vcpus need to have matched TSCs.  When that happens,
1973          * perform request to enable masterclock.
1974          */
1975         if (ka->use_master_clock ||
1976             (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
1977                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1978
1979         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1980                             atomic_read(&vcpu->kvm->online_vcpus),
1981                             ka->use_master_clock, gtod->clock.vclock_mode);
1982 #endif
1983 }
1984
1985 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1986 {
1987         u64 curr_offset = vcpu->arch.l1_tsc_offset;
1988         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1989 }
1990
1991 /*
1992  * Multiply tsc by a fixed point number represented by ratio.
1993  *
1994  * The most significant 64-N bits (mult) of ratio represent the
1995  * integral part of the fixed point number; the remaining N bits
1996  * (frac) represent the fractional part, ie. ratio represents a fixed
1997  * point number (mult + frac * 2^(-N)).
1998  *
1999  * N equals to kvm_tsc_scaling_ratio_frac_bits.
2000  */
2001 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2002 {
2003         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
2004 }
2005
2006 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
2007 {
2008         u64 _tsc = tsc;
2009         u64 ratio = vcpu->arch.tsc_scaling_ratio;
2010
2011         if (ratio != kvm_default_tsc_scaling_ratio)
2012                 _tsc = __scale_tsc(ratio, tsc);
2013
2014         return _tsc;
2015 }
2016 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2017
2018 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2019 {
2020         u64 tsc;
2021
2022         tsc = kvm_scale_tsc(vcpu, rdtsc());
2023
2024         return target_tsc - tsc;
2025 }
2026
2027 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2028 {
2029         return vcpu->arch.l1_tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
2030 }
2031 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2032
2033 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2034 {
2035         vcpu->arch.l1_tsc_offset = offset;
2036         vcpu->arch.tsc_offset = kvm_x86_ops.write_l1_tsc_offset(vcpu, offset);
2037 }
2038
2039 static inline bool kvm_check_tsc_unstable(void)
2040 {
2041 #ifdef CONFIG_X86_64
2042         /*
2043          * TSC is marked unstable when we're running on Hyper-V,
2044          * 'TSC page' clocksource is good.
2045          */
2046         if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2047                 return false;
2048 #endif
2049         return check_tsc_unstable();
2050 }
2051
2052 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
2053 {
2054         struct kvm *kvm = vcpu->kvm;
2055         u64 offset, ns, elapsed;
2056         unsigned long flags;
2057         bool matched;
2058         bool already_matched;
2059         u64 data = msr->data;
2060         bool synchronizing = false;
2061
2062         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2063         offset = kvm_compute_tsc_offset(vcpu, data);
2064         ns = get_kvmclock_base_ns();
2065         elapsed = ns - kvm->arch.last_tsc_nsec;
2066
2067         if (vcpu->arch.virtual_tsc_khz) {
2068                 if (data == 0 && msr->host_initiated) {
2069                         /*
2070                          * detection of vcpu initialization -- need to sync
2071                          * with other vCPUs. This particularly helps to keep
2072                          * kvm_clock stable after CPU hotplug
2073                          */
2074                         synchronizing = true;
2075                 } else {
2076                         u64 tsc_exp = kvm->arch.last_tsc_write +
2077                                                 nsec_to_cycles(vcpu, elapsed);
2078                         u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2079                         /*
2080                          * Special case: TSC write with a small delta (1 second)
2081                          * of virtual cycle time against real time is
2082                          * interpreted as an attempt to synchronize the CPU.
2083                          */
2084                         synchronizing = data < tsc_exp + tsc_hz &&
2085                                         data + tsc_hz > tsc_exp;
2086                 }
2087         }
2088
2089         /*
2090          * For a reliable TSC, we can match TSC offsets, and for an unstable
2091          * TSC, we add elapsed time in this computation.  We could let the
2092          * compensation code attempt to catch up if we fall behind, but
2093          * it's better to try to match offsets from the beginning.
2094          */
2095         if (synchronizing &&
2096             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2097                 if (!kvm_check_tsc_unstable()) {
2098                         offset = kvm->arch.cur_tsc_offset;
2099                 } else {
2100                         u64 delta = nsec_to_cycles(vcpu, elapsed);
2101                         data += delta;
2102                         offset = kvm_compute_tsc_offset(vcpu, data);
2103                 }
2104                 matched = true;
2105                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
2106         } else {
2107                 /*
2108                  * We split periods of matched TSC writes into generations.
2109                  * For each generation, we track the original measured
2110                  * nanosecond time, offset, and write, so if TSCs are in
2111                  * sync, we can match exact offset, and if not, we can match
2112                  * exact software computation in compute_guest_tsc()
2113                  *
2114                  * These values are tracked in kvm->arch.cur_xxx variables.
2115                  */
2116                 kvm->arch.cur_tsc_generation++;
2117                 kvm->arch.cur_tsc_nsec = ns;
2118                 kvm->arch.cur_tsc_write = data;
2119                 kvm->arch.cur_tsc_offset = offset;
2120                 matched = false;
2121         }
2122
2123         /*
2124          * We also track th most recent recorded KHZ, write and time to
2125          * allow the matching interval to be extended at each write.
2126          */
2127         kvm->arch.last_tsc_nsec = ns;
2128         kvm->arch.last_tsc_write = data;
2129         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2130
2131         vcpu->arch.last_guest_tsc = data;
2132
2133         /* Keep track of which generation this VCPU has synchronized to */
2134         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2135         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2136         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2137
2138         if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
2139                 update_ia32_tsc_adjust_msr(vcpu, offset);
2140
2141         kvm_vcpu_write_tsc_offset(vcpu, offset);
2142         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2143
2144         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
2145         if (!matched) {
2146                 kvm->arch.nr_vcpus_matched_tsc = 0;
2147         } else if (!already_matched) {
2148                 kvm->arch.nr_vcpus_matched_tsc++;
2149         }
2150
2151         kvm_track_tsc_matching(vcpu);
2152         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
2153 }
2154
2155 EXPORT_SYMBOL_GPL(kvm_write_tsc);
2156
2157 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2158                                            s64 adjustment)
2159 {
2160         u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2161         kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2162 }
2163
2164 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2165 {
2166         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2167                 WARN_ON(adjustment < 0);
2168         adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
2169         adjust_tsc_offset_guest(vcpu, adjustment);
2170 }
2171
2172 #ifdef CONFIG_X86_64
2173
2174 static u64 read_tsc(void)
2175 {
2176         u64 ret = (u64)rdtsc_ordered();
2177         u64 last = pvclock_gtod_data.clock.cycle_last;
2178
2179         if (likely(ret >= last))
2180                 return ret;
2181
2182         /*
2183          * GCC likes to generate cmov here, but this branch is extremely
2184          * predictable (it's just a function of time and the likely is
2185          * very likely) and there's a data dependence, so force GCC
2186          * to generate a branch instead.  I don't barrier() because
2187          * we don't actually need a barrier, and if this function
2188          * ever gets inlined it will generate worse code.
2189          */
2190         asm volatile ("");
2191         return last;
2192 }
2193
2194 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2195                           int *mode)
2196 {
2197         long v;
2198         u64 tsc_pg_val;
2199
2200         switch (clock->vclock_mode) {
2201         case VDSO_CLOCKMODE_HVCLOCK:
2202                 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2203                                                   tsc_timestamp);
2204                 if (tsc_pg_val != U64_MAX) {
2205                         /* TSC page valid */
2206                         *mode = VDSO_CLOCKMODE_HVCLOCK;
2207                         v = (tsc_pg_val - clock->cycle_last) &
2208                                 clock->mask;
2209                 } else {
2210                         /* TSC page invalid */
2211                         *mode = VDSO_CLOCKMODE_NONE;
2212                 }
2213                 break;
2214         case VDSO_CLOCKMODE_TSC:
2215                 *mode = VDSO_CLOCKMODE_TSC;
2216                 *tsc_timestamp = read_tsc();
2217                 v = (*tsc_timestamp - clock->cycle_last) &
2218                         clock->mask;
2219                 break;
2220         default:
2221                 *mode = VDSO_CLOCKMODE_NONE;
2222         }
2223
2224         if (*mode == VDSO_CLOCKMODE_NONE)
2225                 *tsc_timestamp = v = 0;
2226
2227         return v * clock->mult;
2228 }
2229
2230 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2231 {
2232         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2233         unsigned long seq;
2234         int mode;
2235         u64 ns;
2236
2237         do {
2238                 seq = read_seqcount_begin(&gtod->seq);
2239                 ns = gtod->raw_clock.base_cycles;
2240                 ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2241                 ns >>= gtod->raw_clock.shift;
2242                 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2243         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2244         *t = ns;
2245
2246         return mode;
2247 }
2248
2249 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2250 {
2251         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2252         unsigned long seq;
2253         int mode;
2254         u64 ns;
2255
2256         do {
2257                 seq = read_seqcount_begin(&gtod->seq);
2258                 ts->tv_sec = gtod->wall_time_sec;
2259                 ns = gtod->clock.base_cycles;
2260                 ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2261                 ns >>= gtod->clock.shift;
2262         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2263
2264         ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2265         ts->tv_nsec = ns;
2266
2267         return mode;
2268 }
2269
2270 /* returns true if host is using TSC based clocksource */
2271 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2272 {
2273         /* checked again under seqlock below */
2274         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2275                 return false;
2276
2277         return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2278                                                       tsc_timestamp));
2279 }
2280
2281 /* returns true if host is using TSC based clocksource */
2282 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2283                                            u64 *tsc_timestamp)
2284 {
2285         /* checked again under seqlock below */
2286         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2287                 return false;
2288
2289         return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2290 }
2291 #endif
2292
2293 /*
2294  *
2295  * Assuming a stable TSC across physical CPUS, and a stable TSC
2296  * across virtual CPUs, the following condition is possible.
2297  * Each numbered line represents an event visible to both
2298  * CPUs at the next numbered event.
2299  *
2300  * "timespecX" represents host monotonic time. "tscX" represents
2301  * RDTSC value.
2302  *
2303  *              VCPU0 on CPU0           |       VCPU1 on CPU1
2304  *
2305  * 1.  read timespec0,tsc0
2306  * 2.                                   | timespec1 = timespec0 + N
2307  *                                      | tsc1 = tsc0 + M
2308  * 3. transition to guest               | transition to guest
2309  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2310  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
2311  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2312  *
2313  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2314  *
2315  *      - ret0 < ret1
2316  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2317  *              ...
2318  *      - 0 < N - M => M < N
2319  *
2320  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2321  * always the case (the difference between two distinct xtime instances
2322  * might be smaller then the difference between corresponding TSC reads,
2323  * when updating guest vcpus pvclock areas).
2324  *
2325  * To avoid that problem, do not allow visibility of distinct
2326  * system_timestamp/tsc_timestamp values simultaneously: use a master
2327  * copy of host monotonic time values. Update that master copy
2328  * in lockstep.
2329  *
2330  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2331  *
2332  */
2333
2334 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2335 {
2336 #ifdef CONFIG_X86_64
2337         struct kvm_arch *ka = &kvm->arch;
2338         int vclock_mode;
2339         bool host_tsc_clocksource, vcpus_matched;
2340
2341         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2342                         atomic_read(&kvm->online_vcpus));
2343
2344         /*
2345          * If the host uses TSC clock, then passthrough TSC as stable
2346          * to the guest.
2347          */
2348         host_tsc_clocksource = kvm_get_time_and_clockread(
2349                                         &ka->master_kernel_ns,
2350                                         &ka->master_cycle_now);
2351
2352         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2353                                 && !ka->backwards_tsc_observed
2354                                 && !ka->boot_vcpu_runs_old_kvmclock;
2355
2356         if (ka->use_master_clock)
2357                 atomic_set(&kvm_guest_has_master_clock, 1);
2358
2359         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2360         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2361                                         vcpus_matched);
2362 #endif
2363 }
2364
2365 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2366 {
2367         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2368 }
2369
2370 static void kvm_gen_update_masterclock(struct kvm *kvm)
2371 {
2372 #ifdef CONFIG_X86_64
2373         int i;
2374         struct kvm_vcpu *vcpu;
2375         struct kvm_arch *ka = &kvm->arch;
2376
2377         spin_lock(&ka->pvclock_gtod_sync_lock);
2378         kvm_make_mclock_inprogress_request(kvm);
2379         /* no guest entries from this point */
2380         pvclock_update_vm_gtod_copy(kvm);
2381
2382         kvm_for_each_vcpu(i, vcpu, kvm)
2383                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2384
2385         /* guest entries allowed */
2386         kvm_for_each_vcpu(i, vcpu, kvm)
2387                 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2388
2389         spin_unlock(&ka->pvclock_gtod_sync_lock);
2390 #endif
2391 }
2392
2393 u64 get_kvmclock_ns(struct kvm *kvm)
2394 {
2395         struct kvm_arch *ka = &kvm->arch;
2396         struct pvclock_vcpu_time_info hv_clock;
2397         u64 ret;
2398
2399         spin_lock(&ka->pvclock_gtod_sync_lock);
2400         if (!ka->use_master_clock) {
2401                 spin_unlock(&ka->pvclock_gtod_sync_lock);
2402                 return get_kvmclock_base_ns() + ka->kvmclock_offset;
2403         }
2404
2405         hv_clock.tsc_timestamp = ka->master_cycle_now;
2406         hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2407         spin_unlock(&ka->pvclock_gtod_sync_lock);
2408
2409         /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2410         get_cpu();
2411
2412         if (__this_cpu_read(cpu_tsc_khz)) {
2413                 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2414                                    &hv_clock.tsc_shift,
2415                                    &hv_clock.tsc_to_system_mul);
2416                 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2417         } else
2418                 ret = get_kvmclock_base_ns() + ka->kvmclock_offset;
2419
2420         put_cpu();
2421
2422         return ret;
2423 }
2424
2425 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
2426 {
2427         struct kvm_vcpu_arch *vcpu = &v->arch;
2428         struct pvclock_vcpu_time_info guest_hv_clock;
2429
2430         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
2431                 &guest_hv_clock, sizeof(guest_hv_clock))))
2432                 return;
2433
2434         /* This VCPU is paused, but it's legal for a guest to read another
2435          * VCPU's kvmclock, so we really have to follow the specification where
2436          * it says that version is odd if data is being modified, and even after
2437          * it is consistent.
2438          *
2439          * Version field updates must be kept separate.  This is because
2440          * kvm_write_guest_cached might use a "rep movs" instruction, and
2441          * writes within a string instruction are weakly ordered.  So there
2442          * are three writes overall.
2443          *
2444          * As a small optimization, only write the version field in the first
2445          * and third write.  The vcpu->pv_time cache is still valid, because the
2446          * version field is the first in the struct.
2447          */
2448         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2449
2450         if (guest_hv_clock.version & 1)
2451                 ++guest_hv_clock.version;  /* first time write, random junk */
2452
2453         vcpu->hv_clock.version = guest_hv_clock.version + 1;
2454         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2455                                 &vcpu->hv_clock,
2456                                 sizeof(vcpu->hv_clock.version));
2457
2458         smp_wmb();
2459
2460         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2461         vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2462
2463         if (vcpu->pvclock_set_guest_stopped_request) {
2464                 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2465                 vcpu->pvclock_set_guest_stopped_request = false;
2466         }
2467
2468         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2469
2470         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2471                                 &vcpu->hv_clock,
2472                                 sizeof(vcpu->hv_clock));
2473
2474         smp_wmb();
2475
2476         vcpu->hv_clock.version++;
2477         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2478                                 &vcpu->hv_clock,
2479                                 sizeof(vcpu->hv_clock.version));
2480 }
2481
2482 static int kvm_guest_time_update(struct kvm_vcpu *v)
2483 {
2484         unsigned long flags, tgt_tsc_khz;
2485         struct kvm_vcpu_arch *vcpu = &v->arch;
2486         struct kvm_arch *ka = &v->kvm->arch;
2487         s64 kernel_ns;
2488         u64 tsc_timestamp, host_tsc;
2489         u8 pvclock_flags;
2490         bool use_master_clock;
2491
2492         kernel_ns = 0;
2493         host_tsc = 0;
2494
2495         /*
2496          * If the host uses TSC clock, then passthrough TSC as stable
2497          * to the guest.
2498          */
2499         spin_lock(&ka->pvclock_gtod_sync_lock);
2500         use_master_clock = ka->use_master_clock;
2501         if (use_master_clock) {
2502                 host_tsc = ka->master_cycle_now;
2503                 kernel_ns = ka->master_kernel_ns;
2504         }
2505         spin_unlock(&ka->pvclock_gtod_sync_lock);
2506
2507         /* Keep irq disabled to prevent changes to the clock */
2508         local_irq_save(flags);
2509         tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2510         if (unlikely(tgt_tsc_khz == 0)) {
2511                 local_irq_restore(flags);
2512                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2513                 return 1;
2514         }
2515         if (!use_master_clock) {
2516                 host_tsc = rdtsc();
2517                 kernel_ns = get_kvmclock_base_ns();
2518         }
2519
2520         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2521
2522         /*
2523          * We may have to catch up the TSC to match elapsed wall clock
2524          * time for two reasons, even if kvmclock is used.
2525          *   1) CPU could have been running below the maximum TSC rate
2526          *   2) Broken TSC compensation resets the base at each VCPU
2527          *      entry to avoid unknown leaps of TSC even when running
2528          *      again on the same CPU.  This may cause apparent elapsed
2529          *      time to disappear, and the guest to stand still or run
2530          *      very slowly.
2531          */
2532         if (vcpu->tsc_catchup) {
2533                 u64 tsc = compute_guest_tsc(v, kernel_ns);
2534                 if (tsc > tsc_timestamp) {
2535                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2536                         tsc_timestamp = tsc;
2537                 }
2538         }
2539
2540         local_irq_restore(flags);
2541
2542         /* With all the info we got, fill in the values */
2543
2544         if (kvm_has_tsc_control)
2545                 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2546
2547         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2548                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2549                                    &vcpu->hv_clock.tsc_shift,
2550                                    &vcpu->hv_clock.tsc_to_system_mul);
2551                 vcpu->hw_tsc_khz = tgt_tsc_khz;
2552         }
2553
2554         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2555         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2556         vcpu->last_guest_tsc = tsc_timestamp;
2557
2558         /* If the host uses TSC clocksource, then it is stable */
2559         pvclock_flags = 0;
2560         if (use_master_clock)
2561                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2562
2563         vcpu->hv_clock.flags = pvclock_flags;
2564
2565         if (vcpu->pv_time_enabled)
2566                 kvm_setup_pvclock_page(v);
2567         if (v == kvm_get_vcpu(v->kvm, 0))
2568                 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2569         return 0;
2570 }
2571
2572 /*
2573  * kvmclock updates which are isolated to a given vcpu, such as
2574  * vcpu->cpu migration, should not allow system_timestamp from
2575  * the rest of the vcpus to remain static. Otherwise ntp frequency
2576  * correction applies to one vcpu's system_timestamp but not
2577  * the others.
2578  *
2579  * So in those cases, request a kvmclock update for all vcpus.
2580  * We need to rate-limit these requests though, as they can
2581  * considerably slow guests that have a large number of vcpus.
2582  * The time for a remote vcpu to update its kvmclock is bound
2583  * by the delay we use to rate-limit the updates.
2584  */
2585
2586 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2587
2588 static void kvmclock_update_fn(struct work_struct *work)
2589 {
2590         int i;
2591         struct delayed_work *dwork = to_delayed_work(work);
2592         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2593                                            kvmclock_update_work);
2594         struct kvm *kvm = container_of(ka, struct kvm, arch);
2595         struct kvm_vcpu *vcpu;
2596
2597         kvm_for_each_vcpu(i, vcpu, kvm) {
2598                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2599                 kvm_vcpu_kick(vcpu);
2600         }
2601 }
2602
2603 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2604 {
2605         struct kvm *kvm = v->kvm;
2606
2607         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2608         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2609                                         KVMCLOCK_UPDATE_DELAY);
2610 }
2611
2612 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2613
2614 static void kvmclock_sync_fn(struct work_struct *work)
2615 {
2616         struct delayed_work *dwork = to_delayed_work(work);
2617         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2618                                            kvmclock_sync_work);
2619         struct kvm *kvm = container_of(ka, struct kvm, arch);
2620
2621         if (!kvmclock_periodic_sync)
2622                 return;
2623
2624         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2625         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2626                                         KVMCLOCK_SYNC_PERIOD);
2627 }
2628
2629 /*
2630  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
2631  */
2632 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
2633 {
2634         /* McStatusWrEn enabled? */
2635         if (guest_cpuid_is_amd_or_hygon(vcpu))
2636                 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
2637
2638         return false;
2639 }
2640
2641 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2642 {
2643         u64 mcg_cap = vcpu->arch.mcg_cap;
2644         unsigned bank_num = mcg_cap & 0xff;
2645         u32 msr = msr_info->index;
2646         u64 data = msr_info->data;
2647
2648         switch (msr) {
2649         case MSR_IA32_MCG_STATUS:
2650                 vcpu->arch.mcg_status = data;
2651                 break;
2652         case MSR_IA32_MCG_CTL:
2653                 if (!(mcg_cap & MCG_CTL_P) &&
2654                     (data || !msr_info->host_initiated))
2655                         return 1;
2656                 if (data != 0 && data != ~(u64)0)
2657                         return 1;
2658                 vcpu->arch.mcg_ctl = data;
2659                 break;
2660         default:
2661                 if (msr >= MSR_IA32_MC0_CTL &&
2662                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2663                         u32 offset = array_index_nospec(
2664                                 msr - MSR_IA32_MC0_CTL,
2665                                 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
2666
2667                         /* only 0 or all 1s can be written to IA32_MCi_CTL
2668                          * some Linux kernels though clear bit 10 in bank 4 to
2669                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2670                          * this to avoid an uncatched #GP in the guest
2671                          */
2672                         if ((offset & 0x3) == 0 &&
2673                             data != 0 && (data | (1 << 10)) != ~(u64)0)
2674                                 return -1;
2675
2676                         /* MCi_STATUS */
2677                         if (!msr_info->host_initiated &&
2678                             (offset & 0x3) == 1 && data != 0) {
2679                                 if (!can_set_mci_status(vcpu))
2680                                         return -1;
2681                         }
2682
2683                         vcpu->arch.mce_banks[offset] = data;
2684                         break;
2685                 }
2686                 return 1;
2687         }
2688         return 0;
2689 }
2690
2691 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2692 {
2693         struct kvm *kvm = vcpu->kvm;
2694         int lm = is_long_mode(vcpu);
2695         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2696                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2697         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2698                 : kvm->arch.xen_hvm_config.blob_size_32;
2699         u32 page_num = data & ~PAGE_MASK;
2700         u64 page_addr = data & PAGE_MASK;
2701         u8 *page;
2702         int r;
2703
2704         r = -E2BIG;
2705         if (page_num >= blob_size)
2706                 goto out;
2707         r = -ENOMEM;
2708         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2709         if (IS_ERR(page)) {
2710                 r = PTR_ERR(page);
2711                 goto out;
2712         }
2713         if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2714                 goto out_free;
2715         r = 0;
2716 out_free:
2717         kfree(page);
2718 out:
2719         return r;
2720 }
2721
2722 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
2723 {
2724         u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
2725
2726         return (vcpu->arch.apf.msr_en_val & mask) == mask;
2727 }
2728
2729 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2730 {
2731         gpa_t gpa = data & ~0x3f;
2732
2733         /* Bits 4:5 are reserved, Should be zero */
2734         if (data & 0x30)
2735                 return 1;
2736
2737         if (!lapic_in_kernel(vcpu))
2738                 return 1;
2739
2740         vcpu->arch.apf.msr_en_val = data;
2741
2742         if (!kvm_pv_async_pf_enabled(vcpu)) {
2743                 kvm_clear_async_pf_completion_queue(vcpu);
2744                 kvm_async_pf_hash_reset(vcpu);
2745                 return 0;
2746         }
2747
2748         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2749                                         sizeof(u64)))
2750                 return 1;
2751
2752         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2753         vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2754
2755         kvm_async_pf_wakeup_all(vcpu);
2756
2757         return 0;
2758 }
2759
2760 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
2761 {
2762         /* Bits 8-63 are reserved */
2763         if (data >> 8)
2764                 return 1;
2765
2766         if (!lapic_in_kernel(vcpu))
2767                 return 1;
2768
2769         vcpu->arch.apf.msr_int_val = data;
2770
2771         vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
2772
2773         return 0;
2774 }
2775
2776 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2777 {
2778         vcpu->arch.pv_time_enabled = false;
2779         vcpu->arch.time = 0;
2780 }
2781
2782 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
2783 {
2784         ++vcpu->stat.tlb_flush;
2785         kvm_x86_ops.tlb_flush_all(vcpu);
2786 }
2787
2788 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
2789 {
2790         ++vcpu->stat.tlb_flush;
2791         kvm_x86_ops.tlb_flush_guest(vcpu);
2792 }
2793
2794 static void record_steal_time(struct kvm_vcpu *vcpu)
2795 {
2796         struct kvm_host_map map;
2797         struct kvm_steal_time *st;
2798
2799         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2800                 return;
2801
2802         /* -EAGAIN is returned in atomic context so we can just return. */
2803         if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT,
2804                         &map, &vcpu->arch.st.cache, false))
2805                 return;
2806
2807         st = map.hva +
2808                 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
2809
2810         /*
2811          * Doing a TLB flush here, on the guest's behalf, can avoid
2812          * expensive IPIs.
2813          */
2814         trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
2815                 st->preempted & KVM_VCPU_FLUSH_TLB);
2816         if (xchg(&st->preempted, 0) & KVM_VCPU_FLUSH_TLB)
2817                 kvm_vcpu_flush_tlb_guest(vcpu);
2818
2819         vcpu->arch.st.preempted = 0;
2820
2821         if (st->version & 1)
2822                 st->version += 1;  /* first time write, random junk */
2823
2824         st->version += 1;
2825
2826         smp_wmb();
2827
2828         st->steal += current->sched_info.run_delay -
2829                 vcpu->arch.st.last_steal;
2830         vcpu->arch.st.last_steal = current->sched_info.run_delay;
2831
2832         smp_wmb();
2833
2834         st->version += 1;
2835
2836         kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, false);
2837 }
2838
2839 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2840 {
2841         bool pr = false;
2842         u32 msr = msr_info->index;
2843         u64 data = msr_info->data;
2844
2845         switch (msr) {
2846         case MSR_AMD64_NB_CFG:
2847         case MSR_IA32_UCODE_WRITE:
2848         case MSR_VM_HSAVE_PA:
2849         case MSR_AMD64_PATCH_LOADER:
2850         case MSR_AMD64_BU_CFG2:
2851         case MSR_AMD64_DC_CFG:
2852         case MSR_F15H_EX_CFG:
2853                 break;
2854
2855         case MSR_IA32_UCODE_REV:
2856                 if (msr_info->host_initiated)
2857                         vcpu->arch.microcode_version = data;
2858                 break;
2859         case MSR_IA32_ARCH_CAPABILITIES:
2860                 if (!msr_info->host_initiated)
2861                         return 1;
2862                 vcpu->arch.arch_capabilities = data;
2863                 break;
2864         case MSR_IA32_PERF_CAPABILITIES: {
2865                 struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
2866
2867                 if (!msr_info->host_initiated)
2868                         return 1;
2869                 if (guest_cpuid_has(vcpu, X86_FEATURE_PDCM) && kvm_get_msr_feature(&msr_ent))
2870                         return 1;
2871                 if (data & ~msr_ent.data)
2872                         return 1;
2873
2874                 vcpu->arch.perf_capabilities = data;
2875
2876                 return 0;
2877                 }
2878         case MSR_EFER:
2879                 return set_efer(vcpu, msr_info);
2880         case MSR_K7_HWCR:
2881                 data &= ~(u64)0x40;     /* ignore flush filter disable */
2882                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2883                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
2884
2885                 /* Handle McStatusWrEn */
2886                 if (data == BIT_ULL(18)) {
2887                         vcpu->arch.msr_hwcr = data;
2888                 } else if (data != 0) {
2889                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2890                                     data);
2891                         return 1;
2892                 }
2893                 break;
2894         case MSR_FAM10H_MMIO_CONF_BASE:
2895                 if (data != 0) {
2896                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2897                                     "0x%llx\n", data);
2898                         return 1;
2899                 }
2900                 break;
2901         case MSR_IA32_DEBUGCTLMSR:
2902                 if (!data) {
2903                         /* We support the non-activated case already */
2904                         break;
2905                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2906                         /* Values other than LBR and BTF are vendor-specific,
2907                            thus reserved and should throw a #GP */
2908                         return 1;
2909                 }
2910                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2911                             __func__, data);
2912                 break;
2913         case 0x200 ... 0x2ff:
2914                 return kvm_mtrr_set_msr(vcpu, msr, data);
2915         case MSR_IA32_APICBASE:
2916                 return kvm_set_apic_base(vcpu, msr_info);
2917         case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
2918                 return kvm_x2apic_msr_write(vcpu, msr, data);
2919         case MSR_IA32_TSCDEADLINE:
2920                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2921                 break;
2922         case MSR_IA32_TSC_ADJUST:
2923                 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2924                         if (!msr_info->host_initiated) {
2925                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2926                                 adjust_tsc_offset_guest(vcpu, adj);
2927                         }
2928                         vcpu->arch.ia32_tsc_adjust_msr = data;
2929                 }
2930                 break;
2931         case MSR_IA32_MISC_ENABLE:
2932                 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
2933                     ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
2934                         if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
2935                                 return 1;
2936                         vcpu->arch.ia32_misc_enable_msr = data;
2937                         kvm_update_cpuid_runtime(vcpu);
2938                 } else {
2939                         vcpu->arch.ia32_misc_enable_msr = data;
2940                 }
2941                 break;
2942         case MSR_IA32_SMBASE:
2943                 if (!msr_info->host_initiated)
2944                         return 1;
2945                 vcpu->arch.smbase = data;
2946                 break;
2947         case MSR_IA32_POWER_CTL:
2948                 vcpu->arch.msr_ia32_power_ctl = data;
2949                 break;
2950         case MSR_IA32_TSC:
2951                 kvm_write_tsc(vcpu, msr_info);
2952                 break;
2953         case MSR_IA32_XSS:
2954                 if (!msr_info->host_initiated &&
2955                     !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
2956                         return 1;
2957                 /*
2958                  * KVM supports exposing PT to the guest, but does not support
2959                  * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
2960                  * XSAVES/XRSTORS to save/restore PT MSRs.
2961                  */
2962                 if (data & ~supported_xss)
2963                         return 1;
2964                 vcpu->arch.ia32_xss = data;
2965                 break;
2966         case MSR_SMI_COUNT:
2967                 if (!msr_info->host_initiated)
2968                         return 1;
2969                 vcpu->arch.smi_count = data;
2970                 break;
2971         case MSR_KVM_WALL_CLOCK_NEW:
2972         case MSR_KVM_WALL_CLOCK:
2973                 vcpu->kvm->arch.wall_clock = data;
2974                 kvm_write_wall_clock(vcpu->kvm, data);
2975                 break;
2976         case MSR_KVM_SYSTEM_TIME_NEW:
2977         case MSR_KVM_SYSTEM_TIME: {
2978                 struct kvm_arch *ka = &vcpu->kvm->arch;
2979
2980                 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2981                         bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2982
2983                         if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2984                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2985
2986                         ka->boot_vcpu_runs_old_kvmclock = tmp;
2987                 }
2988
2989                 vcpu->arch.time = data;
2990                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2991
2992                 /* we verify if the enable bit is set... */
2993                 vcpu->arch.pv_time_enabled = false;
2994                 if (!(data & 1))
2995                         break;
2996
2997                 if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2998                      &vcpu->arch.pv_time, data & ~1ULL,
2999                      sizeof(struct pvclock_vcpu_time_info)))
3000                         vcpu->arch.pv_time_enabled = true;
3001
3002                 break;
3003         }
3004         case MSR_KVM_ASYNC_PF_EN:
3005                 if (kvm_pv_enable_async_pf(vcpu, data))
3006                         return 1;
3007                 break;
3008         case MSR_KVM_ASYNC_PF_INT:
3009                 if (kvm_pv_enable_async_pf_int(vcpu, data))
3010                         return 1;
3011                 break;
3012         case MSR_KVM_ASYNC_PF_ACK:
3013                 if (data & 0x1) {
3014                         vcpu->arch.apf.pageready_pending = false;
3015                         kvm_check_async_pf_completion(vcpu);
3016                 }
3017                 break;
3018         case MSR_KVM_STEAL_TIME:
3019
3020                 if (unlikely(!sched_info_on()))
3021                         return 1;
3022
3023                 if (data & KVM_STEAL_RESERVED_MASK)
3024                         return 1;
3025
3026                 vcpu->arch.st.msr_val = data;
3027
3028                 if (!(data & KVM_MSR_ENABLED))
3029                         break;
3030
3031                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3032
3033                 break;
3034         case MSR_KVM_PV_EOI_EN:
3035                 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
3036                         return 1;
3037                 break;
3038
3039         case MSR_KVM_POLL_CONTROL:
3040                 /* only enable bit supported */
3041                 if (data & (-1ULL << 1))
3042                         return 1;
3043
3044                 vcpu->arch.msr_kvm_poll_control = data;
3045                 break;
3046
3047         case MSR_IA32_MCG_CTL:
3048         case MSR_IA32_MCG_STATUS:
3049         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3050                 return set_msr_mce(vcpu, msr_info);
3051
3052         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3053         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3054                 pr = true; /* fall through */
3055         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3056         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3057                 if (kvm_pmu_is_valid_msr(vcpu, msr))
3058                         return kvm_pmu_set_msr(vcpu, msr_info);
3059
3060                 if (pr || data != 0)
3061                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3062                                     "0x%x data 0x%llx\n", msr, data);
3063                 break;
3064         case MSR_K7_CLK_CTL:
3065                 /*
3066                  * Ignore all writes to this no longer documented MSR.
3067                  * Writes are only relevant for old K7 processors,
3068                  * all pre-dating SVM, but a recommended workaround from
3069                  * AMD for these chips. It is possible to specify the
3070                  * affected processor models on the command line, hence
3071                  * the need to ignore the workaround.
3072                  */
3073                 break;
3074         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3075         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3076         case HV_X64_MSR_SYNDBG_OPTIONS:
3077         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3078         case HV_X64_MSR_CRASH_CTL:
3079         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3080         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3081         case HV_X64_MSR_TSC_EMULATION_CONTROL:
3082         case HV_X64_MSR_TSC_EMULATION_STATUS:
3083                 return kvm_hv_set_msr_common(vcpu, msr, data,
3084                                              msr_info->host_initiated);
3085         case MSR_IA32_BBL_CR_CTL3:
3086                 /* Drop writes to this legacy MSR -- see rdmsr
3087                  * counterpart for further detail.
3088                  */
3089                 if (report_ignored_msrs)
3090                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3091                                 msr, data);
3092                 break;
3093         case MSR_AMD64_OSVW_ID_LENGTH:
3094                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3095                         return 1;
3096                 vcpu->arch.osvw.length = data;
3097                 break;
3098         case MSR_AMD64_OSVW_STATUS:
3099                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3100                         return 1;
3101                 vcpu->arch.osvw.status = data;
3102                 break;
3103         case MSR_PLATFORM_INFO:
3104                 if (!msr_info->host_initiated ||
3105                     (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3106                      cpuid_fault_enabled(vcpu)))
3107                         return 1;
3108                 vcpu->arch.msr_platform_info = data;
3109                 break;
3110         case MSR_MISC_FEATURES_ENABLES:
3111                 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3112                     (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3113                      !supports_cpuid_fault(vcpu)))
3114                         return 1;
3115                 vcpu->arch.msr_misc_features_enables = data;
3116                 break;
3117         default:
3118                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
3119                         return xen_hvm_config(vcpu, data);
3120                 if (kvm_pmu_is_valid_msr(vcpu, msr))
3121                         return kvm_pmu_set_msr(vcpu, msr_info);
3122                 return KVM_MSR_RET_INVALID;
3123         }
3124         return 0;
3125 }
3126 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3127
3128 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3129 {
3130         u64 data;
3131         u64 mcg_cap = vcpu->arch.mcg_cap;
3132         unsigned bank_num = mcg_cap & 0xff;
3133
3134         switch (msr) {
3135         case MSR_IA32_P5_MC_ADDR:
3136         case MSR_IA32_P5_MC_TYPE:
3137                 data = 0;
3138                 break;
3139         case MSR_IA32_MCG_CAP:
3140                 data = vcpu->arch.mcg_cap;
3141                 break;
3142         case MSR_IA32_MCG_CTL:
3143                 if (!(mcg_cap & MCG_CTL_P) && !host)
3144                         return 1;
3145                 data = vcpu->arch.mcg_ctl;
3146                 break;
3147         case MSR_IA32_MCG_STATUS:
3148                 data = vcpu->arch.mcg_status;
3149                 break;
3150         default:
3151                 if (msr >= MSR_IA32_MC0_CTL &&
3152                     msr < MSR_IA32_MCx_CTL(bank_num)) {
3153                         u32 offset = array_index_nospec(
3154                                 msr - MSR_IA32_MC0_CTL,
3155                                 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3156
3157                         data = vcpu->arch.mce_banks[offset];
3158                         break;
3159                 }
3160                 return 1;
3161         }
3162         *pdata = data;
3163         return 0;
3164 }
3165
3166 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3167 {
3168         switch (msr_info->index) {
3169         case MSR_IA32_PLATFORM_ID:
3170         case MSR_IA32_EBL_CR_POWERON:
3171         case MSR_IA32_DEBUGCTLMSR:
3172         case MSR_IA32_LASTBRANCHFROMIP:
3173         case MSR_IA32_LASTBRANCHTOIP:
3174         case MSR_IA32_LASTINTFROMIP:
3175         case MSR_IA32_LASTINTTOIP:
3176         case MSR_K8_SYSCFG:
3177         case MSR_K8_TSEG_ADDR:
3178         case MSR_K8_TSEG_MASK:
3179         case MSR_VM_HSAVE_PA:
3180         case MSR_K8_INT_PENDING_MSG:
3181         case MSR_AMD64_NB_CFG:
3182         case MSR_FAM10H_MMIO_CONF_BASE:
3183         case MSR_AMD64_BU_CFG2:
3184         case MSR_IA32_PERF_CTL:
3185         case MSR_AMD64_DC_CFG:
3186         case MSR_F15H_EX_CFG:
3187         /*
3188          * Intel Sandy Bridge CPUs must support the RAPL (running average power
3189          * limit) MSRs. Just return 0, as we do not want to expose the host
3190          * data here. Do not conditionalize this on CPUID, as KVM does not do
3191          * so for existing CPU-specific MSRs.
3192          */
3193         case MSR_RAPL_POWER_UNIT:
3194         case MSR_PP0_ENERGY_STATUS:     /* Power plane 0 (core) */
3195         case MSR_PP1_ENERGY_STATUS:     /* Power plane 1 (graphics uncore) */
3196         case MSR_PKG_ENERGY_STATUS:     /* Total package */
3197         case MSR_DRAM_ENERGY_STATUS:    /* DRAM controller */
3198                 msr_info->data = 0;
3199                 break;
3200         case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3201         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3202         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3203         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3204         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3205                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3206                         return kvm_pmu_get_msr(vcpu, msr_info);
3207                 msr_info->data = 0;
3208                 break;
3209         case MSR_IA32_UCODE_REV:
3210                 msr_info->data = vcpu->arch.microcode_version;
3211                 break;
3212         case MSR_IA32_ARCH_CAPABILITIES:
3213                 if (!msr_info->host_initiated &&
3214                     !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3215                         return 1;
3216                 msr_info->data = vcpu->arch.arch_capabilities;
3217                 break;
3218         case MSR_IA32_PERF_CAPABILITIES:
3219                 if (!msr_info->host_initiated &&
3220                     !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3221                         return 1;
3222                 msr_info->data = vcpu->arch.perf_capabilities;
3223                 break;
3224         case MSR_IA32_POWER_CTL:
3225                 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3226                 break;
3227         case MSR_IA32_TSC:
3228                 msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset;
3229                 break;
3230         case MSR_MTRRcap:
3231         case 0x200 ... 0x2ff:
3232                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3233         case 0xcd: /* fsb frequency */
3234                 msr_info->data = 3;
3235                 break;
3236                 /*
3237                  * MSR_EBC_FREQUENCY_ID
3238                  * Conservative value valid for even the basic CPU models.
3239                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3240                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3241                  * and 266MHz for model 3, or 4. Set Core Clock
3242                  * Frequency to System Bus Frequency Ratio to 1 (bits
3243                  * 31:24) even though these are only valid for CPU
3244                  * models > 2, however guests may end up dividing or
3245                  * multiplying by zero otherwise.
3246                  */
3247         case MSR_EBC_FREQUENCY_ID:
3248                 msr_info->data = 1 << 24;
3249                 break;
3250         case MSR_IA32_APICBASE:
3251                 msr_info->data = kvm_get_apic_base(vcpu);
3252                 break;
3253         case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3254                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3255         case MSR_IA32_TSCDEADLINE:
3256                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3257                 break;
3258         case MSR_IA32_TSC_ADJUST:
3259                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3260                 break;
3261         case MSR_IA32_MISC_ENABLE:
3262                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3263                 break;
3264         case MSR_IA32_SMBASE:
3265                 if (!msr_info->host_initiated)
3266                         return 1;
3267                 msr_info->data = vcpu->arch.smbase;
3268                 break;
3269         case MSR_SMI_COUNT:
3270                 msr_info->data = vcpu->arch.smi_count;
3271                 break;
3272         case MSR_IA32_PERF_STATUS:
3273                 /* TSC increment by tick */
3274                 msr_info->data = 1000ULL;
3275                 /* CPU multiplier */
3276                 msr_info->data |= (((uint64_t)4ULL) << 40);
3277                 break;
3278         case MSR_EFER:
3279                 msr_info->data = vcpu->arch.efer;
3280                 break;
3281         case MSR_KVM_WALL_CLOCK:
3282         case MSR_KVM_WALL_CLOCK_NEW:
3283                 msr_info->data = vcpu->kvm->arch.wall_clock;
3284                 break;
3285         case MSR_KVM_SYSTEM_TIME:
3286         case MSR_KVM_SYSTEM_TIME_NEW:
3287                 msr_info->data = vcpu->arch.time;
3288                 break;
3289         case MSR_KVM_ASYNC_PF_EN:
3290                 msr_info->data = vcpu->arch.apf.msr_en_val;
3291                 break;
3292         case MSR_KVM_ASYNC_PF_INT:
3293                 msr_info->data = vcpu->arch.apf.msr_int_val;
3294                 break;
3295         case MSR_KVM_ASYNC_PF_ACK:
3296                 msr_info->data = 0;
3297                 break;
3298         case MSR_KVM_STEAL_TIME:
3299                 msr_info->data = vcpu->arch.st.msr_val;
3300                 break;
3301         case MSR_KVM_PV_EOI_EN:
3302                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
3303                 break;
3304         case MSR_KVM_POLL_CONTROL:
3305                 msr_info->data = vcpu->arch.msr_kvm_poll_control;
3306                 break;
3307         case MSR_IA32_P5_MC_ADDR:
3308         case MSR_IA32_P5_MC_TYPE:
3309         case MSR_IA32_MCG_CAP:
3310         case MSR_IA32_MCG_CTL:
3311         case MSR_IA32_MCG_STATUS:
3312         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3313                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3314                                    msr_info->host_initiated);
3315         case MSR_IA32_XSS:
3316                 if (!msr_info->host_initiated &&
3317                     !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3318                         return 1;
3319                 msr_info->data = vcpu->arch.ia32_xss;
3320                 break;
3321         case MSR_K7_CLK_CTL:
3322                 /*
3323                  * Provide expected ramp-up count for K7. All other
3324                  * are set to zero, indicating minimum divisors for
3325                  * every field.
3326                  *
3327                  * This prevents guest kernels on AMD host with CPU
3328                  * type 6, model 8 and higher from exploding due to
3329                  * the rdmsr failing.
3330                  */
3331                 msr_info->data = 0x20000000;
3332                 break;
3333         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3334         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3335         case HV_X64_MSR_SYNDBG_OPTIONS:
3336         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3337         case HV_X64_MSR_CRASH_CTL:
3338         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3339         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3340         case HV_X64_MSR_TSC_EMULATION_CONTROL:
3341         case HV_X64_MSR_TSC_EMULATION_STATUS:
3342                 return kvm_hv_get_msr_common(vcpu,
3343                                              msr_info->index, &msr_info->data,
3344                                              msr_info->host_initiated);
3345         case MSR_IA32_BBL_CR_CTL3:
3346                 /* This legacy MSR exists but isn't fully documented in current
3347                  * silicon.  It is however accessed by winxp in very narrow
3348                  * scenarios where it sets bit #19, itself documented as
3349                  * a "reserved" bit.  Best effort attempt to source coherent
3350                  * read data here should the balance of the register be
3351                  * interpreted by the guest:
3352                  *
3353                  * L2 cache control register 3: 64GB range, 256KB size,
3354                  * enabled, latency 0x1, configured
3355                  */
3356                 msr_info->data = 0xbe702111;
3357                 break;
3358         case MSR_AMD64_OSVW_ID_LENGTH:
3359                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3360                         return 1;
3361                 msr_info->data = vcpu->arch.osvw.length;
3362                 break;
3363         case MSR_AMD64_OSVW_STATUS:
3364                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3365                         return 1;
3366                 msr_info->data = vcpu->arch.osvw.status;
3367                 break;
3368         case MSR_PLATFORM_INFO:
3369                 if (!msr_info->host_initiated &&
3370                     !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3371                         return 1;
3372                 msr_info->data = vcpu->arch.msr_platform_info;
3373                 break;
3374         case MSR_MISC_FEATURES_ENABLES:
3375                 msr_info->data = vcpu->arch.msr_misc_features_enables;
3376                 break;
3377         case MSR_K7_HWCR:
3378                 msr_info->data = vcpu->arch.msr_hwcr;
3379                 break;
3380         default:
3381                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3382                         return kvm_pmu_get_msr(vcpu, msr_info);
3383                 return KVM_MSR_RET_INVALID;
3384         }
3385         return 0;
3386 }
3387 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3388
3389 /*
3390  * Read or write a bunch of msrs. All parameters are kernel addresses.
3391  *
3392  * @return number of msrs set successfully.
3393  */
3394 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3395                     struct kvm_msr_entry *entries,
3396                     int (*do_msr)(struct kvm_vcpu *vcpu,
3397                                   unsigned index, u64 *data))
3398 {
3399         int i;
3400
3401         for (i = 0; i < msrs->nmsrs; ++i)
3402                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
3403                         break;
3404
3405         return i;
3406 }
3407
3408 /*
3409  * Read or write a bunch of msrs. Parameters are user addresses.
3410  *
3411  * @return number of msrs set successfully.
3412  */
3413 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3414                   int (*do_msr)(struct kvm_vcpu *vcpu,
3415                                 unsigned index, u64 *data),
3416                   int writeback)
3417 {
3418         struct kvm_msrs msrs;
3419         struct kvm_msr_entry *entries;
3420         int r, n;
3421         unsigned size;
3422
3423         r = -EFAULT;
3424         if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3425                 goto out;
3426
3427         r = -E2BIG;
3428         if (msrs.nmsrs >= MAX_IO_MSRS)
3429                 goto out;
3430
3431         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3432         entries = memdup_user(user_msrs->entries, size);
3433         if (IS_ERR(entries)) {
3434                 r = PTR_ERR(entries);
3435                 goto out;
3436         }
3437
3438         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3439         if (r < 0)
3440                 goto out_free;
3441
3442         r = -EFAULT;
3443         if (writeback && copy_to_user(user_msrs->entries, entries, size))
3444                 goto out_free;
3445
3446         r = n;
3447
3448 out_free:
3449         kfree(entries);
3450 out:
3451         return r;
3452 }
3453
3454 static inline bool kvm_can_mwait_in_guest(void)
3455 {
3456         return boot_cpu_has(X86_FEATURE_MWAIT) &&
3457                 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
3458                 boot_cpu_has(X86_FEATURE_ARAT);
3459 }
3460
3461 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
3462 {
3463         int r = 0;
3464
3465         switch (ext) {
3466         case KVM_CAP_IRQCHIP:
3467         case KVM_CAP_HLT:
3468         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3469         case KVM_CAP_SET_TSS_ADDR:
3470         case KVM_CAP_EXT_CPUID:
3471         case KVM_CAP_EXT_EMUL_CPUID:
3472         case KVM_CAP_CLOCKSOURCE:
3473         case KVM_CAP_PIT:
3474         case KVM_CAP_NOP_IO_DELAY:
3475         case KVM_CAP_MP_STATE:
3476         case KVM_CAP_SYNC_MMU:
3477         case KVM_CAP_USER_NMI:
3478         case KVM_CAP_REINJECT_CONTROL:
3479         case KVM_CAP_IRQ_INJECT_STATUS:
3480         case KVM_CAP_IOEVENTFD:
3481         case KVM_CAP_IOEVENTFD_NO_LENGTH:
3482         case KVM_CAP_PIT2:
3483         case KVM_CAP_PIT_STATE2:
3484         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3485         case KVM_CAP_XEN_HVM:
3486         case KVM_CAP_VCPU_EVENTS:
3487         case KVM_CAP_HYPERV:
3488         case KVM_CAP_HYPERV_VAPIC:
3489         case KVM_CAP_HYPERV_SPIN:
3490         case KVM_CAP_HYPERV_SYNIC:
3491         case KVM_CAP_HYPERV_SYNIC2:
3492         case KVM_CAP_HYPERV_VP_INDEX:
3493         case KVM_CAP_HYPERV_EVENTFD:
3494         case KVM_CAP_HYPERV_TLBFLUSH:
3495         case KVM_CAP_HYPERV_SEND_IPI:
3496         case KVM_CAP_HYPERV_CPUID:
3497         case KVM_CAP_PCI_SEGMENT:
3498         case KVM_CAP_DEBUGREGS:
3499         case KVM_CAP_X86_ROBUST_SINGLESTEP:
3500         case KVM_CAP_XSAVE:
3501         case KVM_CAP_ASYNC_PF:
3502         case KVM_CAP_ASYNC_PF_INT:
3503         case KVM_CAP_GET_TSC_KHZ:
3504         case KVM_CAP_KVMCLOCK_CTRL:
3505         case KVM_CAP_READONLY_MEM:
3506         case KVM_CAP_HYPERV_TIME:
3507         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3508         case KVM_CAP_TSC_DEADLINE_TIMER:
3509         case KVM_CAP_DISABLE_QUIRKS:
3510         case KVM_CAP_SET_BOOT_CPU_ID:
3511         case KVM_CAP_SPLIT_IRQCHIP:
3512         case KVM_CAP_IMMEDIATE_EXIT:
3513         case KVM_CAP_PMU_EVENT_FILTER:
3514         case KVM_CAP_GET_MSR_FEATURES:
3515         case KVM_CAP_MSR_PLATFORM_INFO:
3516         case KVM_CAP_EXCEPTION_PAYLOAD:
3517         case KVM_CAP_SET_GUEST_DEBUG:
3518         case KVM_CAP_LAST_CPU:
3519                 r = 1;
3520                 break;
3521         case KVM_CAP_SYNC_REGS:
3522                 r = KVM_SYNC_X86_VALID_FIELDS;
3523                 break;
3524         case KVM_CAP_ADJUST_CLOCK:
3525                 r = KVM_CLOCK_TSC_STABLE;
3526                 break;
3527         case KVM_CAP_X86_DISABLE_EXITS:
3528                 r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
3529                       KVM_X86_DISABLE_EXITS_CSTATE;
3530                 if(kvm_can_mwait_in_guest())
3531                         r |= KVM_X86_DISABLE_EXITS_MWAIT;
3532                 break;
3533         case KVM_CAP_X86_SMM:
3534                 /* SMBASE is usually relocated above 1M on modern chipsets,
3535                  * and SMM handlers might indeed rely on 4G segment limits,
3536                  * so do not report SMM to be available if real mode is
3537                  * emulated via vm86 mode.  Still, do not go to great lengths
3538                  * to avoid userspace's usage of the feature, because it is a
3539                  * fringe case that is not enabled except via specific settings
3540                  * of the module parameters.
3541                  */
3542                 r = kvm_x86_ops.has_emulated_msr(MSR_IA32_SMBASE);
3543                 break;
3544         case KVM_CAP_VAPIC:
3545                 r = !kvm_x86_ops.cpu_has_accelerated_tpr();
3546                 break;
3547         case KVM_CAP_NR_VCPUS:
3548                 r = KVM_SOFT_MAX_VCPUS;
3549                 break;
3550         case KVM_CAP_MAX_VCPUS:
3551                 r = KVM_MAX_VCPUS;
3552                 break;
3553         case KVM_CAP_MAX_VCPU_ID:
3554                 r = KVM_MAX_VCPU_ID;
3555                 break;
3556         case KVM_CAP_PV_MMU:    /* obsolete */
3557                 r = 0;
3558                 break;
3559         case KVM_CAP_MCE:
3560                 r = KVM_MAX_MCE_BANKS;
3561                 break;
3562         case KVM_CAP_XCRS:
3563                 r = boot_cpu_has(X86_FEATURE_XSAVE);
3564                 break;
3565         case KVM_CAP_TSC_CONTROL:
3566                 r = kvm_has_tsc_control;
3567                 break;
3568         case KVM_CAP_X2APIC_API:
3569                 r = KVM_X2APIC_API_VALID_FLAGS;
3570                 break;
3571         case KVM_CAP_NESTED_STATE:
3572                 r = kvm_x86_ops.nested_ops->get_state ?
3573                         kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
3574                 break;
3575         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
3576                 r = kvm_x86_ops.enable_direct_tlbflush != NULL;
3577                 break;
3578         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3579                 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
3580                 break;
3581         case KVM_CAP_SMALLER_MAXPHYADDR:
3582                 r = (int) allow_smaller_maxphyaddr;
3583                 break;
3584         case KVM_CAP_STEAL_TIME:
3585                 r = sched_info_on();
3586                 break;
3587         default:
3588                 break;
3589         }
3590         return r;
3591
3592 }
3593
3594 long kvm_arch_dev_ioctl(struct file *filp,
3595                         unsigned int ioctl, unsigned long arg)
3596 {
3597         void __user *argp = (void __user *)arg;
3598         long r;
3599
3600         switch (ioctl) {
3601         case KVM_GET_MSR_INDEX_LIST: {
3602                 struct kvm_msr_list __user *user_msr_list = argp;
3603                 struct kvm_msr_list msr_list;
3604                 unsigned n;
3605
3606                 r = -EFAULT;
3607                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3608                         goto out;
3609                 n = msr_list.nmsrs;
3610                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3611                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3612                         goto out;
3613                 r = -E2BIG;
3614                 if (n < msr_list.nmsrs)
3615                         goto out;
3616                 r = -EFAULT;
3617                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3618                                  num_msrs_to_save * sizeof(u32)))
3619                         goto out;
3620                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3621                                  &emulated_msrs,
3622                                  num_emulated_msrs * sizeof(u32)))
3623                         goto out;
3624                 r = 0;
3625                 break;
3626         }
3627         case KVM_GET_SUPPORTED_CPUID:
3628         case KVM_GET_EMULATED_CPUID: {
3629                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3630                 struct kvm_cpuid2 cpuid;
3631
3632                 r = -EFAULT;
3633                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3634                         goto out;
3635
3636                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3637                                             ioctl);
3638                 if (r)
3639                         goto out;
3640
3641                 r = -EFAULT;
3642                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3643                         goto out;
3644                 r = 0;
3645                 break;
3646         }
3647         case KVM_X86_GET_MCE_CAP_SUPPORTED:
3648                 r = -EFAULT;
3649                 if (copy_to_user(argp, &kvm_mce_cap_supported,
3650                                  sizeof(kvm_mce_cap_supported)))
3651                         goto out;
3652                 r = 0;
3653                 break;
3654         case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3655                 struct kvm_msr_list __user *user_msr_list = argp;
3656                 struct kvm_msr_list msr_list;
3657                 unsigned int n;
3658
3659                 r = -EFAULT;
3660                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3661                         goto out;
3662                 n = msr_list.nmsrs;
3663                 msr_list.nmsrs = num_msr_based_features;
3664                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3665                         goto out;
3666                 r = -E2BIG;
3667                 if (n < msr_list.nmsrs)
3668                         goto out;
3669                 r = -EFAULT;
3670                 if (copy_to_user(user_msr_list->indices, &msr_based_features,
3671                                  num_msr_based_features * sizeof(u32)))
3672                         goto out;
3673                 r = 0;
3674                 break;
3675         }
3676         case KVM_GET_MSRS:
3677                 r = msr_io(NULL, argp, do_get_msr_feature, 1);
3678                 break;
3679         default:
3680                 r = -EINVAL;
3681                 break;
3682         }
3683 out:
3684         return r;
3685 }
3686
3687 static void wbinvd_ipi(void *garbage)
3688 {
3689         wbinvd();
3690 }
3691
3692 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3693 {
3694         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3695 }
3696
3697 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3698 {
3699         /* Address WBINVD may be executed by guest */
3700         if (need_emulate_wbinvd(vcpu)) {
3701                 if (kvm_x86_ops.has_wbinvd_exit())
3702                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3703                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3704                         smp_call_function_single(vcpu->cpu,
3705                                         wbinvd_ipi, NULL, 1);
3706         }
3707
3708         kvm_x86_ops.vcpu_load(vcpu, cpu);
3709
3710         /* Save host pkru register if supported */
3711         vcpu->arch.host_pkru = read_pkru();
3712
3713         /* Apply any externally detected TSC adjustments (due to suspend) */
3714         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3715                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3716                 vcpu->arch.tsc_offset_adjustment = 0;
3717                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3718         }
3719
3720         if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3721                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3722                                 rdtsc() - vcpu->arch.last_host_tsc;
3723                 if (tsc_delta < 0)
3724                         mark_tsc_unstable("KVM discovered backwards TSC");
3725
3726                 if (kvm_check_tsc_unstable()) {
3727                         u64 offset = kvm_compute_tsc_offset(vcpu,
3728                                                 vcpu->arch.last_guest_tsc);
3729                         kvm_vcpu_write_tsc_offset(vcpu, offset);
3730                         vcpu->arch.tsc_catchup = 1;
3731                 }
3732
3733                 if (kvm_lapic_hv_timer_in_use(vcpu))
3734                         kvm_lapic_restart_hv_timer(vcpu);
3735
3736                 /*
3737                  * On a host with synchronized TSC, there is no need to update
3738                  * kvmclock on vcpu->cpu migration
3739                  */
3740                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3741                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3742                 if (vcpu->cpu != cpu)
3743                         kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3744                 vcpu->cpu = cpu;
3745         }
3746
3747         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3748 }
3749
3750 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3751 {
3752         struct kvm_host_map map;
3753         struct kvm_steal_time *st;
3754
3755         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3756                 return;
3757
3758         if (vcpu->arch.st.preempted)
3759                 return;
3760
3761         if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT, &map,
3762                         &vcpu->arch.st.cache, true))
3763                 return;
3764
3765         st = map.hva +
3766                 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
3767
3768         st->preempted = vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
3769
3770         kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, true);
3771 }
3772
3773 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3774 {
3775         int idx;
3776
3777         if (vcpu->preempted)
3778                 vcpu->arch.preempted_in_kernel = !kvm_x86_ops.get_cpl(vcpu);
3779
3780         /*
3781          * Disable page faults because we're in atomic context here.
3782          * kvm_write_guest_offset_cached() would call might_fault()
3783          * that relies on pagefault_disable() to tell if there's a
3784          * bug. NOTE: the write to guest memory may not go through if
3785          * during postcopy live migration or if there's heavy guest
3786          * paging.
3787          */
3788         pagefault_disable();
3789         /*
3790          * kvm_memslots() will be called by
3791          * kvm_write_guest_offset_cached() so take the srcu lock.
3792          */
3793         idx = srcu_read_lock(&vcpu->kvm->srcu);
3794         kvm_steal_time_set_preempted(vcpu);
3795         srcu_read_unlock(&vcpu->kvm->srcu, idx);
3796         pagefault_enable();
3797         kvm_x86_ops.vcpu_put(vcpu);
3798         vcpu->arch.last_host_tsc = rdtsc();
3799         /*
3800          * If userspace has set any breakpoints or watchpoints, dr6 is restored
3801          * on every vmexit, but if not, we might have a stale dr6 from the
3802          * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3803          */
3804         set_debugreg(0, 6);
3805 }
3806
3807 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3808                                     struct kvm_lapic_state *s)
3809 {
3810         if (vcpu->arch.apicv_active)
3811                 kvm_x86_ops.sync_pir_to_irr(vcpu);
3812
3813         return kvm_apic_get_state(vcpu, s);
3814 }
3815
3816 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3817                                     struct kvm_lapic_state *s)
3818 {
3819         int r;
3820
3821         r = kvm_apic_set_state(vcpu, s);
3822         if (r)
3823                 return r;
3824         update_cr8_intercept(vcpu);
3825
3826         return 0;
3827 }
3828
3829 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
3830 {
3831         return (!lapic_in_kernel(vcpu) ||
3832                 kvm_apic_accept_pic_intr(vcpu));
3833 }
3834
3835 /*
3836  * if userspace requested an interrupt window, check that the
3837  * interrupt window is open.
3838  *
3839  * No need to exit to userspace if we already have an interrupt queued.
3840  */
3841 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
3842 {
3843         return kvm_arch_interrupt_allowed(vcpu) &&
3844                 !kvm_cpu_has_interrupt(vcpu) &&
3845                 !kvm_event_needs_reinjection(vcpu) &&
3846                 kvm_cpu_accept_dm_intr(vcpu);
3847 }
3848
3849 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3850                                     struct kvm_interrupt *irq)
3851 {
3852         if (irq->irq >= KVM_NR_INTERRUPTS)
3853                 return -EINVAL;
3854
3855         if (!irqchip_in_kernel(vcpu->kvm)) {
3856                 kvm_queue_interrupt(vcpu, irq->irq, false);
3857                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3858                 return 0;
3859         }
3860
3861         /*
3862          * With in-kernel LAPIC, we only use this to inject EXTINT, so
3863          * fail for in-kernel 8259.
3864          */
3865         if (pic_in_kernel(vcpu->kvm))
3866                 return -ENXIO;
3867
3868         if (vcpu->arch.pending_external_vector != -1)
3869                 return -EEXIST;
3870
3871         vcpu->arch.pending_external_vector = irq->irq;
3872         kvm_make_request(KVM_REQ_EVENT, vcpu);
3873         return 0;
3874 }
3875
3876 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3877 {
3878         kvm_inject_nmi(vcpu);
3879
3880         return 0;
3881 }
3882
3883 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3884 {
3885         kvm_make_request(KVM_REQ_SMI, vcpu);
3886
3887         return 0;
3888 }
3889
3890 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3891                                            struct kvm_tpr_access_ctl *tac)
3892 {
3893         if (tac->flags)
3894                 return -EINVAL;
3895         vcpu->arch.tpr_access_reporting = !!tac->enabled;
3896         return 0;
3897 }
3898
3899 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3900                                         u64 mcg_cap)
3901 {
3902         int r;
3903         unsigned bank_num = mcg_cap & 0xff, bank;
3904
3905         r = -EINVAL;
3906         if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
3907                 goto out;
3908         if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3909                 goto out;
3910         r = 0;
3911         vcpu->arch.mcg_cap = mcg_cap;
3912         /* Init IA32_MCG_CTL to all 1s */
3913         if (mcg_cap & MCG_CTL_P)
3914                 vcpu->arch.mcg_ctl = ~(u64)0;
3915         /* Init IA32_MCi_CTL to all 1s */
3916         for (bank = 0; bank < bank_num; bank++)
3917                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3918
3919         kvm_x86_ops.setup_mce(vcpu);
3920 out:
3921         return r;
3922 }
3923
3924 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3925                                       struct kvm_x86_mce *mce)
3926 {
3927         u64 mcg_cap = vcpu->arch.mcg_cap;
3928         unsigned bank_num = mcg_cap & 0xff;
3929         u64 *banks = vcpu->arch.mce_banks;
3930
3931         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3932                 return -EINVAL;
3933         /*
3934          * if IA32_MCG_CTL is not all 1s, the uncorrected error
3935          * reporting is disabled
3936          */
3937         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3938             vcpu->arch.mcg_ctl != ~(u64)0)
3939                 return 0;
3940         banks += 4 * mce->bank;
3941         /*
3942          * if IA32_MCi_CTL is not all 1s, the uncorrected error
3943          * reporting is disabled for the bank
3944          */
3945         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3946                 return 0;
3947         if (mce->status & MCI_STATUS_UC) {
3948                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3949                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3950                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3951                         return 0;
3952                 }
3953                 if (banks[1] & MCI_STATUS_VAL)
3954                         mce->status |= MCI_STATUS_OVER;
3955                 banks[2] = mce->addr;
3956                 banks[3] = mce->misc;
3957                 vcpu->arch.mcg_status = mce->mcg_status;
3958                 banks[1] = mce->status;
3959                 kvm_queue_exception(vcpu, MC_VECTOR);
3960         } else if (!(banks[1] & MCI_STATUS_VAL)
3961                    || !(banks[1] & MCI_STATUS_UC)) {
3962                 if (banks[1] & MCI_STATUS_VAL)
3963                         mce->status |= MCI_STATUS_OVER;
3964                 banks[2] = mce->addr;
3965                 banks[3] = mce->misc;
3966                 banks[1] = mce->status;
3967         } else
3968                 banks[1] |= MCI_STATUS_OVER;
3969         return 0;
3970 }
3971
3972 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3973                                                struct kvm_vcpu_events *events)
3974 {
3975         process_nmi(vcpu);
3976
3977         /*
3978          * In guest mode, payload delivery should be deferred,
3979          * so that the L1 hypervisor can intercept #PF before
3980          * CR2 is modified (or intercept #DB before DR6 is
3981          * modified under nVMX). Unless the per-VM capability,
3982          * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
3983          * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
3984          * opportunistically defer the exception payload, deliver it if the
3985          * capability hasn't been requested before processing a
3986          * KVM_GET_VCPU_EVENTS.
3987          */
3988         if (!vcpu->kvm->arch.exception_payload_enabled &&
3989             vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
3990                 kvm_deliver_exception_payload(vcpu);
3991
3992         /*
3993          * The API doesn't provide the instruction length for software
3994          * exceptions, so don't report them. As long as the guest RIP
3995          * isn't advanced, we should expect to encounter the exception
3996          * again.
3997          */
3998         if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
3999                 events->exception.injected = 0;
4000                 events->exception.pending = 0;
4001         } else {
4002                 events->exception.injected = vcpu->arch.exception.injected;
4003                 events->exception.pending = vcpu->arch.exception.pending;
4004                 /*
4005                  * For ABI compatibility, deliberately conflate
4006                  * pending and injected exceptions when
4007                  * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
4008                  */
4009                 if (!vcpu->kvm->arch.exception_payload_enabled)
4010                         events->exception.injected |=
4011                                 vcpu->arch.exception.pending;
4012         }
4013         events->exception.nr = vcpu->arch.exception.nr;
4014         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
4015         events->exception.error_code = vcpu->arch.exception.error_code;
4016         events->exception_has_payload = vcpu->arch.exception.has_payload;
4017         events->exception_payload = vcpu->arch.exception.payload;
4018
4019         events->interrupt.injected =
4020                 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
4021         events->interrupt.nr = vcpu->arch.interrupt.nr;
4022         events->interrupt.soft = 0;
4023         events->interrupt.shadow = kvm_x86_ops.get_interrupt_shadow(vcpu);
4024
4025         events->nmi.injected = vcpu->arch.nmi_injected;
4026         events->nmi.pending = vcpu->arch.nmi_pending != 0;
4027         events->nmi.masked = kvm_x86_ops.get_nmi_mask(vcpu);
4028         events->nmi.pad = 0;
4029
4030         events->sipi_vector = 0; /* never valid when reporting to user space */
4031
4032         events->smi.smm = is_smm(vcpu);
4033         events->smi.pending = vcpu->arch.smi_pending;
4034         events->smi.smm_inside_nmi =
4035                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
4036         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
4037
4038         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
4039                          | KVM_VCPUEVENT_VALID_SHADOW
4040                          | KVM_VCPUEVENT_VALID_SMM);
4041         if (vcpu->kvm->arch.exception_payload_enabled)
4042                 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4043
4044         memset(&events->reserved, 0, sizeof(events->reserved));
4045 }
4046
4047 static void kvm_smm_changed(struct kvm_vcpu *vcpu);
4048
4049 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
4050                                               struct kvm_vcpu_events *events)
4051 {
4052         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4053                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4054                               | KVM_VCPUEVENT_VALID_SHADOW
4055                               | KVM_VCPUEVENT_VALID_SMM
4056                               | KVM_VCPUEVENT_VALID_PAYLOAD))
4057                 return -EINVAL;
4058
4059         if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4060                 if (!vcpu->kvm->arch.exception_payload_enabled)
4061                         return -EINVAL;
4062                 if (events->exception.pending)
4063                         events->exception.injected = 0;
4064                 else
4065                         events->exception_has_payload = 0;
4066         } else {
4067                 events->exception.pending = 0;
4068                 events->exception_has_payload = 0;
4069         }
4070
4071         if ((events->exception.injected || events->exception.pending) &&
4072             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
4073                 return -EINVAL;
4074
4075         /* INITs are latched while in SMM */
4076         if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4077             (events->smi.smm || events->smi.pending) &&
4078             vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4079                 return -EINVAL;
4080
4081         process_nmi(vcpu);
4082         vcpu->arch.exception.injected = events->exception.injected;
4083         vcpu->arch.exception.pending = events->exception.pending;
4084         vcpu->arch.exception.nr = events->exception.nr;
4085         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4086         vcpu->arch.exception.error_code = events->exception.error_code;
4087         vcpu->arch.exception.has_payload = events->exception_has_payload;
4088         vcpu->arch.exception.payload = events->exception_payload;
4089
4090         vcpu->arch.interrupt.injected = events->interrupt.injected;
4091         vcpu->arch.interrupt.nr = events->interrupt.nr;
4092         vcpu->arch.interrupt.soft = events->interrupt.soft;
4093         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
4094                 kvm_x86_ops.set_interrupt_shadow(vcpu,
4095                                                   events->interrupt.shadow);
4096
4097         vcpu->arch.nmi_injected = events->nmi.injected;
4098         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
4099                 vcpu->arch.nmi_pending = events->nmi.pending;
4100         kvm_x86_ops.set_nmi_mask(vcpu, events->nmi.masked);
4101
4102         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
4103             lapic_in_kernel(vcpu))
4104                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
4105
4106         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
4107                 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
4108                         if (events->smi.smm)
4109                                 vcpu->arch.hflags |= HF_SMM_MASK;
4110                         else
4111                                 vcpu->arch.hflags &= ~HF_SMM_MASK;
4112                         kvm_smm_changed(vcpu);
4113                 }
4114
4115                 vcpu->arch.smi_pending = events->smi.pending;
4116
4117                 if (events->smi.smm) {
4118                         if (events->smi.smm_inside_nmi)
4119                                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
4120                         else
4121                                 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
4122                 }
4123
4124                 if (lapic_in_kernel(vcpu)) {
4125                         if (events->smi.latched_init)
4126                                 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4127                         else
4128                                 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4129                 }
4130         }
4131
4132         kvm_make_request(KVM_REQ_EVENT, vcpu);
4133
4134         return 0;
4135 }
4136
4137 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
4138                                              struct kvm_debugregs *dbgregs)
4139 {
4140         unsigned long val;
4141
4142         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
4143         kvm_get_dr(vcpu, 6, &val);
4144         dbgregs->dr6 = val;
4145         dbgregs->dr7 = vcpu->arch.dr7;
4146         dbgregs->flags = 0;
4147         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
4148 }
4149
4150 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
4151                                             struct kvm_debugregs *dbgregs)
4152 {
4153         if (dbgregs->flags)
4154                 return -EINVAL;
4155
4156         if (dbgregs->dr6 & ~0xffffffffull)
4157                 return -EINVAL;
4158         if (dbgregs->dr7 & ~0xffffffffull)
4159                 return -EINVAL;
4160
4161         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
4162         kvm_update_dr0123(vcpu);
4163         vcpu->arch.dr6 = dbgregs->dr6;
4164         vcpu->arch.dr7 = dbgregs->dr7;
4165         kvm_update_dr7(vcpu);
4166
4167         return 0;
4168 }
4169
4170 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
4171
4172 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
4173 {
4174         struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4175         u64 xstate_bv = xsave->header.xfeatures;
4176         u64 valid;
4177
4178         /*
4179          * Copy legacy XSAVE area, to avoid complications with CPUID
4180          * leaves 0 and 1 in the loop below.
4181          */
4182         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
4183
4184         /* Set XSTATE_BV */
4185         xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
4186         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
4187
4188         /*
4189          * Copy each region from the possibly compacted offset to the
4190          * non-compacted offset.
4191          */
4192         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4193         while (valid) {
4194                 u64 xfeature_mask = valid & -valid;
4195                 int xfeature_nr = fls64(xfeature_mask) - 1;
4196                 void *src = get_xsave_addr(xsave, xfeature_nr);
4197
4198                 if (src) {
4199                         u32 size, offset, ecx, edx;
4200                         cpuid_count(XSTATE_CPUID, xfeature_nr,
4201                                     &size, &offset, &ecx, &edx);
4202                         if (xfeature_nr == XFEATURE_PKRU)
4203                                 memcpy(dest + offset, &vcpu->arch.pkru,
4204                                        sizeof(vcpu->arch.pkru));
4205                         else
4206                                 memcpy(dest + offset, src, size);
4207
4208                 }
4209
4210                 valid -= xfeature_mask;
4211         }
4212 }
4213
4214 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
4215 {
4216         struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4217         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
4218         u64 valid;
4219
4220         /*
4221          * Copy legacy XSAVE area, to avoid complications with CPUID
4222          * leaves 0 and 1 in the loop below.
4223          */
4224         memcpy(xsave, src, XSAVE_HDR_OFFSET);
4225
4226         /* Set XSTATE_BV and possibly XCOMP_BV.  */
4227         xsave->header.xfeatures = xstate_bv;
4228         if (boot_cpu_has(X86_FEATURE_XSAVES))
4229                 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
4230
4231         /*
4232          * Copy each region from the non-compacted offset to the
4233          * possibly compacted offset.
4234          */
4235         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4236         while (valid) {
4237                 u64 xfeature_mask = valid & -valid;
4238                 int xfeature_nr = fls64(xfeature_mask) - 1;
4239                 void *dest = get_xsave_addr(xsave, xfeature_nr);
4240
4241                 if (dest) {
4242                         u32 size, offset, ecx, edx;
4243                         cpuid_count(XSTATE_CPUID, xfeature_nr,
4244                                     &size, &offset, &ecx, &edx);
4245                         if (xfeature_nr == XFEATURE_PKRU)
4246                                 memcpy(&vcpu->arch.pkru, src + offset,
4247                                        sizeof(vcpu->arch.pkru));
4248                         else
4249                                 memcpy(dest, src + offset, size);
4250                 }
4251
4252                 valid -= xfeature_mask;
4253         }
4254 }
4255
4256 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4257                                          struct kvm_xsave *guest_xsave)
4258 {
4259         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4260                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
4261                 fill_xsave((u8 *) guest_xsave->region, vcpu);
4262         } else {
4263                 memcpy(guest_xsave->region,
4264                         &vcpu->arch.guest_fpu->state.fxsave,
4265                         sizeof(struct fxregs_state));
4266                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
4267                         XFEATURE_MASK_FPSSE;
4268         }
4269 }
4270
4271 #define XSAVE_MXCSR_OFFSET 24
4272
4273 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
4274                                         struct kvm_xsave *guest_xsave)
4275 {
4276         u64 xstate_bv =
4277                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
4278         u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
4279
4280         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4281                 /*
4282                  * Here we allow setting states that are not present in
4283                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
4284                  * with old userspace.
4285                  */
4286                 if (xstate_bv & ~supported_xcr0 || mxcsr & ~mxcsr_feature_mask)
4287                         return -EINVAL;
4288                 load_xsave(vcpu, (u8 *)guest_xsave->region);
4289         } else {
4290                 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
4291                         mxcsr & ~mxcsr_feature_mask)
4292                         return -EINVAL;
4293                 memcpy(&vcpu->arch.guest_fpu->state.fxsave,
4294                         guest_xsave->region, sizeof(struct fxregs_state));
4295         }
4296         return 0;
4297 }
4298
4299 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
4300                                         struct kvm_xcrs *guest_xcrs)
4301 {
4302         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
4303                 guest_xcrs->nr_xcrs = 0;
4304                 return;
4305         }
4306
4307         guest_xcrs->nr_xcrs = 1;
4308         guest_xcrs->flags = 0;
4309         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
4310         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
4311 }
4312
4313 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
4314                                        struct kvm_xcrs *guest_xcrs)
4315 {
4316         int i, r = 0;
4317
4318         if (!boot_cpu_has(X86_FEATURE_XSAVE))
4319                 return -EINVAL;
4320
4321         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
4322                 return -EINVAL;
4323
4324         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
4325                 /* Only support XCR0 currently */
4326                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
4327                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
4328                                 guest_xcrs->xcrs[i].value);
4329                         break;
4330                 }
4331         if (r)
4332                 r = -EINVAL;
4333         return r;
4334 }
4335
4336 /*
4337  * kvm_set_guest_paused() indicates to the guest kernel that it has been
4338  * stopped by the hypervisor.  This function will be called from the host only.
4339  * EINVAL is returned when the host attempts to set the flag for a guest that
4340  * does not support pv clocks.
4341  */
4342 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
4343 {
4344         if (!vcpu->arch.pv_time_enabled)
4345                 return -EINVAL;
4346         vcpu->arch.pvclock_set_guest_stopped_request = true;
4347         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4348         return 0;
4349 }
4350
4351 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
4352                                      struct kvm_enable_cap *cap)
4353 {
4354         int r;
4355         uint16_t vmcs_version;
4356         void __user *user_ptr;
4357
4358         if (cap->flags)
4359                 return -EINVAL;
4360
4361         switch (cap->cap) {
4362         case KVM_CAP_HYPERV_SYNIC2:
4363                 if (cap->args[0])
4364                         return -EINVAL;
4365                 /* fall through */
4366
4367         case KVM_CAP_HYPERV_SYNIC:
4368                 if (!irqchip_in_kernel(vcpu->kvm))
4369                         return -EINVAL;
4370                 return kvm_hv_activate_synic(vcpu, cap->cap ==
4371                                              KVM_CAP_HYPERV_SYNIC2);
4372         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4373                 if (!kvm_x86_ops.nested_ops->enable_evmcs)
4374                         return -ENOTTY;
4375                 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
4376                 if (!r) {
4377                         user_ptr = (void __user *)(uintptr_t)cap->args[0];
4378                         if (copy_to_user(user_ptr, &vmcs_version,
4379                                          sizeof(vmcs_version)))
4380                                 r = -EFAULT;
4381                 }
4382                 return r;
4383         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4384                 if (!kvm_x86_ops.enable_direct_tlbflush)
4385                         return -ENOTTY;
4386
4387                 return kvm_x86_ops.enable_direct_tlbflush(vcpu);
4388
4389         default:
4390                 return -EINVAL;
4391         }
4392 }
4393
4394 long kvm_arch_vcpu_ioctl(struct file *filp,
4395                          unsigned int ioctl, unsigned long arg)
4396 {
4397         struct kvm_vcpu *vcpu = filp->private_data;
4398         void __user *argp = (void __user *)arg;
4399         int r;
4400         union {
4401                 struct kvm_lapic_state *lapic;
4402                 struct kvm_xsave *xsave;
4403                 struct kvm_xcrs *xcrs;
4404                 void *buffer;
4405         } u;
4406
4407         vcpu_load(vcpu);
4408
4409         u.buffer = NULL;
4410         switch (ioctl) {
4411         case KVM_GET_LAPIC: {
4412                 r = -EINVAL;
4413                 if (!lapic_in_kernel(vcpu))
4414                         goto out;
4415                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
4416                                 GFP_KERNEL_ACCOUNT);
4417
4418                 r = -ENOMEM;
4419                 if (!u.lapic)
4420                         goto out;
4421                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
4422                 if (r)
4423                         goto out;
4424                 r = -EFAULT;
4425                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
4426                         goto out;
4427                 r = 0;
4428                 break;
4429         }
4430         case KVM_SET_LAPIC: {
4431                 r = -EINVAL;
4432                 if (!lapic_in_kernel(vcpu))
4433                         goto out;
4434                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
4435                 if (IS_ERR(u.lapic)) {
4436                         r = PTR_ERR(u.lapic);
4437                         goto out_nofree;
4438                 }
4439
4440                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
4441                 break;
4442         }
4443         case KVM_INTERRUPT: {
4444                 struct kvm_interrupt irq;
4445
4446                 r = -EFAULT;
4447                 if (copy_from_user(&irq, argp, sizeof(irq)))
4448                         goto out;
4449                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
4450                 break;
4451         }
4452         case KVM_NMI: {
4453                 r = kvm_vcpu_ioctl_nmi(vcpu);
4454                 break;
4455         }
4456         case KVM_SMI: {
4457                 r = kvm_vcpu_ioctl_smi(vcpu);
4458                 break;
4459         }
4460         case KVM_SET_CPUID: {
4461                 struct kvm_cpuid __user *cpuid_arg = argp;
4462                 struct kvm_cpuid cpuid;
4463
4464                 r = -EFAULT;
4465                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4466                         goto out;
4467                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4468                 break;
4469         }
4470         case KVM_SET_CPUID2: {
4471                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4472                 struct kvm_cpuid2 cpuid;
4473
4474                 r = -EFAULT;
4475                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4476                         goto out;
4477                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
4478                                               cpuid_arg->entries);
4479                 break;
4480         }
4481         case KVM_GET_CPUID2: {
4482                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4483                 struct kvm_cpuid2 cpuid;
4484
4485                 r = -EFAULT;
4486                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4487                         goto out;
4488                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
4489                                               cpuid_arg->entries);
4490                 if (r)
4491                         goto out;
4492                 r = -EFAULT;
4493                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4494                         goto out;
4495                 r = 0;
4496                 break;
4497         }
4498         case KVM_GET_MSRS: {
4499                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
4500                 r = msr_io(vcpu, argp, do_get_msr, 1);
4501                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4502                 break;
4503         }
4504         case KVM_SET_MSRS: {
4505                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
4506                 r = msr_io(vcpu, argp, do_set_msr, 0);
4507                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4508                 break;
4509         }
4510         case KVM_TPR_ACCESS_REPORTING: {
4511                 struct kvm_tpr_access_ctl tac;
4512
4513                 r = -EFAULT;
4514                 if (copy_from_user(&tac, argp, sizeof(tac)))
4515                         goto out;
4516                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
4517                 if (r)
4518                         goto out;
4519                 r = -EFAULT;
4520                 if (copy_to_user(argp, &tac, sizeof(tac)))
4521                         goto out;
4522                 r = 0;
4523                 break;
4524         };
4525         case KVM_SET_VAPIC_ADDR: {
4526                 struct kvm_vapic_addr va;
4527                 int idx;
4528
4529                 r = -EINVAL;
4530                 if (!lapic_in_kernel(vcpu))
4531                         goto out;
4532                 r = -EFAULT;
4533                 if (copy_from_user(&va, argp, sizeof(va)))
4534                         goto out;
4535                 idx = srcu_read_lock(&vcpu->kvm->srcu);
4536                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
4537                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4538                 break;
4539         }
4540         case KVM_X86_SETUP_MCE: {
4541                 u64 mcg_cap;
4542
4543                 r = -EFAULT;
4544                 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
4545                         goto out;
4546                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
4547                 break;
4548         }
4549         case KVM_X86_SET_MCE: {
4550                 struct kvm_x86_mce mce;
4551
4552                 r = -EFAULT;
4553                 if (copy_from_user(&mce, argp, sizeof(mce)))
4554                         goto out;
4555                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4556                 break;
4557         }
4558         case KVM_GET_VCPU_EVENTS: {
4559                 struct kvm_vcpu_events events;
4560
4561                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4562
4563                 r = -EFAULT;
4564                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4565                         break;
4566                 r = 0;
4567                 break;
4568         }
4569         case KVM_SET_VCPU_EVENTS: {
4570                 struct kvm_vcpu_events events;
4571
4572                 r = -EFAULT;
4573                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
4574                         break;
4575
4576                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4577                 break;
4578         }
4579         case KVM_GET_DEBUGREGS: {
4580                 struct kvm_debugregs dbgregs;
4581
4582                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4583
4584                 r = -EFAULT;
4585                 if (copy_to_user(argp, &dbgregs,
4586                                  sizeof(struct kvm_debugregs)))
4587                         break;
4588                 r = 0;
4589                 break;
4590         }
4591         case KVM_SET_DEBUGREGS: {
4592                 struct kvm_debugregs dbgregs;
4593
4594                 r = -EFAULT;
4595                 if (copy_from_user(&dbgregs, argp,
4596                                    sizeof(struct kvm_debugregs)))
4597                         break;
4598
4599                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
4600                 break;
4601         }
4602         case KVM_GET_XSAVE: {
4603                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
4604                 r = -ENOMEM;
4605                 if (!u.xsave)
4606                         break;
4607
4608                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
4609
4610                 r = -EFAULT;
4611                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
4612                         break;
4613                 r = 0;
4614                 break;
4615         }
4616         case KVM_SET_XSAVE: {
4617                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
4618                 if (IS_ERR(u.xsave)) {
4619                         r = PTR_ERR(u.xsave);
4620                         goto out_nofree;
4621                 }
4622
4623                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
4624                 break;
4625         }
4626         case KVM_GET_XCRS: {
4627                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
4628                 r = -ENOMEM;
4629                 if (!u.xcrs)
4630                         break;
4631
4632                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
4633
4634                 r = -EFAULT;
4635                 if (copy_to_user(argp, u.xcrs,
4636                                  sizeof(struct kvm_xcrs)))
4637                         break;
4638                 r = 0;
4639                 break;
4640         }
4641         case KVM_SET_XCRS: {
4642                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
4643                 if (IS_ERR(u.xcrs)) {
4644                         r = PTR_ERR(u.xcrs);
4645                         goto out_nofree;
4646                 }
4647
4648                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
4649                 break;
4650         }
4651         case KVM_SET_TSC_KHZ: {
4652                 u32 user_tsc_khz;
4653
4654                 r = -EINVAL;
4655                 user_tsc_khz = (u32)arg;
4656
4657                 if (kvm_has_tsc_control &&
4658                     user_tsc_khz >= kvm_max_guest_tsc_khz)
4659                         goto out;
4660
4661                 if (user_tsc_khz == 0)
4662                         user_tsc_khz = tsc_khz;
4663
4664                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
4665                         r = 0;
4666
4667                 goto out;
4668         }
4669         case KVM_GET_TSC_KHZ: {
4670                 r = vcpu->arch.virtual_tsc_khz;
4671                 goto out;
4672         }
4673         case KVM_KVMCLOCK_CTRL: {
4674                 r = kvm_set_guest_paused(vcpu);
4675                 goto out;
4676         }
4677         case KVM_ENABLE_CAP: {
4678                 struct kvm_enable_cap cap;
4679
4680                 r = -EFAULT;
4681                 if (copy_from_user(&cap, argp, sizeof(cap)))
4682                         goto out;
4683                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
4684                 break;
4685         }
4686         case KVM_GET_NESTED_STATE: {
4687                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4688                 u32 user_data_size;
4689
4690                 r = -EINVAL;
4691                 if (!kvm_x86_ops.nested_ops->get_state)
4692                         break;
4693
4694                 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
4695                 r = -EFAULT;
4696                 if (get_user(user_data_size, &user_kvm_nested_state->size))
4697                         break;
4698
4699                 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
4700                                                      user_data_size);
4701                 if (r < 0)
4702                         break;
4703
4704                 if (r > user_data_size) {
4705                         if (put_user(r, &user_kvm_nested_state->size))
4706                                 r = -EFAULT;
4707                         else
4708                                 r = -E2BIG;
4709                         break;
4710                 }
4711
4712                 r = 0;
4713                 break;
4714         }
4715         case KVM_SET_NESTED_STATE: {
4716                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4717                 struct kvm_nested_state kvm_state;
4718                 int idx;
4719
4720                 r = -EINVAL;
4721                 if (!kvm_x86_ops.nested_ops->set_state)
4722                         break;
4723
4724                 r = -EFAULT;
4725                 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
4726                         break;
4727
4728                 r = -EINVAL;
4729                 if (kvm_state.size < sizeof(kvm_state))
4730                         break;
4731
4732                 if (kvm_state.flags &
4733                     ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
4734                       | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
4735                       | KVM_STATE_NESTED_GIF_SET))
4736                         break;
4737
4738                 /* nested_run_pending implies guest_mode.  */
4739                 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
4740                     && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
4741                         break;
4742
4743                 idx = srcu_read_lock(&vcpu->kvm->srcu);
4744                 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
4745                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4746                 break;
4747         }
4748         case KVM_GET_SUPPORTED_HV_CPUID: {
4749                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4750                 struct kvm_cpuid2 cpuid;
4751
4752                 r = -EFAULT;
4753                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4754                         goto out;
4755
4756                 r = kvm_vcpu_ioctl_get_hv_cpuid(vcpu, &cpuid,
4757                                                 cpuid_arg->entries);
4758                 if (r)
4759                         goto out;
4760
4761                 r = -EFAULT;
4762                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4763                         goto out;
4764                 r = 0;
4765                 break;
4766         }
4767         default:
4768                 r = -EINVAL;
4769         }
4770 out:
4771         kfree(u.buffer);
4772 out_nofree:
4773         vcpu_put(vcpu);
4774         return r;
4775 }
4776
4777 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
4778 {
4779         return VM_FAULT_SIGBUS;
4780 }
4781
4782 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
4783 {
4784         int ret;
4785
4786         if (addr > (unsigned int)(-3 * PAGE_SIZE))
4787                 return -EINVAL;
4788         ret = kvm_x86_ops.set_tss_addr(kvm, addr);
4789         return ret;
4790 }
4791
4792 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
4793                                               u64 ident_addr)
4794 {
4795         return kvm_x86_ops.set_identity_map_addr(kvm, ident_addr);
4796 }
4797
4798 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
4799                                          unsigned long kvm_nr_mmu_pages)
4800 {
4801         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
4802                 return -EINVAL;
4803
4804         mutex_lock(&kvm->slots_lock);
4805
4806         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
4807         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
4808
4809         mutex_unlock(&kvm->slots_lock);
4810         return 0;
4811 }
4812
4813 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
4814 {
4815         return kvm->arch.n_max_mmu_pages;
4816 }
4817
4818 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4819 {
4820         struct kvm_pic *pic = kvm->arch.vpic;
4821         int r;
4822
4823         r = 0;
4824         switch (chip->chip_id) {
4825         case KVM_IRQCHIP_PIC_MASTER:
4826                 memcpy(&chip->chip.pic, &pic->pics[0],
4827                         sizeof(struct kvm_pic_state));
4828                 break;
4829         case KVM_IRQCHIP_PIC_SLAVE:
4830                 memcpy(&chip->chip.pic, &pic->pics[1],
4831                         sizeof(struct kvm_pic_state));
4832                 break;
4833         case KVM_IRQCHIP_IOAPIC:
4834                 kvm_get_ioapic(kvm, &chip->chip.ioapic);
4835                 break;
4836         default:
4837                 r = -EINVAL;
4838                 break;
4839         }
4840         return r;
4841 }
4842
4843 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4844 {
4845         struct kvm_pic *pic = kvm->arch.vpic;
4846         int r;
4847
4848         r = 0;
4849         switch (chip->chip_id) {
4850         case KVM_IRQCHIP_PIC_MASTER:
4851                 spin_lock(&pic->lock);
4852                 memcpy(&pic->pics[0], &chip->chip.pic,
4853                         sizeof(struct kvm_pic_state));
4854                 spin_unlock(&pic->lock);
4855                 break;
4856         case KVM_IRQCHIP_PIC_SLAVE:
4857                 spin_lock(&pic->lock);
4858                 memcpy(&pic->pics[1], &chip->chip.pic,
4859                         sizeof(struct kvm_pic_state));
4860                 spin_unlock(&pic->lock);
4861                 break;
4862         case KVM_IRQCHIP_IOAPIC:
4863                 kvm_set_ioapic(kvm, &chip->chip.ioapic);
4864                 break;
4865         default:
4866                 r = -EINVAL;
4867                 break;
4868         }
4869         kvm_pic_update_irq(pic);
4870         return r;
4871 }
4872
4873 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4874 {
4875         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
4876
4877         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
4878
4879         mutex_lock(&kps->lock);
4880         memcpy(ps, &kps->channels, sizeof(*ps));
4881         mutex_unlock(&kps->lock);
4882         return 0;
4883 }
4884
4885 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4886 {
4887         int i;
4888         struct kvm_pit *pit = kvm->arch.vpit;
4889
4890         mutex_lock(&pit->pit_state.lock);
4891         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
4892         for (i = 0; i < 3; i++)
4893                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
4894         mutex_unlock(&pit->pit_state.lock);
4895         return 0;
4896 }
4897
4898 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4899 {
4900         mutex_lock(&kvm->arch.vpit->pit_state.lock);
4901         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
4902                 sizeof(ps->channels));
4903         ps->flags = kvm->arch.vpit->pit_state.flags;
4904         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
4905         memset(&ps->reserved, 0, sizeof(ps->reserved));
4906         return 0;
4907 }
4908
4909 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4910 {
4911         int start = 0;
4912         int i;
4913         u32 prev_legacy, cur_legacy;
4914         struct kvm_pit *pit = kvm->arch.vpit;
4915
4916         mutex_lock(&pit->pit_state.lock);
4917         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
4918         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
4919         if (!prev_legacy && cur_legacy)
4920                 start = 1;
4921         memcpy(&pit->pit_state.channels, &ps->channels,
4922                sizeof(pit->pit_state.channels));
4923         pit->pit_state.flags = ps->flags;
4924         for (i = 0; i < 3; i++)
4925                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
4926                                    start && i == 0);
4927         mutex_unlock(&pit->pit_state.lock);
4928         return 0;
4929 }
4930
4931 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
4932                                  struct kvm_reinject_control *control)
4933 {
4934         struct kvm_pit *pit = kvm->arch.vpit;
4935
4936         /* pit->pit_state.lock was overloaded to prevent userspace from getting
4937          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
4938          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
4939          */
4940         mutex_lock(&pit->pit_state.lock);
4941         kvm_pit_set_reinject(pit, control->pit_reinject);
4942         mutex_unlock(&pit->pit_state.lock);
4943
4944         return 0;
4945 }
4946
4947 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
4948 {
4949         /*
4950          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4951          */
4952         if (kvm_x86_ops.flush_log_dirty)
4953                 kvm_x86_ops.flush_log_dirty(kvm);
4954 }
4955
4956 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
4957                         bool line_status)
4958 {
4959         if (!irqchip_in_kernel(kvm))
4960                 return -ENXIO;
4961
4962         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
4963                                         irq_event->irq, irq_event->level,
4964                                         line_status);
4965         return 0;
4966 }
4967
4968 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4969                             struct kvm_enable_cap *cap)
4970 {
4971         int r;
4972
4973         if (cap->flags)
4974                 return -EINVAL;
4975
4976         switch (cap->cap) {
4977         case KVM_CAP_DISABLE_QUIRKS:
4978                 kvm->arch.disabled_quirks = cap->args[0];
4979                 r = 0;
4980                 break;
4981         case KVM_CAP_SPLIT_IRQCHIP: {
4982                 mutex_lock(&kvm->lock);
4983                 r = -EINVAL;
4984                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
4985                         goto split_irqchip_unlock;
4986                 r = -EEXIST;
4987                 if (irqchip_in_kernel(kvm))
4988                         goto split_irqchip_unlock;
4989                 if (kvm->created_vcpus)
4990                         goto split_irqchip_unlock;
4991                 r = kvm_setup_empty_irq_routing(kvm);
4992                 if (r)
4993                         goto split_irqchip_unlock;
4994                 /* Pairs with irqchip_in_kernel. */
4995                 smp_wmb();
4996                 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4997                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4998                 r = 0;
4999 split_irqchip_unlock:
5000                 mutex_unlock(&kvm->lock);
5001                 break;
5002         }
5003         case KVM_CAP_X2APIC_API:
5004                 r = -EINVAL;
5005                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
5006                         break;
5007
5008                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
5009                         kvm->arch.x2apic_format = true;
5010                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
5011                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
5012
5013                 r = 0;
5014                 break;
5015         case KVM_CAP_X86_DISABLE_EXITS:
5016                 r = -EINVAL;
5017                 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
5018                         break;
5019
5020                 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
5021                         kvm_can_mwait_in_guest())
5022                         kvm->arch.mwait_in_guest = true;
5023                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
5024                         kvm->arch.hlt_in_guest = true;
5025                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
5026                         kvm->arch.pause_in_guest = true;
5027                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
5028                         kvm->arch.cstate_in_guest = true;
5029                 r = 0;
5030                 break;
5031         case KVM_CAP_MSR_PLATFORM_INFO:
5032                 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
5033                 r = 0;
5034                 break;
5035         case KVM_CAP_EXCEPTION_PAYLOAD:
5036                 kvm->arch.exception_payload_enabled = cap->args[0];
5037                 r = 0;
5038                 break;
5039         default:
5040                 r = -EINVAL;
5041                 break;
5042         }
5043         return r;
5044 }
5045
5046 long kvm_arch_vm_ioctl(struct file *filp,
5047                        unsigned int ioctl, unsigned long arg)
5048 {
5049         struct kvm *kvm = filp->private_data;
5050         void __user *argp = (void __user *)arg;
5051         int r = -ENOTTY;
5052         /*
5053          * This union makes it completely explicit to gcc-3.x
5054          * that these two variables' stack usage should be
5055          * combined, not added together.
5056          */
5057         union {
5058                 struct kvm_pit_state ps;
5059                 struct kvm_pit_state2 ps2;
5060                 struct kvm_pit_config pit_config;
5061         } u;
5062
5063         switch (ioctl) {
5064         case KVM_SET_TSS_ADDR:
5065                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
5066                 break;
5067         case KVM_SET_IDENTITY_MAP_ADDR: {
5068                 u64 ident_addr;
5069
5070                 mutex_lock(&kvm->lock);
5071                 r = -EINVAL;
5072                 if (kvm->created_vcpus)
5073                         goto set_identity_unlock;
5074                 r = -EFAULT;
5075                 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
5076                         goto set_identity_unlock;
5077                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
5078 set_identity_unlock:
5079                 mutex_unlock(&kvm->lock);
5080                 break;
5081         }
5082         case KVM_SET_NR_MMU_PAGES:
5083                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
5084                 break;
5085         case KVM_GET_NR_MMU_PAGES:
5086                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
5087                 break;
5088         case KVM_CREATE_IRQCHIP: {
5089                 mutex_lock(&kvm->lock);
5090
5091                 r = -EEXIST;
5092                 if (irqchip_in_kernel(kvm))
5093                         goto create_irqchip_unlock;
5094
5095                 r = -EINVAL;
5096                 if (kvm->created_vcpus)
5097                         goto create_irqchip_unlock;
5098
5099                 r = kvm_pic_init(kvm);
5100                 if (r)
5101                         goto create_irqchip_unlock;
5102
5103                 r = kvm_ioapic_init(kvm);
5104                 if (r) {
5105                         kvm_pic_destroy(kvm);
5106                         goto create_irqchip_unlock;
5107                 }
5108
5109                 r = kvm_setup_default_irq_routing(kvm);
5110                 if (r) {
5111                         kvm_ioapic_destroy(kvm);
5112                         kvm_pic_destroy(kvm);
5113                         goto create_irqchip_unlock;
5114                 }
5115                 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
5116                 smp_wmb();
5117                 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
5118         create_irqchip_unlock:
5119                 mutex_unlock(&kvm->lock);
5120                 break;
5121         }
5122         case KVM_CREATE_PIT:
5123                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
5124                 goto create_pit;
5125         case KVM_CREATE_PIT2:
5126                 r = -EFAULT;
5127                 if (copy_from_user(&u.pit_config, argp,
5128                                    sizeof(struct kvm_pit_config)))
5129                         goto out;
5130         create_pit:
5131                 mutex_lock(&kvm->lock);
5132                 r = -EEXIST;
5133                 if (kvm->arch.vpit)
5134                         goto create_pit_unlock;
5135                 r = -ENOMEM;
5136                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
5137                 if (kvm->arch.vpit)
5138                         r = 0;
5139         create_pit_unlock:
5140                 mutex_unlock(&kvm->lock);
5141                 break;
5142         case KVM_GET_IRQCHIP: {
5143                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5144                 struct kvm_irqchip *chip;
5145
5146                 chip = memdup_user(argp, sizeof(*chip));
5147                 if (IS_ERR(chip)) {
5148                         r = PTR_ERR(chip);
5149                         goto out;
5150                 }
5151
5152                 r = -ENXIO;
5153                 if (!irqchip_kernel(kvm))
5154                         goto get_irqchip_out;
5155                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
5156                 if (r)
5157                         goto get_irqchip_out;
5158                 r = -EFAULT;
5159                 if (copy_to_user(argp, chip, sizeof(*chip)))
5160                         goto get_irqchip_out;
5161                 r = 0;
5162         get_irqchip_out:
5163                 kfree(chip);
5164                 break;
5165         }
5166         case KVM_SET_IRQCHIP: {
5167                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5168                 struct kvm_irqchip *chip;
5169
5170                 chip = memdup_user(argp, sizeof(*chip));
5171                 if (IS_ERR(chip)) {
5172                         r = PTR_ERR(chip);
5173                         goto out;
5174                 }
5175
5176                 r = -ENXIO;
5177                 if (!irqchip_kernel(kvm))
5178                         goto set_irqchip_out;
5179                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
5180         set_irqchip_out:
5181                 kfree(chip);
5182                 break;
5183         }
5184         case KVM_GET_PIT: {
5185                 r = -EFAULT;
5186                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
5187                         goto out;
5188                 r = -ENXIO;
5189                 if (!kvm->arch.vpit)
5190                         goto out;
5191                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
5192                 if (r)
5193                         goto out;
5194                 r = -EFAULT;
5195                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
5196                         goto out;
5197                 r = 0;
5198                 break;
5199         }
5200         case KVM_SET_PIT: {
5201                 r = -EFAULT;
5202                 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
5203                         goto out;
5204                 mutex_lock(&kvm->lock);
5205                 r = -ENXIO;
5206                 if (!kvm->arch.vpit)
5207                         goto set_pit_out;
5208                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
5209 set_pit_out:
5210                 mutex_unlock(&kvm->lock);
5211                 break;
5212         }
5213         case KVM_GET_PIT2: {
5214                 r = -ENXIO;
5215                 if (!kvm->arch.vpit)
5216                         goto out;
5217                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
5218                 if (r)
5219                         goto out;
5220                 r = -EFAULT;
5221                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
5222                         goto out;
5223                 r = 0;
5224                 break;
5225         }
5226         case KVM_SET_PIT2: {
5227                 r = -EFAULT;
5228                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
5229                         goto out;
5230                 mutex_lock(&kvm->lock);
5231                 r = -ENXIO;
5232                 if (!kvm->arch.vpit)
5233                         goto set_pit2_out;
5234                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
5235 set_pit2_out:
5236                 mutex_unlock(&kvm->lock);
5237                 break;
5238         }
5239         case KVM_REINJECT_CONTROL: {
5240                 struct kvm_reinject_control control;
5241                 r =  -EFAULT;
5242                 if (copy_from_user(&control, argp, sizeof(control)))
5243                         goto out;
5244                 r = -ENXIO;
5245                 if (!kvm->arch.vpit)
5246                         goto out;
5247                 r = kvm_vm_ioctl_reinject(kvm, &control);
5248                 break;
5249         }
5250         case KVM_SET_BOOT_CPU_ID:
5251                 r = 0;
5252                 mutex_lock(&kvm->lock);
5253                 if (kvm->created_vcpus)
5254                         r = -EBUSY;
5255                 else
5256                         kvm->arch.bsp_vcpu_id = arg;
5257                 mutex_unlock(&kvm->lock);
5258                 break;
5259         case KVM_XEN_HVM_CONFIG: {
5260                 struct kvm_xen_hvm_config xhc;
5261                 r = -EFAULT;
5262                 if (copy_from_user(&xhc, argp, sizeof(xhc)))
5263                         goto out;
5264                 r = -EINVAL;
5265                 if (xhc.flags)
5266                         goto out;
5267                 memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
5268                 r = 0;
5269                 break;
5270         }
5271         case KVM_SET_CLOCK: {
5272                 struct kvm_clock_data user_ns;
5273                 u64 now_ns;
5274
5275                 r = -EFAULT;
5276                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
5277                         goto out;
5278
5279                 r = -EINVAL;
5280                 if (user_ns.flags)
5281                         goto out;
5282
5283                 r = 0;
5284                 /*
5285                  * TODO: userspace has to take care of races with VCPU_RUN, so
5286                  * kvm_gen_update_masterclock() can be cut down to locked
5287                  * pvclock_update_vm_gtod_copy().
5288                  */
5289                 kvm_gen_update_masterclock(kvm);
5290                 now_ns = get_kvmclock_ns(kvm);
5291                 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
5292                 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
5293                 break;
5294         }
5295         case KVM_GET_CLOCK: {
5296                 struct kvm_clock_data user_ns;
5297                 u64 now_ns;
5298
5299                 now_ns = get_kvmclock_ns(kvm);
5300                 user_ns.clock = now_ns;
5301                 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
5302                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
5303
5304                 r = -EFAULT;
5305                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
5306                         goto out;
5307                 r = 0;
5308                 break;
5309         }
5310         case KVM_MEMORY_ENCRYPT_OP: {
5311                 r = -ENOTTY;
5312                 if (kvm_x86_ops.mem_enc_op)
5313                         r = kvm_x86_ops.mem_enc_op(kvm, argp);
5314                 break;
5315         }
5316         case KVM_MEMORY_ENCRYPT_REG_REGION: {
5317                 struct kvm_enc_region region;
5318
5319                 r = -EFAULT;
5320                 if (copy_from_user(&region, argp, sizeof(region)))
5321                         goto out;
5322
5323                 r = -ENOTTY;
5324                 if (kvm_x86_ops.mem_enc_reg_region)
5325                         r = kvm_x86_ops.mem_enc_reg_region(kvm, &region);
5326                 break;
5327         }
5328         case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
5329                 struct kvm_enc_region region;
5330
5331                 r = -EFAULT;
5332                 if (copy_from_user(&region, argp, sizeof(region)))
5333                         goto out;
5334
5335                 r = -ENOTTY;
5336                 if (kvm_x86_ops.mem_enc_unreg_region)
5337                         r = kvm_x86_ops.mem_enc_unreg_region(kvm, &region);
5338                 break;
5339         }
5340         case KVM_HYPERV_EVENTFD: {
5341                 struct kvm_hyperv_eventfd hvevfd;
5342
5343                 r = -EFAULT;
5344                 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
5345                         goto out;
5346                 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
5347                 break;
5348         }
5349         case KVM_SET_PMU_EVENT_FILTER:
5350                 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
5351                 break;
5352         default:
5353                 r = -ENOTTY;
5354         }
5355 out:
5356         return r;
5357 }
5358
5359 static void kvm_init_msr_list(void)
5360 {
5361         struct x86_pmu_capability x86_pmu;
5362         u32 dummy[2];
5363         unsigned i;
5364
5365         BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
5366                          "Please update the fixed PMCs in msrs_to_saved_all[]");
5367
5368         perf_get_x86_pmu_capability(&x86_pmu);
5369
5370         num_msrs_to_save = 0;
5371         num_emulated_msrs = 0;
5372         num_msr_based_features = 0;
5373
5374         for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
5375                 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
5376                         continue;
5377
5378                 /*
5379                  * Even MSRs that are valid in the host may not be exposed
5380                  * to the guests in some cases.
5381                  */
5382                 switch (msrs_to_save_all[i]) {
5383                 case MSR_IA32_BNDCFGS:
5384                         if (!kvm_mpx_supported())
5385                                 continue;
5386                         break;
5387                 case MSR_TSC_AUX:
5388                         if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
5389                                 continue;
5390                         break;
5391                 case MSR_IA32_UMWAIT_CONTROL:
5392                         if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
5393                                 continue;
5394                         break;
5395                 case MSR_IA32_RTIT_CTL:
5396                 case MSR_IA32_RTIT_STATUS:
5397                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
5398                                 continue;
5399                         break;
5400                 case MSR_IA32_RTIT_CR3_MATCH:
5401                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5402                             !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
5403                                 continue;
5404                         break;
5405                 case MSR_IA32_RTIT_OUTPUT_BASE:
5406                 case MSR_IA32_RTIT_OUTPUT_MASK:
5407                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5408                                 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
5409                                  !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
5410                                 continue;
5411                         break;
5412                 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
5413                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5414                                 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
5415                                 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
5416                                 continue;
5417                         break;
5418                 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
5419                         if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
5420                             min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5421                                 continue;
5422                         break;
5423                 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
5424                         if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
5425                             min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5426                                 continue;
5427                         break;
5428                 default:
5429                         break;
5430                 }
5431
5432                 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
5433         }
5434
5435         for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
5436                 if (!kvm_x86_ops.has_emulated_msr(emulated_msrs_all[i]))
5437                         continue;
5438
5439                 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
5440         }
5441
5442         for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
5443                 struct kvm_msr_entry msr;
5444
5445                 msr.index = msr_based_features_all[i];
5446                 if (kvm_get_msr_feature(&msr))
5447                         continue;
5448
5449                 msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
5450         }
5451 }
5452
5453 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
5454                            const void *v)
5455 {
5456         int handled = 0;
5457         int n;
5458
5459         do {
5460                 n = min(len, 8);
5461                 if (!(lapic_in_kernel(vcpu) &&
5462                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
5463                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
5464                         break;
5465                 handled += n;
5466                 addr += n;
5467                 len -= n;
5468                 v += n;
5469         } while (len);
5470
5471         return handled;
5472 }
5473
5474 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
5475 {
5476         int handled = 0;
5477         int n;
5478
5479         do {
5480                 n = min(len, 8);
5481                 if (!(lapic_in_kernel(vcpu) &&
5482                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
5483                                          addr, n, v))
5484                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
5485                         break;
5486                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
5487                 handled += n;
5488                 addr += n;
5489                 len -= n;
5490                 v += n;
5491         } while (len);
5492
5493         return handled;
5494 }
5495
5496 static void kvm_set_segment(struct kvm_vcpu *vcpu,
5497                         struct kvm_segment *var, int seg)
5498 {
5499         kvm_x86_ops.set_segment(vcpu, var, seg);
5500 }
5501
5502 void kvm_get_segment(struct kvm_vcpu *vcpu,
5503                      struct kvm_segment *var, int seg)
5504 {
5505         kvm_x86_ops.get_segment(vcpu, var, seg);
5506 }
5507
5508 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
5509                            struct x86_exception *exception)
5510 {
5511         gpa_t t_gpa;
5512
5513         BUG_ON(!mmu_is_nested(vcpu));
5514
5515         /* NPT walks are always user-walks */
5516         access |= PFERR_USER_MASK;
5517         t_gpa  = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
5518
5519         return t_gpa;
5520 }
5521
5522 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
5523                               struct x86_exception *exception)
5524 {
5525         u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5526         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5527 }
5528
5529  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
5530                                 struct x86_exception *exception)
5531 {
5532         u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5533         access |= PFERR_FETCH_MASK;
5534         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5535 }
5536
5537 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
5538                                struct x86_exception *exception)
5539 {
5540         u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5541         access |= PFERR_WRITE_MASK;
5542         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5543 }
5544
5545 /* uses this to access any guest's mapped memory without checking CPL */
5546 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
5547                                 struct x86_exception *exception)
5548 {
5549         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
5550 }
5551
5552 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5553                                       struct kvm_vcpu *vcpu, u32 access,
5554                                       struct x86_exception *exception)
5555 {
5556         void *data = val;
5557         int r = X86EMUL_CONTINUE;
5558
5559         while (bytes) {
5560                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
5561                                                             exception);
5562                 unsigned offset = addr & (PAGE_SIZE-1);
5563                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
5564                 int ret;
5565
5566                 if (gpa == UNMAPPED_GVA)
5567                         return X86EMUL_PROPAGATE_FAULT;
5568                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
5569                                                offset, toread);
5570                 if (ret < 0) {
5571                         r = X86EMUL_IO_NEEDED;
5572                         goto out;
5573                 }
5574
5575                 bytes -= toread;
5576                 data += toread;
5577                 addr += toread;
5578         }
5579 out:
5580         return r;
5581 }
5582
5583 /* used for instruction fetching */
5584 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
5585                                 gva_t addr, void *val, unsigned int bytes,
5586                                 struct x86_exception *exception)
5587 {
5588         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5589         u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5590         unsigned offset;
5591         int ret;
5592
5593         /* Inline kvm_read_guest_virt_helper for speed.  */
5594         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
5595                                                     exception);
5596         if (unlikely(gpa == UNMAPPED_GVA))
5597                 return X86EMUL_PROPAGATE_FAULT;
5598
5599         offset = addr & (PAGE_SIZE-1);
5600         if (WARN_ON(offset + bytes > PAGE_SIZE))
5601                 bytes = (unsigned)PAGE_SIZE - offset;
5602         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
5603                                        offset, bytes);
5604         if (unlikely(ret < 0))
5605                 return X86EMUL_IO_NEEDED;
5606
5607         return X86EMUL_CONTINUE;
5608 }
5609
5610 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
5611                                gva_t addr, void *val, unsigned int bytes,
5612                                struct x86_exception *exception)
5613 {
5614         u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5615
5616         /*
5617          * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5618          * is returned, but our callers are not ready for that and they blindly
5619          * call kvm_inject_page_fault.  Ensure that they at least do not leak
5620          * uninitialized kernel stack memory into cr2 and error code.
5621          */
5622         memset(exception, 0, sizeof(*exception));
5623         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
5624                                           exception);
5625 }
5626 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
5627
5628 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
5629                              gva_t addr, void *val, unsigned int bytes,
5630                              struct x86_exception *exception, bool system)
5631 {
5632         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5633         u32 access = 0;
5634
5635         if (!system && kvm_x86_ops.get_cpl(vcpu) == 3)
5636                 access |= PFERR_USER_MASK;
5637
5638         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
5639 }
5640
5641 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
5642                 unsigned long addr, void *val, unsigned int bytes)
5643 {
5644         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5645         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
5646
5647         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
5648 }
5649
5650 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5651                                       struct kvm_vcpu *vcpu, u32 access,
5652                                       struct x86_exception *exception)
5653 {
5654         void *data = val;
5655         int r = X86EMUL_CONTINUE;
5656
5657         while (bytes) {
5658                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
5659                                                              access,
5660                                                              exception);
5661                 unsigned offset = addr & (PAGE_SIZE-1);
5662                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
5663                 int ret;
5664
5665                 if (gpa == UNMAPPED_GVA)
5666                         return X86EMUL_PROPAGATE_FAULT;
5667                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
5668                 if (ret < 0) {
5669                         r = X86EMUL_IO_NEEDED;
5670                         goto out;
5671                 }
5672
5673                 bytes -= towrite;
5674                 data += towrite;
5675                 addr += towrite;
5676         }
5677 out:
5678         return r;
5679 }
5680
5681 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
5682                               unsigned int bytes, struct x86_exception *exception,
5683                               bool system)
5684 {
5685         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5686         u32 access = PFERR_WRITE_MASK;
5687
5688         if (!system && kvm_x86_ops.get_cpl(vcpu) == 3)
5689                 access |= PFERR_USER_MASK;
5690
5691         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5692                                            access, exception);
5693 }
5694
5695 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
5696                                 unsigned int bytes, struct x86_exception *exception)
5697 {
5698         /* kvm_write_guest_virt_system can pull in tons of pages. */
5699         vcpu->arch.l1tf_flush_l1d = true;
5700
5701         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5702                                            PFERR_WRITE_MASK, exception);
5703 }
5704 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
5705
5706 int handle_ud(struct kvm_vcpu *vcpu)
5707 {
5708         static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
5709         int emul_type = EMULTYPE_TRAP_UD;
5710         char sig[5]; /* ud2; .ascii "kvm" */
5711         struct x86_exception e;
5712
5713         if (force_emulation_prefix &&
5714             kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
5715                                 sig, sizeof(sig), &e) == 0 &&
5716             memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
5717                 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
5718                 emul_type = EMULTYPE_TRAP_UD_FORCED;
5719         }
5720
5721         return kvm_emulate_instruction(vcpu, emul_type);
5722 }
5723 EXPORT_SYMBOL_GPL(handle_ud);
5724
5725 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5726                             gpa_t gpa, bool write)
5727 {
5728         /* For APIC access vmexit */
5729         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5730                 return 1;
5731
5732         if (vcpu_match_mmio_gpa(vcpu, gpa)) {
5733                 trace_vcpu_match_mmio(gva, gpa, write, true);
5734                 return 1;
5735         }
5736
5737         return 0;
5738 }
5739
5740 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5741                                 gpa_t *gpa, struct x86_exception *exception,
5742                                 bool write)
5743 {
5744         u32 access = ((kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
5745                 | (write ? PFERR_WRITE_MASK : 0);
5746
5747         /*
5748          * currently PKRU is only applied to ept enabled guest so
5749          * there is no pkey in EPT page table for L1 guest or EPT
5750          * shadow page table for L2 guest.
5751          */
5752         if (vcpu_match_mmio_gva(vcpu, gva)
5753             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
5754                                  vcpu->arch.mmio_access, 0, access)) {
5755                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
5756                                         (gva & (PAGE_SIZE - 1));
5757                 trace_vcpu_match_mmio(gva, *gpa, write, false);
5758                 return 1;
5759         }
5760
5761         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5762
5763         if (*gpa == UNMAPPED_GVA)
5764                 return -1;
5765
5766         return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
5767 }
5768
5769 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
5770                         const void *val, int bytes)
5771 {
5772         int ret;
5773
5774         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
5775         if (ret < 0)
5776                 return 0;
5777         kvm_page_track_write(vcpu, gpa, val, bytes);
5778         return 1;
5779 }
5780
5781 struct read_write_emulator_ops {
5782         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
5783                                   int bytes);
5784         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
5785                                   void *val, int bytes);
5786         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5787                                int bytes, void *val);
5788         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5789                                     void *val, int bytes);
5790         bool write;
5791 };
5792
5793 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
5794 {
5795         if (vcpu->mmio_read_completed) {
5796                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
5797                                vcpu->mmio_fragments[0].gpa, val);
5798                 vcpu->mmio_read_completed = 0;
5799                 return 1;
5800         }
5801
5802         return 0;
5803 }
5804
5805 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5806                         void *val, int bytes)
5807 {
5808         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
5809 }
5810
5811 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5812                          void *val, int bytes)
5813 {
5814         return emulator_write_phys(vcpu, gpa, val, bytes);
5815 }
5816
5817 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
5818 {
5819         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
5820         return vcpu_mmio_write(vcpu, gpa, bytes, val);
5821 }
5822
5823 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5824                           void *val, int bytes)
5825 {
5826         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
5827         return X86EMUL_IO_NEEDED;
5828 }
5829
5830 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5831                            void *val, int bytes)
5832 {
5833         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
5834
5835         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
5836         return X86EMUL_CONTINUE;
5837 }
5838
5839 static const struct read_write_emulator_ops read_emultor = {
5840         .read_write_prepare = read_prepare,
5841         .read_write_emulate = read_emulate,
5842         .read_write_mmio = vcpu_mmio_read,
5843         .read_write_exit_mmio = read_exit_mmio,
5844 };
5845
5846 static const struct read_write_emulator_ops write_emultor = {
5847         .read_write_emulate = write_emulate,
5848         .read_write_mmio = write_mmio,
5849         .read_write_exit_mmio = write_exit_mmio,
5850         .write = true,
5851 };
5852
5853 static int emulator_read_write_onepage(unsigned long addr, void *val,
5854                                        unsigned int bytes,
5855                                        struct x86_exception *exception,
5856                                        struct kvm_vcpu *vcpu,
5857                                        const struct read_write_emulator_ops *ops)
5858 {
5859         gpa_t gpa;
5860         int handled, ret;
5861         bool write = ops->write;
5862         struct kvm_mmio_fragment *frag;
5863         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
5864
5865         /*
5866          * If the exit was due to a NPF we may already have a GPA.
5867          * If the GPA is present, use it to avoid the GVA to GPA table walk.
5868          * Note, this cannot be used on string operations since string
5869          * operation using rep will only have the initial GPA from the NPF
5870          * occurred.
5871          */
5872         if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
5873             (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
5874                 gpa = ctxt->gpa_val;
5875                 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
5876         } else {
5877                 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
5878                 if (ret < 0)
5879                         return X86EMUL_PROPAGATE_FAULT;
5880         }
5881
5882         if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
5883                 return X86EMUL_CONTINUE;
5884
5885         /*
5886          * Is this MMIO handled locally?
5887          */
5888         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
5889         if (handled == bytes)
5890                 return X86EMUL_CONTINUE;
5891
5892         gpa += handled;
5893         bytes -= handled;
5894         val += handled;
5895
5896         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
5897         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
5898         frag->gpa = gpa;
5899         frag->data = val;
5900         frag->len = bytes;
5901         return X86EMUL_CONTINUE;
5902 }
5903
5904 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
5905                         unsigned long addr,
5906                         void *val, unsigned int bytes,
5907                         struct x86_exception *exception,
5908                         const struct read_write_emulator_ops *ops)
5909 {
5910         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5911         gpa_t gpa;
5912         int rc;
5913
5914         if (ops->read_write_prepare &&
5915                   ops->read_write_prepare(vcpu, val, bytes))
5916                 return X86EMUL_CONTINUE;
5917
5918         vcpu->mmio_nr_fragments = 0;
5919
5920         /* Crossing a page boundary? */
5921         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
5922                 int now;
5923
5924                 now = -addr & ~PAGE_MASK;
5925                 rc = emulator_read_write_onepage(addr, val, now, exception,
5926                                                  vcpu, ops);
5927
5928                 if (rc != X86EMUL_CONTINUE)
5929                         return rc;
5930                 addr += now;
5931                 if (ctxt->mode != X86EMUL_MODE_PROT64)
5932                         addr = (u32)addr;
5933                 val += now;
5934                 bytes -= now;
5935         }
5936
5937         rc = emulator_read_write_onepage(addr, val, bytes, exception,
5938                                          vcpu, ops);
5939         if (rc != X86EMUL_CONTINUE)
5940                 return rc;
5941
5942         if (!vcpu->mmio_nr_fragments)
5943                 return rc;
5944
5945         gpa = vcpu->mmio_fragments[0].gpa;
5946
5947         vcpu->mmio_needed = 1;
5948         vcpu->mmio_cur_fragment = 0;
5949
5950         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
5951         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
5952         vcpu->run->exit_reason = KVM_EXIT_MMIO;
5953         vcpu->run->mmio.phys_addr = gpa;
5954
5955         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
5956 }
5957
5958 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
5959                                   unsigned long addr,
5960                                   void *val,
5961                                   unsigned int bytes,
5962                                   struct x86_exception *exception)
5963 {
5964         return emulator_read_write(ctxt, addr, val, bytes,
5965                                    exception, &read_emultor);
5966 }
5967
5968 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
5969                             unsigned long addr,
5970                             const void *val,
5971                             unsigned int bytes,
5972                             struct x86_exception *exception)
5973 {
5974         return emulator_read_write(ctxt, addr, (void *)val, bytes,
5975                                    exception, &write_emultor);
5976 }
5977
5978 #define CMPXCHG_TYPE(t, ptr, old, new) \
5979         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
5980
5981 #ifdef CONFIG_X86_64
5982 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
5983 #else
5984 #  define CMPXCHG64(ptr, old, new) \
5985         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
5986 #endif
5987
5988 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
5989                                      unsigned long addr,
5990                                      const void *old,
5991                                      const void *new,
5992                                      unsigned int bytes,
5993                                      struct x86_exception *exception)
5994 {
5995         struct kvm_host_map map;
5996         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5997         u64 page_line_mask;
5998         gpa_t gpa;
5999         char *kaddr;
6000         bool exchanged;
6001
6002         /* guests cmpxchg8b have to be emulated atomically */
6003         if (bytes > 8 || (bytes & (bytes - 1)))
6004                 goto emul_write;
6005
6006         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
6007
6008         if (gpa == UNMAPPED_GVA ||
6009             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6010                 goto emul_write;
6011
6012         /*
6013          * Emulate the atomic as a straight write to avoid #AC if SLD is
6014          * enabled in the host and the access splits a cache line.
6015          */
6016         if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
6017                 page_line_mask = ~(cache_line_size() - 1);
6018         else
6019                 page_line_mask = PAGE_MASK;
6020
6021         if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
6022                 goto emul_write;
6023
6024         if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
6025                 goto emul_write;
6026
6027         kaddr = map.hva + offset_in_page(gpa);
6028
6029         switch (bytes) {
6030         case 1:
6031                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
6032                 break;
6033         case 2:
6034                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
6035                 break;
6036         case 4:
6037                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
6038                 break;
6039         case 8:
6040                 exchanged = CMPXCHG64(kaddr, old, new);
6041                 break;
6042         default:
6043                 BUG();
6044         }
6045
6046         kvm_vcpu_unmap(vcpu, &map, true);
6047
6048         if (!exchanged)
6049                 return X86EMUL_CMPXCHG_FAILED;
6050
6051         kvm_page_track_write(vcpu, gpa, new, bytes);
6052
6053         return X86EMUL_CONTINUE;
6054
6055 emul_write:
6056         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
6057
6058         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
6059 }
6060
6061 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
6062 {
6063         int r = 0, i;
6064
6065         for (i = 0; i < vcpu->arch.pio.count; i++) {
6066                 if (vcpu->arch.pio.in)
6067                         r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
6068                                             vcpu->arch.pio.size, pd);
6069                 else
6070                         r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
6071                                              vcpu->arch.pio.port, vcpu->arch.pio.size,
6072                                              pd);
6073                 if (r)
6074                         break;
6075                 pd += vcpu->arch.pio.size;
6076         }
6077         return r;
6078 }
6079
6080 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
6081                                unsigned short port, void *val,
6082                                unsigned int count, bool in)
6083 {
6084         vcpu->arch.pio.port = port;
6085         vcpu->arch.pio.in = in;
6086         vcpu->arch.pio.count  = count;
6087         vcpu->arch.pio.size = size;
6088
6089         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
6090                 vcpu->arch.pio.count = 0;
6091                 return 1;
6092         }
6093
6094         vcpu->run->exit_reason = KVM_EXIT_IO;
6095         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
6096         vcpu->run->io.size = size;
6097         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
6098         vcpu->run->io.count = count;
6099         vcpu->run->io.port = port;
6100
6101         return 0;
6102 }
6103
6104 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
6105                            unsigned short port, void *val, unsigned int count)
6106 {
6107         int ret;
6108
6109         if (vcpu->arch.pio.count)
6110                 goto data_avail;
6111
6112         memset(vcpu->arch.pio_data, 0, size * count);
6113
6114         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
6115         if (ret) {
6116 data_avail:
6117                 memcpy(val, vcpu->arch.pio_data, size * count);
6118                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
6119                 vcpu->arch.pio.count = 0;
6120                 return 1;
6121         }
6122
6123         return 0;
6124 }
6125
6126 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
6127                                     int size, unsigned short port, void *val,
6128                                     unsigned int count)
6129 {
6130         return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
6131
6132 }
6133
6134 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
6135                             unsigned short port, const void *val,
6136                             unsigned int count)
6137 {
6138         memcpy(vcpu->arch.pio_data, val, size * count);
6139         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
6140         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
6141 }
6142
6143 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
6144                                      int size, unsigned short port,
6145                                      const void *val, unsigned int count)
6146 {
6147         return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
6148 }
6149
6150 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
6151 {
6152         return kvm_x86_ops.get_segment_base(vcpu, seg);
6153 }
6154
6155 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
6156 {
6157         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
6158 }
6159
6160 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
6161 {
6162         if (!need_emulate_wbinvd(vcpu))
6163                 return X86EMUL_CONTINUE;
6164
6165         if (kvm_x86_ops.has_wbinvd_exit()) {
6166                 int cpu = get_cpu();
6167
6168                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
6169                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
6170                                 wbinvd_ipi, NULL, 1);
6171                 put_cpu();
6172                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
6173         } else
6174                 wbinvd();
6175         return X86EMUL_CONTINUE;
6176 }
6177
6178 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
6179 {
6180         kvm_emulate_wbinvd_noskip(vcpu);
6181         return kvm_skip_emulated_instruction(vcpu);
6182 }
6183 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
6184
6185
6186
6187 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
6188 {
6189         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
6190 }
6191
6192 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
6193                            unsigned long *dest)
6194 {
6195         return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
6196 }
6197
6198 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
6199                            unsigned long value)
6200 {
6201
6202         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
6203 }
6204
6205 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
6206 {
6207         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
6208 }
6209
6210 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
6211 {
6212         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6213         unsigned long value;
6214
6215         switch (cr) {
6216         case 0:
6217                 value = kvm_read_cr0(vcpu);
6218                 break;
6219         case 2:
6220                 value = vcpu->arch.cr2;
6221                 break;
6222         case 3:
6223                 value = kvm_read_cr3(vcpu);
6224                 break;
6225         case 4:
6226                 value = kvm_read_cr4(vcpu);
6227                 break;
6228         case 8:
6229                 value = kvm_get_cr8(vcpu);
6230                 break;
6231         default:
6232                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
6233                 return 0;
6234         }
6235
6236         return value;
6237 }
6238
6239 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
6240 {
6241         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6242         int res = 0;
6243
6244         switch (cr) {
6245         case 0:
6246                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
6247                 break;
6248         case 2:
6249                 vcpu->arch.cr2 = val;
6250                 break;
6251         case 3:
6252                 res = kvm_set_cr3(vcpu, val);
6253                 break;
6254         case 4:
6255                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
6256                 break;
6257         case 8:
6258                 res = kvm_set_cr8(vcpu, val);
6259                 break;
6260         default:
6261                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
6262                 res = -1;
6263         }
6264
6265         return res;
6266 }
6267
6268 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
6269 {
6270         return kvm_x86_ops.get_cpl(emul_to_vcpu(ctxt));
6271 }
6272
6273 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6274 {
6275         kvm_x86_ops.get_gdt(emul_to_vcpu(ctxt), dt);
6276 }
6277
6278 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6279 {
6280         kvm_x86_ops.get_idt(emul_to_vcpu(ctxt), dt);
6281 }
6282
6283 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6284 {
6285         kvm_x86_ops.set_gdt(emul_to_vcpu(ctxt), dt);
6286 }
6287
6288 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6289 {
6290         kvm_x86_ops.set_idt(emul_to_vcpu(ctxt), dt);
6291 }
6292
6293 static unsigned long emulator_get_cached_segment_base(
6294         struct x86_emulate_ctxt *ctxt, int seg)
6295 {
6296         return get_segment_base(emul_to_vcpu(ctxt), seg);
6297 }
6298
6299 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
6300                                  struct desc_struct *desc, u32 *base3,
6301                                  int seg)
6302 {
6303         struct kvm_segment var;
6304
6305         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
6306         *selector = var.selector;
6307
6308         if (var.unusable) {
6309                 memset(desc, 0, sizeof(*desc));
6310                 if (base3)
6311                         *base3 = 0;
6312                 return false;
6313         }
6314
6315         if (var.g)
6316                 var.limit >>= 12;
6317         set_desc_limit(desc, var.limit);
6318         set_desc_base(desc, (unsigned long)var.base);
6319 #ifdef CONFIG_X86_64
6320         if (base3)
6321                 *base3 = var.base >> 32;
6322 #endif
6323         desc->type = var.type;
6324         desc->s = var.s;
6325         desc->dpl = var.dpl;
6326         desc->p = var.present;
6327         desc->avl = var.avl;
6328         desc->l = var.l;
6329         desc->d = var.db;
6330         desc->g = var.g;
6331
6332         return true;
6333 }
6334
6335 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
6336                                  struct desc_struct *desc, u32 base3,
6337                                  int seg)
6338 {
6339         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6340         struct kvm_segment var;
6341
6342         var.selector = selector;
6343         var.base = get_desc_base(desc);
6344 #ifdef CONFIG_X86_64
6345         var.base |= ((u64)base3) << 32;
6346 #endif
6347         var.limit = get_desc_limit(desc);
6348         if (desc->g)
6349                 var.limit = (var.limit << 12) | 0xfff;
6350         var.type = desc->type;
6351         var.dpl = desc->dpl;
6352         var.db = desc->d;
6353         var.s = desc->s;
6354         var.l = desc->l;
6355         var.g = desc->g;
6356         var.avl = desc->avl;
6357         var.present = desc->p;
6358         var.unusable = !var.present;
6359         var.padding = 0;
6360
6361         kvm_set_segment(vcpu, &var, seg);
6362         return;
6363 }
6364
6365 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
6366                             u32 msr_index, u64 *pdata)
6367 {
6368         return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
6369 }
6370
6371 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
6372                             u32 msr_index, u64 data)
6373 {
6374         return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
6375 }
6376
6377 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
6378 {
6379         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6380
6381         return vcpu->arch.smbase;
6382 }
6383
6384 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
6385 {
6386         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6387
6388         vcpu->arch.smbase = smbase;
6389 }
6390
6391 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
6392                               u32 pmc)
6393 {
6394         return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc);
6395 }
6396
6397 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
6398                              u32 pmc, u64 *pdata)
6399 {
6400         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
6401 }
6402
6403 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
6404 {
6405         emul_to_vcpu(ctxt)->arch.halt_request = 1;
6406 }
6407
6408 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
6409                               struct x86_instruction_info *info,
6410                               enum x86_intercept_stage stage)
6411 {
6412         return kvm_x86_ops.check_intercept(emul_to_vcpu(ctxt), info, stage,
6413                                             &ctxt->exception);
6414 }
6415
6416 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
6417                               u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
6418                               bool exact_only)
6419 {
6420         return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
6421 }
6422
6423 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
6424 {
6425         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
6426 }
6427
6428 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
6429 {
6430         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
6431 }
6432
6433 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
6434 {
6435         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
6436 }
6437
6438 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
6439 {
6440         return kvm_register_read(emul_to_vcpu(ctxt), reg);
6441 }
6442
6443 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
6444 {
6445         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
6446 }
6447
6448 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
6449 {
6450         kvm_x86_ops.set_nmi_mask(emul_to_vcpu(ctxt), masked);
6451 }
6452
6453 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
6454 {
6455         return emul_to_vcpu(ctxt)->arch.hflags;
6456 }
6457
6458 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
6459 {
6460         emul_to_vcpu(ctxt)->arch.hflags = emul_flags;
6461 }
6462
6463 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt,
6464                                   const char *smstate)
6465 {
6466         return kvm_x86_ops.pre_leave_smm(emul_to_vcpu(ctxt), smstate);
6467 }
6468
6469 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt)
6470 {
6471         kvm_smm_changed(emul_to_vcpu(ctxt));
6472 }
6473
6474 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
6475 {
6476         return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
6477 }
6478
6479 static const struct x86_emulate_ops emulate_ops = {
6480         .read_gpr            = emulator_read_gpr,
6481         .write_gpr           = emulator_write_gpr,
6482         .read_std            = emulator_read_std,
6483         .write_std           = emulator_write_std,
6484         .read_phys           = kvm_read_guest_phys_system,
6485         .fetch               = kvm_fetch_guest_virt,
6486         .read_emulated       = emulator_read_emulated,
6487         .write_emulated      = emulator_write_emulated,
6488         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
6489         .invlpg              = emulator_invlpg,
6490         .pio_in_emulated     = emulator_pio_in_emulated,
6491         .pio_out_emulated    = emulator_pio_out_emulated,
6492         .get_segment         = emulator_get_segment,
6493         .set_segment         = emulator_set_segment,
6494         .get_cached_segment_base = emulator_get_cached_segment_base,
6495         .get_gdt             = emulator_get_gdt,
6496         .get_idt             = emulator_get_idt,
6497         .set_gdt             = emulator_set_gdt,
6498         .set_idt             = emulator_set_idt,
6499         .get_cr              = emulator_get_cr,
6500         .set_cr              = emulator_set_cr,
6501         .cpl                 = emulator_get_cpl,
6502         .get_dr              = emulator_get_dr,
6503         .set_dr              = emulator_set_dr,
6504         .get_smbase          = emulator_get_smbase,
6505         .set_smbase          = emulator_set_smbase,
6506         .set_msr             = emulator_set_msr,
6507         .get_msr             = emulator_get_msr,
6508         .check_pmc           = emulator_check_pmc,
6509         .read_pmc            = emulator_read_pmc,
6510         .halt                = emulator_halt,
6511         .wbinvd              = emulator_wbinvd,
6512         .fix_hypercall       = emulator_fix_hypercall,
6513         .intercept           = emulator_intercept,
6514         .get_cpuid           = emulator_get_cpuid,
6515         .guest_has_long_mode = emulator_guest_has_long_mode,
6516         .guest_has_movbe     = emulator_guest_has_movbe,
6517         .guest_has_fxsr      = emulator_guest_has_fxsr,
6518         .set_nmi_mask        = emulator_set_nmi_mask,
6519         .get_hflags          = emulator_get_hflags,
6520         .set_hflags          = emulator_set_hflags,
6521         .pre_leave_smm       = emulator_pre_leave_smm,
6522         .post_leave_smm      = emulator_post_leave_smm,
6523         .set_xcr             = emulator_set_xcr,
6524 };
6525
6526 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
6527 {
6528         u32 int_shadow = kvm_x86_ops.get_interrupt_shadow(vcpu);
6529         /*
6530          * an sti; sti; sequence only disable interrupts for the first
6531          * instruction. So, if the last instruction, be it emulated or
6532          * not, left the system with the INT_STI flag enabled, it
6533          * means that the last instruction is an sti. We should not
6534          * leave the flag on in this case. The same goes for mov ss
6535          */
6536         if (int_shadow & mask)
6537                 mask = 0;
6538         if (unlikely(int_shadow || mask)) {
6539                 kvm_x86_ops.set_interrupt_shadow(vcpu, mask);
6540                 if (!mask)
6541                         kvm_make_request(KVM_REQ_EVENT, vcpu);
6542         }
6543 }
6544
6545 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
6546 {
6547         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6548         if (ctxt->exception.vector == PF_VECTOR)
6549                 return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
6550
6551         if (ctxt->exception.error_code_valid)
6552                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
6553                                       ctxt->exception.error_code);
6554         else
6555                 kvm_queue_exception(vcpu, ctxt->exception.vector);
6556         return false;
6557 }
6558
6559 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
6560 {
6561         struct x86_emulate_ctxt *ctxt;
6562
6563         ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
6564         if (!ctxt) {
6565                 pr_err("kvm: failed to allocate vcpu's emulator\n");
6566                 return NULL;
6567         }
6568
6569         ctxt->vcpu = vcpu;
6570         ctxt->ops = &emulate_ops;
6571         vcpu->arch.emulate_ctxt = ctxt;
6572
6573         return ctxt;
6574 }
6575
6576 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
6577 {
6578         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6579         int cs_db, cs_l;
6580
6581         kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
6582
6583         ctxt->gpa_available = false;
6584         ctxt->eflags = kvm_get_rflags(vcpu);
6585         ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
6586
6587         ctxt->eip = kvm_rip_read(vcpu);
6588         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
6589                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
6590                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
6591                      cs_db                              ? X86EMUL_MODE_PROT32 :
6592                                                           X86EMUL_MODE_PROT16;
6593         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
6594         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
6595         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
6596
6597         init_decode_cache(ctxt);
6598         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6599 }
6600
6601 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
6602 {
6603         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6604         int ret;
6605
6606         init_emulate_ctxt(vcpu);
6607
6608         ctxt->op_bytes = 2;
6609         ctxt->ad_bytes = 2;
6610         ctxt->_eip = ctxt->eip + inc_eip;
6611         ret = emulate_int_real(ctxt, irq);
6612
6613         if (ret != X86EMUL_CONTINUE) {
6614                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6615         } else {
6616                 ctxt->eip = ctxt->_eip;
6617                 kvm_rip_write(vcpu, ctxt->eip);
6618                 kvm_set_rflags(vcpu, ctxt->eflags);
6619         }
6620 }
6621 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
6622
6623 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
6624 {
6625         ++vcpu->stat.insn_emulation_fail;
6626         trace_kvm_emulate_insn_failed(vcpu);
6627
6628         if (emulation_type & EMULTYPE_VMWARE_GP) {
6629                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6630                 return 1;
6631         }
6632
6633         if (emulation_type & EMULTYPE_SKIP) {
6634                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6635                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6636                 vcpu->run->internal.ndata = 0;
6637                 return 0;
6638         }
6639
6640         kvm_queue_exception(vcpu, UD_VECTOR);
6641
6642         if (!is_guest_mode(vcpu) && kvm_x86_ops.get_cpl(vcpu) == 0) {
6643                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6644                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6645                 vcpu->run->internal.ndata = 0;
6646                 return 0;
6647         }
6648
6649         return 1;
6650 }
6651
6652 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
6653                                   bool write_fault_to_shadow_pgtable,
6654                                   int emulation_type)
6655 {
6656         gpa_t gpa = cr2_or_gpa;
6657         kvm_pfn_t pfn;
6658
6659         if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
6660                 return false;
6661
6662         if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
6663             WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
6664                 return false;
6665
6666         if (!vcpu->arch.mmu->direct_map) {
6667                 /*
6668                  * Write permission should be allowed since only
6669                  * write access need to be emulated.
6670                  */
6671                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
6672
6673                 /*
6674                  * If the mapping is invalid in guest, let cpu retry
6675                  * it to generate fault.
6676                  */
6677                 if (gpa == UNMAPPED_GVA)
6678                         return true;
6679         }
6680
6681         /*
6682          * Do not retry the unhandleable instruction if it faults on the
6683          * readonly host memory, otherwise it will goto a infinite loop:
6684          * retry instruction -> write #PF -> emulation fail -> retry
6685          * instruction -> ...
6686          */
6687         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
6688
6689         /*
6690          * If the instruction failed on the error pfn, it can not be fixed,
6691          * report the error to userspace.
6692          */
6693         if (is_error_noslot_pfn(pfn))
6694                 return false;
6695
6696         kvm_release_pfn_clean(pfn);
6697
6698         /* The instructions are well-emulated on direct mmu. */
6699         if (vcpu->arch.mmu->direct_map) {
6700                 unsigned int indirect_shadow_pages;
6701
6702                 spin_lock(&vcpu->kvm->mmu_lock);
6703                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
6704                 spin_unlock(&vcpu->kvm->mmu_lock);
6705
6706                 if (indirect_shadow_pages)
6707                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6708
6709                 return true;
6710         }
6711
6712         /*
6713          * if emulation was due to access to shadowed page table
6714          * and it failed try to unshadow page and re-enter the
6715          * guest to let CPU execute the instruction.
6716          */
6717         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6718
6719         /*
6720          * If the access faults on its page table, it can not
6721          * be fixed by unprotecting shadow page and it should
6722          * be reported to userspace.
6723          */
6724         return !write_fault_to_shadow_pgtable;
6725 }
6726
6727 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
6728                               gpa_t cr2_or_gpa,  int emulation_type)
6729 {
6730         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6731         unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
6732
6733         last_retry_eip = vcpu->arch.last_retry_eip;
6734         last_retry_addr = vcpu->arch.last_retry_addr;
6735
6736         /*
6737          * If the emulation is caused by #PF and it is non-page_table
6738          * writing instruction, it means the VM-EXIT is caused by shadow
6739          * page protected, we can zap the shadow page and retry this
6740          * instruction directly.
6741          *
6742          * Note: if the guest uses a non-page-table modifying instruction
6743          * on the PDE that points to the instruction, then we will unmap
6744          * the instruction and go to an infinite loop. So, we cache the
6745          * last retried eip and the last fault address, if we meet the eip
6746          * and the address again, we can break out of the potential infinite
6747          * loop.
6748          */
6749         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
6750
6751         if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
6752                 return false;
6753
6754         if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
6755             WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
6756                 return false;
6757
6758         if (x86_page_table_writing_insn(ctxt))
6759                 return false;
6760
6761         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
6762                 return false;
6763
6764         vcpu->arch.last_retry_eip = ctxt->eip;
6765         vcpu->arch.last_retry_addr = cr2_or_gpa;
6766
6767         if (!vcpu->arch.mmu->direct_map)
6768                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
6769
6770         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6771
6772         return true;
6773 }
6774
6775 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
6776 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
6777
6778 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
6779 {
6780         if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
6781                 /* This is a good place to trace that we are exiting SMM.  */
6782                 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
6783
6784                 /* Process a latched INIT or SMI, if any.  */
6785                 kvm_make_request(KVM_REQ_EVENT, vcpu);
6786         }
6787
6788         kvm_mmu_reset_context(vcpu);
6789 }
6790
6791 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
6792                                 unsigned long *db)
6793 {
6794         u32 dr6 = 0;
6795         int i;
6796         u32 enable, rwlen;
6797
6798         enable = dr7;
6799         rwlen = dr7 >> 16;
6800         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
6801                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
6802                         dr6 |= (1 << i);
6803         return dr6;
6804 }
6805
6806 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
6807 {
6808         struct kvm_run *kvm_run = vcpu->run;
6809
6810         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
6811                 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
6812                 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
6813                 kvm_run->debug.arch.exception = DB_VECTOR;
6814                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
6815                 return 0;
6816         }
6817         kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
6818         return 1;
6819 }
6820
6821 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
6822 {
6823         unsigned long rflags = kvm_x86_ops.get_rflags(vcpu);
6824         int r;
6825
6826         r = kvm_x86_ops.skip_emulated_instruction(vcpu);
6827         if (unlikely(!r))
6828                 return 0;
6829
6830         /*
6831          * rflags is the old, "raw" value of the flags.  The new value has
6832          * not been saved yet.
6833          *
6834          * This is correct even for TF set by the guest, because "the
6835          * processor will not generate this exception after the instruction
6836          * that sets the TF flag".
6837          */
6838         if (unlikely(rflags & X86_EFLAGS_TF))
6839                 r = kvm_vcpu_do_singlestep(vcpu);
6840         return r;
6841 }
6842 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
6843
6844 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
6845 {
6846         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
6847             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
6848                 struct kvm_run *kvm_run = vcpu->run;
6849                 unsigned long eip = kvm_get_linear_rip(vcpu);
6850                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6851                                            vcpu->arch.guest_debug_dr7,
6852                                            vcpu->arch.eff_db);
6853
6854                 if (dr6 != 0) {
6855                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
6856                         kvm_run->debug.arch.pc = eip;
6857                         kvm_run->debug.arch.exception = DB_VECTOR;
6858                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
6859                         *r = 0;
6860                         return true;
6861                 }
6862         }
6863
6864         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
6865             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
6866                 unsigned long eip = kvm_get_linear_rip(vcpu);
6867                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6868                                            vcpu->arch.dr7,
6869                                            vcpu->arch.db);
6870
6871                 if (dr6 != 0) {
6872                         kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
6873                         *r = 1;
6874                         return true;
6875                 }
6876         }
6877
6878         return false;
6879 }
6880
6881 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
6882 {
6883         switch (ctxt->opcode_len) {
6884         case 1:
6885                 switch (ctxt->b) {
6886                 case 0xe4:      /* IN */
6887                 case 0xe5:
6888                 case 0xec:
6889                 case 0xed:
6890                 case 0xe6:      /* OUT */
6891                 case 0xe7:
6892                 case 0xee:
6893                 case 0xef:
6894                 case 0x6c:      /* INS */
6895                 case 0x6d:
6896                 case 0x6e:      /* OUTS */
6897                 case 0x6f:
6898                         return true;
6899                 }
6900                 break;
6901         case 2:
6902                 switch (ctxt->b) {
6903                 case 0x33:      /* RDPMC */
6904                         return true;
6905                 }
6906                 break;
6907         }
6908
6909         return false;
6910 }
6911
6912 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
6913                             int emulation_type, void *insn, int insn_len)
6914 {
6915         int r;
6916         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6917         bool writeback = true;
6918         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
6919
6920         vcpu->arch.l1tf_flush_l1d = true;
6921
6922         /*
6923          * Clear write_fault_to_shadow_pgtable here to ensure it is
6924          * never reused.
6925          */
6926         vcpu->arch.write_fault_to_shadow_pgtable = false;
6927         kvm_clear_exception_queue(vcpu);
6928
6929         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
6930                 init_emulate_ctxt(vcpu);
6931
6932                 /*
6933                  * We will reenter on the same instruction since
6934                  * we do not set complete_userspace_io.  This does not
6935                  * handle watchpoints yet, those would be handled in
6936                  * the emulate_ops.
6937                  */
6938                 if (!(emulation_type & EMULTYPE_SKIP) &&
6939                     kvm_vcpu_check_breakpoint(vcpu, &r))
6940                         return r;
6941
6942                 ctxt->interruptibility = 0;
6943                 ctxt->have_exception = false;
6944                 ctxt->exception.vector = -1;
6945                 ctxt->perm_ok = false;
6946
6947                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
6948
6949                 r = x86_decode_insn(ctxt, insn, insn_len);
6950
6951                 trace_kvm_emulate_insn_start(vcpu);
6952                 ++vcpu->stat.insn_emulation;
6953                 if (r != EMULATION_OK)  {
6954                         if ((emulation_type & EMULTYPE_TRAP_UD) ||
6955                             (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
6956                                 kvm_queue_exception(vcpu, UD_VECTOR);
6957                                 return 1;
6958                         }
6959                         if (reexecute_instruction(vcpu, cr2_or_gpa,
6960                                                   write_fault_to_spt,
6961                                                   emulation_type))
6962                                 return 1;
6963                         if (ctxt->have_exception) {
6964                                 /*
6965                                  * #UD should result in just EMULATION_FAILED, and trap-like
6966                                  * exception should not be encountered during decode.
6967                                  */
6968                                 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
6969                                              exception_type(ctxt->exception.vector) == EXCPT_TRAP);
6970                                 inject_emulated_exception(vcpu);
6971                                 return 1;
6972                         }
6973                         return handle_emulation_failure(vcpu, emulation_type);
6974                 }
6975         }
6976
6977         if ((emulation_type & EMULTYPE_VMWARE_GP) &&
6978             !is_vmware_backdoor_opcode(ctxt)) {
6979                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6980                 return 1;
6981         }
6982
6983         /*
6984          * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
6985          * for kvm_skip_emulated_instruction().  The caller is responsible for
6986          * updating interruptibility state and injecting single-step #DBs.
6987          */
6988         if (emulation_type & EMULTYPE_SKIP) {
6989                 kvm_rip_write(vcpu, ctxt->_eip);
6990                 if (ctxt->eflags & X86_EFLAGS_RF)
6991                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
6992                 return 1;
6993         }
6994
6995         if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
6996                 return 1;
6997
6998         /* this is needed for vmware backdoor interface to work since it
6999            changes registers values  during IO operation */
7000         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
7001                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7002                 emulator_invalidate_register_cache(ctxt);
7003         }
7004
7005 restart:
7006         if (emulation_type & EMULTYPE_PF) {
7007                 /* Save the faulting GPA (cr2) in the address field */
7008                 ctxt->exception.address = cr2_or_gpa;
7009
7010                 /* With shadow page tables, cr2 contains a GVA or nGPA. */
7011                 if (vcpu->arch.mmu->direct_map) {
7012                         ctxt->gpa_available = true;
7013                         ctxt->gpa_val = cr2_or_gpa;
7014                 }
7015         } else {
7016                 /* Sanitize the address out of an abundance of paranoia. */
7017                 ctxt->exception.address = 0;
7018         }
7019
7020         r = x86_emulate_insn(ctxt);
7021
7022         if (r == EMULATION_INTERCEPTED)
7023                 return 1;
7024
7025         if (r == EMULATION_FAILED) {
7026                 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
7027                                         emulation_type))
7028                         return 1;
7029
7030                 return handle_emulation_failure(vcpu, emulation_type);
7031         }
7032
7033         if (ctxt->have_exception) {
7034                 r = 1;
7035                 if (inject_emulated_exception(vcpu))
7036                         return r;
7037         } else if (vcpu->arch.pio.count) {
7038                 if (!vcpu->arch.pio.in) {
7039                         /* FIXME: return into emulator if single-stepping.  */
7040                         vcpu->arch.pio.count = 0;
7041                 } else {
7042                         writeback = false;
7043                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
7044                 }
7045                 r = 0;
7046         } else if (vcpu->mmio_needed) {
7047                 ++vcpu->stat.mmio_exits;
7048
7049                 if (!vcpu->mmio_is_write)
7050                         writeback = false;
7051                 r = 0;
7052                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7053         } else if (r == EMULATION_RESTART)
7054                 goto restart;
7055         else
7056                 r = 1;
7057
7058         if (writeback) {
7059                 unsigned long rflags = kvm_x86_ops.get_rflags(vcpu);
7060                 toggle_interruptibility(vcpu, ctxt->interruptibility);
7061                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7062                 if (!ctxt->have_exception ||
7063                     exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
7064                         kvm_rip_write(vcpu, ctxt->eip);
7065                         if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
7066                                 r = kvm_vcpu_do_singlestep(vcpu);
7067                         if (kvm_x86_ops.update_emulated_instruction)
7068                                 kvm_x86_ops.update_emulated_instruction(vcpu);
7069                         __kvm_set_rflags(vcpu, ctxt->eflags);
7070                 }
7071
7072                 /*
7073                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
7074                  * do nothing, and it will be requested again as soon as
7075                  * the shadow expires.  But we still need to check here,
7076                  * because POPF has no interrupt shadow.
7077                  */
7078                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
7079                         kvm_make_request(KVM_REQ_EVENT, vcpu);
7080         } else
7081                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
7082
7083         return r;
7084 }
7085
7086 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
7087 {
7088         return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
7089 }
7090 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
7091
7092 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
7093                                         void *insn, int insn_len)
7094 {
7095         return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
7096 }
7097 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
7098
7099 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
7100 {
7101         vcpu->arch.pio.count = 0;
7102         return 1;
7103 }
7104
7105 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
7106 {
7107         vcpu->arch.pio.count = 0;
7108
7109         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
7110                 return 1;
7111
7112         return kvm_skip_emulated_instruction(vcpu);
7113 }
7114
7115 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
7116                             unsigned short port)
7117 {
7118         unsigned long val = kvm_rax_read(vcpu);
7119         int ret = emulator_pio_out(vcpu, size, port, &val, 1);
7120
7121         if (ret)
7122                 return ret;
7123
7124         /*
7125          * Workaround userspace that relies on old KVM behavior of %rip being
7126          * incremented prior to exiting to userspace to handle "OUT 0x7e".
7127          */
7128         if (port == 0x7e &&
7129             kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
7130                 vcpu->arch.complete_userspace_io =
7131                         complete_fast_pio_out_port_0x7e;
7132                 kvm_skip_emulated_instruction(vcpu);
7133         } else {
7134                 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7135                 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
7136         }
7137         return 0;
7138 }
7139
7140 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
7141 {
7142         unsigned long val;
7143
7144         /* We should only ever be called with arch.pio.count equal to 1 */
7145         BUG_ON(vcpu->arch.pio.count != 1);
7146
7147         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
7148                 vcpu->arch.pio.count = 0;
7149                 return 1;
7150         }
7151
7152         /* For size less than 4 we merge, else we zero extend */
7153         val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
7154
7155         /*
7156          * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
7157          * the copy and tracing
7158          */
7159         emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
7160         kvm_rax_write(vcpu, val);
7161
7162         return kvm_skip_emulated_instruction(vcpu);
7163 }
7164
7165 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
7166                            unsigned short port)
7167 {
7168         unsigned long val;
7169         int ret;
7170
7171         /* For size less than 4 we merge, else we zero extend */
7172         val = (size < 4) ? kvm_rax_read(vcpu) : 0;
7173
7174         ret = emulator_pio_in(vcpu, size, port, &val, 1);
7175         if (ret) {
7176                 kvm_rax_write(vcpu, val);
7177                 return ret;
7178         }
7179
7180         vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7181         vcpu->arch.complete_userspace_io = complete_fast_pio_in;
7182
7183         return 0;
7184 }
7185
7186 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
7187 {
7188         int ret;
7189
7190         if (in)
7191                 ret = kvm_fast_pio_in(vcpu, size, port);
7192         else
7193                 ret = kvm_fast_pio_out(vcpu, size, port);
7194         return ret && kvm_skip_emulated_instruction(vcpu);
7195 }
7196 EXPORT_SYMBOL_GPL(kvm_fast_pio);
7197
7198 static int kvmclock_cpu_down_prep(unsigned int cpu)
7199 {
7200         __this_cpu_write(cpu_tsc_khz, 0);
7201         return 0;
7202 }
7203
7204 static void tsc_khz_changed(void *data)
7205 {
7206         struct cpufreq_freqs *freq = data;
7207         unsigned long khz = 0;
7208
7209         if (data)
7210                 khz = freq->new;
7211         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7212                 khz = cpufreq_quick_get(raw_smp_processor_id());
7213         if (!khz)
7214                 khz = tsc_khz;
7215         __this_cpu_write(cpu_tsc_khz, khz);
7216 }
7217
7218 #ifdef CONFIG_X86_64
7219 static void kvm_hyperv_tsc_notifier(void)
7220 {
7221         struct kvm *kvm;
7222         struct kvm_vcpu *vcpu;
7223         int cpu;
7224
7225         mutex_lock(&kvm_lock);
7226         list_for_each_entry(kvm, &vm_list, vm_list)
7227                 kvm_make_mclock_inprogress_request(kvm);
7228
7229         hyperv_stop_tsc_emulation();
7230
7231         /* TSC frequency always matches when on Hyper-V */
7232         for_each_present_cpu(cpu)
7233                 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
7234         kvm_max_guest_tsc_khz = tsc_khz;
7235
7236         list_for_each_entry(kvm, &vm_list, vm_list) {
7237                 struct kvm_arch *ka = &kvm->arch;
7238
7239                 spin_lock(&ka->pvclock_gtod_sync_lock);
7240
7241                 pvclock_update_vm_gtod_copy(kvm);
7242
7243                 kvm_for_each_vcpu(cpu, vcpu, kvm)
7244                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7245
7246                 kvm_for_each_vcpu(cpu, vcpu, kvm)
7247                         kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
7248
7249                 spin_unlock(&ka->pvclock_gtod_sync_lock);
7250         }
7251         mutex_unlock(&kvm_lock);
7252 }
7253 #endif
7254
7255 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
7256 {
7257         struct kvm *kvm;
7258         struct kvm_vcpu *vcpu;
7259         int i, send_ipi = 0;
7260
7261         /*
7262          * We allow guests to temporarily run on slowing clocks,
7263          * provided we notify them after, or to run on accelerating
7264          * clocks, provided we notify them before.  Thus time never
7265          * goes backwards.
7266          *
7267          * However, we have a problem.  We can't atomically update
7268          * the frequency of a given CPU from this function; it is
7269          * merely a notifier, which can be called from any CPU.
7270          * Changing the TSC frequency at arbitrary points in time
7271          * requires a recomputation of local variables related to
7272          * the TSC for each VCPU.  We must flag these local variables
7273          * to be updated and be sure the update takes place with the
7274          * new frequency before any guests proceed.
7275          *
7276          * Unfortunately, the combination of hotplug CPU and frequency
7277          * change creates an intractable locking scenario; the order
7278          * of when these callouts happen is undefined with respect to
7279          * CPU hotplug, and they can race with each other.  As such,
7280          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
7281          * undefined; you can actually have a CPU frequency change take
7282          * place in between the computation of X and the setting of the
7283          * variable.  To protect against this problem, all updates of
7284          * the per_cpu tsc_khz variable are done in an interrupt
7285          * protected IPI, and all callers wishing to update the value
7286          * must wait for a synchronous IPI to complete (which is trivial
7287          * if the caller is on the CPU already).  This establishes the
7288          * necessary total order on variable updates.
7289          *
7290          * Note that because a guest time update may take place
7291          * anytime after the setting of the VCPU's request bit, the
7292          * correct TSC value must be set before the request.  However,
7293          * to ensure the update actually makes it to any guest which
7294          * starts running in hardware virtualization between the set
7295          * and the acquisition of the spinlock, we must also ping the
7296          * CPU after setting the request bit.
7297          *
7298          */
7299
7300         smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7301
7302         mutex_lock(&kvm_lock);
7303         list_for_each_entry(kvm, &vm_list, vm_list) {
7304                 kvm_for_each_vcpu(i, vcpu, kvm) {
7305                         if (vcpu->cpu != cpu)
7306                                 continue;
7307                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7308                         if (vcpu->cpu != raw_smp_processor_id())
7309                                 send_ipi = 1;
7310                 }
7311         }
7312         mutex_unlock(&kvm_lock);
7313
7314         if (freq->old < freq->new && send_ipi) {
7315                 /*
7316                  * We upscale the frequency.  Must make the guest
7317                  * doesn't see old kvmclock values while running with
7318                  * the new frequency, otherwise we risk the guest sees
7319                  * time go backwards.
7320                  *
7321                  * In case we update the frequency for another cpu
7322                  * (which might be in guest context) send an interrupt
7323                  * to kick the cpu out of guest context.  Next time
7324                  * guest context is entered kvmclock will be updated,
7325                  * so the guest will not see stale values.
7326                  */
7327                 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7328         }
7329 }
7330
7331 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
7332                                      void *data)
7333 {
7334         struct cpufreq_freqs *freq = data;
7335         int cpu;
7336
7337         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
7338                 return 0;
7339         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
7340                 return 0;
7341
7342         for_each_cpu(cpu, freq->policy->cpus)
7343                 __kvmclock_cpufreq_notifier(freq, cpu);
7344
7345         return 0;
7346 }
7347
7348 static struct notifier_block kvmclock_cpufreq_notifier_block = {
7349         .notifier_call  = kvmclock_cpufreq_notifier
7350 };
7351
7352 static int kvmclock_cpu_online(unsigned int cpu)
7353 {
7354         tsc_khz_changed(NULL);
7355         return 0;
7356 }
7357
7358 static void kvm_timer_init(void)
7359 {
7360         max_tsc_khz = tsc_khz;
7361
7362         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
7363 #ifdef CONFIG_CPU_FREQ
7364                 struct cpufreq_policy *policy;
7365                 int cpu;
7366
7367                 cpu = get_cpu();
7368                 policy = cpufreq_cpu_get(cpu);
7369                 if (policy) {
7370                         if (policy->cpuinfo.max_freq)
7371                                 max_tsc_khz = policy->cpuinfo.max_freq;
7372                         cpufreq_cpu_put(policy);
7373                 }
7374                 put_cpu();
7375 #endif
7376                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
7377                                           CPUFREQ_TRANSITION_NOTIFIER);
7378         }
7379
7380         cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
7381                           kvmclock_cpu_online, kvmclock_cpu_down_prep);
7382 }
7383
7384 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
7385 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
7386
7387 int kvm_is_in_guest(void)
7388 {
7389         return __this_cpu_read(current_vcpu) != NULL;
7390 }
7391
7392 static int kvm_is_user_mode(void)
7393 {
7394         int user_mode = 3;
7395
7396         if (__this_cpu_read(current_vcpu))
7397                 user_mode = kvm_x86_ops.get_cpl(__this_cpu_read(current_vcpu));
7398
7399         return user_mode != 0;
7400 }
7401
7402 static unsigned long kvm_get_guest_ip(void)
7403 {
7404         unsigned long ip = 0;
7405
7406         if (__this_cpu_read(current_vcpu))
7407                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
7408
7409         return ip;
7410 }
7411
7412 static void kvm_handle_intel_pt_intr(void)
7413 {
7414         struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
7415
7416         kvm_make_request(KVM_REQ_PMI, vcpu);
7417         __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
7418                         (unsigned long *)&vcpu->arch.pmu.global_status);
7419 }
7420
7421 static struct perf_guest_info_callbacks kvm_guest_cbs = {
7422         .is_in_guest            = kvm_is_in_guest,
7423         .is_user_mode           = kvm_is_user_mode,
7424         .get_guest_ip           = kvm_get_guest_ip,
7425         .handle_intel_pt_intr   = kvm_handle_intel_pt_intr,
7426 };
7427
7428 #ifdef CONFIG_X86_64
7429 static void pvclock_gtod_update_fn(struct work_struct *work)
7430 {
7431         struct kvm *kvm;
7432
7433         struct kvm_vcpu *vcpu;
7434         int i;
7435
7436         mutex_lock(&kvm_lock);
7437         list_for_each_entry(kvm, &vm_list, vm_list)
7438                 kvm_for_each_vcpu(i, vcpu, kvm)
7439                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7440         atomic_set(&kvm_guest_has_master_clock, 0);
7441         mutex_unlock(&kvm_lock);
7442 }
7443
7444 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
7445
7446 /*
7447  * Notification about pvclock gtod data update.
7448  */
7449 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
7450                                void *priv)
7451 {
7452         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
7453         struct timekeeper *tk = priv;
7454
7455         update_pvclock_gtod(tk);
7456
7457         /* disable master clock if host does not trust, or does not
7458          * use, TSC based clocksource.
7459          */
7460         if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
7461             atomic_read(&kvm_guest_has_master_clock) != 0)
7462                 queue_work(system_long_wq, &pvclock_gtod_work);
7463
7464         return 0;
7465 }
7466
7467 static struct notifier_block pvclock_gtod_notifier = {
7468         .notifier_call = pvclock_gtod_notify,
7469 };
7470 #endif
7471
7472 int kvm_arch_init(void *opaque)
7473 {
7474         struct kvm_x86_init_ops *ops = opaque;
7475         int r;
7476
7477         if (kvm_x86_ops.hardware_enable) {
7478                 printk(KERN_ERR "kvm: already loaded the other module\n");
7479                 r = -EEXIST;
7480                 goto out;
7481         }
7482
7483         if (!ops->cpu_has_kvm_support()) {
7484                 pr_err_ratelimited("kvm: no hardware support\n");
7485                 r = -EOPNOTSUPP;
7486                 goto out;
7487         }
7488         if (ops->disabled_by_bios()) {
7489                 pr_err_ratelimited("kvm: disabled by bios\n");
7490                 r = -EOPNOTSUPP;
7491                 goto out;
7492         }
7493
7494         /*
7495          * KVM explicitly assumes that the guest has an FPU and
7496          * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
7497          * vCPU's FPU state as a fxregs_state struct.
7498          */
7499         if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
7500                 printk(KERN_ERR "kvm: inadequate fpu\n");
7501                 r = -EOPNOTSUPP;
7502                 goto out;
7503         }
7504
7505         r = -ENOMEM;
7506         x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
7507                                           __alignof__(struct fpu), SLAB_ACCOUNT,
7508                                           NULL);
7509         if (!x86_fpu_cache) {
7510                 printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
7511                 goto out;
7512         }
7513
7514         x86_emulator_cache = kvm_alloc_emulator_cache();
7515         if (!x86_emulator_cache) {
7516                 pr_err("kvm: failed to allocate cache for x86 emulator\n");
7517                 goto out_free_x86_fpu_cache;
7518         }
7519
7520         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
7521         if (!shared_msrs) {
7522                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
7523                 goto out_free_x86_emulator_cache;
7524         }
7525
7526         r = kvm_mmu_module_init();
7527         if (r)
7528                 goto out_free_percpu;
7529
7530         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
7531                         PT_DIRTY_MASK, PT64_NX_MASK, 0,
7532                         PT_PRESENT_MASK, 0, sme_me_mask);
7533         kvm_timer_init();
7534
7535         perf_register_guest_info_callbacks(&kvm_guest_cbs);
7536
7537         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
7538                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
7539                 supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
7540         }
7541
7542         kvm_lapic_init();
7543         if (pi_inject_timer == -1)
7544                 pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
7545 #ifdef CONFIG_X86_64
7546         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
7547
7548         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7549                 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
7550 #endif
7551
7552         return 0;
7553
7554 out_free_percpu:
7555         free_percpu(shared_msrs);
7556 out_free_x86_emulator_cache:
7557         kmem_cache_destroy(x86_emulator_cache);
7558 out_free_x86_fpu_cache:
7559         kmem_cache_destroy(x86_fpu_cache);
7560 out:
7561         return r;
7562 }
7563
7564 void kvm_arch_exit(void)
7565 {
7566 #ifdef CONFIG_X86_64
7567         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7568                 clear_hv_tscchange_cb();
7569 #endif
7570         kvm_lapic_exit();
7571         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
7572
7573         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7574                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
7575                                             CPUFREQ_TRANSITION_NOTIFIER);
7576         cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
7577 #ifdef CONFIG_X86_64
7578         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
7579 #endif
7580         kvm_x86_ops.hardware_enable = NULL;
7581         kvm_mmu_module_exit();
7582         free_percpu(shared_msrs);
7583         kmem_cache_destroy(x86_fpu_cache);
7584 }
7585
7586 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
7587 {
7588         ++vcpu->stat.halt_exits;
7589         if (lapic_in_kernel(vcpu)) {
7590                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
7591                 return 1;
7592         } else {
7593                 vcpu->run->exit_reason = KVM_EXIT_HLT;
7594                 return 0;
7595         }
7596 }
7597 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
7598
7599 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
7600 {
7601         int ret = kvm_skip_emulated_instruction(vcpu);
7602         /*
7603          * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
7604          * KVM_EXIT_DEBUG here.
7605          */
7606         return kvm_vcpu_halt(vcpu) && ret;
7607 }
7608 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
7609
7610 #ifdef CONFIG_X86_64
7611 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
7612                                 unsigned long clock_type)
7613 {
7614         struct kvm_clock_pairing clock_pairing;
7615         struct timespec64 ts;
7616         u64 cycle;
7617         int ret;
7618
7619         if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
7620                 return -KVM_EOPNOTSUPP;
7621
7622         if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
7623                 return -KVM_EOPNOTSUPP;
7624
7625         clock_pairing.sec = ts.tv_sec;
7626         clock_pairing.nsec = ts.tv_nsec;
7627         clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
7628         clock_pairing.flags = 0;
7629         memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
7630
7631         ret = 0;
7632         if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
7633                             sizeof(struct kvm_clock_pairing)))
7634                 ret = -KVM_EFAULT;
7635
7636         return ret;
7637 }
7638 #endif
7639
7640 /*
7641  * kvm_pv_kick_cpu_op:  Kick a vcpu.
7642  *
7643  * @apicid - apicid of vcpu to be kicked.
7644  */
7645 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
7646 {
7647         struct kvm_lapic_irq lapic_irq;
7648
7649         lapic_irq.shorthand = APIC_DEST_NOSHORT;
7650         lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
7651         lapic_irq.level = 0;
7652         lapic_irq.dest_id = apicid;
7653         lapic_irq.msi_redir_hint = false;
7654
7655         lapic_irq.delivery_mode = APIC_DM_REMRD;
7656         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
7657 }
7658
7659 bool kvm_apicv_activated(struct kvm *kvm)
7660 {
7661         return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
7662 }
7663 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
7664
7665 void kvm_apicv_init(struct kvm *kvm, bool enable)
7666 {
7667         if (enable)
7668                 clear_bit(APICV_INHIBIT_REASON_DISABLE,
7669                           &kvm->arch.apicv_inhibit_reasons);
7670         else
7671                 set_bit(APICV_INHIBIT_REASON_DISABLE,
7672                         &kvm->arch.apicv_inhibit_reasons);
7673 }
7674 EXPORT_SYMBOL_GPL(kvm_apicv_init);
7675
7676 static void kvm_sched_yield(struct kvm *kvm, unsigned long dest_id)
7677 {
7678         struct kvm_vcpu *target = NULL;
7679         struct kvm_apic_map *map;
7680
7681         rcu_read_lock();
7682         map = rcu_dereference(kvm->arch.apic_map);
7683
7684         if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
7685                 target = map->phys_map[dest_id]->vcpu;
7686
7687         rcu_read_unlock();
7688
7689         if (target && READ_ONCE(target->ready))
7690                 kvm_vcpu_yield_to(target);
7691 }
7692
7693 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
7694 {
7695         unsigned long nr, a0, a1, a2, a3, ret;
7696         int op_64_bit;
7697
7698         if (kvm_hv_hypercall_enabled(vcpu->kvm))
7699                 return kvm_hv_hypercall(vcpu);
7700
7701         nr = kvm_rax_read(vcpu);
7702         a0 = kvm_rbx_read(vcpu);
7703         a1 = kvm_rcx_read(vcpu);
7704         a2 = kvm_rdx_read(vcpu);
7705         a3 = kvm_rsi_read(vcpu);
7706
7707         trace_kvm_hypercall(nr, a0, a1, a2, a3);
7708
7709         op_64_bit = is_64_bit_mode(vcpu);
7710         if (!op_64_bit) {
7711                 nr &= 0xFFFFFFFF;
7712                 a0 &= 0xFFFFFFFF;
7713                 a1 &= 0xFFFFFFFF;
7714                 a2 &= 0xFFFFFFFF;
7715                 a3 &= 0xFFFFFFFF;
7716         }
7717
7718         if (kvm_x86_ops.get_cpl(vcpu) != 0) {
7719                 ret = -KVM_EPERM;
7720                 goto out;
7721         }
7722
7723         switch (nr) {
7724         case KVM_HC_VAPIC_POLL_IRQ:
7725                 ret = 0;
7726                 break;
7727         case KVM_HC_KICK_CPU:
7728                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
7729                 kvm_sched_yield(vcpu->kvm, a1);
7730                 ret = 0;
7731                 break;
7732 #ifdef CONFIG_X86_64
7733         case KVM_HC_CLOCK_PAIRING:
7734                 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
7735                 break;
7736 #endif
7737         case KVM_HC_SEND_IPI:
7738                 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
7739                 break;
7740         case KVM_HC_SCHED_YIELD:
7741                 kvm_sched_yield(vcpu->kvm, a0);
7742                 ret = 0;
7743                 break;
7744         default:
7745                 ret = -KVM_ENOSYS;
7746                 break;
7747         }
7748 out:
7749         if (!op_64_bit)
7750                 ret = (u32)ret;
7751         kvm_rax_write(vcpu, ret);
7752
7753         ++vcpu->stat.hypercalls;
7754         return kvm_skip_emulated_instruction(vcpu);
7755 }
7756 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
7757
7758 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
7759 {
7760         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7761         char instruction[3];
7762         unsigned long rip = kvm_rip_read(vcpu);
7763
7764         kvm_x86_ops.patch_hypercall(vcpu, instruction);
7765
7766         return emulator_write_emulated(ctxt, rip, instruction, 3,
7767                 &ctxt->exception);
7768 }
7769
7770 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
7771 {
7772         return vcpu->run->request_interrupt_window &&
7773                 likely(!pic_in_kernel(vcpu->kvm));
7774 }
7775
7776 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
7777 {
7778         struct kvm_run *kvm_run = vcpu->run;
7779
7780         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
7781         kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
7782         kvm_run->cr8 = kvm_get_cr8(vcpu);
7783         kvm_run->apic_base = kvm_get_apic_base(vcpu);
7784         kvm_run->ready_for_interrupt_injection =
7785                 pic_in_kernel(vcpu->kvm) ||
7786                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
7787 }
7788
7789 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
7790 {
7791         int max_irr, tpr;
7792
7793         if (!kvm_x86_ops.update_cr8_intercept)
7794                 return;
7795
7796         if (!lapic_in_kernel(vcpu))
7797                 return;
7798
7799         if (vcpu->arch.apicv_active)
7800                 return;
7801
7802         if (!vcpu->arch.apic->vapic_addr)
7803                 max_irr = kvm_lapic_find_highest_irr(vcpu);
7804         else
7805                 max_irr = -1;
7806
7807         if (max_irr != -1)
7808                 max_irr >>= 4;
7809
7810         tpr = kvm_lapic_get_cr8(vcpu);
7811
7812         kvm_x86_ops.update_cr8_intercept(vcpu, tpr, max_irr);
7813 }
7814
7815 static void inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
7816 {
7817         int r;
7818         bool can_inject = true;
7819
7820         /* try to reinject previous events if any */
7821
7822         if (vcpu->arch.exception.injected) {
7823                 kvm_x86_ops.queue_exception(vcpu);
7824                 can_inject = false;
7825         }
7826         /*
7827          * Do not inject an NMI or interrupt if there is a pending
7828          * exception.  Exceptions and interrupts are recognized at
7829          * instruction boundaries, i.e. the start of an instruction.
7830          * Trap-like exceptions, e.g. #DB, have higher priority than
7831          * NMIs and interrupts, i.e. traps are recognized before an
7832          * NMI/interrupt that's pending on the same instruction.
7833          * Fault-like exceptions, e.g. #GP and #PF, are the lowest
7834          * priority, but are only generated (pended) during instruction
7835          * execution, i.e. a pending fault-like exception means the
7836          * fault occurred on the *previous* instruction and must be
7837          * serviced prior to recognizing any new events in order to
7838          * fully complete the previous instruction.
7839          */
7840         else if (!vcpu->arch.exception.pending) {
7841                 if (vcpu->arch.nmi_injected) {
7842                         kvm_x86_ops.set_nmi(vcpu);
7843                         can_inject = false;
7844                 } else if (vcpu->arch.interrupt.injected) {
7845                         kvm_x86_ops.set_irq(vcpu);
7846                         can_inject = false;
7847                 }
7848         }
7849
7850         WARN_ON_ONCE(vcpu->arch.exception.injected &&
7851                      vcpu->arch.exception.pending);
7852
7853         /*
7854          * Call check_nested_events() even if we reinjected a previous event
7855          * in order for caller to determine if it should require immediate-exit
7856          * from L2 to L1 due to pending L1 events which require exit
7857          * from L2 to L1.
7858          */
7859         if (is_guest_mode(vcpu)) {
7860                 r = kvm_x86_ops.nested_ops->check_events(vcpu);
7861                 if (r < 0)
7862                         goto busy;
7863         }
7864
7865         /* try to inject new event if pending */
7866         if (vcpu->arch.exception.pending) {
7867                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
7868                                         vcpu->arch.exception.has_error_code,
7869                                         vcpu->arch.exception.error_code);
7870
7871                 vcpu->arch.exception.pending = false;
7872                 vcpu->arch.exception.injected = true;
7873
7874                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
7875                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
7876                                              X86_EFLAGS_RF);
7877
7878                 if (vcpu->arch.exception.nr == DB_VECTOR) {
7879                         kvm_deliver_exception_payload(vcpu);
7880                         if (vcpu->arch.dr7 & DR7_GD) {
7881                                 vcpu->arch.dr7 &= ~DR7_GD;
7882                                 kvm_update_dr7(vcpu);
7883                         }
7884                 }
7885
7886                 kvm_x86_ops.queue_exception(vcpu);
7887                 can_inject = false;
7888         }
7889
7890         /*
7891          * Finally, inject interrupt events.  If an event cannot be injected
7892          * due to architectural conditions (e.g. IF=0) a window-open exit
7893          * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
7894          * and can architecturally be injected, but we cannot do it right now:
7895          * an interrupt could have arrived just now and we have to inject it
7896          * as a vmexit, or there could already an event in the queue, which is
7897          * indicated by can_inject.  In that case we request an immediate exit
7898          * in order to make progress and get back here for another iteration.
7899          * The kvm_x86_ops hooks communicate this by returning -EBUSY.
7900          */
7901         if (vcpu->arch.smi_pending) {
7902                 r = can_inject ? kvm_x86_ops.smi_allowed(vcpu, true) : -EBUSY;
7903                 if (r < 0)
7904                         goto busy;
7905                 if (r) {
7906                         vcpu->arch.smi_pending = false;
7907                         ++vcpu->arch.smi_count;
7908                         enter_smm(vcpu);
7909                         can_inject = false;
7910                 } else
7911                         kvm_x86_ops.enable_smi_window(vcpu);
7912         }
7913
7914         if (vcpu->arch.nmi_pending) {
7915                 r = can_inject ? kvm_x86_ops.nmi_allowed(vcpu, true) : -EBUSY;
7916                 if (r < 0)
7917                         goto busy;
7918                 if (r) {
7919                         --vcpu->arch.nmi_pending;
7920                         vcpu->arch.nmi_injected = true;
7921                         kvm_x86_ops.set_nmi(vcpu);
7922                         can_inject = false;
7923                         WARN_ON(kvm_x86_ops.nmi_allowed(vcpu, true) < 0);
7924                 }
7925                 if (vcpu->arch.nmi_pending)
7926                         kvm_x86_ops.enable_nmi_window(vcpu);
7927         }
7928
7929         if (kvm_cpu_has_injectable_intr(vcpu)) {
7930                 r = can_inject ? kvm_x86_ops.interrupt_allowed(vcpu, true) : -EBUSY;
7931                 if (r < 0)
7932                         goto busy;
7933                 if (r) {
7934                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
7935                         kvm_x86_ops.set_irq(vcpu);
7936                         WARN_ON(kvm_x86_ops.interrupt_allowed(vcpu, true) < 0);
7937                 }
7938                 if (kvm_cpu_has_injectable_intr(vcpu))
7939                         kvm_x86_ops.enable_irq_window(vcpu);
7940         }
7941
7942         if (is_guest_mode(vcpu) &&
7943             kvm_x86_ops.nested_ops->hv_timer_pending &&
7944             kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
7945                 *req_immediate_exit = true;
7946
7947         WARN_ON(vcpu->arch.exception.pending);
7948         return;
7949
7950 busy:
7951         *req_immediate_exit = true;
7952         return;
7953 }
7954
7955 static void process_nmi(struct kvm_vcpu *vcpu)
7956 {
7957         unsigned limit = 2;
7958
7959         /*
7960          * x86 is limited to one NMI running, and one NMI pending after it.
7961          * If an NMI is already in progress, limit further NMIs to just one.
7962          * Otherwise, allow two (and we'll inject the first one immediately).
7963          */
7964         if (kvm_x86_ops.get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
7965                 limit = 1;
7966
7967         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
7968         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
7969         kvm_make_request(KVM_REQ_EVENT, vcpu);
7970 }
7971
7972 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
7973 {
7974         u32 flags = 0;
7975         flags |= seg->g       << 23;
7976         flags |= seg->db      << 22;
7977         flags |= seg->l       << 21;
7978         flags |= seg->avl     << 20;
7979         flags |= seg->present << 15;
7980         flags |= seg->dpl     << 13;
7981         flags |= seg->s       << 12;
7982         flags |= seg->type    << 8;
7983         return flags;
7984 }
7985
7986 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
7987 {
7988         struct kvm_segment seg;
7989         int offset;
7990
7991         kvm_get_segment(vcpu, &seg, n);
7992         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
7993
7994         if (n < 3)
7995                 offset = 0x7f84 + n * 12;
7996         else
7997                 offset = 0x7f2c + (n - 3) * 12;
7998
7999         put_smstate(u32, buf, offset + 8, seg.base);
8000         put_smstate(u32, buf, offset + 4, seg.limit);
8001         put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
8002 }
8003
8004 #ifdef CONFIG_X86_64
8005 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
8006 {
8007         struct kvm_segment seg;
8008         int offset;
8009         u16 flags;
8010
8011         kvm_get_segment(vcpu, &seg, n);
8012         offset = 0x7e00 + n * 16;
8013
8014         flags = enter_smm_get_segment_flags(&seg) >> 8;
8015         put_smstate(u16, buf, offset, seg.selector);
8016         put_smstate(u16, buf, offset + 2, flags);
8017         put_smstate(u32, buf, offset + 4, seg.limit);
8018         put_smstate(u64, buf, offset + 8, seg.base);
8019 }
8020 #endif
8021
8022 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
8023 {
8024         struct desc_ptr dt;
8025         struct kvm_segment seg;
8026         unsigned long val;
8027         int i;
8028
8029         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
8030         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
8031         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
8032         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
8033
8034         for (i = 0; i < 8; i++)
8035                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
8036
8037         kvm_get_dr(vcpu, 6, &val);
8038         put_smstate(u32, buf, 0x7fcc, (u32)val);
8039         kvm_get_dr(vcpu, 7, &val);
8040         put_smstate(u32, buf, 0x7fc8, (u32)val);
8041
8042         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
8043         put_smstate(u32, buf, 0x7fc4, seg.selector);
8044         put_smstate(u32, buf, 0x7f64, seg.base);
8045         put_smstate(u32, buf, 0x7f60, seg.limit);
8046         put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
8047
8048         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
8049         put_smstate(u32, buf, 0x7fc0, seg.selector);
8050         put_smstate(u32, buf, 0x7f80, seg.base);
8051         put_smstate(u32, buf, 0x7f7c, seg.limit);
8052         put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
8053
8054         kvm_x86_ops.get_gdt(vcpu, &dt);
8055         put_smstate(u32, buf, 0x7f74, dt.address);
8056         put_smstate(u32, buf, 0x7f70, dt.size);
8057
8058         kvm_x86_ops.get_idt(vcpu, &dt);
8059         put_smstate(u32, buf, 0x7f58, dt.address);
8060         put_smstate(u32, buf, 0x7f54, dt.size);
8061
8062         for (i = 0; i < 6; i++)
8063                 enter_smm_save_seg_32(vcpu, buf, i);
8064
8065         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
8066
8067         /* revision id */
8068         put_smstate(u32, buf, 0x7efc, 0x00020000);
8069         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
8070 }
8071
8072 #ifdef CONFIG_X86_64
8073 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
8074 {
8075         struct desc_ptr dt;
8076         struct kvm_segment seg;
8077         unsigned long val;
8078         int i;
8079
8080         for (i = 0; i < 16; i++)
8081                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
8082
8083         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
8084         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
8085
8086         kvm_get_dr(vcpu, 6, &val);
8087         put_smstate(u64, buf, 0x7f68, val);
8088         kvm_get_dr(vcpu, 7, &val);
8089         put_smstate(u64, buf, 0x7f60, val);
8090
8091         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
8092         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
8093         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
8094
8095         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
8096
8097         /* revision id */
8098         put_smstate(u32, buf, 0x7efc, 0x00020064);
8099
8100         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
8101
8102         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
8103         put_smstate(u16, buf, 0x7e90, seg.selector);
8104         put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
8105         put_smstate(u32, buf, 0x7e94, seg.limit);
8106         put_smstate(u64, buf, 0x7e98, seg.base);
8107
8108         kvm_x86_ops.get_idt(vcpu, &dt);
8109         put_smstate(u32, buf, 0x7e84, dt.size);
8110         put_smstate(u64, buf, 0x7e88, dt.address);
8111
8112         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
8113         put_smstate(u16, buf, 0x7e70, seg.selector);
8114         put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
8115         put_smstate(u32, buf, 0x7e74, seg.limit);
8116         put_smstate(u64, buf, 0x7e78, seg.base);
8117
8118         kvm_x86_ops.get_gdt(vcpu, &dt);
8119         put_smstate(u32, buf, 0x7e64, dt.size);
8120         put_smstate(u64, buf, 0x7e68, dt.address);
8121
8122         for (i = 0; i < 6; i++)
8123                 enter_smm_save_seg_64(vcpu, buf, i);
8124 }
8125 #endif
8126
8127 static void enter_smm(struct kvm_vcpu *vcpu)
8128 {
8129         struct kvm_segment cs, ds;
8130         struct desc_ptr dt;
8131         char buf[512];
8132         u32 cr0;
8133
8134         trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
8135         memset(buf, 0, 512);
8136 #ifdef CONFIG_X86_64
8137         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
8138                 enter_smm_save_state_64(vcpu, buf);
8139         else
8140 #endif
8141                 enter_smm_save_state_32(vcpu, buf);
8142
8143         /*
8144          * Give pre_enter_smm() a chance to make ISA-specific changes to the
8145          * vCPU state (e.g. leave guest mode) after we've saved the state into
8146          * the SMM state-save area.
8147          */
8148         kvm_x86_ops.pre_enter_smm(vcpu, buf);
8149
8150         vcpu->arch.hflags |= HF_SMM_MASK;
8151         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
8152
8153         if (kvm_x86_ops.get_nmi_mask(vcpu))
8154                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
8155         else
8156                 kvm_x86_ops.set_nmi_mask(vcpu, true);
8157
8158         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
8159         kvm_rip_write(vcpu, 0x8000);
8160
8161         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
8162         kvm_x86_ops.set_cr0(vcpu, cr0);
8163         vcpu->arch.cr0 = cr0;
8164
8165         kvm_x86_ops.set_cr4(vcpu, 0);
8166
8167         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
8168         dt.address = dt.size = 0;
8169         kvm_x86_ops.set_idt(vcpu, &dt);
8170
8171         __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
8172
8173         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
8174         cs.base = vcpu->arch.smbase;
8175
8176         ds.selector = 0;
8177         ds.base = 0;
8178
8179         cs.limit    = ds.limit = 0xffffffff;
8180         cs.type     = ds.type = 0x3;
8181         cs.dpl      = ds.dpl = 0;
8182         cs.db       = ds.db = 0;
8183         cs.s        = ds.s = 1;
8184         cs.l        = ds.l = 0;
8185         cs.g        = ds.g = 1;
8186         cs.avl      = ds.avl = 0;
8187         cs.present  = ds.present = 1;
8188         cs.unusable = ds.unusable = 0;
8189         cs.padding  = ds.padding = 0;
8190
8191         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8192         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
8193         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
8194         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
8195         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
8196         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
8197
8198 #ifdef CONFIG_X86_64
8199         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
8200                 kvm_x86_ops.set_efer(vcpu, 0);
8201 #endif
8202
8203         kvm_update_cpuid_runtime(vcpu);
8204         kvm_mmu_reset_context(vcpu);
8205 }
8206
8207 static void process_smi(struct kvm_vcpu *vcpu)
8208 {
8209         vcpu->arch.smi_pending = true;
8210         kvm_make_request(KVM_REQ_EVENT, vcpu);
8211 }
8212
8213 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
8214                                        unsigned long *vcpu_bitmap)
8215 {
8216         cpumask_var_t cpus;
8217
8218         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
8219
8220         kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC,
8221                                     NULL, vcpu_bitmap, cpus);
8222
8223         free_cpumask_var(cpus);
8224 }
8225
8226 void kvm_make_scan_ioapic_request(struct kvm *kvm)
8227 {
8228         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
8229 }
8230
8231 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
8232 {
8233         if (!lapic_in_kernel(vcpu))
8234                 return;
8235
8236         vcpu->arch.apicv_active = kvm_apicv_activated(vcpu->kvm);
8237         kvm_apic_update_apicv(vcpu);
8238         kvm_x86_ops.refresh_apicv_exec_ctrl(vcpu);
8239 }
8240 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
8241
8242 /*
8243  * NOTE: Do not hold any lock prior to calling this.
8244  *
8245  * In particular, kvm_request_apicv_update() expects kvm->srcu not to be
8246  * locked, because it calls __x86_set_memory_region() which does
8247  * synchronize_srcu(&kvm->srcu).
8248  */
8249 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
8250 {
8251         struct kvm_vcpu *except;
8252         unsigned long old, new, expected;
8253
8254         if (!kvm_x86_ops.check_apicv_inhibit_reasons ||
8255             !kvm_x86_ops.check_apicv_inhibit_reasons(bit))
8256                 return;
8257
8258         old = READ_ONCE(kvm->arch.apicv_inhibit_reasons);
8259         do {
8260                 expected = new = old;
8261                 if (activate)
8262                         __clear_bit(bit, &new);
8263                 else
8264                         __set_bit(bit, &new);
8265                 if (new == old)
8266                         break;
8267                 old = cmpxchg(&kvm->arch.apicv_inhibit_reasons, expected, new);
8268         } while (old != expected);
8269
8270         if (!!old == !!new)
8271                 return;
8272
8273         trace_kvm_apicv_update_request(activate, bit);
8274         if (kvm_x86_ops.pre_update_apicv_exec_ctrl)
8275                 kvm_x86_ops.pre_update_apicv_exec_ctrl(kvm, activate);
8276
8277         /*
8278          * Sending request to update APICV for all other vcpus,
8279          * while update the calling vcpu immediately instead of
8280          * waiting for another #VMEXIT to handle the request.
8281          */
8282         except = kvm_get_running_vcpu();
8283         kvm_make_all_cpus_request_except(kvm, KVM_REQ_APICV_UPDATE,
8284                                          except);
8285         if (except)
8286                 kvm_vcpu_update_apicv(except);
8287 }
8288 EXPORT_SYMBOL_GPL(kvm_request_apicv_update);
8289
8290 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
8291 {
8292         if (!kvm_apic_present(vcpu))
8293                 return;
8294
8295         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
8296
8297         if (irqchip_split(vcpu->kvm))
8298                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
8299         else {
8300                 if (vcpu->arch.apicv_active)
8301                         kvm_x86_ops.sync_pir_to_irr(vcpu);
8302                 if (ioapic_in_kernel(vcpu->kvm))
8303                         kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
8304         }
8305
8306         if (is_guest_mode(vcpu))
8307                 vcpu->arch.load_eoi_exitmap_pending = true;
8308         else
8309                 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
8310 }
8311
8312 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
8313 {
8314         u64 eoi_exit_bitmap[4];
8315
8316         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
8317                 return;
8318
8319         bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
8320                   vcpu_to_synic(vcpu)->vec_bitmap, 256);
8321         kvm_x86_ops.load_eoi_exitmap(vcpu, eoi_exit_bitmap);
8322 }
8323
8324 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
8325                                             unsigned long start, unsigned long end)
8326 {
8327         unsigned long apic_address;
8328
8329         /*
8330          * The physical address of apic access page is stored in the VMCS.
8331          * Update it when it becomes invalid.
8332          */
8333         apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
8334         if (start <= apic_address && apic_address < end)
8335                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
8336 }
8337
8338 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
8339 {
8340         if (!lapic_in_kernel(vcpu))
8341                 return;
8342
8343         if (!kvm_x86_ops.set_apic_access_page_addr)
8344                 return;
8345
8346         kvm_x86_ops.set_apic_access_page_addr(vcpu);
8347 }
8348
8349 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
8350 {
8351         smp_send_reschedule(vcpu->cpu);
8352 }
8353 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
8354
8355 /*
8356  * Returns 1 to let vcpu_run() continue the guest execution loop without
8357  * exiting to the userspace.  Otherwise, the value will be returned to the
8358  * userspace.
8359  */
8360 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
8361 {
8362         int r;
8363         bool req_int_win =
8364                 dm_request_for_irq_injection(vcpu) &&
8365                 kvm_cpu_accept_dm_intr(vcpu);
8366         fastpath_t exit_fastpath;
8367
8368         bool req_immediate_exit = false;
8369
8370         if (kvm_request_pending(vcpu)) {
8371                 if (kvm_check_request(KVM_REQ_GET_VMCS12_PAGES, vcpu)) {
8372                         if (unlikely(!kvm_x86_ops.nested_ops->get_vmcs12_pages(vcpu))) {
8373                                 r = 0;
8374                                 goto out;
8375                         }
8376                 }
8377                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
8378                         kvm_mmu_unload(vcpu);
8379                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
8380                         __kvm_migrate_timers(vcpu);
8381                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
8382                         kvm_gen_update_masterclock(vcpu->kvm);
8383                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
8384                         kvm_gen_kvmclock_update(vcpu);
8385                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
8386                         r = kvm_guest_time_update(vcpu);
8387                         if (unlikely(r))
8388                                 goto out;
8389                 }
8390                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
8391                         kvm_mmu_sync_roots(vcpu);
8392                 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
8393                         kvm_mmu_load_pgd(vcpu);
8394                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
8395                         kvm_vcpu_flush_tlb_all(vcpu);
8396
8397                         /* Flushing all ASIDs flushes the current ASID... */
8398                         kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
8399                 }
8400                 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
8401                         kvm_vcpu_flush_tlb_current(vcpu);
8402                 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu))
8403                         kvm_vcpu_flush_tlb_guest(vcpu);
8404
8405                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
8406                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
8407                         r = 0;
8408                         goto out;
8409                 }
8410                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
8411                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
8412                         vcpu->mmio_needed = 0;
8413                         r = 0;
8414                         goto out;
8415                 }
8416                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
8417                         /* Page is swapped out. Do synthetic halt */
8418                         vcpu->arch.apf.halted = true;
8419                         r = 1;
8420                         goto out;
8421                 }
8422                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
8423                         record_steal_time(vcpu);
8424                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
8425                         process_smi(vcpu);
8426                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
8427                         process_nmi(vcpu);
8428                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
8429                         kvm_pmu_handle_event(vcpu);
8430                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
8431                         kvm_pmu_deliver_pmi(vcpu);
8432                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
8433                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
8434                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
8435                                      vcpu->arch.ioapic_handled_vectors)) {
8436                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
8437                                 vcpu->run->eoi.vector =
8438                                                 vcpu->arch.pending_ioapic_eoi;
8439                                 r = 0;
8440                                 goto out;
8441                         }
8442                 }
8443                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
8444                         vcpu_scan_ioapic(vcpu);
8445                 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
8446                         vcpu_load_eoi_exitmap(vcpu);
8447                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
8448                         kvm_vcpu_reload_apic_access_page(vcpu);
8449                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
8450                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8451                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
8452                         r = 0;
8453                         goto out;
8454                 }
8455                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
8456                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8457                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
8458                         r = 0;
8459                         goto out;
8460                 }
8461                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
8462                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
8463                         vcpu->run->hyperv = vcpu->arch.hyperv.exit;
8464                         r = 0;
8465                         goto out;
8466                 }
8467
8468                 /*
8469                  * KVM_REQ_HV_STIMER has to be processed after
8470                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
8471                  * depend on the guest clock being up-to-date
8472                  */
8473                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
8474                         kvm_hv_process_stimers(vcpu);
8475                 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
8476                         kvm_vcpu_update_apicv(vcpu);
8477                 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
8478                         kvm_check_async_pf_completion(vcpu);
8479         }
8480
8481         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
8482                 ++vcpu->stat.req_event;
8483                 kvm_apic_accept_events(vcpu);
8484                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
8485                         r = 1;
8486                         goto out;
8487                 }
8488
8489                 inject_pending_event(vcpu, &req_immediate_exit);
8490                 if (req_int_win)
8491                         kvm_x86_ops.enable_irq_window(vcpu);
8492
8493                 if (kvm_lapic_enabled(vcpu)) {
8494                         update_cr8_intercept(vcpu);
8495                         kvm_lapic_sync_to_vapic(vcpu);
8496                 }
8497         }
8498
8499         r = kvm_mmu_reload(vcpu);
8500         if (unlikely(r)) {
8501                 goto cancel_injection;
8502         }
8503
8504         preempt_disable();
8505
8506         kvm_x86_ops.prepare_guest_switch(vcpu);
8507
8508         /*
8509          * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
8510          * IPI are then delayed after guest entry, which ensures that they
8511          * result in virtual interrupt delivery.
8512          */
8513         local_irq_disable();
8514         vcpu->mode = IN_GUEST_MODE;
8515
8516         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8517
8518         /*
8519          * 1) We should set ->mode before checking ->requests.  Please see
8520          * the comment in kvm_vcpu_exiting_guest_mode().
8521          *
8522          * 2) For APICv, we should set ->mode before checking PID.ON. This
8523          * pairs with the memory barrier implicit in pi_test_and_set_on
8524          * (see vmx_deliver_posted_interrupt).
8525          *
8526          * 3) This also orders the write to mode from any reads to the page
8527          * tables done while the VCPU is running.  Please see the comment
8528          * in kvm_flush_remote_tlbs.
8529          */
8530         smp_mb__after_srcu_read_unlock();
8531
8532         /*
8533          * This handles the case where a posted interrupt was
8534          * notified with kvm_vcpu_kick.
8535          */
8536         if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
8537                 kvm_x86_ops.sync_pir_to_irr(vcpu);
8538
8539         if (kvm_vcpu_exit_request(vcpu)) {
8540                 vcpu->mode = OUTSIDE_GUEST_MODE;
8541                 smp_wmb();
8542                 local_irq_enable();
8543                 preempt_enable();
8544                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8545                 r = 1;
8546                 goto cancel_injection;
8547         }
8548
8549         if (req_immediate_exit) {
8550                 kvm_make_request(KVM_REQ_EVENT, vcpu);
8551                 kvm_x86_ops.request_immediate_exit(vcpu);
8552         }
8553
8554         trace_kvm_entry(vcpu->vcpu_id);
8555
8556         fpregs_assert_state_consistent();
8557         if (test_thread_flag(TIF_NEED_FPU_LOAD))
8558                 switch_fpu_return();
8559
8560         if (unlikely(vcpu->arch.switch_db_regs)) {
8561                 set_debugreg(0, 7);
8562                 set_debugreg(vcpu->arch.eff_db[0], 0);
8563                 set_debugreg(vcpu->arch.eff_db[1], 1);
8564                 set_debugreg(vcpu->arch.eff_db[2], 2);
8565                 set_debugreg(vcpu->arch.eff_db[3], 3);
8566                 set_debugreg(vcpu->arch.dr6, 6);
8567                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
8568         }
8569
8570         exit_fastpath = kvm_x86_ops.run(vcpu);
8571
8572         /*
8573          * Do this here before restoring debug registers on the host.  And
8574          * since we do this before handling the vmexit, a DR access vmexit
8575          * can (a) read the correct value of the debug registers, (b) set
8576          * KVM_DEBUGREG_WONT_EXIT again.
8577          */
8578         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
8579                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
8580                 kvm_x86_ops.sync_dirty_debug_regs(vcpu);
8581                 kvm_update_dr0123(vcpu);
8582                 kvm_update_dr7(vcpu);
8583                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
8584         }
8585
8586         /*
8587          * If the guest has used debug registers, at least dr7
8588          * will be disabled while returning to the host.
8589          * If we don't have active breakpoints in the host, we don't
8590          * care about the messed up debug address registers. But if
8591          * we have some of them active, restore the old state.
8592          */
8593         if (hw_breakpoint_active())
8594                 hw_breakpoint_restore();
8595
8596         vcpu->arch.last_vmentry_cpu = vcpu->cpu;
8597         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
8598
8599         vcpu->mode = OUTSIDE_GUEST_MODE;
8600         smp_wmb();
8601
8602         kvm_x86_ops.handle_exit_irqoff(vcpu);
8603
8604         /*
8605          * Consume any pending interrupts, including the possible source of
8606          * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
8607          * An instruction is required after local_irq_enable() to fully unblock
8608          * interrupts on processors that implement an interrupt shadow, the
8609          * stat.exits increment will do nicely.
8610          */
8611         kvm_before_interrupt(vcpu);
8612         local_irq_enable();
8613         ++vcpu->stat.exits;
8614         local_irq_disable();
8615         kvm_after_interrupt(vcpu);
8616
8617         if (lapic_in_kernel(vcpu)) {
8618                 s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
8619                 if (delta != S64_MIN) {
8620                         trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
8621                         vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
8622                 }
8623         }
8624
8625         local_irq_enable();
8626         preempt_enable();
8627
8628         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8629
8630         /*
8631          * Profile KVM exit RIPs:
8632          */
8633         if (unlikely(prof_on == KVM_PROFILING)) {
8634                 unsigned long rip = kvm_rip_read(vcpu);
8635                 profile_hit(KVM_PROFILING, (void *)rip);
8636         }
8637
8638         if (unlikely(vcpu->arch.tsc_always_catchup))
8639                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8640
8641         if (vcpu->arch.apic_attention)
8642                 kvm_lapic_sync_from_vapic(vcpu);
8643
8644         r = kvm_x86_ops.handle_exit(vcpu, exit_fastpath);
8645         return r;
8646
8647 cancel_injection:
8648         if (req_immediate_exit)
8649                 kvm_make_request(KVM_REQ_EVENT, vcpu);
8650         kvm_x86_ops.cancel_injection(vcpu);
8651         if (unlikely(vcpu->arch.apic_attention))
8652                 kvm_lapic_sync_from_vapic(vcpu);
8653 out:
8654         return r;
8655 }
8656
8657 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
8658 {
8659         if (!kvm_arch_vcpu_runnable(vcpu) &&
8660             (!kvm_x86_ops.pre_block || kvm_x86_ops.pre_block(vcpu) == 0)) {
8661                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8662                 kvm_vcpu_block(vcpu);
8663                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8664
8665                 if (kvm_x86_ops.post_block)
8666                         kvm_x86_ops.post_block(vcpu);
8667
8668                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
8669                         return 1;
8670         }
8671
8672         kvm_apic_accept_events(vcpu);
8673         switch(vcpu->arch.mp_state) {
8674         case KVM_MP_STATE_HALTED:
8675                 vcpu->arch.pv.pv_unhalted = false;
8676                 vcpu->arch.mp_state =
8677                         KVM_MP_STATE_RUNNABLE;
8678                 /* fall through */
8679         case KVM_MP_STATE_RUNNABLE:
8680                 vcpu->arch.apf.halted = false;
8681                 break;
8682         case KVM_MP_STATE_INIT_RECEIVED:
8683                 break;
8684         default:
8685                 return -EINTR;
8686         }
8687         return 1;
8688 }
8689
8690 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
8691 {
8692         if (is_guest_mode(vcpu))
8693                 kvm_x86_ops.nested_ops->check_events(vcpu);
8694
8695         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
8696                 !vcpu->arch.apf.halted);
8697 }
8698
8699 static int vcpu_run(struct kvm_vcpu *vcpu)
8700 {
8701         int r;
8702         struct kvm *kvm = vcpu->kvm;
8703
8704         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8705         vcpu->arch.l1tf_flush_l1d = true;
8706
8707         for (;;) {
8708                 if (kvm_vcpu_running(vcpu)) {
8709                         r = vcpu_enter_guest(vcpu);
8710                 } else {
8711                         r = vcpu_block(kvm, vcpu);
8712                 }
8713
8714                 if (r <= 0)
8715                         break;
8716
8717                 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
8718                 if (kvm_cpu_has_pending_timer(vcpu))
8719                         kvm_inject_pending_timer_irqs(vcpu);
8720
8721                 if (dm_request_for_irq_injection(vcpu) &&
8722                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
8723                         r = 0;
8724                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
8725                         ++vcpu->stat.request_irq_exits;
8726                         break;
8727                 }
8728
8729                 if (__xfer_to_guest_mode_work_pending()) {
8730                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8731                         r = xfer_to_guest_mode_handle_work(vcpu);
8732                         if (r)
8733                                 return r;
8734                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8735                 }
8736         }
8737
8738         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8739
8740         return r;
8741 }
8742
8743 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
8744 {
8745         int r;
8746
8747         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8748         r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
8749         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8750         return r;
8751 }
8752
8753 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
8754 {
8755         BUG_ON(!vcpu->arch.pio.count);
8756
8757         return complete_emulated_io(vcpu);
8758 }
8759
8760 /*
8761  * Implements the following, as a state machine:
8762  *
8763  * read:
8764  *   for each fragment
8765  *     for each mmio piece in the fragment
8766  *       write gpa, len
8767  *       exit
8768  *       copy data
8769  *   execute insn
8770  *
8771  * write:
8772  *   for each fragment
8773  *     for each mmio piece in the fragment
8774  *       write gpa, len
8775  *       copy data
8776  *       exit
8777  */
8778 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
8779 {
8780         struct kvm_run *run = vcpu->run;
8781         struct kvm_mmio_fragment *frag;
8782         unsigned len;
8783
8784         BUG_ON(!vcpu->mmio_needed);
8785
8786         /* Complete previous fragment */
8787         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
8788         len = min(8u, frag->len);
8789         if (!vcpu->mmio_is_write)
8790                 memcpy(frag->data, run->mmio.data, len);
8791
8792         if (frag->len <= 8) {
8793                 /* Switch to the next fragment. */
8794                 frag++;
8795                 vcpu->mmio_cur_fragment++;
8796         } else {
8797                 /* Go forward to the next mmio piece. */
8798                 frag->data += len;
8799                 frag->gpa += len;
8800                 frag->len -= len;
8801         }
8802
8803         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
8804                 vcpu->mmio_needed = 0;
8805
8806                 /* FIXME: return into emulator if single-stepping.  */
8807                 if (vcpu->mmio_is_write)
8808                         return 1;
8809                 vcpu->mmio_read_completed = 1;
8810                 return complete_emulated_io(vcpu);
8811         }
8812
8813         run->exit_reason = KVM_EXIT_MMIO;
8814         run->mmio.phys_addr = frag->gpa;
8815         if (vcpu->mmio_is_write)
8816                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
8817         run->mmio.len = min(8u, frag->len);
8818         run->mmio.is_write = vcpu->mmio_is_write;
8819         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8820         return 0;
8821 }
8822
8823 static void kvm_save_current_fpu(struct fpu *fpu)
8824 {
8825         /*
8826          * If the target FPU state is not resident in the CPU registers, just
8827          * memcpy() from current, else save CPU state directly to the target.
8828          */
8829         if (test_thread_flag(TIF_NEED_FPU_LOAD))
8830                 memcpy(&fpu->state, &current->thread.fpu.state,
8831                        fpu_kernel_xstate_size);
8832         else
8833                 copy_fpregs_to_fpstate(fpu);
8834 }
8835
8836 /* Swap (qemu) user FPU context for the guest FPU context. */
8837 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
8838 {
8839         fpregs_lock();
8840
8841         kvm_save_current_fpu(vcpu->arch.user_fpu);
8842
8843         /* PKRU is separately restored in kvm_x86_ops.run.  */
8844         __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state,
8845                                 ~XFEATURE_MASK_PKRU);
8846
8847         fpregs_mark_activate();
8848         fpregs_unlock();
8849
8850         trace_kvm_fpu(1);
8851 }
8852
8853 /* When vcpu_run ends, restore user space FPU context. */
8854 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
8855 {
8856         fpregs_lock();
8857
8858         kvm_save_current_fpu(vcpu->arch.guest_fpu);
8859
8860         copy_kernel_to_fpregs(&vcpu->arch.user_fpu->state);
8861
8862         fpregs_mark_activate();
8863         fpregs_unlock();
8864
8865         ++vcpu->stat.fpu_reload;
8866         trace_kvm_fpu(0);
8867 }
8868
8869 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
8870 {
8871         struct kvm_run *kvm_run = vcpu->run;
8872         int r;
8873
8874         vcpu_load(vcpu);
8875         kvm_sigset_activate(vcpu);
8876         kvm_load_guest_fpu(vcpu);
8877
8878         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
8879                 if (kvm_run->immediate_exit) {
8880                         r = -EINTR;
8881                         goto out;
8882                 }
8883                 kvm_vcpu_block(vcpu);
8884                 kvm_apic_accept_events(vcpu);
8885                 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
8886                 r = -EAGAIN;
8887                 if (signal_pending(current)) {
8888                         r = -EINTR;
8889                         kvm_run->exit_reason = KVM_EXIT_INTR;
8890                         ++vcpu->stat.signal_exits;
8891                 }
8892                 goto out;
8893         }
8894
8895         if (kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
8896                 r = -EINVAL;
8897                 goto out;
8898         }
8899
8900         if (kvm_run->kvm_dirty_regs) {
8901                 r = sync_regs(vcpu);
8902                 if (r != 0)
8903                         goto out;
8904         }
8905
8906         /* re-sync apic's tpr */
8907         if (!lapic_in_kernel(vcpu)) {
8908                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
8909                         r = -EINVAL;
8910                         goto out;
8911                 }
8912         }
8913
8914         if (unlikely(vcpu->arch.complete_userspace_io)) {
8915                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
8916                 vcpu->arch.complete_userspace_io = NULL;
8917                 r = cui(vcpu);
8918                 if (r <= 0)
8919                         goto out;
8920         } else
8921                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
8922
8923         if (kvm_run->immediate_exit)
8924                 r = -EINTR;
8925         else
8926                 r = vcpu_run(vcpu);
8927
8928 out:
8929         kvm_put_guest_fpu(vcpu);
8930         if (kvm_run->kvm_valid_regs)
8931                 store_regs(vcpu);
8932         post_kvm_run_save(vcpu);
8933         kvm_sigset_deactivate(vcpu);
8934
8935         vcpu_put(vcpu);
8936         return r;
8937 }
8938
8939 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8940 {
8941         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
8942                 /*
8943                  * We are here if userspace calls get_regs() in the middle of
8944                  * instruction emulation. Registers state needs to be copied
8945                  * back from emulation context to vcpu. Userspace shouldn't do
8946                  * that usually, but some bad designed PV devices (vmware
8947                  * backdoor interface) need this to work
8948                  */
8949                 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
8950                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8951         }
8952         regs->rax = kvm_rax_read(vcpu);
8953         regs->rbx = kvm_rbx_read(vcpu);
8954         regs->rcx = kvm_rcx_read(vcpu);
8955         regs->rdx = kvm_rdx_read(vcpu);
8956         regs->rsi = kvm_rsi_read(vcpu);
8957         regs->rdi = kvm_rdi_read(vcpu);
8958         regs->rsp = kvm_rsp_read(vcpu);
8959         regs->rbp = kvm_rbp_read(vcpu);
8960 #ifdef CONFIG_X86_64
8961         regs->r8 = kvm_r8_read(vcpu);
8962         regs->r9 = kvm_r9_read(vcpu);
8963         regs->r10 = kvm_r10_read(vcpu);
8964         regs->r11 = kvm_r11_read(vcpu);
8965         regs->r12 = kvm_r12_read(vcpu);
8966         regs->r13 = kvm_r13_read(vcpu);
8967         regs->r14 = kvm_r14_read(vcpu);
8968         regs->r15 = kvm_r15_read(vcpu);
8969 #endif
8970
8971         regs->rip = kvm_rip_read(vcpu);
8972         regs->rflags = kvm_get_rflags(vcpu);
8973 }
8974
8975 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8976 {
8977         vcpu_load(vcpu);
8978         __get_regs(vcpu, regs);
8979         vcpu_put(vcpu);
8980         return 0;
8981 }
8982
8983 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8984 {
8985         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
8986         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8987
8988         kvm_rax_write(vcpu, regs->rax);
8989         kvm_rbx_write(vcpu, regs->rbx);
8990         kvm_rcx_write(vcpu, regs->rcx);
8991         kvm_rdx_write(vcpu, regs->rdx);
8992         kvm_rsi_write(vcpu, regs->rsi);
8993         kvm_rdi_write(vcpu, regs->rdi);
8994         kvm_rsp_write(vcpu, regs->rsp);
8995         kvm_rbp_write(vcpu, regs->rbp);
8996 #ifdef CONFIG_X86_64
8997         kvm_r8_write(vcpu, regs->r8);
8998         kvm_r9_write(vcpu, regs->r9);
8999         kvm_r10_write(vcpu, regs->r10);
9000         kvm_r11_write(vcpu, regs->r11);
9001         kvm_r12_write(vcpu, regs->r12);
9002         kvm_r13_write(vcpu, regs->r13);
9003         kvm_r14_write(vcpu, regs->r14);
9004         kvm_r15_write(vcpu, regs->r15);
9005 #endif
9006
9007         kvm_rip_write(vcpu, regs->rip);
9008         kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
9009
9010         vcpu->arch.exception.pending = false;
9011
9012         kvm_make_request(KVM_REQ_EVENT, vcpu);
9013 }
9014
9015 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9016 {
9017         vcpu_load(vcpu);
9018         __set_regs(vcpu, regs);
9019         vcpu_put(vcpu);
9020         return 0;
9021 }
9022
9023 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
9024 {
9025         struct kvm_segment cs;
9026
9027         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
9028         *db = cs.db;
9029         *l = cs.l;
9030 }
9031 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
9032
9033 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9034 {
9035         struct desc_ptr dt;
9036
9037         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
9038         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
9039         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
9040         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9041         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9042         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
9043
9044         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9045         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
9046
9047         kvm_x86_ops.get_idt(vcpu, &dt);
9048         sregs->idt.limit = dt.size;
9049         sregs->idt.base = dt.address;
9050         kvm_x86_ops.get_gdt(vcpu, &dt);
9051         sregs->gdt.limit = dt.size;
9052         sregs->gdt.base = dt.address;
9053
9054         sregs->cr0 = kvm_read_cr0(vcpu);
9055         sregs->cr2 = vcpu->arch.cr2;
9056         sregs->cr3 = kvm_read_cr3(vcpu);
9057         sregs->cr4 = kvm_read_cr4(vcpu);
9058         sregs->cr8 = kvm_get_cr8(vcpu);
9059         sregs->efer = vcpu->arch.efer;
9060         sregs->apic_base = kvm_get_apic_base(vcpu);
9061
9062         memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
9063
9064         if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
9065                 set_bit(vcpu->arch.interrupt.nr,
9066                         (unsigned long *)sregs->interrupt_bitmap);
9067 }
9068
9069 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
9070                                   struct kvm_sregs *sregs)
9071 {
9072         vcpu_load(vcpu);
9073         __get_sregs(vcpu, sregs);
9074         vcpu_put(vcpu);
9075         return 0;
9076 }
9077
9078 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
9079                                     struct kvm_mp_state *mp_state)
9080 {
9081         vcpu_load(vcpu);
9082         if (kvm_mpx_supported())
9083                 kvm_load_guest_fpu(vcpu);
9084
9085         kvm_apic_accept_events(vcpu);
9086         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
9087                                         vcpu->arch.pv.pv_unhalted)
9088                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
9089         else
9090                 mp_state->mp_state = vcpu->arch.mp_state;
9091
9092         if (kvm_mpx_supported())
9093                 kvm_put_guest_fpu(vcpu);
9094         vcpu_put(vcpu);
9095         return 0;
9096 }
9097
9098 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
9099                                     struct kvm_mp_state *mp_state)
9100 {
9101         int ret = -EINVAL;
9102
9103         vcpu_load(vcpu);
9104
9105         if (!lapic_in_kernel(vcpu) &&
9106             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
9107                 goto out;
9108
9109         /*
9110          * KVM_MP_STATE_INIT_RECEIVED means the processor is in
9111          * INIT state; latched init should be reported using
9112          * KVM_SET_VCPU_EVENTS, so reject it here.
9113          */
9114         if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
9115             (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
9116              mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
9117                 goto out;
9118
9119         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
9120                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
9121                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
9122         } else
9123                 vcpu->arch.mp_state = mp_state->mp_state;
9124         kvm_make_request(KVM_REQ_EVENT, vcpu);
9125
9126         ret = 0;
9127 out:
9128         vcpu_put(vcpu);
9129         return ret;
9130 }
9131
9132 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
9133                     int reason, bool has_error_code, u32 error_code)
9134 {
9135         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9136         int ret;
9137
9138         init_emulate_ctxt(vcpu);
9139
9140         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
9141                                    has_error_code, error_code);
9142         if (ret) {
9143                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
9144                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
9145                 vcpu->run->internal.ndata = 0;
9146                 return 0;
9147         }
9148
9149         kvm_rip_write(vcpu, ctxt->eip);
9150         kvm_set_rflags(vcpu, ctxt->eflags);
9151         return 1;
9152 }
9153 EXPORT_SYMBOL_GPL(kvm_task_switch);
9154
9155 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9156 {
9157         if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
9158                 /*
9159                  * When EFER.LME and CR0.PG are set, the processor is in
9160                  * 64-bit mode (though maybe in a 32-bit code segment).
9161                  * CR4.PAE and EFER.LMA must be set.
9162                  */
9163                 if (!(sregs->cr4 & X86_CR4_PAE)
9164                     || !(sregs->efer & EFER_LMA))
9165                         return -EINVAL;
9166         } else {
9167                 /*
9168                  * Not in 64-bit mode: EFER.LMA is clear and the code
9169                  * segment cannot be 64-bit.
9170                  */
9171                 if (sregs->efer & EFER_LMA || sregs->cs.l)
9172                         return -EINVAL;
9173         }
9174
9175         return kvm_valid_cr4(vcpu, sregs->cr4);
9176 }
9177
9178 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9179 {
9180         struct msr_data apic_base_msr;
9181         int mmu_reset_needed = 0;
9182         int cpuid_update_needed = 0;
9183         int pending_vec, max_bits, idx;
9184         struct desc_ptr dt;
9185         int ret = -EINVAL;
9186
9187         if (kvm_valid_sregs(vcpu, sregs))
9188                 goto out;
9189
9190         apic_base_msr.data = sregs->apic_base;
9191         apic_base_msr.host_initiated = true;
9192         if (kvm_set_apic_base(vcpu, &apic_base_msr))
9193                 goto out;
9194
9195         dt.size = sregs->idt.limit;
9196         dt.address = sregs->idt.base;
9197         kvm_x86_ops.set_idt(vcpu, &dt);
9198         dt.size = sregs->gdt.limit;
9199         dt.address = sregs->gdt.base;
9200         kvm_x86_ops.set_gdt(vcpu, &dt);
9201
9202         vcpu->arch.cr2 = sregs->cr2;
9203         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
9204         vcpu->arch.cr3 = sregs->cr3;
9205         kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
9206
9207         kvm_set_cr8(vcpu, sregs->cr8);
9208
9209         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
9210         kvm_x86_ops.set_efer(vcpu, sregs->efer);
9211
9212         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
9213         kvm_x86_ops.set_cr0(vcpu, sregs->cr0);
9214         vcpu->arch.cr0 = sregs->cr0;
9215
9216         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
9217         cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
9218                                 (X86_CR4_OSXSAVE | X86_CR4_PKE));
9219         kvm_x86_ops.set_cr4(vcpu, sregs->cr4);
9220         if (cpuid_update_needed)
9221                 kvm_update_cpuid_runtime(vcpu);
9222
9223         idx = srcu_read_lock(&vcpu->kvm->srcu);
9224         if (is_pae_paging(vcpu)) {
9225                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
9226                 mmu_reset_needed = 1;
9227         }
9228         srcu_read_unlock(&vcpu->kvm->srcu, idx);
9229
9230         if (mmu_reset_needed)
9231                 kvm_mmu_reset_context(vcpu);
9232
9233         max_bits = KVM_NR_INTERRUPTS;
9234         pending_vec = find_first_bit(
9235                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
9236         if (pending_vec < max_bits) {
9237                 kvm_queue_interrupt(vcpu, pending_vec, false);
9238                 pr_debug("Set back pending irq %d\n", pending_vec);
9239         }
9240
9241         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
9242         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
9243         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
9244         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9245         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9246         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
9247
9248         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9249         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
9250
9251         update_cr8_intercept(vcpu);
9252
9253         /* Older userspace won't unhalt the vcpu on reset. */
9254         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
9255             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
9256             !is_protmode(vcpu))
9257                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9258
9259         kvm_make_request(KVM_REQ_EVENT, vcpu);
9260
9261         ret = 0;
9262 out:
9263         return ret;
9264 }
9265
9266 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
9267                                   struct kvm_sregs *sregs)
9268 {
9269         int ret;
9270
9271         vcpu_load(vcpu);
9272         ret = __set_sregs(vcpu, sregs);
9273         vcpu_put(vcpu);
9274         return ret;
9275 }
9276
9277 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
9278                                         struct kvm_guest_debug *dbg)
9279 {
9280         unsigned long rflags;
9281         int i, r;
9282
9283         vcpu_load(vcpu);
9284
9285         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
9286                 r = -EBUSY;
9287                 if (vcpu->arch.exception.pending)
9288                         goto out;
9289                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
9290                         kvm_queue_exception(vcpu, DB_VECTOR);
9291                 else
9292                         kvm_queue_exception(vcpu, BP_VECTOR);
9293         }
9294
9295         /*
9296          * Read rflags as long as potentially injected trace flags are still
9297          * filtered out.
9298          */
9299         rflags = kvm_get_rflags(vcpu);
9300
9301         vcpu->guest_debug = dbg->control;
9302         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
9303                 vcpu->guest_debug = 0;
9304
9305         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
9306                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
9307                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
9308                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
9309         } else {
9310                 for (i = 0; i < KVM_NR_DB_REGS; i++)
9311                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
9312         }
9313         kvm_update_dr7(vcpu);
9314
9315         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9316                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
9317                         get_segment_base(vcpu, VCPU_SREG_CS);
9318
9319         /*
9320          * Trigger an rflags update that will inject or remove the trace
9321          * flags.
9322          */
9323         kvm_set_rflags(vcpu, rflags);
9324
9325         kvm_x86_ops.update_exception_bitmap(vcpu);
9326
9327         r = 0;
9328
9329 out:
9330         vcpu_put(vcpu);
9331         return r;
9332 }
9333
9334 /*
9335  * Translate a guest virtual address to a guest physical address.
9336  */
9337 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
9338                                     struct kvm_translation *tr)
9339 {
9340         unsigned long vaddr = tr->linear_address;
9341         gpa_t gpa;
9342         int idx;
9343
9344         vcpu_load(vcpu);
9345
9346         idx = srcu_read_lock(&vcpu->kvm->srcu);
9347         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
9348         srcu_read_unlock(&vcpu->kvm->srcu, idx);
9349         tr->physical_address = gpa;
9350         tr->valid = gpa != UNMAPPED_GVA;
9351         tr->writeable = 1;
9352         tr->usermode = 0;
9353
9354         vcpu_put(vcpu);
9355         return 0;
9356 }
9357
9358 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9359 {
9360         struct fxregs_state *fxsave;
9361
9362         vcpu_load(vcpu);
9363
9364         fxsave = &vcpu->arch.guest_fpu->state.fxsave;
9365         memcpy(fpu->fpr, fxsave->st_space, 128);
9366         fpu->fcw = fxsave->cwd;
9367         fpu->fsw = fxsave->swd;
9368         fpu->ftwx = fxsave->twd;
9369         fpu->last_opcode = fxsave->fop;
9370         fpu->last_ip = fxsave->rip;
9371         fpu->last_dp = fxsave->rdp;
9372         memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
9373
9374         vcpu_put(vcpu);
9375         return 0;
9376 }
9377
9378 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9379 {
9380         struct fxregs_state *fxsave;
9381
9382         vcpu_load(vcpu);
9383
9384         fxsave = &vcpu->arch.guest_fpu->state.fxsave;
9385
9386         memcpy(fxsave->st_space, fpu->fpr, 128);
9387         fxsave->cwd = fpu->fcw;
9388         fxsave->swd = fpu->fsw;
9389         fxsave->twd = fpu->ftwx;
9390         fxsave->fop = fpu->last_opcode;
9391         fxsave->rip = fpu->last_ip;
9392         fxsave->rdp = fpu->last_dp;
9393         memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
9394
9395         vcpu_put(vcpu);
9396         return 0;
9397 }
9398
9399 static void store_regs(struct kvm_vcpu *vcpu)
9400 {
9401         BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
9402
9403         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
9404                 __get_regs(vcpu, &vcpu->run->s.regs.regs);
9405
9406         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
9407                 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
9408
9409         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
9410                 kvm_vcpu_ioctl_x86_get_vcpu_events(
9411                                 vcpu, &vcpu->run->s.regs.events);
9412 }
9413
9414 static int sync_regs(struct kvm_vcpu *vcpu)
9415 {
9416         if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
9417                 return -EINVAL;
9418
9419         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
9420                 __set_regs(vcpu, &vcpu->run->s.regs.regs);
9421                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
9422         }
9423         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
9424                 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
9425                         return -EINVAL;
9426                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
9427         }
9428         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
9429                 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
9430                                 vcpu, &vcpu->run->s.regs.events))
9431                         return -EINVAL;
9432                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
9433         }
9434
9435         return 0;
9436 }
9437
9438 static void fx_init(struct kvm_vcpu *vcpu)
9439 {
9440         fpstate_init(&vcpu->arch.guest_fpu->state);
9441         if (boot_cpu_has(X86_FEATURE_XSAVES))
9442                 vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
9443                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
9444
9445         /*
9446          * Ensure guest xcr0 is valid for loading
9447          */
9448         vcpu->arch.xcr0 = XFEATURE_MASK_FP;
9449
9450         vcpu->arch.cr0 |= X86_CR0_ET;
9451 }
9452
9453 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
9454 {
9455         if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
9456                 pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
9457                              "guest TSC will not be reliable\n");
9458
9459         return 0;
9460 }
9461
9462 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
9463 {
9464         struct page *page;
9465         int r;
9466
9467         if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
9468                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9469         else
9470                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
9471
9472         kvm_set_tsc_khz(vcpu, max_tsc_khz);
9473
9474         r = kvm_mmu_create(vcpu);
9475         if (r < 0)
9476                 return r;
9477
9478         if (irqchip_in_kernel(vcpu->kvm)) {
9479                 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
9480                 if (r < 0)
9481                         goto fail_mmu_destroy;
9482                 if (kvm_apicv_activated(vcpu->kvm))
9483                         vcpu->arch.apicv_active = true;
9484         } else
9485                 static_key_slow_inc(&kvm_no_apic_vcpu);
9486
9487         r = -ENOMEM;
9488
9489         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
9490         if (!page)
9491                 goto fail_free_lapic;
9492         vcpu->arch.pio_data = page_address(page);
9493
9494         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
9495                                        GFP_KERNEL_ACCOUNT);
9496         if (!vcpu->arch.mce_banks)
9497                 goto fail_free_pio_data;
9498         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
9499
9500         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
9501                                 GFP_KERNEL_ACCOUNT))
9502                 goto fail_free_mce_banks;
9503
9504         if (!alloc_emulate_ctxt(vcpu))
9505                 goto free_wbinvd_dirty_mask;
9506
9507         vcpu->arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
9508                                                 GFP_KERNEL_ACCOUNT);
9509         if (!vcpu->arch.user_fpu) {
9510                 pr_err("kvm: failed to allocate userspace's fpu\n");
9511                 goto free_emulate_ctxt;
9512         }
9513
9514         vcpu->arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
9515                                                  GFP_KERNEL_ACCOUNT);
9516         if (!vcpu->arch.guest_fpu) {
9517                 pr_err("kvm: failed to allocate vcpu's fpu\n");
9518                 goto free_user_fpu;
9519         }
9520         fx_init(vcpu);
9521
9522         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
9523
9524         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
9525
9526         kvm_async_pf_hash_reset(vcpu);
9527         kvm_pmu_init(vcpu);
9528
9529         vcpu->arch.pending_external_vector = -1;
9530         vcpu->arch.preempted_in_kernel = false;
9531
9532         kvm_hv_vcpu_init(vcpu);
9533
9534         r = kvm_x86_ops.vcpu_create(vcpu);
9535         if (r)
9536                 goto free_guest_fpu;
9537
9538         vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
9539         vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
9540         kvm_vcpu_mtrr_init(vcpu);
9541         vcpu_load(vcpu);
9542         kvm_vcpu_reset(vcpu, false);
9543         kvm_init_mmu(vcpu, false);
9544         vcpu_put(vcpu);
9545         return 0;
9546
9547 free_guest_fpu:
9548         kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
9549 free_user_fpu:
9550         kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
9551 free_emulate_ctxt:
9552         kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
9553 free_wbinvd_dirty_mask:
9554         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
9555 fail_free_mce_banks:
9556         kfree(vcpu->arch.mce_banks);
9557 fail_free_pio_data:
9558         free_page((unsigned long)vcpu->arch.pio_data);
9559 fail_free_lapic:
9560         kvm_free_lapic(vcpu);
9561 fail_mmu_destroy:
9562         kvm_mmu_destroy(vcpu);
9563         return r;
9564 }
9565
9566 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
9567 {
9568         struct msr_data msr;
9569         struct kvm *kvm = vcpu->kvm;
9570
9571         kvm_hv_vcpu_postcreate(vcpu);
9572
9573         if (mutex_lock_killable(&vcpu->mutex))
9574                 return;
9575         vcpu_load(vcpu);
9576         msr.data = 0x0;
9577         msr.index = MSR_IA32_TSC;
9578         msr.host_initiated = true;
9579         kvm_write_tsc(vcpu, &msr);
9580         vcpu_put(vcpu);
9581
9582         /* poll control enabled by default */
9583         vcpu->arch.msr_kvm_poll_control = 1;
9584
9585         mutex_unlock(&vcpu->mutex);
9586
9587         if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
9588                 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
9589                                                 KVMCLOCK_SYNC_PERIOD);
9590 }
9591
9592 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
9593 {
9594         struct gfn_to_pfn_cache *cache = &vcpu->arch.st.cache;
9595         int idx;
9596
9597         kvm_release_pfn(cache->pfn, cache->dirty, cache);
9598
9599         kvmclock_reset(vcpu);
9600
9601         kvm_x86_ops.vcpu_free(vcpu);
9602
9603         kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
9604         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
9605         kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
9606         kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
9607
9608         kvm_hv_vcpu_uninit(vcpu);
9609         kvm_pmu_destroy(vcpu);
9610         kfree(vcpu->arch.mce_banks);
9611         kvm_free_lapic(vcpu);
9612         idx = srcu_read_lock(&vcpu->kvm->srcu);
9613         kvm_mmu_destroy(vcpu);
9614         srcu_read_unlock(&vcpu->kvm->srcu, idx);
9615         free_page((unsigned long)vcpu->arch.pio_data);
9616         if (!lapic_in_kernel(vcpu))
9617                 static_key_slow_dec(&kvm_no_apic_vcpu);
9618 }
9619
9620 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
9621 {
9622         kvm_lapic_reset(vcpu, init_event);
9623
9624         vcpu->arch.hflags = 0;
9625
9626         vcpu->arch.smi_pending = 0;
9627         vcpu->arch.smi_count = 0;
9628         atomic_set(&vcpu->arch.nmi_queued, 0);
9629         vcpu->arch.nmi_pending = 0;
9630         vcpu->arch.nmi_injected = false;
9631         kvm_clear_interrupt_queue(vcpu);
9632         kvm_clear_exception_queue(vcpu);
9633
9634         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
9635         kvm_update_dr0123(vcpu);
9636         vcpu->arch.dr6 = DR6_INIT;
9637         vcpu->arch.dr7 = DR7_FIXED_1;
9638         kvm_update_dr7(vcpu);
9639
9640         vcpu->arch.cr2 = 0;
9641
9642         kvm_make_request(KVM_REQ_EVENT, vcpu);
9643         vcpu->arch.apf.msr_en_val = 0;
9644         vcpu->arch.apf.msr_int_val = 0;
9645         vcpu->arch.st.msr_val = 0;
9646
9647         kvmclock_reset(vcpu);
9648
9649         kvm_clear_async_pf_completion_queue(vcpu);
9650         kvm_async_pf_hash_reset(vcpu);
9651         vcpu->arch.apf.halted = false;
9652
9653         if (kvm_mpx_supported()) {
9654                 void *mpx_state_buffer;
9655
9656                 /*
9657                  * To avoid have the INIT path from kvm_apic_has_events() that be
9658                  * called with loaded FPU and does not let userspace fix the state.
9659                  */
9660                 if (init_event)
9661                         kvm_put_guest_fpu(vcpu);
9662                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
9663                                         XFEATURE_BNDREGS);
9664                 if (mpx_state_buffer)
9665                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
9666                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
9667                                         XFEATURE_BNDCSR);
9668                 if (mpx_state_buffer)
9669                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
9670                 if (init_event)
9671                         kvm_load_guest_fpu(vcpu);
9672         }
9673
9674         if (!init_event) {
9675                 kvm_pmu_reset(vcpu);
9676                 vcpu->arch.smbase = 0x30000;
9677
9678                 vcpu->arch.msr_misc_features_enables = 0;
9679
9680                 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
9681         }
9682
9683         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
9684         vcpu->arch.regs_avail = ~0;
9685         vcpu->arch.regs_dirty = ~0;
9686
9687         vcpu->arch.ia32_xss = 0;
9688
9689         kvm_x86_ops.vcpu_reset(vcpu, init_event);
9690 }
9691
9692 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
9693 {
9694         struct kvm_segment cs;
9695
9696         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
9697         cs.selector = vector << 8;
9698         cs.base = vector << 12;
9699         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
9700         kvm_rip_write(vcpu, 0);
9701 }
9702
9703 int kvm_arch_hardware_enable(void)
9704 {
9705         struct kvm *kvm;
9706         struct kvm_vcpu *vcpu;
9707         int i;
9708         int ret;
9709         u64 local_tsc;
9710         u64 max_tsc = 0;
9711         bool stable, backwards_tsc = false;
9712
9713         kvm_shared_msr_cpu_online();
9714         ret = kvm_x86_ops.hardware_enable();
9715         if (ret != 0)
9716                 return ret;
9717
9718         local_tsc = rdtsc();
9719         stable = !kvm_check_tsc_unstable();
9720         list_for_each_entry(kvm, &vm_list, vm_list) {
9721                 kvm_for_each_vcpu(i, vcpu, kvm) {
9722                         if (!stable && vcpu->cpu == smp_processor_id())
9723                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9724                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
9725                                 backwards_tsc = true;
9726                                 if (vcpu->arch.last_host_tsc > max_tsc)
9727                                         max_tsc = vcpu->arch.last_host_tsc;
9728                         }
9729                 }
9730         }
9731
9732         /*
9733          * Sometimes, even reliable TSCs go backwards.  This happens on
9734          * platforms that reset TSC during suspend or hibernate actions, but
9735          * maintain synchronization.  We must compensate.  Fortunately, we can
9736          * detect that condition here, which happens early in CPU bringup,
9737          * before any KVM threads can be running.  Unfortunately, we can't
9738          * bring the TSCs fully up to date with real time, as we aren't yet far
9739          * enough into CPU bringup that we know how much real time has actually
9740          * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
9741          * variables that haven't been updated yet.
9742          *
9743          * So we simply find the maximum observed TSC above, then record the
9744          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
9745          * the adjustment will be applied.  Note that we accumulate
9746          * adjustments, in case multiple suspend cycles happen before some VCPU
9747          * gets a chance to run again.  In the event that no KVM threads get a
9748          * chance to run, we will miss the entire elapsed period, as we'll have
9749          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
9750          * loose cycle time.  This isn't too big a deal, since the loss will be
9751          * uniform across all VCPUs (not to mention the scenario is extremely
9752          * unlikely). It is possible that a second hibernate recovery happens
9753          * much faster than a first, causing the observed TSC here to be
9754          * smaller; this would require additional padding adjustment, which is
9755          * why we set last_host_tsc to the local tsc observed here.
9756          *
9757          * N.B. - this code below runs only on platforms with reliable TSC,
9758          * as that is the only way backwards_tsc is set above.  Also note
9759          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
9760          * have the same delta_cyc adjustment applied if backwards_tsc
9761          * is detected.  Note further, this adjustment is only done once,
9762          * as we reset last_host_tsc on all VCPUs to stop this from being
9763          * called multiple times (one for each physical CPU bringup).
9764          *
9765          * Platforms with unreliable TSCs don't have to deal with this, they
9766          * will be compensated by the logic in vcpu_load, which sets the TSC to
9767          * catchup mode.  This will catchup all VCPUs to real time, but cannot
9768          * guarantee that they stay in perfect synchronization.
9769          */
9770         if (backwards_tsc) {
9771                 u64 delta_cyc = max_tsc - local_tsc;
9772                 list_for_each_entry(kvm, &vm_list, vm_list) {
9773                         kvm->arch.backwards_tsc_observed = true;
9774                         kvm_for_each_vcpu(i, vcpu, kvm) {
9775                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
9776                                 vcpu->arch.last_host_tsc = local_tsc;
9777                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9778                         }
9779
9780                         /*
9781                          * We have to disable TSC offset matching.. if you were
9782                          * booting a VM while issuing an S4 host suspend....
9783                          * you may have some problem.  Solving this issue is
9784                          * left as an exercise to the reader.
9785                          */
9786                         kvm->arch.last_tsc_nsec = 0;
9787                         kvm->arch.last_tsc_write = 0;
9788                 }
9789
9790         }
9791         return 0;
9792 }
9793
9794 void kvm_arch_hardware_disable(void)
9795 {
9796         kvm_x86_ops.hardware_disable();
9797         drop_user_return_notifiers();
9798 }
9799
9800 int kvm_arch_hardware_setup(void *opaque)
9801 {
9802         struct kvm_x86_init_ops *ops = opaque;
9803         int r;
9804
9805         rdmsrl_safe(MSR_EFER, &host_efer);
9806
9807         if (boot_cpu_has(X86_FEATURE_XSAVES))
9808                 rdmsrl(MSR_IA32_XSS, host_xss);
9809
9810         r = ops->hardware_setup();
9811         if (r != 0)
9812                 return r;
9813
9814         memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
9815
9816         if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
9817                 supported_xss = 0;
9818
9819 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
9820         cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
9821 #undef __kvm_cpu_cap_has
9822
9823         if (kvm_has_tsc_control) {
9824                 /*
9825                  * Make sure the user can only configure tsc_khz values that
9826                  * fit into a signed integer.
9827                  * A min value is not calculated because it will always
9828                  * be 1 on all machines.
9829                  */
9830                 u64 max = min(0x7fffffffULL,
9831                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
9832                 kvm_max_guest_tsc_khz = max;
9833
9834                 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
9835         }
9836
9837         kvm_init_msr_list();
9838         return 0;
9839 }
9840
9841 void kvm_arch_hardware_unsetup(void)
9842 {
9843         kvm_x86_ops.hardware_unsetup();
9844 }
9845
9846 int kvm_arch_check_processor_compat(void *opaque)
9847 {
9848         struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
9849         struct kvm_x86_init_ops *ops = opaque;
9850
9851         WARN_ON(!irqs_disabled());
9852
9853         if (__cr4_reserved_bits(cpu_has, c) !=
9854             __cr4_reserved_bits(cpu_has, &boot_cpu_data))
9855                 return -EIO;
9856
9857         return ops->check_processor_compatibility();
9858 }
9859
9860 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
9861 {
9862         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
9863 }
9864 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
9865
9866 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
9867 {
9868         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
9869 }
9870
9871 struct static_key kvm_no_apic_vcpu __read_mostly;
9872 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
9873
9874 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
9875 {
9876         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
9877
9878         vcpu->arch.l1tf_flush_l1d = true;
9879         if (pmu->version && unlikely(pmu->event_count)) {
9880                 pmu->need_cleanup = true;
9881                 kvm_make_request(KVM_REQ_PMU, vcpu);
9882         }
9883         kvm_x86_ops.sched_in(vcpu, cpu);
9884 }
9885
9886 void kvm_arch_free_vm(struct kvm *kvm)
9887 {
9888         kfree(kvm->arch.hyperv.hv_pa_pg);
9889         vfree(kvm);
9890 }
9891
9892
9893 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
9894 {
9895         if (type)
9896                 return -EINVAL;
9897
9898         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
9899         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
9900         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
9901         INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
9902         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
9903         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
9904
9905         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
9906         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
9907         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
9908         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
9909                 &kvm->arch.irq_sources_bitmap);
9910
9911         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
9912         mutex_init(&kvm->arch.apic_map_lock);
9913         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
9914
9915         kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
9916         pvclock_update_vm_gtod_copy(kvm);
9917
9918         kvm->arch.guest_can_read_msr_platform_info = true;
9919
9920         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
9921         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
9922
9923         kvm_hv_init_vm(kvm);
9924         kvm_page_track_init(kvm);
9925         kvm_mmu_init_vm(kvm);
9926
9927         return kvm_x86_ops.vm_init(kvm);
9928 }
9929
9930 int kvm_arch_post_init_vm(struct kvm *kvm)
9931 {
9932         return kvm_mmu_post_init_vm(kvm);
9933 }
9934
9935 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
9936 {
9937         vcpu_load(vcpu);
9938         kvm_mmu_unload(vcpu);
9939         vcpu_put(vcpu);
9940 }
9941
9942 static void kvm_free_vcpus(struct kvm *kvm)
9943 {
9944         unsigned int i;
9945         struct kvm_vcpu *vcpu;
9946
9947         /*
9948          * Unpin any mmu pages first.
9949          */
9950         kvm_for_each_vcpu(i, vcpu, kvm) {
9951                 kvm_clear_async_pf_completion_queue(vcpu);
9952                 kvm_unload_vcpu_mmu(vcpu);
9953         }
9954         kvm_for_each_vcpu(i, vcpu, kvm)
9955                 kvm_vcpu_destroy(vcpu);
9956
9957         mutex_lock(&kvm->lock);
9958         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
9959                 kvm->vcpus[i] = NULL;
9960
9961         atomic_set(&kvm->online_vcpus, 0);
9962         mutex_unlock(&kvm->lock);
9963 }
9964
9965 void kvm_arch_sync_events(struct kvm *kvm)
9966 {
9967         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
9968         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
9969         kvm_free_pit(kvm);
9970 }
9971
9972 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9973 {
9974         int i, r;
9975         unsigned long hva, old_npages;
9976         struct kvm_memslots *slots = kvm_memslots(kvm);
9977         struct kvm_memory_slot *slot;
9978
9979         /* Called with kvm->slots_lock held.  */
9980         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
9981                 return -EINVAL;
9982
9983         slot = id_to_memslot(slots, id);
9984         if (size) {
9985                 if (slot && slot->npages)
9986                         return -EEXIST;
9987
9988                 /*
9989                  * MAP_SHARED to prevent internal slot pages from being moved
9990                  * by fork()/COW.
9991                  */
9992                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
9993                               MAP_SHARED | MAP_ANONYMOUS, 0);
9994                 if (IS_ERR((void *)hva))
9995                         return PTR_ERR((void *)hva);
9996         } else {
9997                 if (!slot || !slot->npages)
9998                         return 0;
9999
10000                 old_npages = slot->npages;
10001                 hva = 0;
10002         }
10003
10004         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
10005                 struct kvm_userspace_memory_region m;
10006
10007                 m.slot = id | (i << 16);
10008                 m.flags = 0;
10009                 m.guest_phys_addr = gpa;
10010                 m.userspace_addr = hva;
10011                 m.memory_size = size;
10012                 r = __kvm_set_memory_region(kvm, &m);
10013                 if (r < 0)
10014                         return r;
10015         }
10016
10017         if (!size)
10018                 vm_munmap(hva, old_npages * PAGE_SIZE);
10019
10020         return 0;
10021 }
10022 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
10023
10024 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
10025 {
10026         kvm_mmu_pre_destroy_vm(kvm);
10027 }
10028
10029 void kvm_arch_destroy_vm(struct kvm *kvm)
10030 {
10031         if (current->mm == kvm->mm) {
10032                 /*
10033                  * Free memory regions allocated on behalf of userspace,
10034                  * unless the the memory map has changed due to process exit
10035                  * or fd copying.
10036                  */
10037                 mutex_lock(&kvm->slots_lock);
10038                 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
10039                                         0, 0);
10040                 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
10041                                         0, 0);
10042                 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
10043                 mutex_unlock(&kvm->slots_lock);
10044         }
10045         if (kvm_x86_ops.vm_destroy)
10046                 kvm_x86_ops.vm_destroy(kvm);
10047         kvm_pic_destroy(kvm);
10048         kvm_ioapic_destroy(kvm);
10049         kvm_free_vcpus(kvm);
10050         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
10051         kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
10052         kvm_mmu_uninit_vm(kvm);
10053         kvm_page_track_cleanup(kvm);
10054         kvm_hv_destroy_vm(kvm);
10055 }
10056
10057 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
10058 {
10059         int i;
10060
10061         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10062                 kvfree(slot->arch.rmap[i]);
10063                 slot->arch.rmap[i] = NULL;
10064
10065                 if (i == 0)
10066                         continue;
10067
10068                 kvfree(slot->arch.lpage_info[i - 1]);
10069                 slot->arch.lpage_info[i - 1] = NULL;
10070         }
10071
10072         kvm_page_track_free_memslot(slot);
10073 }
10074
10075 static int kvm_alloc_memslot_metadata(struct kvm_memory_slot *slot,
10076                                       unsigned long npages)
10077 {
10078         int i;
10079
10080         /*
10081          * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
10082          * old arrays will be freed by __kvm_set_memory_region() if installing
10083          * the new memslot is successful.
10084          */
10085         memset(&slot->arch, 0, sizeof(slot->arch));
10086
10087         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10088                 struct kvm_lpage_info *linfo;
10089                 unsigned long ugfn;
10090                 int lpages;
10091                 int level = i + 1;
10092
10093                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
10094                                       slot->base_gfn, level) + 1;
10095
10096                 slot->arch.rmap[i] =
10097                         kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
10098                                  GFP_KERNEL_ACCOUNT);
10099                 if (!slot->arch.rmap[i])
10100                         goto out_free;
10101                 if (i == 0)
10102                         continue;
10103
10104                 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
10105                 if (!linfo)
10106                         goto out_free;
10107
10108                 slot->arch.lpage_info[i - 1] = linfo;
10109
10110                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
10111                         linfo[0].disallow_lpage = 1;
10112                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
10113                         linfo[lpages - 1].disallow_lpage = 1;
10114                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
10115                 /*
10116                  * If the gfn and userspace address are not aligned wrt each
10117                  * other, disable large page support for this slot.
10118                  */
10119                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
10120                         unsigned long j;
10121
10122                         for (j = 0; j < lpages; ++j)
10123                                 linfo[j].disallow_lpage = 1;
10124                 }
10125         }
10126
10127         if (kvm_page_track_create_memslot(slot, npages))
10128                 goto out_free;
10129
10130         return 0;
10131
10132 out_free:
10133         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10134                 kvfree(slot->arch.rmap[i]);
10135                 slot->arch.rmap[i] = NULL;
10136                 if (i == 0)
10137                         continue;
10138
10139                 kvfree(slot->arch.lpage_info[i - 1]);
10140                 slot->arch.lpage_info[i - 1] = NULL;
10141         }
10142         return -ENOMEM;
10143 }
10144
10145 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
10146 {
10147         struct kvm_vcpu *vcpu;
10148         int i;
10149
10150         /*
10151          * memslots->generation has been incremented.
10152          * mmio generation may have reached its maximum value.
10153          */
10154         kvm_mmu_invalidate_mmio_sptes(kvm, gen);
10155
10156         /* Force re-initialization of steal_time cache */
10157         kvm_for_each_vcpu(i, vcpu, kvm)
10158                 kvm_vcpu_kick(vcpu);
10159 }
10160
10161 int kvm_arch_prepare_memory_region(struct kvm *kvm,
10162                                 struct kvm_memory_slot *memslot,
10163                                 const struct kvm_userspace_memory_region *mem,
10164                                 enum kvm_mr_change change)
10165 {
10166         if (change == KVM_MR_CREATE || change == KVM_MR_MOVE)
10167                 return kvm_alloc_memslot_metadata(memslot,
10168                                                   mem->memory_size >> PAGE_SHIFT);
10169         return 0;
10170 }
10171
10172 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
10173                                      struct kvm_memory_slot *old,
10174                                      struct kvm_memory_slot *new,
10175                                      enum kvm_mr_change change)
10176 {
10177         /*
10178          * Nothing to do for RO slots or CREATE/MOVE/DELETE of a slot.
10179          * See comments below.
10180          */
10181         if ((change != KVM_MR_FLAGS_ONLY) || (new->flags & KVM_MEM_READONLY))
10182                 return;
10183
10184         /*
10185          * Dirty logging tracks sptes in 4k granularity, meaning that large
10186          * sptes have to be split.  If live migration is successful, the guest
10187          * in the source machine will be destroyed and large sptes will be
10188          * created in the destination. However, if the guest continues to run
10189          * in the source machine (for example if live migration fails), small
10190          * sptes will remain around and cause bad performance.
10191          *
10192          * Scan sptes if dirty logging has been stopped, dropping those
10193          * which can be collapsed into a single large-page spte.  Later
10194          * page faults will create the large-page sptes.
10195          *
10196          * There is no need to do this in any of the following cases:
10197          * CREATE:      No dirty mappings will already exist.
10198          * MOVE/DELETE: The old mappings will already have been cleaned up by
10199          *              kvm_arch_flush_shadow_memslot()
10200          */
10201         if ((old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
10202             !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
10203                 kvm_mmu_zap_collapsible_sptes(kvm, new);
10204
10205         /*
10206          * Enable or disable dirty logging for the slot.
10207          *
10208          * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of the old
10209          * slot have been zapped so no dirty logging updates are needed for
10210          * the old slot.
10211          * For KVM_MR_CREATE and KVM_MR_MOVE, once the new slot is visible
10212          * any mappings that might be created in it will consume the
10213          * properties of the new slot and do not need to be updated here.
10214          *
10215          * When PML is enabled, the kvm_x86_ops dirty logging hooks are
10216          * called to enable/disable dirty logging.
10217          *
10218          * When disabling dirty logging with PML enabled, the D-bit is set
10219          * for sptes in the slot in order to prevent unnecessary GPA
10220          * logging in the PML buffer (and potential PML buffer full VMEXIT).
10221          * This guarantees leaving PML enabled for the guest's lifetime
10222          * won't have any additional overhead from PML when the guest is
10223          * running with dirty logging disabled.
10224          *
10225          * When enabling dirty logging, large sptes are write-protected
10226          * so they can be split on first write.  New large sptes cannot
10227          * be created for this slot until the end of the logging.
10228          * See the comments in fast_page_fault().
10229          * For small sptes, nothing is done if the dirty log is in the
10230          * initial-all-set state.  Otherwise, depending on whether pml
10231          * is enabled the D-bit or the W-bit will be cleared.
10232          */
10233         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
10234                 if (kvm_x86_ops.slot_enable_log_dirty) {
10235                         kvm_x86_ops.slot_enable_log_dirty(kvm, new);
10236                 } else {
10237                         int level =
10238                                 kvm_dirty_log_manual_protect_and_init_set(kvm) ?
10239                                 PG_LEVEL_2M : PG_LEVEL_4K;
10240
10241                         /*
10242                          * If we're with initial-all-set, we don't need
10243                          * to write protect any small page because
10244                          * they're reported as dirty already.  However
10245                          * we still need to write-protect huge pages
10246                          * so that the page split can happen lazily on
10247                          * the first write to the huge page.
10248                          */
10249                         kvm_mmu_slot_remove_write_access(kvm, new, level);
10250                 }
10251         } else {
10252                 if (kvm_x86_ops.slot_disable_log_dirty)
10253                         kvm_x86_ops.slot_disable_log_dirty(kvm, new);
10254         }
10255 }
10256
10257 void kvm_arch_commit_memory_region(struct kvm *kvm,
10258                                 const struct kvm_userspace_memory_region *mem,
10259                                 struct kvm_memory_slot *old,
10260                                 const struct kvm_memory_slot *new,
10261                                 enum kvm_mr_change change)
10262 {
10263         if (!kvm->arch.n_requested_mmu_pages)
10264                 kvm_mmu_change_mmu_pages(kvm,
10265                                 kvm_mmu_calculate_default_mmu_pages(kvm));
10266
10267         /*
10268          * FIXME: const-ify all uses of struct kvm_memory_slot.
10269          */
10270         kvm_mmu_slot_apply_flags(kvm, old, (struct kvm_memory_slot *) new, change);
10271
10272         /* Free the arrays associated with the old memslot. */
10273         if (change == KVM_MR_MOVE)
10274                 kvm_arch_free_memslot(kvm, old);
10275 }
10276
10277 void kvm_arch_flush_shadow_all(struct kvm *kvm)
10278 {
10279         kvm_mmu_zap_all(kvm);
10280 }
10281
10282 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
10283                                    struct kvm_memory_slot *slot)
10284 {
10285         kvm_page_track_flush_slot(kvm, slot);
10286 }
10287
10288 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
10289 {
10290         return (is_guest_mode(vcpu) &&
10291                         kvm_x86_ops.guest_apic_has_interrupt &&
10292                         kvm_x86_ops.guest_apic_has_interrupt(vcpu));
10293 }
10294
10295 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
10296 {
10297         if (!list_empty_careful(&vcpu->async_pf.done))
10298                 return true;
10299
10300         if (kvm_apic_has_events(vcpu))
10301                 return true;
10302
10303         if (vcpu->arch.pv.pv_unhalted)
10304                 return true;
10305
10306         if (vcpu->arch.exception.pending)
10307                 return true;
10308
10309         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
10310             (vcpu->arch.nmi_pending &&
10311              kvm_x86_ops.nmi_allowed(vcpu, false)))
10312                 return true;
10313
10314         if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
10315             (vcpu->arch.smi_pending &&
10316              kvm_x86_ops.smi_allowed(vcpu, false)))
10317                 return true;
10318
10319         if (kvm_arch_interrupt_allowed(vcpu) &&
10320             (kvm_cpu_has_interrupt(vcpu) ||
10321             kvm_guest_apic_has_interrupt(vcpu)))
10322                 return true;
10323
10324         if (kvm_hv_has_stimer_pending(vcpu))
10325                 return true;
10326
10327         if (is_guest_mode(vcpu) &&
10328             kvm_x86_ops.nested_ops->hv_timer_pending &&
10329             kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
10330                 return true;
10331
10332         return false;
10333 }
10334
10335 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
10336 {
10337         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
10338 }
10339
10340 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
10341 {
10342         if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
10343                 return true;
10344
10345         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
10346                 kvm_test_request(KVM_REQ_SMI, vcpu) ||
10347                  kvm_test_request(KVM_REQ_EVENT, vcpu))
10348                 return true;
10349
10350         if (vcpu->arch.apicv_active && kvm_x86_ops.dy_apicv_has_pending_interrupt(vcpu))
10351                 return true;
10352
10353         return false;
10354 }
10355
10356 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
10357 {
10358         return vcpu->arch.preempted_in_kernel;
10359 }
10360
10361 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
10362 {
10363         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
10364 }
10365
10366 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
10367 {
10368         return kvm_x86_ops.interrupt_allowed(vcpu, false);
10369 }
10370
10371 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
10372 {
10373         if (is_64_bit_mode(vcpu))
10374                 return kvm_rip_read(vcpu);
10375         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
10376                      kvm_rip_read(vcpu));
10377 }
10378 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
10379
10380 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
10381 {
10382         return kvm_get_linear_rip(vcpu) == linear_rip;
10383 }
10384 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
10385
10386 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
10387 {
10388         unsigned long rflags;
10389
10390         rflags = kvm_x86_ops.get_rflags(vcpu);
10391         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
10392                 rflags &= ~X86_EFLAGS_TF;
10393         return rflags;
10394 }
10395 EXPORT_SYMBOL_GPL(kvm_get_rflags);
10396
10397 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
10398 {
10399         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
10400             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
10401                 rflags |= X86_EFLAGS_TF;
10402         kvm_x86_ops.set_rflags(vcpu, rflags);
10403 }
10404
10405 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
10406 {
10407         __kvm_set_rflags(vcpu, rflags);
10408         kvm_make_request(KVM_REQ_EVENT, vcpu);
10409 }
10410 EXPORT_SYMBOL_GPL(kvm_set_rflags);
10411
10412 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
10413 {
10414         int r;
10415
10416         if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
10417               work->wakeup_all)
10418                 return;
10419
10420         r = kvm_mmu_reload(vcpu);
10421         if (unlikely(r))
10422                 return;
10423
10424         if (!vcpu->arch.mmu->direct_map &&
10425               work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
10426                 return;
10427
10428         kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
10429 }
10430
10431 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
10432 {
10433         BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
10434
10435         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
10436 }
10437
10438 static inline u32 kvm_async_pf_next_probe(u32 key)
10439 {
10440         return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
10441 }
10442
10443 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10444 {
10445         u32 key = kvm_async_pf_hash_fn(gfn);
10446
10447         while (vcpu->arch.apf.gfns[key] != ~0)
10448                 key = kvm_async_pf_next_probe(key);
10449
10450         vcpu->arch.apf.gfns[key] = gfn;
10451 }
10452
10453 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
10454 {
10455         int i;
10456         u32 key = kvm_async_pf_hash_fn(gfn);
10457
10458         for (i = 0; i < ASYNC_PF_PER_VCPU &&
10459                      (vcpu->arch.apf.gfns[key] != gfn &&
10460                       vcpu->arch.apf.gfns[key] != ~0); i++)
10461                 key = kvm_async_pf_next_probe(key);
10462
10463         return key;
10464 }
10465
10466 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10467 {
10468         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
10469 }
10470
10471 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10472 {
10473         u32 i, j, k;
10474
10475         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
10476
10477         if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
10478                 return;
10479
10480         while (true) {
10481                 vcpu->arch.apf.gfns[i] = ~0;
10482                 do {
10483                         j = kvm_async_pf_next_probe(j);
10484                         if (vcpu->arch.apf.gfns[j] == ~0)
10485                                 return;
10486                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
10487                         /*
10488                          * k lies cyclically in ]i,j]
10489                          * |    i.k.j |
10490                          * |....j i.k.| or  |.k..j i...|
10491                          */
10492                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
10493                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
10494                 i = j;
10495         }
10496 }
10497
10498 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
10499 {
10500         u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
10501
10502         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
10503                                       sizeof(reason));
10504 }
10505
10506 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
10507 {
10508         unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
10509
10510         return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
10511                                              &token, offset, sizeof(token));
10512 }
10513
10514 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
10515 {
10516         unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
10517         u32 val;
10518
10519         if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
10520                                          &val, offset, sizeof(val)))
10521                 return false;
10522
10523         return !val;
10524 }
10525
10526 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
10527 {
10528         if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
10529                 return false;
10530
10531         if (!kvm_pv_async_pf_enabled(vcpu) ||
10532             (vcpu->arch.apf.send_user_only && kvm_x86_ops.get_cpl(vcpu) == 0))
10533                 return false;
10534
10535         return true;
10536 }
10537
10538 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
10539 {
10540         if (unlikely(!lapic_in_kernel(vcpu) ||
10541                      kvm_event_needs_reinjection(vcpu) ||
10542                      vcpu->arch.exception.pending))
10543                 return false;
10544
10545         if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
10546                 return false;
10547
10548         /*
10549          * If interrupts are off we cannot even use an artificial
10550          * halt state.
10551          */
10552         return kvm_arch_interrupt_allowed(vcpu);
10553 }
10554
10555 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
10556                                      struct kvm_async_pf *work)
10557 {
10558         struct x86_exception fault;
10559
10560         trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
10561         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
10562
10563         if (kvm_can_deliver_async_pf(vcpu) &&
10564             !apf_put_user_notpresent(vcpu)) {
10565                 fault.vector = PF_VECTOR;
10566                 fault.error_code_valid = true;
10567                 fault.error_code = 0;
10568                 fault.nested_page_fault = false;
10569                 fault.address = work->arch.token;
10570                 fault.async_page_fault = true;
10571                 kvm_inject_page_fault(vcpu, &fault);
10572                 return true;
10573         } else {
10574                 /*
10575                  * It is not possible to deliver a paravirtualized asynchronous
10576                  * page fault, but putting the guest in an artificial halt state
10577                  * can be beneficial nevertheless: if an interrupt arrives, we
10578                  * can deliver it timely and perhaps the guest will schedule
10579                  * another process.  When the instruction that triggered a page
10580                  * fault is retried, hopefully the page will be ready in the host.
10581                  */
10582                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
10583                 return false;
10584         }
10585 }
10586
10587 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
10588                                  struct kvm_async_pf *work)
10589 {
10590         struct kvm_lapic_irq irq = {
10591                 .delivery_mode = APIC_DM_FIXED,
10592                 .vector = vcpu->arch.apf.vec
10593         };
10594
10595         if (work->wakeup_all)
10596                 work->arch.token = ~0; /* broadcast wakeup */
10597         else
10598                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
10599         trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
10600
10601         if ((work->wakeup_all || work->notpresent_injected) &&
10602             kvm_pv_async_pf_enabled(vcpu) &&
10603             !apf_put_user_ready(vcpu, work->arch.token)) {
10604                 vcpu->arch.apf.pageready_pending = true;
10605                 kvm_apic_set_irq(vcpu, &irq, NULL);
10606         }
10607
10608         vcpu->arch.apf.halted = false;
10609         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10610 }
10611
10612 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
10613 {
10614         kvm_make_request(KVM_REQ_APF_READY, vcpu);
10615         if (!vcpu->arch.apf.pageready_pending)
10616                 kvm_vcpu_kick(vcpu);
10617 }
10618
10619 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
10620 {
10621         if (!kvm_pv_async_pf_enabled(vcpu))
10622                 return true;
10623         else
10624                 return apf_pageready_slot_free(vcpu);
10625 }
10626
10627 void kvm_arch_start_assignment(struct kvm *kvm)
10628 {
10629         atomic_inc(&kvm->arch.assigned_device_count);
10630 }
10631 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
10632
10633 void kvm_arch_end_assignment(struct kvm *kvm)
10634 {
10635         atomic_dec(&kvm->arch.assigned_device_count);
10636 }
10637 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
10638
10639 bool kvm_arch_has_assigned_device(struct kvm *kvm)
10640 {
10641         return atomic_read(&kvm->arch.assigned_device_count);
10642 }
10643 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
10644
10645 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
10646 {
10647         atomic_inc(&kvm->arch.noncoherent_dma_count);
10648 }
10649 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
10650
10651 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
10652 {
10653         atomic_dec(&kvm->arch.noncoherent_dma_count);
10654 }
10655 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
10656
10657 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
10658 {
10659         return atomic_read(&kvm->arch.noncoherent_dma_count);
10660 }
10661 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
10662
10663 bool kvm_arch_has_irq_bypass(void)
10664 {
10665         return true;
10666 }
10667
10668 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
10669                                       struct irq_bypass_producer *prod)
10670 {
10671         struct kvm_kernel_irqfd *irqfd =
10672                 container_of(cons, struct kvm_kernel_irqfd, consumer);
10673         int ret;
10674
10675         irqfd->producer = prod;
10676         kvm_arch_start_assignment(irqfd->kvm);
10677         ret = kvm_x86_ops.update_pi_irte(irqfd->kvm,
10678                                          prod->irq, irqfd->gsi, 1);
10679
10680         if (ret)
10681                 kvm_arch_end_assignment(irqfd->kvm);
10682
10683         return ret;
10684 }
10685
10686 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
10687                                       struct irq_bypass_producer *prod)
10688 {
10689         int ret;
10690         struct kvm_kernel_irqfd *irqfd =
10691                 container_of(cons, struct kvm_kernel_irqfd, consumer);
10692
10693         WARN_ON(irqfd->producer != prod);
10694         irqfd->producer = NULL;
10695
10696         /*
10697          * When producer of consumer is unregistered, we change back to
10698          * remapped mode, so we can re-use the current implementation
10699          * when the irq is masked/disabled or the consumer side (KVM
10700          * int this case doesn't want to receive the interrupts.
10701         */
10702         ret = kvm_x86_ops.update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
10703         if (ret)
10704                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
10705                        " fails: %d\n", irqfd->consumer.token, ret);
10706
10707         kvm_arch_end_assignment(irqfd->kvm);
10708 }
10709
10710 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
10711                                    uint32_t guest_irq, bool set)
10712 {
10713         return kvm_x86_ops.update_pi_irte(kvm, host_irq, guest_irq, set);
10714 }
10715
10716 bool kvm_vector_hashing_enabled(void)
10717 {
10718         return vector_hashing;
10719 }
10720
10721 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
10722 {
10723         return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
10724 }
10725 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
10726
10727
10728 int kvm_spec_ctrl_test_value(u64 value)
10729 {
10730         /*
10731          * test that setting IA32_SPEC_CTRL to given value
10732          * is allowed by the host processor
10733          */
10734
10735         u64 saved_value;
10736         unsigned long flags;
10737         int ret = 0;
10738
10739         local_irq_save(flags);
10740
10741         if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
10742                 ret = 1;
10743         else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
10744                 ret = 1;
10745         else
10746                 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
10747
10748         local_irq_restore(flags);
10749
10750         return ret;
10751 }
10752 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
10753
10754 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
10755 {
10756         struct x86_exception fault;
10757         u32 access = error_code &
10758                 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
10759
10760         if (!(error_code & PFERR_PRESENT_MASK) ||
10761             vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, &fault) != UNMAPPED_GVA) {
10762                 /*
10763                  * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
10764                  * tables probably do not match the TLB.  Just proceed
10765                  * with the error code that the processor gave.
10766                  */
10767                 fault.vector = PF_VECTOR;
10768                 fault.error_code_valid = true;
10769                 fault.error_code = error_code;
10770                 fault.nested_page_fault = false;
10771                 fault.address = gva;
10772         }
10773         vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
10774 }
10775 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
10776
10777 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
10778 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
10779 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
10780 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
10781 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
10782 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
10783 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
10784 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
10785 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
10786 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
10787 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
10788 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
10789 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
10790 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
10791 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
10792 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
10793 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
10794 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
10795 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
10796 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
10797 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
10798 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request);