2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
22 #include <linux/kvm_host.h>
27 #include "kvm_cache_regs.h"
30 #include "assigned-dev.h"
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/intel-iommu.h>
45 #include <linux/cpufreq.h>
46 #include <linux/user-return-notifier.h>
47 #include <linux/srcu.h>
48 #include <linux/slab.h>
49 #include <linux/perf_event.h>
50 #include <linux/uaccess.h>
51 #include <linux/hash.h>
52 #include <linux/pci.h>
53 #include <linux/timekeeper_internal.h>
54 #include <linux/pvclock_gtod.h>
55 #include <linux/kvm_irqfd.h>
56 #include <linux/irqbypass.h>
57 #include <trace/events/kvm.h>
59 #include <asm/debugreg.h>
63 #include <linux/kernel_stat.h>
64 #include <asm/fpu/internal.h> /* Ugh! */
65 #include <asm/pvclock.h>
66 #include <asm/div64.h>
67 #include <asm/irq_remapping.h>
69 #define CREATE_TRACE_POINTS
72 #define MAX_IO_MSRS 256
73 #define KVM_MAX_MCE_BANKS 32
74 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
75 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
77 #define emul_to_vcpu(ctxt) \
78 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
81 * - enable syscall per default because its emulated by KVM
82 * - enable LME and LMA per default on 64 bit KVM
86 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
88 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
91 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
92 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
94 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
95 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
97 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
98 static void process_nmi(struct kvm_vcpu *vcpu);
99 static void enter_smm(struct kvm_vcpu *vcpu);
100 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
102 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
103 EXPORT_SYMBOL_GPL(kvm_x86_ops);
105 static bool __read_mostly ignore_msrs = 0;
106 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
108 unsigned int min_timer_period_us = 500;
109 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
111 static bool __read_mostly kvmclock_periodic_sync = true;
112 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
114 bool __read_mostly kvm_has_tsc_control;
115 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
116 u32 __read_mostly kvm_max_guest_tsc_khz;
117 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
118 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits;
119 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
120 u64 __read_mostly kvm_max_tsc_scaling_ratio;
121 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
122 u64 __read_mostly kvm_default_tsc_scaling_ratio;
123 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
125 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
126 static u32 __read_mostly tsc_tolerance_ppm = 250;
127 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
129 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
130 unsigned int __read_mostly lapic_timer_advance_ns = 0;
131 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
133 static bool __read_mostly vector_hashing = true;
134 module_param(vector_hashing, bool, S_IRUGO);
136 static bool __read_mostly backwards_tsc_observed = false;
138 #define KVM_NR_SHARED_MSRS 16
140 struct kvm_shared_msrs_global {
142 u32 msrs[KVM_NR_SHARED_MSRS];
145 struct kvm_shared_msrs {
146 struct user_return_notifier urn;
148 struct kvm_shared_msr_values {
151 } values[KVM_NR_SHARED_MSRS];
154 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
155 static struct kvm_shared_msrs __percpu *shared_msrs;
157 struct kvm_stats_debugfs_item debugfs_entries[] = {
158 { "pf_fixed", VCPU_STAT(pf_fixed) },
159 { "pf_guest", VCPU_STAT(pf_guest) },
160 { "tlb_flush", VCPU_STAT(tlb_flush) },
161 { "invlpg", VCPU_STAT(invlpg) },
162 { "exits", VCPU_STAT(exits) },
163 { "io_exits", VCPU_STAT(io_exits) },
164 { "mmio_exits", VCPU_STAT(mmio_exits) },
165 { "signal_exits", VCPU_STAT(signal_exits) },
166 { "irq_window", VCPU_STAT(irq_window_exits) },
167 { "nmi_window", VCPU_STAT(nmi_window_exits) },
168 { "halt_exits", VCPU_STAT(halt_exits) },
169 { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
170 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
171 { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
172 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
173 { "hypercalls", VCPU_STAT(hypercalls) },
174 { "request_irq", VCPU_STAT(request_irq_exits) },
175 { "irq_exits", VCPU_STAT(irq_exits) },
176 { "host_state_reload", VCPU_STAT(host_state_reload) },
177 { "efer_reload", VCPU_STAT(efer_reload) },
178 { "fpu_reload", VCPU_STAT(fpu_reload) },
179 { "insn_emulation", VCPU_STAT(insn_emulation) },
180 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
181 { "irq_injections", VCPU_STAT(irq_injections) },
182 { "nmi_injections", VCPU_STAT(nmi_injections) },
183 { "req_event", VCPU_STAT(req_event) },
184 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
185 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
186 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
187 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
188 { "mmu_flooded", VM_STAT(mmu_flooded) },
189 { "mmu_recycled", VM_STAT(mmu_recycled) },
190 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
191 { "mmu_unsync", VM_STAT(mmu_unsync) },
192 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
193 { "largepages", VM_STAT(lpages) },
194 { "max_mmu_page_hash_collisions",
195 VM_STAT(max_mmu_page_hash_collisions) },
199 u64 __read_mostly host_xcr0;
201 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
203 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
206 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
207 vcpu->arch.apf.gfns[i] = ~0;
210 static void kvm_on_user_return(struct user_return_notifier *urn)
213 struct kvm_shared_msrs *locals
214 = container_of(urn, struct kvm_shared_msrs, urn);
215 struct kvm_shared_msr_values *values;
219 * Disabling irqs at this point since the following code could be
220 * interrupted and executed through kvm_arch_hardware_disable()
222 local_irq_save(flags);
223 if (locals->registered) {
224 locals->registered = false;
225 user_return_notifier_unregister(urn);
227 local_irq_restore(flags);
228 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
229 values = &locals->values[slot];
230 if (values->host != values->curr) {
231 wrmsrl(shared_msrs_global.msrs[slot], values->host);
232 values->curr = values->host;
237 static void shared_msr_update(unsigned slot, u32 msr)
240 unsigned int cpu = smp_processor_id();
241 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
243 /* only read, and nobody should modify it at this time,
244 * so don't need lock */
245 if (slot >= shared_msrs_global.nr) {
246 printk(KERN_ERR "kvm: invalid MSR slot!");
249 rdmsrl_safe(msr, &value);
250 smsr->values[slot].host = value;
251 smsr->values[slot].curr = value;
254 void kvm_define_shared_msr(unsigned slot, u32 msr)
256 BUG_ON(slot >= KVM_NR_SHARED_MSRS);
257 shared_msrs_global.msrs[slot] = msr;
258 if (slot >= shared_msrs_global.nr)
259 shared_msrs_global.nr = slot + 1;
261 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
263 static void kvm_shared_msr_cpu_online(void)
267 for (i = 0; i < shared_msrs_global.nr; ++i)
268 shared_msr_update(i, shared_msrs_global.msrs[i]);
271 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
273 unsigned int cpu = smp_processor_id();
274 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
277 if (((value ^ smsr->values[slot].curr) & mask) == 0)
279 smsr->values[slot].curr = value;
280 err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
284 if (!smsr->registered) {
285 smsr->urn.on_user_return = kvm_on_user_return;
286 user_return_notifier_register(&smsr->urn);
287 smsr->registered = true;
291 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
293 static void drop_user_return_notifiers(void)
295 unsigned int cpu = smp_processor_id();
296 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
298 if (smsr->registered)
299 kvm_on_user_return(&smsr->urn);
302 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
304 return vcpu->arch.apic_base;
306 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
308 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
310 u64 old_state = vcpu->arch.apic_base &
311 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
312 u64 new_state = msr_info->data &
313 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
314 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
315 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
317 if (!msr_info->host_initiated &&
318 ((msr_info->data & reserved_bits) != 0 ||
319 new_state == X2APIC_ENABLE ||
320 (new_state == MSR_IA32_APICBASE_ENABLE &&
321 old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
322 (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
326 kvm_lapic_set_base(vcpu, msr_info->data);
329 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
331 asmlinkage __visible void kvm_spurious_fault(void)
333 /* Fault while not rebooting. We want the trace. */
336 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
338 #define EXCPT_BENIGN 0
339 #define EXCPT_CONTRIBUTORY 1
342 static int exception_class(int vector)
352 return EXCPT_CONTRIBUTORY;
359 #define EXCPT_FAULT 0
361 #define EXCPT_ABORT 2
362 #define EXCPT_INTERRUPT 3
364 static int exception_type(int vector)
368 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
369 return EXCPT_INTERRUPT;
373 /* #DB is trap, as instruction watchpoints are handled elsewhere */
374 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
377 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
380 /* Reserved exceptions will result in fault */
384 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
385 unsigned nr, bool has_error, u32 error_code,
391 kvm_make_request(KVM_REQ_EVENT, vcpu);
393 if (!vcpu->arch.exception.pending) {
395 if (has_error && !is_protmode(vcpu))
397 vcpu->arch.exception.pending = true;
398 vcpu->arch.exception.has_error_code = has_error;
399 vcpu->arch.exception.nr = nr;
400 vcpu->arch.exception.error_code = error_code;
401 vcpu->arch.exception.reinject = reinject;
405 /* to check exception */
406 prev_nr = vcpu->arch.exception.nr;
407 if (prev_nr == DF_VECTOR) {
408 /* triple fault -> shutdown */
409 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
412 class1 = exception_class(prev_nr);
413 class2 = exception_class(nr);
414 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
415 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
416 /* generate double fault per SDM Table 5-5 */
417 vcpu->arch.exception.pending = true;
418 vcpu->arch.exception.has_error_code = true;
419 vcpu->arch.exception.nr = DF_VECTOR;
420 vcpu->arch.exception.error_code = 0;
422 /* replace previous exception with a new one in a hope
423 that instruction re-execution will regenerate lost
428 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
430 kvm_multiple_exception(vcpu, nr, false, 0, false);
432 EXPORT_SYMBOL_GPL(kvm_queue_exception);
434 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
436 kvm_multiple_exception(vcpu, nr, false, 0, true);
438 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
440 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
443 kvm_inject_gp(vcpu, 0);
445 return kvm_skip_emulated_instruction(vcpu);
449 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
451 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
453 ++vcpu->stat.pf_guest;
454 vcpu->arch.cr2 = fault->address;
455 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
457 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
459 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
461 if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
462 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
464 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
466 return fault->nested_page_fault;
469 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
471 atomic_inc(&vcpu->arch.nmi_queued);
472 kvm_make_request(KVM_REQ_NMI, vcpu);
474 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
476 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
478 kvm_multiple_exception(vcpu, nr, true, error_code, false);
480 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
482 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
484 kvm_multiple_exception(vcpu, nr, true, error_code, true);
486 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
489 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
490 * a #GP and return false.
492 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
494 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
496 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
499 EXPORT_SYMBOL_GPL(kvm_require_cpl);
501 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
503 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
506 kvm_queue_exception(vcpu, UD_VECTOR);
509 EXPORT_SYMBOL_GPL(kvm_require_dr);
512 * This function will be used to read from the physical memory of the currently
513 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
514 * can read from guest physical or from the guest's guest physical memory.
516 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
517 gfn_t ngfn, void *data, int offset, int len,
520 struct x86_exception exception;
524 ngpa = gfn_to_gpa(ngfn);
525 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
526 if (real_gfn == UNMAPPED_GVA)
529 real_gfn = gpa_to_gfn(real_gfn);
531 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
533 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
535 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
536 void *data, int offset, int len, u32 access)
538 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
539 data, offset, len, access);
543 * Load the pae pdptrs. Return true is they are all valid.
545 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
547 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
548 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
551 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
553 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
554 offset * sizeof(u64), sizeof(pdpte),
555 PFERR_USER_MASK|PFERR_WRITE_MASK);
560 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
561 if ((pdpte[i] & PT_PRESENT_MASK) &&
563 vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
570 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
571 __set_bit(VCPU_EXREG_PDPTR,
572 (unsigned long *)&vcpu->arch.regs_avail);
573 __set_bit(VCPU_EXREG_PDPTR,
574 (unsigned long *)&vcpu->arch.regs_dirty);
579 EXPORT_SYMBOL_GPL(load_pdptrs);
581 bool pdptrs_changed(struct kvm_vcpu *vcpu)
583 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
589 if (is_long_mode(vcpu) || !is_pae(vcpu))
592 if (!test_bit(VCPU_EXREG_PDPTR,
593 (unsigned long *)&vcpu->arch.regs_avail))
596 gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
597 offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
598 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
599 PFERR_USER_MASK | PFERR_WRITE_MASK);
602 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
607 EXPORT_SYMBOL_GPL(pdptrs_changed);
609 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
611 unsigned long old_cr0 = kvm_read_cr0(vcpu);
612 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
617 if (cr0 & 0xffffffff00000000UL)
621 cr0 &= ~CR0_RESERVED_BITS;
623 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
626 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
629 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
631 if ((vcpu->arch.efer & EFER_LME)) {
636 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
641 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
646 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
649 kvm_x86_ops->set_cr0(vcpu, cr0);
651 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
652 kvm_clear_async_pf_completion_queue(vcpu);
653 kvm_async_pf_hash_reset(vcpu);
656 if ((cr0 ^ old_cr0) & update_bits)
657 kvm_mmu_reset_context(vcpu);
659 if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
660 kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
661 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
662 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
666 EXPORT_SYMBOL_GPL(kvm_set_cr0);
668 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
670 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
672 EXPORT_SYMBOL_GPL(kvm_lmsw);
674 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
676 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
677 !vcpu->guest_xcr0_loaded) {
678 /* kvm_set_xcr() also depends on this */
679 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
680 vcpu->guest_xcr0_loaded = 1;
684 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
686 if (vcpu->guest_xcr0_loaded) {
687 if (vcpu->arch.xcr0 != host_xcr0)
688 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
689 vcpu->guest_xcr0_loaded = 0;
693 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
696 u64 old_xcr0 = vcpu->arch.xcr0;
699 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
700 if (index != XCR_XFEATURE_ENABLED_MASK)
702 if (!(xcr0 & XFEATURE_MASK_FP))
704 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
708 * Do not allow the guest to set bits that we do not support
709 * saving. However, xcr0 bit 0 is always set, even if the
710 * emulated CPU does not support XSAVE (see fx_init).
712 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
713 if (xcr0 & ~valid_bits)
716 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
717 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
720 if (xcr0 & XFEATURE_MASK_AVX512) {
721 if (!(xcr0 & XFEATURE_MASK_YMM))
723 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
726 vcpu->arch.xcr0 = xcr0;
728 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
729 kvm_update_cpuid(vcpu);
733 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
735 if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
736 __kvm_set_xcr(vcpu, index, xcr)) {
737 kvm_inject_gp(vcpu, 0);
742 EXPORT_SYMBOL_GPL(kvm_set_xcr);
744 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
746 unsigned long old_cr4 = kvm_read_cr4(vcpu);
747 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
748 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
750 if (cr4 & CR4_RESERVED_BITS)
753 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
756 if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
759 if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
762 if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
765 if (!guest_cpuid_has_pku(vcpu) && (cr4 & X86_CR4_PKE))
768 if (is_long_mode(vcpu)) {
769 if (!(cr4 & X86_CR4_PAE))
771 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
772 && ((cr4 ^ old_cr4) & pdptr_bits)
773 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
777 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
778 if (!guest_cpuid_has_pcid(vcpu))
781 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
782 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
786 if (kvm_x86_ops->set_cr4(vcpu, cr4))
789 if (((cr4 ^ old_cr4) & pdptr_bits) ||
790 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
791 kvm_mmu_reset_context(vcpu);
793 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
794 kvm_update_cpuid(vcpu);
798 EXPORT_SYMBOL_GPL(kvm_set_cr4);
800 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
803 cr3 &= ~CR3_PCID_INVD;
806 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
807 kvm_mmu_sync_roots(vcpu);
808 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
812 if (is_long_mode(vcpu)) {
813 if (cr3 & CR3_L_MODE_RESERVED_BITS)
815 } else if (is_pae(vcpu) && is_paging(vcpu) &&
816 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
819 vcpu->arch.cr3 = cr3;
820 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
821 kvm_mmu_new_cr3(vcpu);
824 EXPORT_SYMBOL_GPL(kvm_set_cr3);
826 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
828 if (cr8 & CR8_RESERVED_BITS)
830 if (lapic_in_kernel(vcpu))
831 kvm_lapic_set_tpr(vcpu, cr8);
833 vcpu->arch.cr8 = cr8;
836 EXPORT_SYMBOL_GPL(kvm_set_cr8);
838 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
840 if (lapic_in_kernel(vcpu))
841 return kvm_lapic_get_cr8(vcpu);
843 return vcpu->arch.cr8;
845 EXPORT_SYMBOL_GPL(kvm_get_cr8);
847 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
851 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
852 for (i = 0; i < KVM_NR_DB_REGS; i++)
853 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
854 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
858 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
860 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
861 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
864 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
868 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
869 dr7 = vcpu->arch.guest_debug_dr7;
871 dr7 = vcpu->arch.dr7;
872 kvm_x86_ops->set_dr7(vcpu, dr7);
873 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
874 if (dr7 & DR7_BP_EN_MASK)
875 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
878 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
880 u64 fixed = DR6_FIXED_1;
882 if (!guest_cpuid_has_rtm(vcpu))
887 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
891 vcpu->arch.db[dr] = val;
892 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
893 vcpu->arch.eff_db[dr] = val;
898 if (val & 0xffffffff00000000ULL)
900 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
901 kvm_update_dr6(vcpu);
906 if (val & 0xffffffff00000000ULL)
908 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
909 kvm_update_dr7(vcpu);
916 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
918 if (__kvm_set_dr(vcpu, dr, val)) {
919 kvm_inject_gp(vcpu, 0);
924 EXPORT_SYMBOL_GPL(kvm_set_dr);
926 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
930 *val = vcpu->arch.db[dr];
935 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
936 *val = vcpu->arch.dr6;
938 *val = kvm_x86_ops->get_dr6(vcpu);
943 *val = vcpu->arch.dr7;
948 EXPORT_SYMBOL_GPL(kvm_get_dr);
950 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
952 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
956 err = kvm_pmu_rdpmc(vcpu, ecx, &data);
959 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
960 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
963 EXPORT_SYMBOL_GPL(kvm_rdpmc);
966 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
967 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
969 * This list is modified at module load time to reflect the
970 * capabilities of the host cpu. This capabilities test skips MSRs that are
971 * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
972 * may depend on host virtualization features rather than host cpu features.
975 static u32 msrs_to_save[] = {
976 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
979 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
981 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
982 MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
985 static unsigned num_msrs_to_save;
987 static u32 emulated_msrs[] = {
988 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
989 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
990 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
991 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
992 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
993 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
996 HV_X64_MSR_VP_RUNTIME,
998 HV_X64_MSR_STIMER0_CONFIG,
999 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1002 MSR_IA32_TSC_ADJUST,
1003 MSR_IA32_TSCDEADLINE,
1004 MSR_IA32_MISC_ENABLE,
1005 MSR_IA32_MCG_STATUS,
1007 MSR_IA32_MCG_EXT_CTL,
1011 static unsigned num_emulated_msrs;
1013 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1015 if (efer & efer_reserved_bits)
1018 if (efer & EFER_FFXSR) {
1019 struct kvm_cpuid_entry2 *feat;
1021 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1022 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
1026 if (efer & EFER_SVME) {
1027 struct kvm_cpuid_entry2 *feat;
1029 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1030 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
1036 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1038 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1040 u64 old_efer = vcpu->arch.efer;
1042 if (!kvm_valid_efer(vcpu, efer))
1046 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1050 efer |= vcpu->arch.efer & EFER_LMA;
1052 kvm_x86_ops->set_efer(vcpu, efer);
1054 /* Update reserved bits */
1055 if ((efer ^ old_efer) & EFER_NX)
1056 kvm_mmu_reset_context(vcpu);
1061 void kvm_enable_efer_bits(u64 mask)
1063 efer_reserved_bits &= ~mask;
1065 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1068 * Writes msr value into into the appropriate "register".
1069 * Returns 0 on success, non-0 otherwise.
1070 * Assumes vcpu_load() was already called.
1072 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1074 switch (msr->index) {
1077 case MSR_KERNEL_GS_BASE:
1080 if (is_noncanonical_address(msr->data))
1083 case MSR_IA32_SYSENTER_EIP:
1084 case MSR_IA32_SYSENTER_ESP:
1086 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1087 * non-canonical address is written on Intel but not on
1088 * AMD (which ignores the top 32-bits, because it does
1089 * not implement 64-bit SYSENTER).
1091 * 64-bit code should hence be able to write a non-canonical
1092 * value on AMD. Making the address canonical ensures that
1093 * vmentry does not fail on Intel after writing a non-canonical
1094 * value, and that something deterministic happens if the guest
1095 * invokes 64-bit SYSENTER.
1097 msr->data = get_canonical(msr->data);
1099 return kvm_x86_ops->set_msr(vcpu, msr);
1101 EXPORT_SYMBOL_GPL(kvm_set_msr);
1104 * Adapt set_msr() to msr_io()'s calling convention
1106 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1108 struct msr_data msr;
1112 msr.host_initiated = true;
1113 r = kvm_get_msr(vcpu, &msr);
1121 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1123 struct msr_data msr;
1127 msr.host_initiated = true;
1128 return kvm_set_msr(vcpu, &msr);
1131 #ifdef CONFIG_X86_64
1132 struct pvclock_gtod_data {
1135 struct { /* extract of a clocksource struct */
1148 static struct pvclock_gtod_data pvclock_gtod_data;
1150 static void update_pvclock_gtod(struct timekeeper *tk)
1152 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1155 boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1157 write_seqcount_begin(&vdata->seq);
1159 /* copy pvclock gtod data */
1160 vdata->clock.vclock_mode = tk->tkr_mono.clock->archdata.vclock_mode;
1161 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
1162 vdata->clock.mask = tk->tkr_mono.mask;
1163 vdata->clock.mult = tk->tkr_mono.mult;
1164 vdata->clock.shift = tk->tkr_mono.shift;
1166 vdata->boot_ns = boot_ns;
1167 vdata->nsec_base = tk->tkr_mono.xtime_nsec;
1169 vdata->wall_time_sec = tk->xtime_sec;
1171 write_seqcount_end(&vdata->seq);
1175 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1178 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1179 * vcpu_enter_guest. This function is only called from
1180 * the physical CPU that is running vcpu.
1182 kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1185 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1189 struct pvclock_wall_clock wc;
1190 struct timespec64 boot;
1195 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1200 ++version; /* first time write, random junk */
1204 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1208 * The guest calculates current wall clock time by adding
1209 * system time (updated by kvm_guest_time_update below) to the
1210 * wall clock specified here. guest system time equals host
1211 * system time for us, thus we must fill in host boot time here.
1213 getboottime64(&boot);
1215 if (kvm->arch.kvmclock_offset) {
1216 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1217 boot = timespec64_sub(boot, ts);
1219 wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1220 wc.nsec = boot.tv_nsec;
1221 wc.version = version;
1223 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1226 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1229 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1231 do_shl32_div32(dividend, divisor);
1235 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1236 s8 *pshift, u32 *pmultiplier)
1244 scaled64 = scaled_hz;
1245 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1250 tps32 = (uint32_t)tps64;
1251 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1252 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1260 *pmultiplier = div_frac(scaled64, tps32);
1262 pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1263 __func__, base_hz, scaled_hz, shift, *pmultiplier);
1266 #ifdef CONFIG_X86_64
1267 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1270 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1271 static unsigned long max_tsc_khz;
1273 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1275 u64 v = (u64)khz * (1000000 + ppm);
1280 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1284 /* Guest TSC same frequency as host TSC? */
1286 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1290 /* TSC scaling supported? */
1291 if (!kvm_has_tsc_control) {
1292 if (user_tsc_khz > tsc_khz) {
1293 vcpu->arch.tsc_catchup = 1;
1294 vcpu->arch.tsc_always_catchup = 1;
1297 WARN(1, "user requested TSC rate below hardware speed\n");
1302 /* TSC scaling required - calculate ratio */
1303 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1304 user_tsc_khz, tsc_khz);
1306 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1307 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1312 vcpu->arch.tsc_scaling_ratio = ratio;
1316 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1318 u32 thresh_lo, thresh_hi;
1319 int use_scaling = 0;
1321 /* tsc_khz can be zero if TSC calibration fails */
1322 if (user_tsc_khz == 0) {
1323 /* set tsc_scaling_ratio to a safe value */
1324 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1328 /* Compute a scale to convert nanoseconds in TSC cycles */
1329 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1330 &vcpu->arch.virtual_tsc_shift,
1331 &vcpu->arch.virtual_tsc_mult);
1332 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1335 * Compute the variation in TSC rate which is acceptable
1336 * within the range of tolerance and decide if the
1337 * rate being applied is within that bounds of the hardware
1338 * rate. If so, no scaling or compensation need be done.
1340 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1341 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1342 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1343 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1346 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1349 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1351 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1352 vcpu->arch.virtual_tsc_mult,
1353 vcpu->arch.virtual_tsc_shift);
1354 tsc += vcpu->arch.this_tsc_write;
1358 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1360 #ifdef CONFIG_X86_64
1362 struct kvm_arch *ka = &vcpu->kvm->arch;
1363 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1365 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1366 atomic_read(&vcpu->kvm->online_vcpus));
1369 * Once the masterclock is enabled, always perform request in
1370 * order to update it.
1372 * In order to enable masterclock, the host clocksource must be TSC
1373 * and the vcpus need to have matched TSCs. When that happens,
1374 * perform request to enable masterclock.
1376 if (ka->use_master_clock ||
1377 (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1378 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1380 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1381 atomic_read(&vcpu->kvm->online_vcpus),
1382 ka->use_master_clock, gtod->clock.vclock_mode);
1386 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1388 u64 curr_offset = vcpu->arch.tsc_offset;
1389 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1393 * Multiply tsc by a fixed point number represented by ratio.
1395 * The most significant 64-N bits (mult) of ratio represent the
1396 * integral part of the fixed point number; the remaining N bits
1397 * (frac) represent the fractional part, ie. ratio represents a fixed
1398 * point number (mult + frac * 2^(-N)).
1400 * N equals to kvm_tsc_scaling_ratio_frac_bits.
1402 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1404 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1407 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1410 u64 ratio = vcpu->arch.tsc_scaling_ratio;
1412 if (ratio != kvm_default_tsc_scaling_ratio)
1413 _tsc = __scale_tsc(ratio, tsc);
1417 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1419 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1423 tsc = kvm_scale_tsc(vcpu, rdtsc());
1425 return target_tsc - tsc;
1428 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1430 return vcpu->arch.tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1432 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1434 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1436 kvm_x86_ops->write_tsc_offset(vcpu, offset);
1437 vcpu->arch.tsc_offset = offset;
1440 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1442 struct kvm *kvm = vcpu->kvm;
1443 u64 offset, ns, elapsed;
1444 unsigned long flags;
1447 bool already_matched;
1448 u64 data = msr->data;
1450 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1451 offset = kvm_compute_tsc_offset(vcpu, data);
1452 ns = ktime_get_boot_ns();
1453 elapsed = ns - kvm->arch.last_tsc_nsec;
1455 if (vcpu->arch.virtual_tsc_khz) {
1458 /* n.b - signed multiplication and division required */
1459 usdiff = data - kvm->arch.last_tsc_write;
1460 #ifdef CONFIG_X86_64
1461 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1463 /* do_div() only does unsigned */
1464 asm("1: idivl %[divisor]\n"
1465 "2: xor %%edx, %%edx\n"
1466 " movl $0, %[faulted]\n"
1468 ".section .fixup,\"ax\"\n"
1469 "4: movl $1, %[faulted]\n"
1473 _ASM_EXTABLE(1b, 4b)
1475 : "=A"(usdiff), [faulted] "=r" (faulted)
1476 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1479 do_div(elapsed, 1000);
1484 /* idivl overflow => difference is larger than USEC_PER_SEC */
1486 usdiff = USEC_PER_SEC;
1488 usdiff = USEC_PER_SEC; /* disable TSC match window below */
1491 * Special case: TSC write with a small delta (1 second) of virtual
1492 * cycle time against real time is interpreted as an attempt to
1493 * synchronize the CPU.
1495 * For a reliable TSC, we can match TSC offsets, and for an unstable
1496 * TSC, we add elapsed time in this computation. We could let the
1497 * compensation code attempt to catch up if we fall behind, but
1498 * it's better to try to match offsets from the beginning.
1500 if (usdiff < USEC_PER_SEC &&
1501 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1502 if (!check_tsc_unstable()) {
1503 offset = kvm->arch.cur_tsc_offset;
1504 pr_debug("kvm: matched tsc offset for %llu\n", data);
1506 u64 delta = nsec_to_cycles(vcpu, elapsed);
1508 offset = kvm_compute_tsc_offset(vcpu, data);
1509 pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1512 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1515 * We split periods of matched TSC writes into generations.
1516 * For each generation, we track the original measured
1517 * nanosecond time, offset, and write, so if TSCs are in
1518 * sync, we can match exact offset, and if not, we can match
1519 * exact software computation in compute_guest_tsc()
1521 * These values are tracked in kvm->arch.cur_xxx variables.
1523 kvm->arch.cur_tsc_generation++;
1524 kvm->arch.cur_tsc_nsec = ns;
1525 kvm->arch.cur_tsc_write = data;
1526 kvm->arch.cur_tsc_offset = offset;
1528 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1529 kvm->arch.cur_tsc_generation, data);
1533 * We also track th most recent recorded KHZ, write and time to
1534 * allow the matching interval to be extended at each write.
1536 kvm->arch.last_tsc_nsec = ns;
1537 kvm->arch.last_tsc_write = data;
1538 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1540 vcpu->arch.last_guest_tsc = data;
1542 /* Keep track of which generation this VCPU has synchronized to */
1543 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1544 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1545 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1547 if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1548 update_ia32_tsc_adjust_msr(vcpu, offset);
1549 kvm_vcpu_write_tsc_offset(vcpu, offset);
1550 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1552 spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1554 kvm->arch.nr_vcpus_matched_tsc = 0;
1555 } else if (!already_matched) {
1556 kvm->arch.nr_vcpus_matched_tsc++;
1559 kvm_track_tsc_matching(vcpu);
1560 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1563 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1565 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1568 kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment);
1571 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1573 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1574 WARN_ON(adjustment < 0);
1575 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1576 adjust_tsc_offset_guest(vcpu, adjustment);
1579 #ifdef CONFIG_X86_64
1581 static u64 read_tsc(void)
1583 u64 ret = (u64)rdtsc_ordered();
1584 u64 last = pvclock_gtod_data.clock.cycle_last;
1586 if (likely(ret >= last))
1590 * GCC likes to generate cmov here, but this branch is extremely
1591 * predictable (it's just a function of time and the likely is
1592 * very likely) and there's a data dependence, so force GCC
1593 * to generate a branch instead. I don't barrier() because
1594 * we don't actually need a barrier, and if this function
1595 * ever gets inlined it will generate worse code.
1601 static inline u64 vgettsc(u64 *cycle_now)
1604 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1606 *cycle_now = read_tsc();
1608 v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1609 return v * gtod->clock.mult;
1612 static int do_monotonic_boot(s64 *t, u64 *cycle_now)
1614 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1620 seq = read_seqcount_begin(>od->seq);
1621 mode = gtod->clock.vclock_mode;
1622 ns = gtod->nsec_base;
1623 ns += vgettsc(cycle_now);
1624 ns >>= gtod->clock.shift;
1625 ns += gtod->boot_ns;
1626 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
1632 static int do_realtime(struct timespec *ts, u64 *cycle_now)
1634 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1640 seq = read_seqcount_begin(>od->seq);
1641 mode = gtod->clock.vclock_mode;
1642 ts->tv_sec = gtod->wall_time_sec;
1643 ns = gtod->nsec_base;
1644 ns += vgettsc(cycle_now);
1645 ns >>= gtod->clock.shift;
1646 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
1648 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1654 /* returns true if host is using tsc clocksource */
1655 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *cycle_now)
1657 /* checked again under seqlock below */
1658 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1661 return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1664 /* returns true if host is using tsc clocksource */
1665 static bool kvm_get_walltime_and_clockread(struct timespec *ts,
1668 /* checked again under seqlock below */
1669 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1672 return do_realtime(ts, cycle_now) == VCLOCK_TSC;
1678 * Assuming a stable TSC across physical CPUS, and a stable TSC
1679 * across virtual CPUs, the following condition is possible.
1680 * Each numbered line represents an event visible to both
1681 * CPUs at the next numbered event.
1683 * "timespecX" represents host monotonic time. "tscX" represents
1686 * VCPU0 on CPU0 | VCPU1 on CPU1
1688 * 1. read timespec0,tsc0
1689 * 2. | timespec1 = timespec0 + N
1691 * 3. transition to guest | transition to guest
1692 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1693 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
1694 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1696 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1699 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1701 * - 0 < N - M => M < N
1703 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1704 * always the case (the difference between two distinct xtime instances
1705 * might be smaller then the difference between corresponding TSC reads,
1706 * when updating guest vcpus pvclock areas).
1708 * To avoid that problem, do not allow visibility of distinct
1709 * system_timestamp/tsc_timestamp values simultaneously: use a master
1710 * copy of host monotonic time values. Update that master copy
1713 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1717 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1719 #ifdef CONFIG_X86_64
1720 struct kvm_arch *ka = &kvm->arch;
1722 bool host_tsc_clocksource, vcpus_matched;
1724 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1725 atomic_read(&kvm->online_vcpus));
1728 * If the host uses TSC clock, then passthrough TSC as stable
1731 host_tsc_clocksource = kvm_get_time_and_clockread(
1732 &ka->master_kernel_ns,
1733 &ka->master_cycle_now);
1735 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1736 && !backwards_tsc_observed
1737 && !ka->boot_vcpu_runs_old_kvmclock;
1739 if (ka->use_master_clock)
1740 atomic_set(&kvm_guest_has_master_clock, 1);
1742 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1743 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1748 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1750 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1753 static void kvm_gen_update_masterclock(struct kvm *kvm)
1755 #ifdef CONFIG_X86_64
1757 struct kvm_vcpu *vcpu;
1758 struct kvm_arch *ka = &kvm->arch;
1760 spin_lock(&ka->pvclock_gtod_sync_lock);
1761 kvm_make_mclock_inprogress_request(kvm);
1762 /* no guest entries from this point */
1763 pvclock_update_vm_gtod_copy(kvm);
1765 kvm_for_each_vcpu(i, vcpu, kvm)
1766 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1768 /* guest entries allowed */
1769 kvm_for_each_vcpu(i, vcpu, kvm)
1770 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1772 spin_unlock(&ka->pvclock_gtod_sync_lock);
1776 static u64 __get_kvmclock_ns(struct kvm *kvm)
1778 struct kvm_arch *ka = &kvm->arch;
1779 struct pvclock_vcpu_time_info hv_clock;
1781 spin_lock(&ka->pvclock_gtod_sync_lock);
1782 if (!ka->use_master_clock) {
1783 spin_unlock(&ka->pvclock_gtod_sync_lock);
1784 return ktime_get_boot_ns() + ka->kvmclock_offset;
1787 hv_clock.tsc_timestamp = ka->master_cycle_now;
1788 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
1789 spin_unlock(&ka->pvclock_gtod_sync_lock);
1791 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
1792 &hv_clock.tsc_shift,
1793 &hv_clock.tsc_to_system_mul);
1794 return __pvclock_read_cycles(&hv_clock, rdtsc());
1797 u64 get_kvmclock_ns(struct kvm *kvm)
1799 unsigned long flags;
1802 local_irq_save(flags);
1803 ns = __get_kvmclock_ns(kvm);
1804 local_irq_restore(flags);
1809 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
1811 struct kvm_vcpu_arch *vcpu = &v->arch;
1812 struct pvclock_vcpu_time_info guest_hv_clock;
1814 if (unlikely(kvm_vcpu_read_guest_cached(v, &vcpu->pv_time,
1815 &guest_hv_clock, sizeof(guest_hv_clock))))
1818 /* This VCPU is paused, but it's legal for a guest to read another
1819 * VCPU's kvmclock, so we really have to follow the specification where
1820 * it says that version is odd if data is being modified, and even after
1823 * Version field updates must be kept separate. This is because
1824 * kvm_write_guest_cached might use a "rep movs" instruction, and
1825 * writes within a string instruction are weakly ordered. So there
1826 * are three writes overall.
1828 * As a small optimization, only write the version field in the first
1829 * and third write. The vcpu->pv_time cache is still valid, because the
1830 * version field is the first in the struct.
1832 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1834 vcpu->hv_clock.version = guest_hv_clock.version + 1;
1835 kvm_vcpu_write_guest_cached(v, &vcpu->pv_time,
1837 sizeof(vcpu->hv_clock.version));
1841 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1842 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1844 if (vcpu->pvclock_set_guest_stopped_request) {
1845 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
1846 vcpu->pvclock_set_guest_stopped_request = false;
1849 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1851 kvm_vcpu_write_guest_cached(v, &vcpu->pv_time,
1853 sizeof(vcpu->hv_clock));
1857 vcpu->hv_clock.version++;
1858 kvm_vcpu_write_guest_cached(v, &vcpu->pv_time,
1860 sizeof(vcpu->hv_clock.version));
1863 static int kvm_guest_time_update(struct kvm_vcpu *v)
1865 unsigned long flags, tgt_tsc_khz;
1866 struct kvm_vcpu_arch *vcpu = &v->arch;
1867 struct kvm_arch *ka = &v->kvm->arch;
1869 u64 tsc_timestamp, host_tsc;
1871 bool use_master_clock;
1877 * If the host uses TSC clock, then passthrough TSC as stable
1880 spin_lock(&ka->pvclock_gtod_sync_lock);
1881 use_master_clock = ka->use_master_clock;
1882 if (use_master_clock) {
1883 host_tsc = ka->master_cycle_now;
1884 kernel_ns = ka->master_kernel_ns;
1886 spin_unlock(&ka->pvclock_gtod_sync_lock);
1888 /* Keep irq disabled to prevent changes to the clock */
1889 local_irq_save(flags);
1890 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1891 if (unlikely(tgt_tsc_khz == 0)) {
1892 local_irq_restore(flags);
1893 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1896 if (!use_master_clock) {
1898 kernel_ns = ktime_get_boot_ns();
1901 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
1904 * We may have to catch up the TSC to match elapsed wall clock
1905 * time for two reasons, even if kvmclock is used.
1906 * 1) CPU could have been running below the maximum TSC rate
1907 * 2) Broken TSC compensation resets the base at each VCPU
1908 * entry to avoid unknown leaps of TSC even when running
1909 * again on the same CPU. This may cause apparent elapsed
1910 * time to disappear, and the guest to stand still or run
1913 if (vcpu->tsc_catchup) {
1914 u64 tsc = compute_guest_tsc(v, kernel_ns);
1915 if (tsc > tsc_timestamp) {
1916 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1917 tsc_timestamp = tsc;
1921 local_irq_restore(flags);
1923 /* With all the info we got, fill in the values */
1925 if (kvm_has_tsc_control)
1926 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
1928 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
1929 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
1930 &vcpu->hv_clock.tsc_shift,
1931 &vcpu->hv_clock.tsc_to_system_mul);
1932 vcpu->hw_tsc_khz = tgt_tsc_khz;
1935 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1936 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1937 vcpu->last_guest_tsc = tsc_timestamp;
1939 /* If the host uses TSC clocksource, then it is stable */
1941 if (use_master_clock)
1942 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1944 vcpu->hv_clock.flags = pvclock_flags;
1946 if (vcpu->pv_time_enabled)
1947 kvm_setup_pvclock_page(v);
1948 if (v == kvm_get_vcpu(v->kvm, 0))
1949 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
1954 * kvmclock updates which are isolated to a given vcpu, such as
1955 * vcpu->cpu migration, should not allow system_timestamp from
1956 * the rest of the vcpus to remain static. Otherwise ntp frequency
1957 * correction applies to one vcpu's system_timestamp but not
1960 * So in those cases, request a kvmclock update for all vcpus.
1961 * We need to rate-limit these requests though, as they can
1962 * considerably slow guests that have a large number of vcpus.
1963 * The time for a remote vcpu to update its kvmclock is bound
1964 * by the delay we use to rate-limit the updates.
1967 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1969 static void kvmclock_update_fn(struct work_struct *work)
1972 struct delayed_work *dwork = to_delayed_work(work);
1973 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1974 kvmclock_update_work);
1975 struct kvm *kvm = container_of(ka, struct kvm, arch);
1976 struct kvm_vcpu *vcpu;
1978 kvm_for_each_vcpu(i, vcpu, kvm) {
1979 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1980 kvm_vcpu_kick(vcpu);
1984 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1986 struct kvm *kvm = v->kvm;
1988 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1989 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1990 KVMCLOCK_UPDATE_DELAY);
1993 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1995 static void kvmclock_sync_fn(struct work_struct *work)
1997 struct delayed_work *dwork = to_delayed_work(work);
1998 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1999 kvmclock_sync_work);
2000 struct kvm *kvm = container_of(ka, struct kvm, arch);
2002 if (!kvmclock_periodic_sync)
2005 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2006 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2007 KVMCLOCK_SYNC_PERIOD);
2010 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
2012 u64 mcg_cap = vcpu->arch.mcg_cap;
2013 unsigned bank_num = mcg_cap & 0xff;
2016 case MSR_IA32_MCG_STATUS:
2017 vcpu->arch.mcg_status = data;
2019 case MSR_IA32_MCG_CTL:
2020 if (!(mcg_cap & MCG_CTL_P))
2022 if (data != 0 && data != ~(u64)0)
2024 vcpu->arch.mcg_ctl = data;
2027 if (msr >= MSR_IA32_MC0_CTL &&
2028 msr < MSR_IA32_MCx_CTL(bank_num)) {
2029 u32 offset = msr - MSR_IA32_MC0_CTL;
2030 /* only 0 or all 1s can be written to IA32_MCi_CTL
2031 * some Linux kernels though clear bit 10 in bank 4 to
2032 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2033 * this to avoid an uncatched #GP in the guest
2035 if ((offset & 0x3) == 0 &&
2036 data != 0 && (data | (1 << 10)) != ~(u64)0)
2038 vcpu->arch.mce_banks[offset] = data;
2046 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2048 struct kvm *kvm = vcpu->kvm;
2049 int lm = is_long_mode(vcpu);
2050 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2051 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2052 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2053 : kvm->arch.xen_hvm_config.blob_size_32;
2054 u32 page_num = data & ~PAGE_MASK;
2055 u64 page_addr = data & PAGE_MASK;
2060 if (page_num >= blob_size)
2063 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2068 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2077 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2079 gpa_t gpa = data & ~0x3f;
2081 /* Bits 2:5 are reserved, Should be zero */
2085 vcpu->arch.apf.msr_val = data;
2087 if (!(data & KVM_ASYNC_PF_ENABLED)) {
2088 kvm_clear_async_pf_completion_queue(vcpu);
2089 kvm_async_pf_hash_reset(vcpu);
2093 if (kvm_vcpu_gfn_to_hva_cache_init(vcpu, &vcpu->arch.apf.data, gpa,
2097 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2098 kvm_async_pf_wakeup_all(vcpu);
2102 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2104 vcpu->arch.pv_time_enabled = false;
2107 static void record_steal_time(struct kvm_vcpu *vcpu)
2109 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2112 if (unlikely(kvm_vcpu_read_guest_cached(vcpu, &vcpu->arch.st.stime,
2113 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2116 vcpu->arch.st.steal.preempted = 0;
2118 if (vcpu->arch.st.steal.version & 1)
2119 vcpu->arch.st.steal.version += 1; /* first time write, random junk */
2121 vcpu->arch.st.steal.version += 1;
2123 kvm_vcpu_write_guest_cached(vcpu, &vcpu->arch.st.stime,
2124 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2128 vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2129 vcpu->arch.st.last_steal;
2130 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2132 kvm_vcpu_write_guest_cached(vcpu, &vcpu->arch.st.stime,
2133 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2137 vcpu->arch.st.steal.version += 1;
2139 kvm_vcpu_write_guest_cached(vcpu, &vcpu->arch.st.stime,
2140 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2143 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2146 u32 msr = msr_info->index;
2147 u64 data = msr_info->data;
2150 case MSR_AMD64_NB_CFG:
2151 case MSR_IA32_UCODE_REV:
2152 case MSR_IA32_UCODE_WRITE:
2153 case MSR_VM_HSAVE_PA:
2154 case MSR_AMD64_PATCH_LOADER:
2155 case MSR_AMD64_BU_CFG2:
2159 return set_efer(vcpu, data);
2161 data &= ~(u64)0x40; /* ignore flush filter disable */
2162 data &= ~(u64)0x100; /* ignore ignne emulation enable */
2163 data &= ~(u64)0x8; /* ignore TLB cache disable */
2164 data &= ~(u64)0x40000; /* ignore Mc status write enable */
2166 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2171 case MSR_FAM10H_MMIO_CONF_BASE:
2173 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2178 case MSR_IA32_DEBUGCTLMSR:
2180 /* We support the non-activated case already */
2182 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2183 /* Values other than LBR and BTF are vendor-specific,
2184 thus reserved and should throw a #GP */
2187 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2190 case 0x200 ... 0x2ff:
2191 return kvm_mtrr_set_msr(vcpu, msr, data);
2192 case MSR_IA32_APICBASE:
2193 return kvm_set_apic_base(vcpu, msr_info);
2194 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2195 return kvm_x2apic_msr_write(vcpu, msr, data);
2196 case MSR_IA32_TSCDEADLINE:
2197 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2199 case MSR_IA32_TSC_ADJUST:
2200 if (guest_cpuid_has_tsc_adjust(vcpu)) {
2201 if (!msr_info->host_initiated) {
2202 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2203 adjust_tsc_offset_guest(vcpu, adj);
2205 vcpu->arch.ia32_tsc_adjust_msr = data;
2208 case MSR_IA32_MISC_ENABLE:
2209 vcpu->arch.ia32_misc_enable_msr = data;
2211 case MSR_IA32_SMBASE:
2212 if (!msr_info->host_initiated)
2214 vcpu->arch.smbase = data;
2216 case MSR_KVM_WALL_CLOCK_NEW:
2217 case MSR_KVM_WALL_CLOCK:
2218 vcpu->kvm->arch.wall_clock = data;
2219 kvm_write_wall_clock(vcpu->kvm, data);
2221 case MSR_KVM_SYSTEM_TIME_NEW:
2222 case MSR_KVM_SYSTEM_TIME: {
2223 struct kvm_arch *ka = &vcpu->kvm->arch;
2225 kvmclock_reset(vcpu);
2227 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2228 bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2230 if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2231 set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
2234 ka->boot_vcpu_runs_old_kvmclock = tmp;
2237 vcpu->arch.time = data;
2238 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2240 /* we verify if the enable bit is set... */
2244 if (kvm_vcpu_gfn_to_hva_cache_init(vcpu,
2245 &vcpu->arch.pv_time, data & ~1ULL,
2246 sizeof(struct pvclock_vcpu_time_info)))
2247 vcpu->arch.pv_time_enabled = false;
2249 vcpu->arch.pv_time_enabled = true;
2253 case MSR_KVM_ASYNC_PF_EN:
2254 if (kvm_pv_enable_async_pf(vcpu, data))
2257 case MSR_KVM_STEAL_TIME:
2259 if (unlikely(!sched_info_on()))
2262 if (data & KVM_STEAL_RESERVED_MASK)
2265 if (kvm_vcpu_gfn_to_hva_cache_init(vcpu, &vcpu->arch.st.stime,
2266 data & KVM_STEAL_VALID_BITS,
2267 sizeof(struct kvm_steal_time)))
2270 vcpu->arch.st.msr_val = data;
2272 if (!(data & KVM_MSR_ENABLED))
2275 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2278 case MSR_KVM_PV_EOI_EN:
2279 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2283 case MSR_IA32_MCG_CTL:
2284 case MSR_IA32_MCG_STATUS:
2285 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2286 return set_msr_mce(vcpu, msr, data);
2288 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2289 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2290 pr = true; /* fall through */
2291 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2292 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2293 if (kvm_pmu_is_valid_msr(vcpu, msr))
2294 return kvm_pmu_set_msr(vcpu, msr_info);
2296 if (pr || data != 0)
2297 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2298 "0x%x data 0x%llx\n", msr, data);
2300 case MSR_K7_CLK_CTL:
2302 * Ignore all writes to this no longer documented MSR.
2303 * Writes are only relevant for old K7 processors,
2304 * all pre-dating SVM, but a recommended workaround from
2305 * AMD for these chips. It is possible to specify the
2306 * affected processor models on the command line, hence
2307 * the need to ignore the workaround.
2310 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2311 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2312 case HV_X64_MSR_CRASH_CTL:
2313 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2314 return kvm_hv_set_msr_common(vcpu, msr, data,
2315 msr_info->host_initiated);
2316 case MSR_IA32_BBL_CR_CTL3:
2317 /* Drop writes to this legacy MSR -- see rdmsr
2318 * counterpart for further detail.
2320 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", msr, data);
2322 case MSR_AMD64_OSVW_ID_LENGTH:
2323 if (!guest_cpuid_has_osvw(vcpu))
2325 vcpu->arch.osvw.length = data;
2327 case MSR_AMD64_OSVW_STATUS:
2328 if (!guest_cpuid_has_osvw(vcpu))
2330 vcpu->arch.osvw.status = data;
2333 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2334 return xen_hvm_config(vcpu, data);
2335 if (kvm_pmu_is_valid_msr(vcpu, msr))
2336 return kvm_pmu_set_msr(vcpu, msr_info);
2338 vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2342 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2349 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2353 * Reads an msr value (of 'msr_index') into 'pdata'.
2354 * Returns 0 on success, non-0 otherwise.
2355 * Assumes vcpu_load() was already called.
2357 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2359 return kvm_x86_ops->get_msr(vcpu, msr);
2361 EXPORT_SYMBOL_GPL(kvm_get_msr);
2363 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2366 u64 mcg_cap = vcpu->arch.mcg_cap;
2367 unsigned bank_num = mcg_cap & 0xff;
2370 case MSR_IA32_P5_MC_ADDR:
2371 case MSR_IA32_P5_MC_TYPE:
2374 case MSR_IA32_MCG_CAP:
2375 data = vcpu->arch.mcg_cap;
2377 case MSR_IA32_MCG_CTL:
2378 if (!(mcg_cap & MCG_CTL_P))
2380 data = vcpu->arch.mcg_ctl;
2382 case MSR_IA32_MCG_STATUS:
2383 data = vcpu->arch.mcg_status;
2386 if (msr >= MSR_IA32_MC0_CTL &&
2387 msr < MSR_IA32_MCx_CTL(bank_num)) {
2388 u32 offset = msr - MSR_IA32_MC0_CTL;
2389 data = vcpu->arch.mce_banks[offset];
2398 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2400 switch (msr_info->index) {
2401 case MSR_IA32_PLATFORM_ID:
2402 case MSR_IA32_EBL_CR_POWERON:
2403 case MSR_IA32_DEBUGCTLMSR:
2404 case MSR_IA32_LASTBRANCHFROMIP:
2405 case MSR_IA32_LASTBRANCHTOIP:
2406 case MSR_IA32_LASTINTFROMIP:
2407 case MSR_IA32_LASTINTTOIP:
2409 case MSR_K8_TSEG_ADDR:
2410 case MSR_K8_TSEG_MASK:
2412 case MSR_VM_HSAVE_PA:
2413 case MSR_K8_INT_PENDING_MSG:
2414 case MSR_AMD64_NB_CFG:
2415 case MSR_FAM10H_MMIO_CONF_BASE:
2416 case MSR_AMD64_BU_CFG2:
2417 case MSR_IA32_PERF_CTL:
2420 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2421 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2422 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2423 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2424 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2425 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2428 case MSR_IA32_UCODE_REV:
2429 msr_info->data = 0x100000000ULL;
2432 case 0x200 ... 0x2ff:
2433 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2434 case 0xcd: /* fsb frequency */
2438 * MSR_EBC_FREQUENCY_ID
2439 * Conservative value valid for even the basic CPU models.
2440 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2441 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2442 * and 266MHz for model 3, or 4. Set Core Clock
2443 * Frequency to System Bus Frequency Ratio to 1 (bits
2444 * 31:24) even though these are only valid for CPU
2445 * models > 2, however guests may end up dividing or
2446 * multiplying by zero otherwise.
2448 case MSR_EBC_FREQUENCY_ID:
2449 msr_info->data = 1 << 24;
2451 case MSR_IA32_APICBASE:
2452 msr_info->data = kvm_get_apic_base(vcpu);
2454 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2455 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2457 case MSR_IA32_TSCDEADLINE:
2458 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2460 case MSR_IA32_TSC_ADJUST:
2461 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2463 case MSR_IA32_MISC_ENABLE:
2464 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2466 case MSR_IA32_SMBASE:
2467 if (!msr_info->host_initiated)
2469 msr_info->data = vcpu->arch.smbase;
2471 case MSR_IA32_PERF_STATUS:
2472 /* TSC increment by tick */
2473 msr_info->data = 1000ULL;
2474 /* CPU multiplier */
2475 msr_info->data |= (((uint64_t)4ULL) << 40);
2478 msr_info->data = vcpu->arch.efer;
2480 case MSR_KVM_WALL_CLOCK:
2481 case MSR_KVM_WALL_CLOCK_NEW:
2482 msr_info->data = vcpu->kvm->arch.wall_clock;
2484 case MSR_KVM_SYSTEM_TIME:
2485 case MSR_KVM_SYSTEM_TIME_NEW:
2486 msr_info->data = vcpu->arch.time;
2488 case MSR_KVM_ASYNC_PF_EN:
2489 msr_info->data = vcpu->arch.apf.msr_val;
2491 case MSR_KVM_STEAL_TIME:
2492 msr_info->data = vcpu->arch.st.msr_val;
2494 case MSR_KVM_PV_EOI_EN:
2495 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2497 case MSR_IA32_P5_MC_ADDR:
2498 case MSR_IA32_P5_MC_TYPE:
2499 case MSR_IA32_MCG_CAP:
2500 case MSR_IA32_MCG_CTL:
2501 case MSR_IA32_MCG_STATUS:
2502 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2503 return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2504 case MSR_K7_CLK_CTL:
2506 * Provide expected ramp-up count for K7. All other
2507 * are set to zero, indicating minimum divisors for
2510 * This prevents guest kernels on AMD host with CPU
2511 * type 6, model 8 and higher from exploding due to
2512 * the rdmsr failing.
2514 msr_info->data = 0x20000000;
2516 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2517 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2518 case HV_X64_MSR_CRASH_CTL:
2519 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2520 return kvm_hv_get_msr_common(vcpu,
2521 msr_info->index, &msr_info->data);
2523 case MSR_IA32_BBL_CR_CTL3:
2524 /* This legacy MSR exists but isn't fully documented in current
2525 * silicon. It is however accessed by winxp in very narrow
2526 * scenarios where it sets bit #19, itself documented as
2527 * a "reserved" bit. Best effort attempt to source coherent
2528 * read data here should the balance of the register be
2529 * interpreted by the guest:
2531 * L2 cache control register 3: 64GB range, 256KB size,
2532 * enabled, latency 0x1, configured
2534 msr_info->data = 0xbe702111;
2536 case MSR_AMD64_OSVW_ID_LENGTH:
2537 if (!guest_cpuid_has_osvw(vcpu))
2539 msr_info->data = vcpu->arch.osvw.length;
2541 case MSR_AMD64_OSVW_STATUS:
2542 if (!guest_cpuid_has_osvw(vcpu))
2544 msr_info->data = vcpu->arch.osvw.status;
2547 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2548 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2550 vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2554 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2561 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2564 * Read or write a bunch of msrs. All parameters are kernel addresses.
2566 * @return number of msrs set successfully.
2568 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2569 struct kvm_msr_entry *entries,
2570 int (*do_msr)(struct kvm_vcpu *vcpu,
2571 unsigned index, u64 *data))
2575 idx = srcu_read_lock(&vcpu->kvm->srcu);
2576 for (i = 0; i < msrs->nmsrs; ++i)
2577 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2579 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2585 * Read or write a bunch of msrs. Parameters are user addresses.
2587 * @return number of msrs set successfully.
2589 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2590 int (*do_msr)(struct kvm_vcpu *vcpu,
2591 unsigned index, u64 *data),
2594 struct kvm_msrs msrs;
2595 struct kvm_msr_entry *entries;
2600 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2604 if (msrs.nmsrs >= MAX_IO_MSRS)
2607 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2608 entries = memdup_user(user_msrs->entries, size);
2609 if (IS_ERR(entries)) {
2610 r = PTR_ERR(entries);
2614 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2619 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2630 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2635 case KVM_CAP_IRQCHIP:
2637 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2638 case KVM_CAP_SET_TSS_ADDR:
2639 case KVM_CAP_EXT_CPUID:
2640 case KVM_CAP_EXT_EMUL_CPUID:
2641 case KVM_CAP_CLOCKSOURCE:
2643 case KVM_CAP_NOP_IO_DELAY:
2644 case KVM_CAP_MP_STATE:
2645 case KVM_CAP_SYNC_MMU:
2646 case KVM_CAP_USER_NMI:
2647 case KVM_CAP_REINJECT_CONTROL:
2648 case KVM_CAP_IRQ_INJECT_STATUS:
2649 case KVM_CAP_IOEVENTFD:
2650 case KVM_CAP_IOEVENTFD_NO_LENGTH:
2652 case KVM_CAP_PIT_STATE2:
2653 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2654 case KVM_CAP_XEN_HVM:
2655 case KVM_CAP_VCPU_EVENTS:
2656 case KVM_CAP_HYPERV:
2657 case KVM_CAP_HYPERV_VAPIC:
2658 case KVM_CAP_HYPERV_SPIN:
2659 case KVM_CAP_HYPERV_SYNIC:
2660 case KVM_CAP_PCI_SEGMENT:
2661 case KVM_CAP_DEBUGREGS:
2662 case KVM_CAP_X86_ROBUST_SINGLESTEP:
2664 case KVM_CAP_ASYNC_PF:
2665 case KVM_CAP_GET_TSC_KHZ:
2666 case KVM_CAP_KVMCLOCK_CTRL:
2667 case KVM_CAP_READONLY_MEM:
2668 case KVM_CAP_HYPERV_TIME:
2669 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2670 case KVM_CAP_TSC_DEADLINE_TIMER:
2671 case KVM_CAP_ENABLE_CAP_VM:
2672 case KVM_CAP_DISABLE_QUIRKS:
2673 case KVM_CAP_SET_BOOT_CPU_ID:
2674 case KVM_CAP_SPLIT_IRQCHIP:
2675 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2676 case KVM_CAP_ASSIGN_DEV_IRQ:
2677 case KVM_CAP_PCI_2_3:
2681 case KVM_CAP_ADJUST_CLOCK:
2682 r = KVM_CLOCK_TSC_STABLE;
2684 case KVM_CAP_X86_SMM:
2685 /* SMBASE is usually relocated above 1M on modern chipsets,
2686 * and SMM handlers might indeed rely on 4G segment limits,
2687 * so do not report SMM to be available if real mode is
2688 * emulated via vm86 mode. Still, do not go to great lengths
2689 * to avoid userspace's usage of the feature, because it is a
2690 * fringe case that is not enabled except via specific settings
2691 * of the module parameters.
2693 r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2695 case KVM_CAP_COALESCED_MMIO:
2696 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2699 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2701 case KVM_CAP_NR_VCPUS:
2702 r = KVM_SOFT_MAX_VCPUS;
2704 case KVM_CAP_MAX_VCPUS:
2707 case KVM_CAP_NR_MEMSLOTS:
2708 r = KVM_USER_MEM_SLOTS;
2710 case KVM_CAP_PV_MMU: /* obsolete */
2713 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2715 r = iommu_present(&pci_bus_type);
2719 r = KVM_MAX_MCE_BANKS;
2722 r = boot_cpu_has(X86_FEATURE_XSAVE);
2724 case KVM_CAP_TSC_CONTROL:
2725 r = kvm_has_tsc_control;
2727 case KVM_CAP_X2APIC_API:
2728 r = KVM_X2APIC_API_VALID_FLAGS;
2738 long kvm_arch_dev_ioctl(struct file *filp,
2739 unsigned int ioctl, unsigned long arg)
2741 void __user *argp = (void __user *)arg;
2745 case KVM_GET_MSR_INDEX_LIST: {
2746 struct kvm_msr_list __user *user_msr_list = argp;
2747 struct kvm_msr_list msr_list;
2751 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2754 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2755 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2758 if (n < msr_list.nmsrs)
2761 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2762 num_msrs_to_save * sizeof(u32)))
2764 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2766 num_emulated_msrs * sizeof(u32)))
2771 case KVM_GET_SUPPORTED_CPUID:
2772 case KVM_GET_EMULATED_CPUID: {
2773 struct kvm_cpuid2 __user *cpuid_arg = argp;
2774 struct kvm_cpuid2 cpuid;
2777 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2780 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2786 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2791 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2793 if (copy_to_user(argp, &kvm_mce_cap_supported,
2794 sizeof(kvm_mce_cap_supported)))
2806 static void wbinvd_ipi(void *garbage)
2811 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2813 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2816 static inline void kvm_migrate_timers(struct kvm_vcpu *vcpu)
2818 set_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests);
2821 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2823 /* Address WBINVD may be executed by guest */
2824 if (need_emulate_wbinvd(vcpu)) {
2825 if (kvm_x86_ops->has_wbinvd_exit())
2826 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2827 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2828 smp_call_function_single(vcpu->cpu,
2829 wbinvd_ipi, NULL, 1);
2832 kvm_x86_ops->vcpu_load(vcpu, cpu);
2834 /* Apply any externally detected TSC adjustments (due to suspend) */
2835 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2836 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2837 vcpu->arch.tsc_offset_adjustment = 0;
2838 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2841 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2842 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2843 rdtsc() - vcpu->arch.last_host_tsc;
2845 mark_tsc_unstable("KVM discovered backwards TSC");
2847 if (check_tsc_unstable()) {
2848 u64 offset = kvm_compute_tsc_offset(vcpu,
2849 vcpu->arch.last_guest_tsc);
2850 kvm_vcpu_write_tsc_offset(vcpu, offset);
2851 vcpu->arch.tsc_catchup = 1;
2853 if (kvm_lapic_hv_timer_in_use(vcpu) &&
2854 kvm_x86_ops->set_hv_timer(vcpu,
2855 kvm_get_lapic_target_expiration_tsc(vcpu)))
2856 kvm_lapic_switch_to_sw_timer(vcpu);
2858 * On a host with synchronized TSC, there is no need to update
2859 * kvmclock on vcpu->cpu migration
2861 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2862 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2863 if (vcpu->cpu != cpu)
2864 kvm_migrate_timers(vcpu);
2868 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2871 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
2873 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2876 vcpu->arch.st.steal.preempted = 1;
2878 kvm_vcpu_write_guest_offset_cached(vcpu, &vcpu->arch.st.stime,
2879 &vcpu->arch.st.steal.preempted,
2880 offsetof(struct kvm_steal_time, preempted),
2881 sizeof(vcpu->arch.st.steal.preempted));
2884 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2888 * Disable page faults because we're in atomic context here.
2889 * kvm_write_guest_offset_cached() would call might_fault()
2890 * that relies on pagefault_disable() to tell if there's a
2891 * bug. NOTE: the write to guest memory may not go through if
2892 * during postcopy live migration or if there's heavy guest
2895 pagefault_disable();
2897 * kvm_memslots() will be called by
2898 * kvm_write_guest_offset_cached() so take the srcu lock.
2900 idx = srcu_read_lock(&vcpu->kvm->srcu);
2901 kvm_steal_time_set_preempted(vcpu);
2902 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2904 kvm_x86_ops->vcpu_put(vcpu);
2905 kvm_put_guest_fpu(vcpu);
2906 vcpu->arch.last_host_tsc = rdtsc();
2909 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2910 struct kvm_lapic_state *s)
2912 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
2913 kvm_x86_ops->sync_pir_to_irr(vcpu);
2915 return kvm_apic_get_state(vcpu, s);
2918 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2919 struct kvm_lapic_state *s)
2923 r = kvm_apic_set_state(vcpu, s);
2926 update_cr8_intercept(vcpu);
2931 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
2933 return (!lapic_in_kernel(vcpu) ||
2934 kvm_apic_accept_pic_intr(vcpu));
2938 * if userspace requested an interrupt window, check that the
2939 * interrupt window is open.
2941 * No need to exit to userspace if we already have an interrupt queued.
2943 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
2945 return kvm_arch_interrupt_allowed(vcpu) &&
2946 !kvm_cpu_has_interrupt(vcpu) &&
2947 !kvm_event_needs_reinjection(vcpu) &&
2948 kvm_cpu_accept_dm_intr(vcpu);
2951 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2952 struct kvm_interrupt *irq)
2954 if (irq->irq >= KVM_NR_INTERRUPTS)
2957 if (!irqchip_in_kernel(vcpu->kvm)) {
2958 kvm_queue_interrupt(vcpu, irq->irq, false);
2959 kvm_make_request(KVM_REQ_EVENT, vcpu);
2964 * With in-kernel LAPIC, we only use this to inject EXTINT, so
2965 * fail for in-kernel 8259.
2967 if (pic_in_kernel(vcpu->kvm))
2970 if (vcpu->arch.pending_external_vector != -1)
2973 vcpu->arch.pending_external_vector = irq->irq;
2974 kvm_make_request(KVM_REQ_EVENT, vcpu);
2978 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2980 kvm_inject_nmi(vcpu);
2985 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
2987 kvm_make_request(KVM_REQ_SMI, vcpu);
2992 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2993 struct kvm_tpr_access_ctl *tac)
2997 vcpu->arch.tpr_access_reporting = !!tac->enabled;
3001 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3005 unsigned bank_num = mcg_cap & 0xff, bank;
3008 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3010 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3013 vcpu->arch.mcg_cap = mcg_cap;
3014 /* Init IA32_MCG_CTL to all 1s */
3015 if (mcg_cap & MCG_CTL_P)
3016 vcpu->arch.mcg_ctl = ~(u64)0;
3017 /* Init IA32_MCi_CTL to all 1s */
3018 for (bank = 0; bank < bank_num; bank++)
3019 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3021 if (kvm_x86_ops->setup_mce)
3022 kvm_x86_ops->setup_mce(vcpu);
3027 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3028 struct kvm_x86_mce *mce)
3030 u64 mcg_cap = vcpu->arch.mcg_cap;
3031 unsigned bank_num = mcg_cap & 0xff;
3032 u64 *banks = vcpu->arch.mce_banks;
3034 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3037 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3038 * reporting is disabled
3040 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3041 vcpu->arch.mcg_ctl != ~(u64)0)
3043 banks += 4 * mce->bank;
3045 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3046 * reporting is disabled for the bank
3048 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3050 if (mce->status & MCI_STATUS_UC) {
3051 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3052 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3053 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3056 if (banks[1] & MCI_STATUS_VAL)
3057 mce->status |= MCI_STATUS_OVER;
3058 banks[2] = mce->addr;
3059 banks[3] = mce->misc;
3060 vcpu->arch.mcg_status = mce->mcg_status;
3061 banks[1] = mce->status;
3062 kvm_queue_exception(vcpu, MC_VECTOR);
3063 } else if (!(banks[1] & MCI_STATUS_VAL)
3064 || !(banks[1] & MCI_STATUS_UC)) {
3065 if (banks[1] & MCI_STATUS_VAL)
3066 mce->status |= MCI_STATUS_OVER;
3067 banks[2] = mce->addr;
3068 banks[3] = mce->misc;
3069 banks[1] = mce->status;
3071 banks[1] |= MCI_STATUS_OVER;
3075 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3076 struct kvm_vcpu_events *events)
3079 events->exception.injected =
3080 vcpu->arch.exception.pending &&
3081 !kvm_exception_is_soft(vcpu->arch.exception.nr);
3082 events->exception.nr = vcpu->arch.exception.nr;
3083 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3084 events->exception.pad = 0;
3085 events->exception.error_code = vcpu->arch.exception.error_code;
3087 events->interrupt.injected =
3088 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3089 events->interrupt.nr = vcpu->arch.interrupt.nr;
3090 events->interrupt.soft = 0;
3091 events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3093 events->nmi.injected = vcpu->arch.nmi_injected;
3094 events->nmi.pending = vcpu->arch.nmi_pending != 0;
3095 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3096 events->nmi.pad = 0;
3098 events->sipi_vector = 0; /* never valid when reporting to user space */
3100 events->smi.smm = is_smm(vcpu);
3101 events->smi.pending = vcpu->arch.smi_pending;
3102 events->smi.smm_inside_nmi =
3103 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3104 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3106 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3107 | KVM_VCPUEVENT_VALID_SHADOW
3108 | KVM_VCPUEVENT_VALID_SMM);
3109 memset(&events->reserved, 0, sizeof(events->reserved));
3112 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags);
3114 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3115 struct kvm_vcpu_events *events)
3117 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3118 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3119 | KVM_VCPUEVENT_VALID_SHADOW
3120 | KVM_VCPUEVENT_VALID_SMM))
3123 if (events->exception.injected &&
3124 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
3128 vcpu->arch.exception.pending = events->exception.injected;
3129 vcpu->arch.exception.nr = events->exception.nr;
3130 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3131 vcpu->arch.exception.error_code = events->exception.error_code;
3133 vcpu->arch.interrupt.pending = events->interrupt.injected;
3134 vcpu->arch.interrupt.nr = events->interrupt.nr;
3135 vcpu->arch.interrupt.soft = events->interrupt.soft;
3136 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3137 kvm_x86_ops->set_interrupt_shadow(vcpu,
3138 events->interrupt.shadow);
3140 vcpu->arch.nmi_injected = events->nmi.injected;
3141 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3142 vcpu->arch.nmi_pending = events->nmi.pending;
3143 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3145 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3146 lapic_in_kernel(vcpu))
3147 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3149 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3150 u32 hflags = vcpu->arch.hflags;
3151 if (events->smi.smm)
3152 hflags |= HF_SMM_MASK;
3154 hflags &= ~HF_SMM_MASK;
3155 kvm_set_hflags(vcpu, hflags);
3157 vcpu->arch.smi_pending = events->smi.pending;
3158 if (events->smi.smm_inside_nmi)
3159 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3161 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3162 if (lapic_in_kernel(vcpu)) {
3163 if (events->smi.latched_init)
3164 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3166 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3170 kvm_make_request(KVM_REQ_EVENT, vcpu);
3175 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3176 struct kvm_debugregs *dbgregs)
3180 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3181 kvm_get_dr(vcpu, 6, &val);
3183 dbgregs->dr7 = vcpu->arch.dr7;
3185 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3188 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3189 struct kvm_debugregs *dbgregs)
3194 if (dbgregs->dr6 & ~0xffffffffull)
3196 if (dbgregs->dr7 & ~0xffffffffull)
3199 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3200 kvm_update_dr0123(vcpu);
3201 vcpu->arch.dr6 = dbgregs->dr6;
3202 kvm_update_dr6(vcpu);
3203 vcpu->arch.dr7 = dbgregs->dr7;
3204 kvm_update_dr7(vcpu);
3209 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3211 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3213 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3214 u64 xstate_bv = xsave->header.xfeatures;
3218 * Copy legacy XSAVE area, to avoid complications with CPUID
3219 * leaves 0 and 1 in the loop below.
3221 memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3224 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3227 * Copy each region from the possibly compacted offset to the
3228 * non-compacted offset.
3230 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3232 u64 feature = valid & -valid;
3233 int index = fls64(feature) - 1;
3234 void *src = get_xsave_addr(xsave, feature);
3237 u32 size, offset, ecx, edx;
3238 cpuid_count(XSTATE_CPUID, index,
3239 &size, &offset, &ecx, &edx);
3240 memcpy(dest + offset, src, size);
3247 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3249 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3250 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3254 * Copy legacy XSAVE area, to avoid complications with CPUID
3255 * leaves 0 and 1 in the loop below.
3257 memcpy(xsave, src, XSAVE_HDR_OFFSET);
3259 /* Set XSTATE_BV and possibly XCOMP_BV. */
3260 xsave->header.xfeatures = xstate_bv;
3261 if (boot_cpu_has(X86_FEATURE_XSAVES))
3262 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3265 * Copy each region from the non-compacted offset to the
3266 * possibly compacted offset.
3268 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3270 u64 feature = valid & -valid;
3271 int index = fls64(feature) - 1;
3272 void *dest = get_xsave_addr(xsave, feature);
3275 u32 size, offset, ecx, edx;
3276 cpuid_count(XSTATE_CPUID, index,
3277 &size, &offset, &ecx, &edx);
3278 memcpy(dest, src + offset, size);
3285 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3286 struct kvm_xsave *guest_xsave)
3288 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3289 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3290 fill_xsave((u8 *) guest_xsave->region, vcpu);
3292 memcpy(guest_xsave->region,
3293 &vcpu->arch.guest_fpu.state.fxsave,
3294 sizeof(struct fxregs_state));
3295 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3296 XFEATURE_MASK_FPSSE;
3300 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3301 struct kvm_xsave *guest_xsave)
3304 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3306 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3308 * Here we allow setting states that are not present in
3309 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
3310 * with old userspace.
3312 if (xstate_bv & ~kvm_supported_xcr0())
3314 load_xsave(vcpu, (u8 *)guest_xsave->region);
3316 if (xstate_bv & ~XFEATURE_MASK_FPSSE)
3318 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3319 guest_xsave->region, sizeof(struct fxregs_state));
3324 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3325 struct kvm_xcrs *guest_xcrs)
3327 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3328 guest_xcrs->nr_xcrs = 0;
3332 guest_xcrs->nr_xcrs = 1;
3333 guest_xcrs->flags = 0;
3334 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3335 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3338 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3339 struct kvm_xcrs *guest_xcrs)
3343 if (!boot_cpu_has(X86_FEATURE_XSAVE))
3346 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3349 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3350 /* Only support XCR0 currently */
3351 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3352 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3353 guest_xcrs->xcrs[i].value);
3362 * kvm_set_guest_paused() indicates to the guest kernel that it has been
3363 * stopped by the hypervisor. This function will be called from the host only.
3364 * EINVAL is returned when the host attempts to set the flag for a guest that
3365 * does not support pv clocks.
3367 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3369 if (!vcpu->arch.pv_time_enabled)
3371 vcpu->arch.pvclock_set_guest_stopped_request = true;
3372 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3376 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3377 struct kvm_enable_cap *cap)
3383 case KVM_CAP_HYPERV_SYNIC:
3384 if (!irqchip_in_kernel(vcpu->kvm))
3386 return kvm_hv_activate_synic(vcpu);
3392 long kvm_arch_vcpu_ioctl(struct file *filp,
3393 unsigned int ioctl, unsigned long arg)
3395 struct kvm_vcpu *vcpu = filp->private_data;
3396 void __user *argp = (void __user *)arg;
3399 struct kvm_lapic_state *lapic;
3400 struct kvm_xsave *xsave;
3401 struct kvm_xcrs *xcrs;
3407 case KVM_GET_LAPIC: {
3409 if (!lapic_in_kernel(vcpu))
3411 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3416 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3420 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3425 case KVM_SET_LAPIC: {
3427 if (!lapic_in_kernel(vcpu))
3429 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3430 if (IS_ERR(u.lapic))
3431 return PTR_ERR(u.lapic);
3433 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3436 case KVM_INTERRUPT: {
3437 struct kvm_interrupt irq;
3440 if (copy_from_user(&irq, argp, sizeof irq))
3442 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3446 r = kvm_vcpu_ioctl_nmi(vcpu);
3450 r = kvm_vcpu_ioctl_smi(vcpu);
3453 case KVM_SET_CPUID: {
3454 struct kvm_cpuid __user *cpuid_arg = argp;
3455 struct kvm_cpuid cpuid;
3458 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3460 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3463 case KVM_SET_CPUID2: {
3464 struct kvm_cpuid2 __user *cpuid_arg = argp;
3465 struct kvm_cpuid2 cpuid;
3468 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3470 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3471 cpuid_arg->entries);
3474 case KVM_GET_CPUID2: {
3475 struct kvm_cpuid2 __user *cpuid_arg = argp;
3476 struct kvm_cpuid2 cpuid;
3479 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3481 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3482 cpuid_arg->entries);
3486 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3492 r = msr_io(vcpu, argp, do_get_msr, 1);
3495 r = msr_io(vcpu, argp, do_set_msr, 0);
3497 case KVM_TPR_ACCESS_REPORTING: {
3498 struct kvm_tpr_access_ctl tac;
3501 if (copy_from_user(&tac, argp, sizeof tac))
3503 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3507 if (copy_to_user(argp, &tac, sizeof tac))
3512 case KVM_SET_VAPIC_ADDR: {
3513 struct kvm_vapic_addr va;
3517 if (!lapic_in_kernel(vcpu))
3520 if (copy_from_user(&va, argp, sizeof va))
3522 idx = srcu_read_lock(&vcpu->kvm->srcu);
3523 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3524 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3527 case KVM_X86_SETUP_MCE: {
3531 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3533 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3536 case KVM_X86_SET_MCE: {
3537 struct kvm_x86_mce mce;
3540 if (copy_from_user(&mce, argp, sizeof mce))
3542 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3545 case KVM_GET_VCPU_EVENTS: {
3546 struct kvm_vcpu_events events;
3548 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3551 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3556 case KVM_SET_VCPU_EVENTS: {
3557 struct kvm_vcpu_events events;
3560 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3563 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3566 case KVM_GET_DEBUGREGS: {
3567 struct kvm_debugregs dbgregs;
3569 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3572 if (copy_to_user(argp, &dbgregs,
3573 sizeof(struct kvm_debugregs)))
3578 case KVM_SET_DEBUGREGS: {
3579 struct kvm_debugregs dbgregs;
3582 if (copy_from_user(&dbgregs, argp,
3583 sizeof(struct kvm_debugregs)))
3586 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3589 case KVM_GET_XSAVE: {
3590 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3595 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3598 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3603 case KVM_SET_XSAVE: {
3604 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3605 if (IS_ERR(u.xsave))
3606 return PTR_ERR(u.xsave);
3608 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3611 case KVM_GET_XCRS: {
3612 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3617 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3620 if (copy_to_user(argp, u.xcrs,
3621 sizeof(struct kvm_xcrs)))
3626 case KVM_SET_XCRS: {
3627 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3629 return PTR_ERR(u.xcrs);
3631 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3634 case KVM_SET_TSC_KHZ: {
3638 user_tsc_khz = (u32)arg;
3640 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3643 if (user_tsc_khz == 0)
3644 user_tsc_khz = tsc_khz;
3646 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3651 case KVM_GET_TSC_KHZ: {
3652 r = vcpu->arch.virtual_tsc_khz;
3655 case KVM_KVMCLOCK_CTRL: {
3656 r = kvm_set_guest_paused(vcpu);
3659 case KVM_ENABLE_CAP: {
3660 struct kvm_enable_cap cap;
3663 if (copy_from_user(&cap, argp, sizeof(cap)))
3665 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3676 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3678 return VM_FAULT_SIGBUS;
3681 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3685 if (addr > (unsigned int)(-3 * PAGE_SIZE))
3687 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3691 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3694 kvm->arch.ept_identity_map_addr = ident_addr;
3698 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3699 u32 kvm_nr_mmu_pages)
3701 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3704 mutex_lock(&kvm->slots_lock);
3706 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3707 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3709 mutex_unlock(&kvm->slots_lock);
3713 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3715 return kvm->arch.n_max_mmu_pages;
3718 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3723 switch (chip->chip_id) {
3724 case KVM_IRQCHIP_PIC_MASTER:
3725 memcpy(&chip->chip.pic,
3726 &pic_irqchip(kvm)->pics[0],
3727 sizeof(struct kvm_pic_state));
3729 case KVM_IRQCHIP_PIC_SLAVE:
3730 memcpy(&chip->chip.pic,
3731 &pic_irqchip(kvm)->pics[1],
3732 sizeof(struct kvm_pic_state));
3734 case KVM_IRQCHIP_IOAPIC:
3735 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3744 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3749 switch (chip->chip_id) {
3750 case KVM_IRQCHIP_PIC_MASTER:
3751 spin_lock(&pic_irqchip(kvm)->lock);
3752 memcpy(&pic_irqchip(kvm)->pics[0],
3754 sizeof(struct kvm_pic_state));
3755 spin_unlock(&pic_irqchip(kvm)->lock);
3757 case KVM_IRQCHIP_PIC_SLAVE:
3758 spin_lock(&pic_irqchip(kvm)->lock);
3759 memcpy(&pic_irqchip(kvm)->pics[1],
3761 sizeof(struct kvm_pic_state));
3762 spin_unlock(&pic_irqchip(kvm)->lock);
3764 case KVM_IRQCHIP_IOAPIC:
3765 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3771 kvm_pic_update_irq(pic_irqchip(kvm));
3775 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3777 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
3779 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
3781 mutex_lock(&kps->lock);
3782 memcpy(ps, &kps->channels, sizeof(*ps));
3783 mutex_unlock(&kps->lock);
3787 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3790 struct kvm_pit *pit = kvm->arch.vpit;
3792 mutex_lock(&pit->pit_state.lock);
3793 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
3794 for (i = 0; i < 3; i++)
3795 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
3796 mutex_unlock(&pit->pit_state.lock);
3800 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3802 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3803 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3804 sizeof(ps->channels));
3805 ps->flags = kvm->arch.vpit->pit_state.flags;
3806 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3807 memset(&ps->reserved, 0, sizeof(ps->reserved));
3811 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3815 u32 prev_legacy, cur_legacy;
3816 struct kvm_pit *pit = kvm->arch.vpit;
3818 mutex_lock(&pit->pit_state.lock);
3819 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3820 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3821 if (!prev_legacy && cur_legacy)
3823 memcpy(&pit->pit_state.channels, &ps->channels,
3824 sizeof(pit->pit_state.channels));
3825 pit->pit_state.flags = ps->flags;
3826 for (i = 0; i < 3; i++)
3827 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
3829 mutex_unlock(&pit->pit_state.lock);
3833 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3834 struct kvm_reinject_control *control)
3836 struct kvm_pit *pit = kvm->arch.vpit;
3841 /* pit->pit_state.lock was overloaded to prevent userspace from getting
3842 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
3843 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
3845 mutex_lock(&pit->pit_state.lock);
3846 kvm_pit_set_reinject(pit, control->pit_reinject);
3847 mutex_unlock(&pit->pit_state.lock);
3853 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3854 * @kvm: kvm instance
3855 * @log: slot id and address to which we copy the log
3857 * Steps 1-4 below provide general overview of dirty page logging. See
3858 * kvm_get_dirty_log_protect() function description for additional details.
3860 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3861 * always flush the TLB (step 4) even if previous step failed and the dirty
3862 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3863 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3864 * writes will be marked dirty for next log read.
3866 * 1. Take a snapshot of the bit and clear it if needed.
3867 * 2. Write protect the corresponding page.
3868 * 3. Copy the snapshot to the userspace.
3869 * 4. Flush TLB's if needed.
3871 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3873 bool is_dirty = false;
3876 mutex_lock(&kvm->slots_lock);
3879 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3881 if (kvm_x86_ops->flush_log_dirty)
3882 kvm_x86_ops->flush_log_dirty(kvm);
3884 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3887 * All the TLBs can be flushed out of mmu lock, see the comments in
3888 * kvm_mmu_slot_remove_write_access().
3890 lockdep_assert_held(&kvm->slots_lock);
3892 kvm_flush_remote_tlbs(kvm);
3894 mutex_unlock(&kvm->slots_lock);
3898 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3901 if (!irqchip_in_kernel(kvm))
3904 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3905 irq_event->irq, irq_event->level,
3910 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3911 struct kvm_enable_cap *cap)
3919 case KVM_CAP_DISABLE_QUIRKS:
3920 kvm->arch.disabled_quirks = cap->args[0];
3923 case KVM_CAP_SPLIT_IRQCHIP: {
3924 mutex_lock(&kvm->lock);
3926 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
3927 goto split_irqchip_unlock;
3929 if (irqchip_in_kernel(kvm))
3930 goto split_irqchip_unlock;
3931 if (kvm->created_vcpus)
3932 goto split_irqchip_unlock;
3933 r = kvm_setup_empty_irq_routing(kvm);
3935 goto split_irqchip_unlock;
3936 /* Pairs with irqchip_in_kernel. */
3938 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
3939 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
3941 split_irqchip_unlock:
3942 mutex_unlock(&kvm->lock);
3945 case KVM_CAP_X2APIC_API:
3947 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
3950 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
3951 kvm->arch.x2apic_format = true;
3952 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
3953 kvm->arch.x2apic_broadcast_quirk_disabled = true;
3964 long kvm_arch_vm_ioctl(struct file *filp,
3965 unsigned int ioctl, unsigned long arg)
3967 struct kvm *kvm = filp->private_data;
3968 void __user *argp = (void __user *)arg;
3971 * This union makes it completely explicit to gcc-3.x
3972 * that these two variables' stack usage should be
3973 * combined, not added together.
3976 struct kvm_pit_state ps;
3977 struct kvm_pit_state2 ps2;
3978 struct kvm_pit_config pit_config;
3982 case KVM_SET_TSS_ADDR:
3983 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3985 case KVM_SET_IDENTITY_MAP_ADDR: {
3989 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3991 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3994 case KVM_SET_NR_MMU_PAGES:
3995 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3997 case KVM_GET_NR_MMU_PAGES:
3998 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4000 case KVM_CREATE_IRQCHIP: {
4001 mutex_lock(&kvm->lock);
4004 if (irqchip_in_kernel(kvm))
4005 goto create_irqchip_unlock;
4008 if (kvm->created_vcpus)
4009 goto create_irqchip_unlock;
4011 r = kvm_pic_init(kvm);
4013 goto create_irqchip_unlock;
4015 r = kvm_ioapic_init(kvm);
4017 mutex_lock(&kvm->slots_lock);
4018 kvm_pic_destroy(kvm);
4019 mutex_unlock(&kvm->slots_lock);
4020 goto create_irqchip_unlock;
4023 r = kvm_setup_default_irq_routing(kvm);
4025 mutex_lock(&kvm->slots_lock);
4026 mutex_lock(&kvm->irq_lock);
4027 kvm_ioapic_destroy(kvm);
4028 kvm_pic_destroy(kvm);
4029 mutex_unlock(&kvm->irq_lock);
4030 mutex_unlock(&kvm->slots_lock);
4031 goto create_irqchip_unlock;
4033 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4035 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4036 create_irqchip_unlock:
4037 mutex_unlock(&kvm->lock);
4040 case KVM_CREATE_PIT:
4041 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4043 case KVM_CREATE_PIT2:
4045 if (copy_from_user(&u.pit_config, argp,
4046 sizeof(struct kvm_pit_config)))
4049 mutex_lock(&kvm->lock);
4052 goto create_pit_unlock;
4054 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4058 mutex_unlock(&kvm->lock);
4060 case KVM_GET_IRQCHIP: {
4061 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4062 struct kvm_irqchip *chip;
4064 chip = memdup_user(argp, sizeof(*chip));
4071 if (!irqchip_kernel(kvm))
4072 goto get_irqchip_out;
4073 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4075 goto get_irqchip_out;
4077 if (copy_to_user(argp, chip, sizeof *chip))
4078 goto get_irqchip_out;
4084 case KVM_SET_IRQCHIP: {
4085 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4086 struct kvm_irqchip *chip;
4088 chip = memdup_user(argp, sizeof(*chip));
4095 if (!irqchip_kernel(kvm))
4096 goto set_irqchip_out;
4097 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4099 goto set_irqchip_out;
4107 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4110 if (!kvm->arch.vpit)
4112 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4116 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4123 if (copy_from_user(&u.ps, argp, sizeof u.ps))
4126 if (!kvm->arch.vpit)
4128 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4131 case KVM_GET_PIT2: {
4133 if (!kvm->arch.vpit)
4135 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4139 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4144 case KVM_SET_PIT2: {
4146 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4149 if (!kvm->arch.vpit)
4151 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4154 case KVM_REINJECT_CONTROL: {
4155 struct kvm_reinject_control control;
4157 if (copy_from_user(&control, argp, sizeof(control)))
4159 r = kvm_vm_ioctl_reinject(kvm, &control);
4162 case KVM_SET_BOOT_CPU_ID:
4164 mutex_lock(&kvm->lock);
4165 if (kvm->created_vcpus)
4168 kvm->arch.bsp_vcpu_id = arg;
4169 mutex_unlock(&kvm->lock);
4171 case KVM_XEN_HVM_CONFIG: {
4173 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
4174 sizeof(struct kvm_xen_hvm_config)))
4177 if (kvm->arch.xen_hvm_config.flags)
4182 case KVM_SET_CLOCK: {
4183 struct kvm_clock_data user_ns;
4187 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4195 local_irq_disable();
4196 now_ns = __get_kvmclock_ns(kvm);
4197 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4199 kvm_gen_update_masterclock(kvm);
4202 case KVM_GET_CLOCK: {
4203 struct kvm_clock_data user_ns;
4206 local_irq_disable();
4207 now_ns = __get_kvmclock_ns(kvm);
4208 user_ns.clock = now_ns;
4209 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4211 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4214 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4219 case KVM_ENABLE_CAP: {
4220 struct kvm_enable_cap cap;
4223 if (copy_from_user(&cap, argp, sizeof(cap)))
4225 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4229 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
4235 static void kvm_init_msr_list(void)
4240 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4241 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4245 * Even MSRs that are valid in the host may not be exposed
4246 * to the guests in some cases.
4248 switch (msrs_to_save[i]) {
4249 case MSR_IA32_BNDCFGS:
4250 if (!kvm_x86_ops->mpx_supported())
4254 if (!kvm_x86_ops->rdtscp_supported())
4262 msrs_to_save[j] = msrs_to_save[i];
4265 num_msrs_to_save = j;
4267 for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4268 switch (emulated_msrs[i]) {
4269 case MSR_IA32_SMBASE:
4270 if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4278 emulated_msrs[j] = emulated_msrs[i];
4281 num_emulated_msrs = j;
4284 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4292 if (!(lapic_in_kernel(vcpu) &&
4293 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4294 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4305 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4312 if (!(lapic_in_kernel(vcpu) &&
4313 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4315 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4317 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4327 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4328 struct kvm_segment *var, int seg)
4330 kvm_x86_ops->set_segment(vcpu, var, seg);
4333 void kvm_get_segment(struct kvm_vcpu *vcpu,
4334 struct kvm_segment *var, int seg)
4336 kvm_x86_ops->get_segment(vcpu, var, seg);
4339 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4340 struct x86_exception *exception)
4344 BUG_ON(!mmu_is_nested(vcpu));
4346 /* NPT walks are always user-walks */
4347 access |= PFERR_USER_MASK;
4348 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4353 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4354 struct x86_exception *exception)
4356 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4357 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4360 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4361 struct x86_exception *exception)
4363 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4364 access |= PFERR_FETCH_MASK;
4365 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4368 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4369 struct x86_exception *exception)
4371 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4372 access |= PFERR_WRITE_MASK;
4373 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4376 /* uses this to access any guest's mapped memory without checking CPL */
4377 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4378 struct x86_exception *exception)
4380 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4383 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4384 struct kvm_vcpu *vcpu, u32 access,
4385 struct x86_exception *exception)
4388 int r = X86EMUL_CONTINUE;
4391 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4393 unsigned offset = addr & (PAGE_SIZE-1);
4394 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4397 if (gpa == UNMAPPED_GVA)
4398 return X86EMUL_PROPAGATE_FAULT;
4399 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4402 r = X86EMUL_IO_NEEDED;
4414 /* used for instruction fetching */
4415 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4416 gva_t addr, void *val, unsigned int bytes,
4417 struct x86_exception *exception)
4419 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4420 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4424 /* Inline kvm_read_guest_virt_helper for speed. */
4425 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4427 if (unlikely(gpa == UNMAPPED_GVA))
4428 return X86EMUL_PROPAGATE_FAULT;
4430 offset = addr & (PAGE_SIZE-1);
4431 if (WARN_ON(offset + bytes > PAGE_SIZE))
4432 bytes = (unsigned)PAGE_SIZE - offset;
4433 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4435 if (unlikely(ret < 0))
4436 return X86EMUL_IO_NEEDED;
4438 return X86EMUL_CONTINUE;
4441 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4442 gva_t addr, void *val, unsigned int bytes,
4443 struct x86_exception *exception)
4445 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4446 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4448 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4451 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4453 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4454 gva_t addr, void *val, unsigned int bytes,
4455 struct x86_exception *exception)
4457 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4458 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4461 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4462 unsigned long addr, void *val, unsigned int bytes)
4464 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4465 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4467 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4470 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4471 gva_t addr, void *val,
4473 struct x86_exception *exception)
4475 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4477 int r = X86EMUL_CONTINUE;
4480 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4483 unsigned offset = addr & (PAGE_SIZE-1);
4484 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4487 if (gpa == UNMAPPED_GVA)
4488 return X86EMUL_PROPAGATE_FAULT;
4489 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4491 r = X86EMUL_IO_NEEDED;
4502 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4504 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4505 gpa_t gpa, bool write)
4507 /* For APIC access vmexit */
4508 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4511 if (vcpu_match_mmio_gpa(vcpu, gpa)) {
4512 trace_vcpu_match_mmio(gva, gpa, write, true);
4519 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4520 gpa_t *gpa, struct x86_exception *exception,
4523 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4524 | (write ? PFERR_WRITE_MASK : 0);
4527 * currently PKRU is only applied to ept enabled guest so
4528 * there is no pkey in EPT page table for L1 guest or EPT
4529 * shadow page table for L2 guest.
4531 if (vcpu_match_mmio_gva(vcpu, gva)
4532 && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4533 vcpu->arch.access, 0, access)) {
4534 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4535 (gva & (PAGE_SIZE - 1));
4536 trace_vcpu_match_mmio(gva, *gpa, write, false);
4540 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4542 if (*gpa == UNMAPPED_GVA)
4545 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
4548 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4549 const void *val, int bytes)
4553 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4556 kvm_page_track_write(vcpu, gpa, val, bytes);
4560 struct read_write_emulator_ops {
4561 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4563 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4564 void *val, int bytes);
4565 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4566 int bytes, void *val);
4567 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4568 void *val, int bytes);
4572 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4574 if (vcpu->mmio_read_completed) {
4575 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4576 vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4577 vcpu->mmio_read_completed = 0;
4584 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4585 void *val, int bytes)
4587 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4590 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4591 void *val, int bytes)
4593 return emulator_write_phys(vcpu, gpa, val, bytes);
4596 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4598 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4599 return vcpu_mmio_write(vcpu, gpa, bytes, val);
4602 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4603 void *val, int bytes)
4605 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4606 return X86EMUL_IO_NEEDED;
4609 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4610 void *val, int bytes)
4612 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4614 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4615 return X86EMUL_CONTINUE;
4618 static const struct read_write_emulator_ops read_emultor = {
4619 .read_write_prepare = read_prepare,
4620 .read_write_emulate = read_emulate,
4621 .read_write_mmio = vcpu_mmio_read,
4622 .read_write_exit_mmio = read_exit_mmio,
4625 static const struct read_write_emulator_ops write_emultor = {
4626 .read_write_emulate = write_emulate,
4627 .read_write_mmio = write_mmio,
4628 .read_write_exit_mmio = write_exit_mmio,
4632 static int emulator_read_write_onepage(unsigned long addr, void *val,
4634 struct x86_exception *exception,
4635 struct kvm_vcpu *vcpu,
4636 const struct read_write_emulator_ops *ops)
4640 bool write = ops->write;
4641 struct kvm_mmio_fragment *frag;
4642 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4645 * If the exit was due to a NPF we may already have a GPA.
4646 * If the GPA is present, use it to avoid the GVA to GPA table walk.
4647 * Note, this cannot be used on string operations since string
4648 * operation using rep will only have the initial GPA from the NPF
4651 if (vcpu->arch.gpa_available &&
4652 emulator_can_use_gpa(ctxt) &&
4653 vcpu_is_mmio_gpa(vcpu, addr, exception->address, write) &&
4654 (addr & ~PAGE_MASK) == (exception->address & ~PAGE_MASK)) {
4655 gpa = exception->address;
4659 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4662 return X86EMUL_PROPAGATE_FAULT;
4664 /* For APIC access vmexit */
4668 if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4669 return X86EMUL_CONTINUE;
4673 * Is this MMIO handled locally?
4675 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4676 if (handled == bytes)
4677 return X86EMUL_CONTINUE;
4683 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4684 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4688 return X86EMUL_CONTINUE;
4691 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4693 void *val, unsigned int bytes,
4694 struct x86_exception *exception,
4695 const struct read_write_emulator_ops *ops)
4697 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4701 if (ops->read_write_prepare &&
4702 ops->read_write_prepare(vcpu, val, bytes))
4703 return X86EMUL_CONTINUE;
4705 vcpu->mmio_nr_fragments = 0;
4707 /* Crossing a page boundary? */
4708 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4711 now = -addr & ~PAGE_MASK;
4712 rc = emulator_read_write_onepage(addr, val, now, exception,
4715 if (rc != X86EMUL_CONTINUE)
4718 if (ctxt->mode != X86EMUL_MODE_PROT64)
4724 rc = emulator_read_write_onepage(addr, val, bytes, exception,
4726 if (rc != X86EMUL_CONTINUE)
4729 if (!vcpu->mmio_nr_fragments)
4732 gpa = vcpu->mmio_fragments[0].gpa;
4734 vcpu->mmio_needed = 1;
4735 vcpu->mmio_cur_fragment = 0;
4737 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4738 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4739 vcpu->run->exit_reason = KVM_EXIT_MMIO;
4740 vcpu->run->mmio.phys_addr = gpa;
4742 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4745 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4749 struct x86_exception *exception)
4751 return emulator_read_write(ctxt, addr, val, bytes,
4752 exception, &read_emultor);
4755 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4759 struct x86_exception *exception)
4761 return emulator_read_write(ctxt, addr, (void *)val, bytes,
4762 exception, &write_emultor);
4765 #define CMPXCHG_TYPE(t, ptr, old, new) \
4766 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4768 #ifdef CONFIG_X86_64
4769 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4771 # define CMPXCHG64(ptr, old, new) \
4772 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4775 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4780 struct x86_exception *exception)
4782 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4788 /* guests cmpxchg8b have to be emulated atomically */
4789 if (bytes > 8 || (bytes & (bytes - 1)))
4792 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4794 if (gpa == UNMAPPED_GVA ||
4795 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4798 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4801 page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4802 if (is_error_page(page))
4805 kaddr = kmap_atomic(page);
4806 kaddr += offset_in_page(gpa);
4809 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4812 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4815 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4818 exchanged = CMPXCHG64(kaddr, old, new);
4823 kunmap_atomic(kaddr);
4824 kvm_release_page_dirty(page);
4827 return X86EMUL_CMPXCHG_FAILED;
4829 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4830 kvm_page_track_write(vcpu, gpa, new, bytes);
4832 return X86EMUL_CONTINUE;
4835 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4837 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4840 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4842 /* TODO: String I/O for in kernel device */
4845 if (vcpu->arch.pio.in)
4846 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4847 vcpu->arch.pio.size, pd);
4849 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4850 vcpu->arch.pio.port, vcpu->arch.pio.size,
4855 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4856 unsigned short port, void *val,
4857 unsigned int count, bool in)
4859 vcpu->arch.pio.port = port;
4860 vcpu->arch.pio.in = in;
4861 vcpu->arch.pio.count = count;
4862 vcpu->arch.pio.size = size;
4864 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4865 vcpu->arch.pio.count = 0;
4869 vcpu->run->exit_reason = KVM_EXIT_IO;
4870 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4871 vcpu->run->io.size = size;
4872 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4873 vcpu->run->io.count = count;
4874 vcpu->run->io.port = port;
4879 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4880 int size, unsigned short port, void *val,
4883 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4886 if (vcpu->arch.pio.count)
4889 ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4892 memcpy(val, vcpu->arch.pio_data, size * count);
4893 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4894 vcpu->arch.pio.count = 0;
4901 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4902 int size, unsigned short port,
4903 const void *val, unsigned int count)
4905 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4907 memcpy(vcpu->arch.pio_data, val, size * count);
4908 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4909 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4912 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4914 return kvm_x86_ops->get_segment_base(vcpu, seg);
4917 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4919 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4922 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4924 if (!need_emulate_wbinvd(vcpu))
4925 return X86EMUL_CONTINUE;
4927 if (kvm_x86_ops->has_wbinvd_exit()) {
4928 int cpu = get_cpu();
4930 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4931 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4932 wbinvd_ipi, NULL, 1);
4934 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4937 return X86EMUL_CONTINUE;
4940 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4942 kvm_emulate_wbinvd_noskip(vcpu);
4943 return kvm_skip_emulated_instruction(vcpu);
4945 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4949 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4951 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4954 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4955 unsigned long *dest)
4957 return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4960 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4961 unsigned long value)
4964 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4967 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4969 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4972 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4974 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4975 unsigned long value;
4979 value = kvm_read_cr0(vcpu);
4982 value = vcpu->arch.cr2;
4985 value = kvm_read_cr3(vcpu);
4988 value = kvm_read_cr4(vcpu);
4991 value = kvm_get_cr8(vcpu);
4994 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5001 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5003 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5008 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5011 vcpu->arch.cr2 = val;
5014 res = kvm_set_cr3(vcpu, val);
5017 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5020 res = kvm_set_cr8(vcpu, val);
5023 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5030 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5032 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5035 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5037 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5040 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5042 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5045 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5047 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5050 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5052 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5055 static unsigned long emulator_get_cached_segment_base(
5056 struct x86_emulate_ctxt *ctxt, int seg)
5058 return get_segment_base(emul_to_vcpu(ctxt), seg);
5061 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5062 struct desc_struct *desc, u32 *base3,
5065 struct kvm_segment var;
5067 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5068 *selector = var.selector;
5071 memset(desc, 0, sizeof(*desc));
5077 set_desc_limit(desc, var.limit);
5078 set_desc_base(desc, (unsigned long)var.base);
5079 #ifdef CONFIG_X86_64
5081 *base3 = var.base >> 32;
5083 desc->type = var.type;
5085 desc->dpl = var.dpl;
5086 desc->p = var.present;
5087 desc->avl = var.avl;
5095 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5096 struct desc_struct *desc, u32 base3,
5099 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5100 struct kvm_segment var;
5102 var.selector = selector;
5103 var.base = get_desc_base(desc);
5104 #ifdef CONFIG_X86_64
5105 var.base |= ((u64)base3) << 32;
5107 var.limit = get_desc_limit(desc);
5109 var.limit = (var.limit << 12) | 0xfff;
5110 var.type = desc->type;
5111 var.dpl = desc->dpl;
5116 var.avl = desc->avl;
5117 var.present = desc->p;
5118 var.unusable = !var.present;
5121 kvm_set_segment(vcpu, &var, seg);
5125 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5126 u32 msr_index, u64 *pdata)
5128 struct msr_data msr;
5131 msr.index = msr_index;
5132 msr.host_initiated = false;
5133 r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5141 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5142 u32 msr_index, u64 data)
5144 struct msr_data msr;
5147 msr.index = msr_index;
5148 msr.host_initiated = false;
5149 return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5152 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5154 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5156 return vcpu->arch.smbase;
5159 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5161 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5163 vcpu->arch.smbase = smbase;
5166 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5169 return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5172 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5173 u32 pmc, u64 *pdata)
5175 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5178 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5180 emul_to_vcpu(ctxt)->arch.halt_request = 1;
5183 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
5186 kvm_load_guest_fpu(emul_to_vcpu(ctxt));
5189 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
5194 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5195 struct x86_instruction_info *info,
5196 enum x86_intercept_stage stage)
5198 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5201 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5202 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
5204 kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
5207 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5209 return kvm_register_read(emul_to_vcpu(ctxt), reg);
5212 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5214 kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5217 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5219 kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5222 static const struct x86_emulate_ops emulate_ops = {
5223 .read_gpr = emulator_read_gpr,
5224 .write_gpr = emulator_write_gpr,
5225 .read_std = kvm_read_guest_virt_system,
5226 .write_std = kvm_write_guest_virt_system,
5227 .read_phys = kvm_read_guest_phys_system,
5228 .fetch = kvm_fetch_guest_virt,
5229 .read_emulated = emulator_read_emulated,
5230 .write_emulated = emulator_write_emulated,
5231 .cmpxchg_emulated = emulator_cmpxchg_emulated,
5232 .invlpg = emulator_invlpg,
5233 .pio_in_emulated = emulator_pio_in_emulated,
5234 .pio_out_emulated = emulator_pio_out_emulated,
5235 .get_segment = emulator_get_segment,
5236 .set_segment = emulator_set_segment,
5237 .get_cached_segment_base = emulator_get_cached_segment_base,
5238 .get_gdt = emulator_get_gdt,
5239 .get_idt = emulator_get_idt,
5240 .set_gdt = emulator_set_gdt,
5241 .set_idt = emulator_set_idt,
5242 .get_cr = emulator_get_cr,
5243 .set_cr = emulator_set_cr,
5244 .cpl = emulator_get_cpl,
5245 .get_dr = emulator_get_dr,
5246 .set_dr = emulator_set_dr,
5247 .get_smbase = emulator_get_smbase,
5248 .set_smbase = emulator_set_smbase,
5249 .set_msr = emulator_set_msr,
5250 .get_msr = emulator_get_msr,
5251 .check_pmc = emulator_check_pmc,
5252 .read_pmc = emulator_read_pmc,
5253 .halt = emulator_halt,
5254 .wbinvd = emulator_wbinvd,
5255 .fix_hypercall = emulator_fix_hypercall,
5256 .get_fpu = emulator_get_fpu,
5257 .put_fpu = emulator_put_fpu,
5258 .intercept = emulator_intercept,
5259 .get_cpuid = emulator_get_cpuid,
5260 .set_nmi_mask = emulator_set_nmi_mask,
5263 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5265 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5267 * an sti; sti; sequence only disable interrupts for the first
5268 * instruction. So, if the last instruction, be it emulated or
5269 * not, left the system with the INT_STI flag enabled, it
5270 * means that the last instruction is an sti. We should not
5271 * leave the flag on in this case. The same goes for mov ss
5273 if (int_shadow & mask)
5275 if (unlikely(int_shadow || mask)) {
5276 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5278 kvm_make_request(KVM_REQ_EVENT, vcpu);
5282 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5284 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5285 if (ctxt->exception.vector == PF_VECTOR)
5286 return kvm_propagate_fault(vcpu, &ctxt->exception);
5288 if (ctxt->exception.error_code_valid)
5289 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5290 ctxt->exception.error_code);
5292 kvm_queue_exception(vcpu, ctxt->exception.vector);
5296 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5298 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5301 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5303 ctxt->eflags = kvm_get_rflags(vcpu);
5304 ctxt->eip = kvm_rip_read(vcpu);
5305 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
5306 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
5307 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
5308 cs_db ? X86EMUL_MODE_PROT32 :
5309 X86EMUL_MODE_PROT16;
5310 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5311 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5312 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5313 ctxt->emul_flags = vcpu->arch.hflags;
5315 init_decode_cache(ctxt);
5316 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5319 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5321 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5324 init_emulate_ctxt(vcpu);
5328 ctxt->_eip = ctxt->eip + inc_eip;
5329 ret = emulate_int_real(ctxt, irq);
5331 if (ret != X86EMUL_CONTINUE)
5332 return EMULATE_FAIL;
5334 ctxt->eip = ctxt->_eip;
5335 kvm_rip_write(vcpu, ctxt->eip);
5336 kvm_set_rflags(vcpu, ctxt->eflags);
5338 if (irq == NMI_VECTOR)
5339 vcpu->arch.nmi_pending = 0;
5341 vcpu->arch.interrupt.pending = false;
5343 return EMULATE_DONE;
5345 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5347 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5349 int r = EMULATE_DONE;
5351 ++vcpu->stat.insn_emulation_fail;
5352 trace_kvm_emulate_insn_failed(vcpu);
5353 if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5354 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5355 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5356 vcpu->run->internal.ndata = 0;
5359 kvm_queue_exception(vcpu, UD_VECTOR);
5364 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5365 bool write_fault_to_shadow_pgtable,
5371 if (emulation_type & EMULTYPE_NO_REEXECUTE)
5374 if (!vcpu->arch.mmu.direct_map) {
5376 * Write permission should be allowed since only
5377 * write access need to be emulated.
5379 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5382 * If the mapping is invalid in guest, let cpu retry
5383 * it to generate fault.
5385 if (gpa == UNMAPPED_GVA)
5390 * Do not retry the unhandleable instruction if it faults on the
5391 * readonly host memory, otherwise it will goto a infinite loop:
5392 * retry instruction -> write #PF -> emulation fail -> retry
5393 * instruction -> ...
5395 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5398 * If the instruction failed on the error pfn, it can not be fixed,
5399 * report the error to userspace.
5401 if (is_error_noslot_pfn(pfn))
5404 kvm_release_pfn_clean(pfn);
5406 /* The instructions are well-emulated on direct mmu. */
5407 if (vcpu->arch.mmu.direct_map) {
5408 unsigned int indirect_shadow_pages;
5410 spin_lock(&vcpu->kvm->mmu_lock);
5411 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5412 spin_unlock(&vcpu->kvm->mmu_lock);
5414 if (indirect_shadow_pages)
5415 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5421 * if emulation was due to access to shadowed page table
5422 * and it failed try to unshadow page and re-enter the
5423 * guest to let CPU execute the instruction.
5425 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5428 * If the access faults on its page table, it can not
5429 * be fixed by unprotecting shadow page and it should
5430 * be reported to userspace.
5432 return !write_fault_to_shadow_pgtable;
5435 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5436 unsigned long cr2, int emulation_type)
5438 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5439 unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5441 last_retry_eip = vcpu->arch.last_retry_eip;
5442 last_retry_addr = vcpu->arch.last_retry_addr;
5445 * If the emulation is caused by #PF and it is non-page_table
5446 * writing instruction, it means the VM-EXIT is caused by shadow
5447 * page protected, we can zap the shadow page and retry this
5448 * instruction directly.
5450 * Note: if the guest uses a non-page-table modifying instruction
5451 * on the PDE that points to the instruction, then we will unmap
5452 * the instruction and go to an infinite loop. So, we cache the
5453 * last retried eip and the last fault address, if we meet the eip
5454 * and the address again, we can break out of the potential infinite
5457 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5459 if (!(emulation_type & EMULTYPE_RETRY))
5462 if (x86_page_table_writing_insn(ctxt))
5465 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5468 vcpu->arch.last_retry_eip = ctxt->eip;
5469 vcpu->arch.last_retry_addr = cr2;
5471 if (!vcpu->arch.mmu.direct_map)
5472 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5474 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5479 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5480 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5482 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5484 if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5485 /* This is a good place to trace that we are exiting SMM. */
5486 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5488 /* Process a latched INIT or SMI, if any. */
5489 kvm_make_request(KVM_REQ_EVENT, vcpu);
5492 kvm_mmu_reset_context(vcpu);
5495 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5497 unsigned changed = vcpu->arch.hflags ^ emul_flags;
5499 vcpu->arch.hflags = emul_flags;
5501 if (changed & HF_SMM_MASK)
5502 kvm_smm_changed(vcpu);
5505 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5514 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5515 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5520 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5522 struct kvm_run *kvm_run = vcpu->run;
5525 * rflags is the old, "raw" value of the flags. The new value has
5526 * not been saved yet.
5528 * This is correct even for TF set by the guest, because "the
5529 * processor will not generate this exception after the instruction
5530 * that sets the TF flag".
5532 if (unlikely(rflags & X86_EFLAGS_TF)) {
5533 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5534 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5536 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5537 kvm_run->debug.arch.exception = DB_VECTOR;
5538 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5539 *r = EMULATE_USER_EXIT;
5542 * "Certain debug exceptions may clear bit 0-3. The
5543 * remaining contents of the DR6 register are never
5544 * cleared by the processor".
5546 vcpu->arch.dr6 &= ~15;
5547 vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5548 kvm_queue_exception(vcpu, DB_VECTOR);
5553 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
5555 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5556 int r = EMULATE_DONE;
5558 kvm_x86_ops->skip_emulated_instruction(vcpu);
5559 kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5560 return r == EMULATE_DONE;
5562 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
5564 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5566 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5567 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5568 struct kvm_run *kvm_run = vcpu->run;
5569 unsigned long eip = kvm_get_linear_rip(vcpu);
5570 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5571 vcpu->arch.guest_debug_dr7,
5575 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5576 kvm_run->debug.arch.pc = eip;
5577 kvm_run->debug.arch.exception = DB_VECTOR;
5578 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5579 *r = EMULATE_USER_EXIT;
5584 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5585 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5586 unsigned long eip = kvm_get_linear_rip(vcpu);
5587 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5592 vcpu->arch.dr6 &= ~15;
5593 vcpu->arch.dr6 |= dr6 | DR6_RTM;
5594 kvm_queue_exception(vcpu, DB_VECTOR);
5603 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5610 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5611 bool writeback = true;
5612 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5615 * Clear write_fault_to_shadow_pgtable here to ensure it is
5618 vcpu->arch.write_fault_to_shadow_pgtable = false;
5619 kvm_clear_exception_queue(vcpu);
5621 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5622 init_emulate_ctxt(vcpu);
5625 * We will reenter on the same instruction since
5626 * we do not set complete_userspace_io. This does not
5627 * handle watchpoints yet, those would be handled in
5630 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5633 ctxt->interruptibility = 0;
5634 ctxt->have_exception = false;
5635 ctxt->exception.vector = -1;
5636 ctxt->perm_ok = false;
5638 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5640 r = x86_decode_insn(ctxt, insn, insn_len);
5642 trace_kvm_emulate_insn_start(vcpu);
5643 ++vcpu->stat.insn_emulation;
5644 if (r != EMULATION_OK) {
5645 if (emulation_type & EMULTYPE_TRAP_UD)
5646 return EMULATE_FAIL;
5647 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5649 return EMULATE_DONE;
5650 if (emulation_type & EMULTYPE_SKIP)
5651 return EMULATE_FAIL;
5652 return handle_emulation_failure(vcpu);
5656 if (emulation_type & EMULTYPE_SKIP) {
5657 kvm_rip_write(vcpu, ctxt->_eip);
5658 if (ctxt->eflags & X86_EFLAGS_RF)
5659 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5660 return EMULATE_DONE;
5663 if (retry_instruction(ctxt, cr2, emulation_type))
5664 return EMULATE_DONE;
5666 /* this is needed for vmware backdoor interface to work since it
5667 changes registers values during IO operation */
5668 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5669 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5670 emulator_invalidate_register_cache(ctxt);
5674 /* Save the faulting GPA (cr2) in the address field */
5675 ctxt->exception.address = cr2;
5677 r = x86_emulate_insn(ctxt);
5679 if (r == EMULATION_INTERCEPTED)
5680 return EMULATE_DONE;
5682 if (r == EMULATION_FAILED) {
5683 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5685 return EMULATE_DONE;
5687 return handle_emulation_failure(vcpu);
5690 if (ctxt->have_exception) {
5692 if (inject_emulated_exception(vcpu))
5694 } else if (vcpu->arch.pio.count) {
5695 if (!vcpu->arch.pio.in) {
5696 /* FIXME: return into emulator if single-stepping. */
5697 vcpu->arch.pio.count = 0;
5700 vcpu->arch.complete_userspace_io = complete_emulated_pio;
5702 r = EMULATE_USER_EXIT;
5703 } else if (vcpu->mmio_needed) {
5704 if (!vcpu->mmio_is_write)
5706 r = EMULATE_USER_EXIT;
5707 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5708 } else if (r == EMULATION_RESTART)
5714 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5715 toggle_interruptibility(vcpu, ctxt->interruptibility);
5716 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5717 if (vcpu->arch.hflags != ctxt->emul_flags)
5718 kvm_set_hflags(vcpu, ctxt->emul_flags);
5719 kvm_rip_write(vcpu, ctxt->eip);
5720 if (r == EMULATE_DONE)
5721 kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5722 if (!ctxt->have_exception ||
5723 exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5724 __kvm_set_rflags(vcpu, ctxt->eflags);
5727 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5728 * do nothing, and it will be requested again as soon as
5729 * the shadow expires. But we still need to check here,
5730 * because POPF has no interrupt shadow.
5732 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5733 kvm_make_request(KVM_REQ_EVENT, vcpu);
5735 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5739 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5741 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5743 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5744 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5745 size, port, &val, 1);
5746 /* do not return to emulator after return from userspace */
5747 vcpu->arch.pio.count = 0;
5750 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5752 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
5756 /* We should only ever be called with arch.pio.count equal to 1 */
5757 BUG_ON(vcpu->arch.pio.count != 1);
5759 /* For size less than 4 we merge, else we zero extend */
5760 val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX)
5764 * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
5765 * the copy and tracing
5767 emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
5768 vcpu->arch.pio.port, &val, 1);
5769 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5774 int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, unsigned short port)
5779 /* For size less than 4 we merge, else we zero extend */
5780 val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0;
5782 ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
5785 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5789 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
5793 EXPORT_SYMBOL_GPL(kvm_fast_pio_in);
5795 static int kvmclock_cpu_down_prep(unsigned int cpu)
5797 __this_cpu_write(cpu_tsc_khz, 0);
5801 static void tsc_khz_changed(void *data)
5803 struct cpufreq_freqs *freq = data;
5804 unsigned long khz = 0;
5808 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5809 khz = cpufreq_quick_get(raw_smp_processor_id());
5812 __this_cpu_write(cpu_tsc_khz, khz);
5815 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5818 struct cpufreq_freqs *freq = data;
5820 struct kvm_vcpu *vcpu;
5821 int i, send_ipi = 0;
5824 * We allow guests to temporarily run on slowing clocks,
5825 * provided we notify them after, or to run on accelerating
5826 * clocks, provided we notify them before. Thus time never
5829 * However, we have a problem. We can't atomically update
5830 * the frequency of a given CPU from this function; it is
5831 * merely a notifier, which can be called from any CPU.
5832 * Changing the TSC frequency at arbitrary points in time
5833 * requires a recomputation of local variables related to
5834 * the TSC for each VCPU. We must flag these local variables
5835 * to be updated and be sure the update takes place with the
5836 * new frequency before any guests proceed.
5838 * Unfortunately, the combination of hotplug CPU and frequency
5839 * change creates an intractable locking scenario; the order
5840 * of when these callouts happen is undefined with respect to
5841 * CPU hotplug, and they can race with each other. As such,
5842 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5843 * undefined; you can actually have a CPU frequency change take
5844 * place in between the computation of X and the setting of the
5845 * variable. To protect against this problem, all updates of
5846 * the per_cpu tsc_khz variable are done in an interrupt
5847 * protected IPI, and all callers wishing to update the value
5848 * must wait for a synchronous IPI to complete (which is trivial
5849 * if the caller is on the CPU already). This establishes the
5850 * necessary total order on variable updates.
5852 * Note that because a guest time update may take place
5853 * anytime after the setting of the VCPU's request bit, the
5854 * correct TSC value must be set before the request. However,
5855 * to ensure the update actually makes it to any guest which
5856 * starts running in hardware virtualization between the set
5857 * and the acquisition of the spinlock, we must also ping the
5858 * CPU after setting the request bit.
5862 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5864 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5867 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5869 spin_lock(&kvm_lock);
5870 list_for_each_entry(kvm, &vm_list, vm_list) {
5871 kvm_for_each_vcpu(i, vcpu, kvm) {
5872 if (vcpu->cpu != freq->cpu)
5874 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5875 if (vcpu->cpu != smp_processor_id())
5879 spin_unlock(&kvm_lock);
5881 if (freq->old < freq->new && send_ipi) {
5883 * We upscale the frequency. Must make the guest
5884 * doesn't see old kvmclock values while running with
5885 * the new frequency, otherwise we risk the guest sees
5886 * time go backwards.
5888 * In case we update the frequency for another cpu
5889 * (which might be in guest context) send an interrupt
5890 * to kick the cpu out of guest context. Next time
5891 * guest context is entered kvmclock will be updated,
5892 * so the guest will not see stale values.
5894 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5899 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5900 .notifier_call = kvmclock_cpufreq_notifier
5903 static int kvmclock_cpu_online(unsigned int cpu)
5905 tsc_khz_changed(NULL);
5909 static void kvm_timer_init(void)
5911 max_tsc_khz = tsc_khz;
5913 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5914 #ifdef CONFIG_CPU_FREQ
5915 struct cpufreq_policy policy;
5918 memset(&policy, 0, sizeof(policy));
5920 cpufreq_get_policy(&policy, cpu);
5921 if (policy.cpuinfo.max_freq)
5922 max_tsc_khz = policy.cpuinfo.max_freq;
5925 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5926 CPUFREQ_TRANSITION_NOTIFIER);
5928 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5930 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
5931 kvmclock_cpu_online, kvmclock_cpu_down_prep);
5934 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5936 int kvm_is_in_guest(void)
5938 return __this_cpu_read(current_vcpu) != NULL;
5941 static int kvm_is_user_mode(void)
5945 if (__this_cpu_read(current_vcpu))
5946 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5948 return user_mode != 0;
5951 static unsigned long kvm_get_guest_ip(void)
5953 unsigned long ip = 0;
5955 if (__this_cpu_read(current_vcpu))
5956 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5961 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5962 .is_in_guest = kvm_is_in_guest,
5963 .is_user_mode = kvm_is_user_mode,
5964 .get_guest_ip = kvm_get_guest_ip,
5967 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5969 __this_cpu_write(current_vcpu, vcpu);
5971 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5973 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5975 __this_cpu_write(current_vcpu, NULL);
5977 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5979 static void kvm_set_mmio_spte_mask(void)
5982 int maxphyaddr = boot_cpu_data.x86_phys_bits;
5985 * Set the reserved bits and the present bit of an paging-structure
5986 * entry to generate page fault with PFER.RSV = 1.
5988 /* Mask the reserved physical address bits. */
5989 mask = rsvd_bits(maxphyaddr, 51);
5991 /* Set the present bit. */
5994 #ifdef CONFIG_X86_64
5996 * If reserved bit is not supported, clear the present bit to disable
5999 if (maxphyaddr == 52)
6003 kvm_mmu_set_mmio_spte_mask(mask);
6006 #ifdef CONFIG_X86_64
6007 static void pvclock_gtod_update_fn(struct work_struct *work)
6011 struct kvm_vcpu *vcpu;
6014 spin_lock(&kvm_lock);
6015 list_for_each_entry(kvm, &vm_list, vm_list)
6016 kvm_for_each_vcpu(i, vcpu, kvm)
6017 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6018 atomic_set(&kvm_guest_has_master_clock, 0);
6019 spin_unlock(&kvm_lock);
6022 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6025 * Notification about pvclock gtod data update.
6027 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6030 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6031 struct timekeeper *tk = priv;
6033 update_pvclock_gtod(tk);
6035 /* disable master clock if host does not trust, or does not
6036 * use, TSC clocksource
6038 if (gtod->clock.vclock_mode != VCLOCK_TSC &&
6039 atomic_read(&kvm_guest_has_master_clock) != 0)
6040 queue_work(system_long_wq, &pvclock_gtod_work);
6045 static struct notifier_block pvclock_gtod_notifier = {
6046 .notifier_call = pvclock_gtod_notify,
6050 int kvm_arch_init(void *opaque)
6053 struct kvm_x86_ops *ops = opaque;
6056 printk(KERN_ERR "kvm: already loaded the other module\n");
6061 if (!ops->cpu_has_kvm_support()) {
6062 printk(KERN_ERR "kvm: no hardware support\n");
6066 if (ops->disabled_by_bios()) {
6067 printk(KERN_ERR "kvm: disabled by bios\n");
6073 shared_msrs = alloc_percpu(struct kvm_shared_msrs);
6075 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
6079 r = kvm_mmu_module_init();
6081 goto out_free_percpu;
6083 kvm_set_mmio_spte_mask();
6087 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
6088 PT_DIRTY_MASK, PT64_NX_MASK, 0,
6089 PT_PRESENT_MASK, 0);
6092 perf_register_guest_info_callbacks(&kvm_guest_cbs);
6094 if (boot_cpu_has(X86_FEATURE_XSAVE))
6095 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
6098 #ifdef CONFIG_X86_64
6099 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6105 free_percpu(shared_msrs);
6110 void kvm_arch_exit(void)
6113 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6115 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6116 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
6117 CPUFREQ_TRANSITION_NOTIFIER);
6118 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
6119 #ifdef CONFIG_X86_64
6120 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
6123 kvm_mmu_module_exit();
6124 free_percpu(shared_msrs);
6127 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
6129 ++vcpu->stat.halt_exits;
6130 if (lapic_in_kernel(vcpu)) {
6131 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
6134 vcpu->run->exit_reason = KVM_EXIT_HLT;
6138 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
6140 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
6142 int ret = kvm_skip_emulated_instruction(vcpu);
6144 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
6145 * KVM_EXIT_DEBUG here.
6147 return kvm_vcpu_halt(vcpu) && ret;
6149 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
6151 #ifdef CONFIG_X86_64
6152 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
6153 unsigned long clock_type)
6155 struct kvm_clock_pairing clock_pairing;
6160 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
6161 return -KVM_EOPNOTSUPP;
6163 if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
6164 return -KVM_EOPNOTSUPP;
6166 clock_pairing.sec = ts.tv_sec;
6167 clock_pairing.nsec = ts.tv_nsec;
6168 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
6169 clock_pairing.flags = 0;
6172 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
6173 sizeof(struct kvm_clock_pairing)))
6181 * kvm_pv_kick_cpu_op: Kick a vcpu.
6183 * @apicid - apicid of vcpu to be kicked.
6185 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
6187 struct kvm_lapic_irq lapic_irq;
6189 lapic_irq.shorthand = 0;
6190 lapic_irq.dest_mode = 0;
6191 lapic_irq.dest_id = apicid;
6192 lapic_irq.msi_redir_hint = false;
6194 lapic_irq.delivery_mode = APIC_DM_REMRD;
6195 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
6198 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
6200 vcpu->arch.apicv_active = false;
6201 kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
6204 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
6206 unsigned long nr, a0, a1, a2, a3, ret;
6209 r = kvm_skip_emulated_instruction(vcpu);
6211 if (kvm_hv_hypercall_enabled(vcpu->kvm))
6212 return kvm_hv_hypercall(vcpu);
6214 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
6215 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
6216 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
6217 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
6218 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
6220 trace_kvm_hypercall(nr, a0, a1, a2, a3);
6222 op_64_bit = is_64_bit_mode(vcpu);
6231 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
6237 case KVM_HC_VAPIC_POLL_IRQ:
6240 case KVM_HC_KICK_CPU:
6241 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6244 #ifdef CONFIG_X86_64
6245 case KVM_HC_CLOCK_PAIRING:
6246 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
6256 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6257 ++vcpu->stat.hypercalls;
6260 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6262 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6264 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6265 char instruction[3];
6266 unsigned long rip = kvm_rip_read(vcpu);
6268 kvm_x86_ops->patch_hypercall(vcpu, instruction);
6270 return emulator_write_emulated(ctxt, rip, instruction, 3,
6274 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6276 return vcpu->run->request_interrupt_window &&
6277 likely(!pic_in_kernel(vcpu->kvm));
6280 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6282 struct kvm_run *kvm_run = vcpu->run;
6284 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6285 kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6286 kvm_run->cr8 = kvm_get_cr8(vcpu);
6287 kvm_run->apic_base = kvm_get_apic_base(vcpu);
6288 kvm_run->ready_for_interrupt_injection =
6289 pic_in_kernel(vcpu->kvm) ||
6290 kvm_vcpu_ready_for_interrupt_injection(vcpu);
6293 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6297 if (!kvm_x86_ops->update_cr8_intercept)
6300 if (!lapic_in_kernel(vcpu))
6303 if (vcpu->arch.apicv_active)
6306 if (!vcpu->arch.apic->vapic_addr)
6307 max_irr = kvm_lapic_find_highest_irr(vcpu);
6314 tpr = kvm_lapic_get_cr8(vcpu);
6316 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6319 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6323 /* try to reinject previous events if any */
6324 if (vcpu->arch.exception.pending) {
6325 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6326 vcpu->arch.exception.has_error_code,
6327 vcpu->arch.exception.error_code);
6329 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6330 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6333 if (vcpu->arch.exception.nr == DB_VECTOR &&
6334 (vcpu->arch.dr7 & DR7_GD)) {
6335 vcpu->arch.dr7 &= ~DR7_GD;
6336 kvm_update_dr7(vcpu);
6339 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
6340 vcpu->arch.exception.has_error_code,
6341 vcpu->arch.exception.error_code,
6342 vcpu->arch.exception.reinject);
6346 if (vcpu->arch.nmi_injected) {
6347 kvm_x86_ops->set_nmi(vcpu);
6351 if (vcpu->arch.interrupt.pending) {
6352 kvm_x86_ops->set_irq(vcpu);
6356 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6357 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6362 /* try to inject new event if pending */
6363 if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
6364 vcpu->arch.smi_pending = false;
6366 } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6367 --vcpu->arch.nmi_pending;
6368 vcpu->arch.nmi_injected = true;
6369 kvm_x86_ops->set_nmi(vcpu);
6370 } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6372 * Because interrupts can be injected asynchronously, we are
6373 * calling check_nested_events again here to avoid a race condition.
6374 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6375 * proposal and current concerns. Perhaps we should be setting
6376 * KVM_REQ_EVENT only on certain events and not unconditionally?
6378 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6379 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6383 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6384 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6386 kvm_x86_ops->set_irq(vcpu);
6393 static void process_nmi(struct kvm_vcpu *vcpu)
6398 * x86 is limited to one NMI running, and one NMI pending after it.
6399 * If an NMI is already in progress, limit further NMIs to just one.
6400 * Otherwise, allow two (and we'll inject the first one immediately).
6402 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6405 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6406 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6407 kvm_make_request(KVM_REQ_EVENT, vcpu);
6410 #define put_smstate(type, buf, offset, val) \
6411 *(type *)((buf) + (offset) - 0x7e00) = val
6413 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
6416 flags |= seg->g << 23;
6417 flags |= seg->db << 22;
6418 flags |= seg->l << 21;
6419 flags |= seg->avl << 20;
6420 flags |= seg->present << 15;
6421 flags |= seg->dpl << 13;
6422 flags |= seg->s << 12;
6423 flags |= seg->type << 8;
6427 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6429 struct kvm_segment seg;
6432 kvm_get_segment(vcpu, &seg, n);
6433 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6436 offset = 0x7f84 + n * 12;
6438 offset = 0x7f2c + (n - 3) * 12;
6440 put_smstate(u32, buf, offset + 8, seg.base);
6441 put_smstate(u32, buf, offset + 4, seg.limit);
6442 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
6445 #ifdef CONFIG_X86_64
6446 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6448 struct kvm_segment seg;
6452 kvm_get_segment(vcpu, &seg, n);
6453 offset = 0x7e00 + n * 16;
6455 flags = enter_smm_get_segment_flags(&seg) >> 8;
6456 put_smstate(u16, buf, offset, seg.selector);
6457 put_smstate(u16, buf, offset + 2, flags);
6458 put_smstate(u32, buf, offset + 4, seg.limit);
6459 put_smstate(u64, buf, offset + 8, seg.base);
6463 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6466 struct kvm_segment seg;
6470 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6471 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6472 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6473 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6475 for (i = 0; i < 8; i++)
6476 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6478 kvm_get_dr(vcpu, 6, &val);
6479 put_smstate(u32, buf, 0x7fcc, (u32)val);
6480 kvm_get_dr(vcpu, 7, &val);
6481 put_smstate(u32, buf, 0x7fc8, (u32)val);
6483 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6484 put_smstate(u32, buf, 0x7fc4, seg.selector);
6485 put_smstate(u32, buf, 0x7f64, seg.base);
6486 put_smstate(u32, buf, 0x7f60, seg.limit);
6487 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
6489 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6490 put_smstate(u32, buf, 0x7fc0, seg.selector);
6491 put_smstate(u32, buf, 0x7f80, seg.base);
6492 put_smstate(u32, buf, 0x7f7c, seg.limit);
6493 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
6495 kvm_x86_ops->get_gdt(vcpu, &dt);
6496 put_smstate(u32, buf, 0x7f74, dt.address);
6497 put_smstate(u32, buf, 0x7f70, dt.size);
6499 kvm_x86_ops->get_idt(vcpu, &dt);
6500 put_smstate(u32, buf, 0x7f58, dt.address);
6501 put_smstate(u32, buf, 0x7f54, dt.size);
6503 for (i = 0; i < 6; i++)
6504 enter_smm_save_seg_32(vcpu, buf, i);
6506 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6509 put_smstate(u32, buf, 0x7efc, 0x00020000);
6510 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6513 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6515 #ifdef CONFIG_X86_64
6517 struct kvm_segment seg;
6521 for (i = 0; i < 16; i++)
6522 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6524 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6525 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6527 kvm_get_dr(vcpu, 6, &val);
6528 put_smstate(u64, buf, 0x7f68, val);
6529 kvm_get_dr(vcpu, 7, &val);
6530 put_smstate(u64, buf, 0x7f60, val);
6532 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6533 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6534 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6536 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6539 put_smstate(u32, buf, 0x7efc, 0x00020064);
6541 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6543 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6544 put_smstate(u16, buf, 0x7e90, seg.selector);
6545 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
6546 put_smstate(u32, buf, 0x7e94, seg.limit);
6547 put_smstate(u64, buf, 0x7e98, seg.base);
6549 kvm_x86_ops->get_idt(vcpu, &dt);
6550 put_smstate(u32, buf, 0x7e84, dt.size);
6551 put_smstate(u64, buf, 0x7e88, dt.address);
6553 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6554 put_smstate(u16, buf, 0x7e70, seg.selector);
6555 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
6556 put_smstate(u32, buf, 0x7e74, seg.limit);
6557 put_smstate(u64, buf, 0x7e78, seg.base);
6559 kvm_x86_ops->get_gdt(vcpu, &dt);
6560 put_smstate(u32, buf, 0x7e64, dt.size);
6561 put_smstate(u64, buf, 0x7e68, dt.address);
6563 for (i = 0; i < 6; i++)
6564 enter_smm_save_seg_64(vcpu, buf, i);
6570 static void enter_smm(struct kvm_vcpu *vcpu)
6572 struct kvm_segment cs, ds;
6577 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6578 vcpu->arch.hflags |= HF_SMM_MASK;
6579 memset(buf, 0, 512);
6580 if (guest_cpuid_has_longmode(vcpu))
6581 enter_smm_save_state_64(vcpu, buf);
6583 enter_smm_save_state_32(vcpu, buf);
6585 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6587 if (kvm_x86_ops->get_nmi_mask(vcpu))
6588 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6590 kvm_x86_ops->set_nmi_mask(vcpu, true);
6592 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6593 kvm_rip_write(vcpu, 0x8000);
6595 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6596 kvm_x86_ops->set_cr0(vcpu, cr0);
6597 vcpu->arch.cr0 = cr0;
6599 kvm_x86_ops->set_cr4(vcpu, 0);
6601 /* Undocumented: IDT limit is set to zero on entry to SMM. */
6602 dt.address = dt.size = 0;
6603 kvm_x86_ops->set_idt(vcpu, &dt);
6605 __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6607 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6608 cs.base = vcpu->arch.smbase;
6613 cs.limit = ds.limit = 0xffffffff;
6614 cs.type = ds.type = 0x3;
6615 cs.dpl = ds.dpl = 0;
6620 cs.avl = ds.avl = 0;
6621 cs.present = ds.present = 1;
6622 cs.unusable = ds.unusable = 0;
6623 cs.padding = ds.padding = 0;
6625 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6626 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6627 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6628 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6629 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6630 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6632 if (guest_cpuid_has_longmode(vcpu))
6633 kvm_x86_ops->set_efer(vcpu, 0);
6635 kvm_update_cpuid(vcpu);
6636 kvm_mmu_reset_context(vcpu);
6639 static void process_smi(struct kvm_vcpu *vcpu)
6641 vcpu->arch.smi_pending = true;
6642 kvm_make_request(KVM_REQ_EVENT, vcpu);
6645 void kvm_make_scan_ioapic_request(struct kvm *kvm)
6647 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
6650 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6652 u64 eoi_exit_bitmap[4];
6654 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6657 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
6659 if (irqchip_split(vcpu->kvm))
6660 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
6662 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
6663 kvm_x86_ops->sync_pir_to_irr(vcpu);
6664 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
6666 bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
6667 vcpu_to_synic(vcpu)->vec_bitmap, 256);
6668 kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6671 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6673 ++vcpu->stat.tlb_flush;
6674 kvm_x86_ops->tlb_flush(vcpu);
6677 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6679 struct page *page = NULL;
6681 if (!lapic_in_kernel(vcpu))
6684 if (!kvm_x86_ops->set_apic_access_page_addr)
6687 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6688 if (is_error_page(page))
6690 kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6693 * Do not pin apic access page in memory, the MMU notifier
6694 * will call us again if it is migrated or swapped out.
6698 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6700 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6701 unsigned long address)
6704 * The physical address of apic access page is stored in the VMCS.
6705 * Update it when it becomes invalid.
6707 if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6708 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6712 * Returns 1 to let vcpu_run() continue the guest execution loop without
6713 * exiting to the userspace. Otherwise, the value will be returned to the
6716 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6720 dm_request_for_irq_injection(vcpu) &&
6721 kvm_cpu_accept_dm_intr(vcpu);
6723 bool req_immediate_exit = false;
6725 if (vcpu->requests) {
6726 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6727 kvm_mmu_unload(vcpu);
6728 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6729 __kvm_migrate_timers(vcpu);
6730 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6731 kvm_gen_update_masterclock(vcpu->kvm);
6732 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6733 kvm_gen_kvmclock_update(vcpu);
6734 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6735 r = kvm_guest_time_update(vcpu);
6739 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6740 kvm_mmu_sync_roots(vcpu);
6741 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6742 kvm_vcpu_flush_tlb(vcpu);
6743 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6744 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6748 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6749 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6753 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
6754 vcpu->fpu_active = 0;
6755 kvm_x86_ops->fpu_deactivate(vcpu);
6757 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6758 /* Page is swapped out. Do synthetic halt */
6759 vcpu->arch.apf.halted = true;
6763 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6764 record_steal_time(vcpu);
6765 if (kvm_check_request(KVM_REQ_SMI, vcpu))
6767 if (kvm_check_request(KVM_REQ_NMI, vcpu))
6769 if (kvm_check_request(KVM_REQ_PMU, vcpu))
6770 kvm_pmu_handle_event(vcpu);
6771 if (kvm_check_request(KVM_REQ_PMI, vcpu))
6772 kvm_pmu_deliver_pmi(vcpu);
6773 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
6774 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
6775 if (test_bit(vcpu->arch.pending_ioapic_eoi,
6776 vcpu->arch.ioapic_handled_vectors)) {
6777 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
6778 vcpu->run->eoi.vector =
6779 vcpu->arch.pending_ioapic_eoi;
6784 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6785 vcpu_scan_ioapic(vcpu);
6786 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6787 kvm_vcpu_reload_apic_access_page(vcpu);
6788 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
6789 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6790 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
6794 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
6795 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6796 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
6800 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
6801 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
6802 vcpu->run->hyperv = vcpu->arch.hyperv.exit;
6808 * KVM_REQ_HV_STIMER has to be processed after
6809 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
6810 * depend on the guest clock being up-to-date
6812 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
6813 kvm_hv_process_stimers(vcpu);
6816 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6817 ++vcpu->stat.req_event;
6818 kvm_apic_accept_events(vcpu);
6819 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6824 if (inject_pending_event(vcpu, req_int_win) != 0)
6825 req_immediate_exit = true;
6827 /* Enable NMI/IRQ window open exits if needed.
6829 * SMIs have two cases: 1) they can be nested, and
6830 * then there is nothing to do here because RSM will
6831 * cause a vmexit anyway; 2) or the SMI can be pending
6832 * because inject_pending_event has completed the
6833 * injection of an IRQ or NMI from the previous vmexit,
6834 * and then we request an immediate exit to inject the SMI.
6836 if (vcpu->arch.smi_pending && !is_smm(vcpu))
6837 req_immediate_exit = true;
6838 if (vcpu->arch.nmi_pending)
6839 kvm_x86_ops->enable_nmi_window(vcpu);
6840 if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6841 kvm_x86_ops->enable_irq_window(vcpu);
6844 if (kvm_lapic_enabled(vcpu)) {
6845 update_cr8_intercept(vcpu);
6846 kvm_lapic_sync_to_vapic(vcpu);
6850 r = kvm_mmu_reload(vcpu);
6852 goto cancel_injection;
6857 kvm_x86_ops->prepare_guest_switch(vcpu);
6858 if (vcpu->fpu_active)
6859 kvm_load_guest_fpu(vcpu);
6862 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
6863 * IPI are then delayed after guest entry, which ensures that they
6864 * result in virtual interrupt delivery.
6866 local_irq_disable();
6867 vcpu->mode = IN_GUEST_MODE;
6869 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6872 * 1) We should set ->mode before checking ->requests. Please see
6873 * the comment in kvm_make_all_cpus_request.
6875 * 2) For APICv, we should set ->mode before checking PIR.ON. This
6876 * pairs with the memory barrier implicit in pi_test_and_set_on
6877 * (see vmx_deliver_posted_interrupt).
6879 * 3) This also orders the write to mode from any reads to the page
6880 * tables done while the VCPU is running. Please see the comment
6881 * in kvm_flush_remote_tlbs.
6883 smp_mb__after_srcu_read_unlock();
6886 * This handles the case where a posted interrupt was
6887 * notified with kvm_vcpu_kick.
6889 if (kvm_lapic_enabled(vcpu)) {
6890 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
6891 kvm_x86_ops->sync_pir_to_irr(vcpu);
6894 if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6895 || need_resched() || signal_pending(current)) {
6896 vcpu->mode = OUTSIDE_GUEST_MODE;
6900 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6902 goto cancel_injection;
6905 kvm_load_guest_xcr0(vcpu);
6907 if (req_immediate_exit) {
6908 kvm_make_request(KVM_REQ_EVENT, vcpu);
6909 smp_send_reschedule(vcpu->cpu);
6912 trace_kvm_entry(vcpu->vcpu_id);
6913 wait_lapic_expire(vcpu);
6914 guest_enter_irqoff();
6916 if (unlikely(vcpu->arch.switch_db_regs)) {
6918 set_debugreg(vcpu->arch.eff_db[0], 0);
6919 set_debugreg(vcpu->arch.eff_db[1], 1);
6920 set_debugreg(vcpu->arch.eff_db[2], 2);
6921 set_debugreg(vcpu->arch.eff_db[3], 3);
6922 set_debugreg(vcpu->arch.dr6, 6);
6923 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6926 kvm_x86_ops->run(vcpu);
6929 * Do this here before restoring debug registers on the host. And
6930 * since we do this before handling the vmexit, a DR access vmexit
6931 * can (a) read the correct value of the debug registers, (b) set
6932 * KVM_DEBUGREG_WONT_EXIT again.
6934 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6935 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6936 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6937 kvm_update_dr0123(vcpu);
6938 kvm_update_dr6(vcpu);
6939 kvm_update_dr7(vcpu);
6940 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6944 * If the guest has used debug registers, at least dr7
6945 * will be disabled while returning to the host.
6946 * If we don't have active breakpoints in the host, we don't
6947 * care about the messed up debug address registers. But if
6948 * we have some of them active, restore the old state.
6950 if (hw_breakpoint_active())
6951 hw_breakpoint_restore();
6953 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
6955 vcpu->mode = OUTSIDE_GUEST_MODE;
6958 kvm_put_guest_xcr0(vcpu);
6960 kvm_x86_ops->handle_external_intr(vcpu);
6964 guest_exit_irqoff();
6969 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6972 * Profile KVM exit RIPs:
6974 if (unlikely(prof_on == KVM_PROFILING)) {
6975 unsigned long rip = kvm_rip_read(vcpu);
6976 profile_hit(KVM_PROFILING, (void *)rip);
6979 if (unlikely(vcpu->arch.tsc_always_catchup))
6980 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6982 if (vcpu->arch.apic_attention)
6983 kvm_lapic_sync_from_vapic(vcpu);
6985 r = kvm_x86_ops->handle_exit(vcpu);
6989 kvm_x86_ops->cancel_injection(vcpu);
6990 if (unlikely(vcpu->arch.apic_attention))
6991 kvm_lapic_sync_from_vapic(vcpu);
6996 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
6998 if (!kvm_arch_vcpu_runnable(vcpu) &&
6999 (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
7000 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7001 kvm_vcpu_block(vcpu);
7002 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7004 if (kvm_x86_ops->post_block)
7005 kvm_x86_ops->post_block(vcpu);
7007 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
7011 kvm_apic_accept_events(vcpu);
7012 switch(vcpu->arch.mp_state) {
7013 case KVM_MP_STATE_HALTED:
7014 vcpu->arch.pv.pv_unhalted = false;
7015 vcpu->arch.mp_state =
7016 KVM_MP_STATE_RUNNABLE;
7017 case KVM_MP_STATE_RUNNABLE:
7018 vcpu->arch.apf.halted = false;
7020 case KVM_MP_STATE_INIT_RECEIVED:
7029 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
7031 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7032 kvm_x86_ops->check_nested_events(vcpu, false);
7034 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7035 !vcpu->arch.apf.halted);
7038 static int vcpu_run(struct kvm_vcpu *vcpu)
7041 struct kvm *kvm = vcpu->kvm;
7043 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7046 if (kvm_vcpu_running(vcpu)) {
7047 r = vcpu_enter_guest(vcpu);
7049 r = vcpu_block(kvm, vcpu);
7055 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
7056 if (kvm_cpu_has_pending_timer(vcpu))
7057 kvm_inject_pending_timer_irqs(vcpu);
7059 if (dm_request_for_irq_injection(vcpu) &&
7060 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
7062 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
7063 ++vcpu->stat.request_irq_exits;
7067 kvm_check_async_pf_completion(vcpu);
7069 if (signal_pending(current)) {
7071 vcpu->run->exit_reason = KVM_EXIT_INTR;
7072 ++vcpu->stat.signal_exits;
7075 if (need_resched()) {
7076 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7078 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7082 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7087 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
7090 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7091 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
7092 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7093 if (r != EMULATE_DONE)
7098 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
7100 BUG_ON(!vcpu->arch.pio.count);
7102 return complete_emulated_io(vcpu);
7106 * Implements the following, as a state machine:
7110 * for each mmio piece in the fragment
7118 * for each mmio piece in the fragment
7123 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
7125 struct kvm_run *run = vcpu->run;
7126 struct kvm_mmio_fragment *frag;
7129 BUG_ON(!vcpu->mmio_needed);
7131 /* Complete previous fragment */
7132 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
7133 len = min(8u, frag->len);
7134 if (!vcpu->mmio_is_write)
7135 memcpy(frag->data, run->mmio.data, len);
7137 if (frag->len <= 8) {
7138 /* Switch to the next fragment. */
7140 vcpu->mmio_cur_fragment++;
7142 /* Go forward to the next mmio piece. */
7148 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
7149 vcpu->mmio_needed = 0;
7151 /* FIXME: return into emulator if single-stepping. */
7152 if (vcpu->mmio_is_write)
7154 vcpu->mmio_read_completed = 1;
7155 return complete_emulated_io(vcpu);
7158 run->exit_reason = KVM_EXIT_MMIO;
7159 run->mmio.phys_addr = frag->gpa;
7160 if (vcpu->mmio_is_write)
7161 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
7162 run->mmio.len = min(8u, frag->len);
7163 run->mmio.is_write = vcpu->mmio_is_write;
7164 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7169 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
7171 struct fpu *fpu = ¤t->thread.fpu;
7175 fpu__activate_curr(fpu);
7177 if (vcpu->sigset_active)
7178 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
7180 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
7181 kvm_vcpu_block(vcpu);
7182 kvm_apic_accept_events(vcpu);
7183 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
7188 /* re-sync apic's tpr */
7189 if (!lapic_in_kernel(vcpu)) {
7190 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
7196 if (unlikely(vcpu->arch.complete_userspace_io)) {
7197 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
7198 vcpu->arch.complete_userspace_io = NULL;
7203 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
7208 post_kvm_run_save(vcpu);
7209 if (vcpu->sigset_active)
7210 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
7215 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7217 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
7219 * We are here if userspace calls get_regs() in the middle of
7220 * instruction emulation. Registers state needs to be copied
7221 * back from emulation context to vcpu. Userspace shouldn't do
7222 * that usually, but some bad designed PV devices (vmware
7223 * backdoor interface) need this to work
7225 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
7226 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7228 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
7229 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
7230 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
7231 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
7232 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
7233 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
7234 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7235 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
7236 #ifdef CONFIG_X86_64
7237 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
7238 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
7239 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
7240 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
7241 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
7242 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
7243 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
7244 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
7247 regs->rip = kvm_rip_read(vcpu);
7248 regs->rflags = kvm_get_rflags(vcpu);
7253 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7255 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
7256 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7258 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
7259 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
7260 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
7261 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
7262 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
7263 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
7264 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
7265 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
7266 #ifdef CONFIG_X86_64
7267 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
7268 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
7269 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
7270 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
7271 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
7272 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
7273 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
7274 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
7277 kvm_rip_write(vcpu, regs->rip);
7278 kvm_set_rflags(vcpu, regs->rflags);
7280 vcpu->arch.exception.pending = false;
7282 kvm_make_request(KVM_REQ_EVENT, vcpu);
7287 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7289 struct kvm_segment cs;
7291 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7295 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7297 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7298 struct kvm_sregs *sregs)
7302 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7303 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7304 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7305 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7306 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7307 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7309 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7310 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7312 kvm_x86_ops->get_idt(vcpu, &dt);
7313 sregs->idt.limit = dt.size;
7314 sregs->idt.base = dt.address;
7315 kvm_x86_ops->get_gdt(vcpu, &dt);
7316 sregs->gdt.limit = dt.size;
7317 sregs->gdt.base = dt.address;
7319 sregs->cr0 = kvm_read_cr0(vcpu);
7320 sregs->cr2 = vcpu->arch.cr2;
7321 sregs->cr3 = kvm_read_cr3(vcpu);
7322 sregs->cr4 = kvm_read_cr4(vcpu);
7323 sregs->cr8 = kvm_get_cr8(vcpu);
7324 sregs->efer = vcpu->arch.efer;
7325 sregs->apic_base = kvm_get_apic_base(vcpu);
7327 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7329 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
7330 set_bit(vcpu->arch.interrupt.nr,
7331 (unsigned long *)sregs->interrupt_bitmap);
7336 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7337 struct kvm_mp_state *mp_state)
7339 kvm_apic_accept_events(vcpu);
7340 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7341 vcpu->arch.pv.pv_unhalted)
7342 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7344 mp_state->mp_state = vcpu->arch.mp_state;
7349 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7350 struct kvm_mp_state *mp_state)
7352 if (!lapic_in_kernel(vcpu) &&
7353 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7356 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7357 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7358 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7360 vcpu->arch.mp_state = mp_state->mp_state;
7361 kvm_make_request(KVM_REQ_EVENT, vcpu);
7365 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7366 int reason, bool has_error_code, u32 error_code)
7368 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7371 init_emulate_ctxt(vcpu);
7373 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7374 has_error_code, error_code);
7377 return EMULATE_FAIL;
7379 kvm_rip_write(vcpu, ctxt->eip);
7380 kvm_set_rflags(vcpu, ctxt->eflags);
7381 kvm_make_request(KVM_REQ_EVENT, vcpu);
7382 return EMULATE_DONE;
7384 EXPORT_SYMBOL_GPL(kvm_task_switch);
7386 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7387 struct kvm_sregs *sregs)
7389 struct msr_data apic_base_msr;
7390 int mmu_reset_needed = 0;
7391 int pending_vec, max_bits, idx;
7394 if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
7397 dt.size = sregs->idt.limit;
7398 dt.address = sregs->idt.base;
7399 kvm_x86_ops->set_idt(vcpu, &dt);
7400 dt.size = sregs->gdt.limit;
7401 dt.address = sregs->gdt.base;
7402 kvm_x86_ops->set_gdt(vcpu, &dt);
7404 vcpu->arch.cr2 = sregs->cr2;
7405 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7406 vcpu->arch.cr3 = sregs->cr3;
7407 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7409 kvm_set_cr8(vcpu, sregs->cr8);
7411 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7412 kvm_x86_ops->set_efer(vcpu, sregs->efer);
7413 apic_base_msr.data = sregs->apic_base;
7414 apic_base_msr.host_initiated = true;
7415 kvm_set_apic_base(vcpu, &apic_base_msr);
7417 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7418 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7419 vcpu->arch.cr0 = sregs->cr0;
7421 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7422 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7423 if (sregs->cr4 & (X86_CR4_OSXSAVE | X86_CR4_PKE))
7424 kvm_update_cpuid(vcpu);
7426 idx = srcu_read_lock(&vcpu->kvm->srcu);
7427 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7428 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7429 mmu_reset_needed = 1;
7431 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7433 if (mmu_reset_needed)
7434 kvm_mmu_reset_context(vcpu);
7436 max_bits = KVM_NR_INTERRUPTS;
7437 pending_vec = find_first_bit(
7438 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
7439 if (pending_vec < max_bits) {
7440 kvm_queue_interrupt(vcpu, pending_vec, false);
7441 pr_debug("Set back pending irq %d\n", pending_vec);
7444 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7445 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7446 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7447 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7448 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7449 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7451 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7452 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7454 update_cr8_intercept(vcpu);
7456 /* Older userspace won't unhalt the vcpu on reset. */
7457 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7458 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7460 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7462 kvm_make_request(KVM_REQ_EVENT, vcpu);
7467 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7468 struct kvm_guest_debug *dbg)
7470 unsigned long rflags;
7473 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7475 if (vcpu->arch.exception.pending)
7477 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7478 kvm_queue_exception(vcpu, DB_VECTOR);
7480 kvm_queue_exception(vcpu, BP_VECTOR);
7484 * Read rflags as long as potentially injected trace flags are still
7487 rflags = kvm_get_rflags(vcpu);
7489 vcpu->guest_debug = dbg->control;
7490 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7491 vcpu->guest_debug = 0;
7493 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7494 for (i = 0; i < KVM_NR_DB_REGS; ++i)
7495 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7496 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7498 for (i = 0; i < KVM_NR_DB_REGS; i++)
7499 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7501 kvm_update_dr7(vcpu);
7503 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7504 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7505 get_segment_base(vcpu, VCPU_SREG_CS);
7508 * Trigger an rflags update that will inject or remove the trace
7511 kvm_set_rflags(vcpu, rflags);
7513 kvm_x86_ops->update_bp_intercept(vcpu);
7523 * Translate a guest virtual address to a guest physical address.
7525 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7526 struct kvm_translation *tr)
7528 unsigned long vaddr = tr->linear_address;
7532 idx = srcu_read_lock(&vcpu->kvm->srcu);
7533 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7534 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7535 tr->physical_address = gpa;
7536 tr->valid = gpa != UNMAPPED_GVA;
7543 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7545 struct fxregs_state *fxsave =
7546 &vcpu->arch.guest_fpu.state.fxsave;
7548 memcpy(fpu->fpr, fxsave->st_space, 128);
7549 fpu->fcw = fxsave->cwd;
7550 fpu->fsw = fxsave->swd;
7551 fpu->ftwx = fxsave->twd;
7552 fpu->last_opcode = fxsave->fop;
7553 fpu->last_ip = fxsave->rip;
7554 fpu->last_dp = fxsave->rdp;
7555 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7560 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7562 struct fxregs_state *fxsave =
7563 &vcpu->arch.guest_fpu.state.fxsave;
7565 memcpy(fxsave->st_space, fpu->fpr, 128);
7566 fxsave->cwd = fpu->fcw;
7567 fxsave->swd = fpu->fsw;
7568 fxsave->twd = fpu->ftwx;
7569 fxsave->fop = fpu->last_opcode;
7570 fxsave->rip = fpu->last_ip;
7571 fxsave->rdp = fpu->last_dp;
7572 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7577 static void fx_init(struct kvm_vcpu *vcpu)
7579 fpstate_init(&vcpu->arch.guest_fpu.state);
7580 if (boot_cpu_has(X86_FEATURE_XSAVES))
7581 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7582 host_xcr0 | XSTATE_COMPACTION_ENABLED;
7585 * Ensure guest xcr0 is valid for loading
7587 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7589 vcpu->arch.cr0 |= X86_CR0_ET;
7592 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7594 if (vcpu->guest_fpu_loaded)
7598 * Restore all possible states in the guest,
7599 * and assume host would use all available bits.
7600 * Guest xcr0 would be loaded later.
7602 vcpu->guest_fpu_loaded = 1;
7603 __kernel_fpu_begin();
7604 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state);
7608 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7610 if (!vcpu->guest_fpu_loaded)
7613 vcpu->guest_fpu_loaded = 0;
7614 copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7616 ++vcpu->stat.fpu_reload;
7620 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7622 void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
7624 kvmclock_reset(vcpu);
7626 kvm_x86_ops->vcpu_free(vcpu);
7627 free_cpumask_var(wbinvd_dirty_mask);
7630 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7633 struct kvm_vcpu *vcpu;
7635 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7636 printk_once(KERN_WARNING
7637 "kvm: SMP vm created on host with unstable TSC; "
7638 "guest TSC will not be reliable\n");
7640 vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7645 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7649 kvm_vcpu_mtrr_init(vcpu);
7650 r = vcpu_load(vcpu);
7653 kvm_vcpu_reset(vcpu, false);
7654 kvm_mmu_setup(vcpu);
7659 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7661 struct msr_data msr;
7662 struct kvm *kvm = vcpu->kvm;
7664 if (vcpu_load(vcpu))
7667 msr.index = MSR_IA32_TSC;
7668 msr.host_initiated = true;
7669 kvm_write_tsc(vcpu, &msr);
7672 if (!kvmclock_periodic_sync)
7675 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7676 KVMCLOCK_SYNC_PERIOD);
7679 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7682 vcpu->arch.apf.msr_val = 0;
7684 r = vcpu_load(vcpu);
7686 kvm_mmu_unload(vcpu);
7689 kvm_x86_ops->vcpu_free(vcpu);
7692 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7694 vcpu->arch.hflags = 0;
7696 vcpu->arch.smi_pending = 0;
7697 atomic_set(&vcpu->arch.nmi_queued, 0);
7698 vcpu->arch.nmi_pending = 0;
7699 vcpu->arch.nmi_injected = false;
7700 kvm_clear_interrupt_queue(vcpu);
7701 kvm_clear_exception_queue(vcpu);
7703 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7704 kvm_update_dr0123(vcpu);
7705 vcpu->arch.dr6 = DR6_INIT;
7706 kvm_update_dr6(vcpu);
7707 vcpu->arch.dr7 = DR7_FIXED_1;
7708 kvm_update_dr7(vcpu);
7712 kvm_make_request(KVM_REQ_EVENT, vcpu);
7713 vcpu->arch.apf.msr_val = 0;
7714 vcpu->arch.st.msr_val = 0;
7716 kvmclock_reset(vcpu);
7718 kvm_clear_async_pf_completion_queue(vcpu);
7719 kvm_async_pf_hash_reset(vcpu);
7720 vcpu->arch.apf.halted = false;
7723 kvm_pmu_reset(vcpu);
7724 vcpu->arch.smbase = 0x30000;
7727 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7728 vcpu->arch.regs_avail = ~0;
7729 vcpu->arch.regs_dirty = ~0;
7731 kvm_x86_ops->vcpu_reset(vcpu, init_event);
7734 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7736 struct kvm_segment cs;
7738 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7739 cs.selector = vector << 8;
7740 cs.base = vector << 12;
7741 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7742 kvm_rip_write(vcpu, 0);
7745 int kvm_arch_hardware_enable(void)
7748 struct kvm_vcpu *vcpu;
7753 bool stable, backwards_tsc = false;
7755 kvm_shared_msr_cpu_online();
7756 ret = kvm_x86_ops->hardware_enable();
7760 local_tsc = rdtsc();
7761 stable = !check_tsc_unstable();
7762 list_for_each_entry(kvm, &vm_list, vm_list) {
7763 kvm_for_each_vcpu(i, vcpu, kvm) {
7764 if (!stable && vcpu->cpu == smp_processor_id())
7765 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7766 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7767 backwards_tsc = true;
7768 if (vcpu->arch.last_host_tsc > max_tsc)
7769 max_tsc = vcpu->arch.last_host_tsc;
7775 * Sometimes, even reliable TSCs go backwards. This happens on
7776 * platforms that reset TSC during suspend or hibernate actions, but
7777 * maintain synchronization. We must compensate. Fortunately, we can
7778 * detect that condition here, which happens early in CPU bringup,
7779 * before any KVM threads can be running. Unfortunately, we can't
7780 * bring the TSCs fully up to date with real time, as we aren't yet far
7781 * enough into CPU bringup that we know how much real time has actually
7782 * elapsed; our helper function, ktime_get_boot_ns() will be using boot
7783 * variables that haven't been updated yet.
7785 * So we simply find the maximum observed TSC above, then record the
7786 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
7787 * the adjustment will be applied. Note that we accumulate
7788 * adjustments, in case multiple suspend cycles happen before some VCPU
7789 * gets a chance to run again. In the event that no KVM threads get a
7790 * chance to run, we will miss the entire elapsed period, as we'll have
7791 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7792 * loose cycle time. This isn't too big a deal, since the loss will be
7793 * uniform across all VCPUs (not to mention the scenario is extremely
7794 * unlikely). It is possible that a second hibernate recovery happens
7795 * much faster than a first, causing the observed TSC here to be
7796 * smaller; this would require additional padding adjustment, which is
7797 * why we set last_host_tsc to the local tsc observed here.
7799 * N.B. - this code below runs only on platforms with reliable TSC,
7800 * as that is the only way backwards_tsc is set above. Also note
7801 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7802 * have the same delta_cyc adjustment applied if backwards_tsc
7803 * is detected. Note further, this adjustment is only done once,
7804 * as we reset last_host_tsc on all VCPUs to stop this from being
7805 * called multiple times (one for each physical CPU bringup).
7807 * Platforms with unreliable TSCs don't have to deal with this, they
7808 * will be compensated by the logic in vcpu_load, which sets the TSC to
7809 * catchup mode. This will catchup all VCPUs to real time, but cannot
7810 * guarantee that they stay in perfect synchronization.
7812 if (backwards_tsc) {
7813 u64 delta_cyc = max_tsc - local_tsc;
7814 backwards_tsc_observed = true;
7815 list_for_each_entry(kvm, &vm_list, vm_list) {
7816 kvm_for_each_vcpu(i, vcpu, kvm) {
7817 vcpu->arch.tsc_offset_adjustment += delta_cyc;
7818 vcpu->arch.last_host_tsc = local_tsc;
7819 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7823 * We have to disable TSC offset matching.. if you were
7824 * booting a VM while issuing an S4 host suspend....
7825 * you may have some problem. Solving this issue is
7826 * left as an exercise to the reader.
7828 kvm->arch.last_tsc_nsec = 0;
7829 kvm->arch.last_tsc_write = 0;
7836 void kvm_arch_hardware_disable(void)
7838 kvm_x86_ops->hardware_disable();
7839 drop_user_return_notifiers();
7842 int kvm_arch_hardware_setup(void)
7846 r = kvm_x86_ops->hardware_setup();
7850 if (kvm_has_tsc_control) {
7852 * Make sure the user can only configure tsc_khz values that
7853 * fit into a signed integer.
7854 * A min value is not calculated needed because it will always
7855 * be 1 on all machines.
7857 u64 max = min(0x7fffffffULL,
7858 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
7859 kvm_max_guest_tsc_khz = max;
7861 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
7864 kvm_init_msr_list();
7868 void kvm_arch_hardware_unsetup(void)
7870 kvm_x86_ops->hardware_unsetup();
7873 void kvm_arch_check_processor_compat(void *rtn)
7875 kvm_x86_ops->check_processor_compatibility(rtn);
7878 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
7880 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
7882 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
7884 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
7886 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
7889 struct static_key kvm_no_apic_vcpu __read_mostly;
7890 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
7892 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7898 BUG_ON(vcpu->kvm == NULL);
7901 vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv();
7902 vcpu->arch.pv.pv_unhalted = false;
7903 vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7904 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7905 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7907 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7909 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7914 vcpu->arch.pio_data = page_address(page);
7916 kvm_set_tsc_khz(vcpu, max_tsc_khz);
7918 r = kvm_mmu_create(vcpu);
7920 goto fail_free_pio_data;
7922 if (irqchip_in_kernel(kvm)) {
7923 r = kvm_create_lapic(vcpu);
7925 goto fail_mmu_destroy;
7927 static_key_slow_inc(&kvm_no_apic_vcpu);
7929 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7931 if (!vcpu->arch.mce_banks) {
7933 goto fail_free_lapic;
7935 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7937 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7939 goto fail_free_mce_banks;
7944 vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7945 vcpu->arch.pv_time_enabled = false;
7947 vcpu->arch.guest_supported_xcr0 = 0;
7948 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7950 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7952 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
7954 kvm_async_pf_hash_reset(vcpu);
7957 vcpu->arch.pending_external_vector = -1;
7959 kvm_hv_vcpu_init(vcpu);
7963 fail_free_mce_banks:
7964 kfree(vcpu->arch.mce_banks);
7966 kvm_free_lapic(vcpu);
7968 kvm_mmu_destroy(vcpu);
7970 free_page((unsigned long)vcpu->arch.pio_data);
7975 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7979 kvm_hv_vcpu_uninit(vcpu);
7980 kvm_pmu_destroy(vcpu);
7981 kfree(vcpu->arch.mce_banks);
7982 kvm_free_lapic(vcpu);
7983 idx = srcu_read_lock(&vcpu->kvm->srcu);
7984 kvm_mmu_destroy(vcpu);
7985 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7986 free_page((unsigned long)vcpu->arch.pio_data);
7987 if (!lapic_in_kernel(vcpu))
7988 static_key_slow_dec(&kvm_no_apic_vcpu);
7991 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7993 kvm_x86_ops->sched_in(vcpu, cpu);
7996 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
8001 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
8002 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
8003 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
8004 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
8005 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
8007 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
8008 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
8009 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
8010 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
8011 &kvm->arch.irq_sources_bitmap);
8013 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
8014 mutex_init(&kvm->arch.apic_map_lock);
8015 mutex_init(&kvm->arch.hyperv.hv_lock);
8016 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
8018 kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
8019 pvclock_update_vm_gtod_copy(kvm);
8021 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
8022 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
8024 kvm_page_track_init(kvm);
8025 kvm_mmu_init_vm(kvm);
8027 if (kvm_x86_ops->vm_init)
8028 return kvm_x86_ops->vm_init(kvm);
8033 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
8036 r = vcpu_load(vcpu);
8038 kvm_mmu_unload(vcpu);
8042 static void kvm_free_vcpus(struct kvm *kvm)
8045 struct kvm_vcpu *vcpu;
8048 * Unpin any mmu pages first.
8050 kvm_for_each_vcpu(i, vcpu, kvm) {
8051 kvm_clear_async_pf_completion_queue(vcpu);
8052 kvm_unload_vcpu_mmu(vcpu);
8054 kvm_for_each_vcpu(i, vcpu, kvm)
8055 kvm_arch_vcpu_free(vcpu);
8057 mutex_lock(&kvm->lock);
8058 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
8059 kvm->vcpus[i] = NULL;
8061 atomic_set(&kvm->online_vcpus, 0);
8062 mutex_unlock(&kvm->lock);
8065 void kvm_arch_sync_events(struct kvm *kvm)
8067 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
8068 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
8069 kvm_free_all_assigned_devices(kvm);
8073 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8077 struct kvm_memslots *slots = kvm_memslots(kvm);
8078 struct kvm_memory_slot *slot, old;
8080 /* Called with kvm->slots_lock held. */
8081 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
8084 slot = id_to_memslot(slots, id);
8090 * MAP_SHARED to prevent internal slot pages from being moved
8093 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
8094 MAP_SHARED | MAP_ANONYMOUS, 0);
8095 if (IS_ERR((void *)hva))
8096 return PTR_ERR((void *)hva);
8105 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
8106 struct kvm_userspace_memory_region m;
8108 m.slot = id | (i << 16);
8110 m.guest_phys_addr = gpa;
8111 m.userspace_addr = hva;
8112 m.memory_size = size;
8113 r = __kvm_set_memory_region(kvm, &m);
8119 r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
8125 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
8127 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8131 mutex_lock(&kvm->slots_lock);
8132 r = __x86_set_memory_region(kvm, id, gpa, size);
8133 mutex_unlock(&kvm->slots_lock);
8137 EXPORT_SYMBOL_GPL(x86_set_memory_region);
8139 void kvm_arch_destroy_vm(struct kvm *kvm)
8141 if (current->mm == kvm->mm) {
8143 * Free memory regions allocated on behalf of userspace,
8144 * unless the the memory map has changed due to process exit
8147 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
8148 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
8149 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
8151 if (kvm_x86_ops->vm_destroy)
8152 kvm_x86_ops->vm_destroy(kvm);
8153 kvm_iommu_unmap_guest(kvm);
8154 kfree(kvm->arch.vpic);
8155 kfree(kvm->arch.vioapic);
8156 kvm_free_vcpus(kvm);
8157 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
8158 kvm_mmu_uninit_vm(kvm);
8161 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
8162 struct kvm_memory_slot *dont)
8166 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8167 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
8168 kvfree(free->arch.rmap[i]);
8169 free->arch.rmap[i] = NULL;
8174 if (!dont || free->arch.lpage_info[i - 1] !=
8175 dont->arch.lpage_info[i - 1]) {
8176 kvfree(free->arch.lpage_info[i - 1]);
8177 free->arch.lpage_info[i - 1] = NULL;
8181 kvm_page_track_free_memslot(free, dont);
8184 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
8185 unsigned long npages)
8189 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8190 struct kvm_lpage_info *linfo;
8195 lpages = gfn_to_index(slot->base_gfn + npages - 1,
8196 slot->base_gfn, level) + 1;
8198 slot->arch.rmap[i] =
8199 kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
8200 if (!slot->arch.rmap[i])
8205 linfo = kvm_kvzalloc(lpages * sizeof(*linfo));
8209 slot->arch.lpage_info[i - 1] = linfo;
8211 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
8212 linfo[0].disallow_lpage = 1;
8213 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
8214 linfo[lpages - 1].disallow_lpage = 1;
8215 ugfn = slot->userspace_addr >> PAGE_SHIFT;
8217 * If the gfn and userspace address are not aligned wrt each
8218 * other, or if explicitly asked to, disable large page
8219 * support for this slot
8221 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
8222 !kvm_largepages_enabled()) {
8225 for (j = 0; j < lpages; ++j)
8226 linfo[j].disallow_lpage = 1;
8230 if (kvm_page_track_create_memslot(slot, npages))
8236 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8237 kvfree(slot->arch.rmap[i]);
8238 slot->arch.rmap[i] = NULL;
8242 kvfree(slot->arch.lpage_info[i - 1]);
8243 slot->arch.lpage_info[i - 1] = NULL;
8248 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
8251 * memslots->generation has been incremented.
8252 * mmio generation may have reached its maximum value.
8254 kvm_mmu_invalidate_mmio_sptes(kvm, slots);
8257 int kvm_arch_prepare_memory_region(struct kvm *kvm,
8258 struct kvm_memory_slot *memslot,
8259 const struct kvm_userspace_memory_region *mem,
8260 enum kvm_mr_change change)
8265 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
8266 struct kvm_memory_slot *new)
8268 /* Still write protect RO slot */
8269 if (new->flags & KVM_MEM_READONLY) {
8270 kvm_mmu_slot_remove_write_access(kvm, new);
8275 * Call kvm_x86_ops dirty logging hooks when they are valid.
8277 * kvm_x86_ops->slot_disable_log_dirty is called when:
8279 * - KVM_MR_CREATE with dirty logging is disabled
8280 * - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8282 * The reason is, in case of PML, we need to set D-bit for any slots
8283 * with dirty logging disabled in order to eliminate unnecessary GPA
8284 * logging in PML buffer (and potential PML buffer full VMEXT). This
8285 * guarantees leaving PML enabled during guest's lifetime won't have
8286 * any additonal overhead from PML when guest is running with dirty
8287 * logging disabled for memory slots.
8289 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8290 * to dirty logging mode.
8292 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8294 * In case of write protect:
8296 * Write protect all pages for dirty logging.
8298 * All the sptes including the large sptes which point to this
8299 * slot are set to readonly. We can not create any new large
8300 * spte on this slot until the end of the logging.
8302 * See the comments in fast_page_fault().
8304 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
8305 if (kvm_x86_ops->slot_enable_log_dirty)
8306 kvm_x86_ops->slot_enable_log_dirty(kvm, new);
8308 kvm_mmu_slot_remove_write_access(kvm, new);
8310 if (kvm_x86_ops->slot_disable_log_dirty)
8311 kvm_x86_ops->slot_disable_log_dirty(kvm, new);
8315 void kvm_arch_commit_memory_region(struct kvm *kvm,
8316 const struct kvm_userspace_memory_region *mem,
8317 const struct kvm_memory_slot *old,
8318 const struct kvm_memory_slot *new,
8319 enum kvm_mr_change change)
8321 int nr_mmu_pages = 0;
8323 if (!kvm->arch.n_requested_mmu_pages)
8324 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
8327 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
8330 * Dirty logging tracks sptes in 4k granularity, meaning that large
8331 * sptes have to be split. If live migration is successful, the guest
8332 * in the source machine will be destroyed and large sptes will be
8333 * created in the destination. However, if the guest continues to run
8334 * in the source machine (for example if live migration fails), small
8335 * sptes will remain around and cause bad performance.
8337 * Scan sptes if dirty logging has been stopped, dropping those
8338 * which can be collapsed into a single large-page spte. Later
8339 * page faults will create the large-page sptes.
8341 if ((change != KVM_MR_DELETE) &&
8342 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
8343 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
8344 kvm_mmu_zap_collapsible_sptes(kvm, new);
8347 * Set up write protection and/or dirty logging for the new slot.
8349 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8350 * been zapped so no dirty logging staff is needed for old slot. For
8351 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8352 * new and it's also covered when dealing with the new slot.
8354 * FIXME: const-ify all uses of struct kvm_memory_slot.
8356 if (change != KVM_MR_DELETE)
8357 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8360 void kvm_arch_flush_shadow_all(struct kvm *kvm)
8362 kvm_mmu_invalidate_zap_all_pages(kvm);
8365 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8366 struct kvm_memory_slot *slot)
8368 kvm_page_track_flush_slot(kvm, slot);
8371 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
8373 if (!list_empty_careful(&vcpu->async_pf.done))
8376 if (kvm_apic_has_events(vcpu))
8379 if (vcpu->arch.pv.pv_unhalted)
8382 if (atomic_read(&vcpu->arch.nmi_queued))
8385 if (test_bit(KVM_REQ_SMI, &vcpu->requests))
8388 if (kvm_arch_interrupt_allowed(vcpu) &&
8389 kvm_cpu_has_interrupt(vcpu))
8392 if (kvm_hv_has_stimer_pending(vcpu))
8398 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8400 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8403 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8405 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8408 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8410 return kvm_x86_ops->interrupt_allowed(vcpu);
8413 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8415 if (is_64_bit_mode(vcpu))
8416 return kvm_rip_read(vcpu);
8417 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8418 kvm_rip_read(vcpu));
8420 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8422 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8424 return kvm_get_linear_rip(vcpu) == linear_rip;
8426 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8428 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8430 unsigned long rflags;
8432 rflags = kvm_x86_ops->get_rflags(vcpu);
8433 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8434 rflags &= ~X86_EFLAGS_TF;
8437 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8439 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8441 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8442 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8443 rflags |= X86_EFLAGS_TF;
8444 kvm_x86_ops->set_rflags(vcpu, rflags);
8447 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8449 __kvm_set_rflags(vcpu, rflags);
8450 kvm_make_request(KVM_REQ_EVENT, vcpu);
8452 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8454 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8458 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8462 r = kvm_mmu_reload(vcpu);
8466 if (!vcpu->arch.mmu.direct_map &&
8467 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8470 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8473 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8475 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8478 static inline u32 kvm_async_pf_next_probe(u32 key)
8480 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8483 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8485 u32 key = kvm_async_pf_hash_fn(gfn);
8487 while (vcpu->arch.apf.gfns[key] != ~0)
8488 key = kvm_async_pf_next_probe(key);
8490 vcpu->arch.apf.gfns[key] = gfn;
8493 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8496 u32 key = kvm_async_pf_hash_fn(gfn);
8498 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8499 (vcpu->arch.apf.gfns[key] != gfn &&
8500 vcpu->arch.apf.gfns[key] != ~0); i++)
8501 key = kvm_async_pf_next_probe(key);
8506 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8508 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8511 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8515 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8517 vcpu->arch.apf.gfns[i] = ~0;
8519 j = kvm_async_pf_next_probe(j);
8520 if (vcpu->arch.apf.gfns[j] == ~0)
8522 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8524 * k lies cyclically in ]i,j]
8526 * |....j i.k.| or |.k..j i...|
8528 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8529 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8534 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8536 return kvm_vcpu_write_guest_cached(vcpu, &vcpu->arch.apf.data, &val,
8540 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8541 struct kvm_async_pf *work)
8543 struct x86_exception fault;
8545 trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8546 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8548 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8549 (vcpu->arch.apf.send_user_only &&
8550 kvm_x86_ops->get_cpl(vcpu) == 0))
8551 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8552 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8553 fault.vector = PF_VECTOR;
8554 fault.error_code_valid = true;
8555 fault.error_code = 0;
8556 fault.nested_page_fault = false;
8557 fault.address = work->arch.token;
8558 kvm_inject_page_fault(vcpu, &fault);
8562 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8563 struct kvm_async_pf *work)
8565 struct x86_exception fault;
8567 trace_kvm_async_pf_ready(work->arch.token, work->gva);
8568 if (work->wakeup_all)
8569 work->arch.token = ~0; /* broadcast wakeup */
8571 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8573 if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
8574 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8575 fault.vector = PF_VECTOR;
8576 fault.error_code_valid = true;
8577 fault.error_code = 0;
8578 fault.nested_page_fault = false;
8579 fault.address = work->arch.token;
8580 kvm_inject_page_fault(vcpu, &fault);
8582 vcpu->arch.apf.halted = false;
8583 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8586 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8588 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8591 return !kvm_event_needs_reinjection(vcpu) &&
8592 kvm_x86_ops->interrupt_allowed(vcpu);
8595 void kvm_arch_start_assignment(struct kvm *kvm)
8597 atomic_inc(&kvm->arch.assigned_device_count);
8599 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
8601 void kvm_arch_end_assignment(struct kvm *kvm)
8603 atomic_dec(&kvm->arch.assigned_device_count);
8605 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
8607 bool kvm_arch_has_assigned_device(struct kvm *kvm)
8609 return atomic_read(&kvm->arch.assigned_device_count);
8611 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8613 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8615 atomic_inc(&kvm->arch.noncoherent_dma_count);
8617 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8619 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8621 atomic_dec(&kvm->arch.noncoherent_dma_count);
8623 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8625 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8627 return atomic_read(&kvm->arch.noncoherent_dma_count);
8629 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8631 bool kvm_arch_has_irq_bypass(void)
8633 return kvm_x86_ops->update_pi_irte != NULL;
8636 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
8637 struct irq_bypass_producer *prod)
8639 struct kvm_kernel_irqfd *irqfd =
8640 container_of(cons, struct kvm_kernel_irqfd, consumer);
8642 irqfd->producer = prod;
8644 return kvm_x86_ops->update_pi_irte(irqfd->kvm,
8645 prod->irq, irqfd->gsi, 1);
8648 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
8649 struct irq_bypass_producer *prod)
8652 struct kvm_kernel_irqfd *irqfd =
8653 container_of(cons, struct kvm_kernel_irqfd, consumer);
8655 WARN_ON(irqfd->producer != prod);
8656 irqfd->producer = NULL;
8659 * When producer of consumer is unregistered, we change back to
8660 * remapped mode, so we can re-use the current implementation
8661 * when the irq is masked/disabled or the consumer side (KVM
8662 * int this case doesn't want to receive the interrupts.
8664 ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
8666 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
8667 " fails: %d\n", irqfd->consumer.token, ret);
8670 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
8671 uint32_t guest_irq, bool set)
8673 if (!kvm_x86_ops->update_pi_irte)
8676 return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
8679 bool kvm_vector_hashing_enabled(void)
8681 return vector_hashing;
8683 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
8685 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8686 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
8687 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8688 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8689 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8690 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8691 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8692 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8693 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8694 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8695 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8696 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8697 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8698 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8699 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8700 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
8701 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
8702 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
8703 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);