1 // SPDX-License-Identifier: GPL-2.0-only
3 * Kernel-based Virtual Machine driver for Linux
5 * derived from drivers/kvm/kvm_main.c
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright (C) 2008 Qumranet, Inc.
9 * Copyright IBM Corporation, 2008
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
13 * Avi Kivity <avi@qumranet.com>
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Amit Shah <amit.shah@qumranet.com>
16 * Ben-Ami Yassour <benami@il.ibm.com>
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20 #include <linux/kvm_host.h>
26 #include "kvm_cache_regs.h"
27 #include "kvm_emulate.h"
36 #include <linux/clocksource.h>
37 #include <linux/interrupt.h>
38 #include <linux/kvm.h>
40 #include <linux/vmalloc.h>
41 #include <linux/export.h>
42 #include <linux/moduleparam.h>
43 #include <linux/mman.h>
44 #include <linux/highmem.h>
45 #include <linux/iommu.h>
46 #include <linux/cpufreq.h>
47 #include <linux/user-return-notifier.h>
48 #include <linux/srcu.h>
49 #include <linux/slab.h>
50 #include <linux/perf_event.h>
51 #include <linux/uaccess.h>
52 #include <linux/hash.h>
53 #include <linux/pci.h>
54 #include <linux/timekeeper_internal.h>
55 #include <linux/pvclock_gtod.h>
56 #include <linux/kvm_irqfd.h>
57 #include <linux/irqbypass.h>
58 #include <linux/sched/stat.h>
59 #include <linux/sched/isolation.h>
60 #include <linux/mem_encrypt.h>
61 #include <linux/entry-kvm.h>
62 #include <linux/suspend.h>
63 #include <linux/smp.h>
65 #include <trace/events/ipi.h>
66 #include <trace/events/kvm.h>
68 #include <asm/debugreg.h>
73 #include <linux/kernel_stat.h>
74 #include <asm/fpu/api.h>
75 #include <asm/fpu/xcr.h>
76 #include <asm/fpu/xstate.h>
77 #include <asm/pvclock.h>
78 #include <asm/div64.h>
79 #include <asm/irq_remapping.h>
80 #include <asm/mshyperv.h>
81 #include <asm/hypervisor.h>
82 #include <asm/tlbflush.h>
83 #include <asm/intel_pt.h>
84 #include <asm/emulate_prefix.h>
86 #include <clocksource/hyperv_timer.h>
88 #define CREATE_TRACE_POINTS
91 #define MAX_IO_MSRS 256
92 #define KVM_MAX_MCE_BANKS 32
94 struct kvm_caps kvm_caps __read_mostly = {
95 .supported_mce_cap = MCG_CTL_P | MCG_SER_P,
97 EXPORT_SYMBOL_GPL(kvm_caps);
99 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e))
101 #define emul_to_vcpu(ctxt) \
102 ((struct kvm_vcpu *)(ctxt)->vcpu)
105 * - enable syscall per default because its emulated by KVM
106 * - enable LME and LMA per default on 64 bit KVM
110 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
112 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
115 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
117 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
119 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
121 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
122 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
124 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
125 static void process_nmi(struct kvm_vcpu *vcpu);
126 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
127 static void store_regs(struct kvm_vcpu *vcpu);
128 static int sync_regs(struct kvm_vcpu *vcpu);
129 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
131 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
132 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
134 static DEFINE_MUTEX(vendor_module_lock);
135 struct kvm_x86_ops kvm_x86_ops __read_mostly;
137 #define KVM_X86_OP(func) \
138 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \
139 *(((struct kvm_x86_ops *)0)->func));
140 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
141 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
142 #include <asm/kvm-x86-ops.h>
143 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
144 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
146 static bool __read_mostly ignore_msrs = 0;
147 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
149 bool __read_mostly report_ignored_msrs = true;
150 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
151 EXPORT_SYMBOL_GPL(report_ignored_msrs);
153 unsigned int min_timer_period_us = 200;
154 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
156 static bool __read_mostly kvmclock_periodic_sync = true;
157 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
159 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
160 static u32 __read_mostly tsc_tolerance_ppm = 250;
161 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
164 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables
165 * adaptive tuning starting from default advancement of 1000ns. '0' disables
166 * advancement entirely. Any other value is used as-is and disables adaptive
167 * tuning, i.e. allows privileged userspace to set an exact advancement time.
169 static int __read_mostly lapic_timer_advance_ns = -1;
170 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
172 static bool __read_mostly vector_hashing = true;
173 module_param(vector_hashing, bool, S_IRUGO);
175 bool __read_mostly enable_vmware_backdoor = false;
176 module_param(enable_vmware_backdoor, bool, S_IRUGO);
177 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
180 * Flags to manipulate forced emulation behavior (any non-zero value will
181 * enable forced emulation).
183 #define KVM_FEP_CLEAR_RFLAGS_RF BIT(1)
184 static int __read_mostly force_emulation_prefix;
185 module_param(force_emulation_prefix, int, 0644);
187 int __read_mostly pi_inject_timer = -1;
188 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
190 /* Enable/disable PMU virtualization */
191 bool __read_mostly enable_pmu = true;
192 EXPORT_SYMBOL_GPL(enable_pmu);
193 module_param(enable_pmu, bool, 0444);
195 bool __read_mostly eager_page_split = true;
196 module_param(eager_page_split, bool, 0644);
198 /* Enable/disable SMT_RSB bug mitigation */
199 static bool __read_mostly mitigate_smt_rsb;
200 module_param(mitigate_smt_rsb, bool, 0444);
203 * Restoring the host value for MSRs that are only consumed when running in
204 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
205 * returns to userspace, i.e. the kernel can run with the guest's value.
207 #define KVM_MAX_NR_USER_RETURN_MSRS 16
209 struct kvm_user_return_msrs {
210 struct user_return_notifier urn;
212 struct kvm_user_return_msr_values {
215 } values[KVM_MAX_NR_USER_RETURN_MSRS];
218 u32 __read_mostly kvm_nr_uret_msrs;
219 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
220 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
221 static struct kvm_user_return_msrs __percpu *user_return_msrs;
223 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
224 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
225 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
226 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
228 u64 __read_mostly host_efer;
229 EXPORT_SYMBOL_GPL(host_efer);
231 bool __read_mostly allow_smaller_maxphyaddr = 0;
232 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
234 bool __read_mostly enable_apicv = true;
235 EXPORT_SYMBOL_GPL(enable_apicv);
237 u64 __read_mostly host_xss;
238 EXPORT_SYMBOL_GPL(host_xss);
240 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
241 KVM_GENERIC_VM_STATS(),
242 STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
243 STATS_DESC_COUNTER(VM, mmu_pte_write),
244 STATS_DESC_COUNTER(VM, mmu_pde_zapped),
245 STATS_DESC_COUNTER(VM, mmu_flooded),
246 STATS_DESC_COUNTER(VM, mmu_recycled),
247 STATS_DESC_COUNTER(VM, mmu_cache_miss),
248 STATS_DESC_ICOUNTER(VM, mmu_unsync),
249 STATS_DESC_ICOUNTER(VM, pages_4k),
250 STATS_DESC_ICOUNTER(VM, pages_2m),
251 STATS_DESC_ICOUNTER(VM, pages_1g),
252 STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
253 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
254 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
257 const struct kvm_stats_header kvm_vm_stats_header = {
258 .name_size = KVM_STATS_NAME_SIZE,
259 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
260 .id_offset = sizeof(struct kvm_stats_header),
261 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
262 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
263 sizeof(kvm_vm_stats_desc),
266 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
267 KVM_GENERIC_VCPU_STATS(),
268 STATS_DESC_COUNTER(VCPU, pf_taken),
269 STATS_DESC_COUNTER(VCPU, pf_fixed),
270 STATS_DESC_COUNTER(VCPU, pf_emulate),
271 STATS_DESC_COUNTER(VCPU, pf_spurious),
272 STATS_DESC_COUNTER(VCPU, pf_fast),
273 STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created),
274 STATS_DESC_COUNTER(VCPU, pf_guest),
275 STATS_DESC_COUNTER(VCPU, tlb_flush),
276 STATS_DESC_COUNTER(VCPU, invlpg),
277 STATS_DESC_COUNTER(VCPU, exits),
278 STATS_DESC_COUNTER(VCPU, io_exits),
279 STATS_DESC_COUNTER(VCPU, mmio_exits),
280 STATS_DESC_COUNTER(VCPU, signal_exits),
281 STATS_DESC_COUNTER(VCPU, irq_window_exits),
282 STATS_DESC_COUNTER(VCPU, nmi_window_exits),
283 STATS_DESC_COUNTER(VCPU, l1d_flush),
284 STATS_DESC_COUNTER(VCPU, halt_exits),
285 STATS_DESC_COUNTER(VCPU, request_irq_exits),
286 STATS_DESC_COUNTER(VCPU, irq_exits),
287 STATS_DESC_COUNTER(VCPU, host_state_reload),
288 STATS_DESC_COUNTER(VCPU, fpu_reload),
289 STATS_DESC_COUNTER(VCPU, insn_emulation),
290 STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
291 STATS_DESC_COUNTER(VCPU, hypercalls),
292 STATS_DESC_COUNTER(VCPU, irq_injections),
293 STATS_DESC_COUNTER(VCPU, nmi_injections),
294 STATS_DESC_COUNTER(VCPU, req_event),
295 STATS_DESC_COUNTER(VCPU, nested_run),
296 STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
297 STATS_DESC_COUNTER(VCPU, directed_yield_successful),
298 STATS_DESC_COUNTER(VCPU, preemption_reported),
299 STATS_DESC_COUNTER(VCPU, preemption_other),
300 STATS_DESC_IBOOLEAN(VCPU, guest_mode),
301 STATS_DESC_COUNTER(VCPU, notify_window_exits),
304 const struct kvm_stats_header kvm_vcpu_stats_header = {
305 .name_size = KVM_STATS_NAME_SIZE,
306 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
307 .id_offset = sizeof(struct kvm_stats_header),
308 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
309 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
310 sizeof(kvm_vcpu_stats_desc),
313 u64 __read_mostly host_xcr0;
315 static struct kmem_cache *x86_emulator_cache;
318 * When called, it means the previous get/set msr reached an invalid msr.
319 * Return true if we want to ignore/silent this failed msr access.
321 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
323 const char *op = write ? "wrmsr" : "rdmsr";
326 if (report_ignored_msrs)
327 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
332 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
338 static struct kmem_cache *kvm_alloc_emulator_cache(void)
340 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
341 unsigned int size = sizeof(struct x86_emulate_ctxt);
343 return kmem_cache_create_usercopy("x86_emulator", size,
344 __alignof__(struct x86_emulate_ctxt),
345 SLAB_ACCOUNT, useroffset,
346 size - useroffset, NULL);
349 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
351 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
354 for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
355 vcpu->arch.apf.gfns[i] = ~0;
358 static void kvm_on_user_return(struct user_return_notifier *urn)
361 struct kvm_user_return_msrs *msrs
362 = container_of(urn, struct kvm_user_return_msrs, urn);
363 struct kvm_user_return_msr_values *values;
367 * Disabling irqs at this point since the following code could be
368 * interrupted and executed through kvm_arch_hardware_disable()
370 local_irq_save(flags);
371 if (msrs->registered) {
372 msrs->registered = false;
373 user_return_notifier_unregister(urn);
375 local_irq_restore(flags);
376 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
377 values = &msrs->values[slot];
378 if (values->host != values->curr) {
379 wrmsrl(kvm_uret_msrs_list[slot], values->host);
380 values->curr = values->host;
385 static int kvm_probe_user_return_msr(u32 msr)
391 ret = rdmsrl_safe(msr, &val);
394 ret = wrmsrl_safe(msr, val);
400 int kvm_add_user_return_msr(u32 msr)
402 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
404 if (kvm_probe_user_return_msr(msr))
407 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
408 return kvm_nr_uret_msrs++;
410 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
412 int kvm_find_user_return_msr(u32 msr)
416 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
417 if (kvm_uret_msrs_list[i] == msr)
422 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
424 static void kvm_user_return_msr_cpu_online(void)
426 unsigned int cpu = smp_processor_id();
427 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
431 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
432 rdmsrl_safe(kvm_uret_msrs_list[i], &value);
433 msrs->values[i].host = value;
434 msrs->values[i].curr = value;
438 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
440 unsigned int cpu = smp_processor_id();
441 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
444 value = (value & mask) | (msrs->values[slot].host & ~mask);
445 if (value == msrs->values[slot].curr)
447 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
451 msrs->values[slot].curr = value;
452 if (!msrs->registered) {
453 msrs->urn.on_user_return = kvm_on_user_return;
454 user_return_notifier_register(&msrs->urn);
455 msrs->registered = true;
459 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
461 static void drop_user_return_notifiers(void)
463 unsigned int cpu = smp_processor_id();
464 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
466 if (msrs->registered)
467 kvm_on_user_return(&msrs->urn);
470 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
472 return vcpu->arch.apic_base;
475 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
477 return kvm_apic_mode(kvm_get_apic_base(vcpu));
479 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
481 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
483 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
484 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
485 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
486 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
488 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
490 if (!msr_info->host_initiated) {
491 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
493 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
497 kvm_lapic_set_base(vcpu, msr_info->data);
498 kvm_recalculate_apic_map(vcpu->kvm);
503 * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
505 * Hardware virtualization extension instructions may fault if a reboot turns
506 * off virtualization while processes are running. Usually after catching the
507 * fault we just panic; during reboot instead the instruction is ignored.
509 noinstr void kvm_spurious_fault(void)
511 /* Fault while not rebooting. We want the trace. */
512 BUG_ON(!kvm_rebooting);
514 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
516 #define EXCPT_BENIGN 0
517 #define EXCPT_CONTRIBUTORY 1
520 static int exception_class(int vector)
530 return EXCPT_CONTRIBUTORY;
537 #define EXCPT_FAULT 0
539 #define EXCPT_ABORT 2
540 #define EXCPT_INTERRUPT 3
543 static int exception_type(int vector)
547 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
548 return EXCPT_INTERRUPT;
553 * #DBs can be trap-like or fault-like, the caller must check other CPU
554 * state, e.g. DR6, to determine whether a #DB is a trap or fault.
556 if (mask & (1 << DB_VECTOR))
559 if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR)))
562 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
565 /* Reserved exceptions will result in fault */
569 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu,
570 struct kvm_queued_exception *ex)
572 if (!ex->has_payload)
575 switch (ex->vector) {
578 * "Certain debug exceptions may clear bit 0-3. The
579 * remaining contents of the DR6 register are never
580 * cleared by the processor".
582 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
584 * In order to reflect the #DB exception payload in guest
585 * dr6, three components need to be considered: active low
586 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
588 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
589 * In the target guest dr6:
590 * FIXED_1 bits should always be set.
591 * Active low bits should be cleared if 1-setting in payload.
592 * Active high bits should be set if 1-setting in payload.
594 * Note, the payload is compatible with the pending debug
595 * exceptions/exit qualification under VMX, that active_low bits
596 * are active high in payload.
597 * So they need to be flipped for DR6.
599 vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
600 vcpu->arch.dr6 |= ex->payload;
601 vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW;
604 * The #DB payload is defined as compatible with the 'pending
605 * debug exceptions' field under VMX, not DR6. While bit 12 is
606 * defined in the 'pending debug exceptions' field (enabled
607 * breakpoint), it is reserved and must be zero in DR6.
609 vcpu->arch.dr6 &= ~BIT(12);
612 vcpu->arch.cr2 = ex->payload;
616 ex->has_payload = false;
619 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
621 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector,
622 bool has_error_code, u32 error_code,
623 bool has_payload, unsigned long payload)
625 struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
628 ex->injected = false;
630 ex->has_error_code = has_error_code;
631 ex->error_code = error_code;
632 ex->has_payload = has_payload;
633 ex->payload = payload;
636 /* Forcibly leave the nested mode in cases like a vCPU reset */
637 static void kvm_leave_nested(struct kvm_vcpu *vcpu)
639 kvm_x86_ops.nested_ops->leave_nested(vcpu);
642 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
643 unsigned nr, bool has_error, u32 error_code,
644 bool has_payload, unsigned long payload, bool reinject)
649 kvm_make_request(KVM_REQ_EVENT, vcpu);
652 * If the exception is destined for L2 and isn't being reinjected,
653 * morph it to a VM-Exit if L1 wants to intercept the exception. A
654 * previously injected exception is not checked because it was checked
655 * when it was original queued, and re-checking is incorrect if _L1_
656 * injected the exception, in which case it's exempt from interception.
658 if (!reinject && is_guest_mode(vcpu) &&
659 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) {
660 kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code,
661 has_payload, payload);
665 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
669 * On VM-Entry, an exception can be pending if and only
670 * if event injection was blocked by nested_run_pending.
671 * In that case, however, vcpu_enter_guest() requests an
672 * immediate exit, and the guest shouldn't proceed far
673 * enough to need reinjection.
675 WARN_ON_ONCE(kvm_is_exception_pending(vcpu));
676 vcpu->arch.exception.injected = true;
677 if (WARN_ON_ONCE(has_payload)) {
679 * A reinjected event has already
680 * delivered its payload.
686 vcpu->arch.exception.pending = true;
687 vcpu->arch.exception.injected = false;
689 vcpu->arch.exception.has_error_code = has_error;
690 vcpu->arch.exception.vector = nr;
691 vcpu->arch.exception.error_code = error_code;
692 vcpu->arch.exception.has_payload = has_payload;
693 vcpu->arch.exception.payload = payload;
694 if (!is_guest_mode(vcpu))
695 kvm_deliver_exception_payload(vcpu,
696 &vcpu->arch.exception);
700 /* to check exception */
701 prev_nr = vcpu->arch.exception.vector;
702 if (prev_nr == DF_VECTOR) {
703 /* triple fault -> shutdown */
704 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
707 class1 = exception_class(prev_nr);
708 class2 = exception_class(nr);
709 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) ||
710 (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
712 * Synthesize #DF. Clear the previously injected or pending
713 * exception so as not to incorrectly trigger shutdown.
715 vcpu->arch.exception.injected = false;
716 vcpu->arch.exception.pending = false;
718 kvm_queue_exception_e(vcpu, DF_VECTOR, 0);
720 /* replace previous exception with a new one in a hope
721 that instruction re-execution will regenerate lost
727 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
729 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
731 EXPORT_SYMBOL_GPL(kvm_queue_exception);
733 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
735 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
737 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
739 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
740 unsigned long payload)
742 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
744 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
746 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
747 u32 error_code, unsigned long payload)
749 kvm_multiple_exception(vcpu, nr, true, error_code,
750 true, payload, false);
753 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
756 kvm_inject_gp(vcpu, 0);
758 return kvm_skip_emulated_instruction(vcpu);
762 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
764 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
767 kvm_inject_gp(vcpu, 0);
771 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
772 EMULTYPE_COMPLETE_USER_EXIT);
775 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
777 ++vcpu->stat.pf_guest;
780 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of
781 * whether or not L1 wants to intercept "regular" #PF.
783 if (is_guest_mode(vcpu) && fault->async_page_fault)
784 kvm_queue_exception_vmexit(vcpu, PF_VECTOR,
785 true, fault->error_code,
786 true, fault->address);
788 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
792 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
793 struct x86_exception *fault)
795 struct kvm_mmu *fault_mmu;
796 WARN_ON_ONCE(fault->vector != PF_VECTOR);
798 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
802 * Invalidate the TLB entry for the faulting address, if it exists,
803 * else the access will fault indefinitely (and to emulate hardware).
805 if ((fault->error_code & PFERR_PRESENT_MASK) &&
806 !(fault->error_code & PFERR_RSVD_MASK))
807 kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address,
808 KVM_MMU_ROOT_CURRENT);
810 fault_mmu->inject_page_fault(vcpu, fault);
812 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
814 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
816 atomic_inc(&vcpu->arch.nmi_queued);
817 kvm_make_request(KVM_REQ_NMI, vcpu);
820 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
822 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
824 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
826 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
828 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
830 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
833 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
834 * a #GP and return false.
836 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
838 if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
840 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
844 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
846 if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE))
849 kvm_queue_exception(vcpu, UD_VECTOR);
852 EXPORT_SYMBOL_GPL(kvm_require_dr);
854 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
856 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
860 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise.
862 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
864 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
865 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
869 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
872 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
875 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
876 PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
877 if (real_gpa == INVALID_GPA)
880 /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
881 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
882 cr3 & GENMASK(11, 5), sizeof(pdpte));
886 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
887 if ((pdpte[i] & PT_PRESENT_MASK) &&
888 (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
894 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
895 * Shadow page roots need to be reconstructed instead.
897 if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
898 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
900 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
901 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
902 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
903 vcpu->arch.pdptrs_from_userspace = false;
907 EXPORT_SYMBOL_GPL(load_pdptrs);
909 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
912 * CR0.WP is incorporated into the MMU role, but only for non-nested,
913 * indirect shadow MMUs. If paging is disabled, no updates are needed
914 * as there are no permission bits to emulate. If TDP is enabled, the
915 * MMU's metadata needs to be updated, e.g. so that emulating guest
916 * translations does the right thing, but there's no need to unload the
917 * root as CR0.WP doesn't affect SPTEs.
919 if ((cr0 ^ old_cr0) == X86_CR0_WP) {
920 if (!(cr0 & X86_CR0_PG))
929 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
930 kvm_clear_async_pf_completion_queue(vcpu);
931 kvm_async_pf_hash_reset(vcpu);
934 * Clearing CR0.PG is defined to flush the TLB from the guest's
937 if (!(cr0 & X86_CR0_PG))
938 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
941 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
942 kvm_mmu_reset_context(vcpu);
944 if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
945 kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
946 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
947 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
949 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
951 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
953 unsigned long old_cr0 = kvm_read_cr0(vcpu);
958 if (cr0 & 0xffffffff00000000UL)
962 cr0 &= ~CR0_RESERVED_BITS;
964 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
967 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
971 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
972 (cr0 & X86_CR0_PG)) {
977 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
982 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
983 is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
984 !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
987 if (!(cr0 & X86_CR0_PG) &&
988 (is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)))
991 static_call(kvm_x86_set_cr0)(vcpu, cr0);
993 kvm_post_set_cr0(vcpu, old_cr0, cr0);
997 EXPORT_SYMBOL_GPL(kvm_set_cr0);
999 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
1001 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
1003 EXPORT_SYMBOL_GPL(kvm_lmsw);
1005 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
1007 if (vcpu->arch.guest_state_protected)
1010 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1012 if (vcpu->arch.xcr0 != host_xcr0)
1013 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
1015 if (vcpu->arch.xsaves_enabled &&
1016 vcpu->arch.ia32_xss != host_xss)
1017 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
1020 if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1021 vcpu->arch.pkru != vcpu->arch.host_pkru &&
1022 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1023 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE)))
1024 write_pkru(vcpu->arch.pkru);
1026 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
1028 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
1030 if (vcpu->arch.guest_state_protected)
1033 if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1034 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1035 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) {
1036 vcpu->arch.pkru = rdpkru();
1037 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
1038 write_pkru(vcpu->arch.host_pkru);
1041 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1043 if (vcpu->arch.xcr0 != host_xcr0)
1044 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
1046 if (vcpu->arch.xsaves_enabled &&
1047 vcpu->arch.ia32_xss != host_xss)
1048 wrmsrl(MSR_IA32_XSS, host_xss);
1052 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
1054 #ifdef CONFIG_X86_64
1055 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1057 return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC;
1061 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1064 u64 old_xcr0 = vcpu->arch.xcr0;
1067 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
1068 if (index != XCR_XFEATURE_ENABLED_MASK)
1070 if (!(xcr0 & XFEATURE_MASK_FP))
1072 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1076 * Do not allow the guest to set bits that we do not support
1077 * saving. However, xcr0 bit 0 is always set, even if the
1078 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1080 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
1081 if (xcr0 & ~valid_bits)
1084 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1085 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1088 if (xcr0 & XFEATURE_MASK_AVX512) {
1089 if (!(xcr0 & XFEATURE_MASK_YMM))
1091 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1095 if ((xcr0 & XFEATURE_MASK_XTILE) &&
1096 ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1099 vcpu->arch.xcr0 = xcr0;
1101 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1102 kvm_update_cpuid_runtime(vcpu);
1106 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1108 /* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */
1109 if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1110 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1111 kvm_inject_gp(vcpu, 0);
1115 return kvm_skip_emulated_instruction(vcpu);
1117 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1119 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1121 if (cr4 & cr4_reserved_bits)
1124 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1129 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4);
1131 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1133 return __kvm_is_valid_cr4(vcpu, cr4) &&
1134 static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1137 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1139 if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1140 kvm_mmu_reset_context(vcpu);
1143 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1144 * according to the SDM; however, stale prev_roots could be reused
1145 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1146 * free them all. This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1147 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1151 (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1152 kvm_mmu_unload(vcpu);
1155 * The TLB has to be flushed for all PCIDs if any of the following
1156 * (architecturally required) changes happen:
1157 * - CR4.PCIDE is changed from 1 to 0
1158 * - CR4.PGE is toggled
1160 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1162 if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1163 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1164 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1167 * The TLB has to be flushed for the current PCID if any of the
1168 * following (architecturally required) changes happen:
1169 * - CR4.SMEP is changed from 0 to 1
1170 * - CR4.PAE is toggled
1172 else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1173 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1174 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1177 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1179 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1181 unsigned long old_cr4 = kvm_read_cr4(vcpu);
1183 if (!kvm_is_valid_cr4(vcpu, cr4))
1186 if (is_long_mode(vcpu)) {
1187 if (!(cr4 & X86_CR4_PAE))
1189 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1191 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1192 && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1193 && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1196 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1197 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1198 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1202 static_call(kvm_x86_set_cr4)(vcpu, cr4);
1204 kvm_post_set_cr4(vcpu, old_cr4, cr4);
1208 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1210 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1212 struct kvm_mmu *mmu = vcpu->arch.mmu;
1213 unsigned long roots_to_free = 0;
1217 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1218 * this is reachable when running EPT=1 and unrestricted_guest=0, and
1219 * also via the emulator. KVM's TDP page tables are not in the scope of
1220 * the invalidation, but the guest's TLB entries need to be flushed as
1221 * the CPU may have cached entries in its TLB for the target PCID.
1223 if (unlikely(tdp_enabled)) {
1224 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1229 * If neither the current CR3 nor any of the prev_roots use the given
1230 * PCID, then nothing needs to be done here because a resync will
1231 * happen anyway before switching to any other CR3.
1233 if (kvm_get_active_pcid(vcpu) == pcid) {
1234 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1235 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1239 * If PCID is disabled, there is no need to free prev_roots even if the
1240 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1243 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))
1246 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1247 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1248 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1250 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1253 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1255 bool skip_tlb_flush = false;
1256 unsigned long pcid = 0;
1257 #ifdef CONFIG_X86_64
1258 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) {
1259 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1260 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1261 pcid = cr3 & X86_CR3_PCID_MASK;
1265 /* PDPTRs are always reloaded for PAE paging. */
1266 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1267 goto handle_tlb_flush;
1270 * Do not condition the GPA check on long mode, this helper is used to
1271 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1272 * the current vCPU mode is accurate.
1274 if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1277 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1280 if (cr3 != kvm_read_cr3(vcpu))
1281 kvm_mmu_new_pgd(vcpu, cr3);
1283 vcpu->arch.cr3 = cr3;
1284 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1285 /* Do not call post_set_cr3, we do not get here for confidential guests. */
1289 * A load of CR3 that flushes the TLB flushes only the current PCID,
1290 * even if PCID is disabled, in which case PCID=0 is flushed. It's a
1291 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1292 * and it's impossible to use a non-zero PCID when PCID is disabled,
1293 * i.e. only PCID=0 can be relevant.
1295 if (!skip_tlb_flush)
1296 kvm_invalidate_pcid(vcpu, pcid);
1300 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1302 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1304 if (cr8 & CR8_RESERVED_BITS)
1306 if (lapic_in_kernel(vcpu))
1307 kvm_lapic_set_tpr(vcpu, cr8);
1309 vcpu->arch.cr8 = cr8;
1312 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1314 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1316 if (lapic_in_kernel(vcpu))
1317 return kvm_lapic_get_cr8(vcpu);
1319 return vcpu->arch.cr8;
1321 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1323 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1327 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1328 for (i = 0; i < KVM_NR_DB_REGS; i++)
1329 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1333 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1337 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1338 dr7 = vcpu->arch.guest_debug_dr7;
1340 dr7 = vcpu->arch.dr7;
1341 static_call(kvm_x86_set_dr7)(vcpu, dr7);
1342 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1343 if (dr7 & DR7_BP_EN_MASK)
1344 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1346 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1348 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1350 u64 fixed = DR6_FIXED_1;
1352 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1355 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1356 fixed |= DR6_BUS_LOCK;
1360 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1362 size_t size = ARRAY_SIZE(vcpu->arch.db);
1366 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1367 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1368 vcpu->arch.eff_db[dr] = val;
1372 if (!kvm_dr6_valid(val))
1374 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1378 if (!kvm_dr7_valid(val))
1380 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1381 kvm_update_dr7(vcpu);
1387 EXPORT_SYMBOL_GPL(kvm_set_dr);
1389 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1391 size_t size = ARRAY_SIZE(vcpu->arch.db);
1395 *val = vcpu->arch.db[array_index_nospec(dr, size)];
1399 *val = vcpu->arch.dr6;
1403 *val = vcpu->arch.dr7;
1407 EXPORT_SYMBOL_GPL(kvm_get_dr);
1409 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1411 u32 ecx = kvm_rcx_read(vcpu);
1414 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1415 kvm_inject_gp(vcpu, 0);
1419 kvm_rax_write(vcpu, (u32)data);
1420 kvm_rdx_write(vcpu, data >> 32);
1421 return kvm_skip_emulated_instruction(vcpu);
1423 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1426 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) track
1427 * the set of MSRs that KVM exposes to userspace through KVM_GET_MSRS,
1428 * KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. msrs_to_save holds MSRs that
1429 * require host support, i.e. should be probed via RDMSR. emulated_msrs holds
1430 * MSRs that KVM emulates without strictly requiring host support.
1431 * msr_based_features holds MSRs that enumerate features, i.e. are effectively
1432 * CPUID leafs. Note, msr_based_features isn't mutually exclusive with
1433 * msrs_to_save and emulated_msrs.
1436 static const u32 msrs_to_save_base[] = {
1437 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1439 #ifdef CONFIG_X86_64
1440 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1442 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1443 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1444 MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL,
1445 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1446 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1447 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1448 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1449 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1450 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1451 MSR_IA32_UMWAIT_CONTROL,
1453 MSR_IA32_XFD, MSR_IA32_XFD_ERR,
1456 static const u32 msrs_to_save_pmu[] = {
1457 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1458 MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1459 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1460 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1461 MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG,
1463 /* This part of MSRs should match KVM_INTEL_PMC_MAX_GENERIC. */
1464 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1465 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1466 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1467 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1468 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1469 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1470 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1471 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1473 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1474 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1476 /* This part of MSRs should match KVM_AMD_PMC_MAX_GENERIC. */
1477 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1478 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1479 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1480 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1482 MSR_AMD64_PERF_CNTR_GLOBAL_CTL,
1483 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS,
1484 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR,
1487 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) +
1488 ARRAY_SIZE(msrs_to_save_pmu)];
1489 static unsigned num_msrs_to_save;
1491 static const u32 emulated_msrs_all[] = {
1492 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1493 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1494 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1495 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1496 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1497 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1498 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1500 HV_X64_MSR_VP_INDEX,
1501 HV_X64_MSR_VP_RUNTIME,
1502 HV_X64_MSR_SCONTROL,
1503 HV_X64_MSR_STIMER0_CONFIG,
1504 HV_X64_MSR_VP_ASSIST_PAGE,
1505 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1506 HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL,
1507 HV_X64_MSR_SYNDBG_OPTIONS,
1508 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1509 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1510 HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1512 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1513 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1515 MSR_IA32_TSC_ADJUST,
1516 MSR_IA32_TSC_DEADLINE,
1517 MSR_IA32_ARCH_CAPABILITIES,
1518 MSR_IA32_PERF_CAPABILITIES,
1519 MSR_IA32_MISC_ENABLE,
1520 MSR_IA32_MCG_STATUS,
1522 MSR_IA32_MCG_EXT_CTL,
1526 MSR_MISC_FEATURES_ENABLES,
1527 MSR_AMD64_VIRT_SPEC_CTRL,
1528 MSR_AMD64_TSC_RATIO,
1533 * KVM always supports the "true" VMX control MSRs, even if the host
1534 * does not. The VMX MSRs as a whole are considered "emulated" as KVM
1535 * doesn't strictly require them to exist in the host (ignoring that
1536 * KVM would refuse to load in the first place if the core set of MSRs
1537 * aren't supported).
1540 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1541 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1542 MSR_IA32_VMX_TRUE_EXIT_CTLS,
1543 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1545 MSR_IA32_VMX_CR0_FIXED0,
1546 MSR_IA32_VMX_CR4_FIXED0,
1547 MSR_IA32_VMX_VMCS_ENUM,
1548 MSR_IA32_VMX_PROCBASED_CTLS2,
1549 MSR_IA32_VMX_EPT_VPID_CAP,
1550 MSR_IA32_VMX_VMFUNC,
1553 MSR_KVM_POLL_CONTROL,
1556 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1557 static unsigned num_emulated_msrs;
1560 * List of MSRs that control the existence of MSR-based features, i.e. MSRs
1561 * that are effectively CPUID leafs. VMX MSRs are also included in the set of
1562 * feature MSRs, but are handled separately to allow expedited lookups.
1564 static const u32 msr_based_features_all_except_vmx[] = {
1567 MSR_IA32_ARCH_CAPABILITIES,
1568 MSR_IA32_PERF_CAPABILITIES,
1571 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) +
1572 (KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)];
1573 static unsigned int num_msr_based_features;
1576 * All feature MSRs except uCode revID, which tracks the currently loaded uCode
1577 * patch, are immutable once the vCPU model is defined.
1579 static bool kvm_is_immutable_feature_msr(u32 msr)
1583 if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR)
1586 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) {
1587 if (msr == msr_based_features_all_except_vmx[i])
1588 return msr != MSR_IA32_UCODE_REV;
1595 * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM
1596 * does not yet virtualize. These include:
1597 * 10 - MISC_PACKAGE_CTRLS
1598 * 11 - ENERGY_FILTERING_CTL
1600 * 18 - FB_CLEAR_CTRL
1601 * 21 - XAPIC_DISABLE_STATUS
1602 * 23 - OVERCLOCKING_STATUS
1605 #define KVM_SUPPORTED_ARCH_CAP \
1606 (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \
1607 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \
1608 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \
1609 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \
1610 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO)
1612 static u64 kvm_get_arch_capabilities(void)
1616 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
1617 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1618 data &= KVM_SUPPORTED_ARCH_CAP;
1622 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1623 * the nested hypervisor runs with NX huge pages. If it is not,
1624 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1625 * L1 guests, so it need not worry about its own (L2) guests.
1627 data |= ARCH_CAP_PSCHANGE_MC_NO;
1630 * If we're doing cache flushes (either "always" or "cond")
1631 * we will do one whenever the guest does a vmlaunch/vmresume.
1632 * If an outer hypervisor is doing the cache flush for us
1633 * (ARCH_CAP_SKIP_VMENTRY_L1DFLUSH), we can safely pass that
1634 * capability to the guest too, and if EPT is disabled we're not
1635 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will
1636 * require a nested hypervisor to do a flush of its own.
1638 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1639 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1641 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1642 data |= ARCH_CAP_RDCL_NO;
1643 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1644 data |= ARCH_CAP_SSB_NO;
1645 if (!boot_cpu_has_bug(X86_BUG_MDS))
1646 data |= ARCH_CAP_MDS_NO;
1648 if (!boot_cpu_has(X86_FEATURE_RTM)) {
1650 * If RTM=0 because the kernel has disabled TSX, the host might
1651 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0
1652 * and therefore knows that there cannot be TAA) but keep
1653 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1654 * and we want to allow migrating those guests to tsx=off hosts.
1656 data &= ~ARCH_CAP_TAA_NO;
1657 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1658 data |= ARCH_CAP_TAA_NO;
1661 * Nothing to do here; we emulate TSX_CTRL if present on the
1662 * host so the guest can choose between disabling TSX or
1663 * using VERW to clear CPU buffers.
1670 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1672 switch (msr->index) {
1673 case MSR_IA32_ARCH_CAPABILITIES:
1674 msr->data = kvm_get_arch_capabilities();
1676 case MSR_IA32_PERF_CAPABILITIES:
1677 msr->data = kvm_caps.supported_perf_cap;
1679 case MSR_IA32_UCODE_REV:
1680 rdmsrl_safe(msr->index, &msr->data);
1683 return static_call(kvm_x86_get_msr_feature)(msr);
1688 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1690 struct kvm_msr_entry msr;
1694 r = kvm_get_msr_feature(&msr);
1696 if (r == KVM_MSR_RET_INVALID) {
1697 /* Unconditionally clear the output for simplicity */
1699 if (kvm_msr_ignored_check(index, 0, false))
1711 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1713 if (efer & EFER_AUTOIBRS && !guest_cpuid_has(vcpu, X86_FEATURE_AUTOIBRS))
1716 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1719 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1722 if (efer & (EFER_LME | EFER_LMA) &&
1723 !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1726 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1732 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1734 if (efer & efer_reserved_bits)
1737 return __kvm_valid_efer(vcpu, efer);
1739 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1741 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1743 u64 old_efer = vcpu->arch.efer;
1744 u64 efer = msr_info->data;
1747 if (efer & efer_reserved_bits)
1750 if (!msr_info->host_initiated) {
1751 if (!__kvm_valid_efer(vcpu, efer))
1754 if (is_paging(vcpu) &&
1755 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1760 efer |= vcpu->arch.efer & EFER_LMA;
1762 r = static_call(kvm_x86_set_efer)(vcpu, efer);
1768 if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1769 kvm_mmu_reset_context(vcpu);
1774 void kvm_enable_efer_bits(u64 mask)
1776 efer_reserved_bits &= ~mask;
1778 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1780 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1782 struct kvm_x86_msr_filter *msr_filter;
1783 struct msr_bitmap_range *ranges;
1784 struct kvm *kvm = vcpu->kvm;
1789 /* x2APIC MSRs do not support filtering. */
1790 if (index >= 0x800 && index <= 0x8ff)
1793 idx = srcu_read_lock(&kvm->srcu);
1795 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1801 allowed = msr_filter->default_allow;
1802 ranges = msr_filter->ranges;
1804 for (i = 0; i < msr_filter->count; i++) {
1805 u32 start = ranges[i].base;
1806 u32 end = start + ranges[i].nmsrs;
1807 u32 flags = ranges[i].flags;
1808 unsigned long *bitmap = ranges[i].bitmap;
1810 if ((index >= start) && (index < end) && (flags & type)) {
1811 allowed = test_bit(index - start, bitmap);
1817 srcu_read_unlock(&kvm->srcu, idx);
1821 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1824 * Write @data into the MSR specified by @index. Select MSR specific fault
1825 * checks are bypassed if @host_initiated is %true.
1826 * Returns 0 on success, non-0 otherwise.
1827 * Assumes vcpu_load() was already called.
1829 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1830 bool host_initiated)
1832 struct msr_data msr;
1837 case MSR_KERNEL_GS_BASE:
1840 if (is_noncanonical_address(data, vcpu))
1843 case MSR_IA32_SYSENTER_EIP:
1844 case MSR_IA32_SYSENTER_ESP:
1846 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1847 * non-canonical address is written on Intel but not on
1848 * AMD (which ignores the top 32-bits, because it does
1849 * not implement 64-bit SYSENTER).
1851 * 64-bit code should hence be able to write a non-canonical
1852 * value on AMD. Making the address canonical ensures that
1853 * vmentry does not fail on Intel after writing a non-canonical
1854 * value, and that something deterministic happens if the guest
1855 * invokes 64-bit SYSENTER.
1857 data = __canonical_address(data, vcpu_virt_addr_bits(vcpu));
1860 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1863 if (!host_initiated &&
1864 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1865 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1869 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1870 * incomplete and conflicting architectural behavior. Current
1871 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1872 * reserved and always read as zeros. Enforce Intel's reserved
1873 * bits check if and only if the guest CPU is Intel, and clear
1874 * the bits in all other cases. This ensures cross-vendor
1875 * migration will provide consistent behavior for the guest.
1877 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1886 msr.host_initiated = host_initiated;
1888 return static_call(kvm_x86_set_msr)(vcpu, &msr);
1891 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1892 u32 index, u64 data, bool host_initiated)
1894 int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1896 if (ret == KVM_MSR_RET_INVALID)
1897 if (kvm_msr_ignored_check(index, data, true))
1904 * Read the MSR specified by @index into @data. Select MSR specific fault
1905 * checks are bypassed if @host_initiated is %true.
1906 * Returns 0 on success, non-0 otherwise.
1907 * Assumes vcpu_load() was already called.
1909 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1910 bool host_initiated)
1912 struct msr_data msr;
1917 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1920 if (!host_initiated &&
1921 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1922 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1928 msr.host_initiated = host_initiated;
1930 ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1936 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1937 u32 index, u64 *data, bool host_initiated)
1939 int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1941 if (ret == KVM_MSR_RET_INVALID) {
1942 /* Unconditionally clear *data for simplicity */
1944 if (kvm_msr_ignored_check(index, 0, false))
1951 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1953 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1954 return KVM_MSR_RET_FILTERED;
1955 return kvm_get_msr_ignored_check(vcpu, index, data, false);
1958 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data)
1960 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1961 return KVM_MSR_RET_FILTERED;
1962 return kvm_set_msr_ignored_check(vcpu, index, data, false);
1965 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1967 return kvm_get_msr_ignored_check(vcpu, index, data, false);
1969 EXPORT_SYMBOL_GPL(kvm_get_msr);
1971 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1973 return kvm_set_msr_ignored_check(vcpu, index, data, false);
1975 EXPORT_SYMBOL_GPL(kvm_set_msr);
1977 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1979 if (!vcpu->run->msr.error) {
1980 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1981 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1985 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
1987 return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
1990 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1992 complete_userspace_rdmsr(vcpu);
1993 return complete_emulated_msr_access(vcpu);
1996 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
1998 return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
2001 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
2003 complete_userspace_rdmsr(vcpu);
2004 return complete_fast_msr_access(vcpu);
2007 static u64 kvm_msr_reason(int r)
2010 case KVM_MSR_RET_INVALID:
2011 return KVM_MSR_EXIT_REASON_UNKNOWN;
2012 case KVM_MSR_RET_FILTERED:
2013 return KVM_MSR_EXIT_REASON_FILTER;
2015 return KVM_MSR_EXIT_REASON_INVAL;
2019 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
2020 u32 exit_reason, u64 data,
2021 int (*completion)(struct kvm_vcpu *vcpu),
2024 u64 msr_reason = kvm_msr_reason(r);
2026 /* Check if the user wanted to know about this MSR fault */
2027 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
2030 vcpu->run->exit_reason = exit_reason;
2031 vcpu->run->msr.error = 0;
2032 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
2033 vcpu->run->msr.reason = msr_reason;
2034 vcpu->run->msr.index = index;
2035 vcpu->run->msr.data = data;
2036 vcpu->arch.complete_userspace_io = completion;
2041 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
2043 u32 ecx = kvm_rcx_read(vcpu);
2047 r = kvm_get_msr_with_filter(vcpu, ecx, &data);
2050 trace_kvm_msr_read(ecx, data);
2052 kvm_rax_write(vcpu, data & -1u);
2053 kvm_rdx_write(vcpu, (data >> 32) & -1u);
2055 /* MSR read failed? See if we should ask user space */
2056 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
2057 complete_fast_rdmsr, r))
2059 trace_kvm_msr_read_ex(ecx);
2062 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2064 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
2066 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
2068 u32 ecx = kvm_rcx_read(vcpu);
2069 u64 data = kvm_read_edx_eax(vcpu);
2072 r = kvm_set_msr_with_filter(vcpu, ecx, data);
2075 trace_kvm_msr_write(ecx, data);
2077 /* MSR write failed? See if we should ask user space */
2078 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
2079 complete_fast_msr_access, r))
2081 /* Signal all other negative errors to userspace */
2084 trace_kvm_msr_write_ex(ecx, data);
2087 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2089 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
2091 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2093 return kvm_skip_emulated_instruction(vcpu);
2096 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2098 /* Treat an INVD instruction as a NOP and just skip it. */
2099 return kvm_emulate_as_nop(vcpu);
2101 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
2103 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2105 kvm_queue_exception(vcpu, UD_VECTOR);
2108 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
2111 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn)
2113 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) &&
2114 !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT))
2115 return kvm_handle_invalid_op(vcpu);
2117 pr_warn_once("%s instruction emulated as NOP!\n", insn);
2118 return kvm_emulate_as_nop(vcpu);
2120 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2122 return kvm_emulate_monitor_mwait(vcpu, "MWAIT");
2124 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
2126 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2128 return kvm_emulate_monitor_mwait(vcpu, "MONITOR");
2130 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2132 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2134 xfer_to_guest_mode_prepare();
2135 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
2136 xfer_to_guest_mode_work_pending();
2140 * The fast path for frequent and performance sensitive wrmsr emulation,
2141 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2142 * the latency of virtual IPI by avoiding the expensive bits of transitioning
2143 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2144 * other cases which must be called after interrupts are enabled on the host.
2146 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2148 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2151 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2152 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2153 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2154 ((u32)(data >> 32) != X2APIC_BROADCAST))
2155 return kvm_x2apic_icr_write(vcpu->arch.apic, data);
2160 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2162 if (!kvm_can_use_hv_timer(vcpu))
2165 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2169 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2171 u32 msr = kvm_rcx_read(vcpu);
2173 fastpath_t ret = EXIT_FASTPATH_NONE;
2176 case APIC_BASE_MSR + (APIC_ICR >> 4):
2177 data = kvm_read_edx_eax(vcpu);
2178 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2179 kvm_skip_emulated_instruction(vcpu);
2180 ret = EXIT_FASTPATH_EXIT_HANDLED;
2183 case MSR_IA32_TSC_DEADLINE:
2184 data = kvm_read_edx_eax(vcpu);
2185 if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2186 kvm_skip_emulated_instruction(vcpu);
2187 ret = EXIT_FASTPATH_REENTER_GUEST;
2194 if (ret != EXIT_FASTPATH_NONE)
2195 trace_kvm_msr_write(msr, data);
2199 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2202 * Adapt set_msr() to msr_io()'s calling convention
2204 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2206 return kvm_get_msr_ignored_check(vcpu, index, data, true);
2209 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2214 * Disallow writes to immutable feature MSRs after KVM_RUN. KVM does
2215 * not support modifying the guest vCPU model on the fly, e.g. changing
2216 * the nVMX capabilities while L2 is running is nonsensical. Ignore
2217 * writes of the same value, e.g. to allow userspace to blindly stuff
2218 * all MSRs when emulating RESET.
2220 if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index)) {
2221 if (do_get_msr(vcpu, index, &val) || *data != val)
2227 return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2230 #ifdef CONFIG_X86_64
2231 struct pvclock_clock {
2241 struct pvclock_gtod_data {
2244 struct pvclock_clock clock; /* extract of a clocksource struct */
2245 struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2251 static struct pvclock_gtod_data pvclock_gtod_data;
2253 static void update_pvclock_gtod(struct timekeeper *tk)
2255 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2257 write_seqcount_begin(&vdata->seq);
2259 /* copy pvclock gtod data */
2260 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode;
2261 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
2262 vdata->clock.mask = tk->tkr_mono.mask;
2263 vdata->clock.mult = tk->tkr_mono.mult;
2264 vdata->clock.shift = tk->tkr_mono.shift;
2265 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec;
2266 vdata->clock.offset = tk->tkr_mono.base;
2268 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode;
2269 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last;
2270 vdata->raw_clock.mask = tk->tkr_raw.mask;
2271 vdata->raw_clock.mult = tk->tkr_raw.mult;
2272 vdata->raw_clock.shift = tk->tkr_raw.shift;
2273 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec;
2274 vdata->raw_clock.offset = tk->tkr_raw.base;
2276 vdata->wall_time_sec = tk->xtime_sec;
2278 vdata->offs_boot = tk->offs_boot;
2280 write_seqcount_end(&vdata->seq);
2283 static s64 get_kvmclock_base_ns(void)
2285 /* Count up from boot time, but with the frequency of the raw clock. */
2286 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2289 static s64 get_kvmclock_base_ns(void)
2291 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */
2292 return ktime_get_boottime_ns();
2296 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2300 struct pvclock_wall_clock wc;
2307 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2312 ++version; /* first time write, random junk */
2316 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2320 * The guest calculates current wall clock time by adding
2321 * system time (updated by kvm_guest_time_update below) to the
2322 * wall clock specified here. We do the reverse here.
2324 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2326 wc.nsec = do_div(wall_nsec, 1000000000);
2327 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2328 wc.version = version;
2330 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2333 wc_sec_hi = wall_nsec >> 32;
2334 kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2335 &wc_sec_hi, sizeof(wc_sec_hi));
2339 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2342 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2343 bool old_msr, bool host_initiated)
2345 struct kvm_arch *ka = &vcpu->kvm->arch;
2347 if (vcpu->vcpu_id == 0 && !host_initiated) {
2348 if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2349 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2351 ka->boot_vcpu_runs_old_kvmclock = old_msr;
2354 vcpu->arch.time = system_time;
2355 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2357 /* we verify if the enable bit is set... */
2358 if (system_time & 1)
2359 kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL,
2360 sizeof(struct pvclock_vcpu_time_info));
2362 kvm_gpc_deactivate(&vcpu->arch.pv_time);
2367 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2369 do_shl32_div32(dividend, divisor);
2373 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2374 s8 *pshift, u32 *pmultiplier)
2382 scaled64 = scaled_hz;
2383 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2388 tps32 = (uint32_t)tps64;
2389 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2390 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2398 *pmultiplier = div_frac(scaled64, tps32);
2401 #ifdef CONFIG_X86_64
2402 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2405 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2406 static unsigned long max_tsc_khz;
2408 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2410 u64 v = (u64)khz * (1000000 + ppm);
2415 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2417 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2421 /* Guest TSC same frequency as host TSC? */
2423 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2427 /* TSC scaling supported? */
2428 if (!kvm_caps.has_tsc_control) {
2429 if (user_tsc_khz > tsc_khz) {
2430 vcpu->arch.tsc_catchup = 1;
2431 vcpu->arch.tsc_always_catchup = 1;
2434 pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2439 /* TSC scaling required - calculate ratio */
2440 ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits,
2441 user_tsc_khz, tsc_khz);
2443 if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) {
2444 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2449 kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2453 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2455 u32 thresh_lo, thresh_hi;
2456 int use_scaling = 0;
2458 /* tsc_khz can be zero if TSC calibration fails */
2459 if (user_tsc_khz == 0) {
2460 /* set tsc_scaling_ratio to a safe value */
2461 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2465 /* Compute a scale to convert nanoseconds in TSC cycles */
2466 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2467 &vcpu->arch.virtual_tsc_shift,
2468 &vcpu->arch.virtual_tsc_mult);
2469 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2472 * Compute the variation in TSC rate which is acceptable
2473 * within the range of tolerance and decide if the
2474 * rate being applied is within that bounds of the hardware
2475 * rate. If so, no scaling or compensation need be done.
2477 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2478 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2479 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2480 pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n",
2481 user_tsc_khz, thresh_lo, thresh_hi);
2484 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2487 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2489 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2490 vcpu->arch.virtual_tsc_mult,
2491 vcpu->arch.virtual_tsc_shift);
2492 tsc += vcpu->arch.this_tsc_write;
2496 #ifdef CONFIG_X86_64
2497 static inline int gtod_is_based_on_tsc(int mode)
2499 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2503 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2505 #ifdef CONFIG_X86_64
2507 struct kvm_arch *ka = &vcpu->kvm->arch;
2508 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2510 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2511 atomic_read(&vcpu->kvm->online_vcpus));
2514 * Once the masterclock is enabled, always perform request in
2515 * order to update it.
2517 * In order to enable masterclock, the host clocksource must be TSC
2518 * and the vcpus need to have matched TSCs. When that happens,
2519 * perform request to enable masterclock.
2521 if (ka->use_master_clock ||
2522 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2523 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2525 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2526 atomic_read(&vcpu->kvm->online_vcpus),
2527 ka->use_master_clock, gtod->clock.vclock_mode);
2532 * Multiply tsc by a fixed point number represented by ratio.
2534 * The most significant 64-N bits (mult) of ratio represent the
2535 * integral part of the fixed point number; the remaining N bits
2536 * (frac) represent the fractional part, ie. ratio represents a fixed
2537 * point number (mult + frac * 2^(-N)).
2539 * N equals to kvm_caps.tsc_scaling_ratio_frac_bits.
2541 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2543 return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits);
2546 u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2550 if (ratio != kvm_caps.default_tsc_scaling_ratio)
2551 _tsc = __scale_tsc(ratio, tsc);
2556 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2560 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2562 return target_tsc - tsc;
2565 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2567 return vcpu->arch.l1_tsc_offset +
2568 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2570 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2572 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2576 if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio)
2577 nested_offset = l1_offset;
2579 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2580 kvm_caps.tsc_scaling_ratio_frac_bits);
2582 nested_offset += l2_offset;
2583 return nested_offset;
2585 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2587 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2589 if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio)
2590 return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2591 kvm_caps.tsc_scaling_ratio_frac_bits);
2593 return l1_multiplier;
2595 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2597 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2599 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2600 vcpu->arch.l1_tsc_offset,
2603 vcpu->arch.l1_tsc_offset = l1_offset;
2606 * If we are here because L1 chose not to trap WRMSR to TSC then
2607 * according to the spec this should set L1's TSC (as opposed to
2608 * setting L1's offset for L2).
2610 if (is_guest_mode(vcpu))
2611 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2613 static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2614 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2616 vcpu->arch.tsc_offset = l1_offset;
2618 static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset);
2621 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2623 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2625 /* Userspace is changing the multiplier while L2 is active */
2626 if (is_guest_mode(vcpu))
2627 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2629 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2631 vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2633 if (kvm_caps.has_tsc_control)
2634 static_call(kvm_x86_write_tsc_multiplier)(
2635 vcpu, vcpu->arch.tsc_scaling_ratio);
2638 static inline bool kvm_check_tsc_unstable(void)
2640 #ifdef CONFIG_X86_64
2642 * TSC is marked unstable when we're running on Hyper-V,
2643 * 'TSC page' clocksource is good.
2645 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2648 return check_tsc_unstable();
2652 * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2653 * offset for the vcpu and tracks the TSC matching generation that the vcpu
2656 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2657 u64 ns, bool matched)
2659 struct kvm *kvm = vcpu->kvm;
2661 lockdep_assert_held(&kvm->arch.tsc_write_lock);
2664 * We also track th most recent recorded KHZ, write and time to
2665 * allow the matching interval to be extended at each write.
2667 kvm->arch.last_tsc_nsec = ns;
2668 kvm->arch.last_tsc_write = tsc;
2669 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2670 kvm->arch.last_tsc_offset = offset;
2672 vcpu->arch.last_guest_tsc = tsc;
2674 kvm_vcpu_write_tsc_offset(vcpu, offset);
2678 * We split periods of matched TSC writes into generations.
2679 * For each generation, we track the original measured
2680 * nanosecond time, offset, and write, so if TSCs are in
2681 * sync, we can match exact offset, and if not, we can match
2682 * exact software computation in compute_guest_tsc()
2684 * These values are tracked in kvm->arch.cur_xxx variables.
2686 kvm->arch.cur_tsc_generation++;
2687 kvm->arch.cur_tsc_nsec = ns;
2688 kvm->arch.cur_tsc_write = tsc;
2689 kvm->arch.cur_tsc_offset = offset;
2690 kvm->arch.nr_vcpus_matched_tsc = 0;
2691 } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2692 kvm->arch.nr_vcpus_matched_tsc++;
2695 /* Keep track of which generation this VCPU has synchronized to */
2696 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2697 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2698 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2700 kvm_track_tsc_matching(vcpu);
2703 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2705 struct kvm *kvm = vcpu->kvm;
2706 u64 offset, ns, elapsed;
2707 unsigned long flags;
2708 bool matched = false;
2709 bool synchronizing = false;
2711 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2712 offset = kvm_compute_l1_tsc_offset(vcpu, data);
2713 ns = get_kvmclock_base_ns();
2714 elapsed = ns - kvm->arch.last_tsc_nsec;
2716 if (vcpu->arch.virtual_tsc_khz) {
2719 * detection of vcpu initialization -- need to sync
2720 * with other vCPUs. This particularly helps to keep
2721 * kvm_clock stable after CPU hotplug
2723 synchronizing = true;
2725 u64 tsc_exp = kvm->arch.last_tsc_write +
2726 nsec_to_cycles(vcpu, elapsed);
2727 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2729 * Special case: TSC write with a small delta (1 second)
2730 * of virtual cycle time against real time is
2731 * interpreted as an attempt to synchronize the CPU.
2733 synchronizing = data < tsc_exp + tsc_hz &&
2734 data + tsc_hz > tsc_exp;
2739 * For a reliable TSC, we can match TSC offsets, and for an unstable
2740 * TSC, we add elapsed time in this computation. We could let the
2741 * compensation code attempt to catch up if we fall behind, but
2742 * it's better to try to match offsets from the beginning.
2744 if (synchronizing &&
2745 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2746 if (!kvm_check_tsc_unstable()) {
2747 offset = kvm->arch.cur_tsc_offset;
2749 u64 delta = nsec_to_cycles(vcpu, elapsed);
2751 offset = kvm_compute_l1_tsc_offset(vcpu, data);
2756 __kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2757 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2760 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2763 u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2764 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2767 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2769 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio)
2770 WARN_ON(adjustment < 0);
2771 adjustment = kvm_scale_tsc((u64) adjustment,
2772 vcpu->arch.l1_tsc_scaling_ratio);
2773 adjust_tsc_offset_guest(vcpu, adjustment);
2776 #ifdef CONFIG_X86_64
2778 static u64 read_tsc(void)
2780 u64 ret = (u64)rdtsc_ordered();
2781 u64 last = pvclock_gtod_data.clock.cycle_last;
2783 if (likely(ret >= last))
2787 * GCC likes to generate cmov here, but this branch is extremely
2788 * predictable (it's just a function of time and the likely is
2789 * very likely) and there's a data dependence, so force GCC
2790 * to generate a branch instead. I don't barrier() because
2791 * we don't actually need a barrier, and if this function
2792 * ever gets inlined it will generate worse code.
2798 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2804 switch (clock->vclock_mode) {
2805 case VDSO_CLOCKMODE_HVCLOCK:
2806 if (hv_read_tsc_page_tsc(hv_get_tsc_page(),
2807 tsc_timestamp, &tsc_pg_val)) {
2808 /* TSC page valid */
2809 *mode = VDSO_CLOCKMODE_HVCLOCK;
2810 v = (tsc_pg_val - clock->cycle_last) &
2813 /* TSC page invalid */
2814 *mode = VDSO_CLOCKMODE_NONE;
2817 case VDSO_CLOCKMODE_TSC:
2818 *mode = VDSO_CLOCKMODE_TSC;
2819 *tsc_timestamp = read_tsc();
2820 v = (*tsc_timestamp - clock->cycle_last) &
2824 *mode = VDSO_CLOCKMODE_NONE;
2827 if (*mode == VDSO_CLOCKMODE_NONE)
2828 *tsc_timestamp = v = 0;
2830 return v * clock->mult;
2833 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2835 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2841 seq = read_seqcount_begin(>od->seq);
2842 ns = gtod->raw_clock.base_cycles;
2843 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode);
2844 ns >>= gtod->raw_clock.shift;
2845 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2846 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
2852 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2854 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2860 seq = read_seqcount_begin(>od->seq);
2861 ts->tv_sec = gtod->wall_time_sec;
2862 ns = gtod->clock.base_cycles;
2863 ns += vgettsc(>od->clock, tsc_timestamp, &mode);
2864 ns >>= gtod->clock.shift;
2865 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
2867 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2873 /* returns true if host is using TSC based clocksource */
2874 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2876 /* checked again under seqlock below */
2877 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2880 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2884 /* returns true if host is using TSC based clocksource */
2885 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2888 /* checked again under seqlock below */
2889 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2892 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2898 * Assuming a stable TSC across physical CPUS, and a stable TSC
2899 * across virtual CPUs, the following condition is possible.
2900 * Each numbered line represents an event visible to both
2901 * CPUs at the next numbered event.
2903 * "timespecX" represents host monotonic time. "tscX" represents
2906 * VCPU0 on CPU0 | VCPU1 on CPU1
2908 * 1. read timespec0,tsc0
2909 * 2. | timespec1 = timespec0 + N
2911 * 3. transition to guest | transition to guest
2912 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2913 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
2914 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2916 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2919 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2921 * - 0 < N - M => M < N
2923 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2924 * always the case (the difference between two distinct xtime instances
2925 * might be smaller then the difference between corresponding TSC reads,
2926 * when updating guest vcpus pvclock areas).
2928 * To avoid that problem, do not allow visibility of distinct
2929 * system_timestamp/tsc_timestamp values simultaneously: use a master
2930 * copy of host monotonic time values. Update that master copy
2933 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2937 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2939 #ifdef CONFIG_X86_64
2940 struct kvm_arch *ka = &kvm->arch;
2942 bool host_tsc_clocksource, vcpus_matched;
2944 lockdep_assert_held(&kvm->arch.tsc_write_lock);
2945 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2946 atomic_read(&kvm->online_vcpus));
2949 * If the host uses TSC clock, then passthrough TSC as stable
2952 host_tsc_clocksource = kvm_get_time_and_clockread(
2953 &ka->master_kernel_ns,
2954 &ka->master_cycle_now);
2956 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2957 && !ka->backwards_tsc_observed
2958 && !ka->boot_vcpu_runs_old_kvmclock;
2960 if (ka->use_master_clock)
2961 atomic_set(&kvm_guest_has_master_clock, 1);
2963 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2964 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2969 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2971 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2974 static void __kvm_start_pvclock_update(struct kvm *kvm)
2976 raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
2977 write_seqcount_begin(&kvm->arch.pvclock_sc);
2980 static void kvm_start_pvclock_update(struct kvm *kvm)
2982 kvm_make_mclock_inprogress_request(kvm);
2984 /* no guest entries from this point */
2985 __kvm_start_pvclock_update(kvm);
2988 static void kvm_end_pvclock_update(struct kvm *kvm)
2990 struct kvm_arch *ka = &kvm->arch;
2991 struct kvm_vcpu *vcpu;
2994 write_seqcount_end(&ka->pvclock_sc);
2995 raw_spin_unlock_irq(&ka->tsc_write_lock);
2996 kvm_for_each_vcpu(i, vcpu, kvm)
2997 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2999 /* guest entries allowed */
3000 kvm_for_each_vcpu(i, vcpu, kvm)
3001 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
3004 static void kvm_update_masterclock(struct kvm *kvm)
3006 kvm_hv_request_tsc_page_update(kvm);
3007 kvm_start_pvclock_update(kvm);
3008 pvclock_update_vm_gtod_copy(kvm);
3009 kvm_end_pvclock_update(kvm);
3013 * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's
3014 * per-CPU value (which may be zero if a CPU is going offline). Note, tsc_khz
3015 * can change during boot even if the TSC is constant, as it's possible for KVM
3016 * to be loaded before TSC calibration completes. Ideally, KVM would get a
3017 * notification when calibration completes, but practically speaking calibration
3018 * will complete before userspace is alive enough to create VMs.
3020 static unsigned long get_cpu_tsc_khz(void)
3022 if (static_cpu_has(X86_FEATURE_CONSTANT_TSC))
3025 return __this_cpu_read(cpu_tsc_khz);
3028 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */
3029 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3031 struct kvm_arch *ka = &kvm->arch;
3032 struct pvclock_vcpu_time_info hv_clock;
3034 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
3038 if (ka->use_master_clock &&
3039 (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) {
3040 #ifdef CONFIG_X86_64
3041 struct timespec64 ts;
3043 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
3044 data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
3045 data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
3048 data->host_tsc = rdtsc();
3050 data->flags |= KVM_CLOCK_TSC_STABLE;
3051 hv_clock.tsc_timestamp = ka->master_cycle_now;
3052 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3053 kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL,
3054 &hv_clock.tsc_shift,
3055 &hv_clock.tsc_to_system_mul);
3056 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
3058 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
3064 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3066 struct kvm_arch *ka = &kvm->arch;
3070 seq = read_seqcount_begin(&ka->pvclock_sc);
3071 __get_kvmclock(kvm, data);
3072 } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3075 u64 get_kvmclock_ns(struct kvm *kvm)
3077 struct kvm_clock_data data;
3079 get_kvmclock(kvm, &data);
3083 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v,
3084 struct gfn_to_pfn_cache *gpc,
3085 unsigned int offset)
3087 struct kvm_vcpu_arch *vcpu = &v->arch;
3088 struct pvclock_vcpu_time_info *guest_hv_clock;
3089 unsigned long flags;
3091 read_lock_irqsave(&gpc->lock, flags);
3092 while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) {
3093 read_unlock_irqrestore(&gpc->lock, flags);
3095 if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock)))
3098 read_lock_irqsave(&gpc->lock, flags);
3101 guest_hv_clock = (void *)(gpc->khva + offset);
3104 * This VCPU is paused, but it's legal for a guest to read another
3105 * VCPU's kvmclock, so we really have to follow the specification where
3106 * it says that version is odd if data is being modified, and even after
3110 guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1;
3113 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3114 vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
3116 if (vcpu->pvclock_set_guest_stopped_request) {
3117 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3118 vcpu->pvclock_set_guest_stopped_request = false;
3121 memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock));
3124 guest_hv_clock->version = ++vcpu->hv_clock.version;
3126 mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT);
3127 read_unlock_irqrestore(&gpc->lock, flags);
3129 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
3132 static int kvm_guest_time_update(struct kvm_vcpu *v)
3134 unsigned long flags, tgt_tsc_khz;
3136 struct kvm_vcpu_arch *vcpu = &v->arch;
3137 struct kvm_arch *ka = &v->kvm->arch;
3139 u64 tsc_timestamp, host_tsc;
3141 bool use_master_clock;
3147 * If the host uses TSC clock, then passthrough TSC as stable
3151 seq = read_seqcount_begin(&ka->pvclock_sc);
3152 use_master_clock = ka->use_master_clock;
3153 if (use_master_clock) {
3154 host_tsc = ka->master_cycle_now;
3155 kernel_ns = ka->master_kernel_ns;
3157 } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3159 /* Keep irq disabled to prevent changes to the clock */
3160 local_irq_save(flags);
3161 tgt_tsc_khz = get_cpu_tsc_khz();
3162 if (unlikely(tgt_tsc_khz == 0)) {
3163 local_irq_restore(flags);
3164 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3167 if (!use_master_clock) {
3169 kernel_ns = get_kvmclock_base_ns();
3172 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3175 * We may have to catch up the TSC to match elapsed wall clock
3176 * time for two reasons, even if kvmclock is used.
3177 * 1) CPU could have been running below the maximum TSC rate
3178 * 2) Broken TSC compensation resets the base at each VCPU
3179 * entry to avoid unknown leaps of TSC even when running
3180 * again on the same CPU. This may cause apparent elapsed
3181 * time to disappear, and the guest to stand still or run
3184 if (vcpu->tsc_catchup) {
3185 u64 tsc = compute_guest_tsc(v, kernel_ns);
3186 if (tsc > tsc_timestamp) {
3187 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3188 tsc_timestamp = tsc;
3192 local_irq_restore(flags);
3194 /* With all the info we got, fill in the values */
3196 if (kvm_caps.has_tsc_control)
3197 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3198 v->arch.l1_tsc_scaling_ratio);
3200 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3201 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3202 &vcpu->hv_clock.tsc_shift,
3203 &vcpu->hv_clock.tsc_to_system_mul);
3204 vcpu->hw_tsc_khz = tgt_tsc_khz;
3205 kvm_xen_update_tsc_info(v);
3208 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3209 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3210 vcpu->last_guest_tsc = tsc_timestamp;
3212 /* If the host uses TSC clocksource, then it is stable */
3214 if (use_master_clock)
3215 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3217 vcpu->hv_clock.flags = pvclock_flags;
3219 if (vcpu->pv_time.active)
3220 kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0);
3221 if (vcpu->xen.vcpu_info_cache.active)
3222 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache,
3223 offsetof(struct compat_vcpu_info, time));
3224 if (vcpu->xen.vcpu_time_info_cache.active)
3225 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0);
3226 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3231 * kvmclock updates which are isolated to a given vcpu, such as
3232 * vcpu->cpu migration, should not allow system_timestamp from
3233 * the rest of the vcpus to remain static. Otherwise ntp frequency
3234 * correction applies to one vcpu's system_timestamp but not
3237 * So in those cases, request a kvmclock update for all vcpus.
3238 * We need to rate-limit these requests though, as they can
3239 * considerably slow guests that have a large number of vcpus.
3240 * The time for a remote vcpu to update its kvmclock is bound
3241 * by the delay we use to rate-limit the updates.
3244 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3246 static void kvmclock_update_fn(struct work_struct *work)
3249 struct delayed_work *dwork = to_delayed_work(work);
3250 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3251 kvmclock_update_work);
3252 struct kvm *kvm = container_of(ka, struct kvm, arch);
3253 struct kvm_vcpu *vcpu;
3255 kvm_for_each_vcpu(i, vcpu, kvm) {
3256 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3257 kvm_vcpu_kick(vcpu);
3261 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3263 struct kvm *kvm = v->kvm;
3265 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3266 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3267 KVMCLOCK_UPDATE_DELAY);
3270 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3272 static void kvmclock_sync_fn(struct work_struct *work)
3274 struct delayed_work *dwork = to_delayed_work(work);
3275 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3276 kvmclock_sync_work);
3277 struct kvm *kvm = container_of(ka, struct kvm, arch);
3279 if (!kvmclock_periodic_sync)
3282 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3283 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3284 KVMCLOCK_SYNC_PERIOD);
3287 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */
3288 static bool is_mci_control_msr(u32 msr)
3290 return (msr & 3) == 0;
3292 static bool is_mci_status_msr(u32 msr)
3294 return (msr & 3) == 1;
3298 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3300 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3302 /* McStatusWrEn enabled? */
3303 if (guest_cpuid_is_amd_or_hygon(vcpu))
3304 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3309 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3311 u64 mcg_cap = vcpu->arch.mcg_cap;
3312 unsigned bank_num = mcg_cap & 0xff;
3313 u32 msr = msr_info->index;
3314 u64 data = msr_info->data;
3315 u32 offset, last_msr;
3318 case MSR_IA32_MCG_STATUS:
3319 vcpu->arch.mcg_status = data;
3321 case MSR_IA32_MCG_CTL:
3322 if (!(mcg_cap & MCG_CTL_P) &&
3323 (data || !msr_info->host_initiated))
3325 if (data != 0 && data != ~(u64)0)
3327 vcpu->arch.mcg_ctl = data;
3329 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3330 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3334 if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated))
3336 /* An attempt to write a 1 to a reserved bit raises #GP */
3337 if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK))
3339 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3340 last_msr + 1 - MSR_IA32_MC0_CTL2);
3341 vcpu->arch.mci_ctl2_banks[offset] = data;
3343 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3344 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3349 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other
3350 * values are architecturally undefined. But, some Linux
3351 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB
3352 * issue on AMD K8s, allow bit 10 to be clear when setting all
3353 * other bits in order to avoid an uncaught #GP in the guest.
3355 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable,
3356 * single-bit ECC data errors.
3358 if (is_mci_control_msr(msr) &&
3359 data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
3363 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR.
3364 * AMD-based CPUs allow non-zero values, but if and only if
3365 * HWCR[McStatusWrEn] is set.
3367 if (!msr_info->host_initiated && is_mci_status_msr(msr) &&
3368 data != 0 && !can_set_mci_status(vcpu))
3371 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3372 last_msr + 1 - MSR_IA32_MC0_CTL);
3373 vcpu->arch.mce_banks[offset] = data;
3381 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3383 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3385 return (vcpu->arch.apf.msr_en_val & mask) == mask;
3388 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3390 gpa_t gpa = data & ~0x3f;
3392 /* Bits 4:5 are reserved, Should be zero */
3396 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3397 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3400 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3401 (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3404 if (!lapic_in_kernel(vcpu))
3405 return data ? 1 : 0;
3407 vcpu->arch.apf.msr_en_val = data;
3409 if (!kvm_pv_async_pf_enabled(vcpu)) {
3410 kvm_clear_async_pf_completion_queue(vcpu);
3411 kvm_async_pf_hash_reset(vcpu);
3415 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3419 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3420 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3422 kvm_async_pf_wakeup_all(vcpu);
3427 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3429 /* Bits 8-63 are reserved */
3433 if (!lapic_in_kernel(vcpu))
3436 vcpu->arch.apf.msr_int_val = data;
3438 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3443 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3445 kvm_gpc_deactivate(&vcpu->arch.pv_time);
3446 vcpu->arch.time = 0;
3449 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3451 ++vcpu->stat.tlb_flush;
3452 static_call(kvm_x86_flush_tlb_all)(vcpu);
3454 /* Flushing all ASIDs flushes the current ASID... */
3455 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3458 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3460 ++vcpu->stat.tlb_flush;
3464 * A TLB flush on behalf of the guest is equivalent to
3465 * INVPCID(all), toggling CR4.PGE, etc., which requires
3466 * a forced sync of the shadow page tables. Ensure all the
3467 * roots are synced and the guest TLB in hardware is clean.
3469 kvm_mmu_sync_roots(vcpu);
3470 kvm_mmu_sync_prev_roots(vcpu);
3473 static_call(kvm_x86_flush_tlb_guest)(vcpu);
3476 * Flushing all "guest" TLB is always a superset of Hyper-V's fine
3479 kvm_hv_vcpu_purge_flush_tlb(vcpu);
3483 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3485 ++vcpu->stat.tlb_flush;
3486 static_call(kvm_x86_flush_tlb_current)(vcpu);
3490 * Service "local" TLB flush requests, which are specific to the current MMU
3491 * context. In addition to the generic event handling in vcpu_enter_guest(),
3492 * TLB flushes that are targeted at an MMU context also need to be serviced
3493 * prior before nested VM-Enter/VM-Exit.
3495 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3497 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3498 kvm_vcpu_flush_tlb_current(vcpu);
3500 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3501 kvm_vcpu_flush_tlb_guest(vcpu);
3503 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3505 static void record_steal_time(struct kvm_vcpu *vcpu)
3507 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3508 struct kvm_steal_time __user *st;
3509 struct kvm_memslots *slots;
3510 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3514 if (kvm_xen_msr_enabled(vcpu->kvm)) {
3515 kvm_xen_runstate_set_running(vcpu);
3519 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3522 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3525 slots = kvm_memslots(vcpu->kvm);
3527 if (unlikely(slots->generation != ghc->generation ||
3529 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3530 /* We rely on the fact that it fits in a single page. */
3531 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3533 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) ||
3534 kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3538 st = (struct kvm_steal_time __user *)ghc->hva;
3540 * Doing a TLB flush here, on the guest's behalf, can avoid
3543 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3544 u8 st_preempted = 0;
3547 if (!user_access_begin(st, sizeof(*st)))
3550 asm volatile("1: xchgb %0, %2\n"
3553 _ASM_EXTABLE_UA(1b, 2b)
3554 : "+q" (st_preempted),
3556 "+m" (st->preempted));
3562 vcpu->arch.st.preempted = 0;
3564 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3565 st_preempted & KVM_VCPU_FLUSH_TLB);
3566 if (st_preempted & KVM_VCPU_FLUSH_TLB)
3567 kvm_vcpu_flush_tlb_guest(vcpu);
3569 if (!user_access_begin(st, sizeof(*st)))
3572 if (!user_access_begin(st, sizeof(*st)))
3575 unsafe_put_user(0, &st->preempted, out);
3576 vcpu->arch.st.preempted = 0;
3579 unsafe_get_user(version, &st->version, out);
3581 version += 1; /* first time write, random junk */
3584 unsafe_put_user(version, &st->version, out);
3588 unsafe_get_user(steal, &st->steal, out);
3589 steal += current->sched_info.run_delay -
3590 vcpu->arch.st.last_steal;
3591 vcpu->arch.st.last_steal = current->sched_info.run_delay;
3592 unsafe_put_user(steal, &st->steal, out);
3595 unsafe_put_user(version, &st->version, out);
3600 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3603 static bool kvm_is_msr_to_save(u32 msr_index)
3607 for (i = 0; i < num_msrs_to_save; i++) {
3608 if (msrs_to_save[i] == msr_index)
3615 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3617 u32 msr = msr_info->index;
3618 u64 data = msr_info->data;
3620 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3621 return kvm_xen_write_hypercall_page(vcpu, data);
3624 case MSR_AMD64_NB_CFG:
3625 case MSR_IA32_UCODE_WRITE:
3626 case MSR_VM_HSAVE_PA:
3627 case MSR_AMD64_PATCH_LOADER:
3628 case MSR_AMD64_BU_CFG2:
3629 case MSR_AMD64_DC_CFG:
3630 case MSR_F15H_EX_CFG:
3633 case MSR_IA32_UCODE_REV:
3634 if (msr_info->host_initiated)
3635 vcpu->arch.microcode_version = data;
3637 case MSR_IA32_ARCH_CAPABILITIES:
3638 if (!msr_info->host_initiated)
3640 vcpu->arch.arch_capabilities = data;
3642 case MSR_IA32_PERF_CAPABILITIES:
3643 if (!msr_info->host_initiated)
3645 if (data & ~kvm_caps.supported_perf_cap)
3649 * Note, this is not just a performance optimization! KVM
3650 * disallows changing feature MSRs after the vCPU has run; PMU
3651 * refresh will bug the VM if called after the vCPU has run.
3653 if (vcpu->arch.perf_capabilities == data)
3656 vcpu->arch.perf_capabilities = data;
3657 kvm_pmu_refresh(vcpu);
3659 case MSR_IA32_PRED_CMD:
3660 if (!msr_info->host_initiated && !guest_has_pred_cmd_msr(vcpu))
3663 if (!boot_cpu_has(X86_FEATURE_IBPB) || (data & ~PRED_CMD_IBPB))
3668 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
3670 case MSR_IA32_FLUSH_CMD:
3671 if (!msr_info->host_initiated &&
3672 !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D))
3675 if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH))
3680 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
3683 return set_efer(vcpu, msr_info);
3685 data &= ~(u64)0x40; /* ignore flush filter disable */
3686 data &= ~(u64)0x100; /* ignore ignne emulation enable */
3687 data &= ~(u64)0x8; /* ignore TLB cache disable */
3689 /* Handle McStatusWrEn */
3690 if (data == BIT_ULL(18)) {
3691 vcpu->arch.msr_hwcr = data;
3692 } else if (data != 0) {
3693 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3697 case MSR_FAM10H_MMIO_CONF_BASE:
3699 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3703 case MSR_IA32_CR_PAT:
3704 if (!kvm_pat_valid(data))
3707 vcpu->arch.pat = data;
3709 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
3710 case MSR_MTRRdefType:
3711 return kvm_mtrr_set_msr(vcpu, msr, data);
3712 case MSR_IA32_APICBASE:
3713 return kvm_set_apic_base(vcpu, msr_info);
3714 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3715 return kvm_x2apic_msr_write(vcpu, msr, data);
3716 case MSR_IA32_TSC_DEADLINE:
3717 kvm_set_lapic_tscdeadline_msr(vcpu, data);
3719 case MSR_IA32_TSC_ADJUST:
3720 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3721 if (!msr_info->host_initiated) {
3722 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3723 adjust_tsc_offset_guest(vcpu, adj);
3724 /* Before back to guest, tsc_timestamp must be adjusted
3725 * as well, otherwise guest's percpu pvclock time could jump.
3727 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3729 vcpu->arch.ia32_tsc_adjust_msr = data;
3732 case MSR_IA32_MISC_ENABLE: {
3733 u64 old_val = vcpu->arch.ia32_misc_enable_msr;
3735 if (!msr_info->host_initiated) {
3737 if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK)
3740 /* R bits, i.e. writes are ignored, but don't fault. */
3741 data = data & ~MSR_IA32_MISC_ENABLE_EMON;
3742 data |= old_val & MSR_IA32_MISC_ENABLE_EMON;
3745 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3746 ((old_val ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3747 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3749 vcpu->arch.ia32_misc_enable_msr = data;
3750 kvm_update_cpuid_runtime(vcpu);
3752 vcpu->arch.ia32_misc_enable_msr = data;
3756 case MSR_IA32_SMBASE:
3757 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
3759 vcpu->arch.smbase = data;
3761 case MSR_IA32_POWER_CTL:
3762 vcpu->arch.msr_ia32_power_ctl = data;
3765 if (msr_info->host_initiated) {
3766 kvm_synchronize_tsc(vcpu, data);
3768 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3769 adjust_tsc_offset_guest(vcpu, adj);
3770 vcpu->arch.ia32_tsc_adjust_msr += adj;
3774 if (!msr_info->host_initiated &&
3775 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3778 * KVM supports exposing PT to the guest, but does not support
3779 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3780 * XSAVES/XRSTORS to save/restore PT MSRs.
3782 if (data & ~kvm_caps.supported_xss)
3784 vcpu->arch.ia32_xss = data;
3785 kvm_update_cpuid_runtime(vcpu);
3788 if (!msr_info->host_initiated)
3790 vcpu->arch.smi_count = data;
3792 case MSR_KVM_WALL_CLOCK_NEW:
3793 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3796 vcpu->kvm->arch.wall_clock = data;
3797 kvm_write_wall_clock(vcpu->kvm, data, 0);
3799 case MSR_KVM_WALL_CLOCK:
3800 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3803 vcpu->kvm->arch.wall_clock = data;
3804 kvm_write_wall_clock(vcpu->kvm, data, 0);
3806 case MSR_KVM_SYSTEM_TIME_NEW:
3807 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3810 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3812 case MSR_KVM_SYSTEM_TIME:
3813 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3816 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated);
3818 case MSR_KVM_ASYNC_PF_EN:
3819 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3822 if (kvm_pv_enable_async_pf(vcpu, data))
3825 case MSR_KVM_ASYNC_PF_INT:
3826 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3829 if (kvm_pv_enable_async_pf_int(vcpu, data))
3832 case MSR_KVM_ASYNC_PF_ACK:
3833 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3836 vcpu->arch.apf.pageready_pending = false;
3837 kvm_check_async_pf_completion(vcpu);
3840 case MSR_KVM_STEAL_TIME:
3841 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3844 if (unlikely(!sched_info_on()))
3847 if (data & KVM_STEAL_RESERVED_MASK)
3850 vcpu->arch.st.msr_val = data;
3852 if (!(data & KVM_MSR_ENABLED))
3855 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3858 case MSR_KVM_PV_EOI_EN:
3859 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3862 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
3866 case MSR_KVM_POLL_CONTROL:
3867 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3870 /* only enable bit supported */
3871 if (data & (-1ULL << 1))
3874 vcpu->arch.msr_kvm_poll_control = data;
3877 case MSR_IA32_MCG_CTL:
3878 case MSR_IA32_MCG_STATUS:
3879 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3880 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3881 return set_msr_mce(vcpu, msr_info);
3883 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3884 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3885 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3886 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3887 if (kvm_pmu_is_valid_msr(vcpu, msr))
3888 return kvm_pmu_set_msr(vcpu, msr_info);
3891 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3893 case MSR_K7_CLK_CTL:
3895 * Ignore all writes to this no longer documented MSR.
3896 * Writes are only relevant for old K7 processors,
3897 * all pre-dating SVM, but a recommended workaround from
3898 * AMD for these chips. It is possible to specify the
3899 * affected processor models on the command line, hence
3900 * the need to ignore the workaround.
3903 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3904 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3905 case HV_X64_MSR_SYNDBG_OPTIONS:
3906 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3907 case HV_X64_MSR_CRASH_CTL:
3908 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3909 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3910 case HV_X64_MSR_TSC_EMULATION_CONTROL:
3911 case HV_X64_MSR_TSC_EMULATION_STATUS:
3912 case HV_X64_MSR_TSC_INVARIANT_CONTROL:
3913 return kvm_hv_set_msr_common(vcpu, msr, data,
3914 msr_info->host_initiated);
3915 case MSR_IA32_BBL_CR_CTL3:
3916 /* Drop writes to this legacy MSR -- see rdmsr
3917 * counterpart for further detail.
3919 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3921 case MSR_AMD64_OSVW_ID_LENGTH:
3922 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3924 vcpu->arch.osvw.length = data;
3926 case MSR_AMD64_OSVW_STATUS:
3927 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3929 vcpu->arch.osvw.status = data;
3931 case MSR_PLATFORM_INFO:
3932 if (!msr_info->host_initiated ||
3933 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3934 cpuid_fault_enabled(vcpu)))
3936 vcpu->arch.msr_platform_info = data;
3938 case MSR_MISC_FEATURES_ENABLES:
3939 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3940 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3941 !supports_cpuid_fault(vcpu)))
3943 vcpu->arch.msr_misc_features_enables = data;
3945 #ifdef CONFIG_X86_64
3947 if (!msr_info->host_initiated &&
3948 !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3951 if (data & ~kvm_guest_supported_xfd(vcpu))
3954 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
3956 case MSR_IA32_XFD_ERR:
3957 if (!msr_info->host_initiated &&
3958 !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3961 if (data & ~kvm_guest_supported_xfd(vcpu))
3964 vcpu->arch.guest_fpu.xfd_err = data;
3968 if (kvm_pmu_is_valid_msr(vcpu, msr))
3969 return kvm_pmu_set_msr(vcpu, msr_info);
3972 * Userspace is allowed to write '0' to MSRs that KVM reports
3973 * as to-be-saved, even if an MSRs isn't fully supported.
3975 if (msr_info->host_initiated && !data &&
3976 kvm_is_msr_to_save(msr))
3979 return KVM_MSR_RET_INVALID;
3983 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3985 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3988 u64 mcg_cap = vcpu->arch.mcg_cap;
3989 unsigned bank_num = mcg_cap & 0xff;
3990 u32 offset, last_msr;
3993 case MSR_IA32_P5_MC_ADDR:
3994 case MSR_IA32_P5_MC_TYPE:
3997 case MSR_IA32_MCG_CAP:
3998 data = vcpu->arch.mcg_cap;
4000 case MSR_IA32_MCG_CTL:
4001 if (!(mcg_cap & MCG_CTL_P) && !host)
4003 data = vcpu->arch.mcg_ctl;
4005 case MSR_IA32_MCG_STATUS:
4006 data = vcpu->arch.mcg_status;
4008 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4009 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
4013 if (!(mcg_cap & MCG_CMCI_P) && !host)
4015 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
4016 last_msr + 1 - MSR_IA32_MC0_CTL2);
4017 data = vcpu->arch.mci_ctl2_banks[offset];
4019 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4020 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
4024 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
4025 last_msr + 1 - MSR_IA32_MC0_CTL);
4026 data = vcpu->arch.mce_banks[offset];
4035 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4037 switch (msr_info->index) {
4038 case MSR_IA32_PLATFORM_ID:
4039 case MSR_IA32_EBL_CR_POWERON:
4040 case MSR_IA32_LASTBRANCHFROMIP:
4041 case MSR_IA32_LASTBRANCHTOIP:
4042 case MSR_IA32_LASTINTFROMIP:
4043 case MSR_IA32_LASTINTTOIP:
4044 case MSR_AMD64_SYSCFG:
4045 case MSR_K8_TSEG_ADDR:
4046 case MSR_K8_TSEG_MASK:
4047 case MSR_VM_HSAVE_PA:
4048 case MSR_K8_INT_PENDING_MSG:
4049 case MSR_AMD64_NB_CFG:
4050 case MSR_FAM10H_MMIO_CONF_BASE:
4051 case MSR_AMD64_BU_CFG2:
4052 case MSR_IA32_PERF_CTL:
4053 case MSR_AMD64_DC_CFG:
4054 case MSR_F15H_EX_CFG:
4056 * Intel Sandy Bridge CPUs must support the RAPL (running average power
4057 * limit) MSRs. Just return 0, as we do not want to expose the host
4058 * data here. Do not conditionalize this on CPUID, as KVM does not do
4059 * so for existing CPU-specific MSRs.
4061 case MSR_RAPL_POWER_UNIT:
4062 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */
4063 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */
4064 case MSR_PKG_ENERGY_STATUS: /* Total package */
4065 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */
4068 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4069 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4070 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4071 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4072 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4073 return kvm_pmu_get_msr(vcpu, msr_info);
4076 case MSR_IA32_UCODE_REV:
4077 msr_info->data = vcpu->arch.microcode_version;
4079 case MSR_IA32_ARCH_CAPABILITIES:
4080 if (!msr_info->host_initiated &&
4081 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
4083 msr_info->data = vcpu->arch.arch_capabilities;
4085 case MSR_IA32_PERF_CAPABILITIES:
4086 if (!msr_info->host_initiated &&
4087 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
4089 msr_info->data = vcpu->arch.perf_capabilities;
4091 case MSR_IA32_POWER_CTL:
4092 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
4094 case MSR_IA32_TSC: {
4096 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
4097 * even when not intercepted. AMD manual doesn't explicitly
4098 * state this but appears to behave the same.
4100 * On userspace reads and writes, however, we unconditionally
4101 * return L1's TSC value to ensure backwards-compatible
4102 * behavior for migration.
4106 if (msr_info->host_initiated) {
4107 offset = vcpu->arch.l1_tsc_offset;
4108 ratio = vcpu->arch.l1_tsc_scaling_ratio;
4110 offset = vcpu->arch.tsc_offset;
4111 ratio = vcpu->arch.tsc_scaling_ratio;
4114 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
4117 case MSR_IA32_CR_PAT:
4118 msr_info->data = vcpu->arch.pat;
4121 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
4122 case MSR_MTRRdefType:
4123 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
4124 case 0xcd: /* fsb frequency */
4128 * MSR_EBC_FREQUENCY_ID
4129 * Conservative value valid for even the basic CPU models.
4130 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
4131 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
4132 * and 266MHz for model 3, or 4. Set Core Clock
4133 * Frequency to System Bus Frequency Ratio to 1 (bits
4134 * 31:24) even though these are only valid for CPU
4135 * models > 2, however guests may end up dividing or
4136 * multiplying by zero otherwise.
4138 case MSR_EBC_FREQUENCY_ID:
4139 msr_info->data = 1 << 24;
4141 case MSR_IA32_APICBASE:
4142 msr_info->data = kvm_get_apic_base(vcpu);
4144 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
4145 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
4146 case MSR_IA32_TSC_DEADLINE:
4147 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
4149 case MSR_IA32_TSC_ADJUST:
4150 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
4152 case MSR_IA32_MISC_ENABLE:
4153 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
4155 case MSR_IA32_SMBASE:
4156 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
4158 msr_info->data = vcpu->arch.smbase;
4161 msr_info->data = vcpu->arch.smi_count;
4163 case MSR_IA32_PERF_STATUS:
4164 /* TSC increment by tick */
4165 msr_info->data = 1000ULL;
4166 /* CPU multiplier */
4167 msr_info->data |= (((uint64_t)4ULL) << 40);
4170 msr_info->data = vcpu->arch.efer;
4172 case MSR_KVM_WALL_CLOCK:
4173 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4176 msr_info->data = vcpu->kvm->arch.wall_clock;
4178 case MSR_KVM_WALL_CLOCK_NEW:
4179 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4182 msr_info->data = vcpu->kvm->arch.wall_clock;
4184 case MSR_KVM_SYSTEM_TIME:
4185 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4188 msr_info->data = vcpu->arch.time;
4190 case MSR_KVM_SYSTEM_TIME_NEW:
4191 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4194 msr_info->data = vcpu->arch.time;
4196 case MSR_KVM_ASYNC_PF_EN:
4197 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4200 msr_info->data = vcpu->arch.apf.msr_en_val;
4202 case MSR_KVM_ASYNC_PF_INT:
4203 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4206 msr_info->data = vcpu->arch.apf.msr_int_val;
4208 case MSR_KVM_ASYNC_PF_ACK:
4209 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4214 case MSR_KVM_STEAL_TIME:
4215 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4218 msr_info->data = vcpu->arch.st.msr_val;
4220 case MSR_KVM_PV_EOI_EN:
4221 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4224 msr_info->data = vcpu->arch.pv_eoi.msr_val;
4226 case MSR_KVM_POLL_CONTROL:
4227 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4230 msr_info->data = vcpu->arch.msr_kvm_poll_control;
4232 case MSR_IA32_P5_MC_ADDR:
4233 case MSR_IA32_P5_MC_TYPE:
4234 case MSR_IA32_MCG_CAP:
4235 case MSR_IA32_MCG_CTL:
4236 case MSR_IA32_MCG_STATUS:
4237 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4238 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4239 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4240 msr_info->host_initiated);
4242 if (!msr_info->host_initiated &&
4243 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4245 msr_info->data = vcpu->arch.ia32_xss;
4247 case MSR_K7_CLK_CTL:
4249 * Provide expected ramp-up count for K7. All other
4250 * are set to zero, indicating minimum divisors for
4253 * This prevents guest kernels on AMD host with CPU
4254 * type 6, model 8 and higher from exploding due to
4255 * the rdmsr failing.
4257 msr_info->data = 0x20000000;
4259 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4260 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4261 case HV_X64_MSR_SYNDBG_OPTIONS:
4262 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4263 case HV_X64_MSR_CRASH_CTL:
4264 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4265 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4266 case HV_X64_MSR_TSC_EMULATION_CONTROL:
4267 case HV_X64_MSR_TSC_EMULATION_STATUS:
4268 case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4269 return kvm_hv_get_msr_common(vcpu,
4270 msr_info->index, &msr_info->data,
4271 msr_info->host_initiated);
4272 case MSR_IA32_BBL_CR_CTL3:
4273 /* This legacy MSR exists but isn't fully documented in current
4274 * silicon. It is however accessed by winxp in very narrow
4275 * scenarios where it sets bit #19, itself documented as
4276 * a "reserved" bit. Best effort attempt to source coherent
4277 * read data here should the balance of the register be
4278 * interpreted by the guest:
4280 * L2 cache control register 3: 64GB range, 256KB size,
4281 * enabled, latency 0x1, configured
4283 msr_info->data = 0xbe702111;
4285 case MSR_AMD64_OSVW_ID_LENGTH:
4286 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4288 msr_info->data = vcpu->arch.osvw.length;
4290 case MSR_AMD64_OSVW_STATUS:
4291 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4293 msr_info->data = vcpu->arch.osvw.status;
4295 case MSR_PLATFORM_INFO:
4296 if (!msr_info->host_initiated &&
4297 !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4299 msr_info->data = vcpu->arch.msr_platform_info;
4301 case MSR_MISC_FEATURES_ENABLES:
4302 msr_info->data = vcpu->arch.msr_misc_features_enables;
4305 msr_info->data = vcpu->arch.msr_hwcr;
4307 #ifdef CONFIG_X86_64
4309 if (!msr_info->host_initiated &&
4310 !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4313 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4315 case MSR_IA32_XFD_ERR:
4316 if (!msr_info->host_initiated &&
4317 !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4320 msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4324 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4325 return kvm_pmu_get_msr(vcpu, msr_info);
4328 * Userspace is allowed to read MSRs that KVM reports as
4329 * to-be-saved, even if an MSR isn't fully supported.
4331 if (msr_info->host_initiated &&
4332 kvm_is_msr_to_save(msr_info->index)) {
4337 return KVM_MSR_RET_INVALID;
4341 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4344 * Read or write a bunch of msrs. All parameters are kernel addresses.
4346 * @return number of msrs set successfully.
4348 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4349 struct kvm_msr_entry *entries,
4350 int (*do_msr)(struct kvm_vcpu *vcpu,
4351 unsigned index, u64 *data))
4355 for (i = 0; i < msrs->nmsrs; ++i)
4356 if (do_msr(vcpu, entries[i].index, &entries[i].data))
4363 * Read or write a bunch of msrs. Parameters are user addresses.
4365 * @return number of msrs set successfully.
4367 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4368 int (*do_msr)(struct kvm_vcpu *vcpu,
4369 unsigned index, u64 *data),
4372 struct kvm_msrs msrs;
4373 struct kvm_msr_entry *entries;
4378 if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4382 if (msrs.nmsrs >= MAX_IO_MSRS)
4385 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4386 entries = memdup_user(user_msrs->entries, size);
4387 if (IS_ERR(entries)) {
4388 r = PTR_ERR(entries);
4392 r = __msr_io(vcpu, &msrs, entries, do_msr);
4394 if (writeback && copy_to_user(user_msrs->entries, entries, size))
4402 static inline bool kvm_can_mwait_in_guest(void)
4404 return boot_cpu_has(X86_FEATURE_MWAIT) &&
4405 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
4406 boot_cpu_has(X86_FEATURE_ARAT);
4409 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4410 struct kvm_cpuid2 __user *cpuid_arg)
4412 struct kvm_cpuid2 cpuid;
4416 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4419 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4424 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4430 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4435 case KVM_CAP_IRQCHIP:
4437 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4438 case KVM_CAP_SET_TSS_ADDR:
4439 case KVM_CAP_EXT_CPUID:
4440 case KVM_CAP_EXT_EMUL_CPUID:
4441 case KVM_CAP_CLOCKSOURCE:
4443 case KVM_CAP_NOP_IO_DELAY:
4444 case KVM_CAP_MP_STATE:
4445 case KVM_CAP_SYNC_MMU:
4446 case KVM_CAP_USER_NMI:
4447 case KVM_CAP_REINJECT_CONTROL:
4448 case KVM_CAP_IRQ_INJECT_STATUS:
4449 case KVM_CAP_IOEVENTFD:
4450 case KVM_CAP_IOEVENTFD_NO_LENGTH:
4452 case KVM_CAP_PIT_STATE2:
4453 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4454 case KVM_CAP_VCPU_EVENTS:
4455 case KVM_CAP_HYPERV:
4456 case KVM_CAP_HYPERV_VAPIC:
4457 case KVM_CAP_HYPERV_SPIN:
4458 case KVM_CAP_HYPERV_SYNIC:
4459 case KVM_CAP_HYPERV_SYNIC2:
4460 case KVM_CAP_HYPERV_VP_INDEX:
4461 case KVM_CAP_HYPERV_EVENTFD:
4462 case KVM_CAP_HYPERV_TLBFLUSH:
4463 case KVM_CAP_HYPERV_SEND_IPI:
4464 case KVM_CAP_HYPERV_CPUID:
4465 case KVM_CAP_HYPERV_ENFORCE_CPUID:
4466 case KVM_CAP_SYS_HYPERV_CPUID:
4467 case KVM_CAP_PCI_SEGMENT:
4468 case KVM_CAP_DEBUGREGS:
4469 case KVM_CAP_X86_ROBUST_SINGLESTEP:
4471 case KVM_CAP_ASYNC_PF:
4472 case KVM_CAP_ASYNC_PF_INT:
4473 case KVM_CAP_GET_TSC_KHZ:
4474 case KVM_CAP_KVMCLOCK_CTRL:
4475 case KVM_CAP_READONLY_MEM:
4476 case KVM_CAP_HYPERV_TIME:
4477 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4478 case KVM_CAP_TSC_DEADLINE_TIMER:
4479 case KVM_CAP_DISABLE_QUIRKS:
4480 case KVM_CAP_SET_BOOT_CPU_ID:
4481 case KVM_CAP_SPLIT_IRQCHIP:
4482 case KVM_CAP_IMMEDIATE_EXIT:
4483 case KVM_CAP_PMU_EVENT_FILTER:
4484 case KVM_CAP_PMU_EVENT_MASKED_EVENTS:
4485 case KVM_CAP_GET_MSR_FEATURES:
4486 case KVM_CAP_MSR_PLATFORM_INFO:
4487 case KVM_CAP_EXCEPTION_PAYLOAD:
4488 case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
4489 case KVM_CAP_SET_GUEST_DEBUG:
4490 case KVM_CAP_LAST_CPU:
4491 case KVM_CAP_X86_USER_SPACE_MSR:
4492 case KVM_CAP_X86_MSR_FILTER:
4493 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4494 #ifdef CONFIG_X86_SGX_KVM
4495 case KVM_CAP_SGX_ATTRIBUTE:
4497 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4498 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4499 case KVM_CAP_SREGS2:
4500 case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4501 case KVM_CAP_VCPU_ATTRIBUTES:
4502 case KVM_CAP_SYS_ATTRIBUTES:
4504 case KVM_CAP_ENABLE_CAP:
4505 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
4506 case KVM_CAP_IRQFD_RESAMPLE:
4509 case KVM_CAP_EXIT_HYPERCALL:
4510 r = KVM_EXIT_HYPERCALL_VALID_MASK;
4512 case KVM_CAP_SET_GUEST_DEBUG2:
4513 return KVM_GUESTDBG_VALID_MASK;
4514 #ifdef CONFIG_KVM_XEN
4515 case KVM_CAP_XEN_HVM:
4516 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4517 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4518 KVM_XEN_HVM_CONFIG_SHARED_INFO |
4519 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL |
4520 KVM_XEN_HVM_CONFIG_EVTCHN_SEND;
4521 if (sched_info_on())
4522 r |= KVM_XEN_HVM_CONFIG_RUNSTATE |
4523 KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG;
4526 case KVM_CAP_SYNC_REGS:
4527 r = KVM_SYNC_X86_VALID_FIELDS;
4529 case KVM_CAP_ADJUST_CLOCK:
4530 r = KVM_CLOCK_VALID_FLAGS;
4532 case KVM_CAP_X86_DISABLE_EXITS:
4533 r = KVM_X86_DISABLE_EXITS_PAUSE;
4535 if (!mitigate_smt_rsb) {
4536 r |= KVM_X86_DISABLE_EXITS_HLT |
4537 KVM_X86_DISABLE_EXITS_CSTATE;
4539 if (kvm_can_mwait_in_guest())
4540 r |= KVM_X86_DISABLE_EXITS_MWAIT;
4543 case KVM_CAP_X86_SMM:
4544 if (!IS_ENABLED(CONFIG_KVM_SMM))
4547 /* SMBASE is usually relocated above 1M on modern chipsets,
4548 * and SMM handlers might indeed rely on 4G segment limits,
4549 * so do not report SMM to be available if real mode is
4550 * emulated via vm86 mode. Still, do not go to great lengths
4551 * to avoid userspace's usage of the feature, because it is a
4552 * fringe case that is not enabled except via specific settings
4553 * of the module parameters.
4555 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4557 case KVM_CAP_NR_VCPUS:
4558 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4560 case KVM_CAP_MAX_VCPUS:
4563 case KVM_CAP_MAX_VCPU_ID:
4564 r = KVM_MAX_VCPU_IDS;
4566 case KVM_CAP_PV_MMU: /* obsolete */
4570 r = KVM_MAX_MCE_BANKS;
4573 r = boot_cpu_has(X86_FEATURE_XSAVE);
4575 case KVM_CAP_TSC_CONTROL:
4576 case KVM_CAP_VM_TSC_CONTROL:
4577 r = kvm_caps.has_tsc_control;
4579 case KVM_CAP_X2APIC_API:
4580 r = KVM_X2APIC_API_VALID_FLAGS;
4582 case KVM_CAP_NESTED_STATE:
4583 r = kvm_x86_ops.nested_ops->get_state ?
4584 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4586 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4587 r = kvm_x86_ops.enable_l2_tlb_flush != NULL;
4589 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4590 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4592 case KVM_CAP_SMALLER_MAXPHYADDR:
4593 r = (int) allow_smaller_maxphyaddr;
4595 case KVM_CAP_STEAL_TIME:
4596 r = sched_info_on();
4598 case KVM_CAP_X86_BUS_LOCK_EXIT:
4599 if (kvm_caps.has_bus_lock_exit)
4600 r = KVM_BUS_LOCK_DETECTION_OFF |
4601 KVM_BUS_LOCK_DETECTION_EXIT;
4605 case KVM_CAP_XSAVE2: {
4606 r = xstate_required_size(kvm_get_filtered_xcr0(), false);
4607 if (r < sizeof(struct kvm_xsave))
4608 r = sizeof(struct kvm_xsave);
4611 case KVM_CAP_PMU_CAPABILITY:
4612 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4614 case KVM_CAP_DISABLE_QUIRKS2:
4615 r = KVM_X86_VALID_QUIRKS;
4617 case KVM_CAP_X86_NOTIFY_VMEXIT:
4618 r = kvm_caps.has_notify_vmexit;
4626 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr)
4628 void __user *uaddr = (void __user*)(unsigned long)attr->addr;
4630 if ((u64)(unsigned long)uaddr != attr->addr)
4631 return ERR_PTR_USR(-EFAULT);
4635 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4637 u64 __user *uaddr = kvm_get_attr_addr(attr);
4643 return PTR_ERR(uaddr);
4645 switch (attr->attr) {
4646 case KVM_X86_XCOMP_GUEST_SUPP:
4647 if (put_user(kvm_caps.supported_xcr0, uaddr))
4656 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4661 switch (attr->attr) {
4662 case KVM_X86_XCOMP_GUEST_SUPP:
4669 long kvm_arch_dev_ioctl(struct file *filp,
4670 unsigned int ioctl, unsigned long arg)
4672 void __user *argp = (void __user *)arg;
4676 case KVM_GET_MSR_INDEX_LIST: {
4677 struct kvm_msr_list __user *user_msr_list = argp;
4678 struct kvm_msr_list msr_list;
4682 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4685 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4686 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4689 if (n < msr_list.nmsrs)
4692 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4693 num_msrs_to_save * sizeof(u32)))
4695 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4697 num_emulated_msrs * sizeof(u32)))
4702 case KVM_GET_SUPPORTED_CPUID:
4703 case KVM_GET_EMULATED_CPUID: {
4704 struct kvm_cpuid2 __user *cpuid_arg = argp;
4705 struct kvm_cpuid2 cpuid;
4708 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4711 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4717 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4722 case KVM_X86_GET_MCE_CAP_SUPPORTED:
4724 if (copy_to_user(argp, &kvm_caps.supported_mce_cap,
4725 sizeof(kvm_caps.supported_mce_cap)))
4729 case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4730 struct kvm_msr_list __user *user_msr_list = argp;
4731 struct kvm_msr_list msr_list;
4735 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4738 msr_list.nmsrs = num_msr_based_features;
4739 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4742 if (n < msr_list.nmsrs)
4745 if (copy_to_user(user_msr_list->indices, &msr_based_features,
4746 num_msr_based_features * sizeof(u32)))
4752 r = msr_io(NULL, argp, do_get_msr_feature, 1);
4754 case KVM_GET_SUPPORTED_HV_CPUID:
4755 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4757 case KVM_GET_DEVICE_ATTR: {
4758 struct kvm_device_attr attr;
4760 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4762 r = kvm_x86_dev_get_attr(&attr);
4765 case KVM_HAS_DEVICE_ATTR: {
4766 struct kvm_device_attr attr;
4768 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4770 r = kvm_x86_dev_has_attr(&attr);
4781 static void wbinvd_ipi(void *garbage)
4786 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4788 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4791 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4793 /* Address WBINVD may be executed by guest */
4794 if (need_emulate_wbinvd(vcpu)) {
4795 if (static_call(kvm_x86_has_wbinvd_exit)())
4796 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4797 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4798 smp_call_function_single(vcpu->cpu,
4799 wbinvd_ipi, NULL, 1);
4802 static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4804 /* Save host pkru register if supported */
4805 vcpu->arch.host_pkru = read_pkru();
4807 /* Apply any externally detected TSC adjustments (due to suspend) */
4808 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4809 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4810 vcpu->arch.tsc_offset_adjustment = 0;
4811 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4814 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4815 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4816 rdtsc() - vcpu->arch.last_host_tsc;
4818 mark_tsc_unstable("KVM discovered backwards TSC");
4820 if (kvm_check_tsc_unstable()) {
4821 u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4822 vcpu->arch.last_guest_tsc);
4823 kvm_vcpu_write_tsc_offset(vcpu, offset);
4824 vcpu->arch.tsc_catchup = 1;
4827 if (kvm_lapic_hv_timer_in_use(vcpu))
4828 kvm_lapic_restart_hv_timer(vcpu);
4831 * On a host with synchronized TSC, there is no need to update
4832 * kvmclock on vcpu->cpu migration
4834 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4835 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4836 if (vcpu->cpu != cpu)
4837 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4841 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4844 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4846 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
4847 struct kvm_steal_time __user *st;
4848 struct kvm_memslots *slots;
4849 static const u8 preempted = KVM_VCPU_PREEMPTED;
4850 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
4853 * The vCPU can be marked preempted if and only if the VM-Exit was on
4854 * an instruction boundary and will not trigger guest emulation of any
4855 * kind (see vcpu_run). Vendor specific code controls (conservatively)
4856 * when this is true, for example allowing the vCPU to be marked
4857 * preempted if and only if the VM-Exit was due to a host interrupt.
4859 if (!vcpu->arch.at_instruction_boundary) {
4860 vcpu->stat.preemption_other++;
4864 vcpu->stat.preemption_reported++;
4865 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4868 if (vcpu->arch.st.preempted)
4871 /* This happens on process exit */
4872 if (unlikely(current->mm != vcpu->kvm->mm))
4875 slots = kvm_memslots(vcpu->kvm);
4877 if (unlikely(slots->generation != ghc->generation ||
4879 kvm_is_error_hva(ghc->hva) || !ghc->memslot))
4882 st = (struct kvm_steal_time __user *)ghc->hva;
4883 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
4885 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
4886 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4888 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
4891 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4895 if (vcpu->preempted) {
4896 if (!vcpu->arch.guest_state_protected)
4897 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4900 * Take the srcu lock as memslots will be accessed to check the gfn
4901 * cache generation against the memslots generation.
4903 idx = srcu_read_lock(&vcpu->kvm->srcu);
4904 if (kvm_xen_msr_enabled(vcpu->kvm))
4905 kvm_xen_runstate_set_preempted(vcpu);
4907 kvm_steal_time_set_preempted(vcpu);
4908 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4911 static_call(kvm_x86_vcpu_put)(vcpu);
4912 vcpu->arch.last_host_tsc = rdtsc();
4915 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4916 struct kvm_lapic_state *s)
4918 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
4920 return kvm_apic_get_state(vcpu, s);
4923 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4924 struct kvm_lapic_state *s)
4928 r = kvm_apic_set_state(vcpu, s);
4931 update_cr8_intercept(vcpu);
4936 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4939 * We can accept userspace's request for interrupt injection
4940 * as long as we have a place to store the interrupt number.
4941 * The actual injection will happen when the CPU is able to
4942 * deliver the interrupt.
4944 if (kvm_cpu_has_extint(vcpu))
4947 /* Acknowledging ExtINT does not happen if LINT0 is masked. */
4948 return (!lapic_in_kernel(vcpu) ||
4949 kvm_apic_accept_pic_intr(vcpu));
4952 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4955 * Do not cause an interrupt window exit if an exception
4956 * is pending or an event needs reinjection; userspace
4957 * might want to inject the interrupt manually using KVM_SET_REGS
4958 * or KVM_SET_SREGS. For that to work, we must be at an
4959 * instruction boundary and with no events half-injected.
4961 return (kvm_arch_interrupt_allowed(vcpu) &&
4962 kvm_cpu_accept_dm_intr(vcpu) &&
4963 !kvm_event_needs_reinjection(vcpu) &&
4964 !kvm_is_exception_pending(vcpu));
4967 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4968 struct kvm_interrupt *irq)
4970 if (irq->irq >= KVM_NR_INTERRUPTS)
4973 if (!irqchip_in_kernel(vcpu->kvm)) {
4974 kvm_queue_interrupt(vcpu, irq->irq, false);
4975 kvm_make_request(KVM_REQ_EVENT, vcpu);
4980 * With in-kernel LAPIC, we only use this to inject EXTINT, so
4981 * fail for in-kernel 8259.
4983 if (pic_in_kernel(vcpu->kvm))
4986 if (vcpu->arch.pending_external_vector != -1)
4989 vcpu->arch.pending_external_vector = irq->irq;
4990 kvm_make_request(KVM_REQ_EVENT, vcpu);
4994 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4996 kvm_inject_nmi(vcpu);
5001 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
5002 struct kvm_tpr_access_ctl *tac)
5006 vcpu->arch.tpr_access_reporting = !!tac->enabled;
5010 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
5014 unsigned bank_num = mcg_cap & 0xff, bank;
5017 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
5019 if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000))
5022 vcpu->arch.mcg_cap = mcg_cap;
5023 /* Init IA32_MCG_CTL to all 1s */
5024 if (mcg_cap & MCG_CTL_P)
5025 vcpu->arch.mcg_ctl = ~(u64)0;
5026 /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */
5027 for (bank = 0; bank < bank_num; bank++) {
5028 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
5029 if (mcg_cap & MCG_CMCI_P)
5030 vcpu->arch.mci_ctl2_banks[bank] = 0;
5033 kvm_apic_after_set_mcg_cap(vcpu);
5035 static_call(kvm_x86_setup_mce)(vcpu);
5041 * Validate this is an UCNA (uncorrectable no action) error by checking the
5042 * MCG_STATUS and MCi_STATUS registers:
5043 * - none of the bits for Machine Check Exceptions are set
5044 * - both the VAL (valid) and UC (uncorrectable) bits are set
5045 * MCI_STATUS_PCC - Processor Context Corrupted
5046 * MCI_STATUS_S - Signaled as a Machine Check Exception
5047 * MCI_STATUS_AR - Software recoverable Action Required
5049 static bool is_ucna(struct kvm_x86_mce *mce)
5051 return !mce->mcg_status &&
5052 !(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) &&
5053 (mce->status & MCI_STATUS_VAL) &&
5054 (mce->status & MCI_STATUS_UC);
5057 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks)
5059 u64 mcg_cap = vcpu->arch.mcg_cap;
5061 banks[1] = mce->status;
5062 banks[2] = mce->addr;
5063 banks[3] = mce->misc;
5064 vcpu->arch.mcg_status = mce->mcg_status;
5066 if (!(mcg_cap & MCG_CMCI_P) ||
5067 !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN))
5070 if (lapic_in_kernel(vcpu))
5071 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI);
5076 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
5077 struct kvm_x86_mce *mce)
5079 u64 mcg_cap = vcpu->arch.mcg_cap;
5080 unsigned bank_num = mcg_cap & 0xff;
5081 u64 *banks = vcpu->arch.mce_banks;
5083 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
5086 banks += array_index_nospec(4 * mce->bank, 4 * bank_num);
5089 return kvm_vcpu_x86_set_ucna(vcpu, mce, banks);
5092 * if IA32_MCG_CTL is not all 1s, the uncorrected error
5093 * reporting is disabled
5095 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
5096 vcpu->arch.mcg_ctl != ~(u64)0)
5099 * if IA32_MCi_CTL is not all 1s, the uncorrected error
5100 * reporting is disabled for the bank
5102 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
5104 if (mce->status & MCI_STATUS_UC) {
5105 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
5106 !kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) {
5107 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5110 if (banks[1] & MCI_STATUS_VAL)
5111 mce->status |= MCI_STATUS_OVER;
5112 banks[2] = mce->addr;
5113 banks[3] = mce->misc;
5114 vcpu->arch.mcg_status = mce->mcg_status;
5115 banks[1] = mce->status;
5116 kvm_queue_exception(vcpu, MC_VECTOR);
5117 } else if (!(banks[1] & MCI_STATUS_VAL)
5118 || !(banks[1] & MCI_STATUS_UC)) {
5119 if (banks[1] & MCI_STATUS_VAL)
5120 mce->status |= MCI_STATUS_OVER;
5121 banks[2] = mce->addr;
5122 banks[3] = mce->misc;
5123 banks[1] = mce->status;
5125 banks[1] |= MCI_STATUS_OVER;
5129 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
5130 struct kvm_vcpu_events *events)
5132 struct kvm_queued_exception *ex;
5136 #ifdef CONFIG_KVM_SMM
5137 if (kvm_check_request(KVM_REQ_SMI, vcpu))
5142 * KVM's ABI only allows for one exception to be migrated. Luckily,
5143 * the only time there can be two queued exceptions is if there's a
5144 * non-exiting _injected_ exception, and a pending exiting exception.
5145 * In that case, ignore the VM-Exiting exception as it's an extension
5146 * of the injected exception.
5148 if (vcpu->arch.exception_vmexit.pending &&
5149 !vcpu->arch.exception.pending &&
5150 !vcpu->arch.exception.injected)
5151 ex = &vcpu->arch.exception_vmexit;
5153 ex = &vcpu->arch.exception;
5156 * In guest mode, payload delivery should be deferred if the exception
5157 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1
5158 * intercepts #PF, ditto for DR6 and #DBs. If the per-VM capability,
5159 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not
5160 * propagate the payload and so it cannot be safely deferred. Deliver
5161 * the payload if the capability hasn't been requested.
5163 if (!vcpu->kvm->arch.exception_payload_enabled &&
5164 ex->pending && ex->has_payload)
5165 kvm_deliver_exception_payload(vcpu, ex);
5167 memset(events, 0, sizeof(*events));
5170 * The API doesn't provide the instruction length for software
5171 * exceptions, so don't report them. As long as the guest RIP
5172 * isn't advanced, we should expect to encounter the exception
5175 if (!kvm_exception_is_soft(ex->vector)) {
5176 events->exception.injected = ex->injected;
5177 events->exception.pending = ex->pending;
5179 * For ABI compatibility, deliberately conflate
5180 * pending and injected exceptions when
5181 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
5183 if (!vcpu->kvm->arch.exception_payload_enabled)
5184 events->exception.injected |= ex->pending;
5186 events->exception.nr = ex->vector;
5187 events->exception.has_error_code = ex->has_error_code;
5188 events->exception.error_code = ex->error_code;
5189 events->exception_has_payload = ex->has_payload;
5190 events->exception_payload = ex->payload;
5192 events->interrupt.injected =
5193 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
5194 events->interrupt.nr = vcpu->arch.interrupt.nr;
5195 events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
5197 events->nmi.injected = vcpu->arch.nmi_injected;
5198 events->nmi.pending = kvm_get_nr_pending_nmis(vcpu);
5199 events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
5201 /* events->sipi_vector is never valid when reporting to user space */
5203 #ifdef CONFIG_KVM_SMM
5204 events->smi.smm = is_smm(vcpu);
5205 events->smi.pending = vcpu->arch.smi_pending;
5206 events->smi.smm_inside_nmi =
5207 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
5209 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
5211 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
5212 | KVM_VCPUEVENT_VALID_SHADOW
5213 | KVM_VCPUEVENT_VALID_SMM);
5214 if (vcpu->kvm->arch.exception_payload_enabled)
5215 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
5216 if (vcpu->kvm->arch.triple_fault_event) {
5217 events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5218 events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
5222 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
5223 struct kvm_vcpu_events *events)
5225 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
5226 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
5227 | KVM_VCPUEVENT_VALID_SHADOW
5228 | KVM_VCPUEVENT_VALID_SMM
5229 | KVM_VCPUEVENT_VALID_PAYLOAD
5230 | KVM_VCPUEVENT_VALID_TRIPLE_FAULT))
5233 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
5234 if (!vcpu->kvm->arch.exception_payload_enabled)
5236 if (events->exception.pending)
5237 events->exception.injected = 0;
5239 events->exception_has_payload = 0;
5241 events->exception.pending = 0;
5242 events->exception_has_payload = 0;
5245 if ((events->exception.injected || events->exception.pending) &&
5246 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
5249 /* INITs are latched while in SMM */
5250 if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
5251 (events->smi.smm || events->smi.pending) &&
5252 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
5258 * Flag that userspace is stuffing an exception, the next KVM_RUN will
5259 * morph the exception to a VM-Exit if appropriate. Do this only for
5260 * pending exceptions, already-injected exceptions are not subject to
5261 * intercpetion. Note, userspace that conflates pending and injected
5262 * is hosed, and will incorrectly convert an injected exception into a
5263 * pending exception, which in turn may cause a spurious VM-Exit.
5265 vcpu->arch.exception_from_userspace = events->exception.pending;
5267 vcpu->arch.exception_vmexit.pending = false;
5269 vcpu->arch.exception.injected = events->exception.injected;
5270 vcpu->arch.exception.pending = events->exception.pending;
5271 vcpu->arch.exception.vector = events->exception.nr;
5272 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
5273 vcpu->arch.exception.error_code = events->exception.error_code;
5274 vcpu->arch.exception.has_payload = events->exception_has_payload;
5275 vcpu->arch.exception.payload = events->exception_payload;
5277 vcpu->arch.interrupt.injected = events->interrupt.injected;
5278 vcpu->arch.interrupt.nr = events->interrupt.nr;
5279 vcpu->arch.interrupt.soft = events->interrupt.soft;
5280 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
5281 static_call(kvm_x86_set_interrupt_shadow)(vcpu,
5282 events->interrupt.shadow);
5284 vcpu->arch.nmi_injected = events->nmi.injected;
5285 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) {
5286 vcpu->arch.nmi_pending = 0;
5287 atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending);
5288 kvm_make_request(KVM_REQ_NMI, vcpu);
5290 static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
5292 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
5293 lapic_in_kernel(vcpu))
5294 vcpu->arch.apic->sipi_vector = events->sipi_vector;
5296 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
5297 #ifdef CONFIG_KVM_SMM
5298 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
5299 kvm_leave_nested(vcpu);
5300 kvm_smm_changed(vcpu, events->smi.smm);
5303 vcpu->arch.smi_pending = events->smi.pending;
5305 if (events->smi.smm) {
5306 if (events->smi.smm_inside_nmi)
5307 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
5309 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
5313 if (events->smi.smm || events->smi.pending ||
5314 events->smi.smm_inside_nmi)
5318 if (lapic_in_kernel(vcpu)) {
5319 if (events->smi.latched_init)
5320 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5322 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5326 if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
5327 if (!vcpu->kvm->arch.triple_fault_event)
5329 if (events->triple_fault.pending)
5330 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5332 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5335 kvm_make_request(KVM_REQ_EVENT, vcpu);
5340 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
5341 struct kvm_debugregs *dbgregs)
5345 memset(dbgregs, 0, sizeof(*dbgregs));
5346 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
5347 kvm_get_dr(vcpu, 6, &val);
5349 dbgregs->dr7 = vcpu->arch.dr7;
5352 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5353 struct kvm_debugregs *dbgregs)
5358 if (!kvm_dr6_valid(dbgregs->dr6))
5360 if (!kvm_dr7_valid(dbgregs->dr7))
5363 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
5364 kvm_update_dr0123(vcpu);
5365 vcpu->arch.dr6 = dbgregs->dr6;
5366 vcpu->arch.dr7 = dbgregs->dr7;
5367 kvm_update_dr7(vcpu);
5372 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5373 struct kvm_xsave *guest_xsave)
5375 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5378 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5379 guest_xsave->region,
5380 sizeof(guest_xsave->region),
5384 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5385 u8 *state, unsigned int size)
5387 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5390 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5391 state, size, vcpu->arch.pkru);
5394 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5395 struct kvm_xsave *guest_xsave)
5397 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5400 return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5401 guest_xsave->region,
5402 kvm_caps.supported_xcr0,
5406 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5407 struct kvm_xcrs *guest_xcrs)
5409 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5410 guest_xcrs->nr_xcrs = 0;
5414 guest_xcrs->nr_xcrs = 1;
5415 guest_xcrs->flags = 0;
5416 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5417 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5420 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5421 struct kvm_xcrs *guest_xcrs)
5425 if (!boot_cpu_has(X86_FEATURE_XSAVE))
5428 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5431 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5432 /* Only support XCR0 currently */
5433 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5434 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5435 guest_xcrs->xcrs[i].value);
5444 * kvm_set_guest_paused() indicates to the guest kernel that it has been
5445 * stopped by the hypervisor. This function will be called from the host only.
5446 * EINVAL is returned when the host attempts to set the flag for a guest that
5447 * does not support pv clocks.
5449 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5451 if (!vcpu->arch.pv_time.active)
5453 vcpu->arch.pvclock_set_guest_stopped_request = true;
5454 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5458 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5459 struct kvm_device_attr *attr)
5463 switch (attr->attr) {
5464 case KVM_VCPU_TSC_OFFSET:
5474 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5475 struct kvm_device_attr *attr)
5477 u64 __user *uaddr = kvm_get_attr_addr(attr);
5481 return PTR_ERR(uaddr);
5483 switch (attr->attr) {
5484 case KVM_VCPU_TSC_OFFSET:
5486 if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5497 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5498 struct kvm_device_attr *attr)
5500 u64 __user *uaddr = kvm_get_attr_addr(attr);
5501 struct kvm *kvm = vcpu->kvm;
5505 return PTR_ERR(uaddr);
5507 switch (attr->attr) {
5508 case KVM_VCPU_TSC_OFFSET: {
5509 u64 offset, tsc, ns;
5510 unsigned long flags;
5514 if (get_user(offset, uaddr))
5517 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5519 matched = (vcpu->arch.virtual_tsc_khz &&
5520 kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5521 kvm->arch.last_tsc_offset == offset);
5523 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5524 ns = get_kvmclock_base_ns();
5526 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5527 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5539 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5543 struct kvm_device_attr attr;
5546 if (copy_from_user(&attr, argp, sizeof(attr)))
5549 if (attr.group != KVM_VCPU_TSC_CTRL)
5553 case KVM_HAS_DEVICE_ATTR:
5554 r = kvm_arch_tsc_has_attr(vcpu, &attr);
5556 case KVM_GET_DEVICE_ATTR:
5557 r = kvm_arch_tsc_get_attr(vcpu, &attr);
5559 case KVM_SET_DEVICE_ATTR:
5560 r = kvm_arch_tsc_set_attr(vcpu, &attr);
5567 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5568 struct kvm_enable_cap *cap)
5571 uint16_t vmcs_version;
5572 void __user *user_ptr;
5578 case KVM_CAP_HYPERV_SYNIC2:
5583 case KVM_CAP_HYPERV_SYNIC:
5584 if (!irqchip_in_kernel(vcpu->kvm))
5586 return kvm_hv_activate_synic(vcpu, cap->cap ==
5587 KVM_CAP_HYPERV_SYNIC2);
5588 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5589 if (!kvm_x86_ops.nested_ops->enable_evmcs)
5591 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5593 user_ptr = (void __user *)(uintptr_t)cap->args[0];
5594 if (copy_to_user(user_ptr, &vmcs_version,
5595 sizeof(vmcs_version)))
5599 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5600 if (!kvm_x86_ops.enable_l2_tlb_flush)
5603 return static_call(kvm_x86_enable_l2_tlb_flush)(vcpu);
5605 case KVM_CAP_HYPERV_ENFORCE_CPUID:
5606 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5608 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5609 vcpu->arch.pv_cpuid.enforce = cap->args[0];
5610 if (vcpu->arch.pv_cpuid.enforce)
5611 kvm_update_pv_runtime(vcpu);
5619 long kvm_arch_vcpu_ioctl(struct file *filp,
5620 unsigned int ioctl, unsigned long arg)
5622 struct kvm_vcpu *vcpu = filp->private_data;
5623 void __user *argp = (void __user *)arg;
5626 struct kvm_sregs2 *sregs2;
5627 struct kvm_lapic_state *lapic;
5628 struct kvm_xsave *xsave;
5629 struct kvm_xcrs *xcrs;
5637 case KVM_GET_LAPIC: {
5639 if (!lapic_in_kernel(vcpu))
5641 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5642 GFP_KERNEL_ACCOUNT);
5647 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5651 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5656 case KVM_SET_LAPIC: {
5658 if (!lapic_in_kernel(vcpu))
5660 u.lapic = memdup_user(argp, sizeof(*u.lapic));
5661 if (IS_ERR(u.lapic)) {
5662 r = PTR_ERR(u.lapic);
5666 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5669 case KVM_INTERRUPT: {
5670 struct kvm_interrupt irq;
5673 if (copy_from_user(&irq, argp, sizeof(irq)))
5675 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5679 r = kvm_vcpu_ioctl_nmi(vcpu);
5683 r = kvm_inject_smi(vcpu);
5686 case KVM_SET_CPUID: {
5687 struct kvm_cpuid __user *cpuid_arg = argp;
5688 struct kvm_cpuid cpuid;
5691 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5693 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5696 case KVM_SET_CPUID2: {
5697 struct kvm_cpuid2 __user *cpuid_arg = argp;
5698 struct kvm_cpuid2 cpuid;
5701 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5703 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5704 cpuid_arg->entries);
5707 case KVM_GET_CPUID2: {
5708 struct kvm_cpuid2 __user *cpuid_arg = argp;
5709 struct kvm_cpuid2 cpuid;
5712 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5714 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5715 cpuid_arg->entries);
5719 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5724 case KVM_GET_MSRS: {
5725 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5726 r = msr_io(vcpu, argp, do_get_msr, 1);
5727 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5730 case KVM_SET_MSRS: {
5731 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5732 r = msr_io(vcpu, argp, do_set_msr, 0);
5733 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5736 case KVM_TPR_ACCESS_REPORTING: {
5737 struct kvm_tpr_access_ctl tac;
5740 if (copy_from_user(&tac, argp, sizeof(tac)))
5742 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5746 if (copy_to_user(argp, &tac, sizeof(tac)))
5751 case KVM_SET_VAPIC_ADDR: {
5752 struct kvm_vapic_addr va;
5756 if (!lapic_in_kernel(vcpu))
5759 if (copy_from_user(&va, argp, sizeof(va)))
5761 idx = srcu_read_lock(&vcpu->kvm->srcu);
5762 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5763 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5766 case KVM_X86_SETUP_MCE: {
5770 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5772 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5775 case KVM_X86_SET_MCE: {
5776 struct kvm_x86_mce mce;
5779 if (copy_from_user(&mce, argp, sizeof(mce)))
5781 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5784 case KVM_GET_VCPU_EVENTS: {
5785 struct kvm_vcpu_events events;
5787 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5790 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5795 case KVM_SET_VCPU_EVENTS: {
5796 struct kvm_vcpu_events events;
5799 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5802 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5805 case KVM_GET_DEBUGREGS: {
5806 struct kvm_debugregs dbgregs;
5808 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5811 if (copy_to_user(argp, &dbgregs,
5812 sizeof(struct kvm_debugregs)))
5817 case KVM_SET_DEBUGREGS: {
5818 struct kvm_debugregs dbgregs;
5821 if (copy_from_user(&dbgregs, argp,
5822 sizeof(struct kvm_debugregs)))
5825 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5828 case KVM_GET_XSAVE: {
5830 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
5833 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5838 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5841 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5846 case KVM_SET_XSAVE: {
5847 int size = vcpu->arch.guest_fpu.uabi_size;
5849 u.xsave = memdup_user(argp, size);
5850 if (IS_ERR(u.xsave)) {
5851 r = PTR_ERR(u.xsave);
5855 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5859 case KVM_GET_XSAVE2: {
5860 int size = vcpu->arch.guest_fpu.uabi_size;
5862 u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT);
5867 kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
5870 if (copy_to_user(argp, u.xsave, size))
5877 case KVM_GET_XCRS: {
5878 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5883 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5886 if (copy_to_user(argp, u.xcrs,
5887 sizeof(struct kvm_xcrs)))
5892 case KVM_SET_XCRS: {
5893 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5894 if (IS_ERR(u.xcrs)) {
5895 r = PTR_ERR(u.xcrs);
5899 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5902 case KVM_SET_TSC_KHZ: {
5906 user_tsc_khz = (u32)arg;
5908 if (kvm_caps.has_tsc_control &&
5909 user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
5912 if (user_tsc_khz == 0)
5913 user_tsc_khz = tsc_khz;
5915 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5920 case KVM_GET_TSC_KHZ: {
5921 r = vcpu->arch.virtual_tsc_khz;
5924 case KVM_KVMCLOCK_CTRL: {
5925 r = kvm_set_guest_paused(vcpu);
5928 case KVM_ENABLE_CAP: {
5929 struct kvm_enable_cap cap;
5932 if (copy_from_user(&cap, argp, sizeof(cap)))
5934 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5937 case KVM_GET_NESTED_STATE: {
5938 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5942 if (!kvm_x86_ops.nested_ops->get_state)
5945 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5947 if (get_user(user_data_size, &user_kvm_nested_state->size))
5950 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5955 if (r > user_data_size) {
5956 if (put_user(r, &user_kvm_nested_state->size))
5966 case KVM_SET_NESTED_STATE: {
5967 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5968 struct kvm_nested_state kvm_state;
5972 if (!kvm_x86_ops.nested_ops->set_state)
5976 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5980 if (kvm_state.size < sizeof(kvm_state))
5983 if (kvm_state.flags &
5984 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5985 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5986 | KVM_STATE_NESTED_GIF_SET))
5989 /* nested_run_pending implies guest_mode. */
5990 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5991 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5994 idx = srcu_read_lock(&vcpu->kvm->srcu);
5995 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5996 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5999 case KVM_GET_SUPPORTED_HV_CPUID:
6000 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
6002 #ifdef CONFIG_KVM_XEN
6003 case KVM_XEN_VCPU_GET_ATTR: {
6004 struct kvm_xen_vcpu_attr xva;
6007 if (copy_from_user(&xva, argp, sizeof(xva)))
6009 r = kvm_xen_vcpu_get_attr(vcpu, &xva);
6010 if (!r && copy_to_user(argp, &xva, sizeof(xva)))
6014 case KVM_XEN_VCPU_SET_ATTR: {
6015 struct kvm_xen_vcpu_attr xva;
6018 if (copy_from_user(&xva, argp, sizeof(xva)))
6020 r = kvm_xen_vcpu_set_attr(vcpu, &xva);
6024 case KVM_GET_SREGS2: {
6025 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
6029 __get_sregs2(vcpu, u.sregs2);
6031 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
6036 case KVM_SET_SREGS2: {
6037 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
6038 if (IS_ERR(u.sregs2)) {
6039 r = PTR_ERR(u.sregs2);
6043 r = __set_sregs2(vcpu, u.sregs2);
6046 case KVM_HAS_DEVICE_ATTR:
6047 case KVM_GET_DEVICE_ATTR:
6048 case KVM_SET_DEVICE_ATTR:
6049 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
6061 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
6063 return VM_FAULT_SIGBUS;
6066 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
6070 if (addr > (unsigned int)(-3 * PAGE_SIZE))
6072 ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
6076 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
6079 return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
6082 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
6083 unsigned long kvm_nr_mmu_pages)
6085 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
6088 mutex_lock(&kvm->slots_lock);
6090 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
6091 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
6093 mutex_unlock(&kvm->slots_lock);
6097 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6099 struct kvm_pic *pic = kvm->arch.vpic;
6103 switch (chip->chip_id) {
6104 case KVM_IRQCHIP_PIC_MASTER:
6105 memcpy(&chip->chip.pic, &pic->pics[0],
6106 sizeof(struct kvm_pic_state));
6108 case KVM_IRQCHIP_PIC_SLAVE:
6109 memcpy(&chip->chip.pic, &pic->pics[1],
6110 sizeof(struct kvm_pic_state));
6112 case KVM_IRQCHIP_IOAPIC:
6113 kvm_get_ioapic(kvm, &chip->chip.ioapic);
6122 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6124 struct kvm_pic *pic = kvm->arch.vpic;
6128 switch (chip->chip_id) {
6129 case KVM_IRQCHIP_PIC_MASTER:
6130 spin_lock(&pic->lock);
6131 memcpy(&pic->pics[0], &chip->chip.pic,
6132 sizeof(struct kvm_pic_state));
6133 spin_unlock(&pic->lock);
6135 case KVM_IRQCHIP_PIC_SLAVE:
6136 spin_lock(&pic->lock);
6137 memcpy(&pic->pics[1], &chip->chip.pic,
6138 sizeof(struct kvm_pic_state));
6139 spin_unlock(&pic->lock);
6141 case KVM_IRQCHIP_IOAPIC:
6142 kvm_set_ioapic(kvm, &chip->chip.ioapic);
6148 kvm_pic_update_irq(pic);
6152 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6154 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
6156 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
6158 mutex_lock(&kps->lock);
6159 memcpy(ps, &kps->channels, sizeof(*ps));
6160 mutex_unlock(&kps->lock);
6164 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6167 struct kvm_pit *pit = kvm->arch.vpit;
6169 mutex_lock(&pit->pit_state.lock);
6170 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
6171 for (i = 0; i < 3; i++)
6172 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
6173 mutex_unlock(&pit->pit_state.lock);
6177 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6179 mutex_lock(&kvm->arch.vpit->pit_state.lock);
6180 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
6181 sizeof(ps->channels));
6182 ps->flags = kvm->arch.vpit->pit_state.flags;
6183 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
6184 memset(&ps->reserved, 0, sizeof(ps->reserved));
6188 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6192 u32 prev_legacy, cur_legacy;
6193 struct kvm_pit *pit = kvm->arch.vpit;
6195 mutex_lock(&pit->pit_state.lock);
6196 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
6197 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
6198 if (!prev_legacy && cur_legacy)
6200 memcpy(&pit->pit_state.channels, &ps->channels,
6201 sizeof(pit->pit_state.channels));
6202 pit->pit_state.flags = ps->flags;
6203 for (i = 0; i < 3; i++)
6204 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
6206 mutex_unlock(&pit->pit_state.lock);
6210 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
6211 struct kvm_reinject_control *control)
6213 struct kvm_pit *pit = kvm->arch.vpit;
6215 /* pit->pit_state.lock was overloaded to prevent userspace from getting
6216 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
6217 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
6219 mutex_lock(&pit->pit_state.lock);
6220 kvm_pit_set_reinject(pit, control->pit_reinject);
6221 mutex_unlock(&pit->pit_state.lock);
6226 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
6230 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called
6231 * before reporting dirty_bitmap to userspace. KVM flushes the buffers
6232 * on all VM-Exits, thus we only need to kick running vCPUs to force a
6235 struct kvm_vcpu *vcpu;
6238 kvm_for_each_vcpu(i, vcpu, kvm)
6239 kvm_vcpu_kick(vcpu);
6242 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
6245 if (!irqchip_in_kernel(kvm))
6248 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
6249 irq_event->irq, irq_event->level,
6254 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
6255 struct kvm_enable_cap *cap)
6263 case KVM_CAP_DISABLE_QUIRKS2:
6265 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS)
6268 case KVM_CAP_DISABLE_QUIRKS:
6269 kvm->arch.disabled_quirks = cap->args[0];
6272 case KVM_CAP_SPLIT_IRQCHIP: {
6273 mutex_lock(&kvm->lock);
6275 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
6276 goto split_irqchip_unlock;
6278 if (irqchip_in_kernel(kvm))
6279 goto split_irqchip_unlock;
6280 if (kvm->created_vcpus)
6281 goto split_irqchip_unlock;
6282 r = kvm_setup_empty_irq_routing(kvm);
6284 goto split_irqchip_unlock;
6285 /* Pairs with irqchip_in_kernel. */
6287 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
6288 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
6289 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6291 split_irqchip_unlock:
6292 mutex_unlock(&kvm->lock);
6295 case KVM_CAP_X2APIC_API:
6297 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
6300 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
6301 kvm->arch.x2apic_format = true;
6302 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
6303 kvm->arch.x2apic_broadcast_quirk_disabled = true;
6307 case KVM_CAP_X86_DISABLE_EXITS:
6309 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
6312 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
6313 kvm->arch.pause_in_guest = true;
6315 #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \
6316 "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests."
6318 if (!mitigate_smt_rsb) {
6319 if (boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible() &&
6320 (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE))
6321 pr_warn_once(SMT_RSB_MSG);
6323 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
6324 kvm_can_mwait_in_guest())
6325 kvm->arch.mwait_in_guest = true;
6326 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
6327 kvm->arch.hlt_in_guest = true;
6328 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
6329 kvm->arch.cstate_in_guest = true;
6334 case KVM_CAP_MSR_PLATFORM_INFO:
6335 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
6338 case KVM_CAP_EXCEPTION_PAYLOAD:
6339 kvm->arch.exception_payload_enabled = cap->args[0];
6342 case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
6343 kvm->arch.triple_fault_event = cap->args[0];
6346 case KVM_CAP_X86_USER_SPACE_MSR:
6348 if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK)
6350 kvm->arch.user_space_msr_mask = cap->args[0];
6353 case KVM_CAP_X86_BUS_LOCK_EXIT:
6355 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
6358 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6359 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6362 if (kvm_caps.has_bus_lock_exit &&
6363 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6364 kvm->arch.bus_lock_detection_enabled = true;
6367 #ifdef CONFIG_X86_SGX_KVM
6368 case KVM_CAP_SGX_ATTRIBUTE: {
6369 unsigned long allowed_attributes = 0;
6371 r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6375 /* KVM only supports the PROVISIONKEY privileged attribute. */
6376 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6377 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6378 kvm->arch.sgx_provisioning_allowed = true;
6384 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6386 if (!kvm_x86_ops.vm_copy_enc_context_from)
6389 r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]);
6391 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6393 if (!kvm_x86_ops.vm_move_enc_context_from)
6396 r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]);
6398 case KVM_CAP_EXIT_HYPERCALL:
6399 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6403 kvm->arch.hypercall_exit_enabled = cap->args[0];
6406 case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6408 if (cap->args[0] & ~1)
6410 kvm->arch.exit_on_emulation_error = cap->args[0];
6413 case KVM_CAP_PMU_CAPABILITY:
6415 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6418 mutex_lock(&kvm->lock);
6419 if (!kvm->created_vcpus) {
6420 kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6423 mutex_unlock(&kvm->lock);
6425 case KVM_CAP_MAX_VCPU_ID:
6427 if (cap->args[0] > KVM_MAX_VCPU_IDS)
6430 mutex_lock(&kvm->lock);
6431 if (kvm->arch.max_vcpu_ids == cap->args[0]) {
6433 } else if (!kvm->arch.max_vcpu_ids) {
6434 kvm->arch.max_vcpu_ids = cap->args[0];
6437 mutex_unlock(&kvm->lock);
6439 case KVM_CAP_X86_NOTIFY_VMEXIT:
6441 if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS)
6443 if (!kvm_caps.has_notify_vmexit)
6445 if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED))
6447 mutex_lock(&kvm->lock);
6448 if (!kvm->created_vcpus) {
6449 kvm->arch.notify_window = cap->args[0] >> 32;
6450 kvm->arch.notify_vmexit_flags = (u32)cap->args[0];
6453 mutex_unlock(&kvm->lock);
6455 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
6459 * Since the risk of disabling NX hugepages is a guest crashing
6460 * the system, ensure the userspace process has permission to
6461 * reboot the system.
6463 * Note that unlike the reboot() syscall, the process must have
6464 * this capability in the root namespace because exposing
6465 * /dev/kvm into a container does not limit the scope of the
6466 * iTLB multihit bug to that container. In other words,
6467 * this must use capable(), not ns_capable().
6469 if (!capable(CAP_SYS_BOOT)) {
6477 mutex_lock(&kvm->lock);
6478 if (!kvm->created_vcpus) {
6479 kvm->arch.disable_nx_huge_pages = true;
6482 mutex_unlock(&kvm->lock);
6491 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6493 struct kvm_x86_msr_filter *msr_filter;
6495 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6499 msr_filter->default_allow = default_allow;
6503 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6510 for (i = 0; i < msr_filter->count; i++)
6511 kfree(msr_filter->ranges[i].bitmap);
6516 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6517 struct kvm_msr_filter_range *user_range)
6519 unsigned long *bitmap = NULL;
6522 if (!user_range->nmsrs)
6525 if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK)
6528 if (!user_range->flags)
6531 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6532 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6535 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6537 return PTR_ERR(bitmap);
6539 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6540 .flags = user_range->flags,
6541 .base = user_range->base,
6542 .nmsrs = user_range->nmsrs,
6546 msr_filter->count++;
6550 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm,
6551 struct kvm_msr_filter *filter)
6553 struct kvm_x86_msr_filter *new_filter, *old_filter;
6559 if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK)
6562 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++)
6563 empty &= !filter->ranges[i].nmsrs;
6565 default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY);
6566 if (empty && !default_allow)
6569 new_filter = kvm_alloc_msr_filter(default_allow);
6573 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) {
6574 r = kvm_add_msr_filter(new_filter, &filter->ranges[i]);
6576 kvm_free_msr_filter(new_filter);
6581 mutex_lock(&kvm->lock);
6582 old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter,
6583 mutex_is_locked(&kvm->lock));
6584 mutex_unlock(&kvm->lock);
6585 synchronize_srcu(&kvm->srcu);
6587 kvm_free_msr_filter(old_filter);
6589 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6594 #ifdef CONFIG_KVM_COMPAT
6595 /* for KVM_X86_SET_MSR_FILTER */
6596 struct kvm_msr_filter_range_compat {
6603 struct kvm_msr_filter_compat {
6605 struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES];
6608 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat)
6610 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
6613 void __user *argp = (void __user *)arg;
6614 struct kvm *kvm = filp->private_data;
6618 case KVM_X86_SET_MSR_FILTER_COMPAT: {
6619 struct kvm_msr_filter __user *user_msr_filter = argp;
6620 struct kvm_msr_filter_compat filter_compat;
6621 struct kvm_msr_filter filter;
6624 if (copy_from_user(&filter_compat, user_msr_filter,
6625 sizeof(filter_compat)))
6628 filter.flags = filter_compat.flags;
6629 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6630 struct kvm_msr_filter_range_compat *cr;
6632 cr = &filter_compat.ranges[i];
6633 filter.ranges[i] = (struct kvm_msr_filter_range) {
6637 .bitmap = (__u8 *)(ulong)cr->bitmap,
6641 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
6650 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
6651 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6653 struct kvm_vcpu *vcpu;
6657 mutex_lock(&kvm->lock);
6658 kvm_for_each_vcpu(i, vcpu, kvm) {
6659 if (!vcpu->arch.pv_time.active)
6662 ret = kvm_set_guest_paused(vcpu);
6664 kvm_err("Failed to pause guest VCPU%d: %d\n",
6665 vcpu->vcpu_id, ret);
6669 mutex_unlock(&kvm->lock);
6671 return ret ? NOTIFY_BAD : NOTIFY_DONE;
6674 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6677 case PM_HIBERNATION_PREPARE:
6678 case PM_SUSPEND_PREPARE:
6679 return kvm_arch_suspend_notifier(kvm);
6684 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6686 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6688 struct kvm_clock_data data = { 0 };
6690 get_kvmclock(kvm, &data);
6691 if (copy_to_user(argp, &data, sizeof(data)))
6697 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6699 struct kvm_arch *ka = &kvm->arch;
6700 struct kvm_clock_data data;
6703 if (copy_from_user(&data, argp, sizeof(data)))
6707 * Only KVM_CLOCK_REALTIME is used, but allow passing the
6708 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6710 if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6713 kvm_hv_request_tsc_page_update(kvm);
6714 kvm_start_pvclock_update(kvm);
6715 pvclock_update_vm_gtod_copy(kvm);
6718 * This pairs with kvm_guest_time_update(): when masterclock is
6719 * in use, we use master_kernel_ns + kvmclock_offset to set
6720 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6721 * is slightly ahead) here we risk going negative on unsigned
6722 * 'system_time' when 'data.clock' is very small.
6724 if (data.flags & KVM_CLOCK_REALTIME) {
6725 u64 now_real_ns = ktime_get_real_ns();
6728 * Avoid stepping the kvmclock backwards.
6730 if (now_real_ns > data.realtime)
6731 data.clock += now_real_ns - data.realtime;
6734 if (ka->use_master_clock)
6735 now_raw_ns = ka->master_kernel_ns;
6737 now_raw_ns = get_kvmclock_base_ns();
6738 ka->kvmclock_offset = data.clock - now_raw_ns;
6739 kvm_end_pvclock_update(kvm);
6743 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
6745 struct kvm *kvm = filp->private_data;
6746 void __user *argp = (void __user *)arg;
6749 * This union makes it completely explicit to gcc-3.x
6750 * that these two variables' stack usage should be
6751 * combined, not added together.
6754 struct kvm_pit_state ps;
6755 struct kvm_pit_state2 ps2;
6756 struct kvm_pit_config pit_config;
6760 case KVM_SET_TSS_ADDR:
6761 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
6763 case KVM_SET_IDENTITY_MAP_ADDR: {
6766 mutex_lock(&kvm->lock);
6768 if (kvm->created_vcpus)
6769 goto set_identity_unlock;
6771 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
6772 goto set_identity_unlock;
6773 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
6774 set_identity_unlock:
6775 mutex_unlock(&kvm->lock);
6778 case KVM_SET_NR_MMU_PAGES:
6779 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
6781 case KVM_CREATE_IRQCHIP: {
6782 mutex_lock(&kvm->lock);
6785 if (irqchip_in_kernel(kvm))
6786 goto create_irqchip_unlock;
6789 if (kvm->created_vcpus)
6790 goto create_irqchip_unlock;
6792 r = kvm_pic_init(kvm);
6794 goto create_irqchip_unlock;
6796 r = kvm_ioapic_init(kvm);
6798 kvm_pic_destroy(kvm);
6799 goto create_irqchip_unlock;
6802 r = kvm_setup_default_irq_routing(kvm);
6804 kvm_ioapic_destroy(kvm);
6805 kvm_pic_destroy(kvm);
6806 goto create_irqchip_unlock;
6808 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
6810 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
6811 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6812 create_irqchip_unlock:
6813 mutex_unlock(&kvm->lock);
6816 case KVM_CREATE_PIT:
6817 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
6819 case KVM_CREATE_PIT2:
6821 if (copy_from_user(&u.pit_config, argp,
6822 sizeof(struct kvm_pit_config)))
6825 mutex_lock(&kvm->lock);
6828 goto create_pit_unlock;
6830 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
6834 mutex_unlock(&kvm->lock);
6836 case KVM_GET_IRQCHIP: {
6837 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6838 struct kvm_irqchip *chip;
6840 chip = memdup_user(argp, sizeof(*chip));
6847 if (!irqchip_kernel(kvm))
6848 goto get_irqchip_out;
6849 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
6851 goto get_irqchip_out;
6853 if (copy_to_user(argp, chip, sizeof(*chip)))
6854 goto get_irqchip_out;
6860 case KVM_SET_IRQCHIP: {
6861 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6862 struct kvm_irqchip *chip;
6864 chip = memdup_user(argp, sizeof(*chip));
6871 if (!irqchip_kernel(kvm))
6872 goto set_irqchip_out;
6873 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
6880 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
6883 if (!kvm->arch.vpit)
6885 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
6889 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
6896 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
6898 mutex_lock(&kvm->lock);
6900 if (!kvm->arch.vpit)
6902 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
6904 mutex_unlock(&kvm->lock);
6907 case KVM_GET_PIT2: {
6909 if (!kvm->arch.vpit)
6911 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
6915 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
6920 case KVM_SET_PIT2: {
6922 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
6924 mutex_lock(&kvm->lock);
6926 if (!kvm->arch.vpit)
6928 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
6930 mutex_unlock(&kvm->lock);
6933 case KVM_REINJECT_CONTROL: {
6934 struct kvm_reinject_control control;
6936 if (copy_from_user(&control, argp, sizeof(control)))
6939 if (!kvm->arch.vpit)
6941 r = kvm_vm_ioctl_reinject(kvm, &control);
6944 case KVM_SET_BOOT_CPU_ID:
6946 mutex_lock(&kvm->lock);
6947 if (kvm->created_vcpus)
6950 kvm->arch.bsp_vcpu_id = arg;
6951 mutex_unlock(&kvm->lock);
6953 #ifdef CONFIG_KVM_XEN
6954 case KVM_XEN_HVM_CONFIG: {
6955 struct kvm_xen_hvm_config xhc;
6957 if (copy_from_user(&xhc, argp, sizeof(xhc)))
6959 r = kvm_xen_hvm_config(kvm, &xhc);
6962 case KVM_XEN_HVM_GET_ATTR: {
6963 struct kvm_xen_hvm_attr xha;
6966 if (copy_from_user(&xha, argp, sizeof(xha)))
6968 r = kvm_xen_hvm_get_attr(kvm, &xha);
6969 if (!r && copy_to_user(argp, &xha, sizeof(xha)))
6973 case KVM_XEN_HVM_SET_ATTR: {
6974 struct kvm_xen_hvm_attr xha;
6977 if (copy_from_user(&xha, argp, sizeof(xha)))
6979 r = kvm_xen_hvm_set_attr(kvm, &xha);
6982 case KVM_XEN_HVM_EVTCHN_SEND: {
6983 struct kvm_irq_routing_xen_evtchn uxe;
6986 if (copy_from_user(&uxe, argp, sizeof(uxe)))
6988 r = kvm_xen_hvm_evtchn_send(kvm, &uxe);
6993 r = kvm_vm_ioctl_set_clock(kvm, argp);
6996 r = kvm_vm_ioctl_get_clock(kvm, argp);
6998 case KVM_SET_TSC_KHZ: {
7002 user_tsc_khz = (u32)arg;
7004 if (kvm_caps.has_tsc_control &&
7005 user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
7008 if (user_tsc_khz == 0)
7009 user_tsc_khz = tsc_khz;
7011 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz);
7016 case KVM_GET_TSC_KHZ: {
7017 r = READ_ONCE(kvm->arch.default_tsc_khz);
7020 case KVM_MEMORY_ENCRYPT_OP: {
7022 if (!kvm_x86_ops.mem_enc_ioctl)
7025 r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp);
7028 case KVM_MEMORY_ENCRYPT_REG_REGION: {
7029 struct kvm_enc_region region;
7032 if (copy_from_user(®ion, argp, sizeof(region)))
7036 if (!kvm_x86_ops.mem_enc_register_region)
7039 r = static_call(kvm_x86_mem_enc_register_region)(kvm, ®ion);
7042 case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
7043 struct kvm_enc_region region;
7046 if (copy_from_user(®ion, argp, sizeof(region)))
7050 if (!kvm_x86_ops.mem_enc_unregister_region)
7053 r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, ®ion);
7056 case KVM_HYPERV_EVENTFD: {
7057 struct kvm_hyperv_eventfd hvevfd;
7060 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
7062 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
7065 case KVM_SET_PMU_EVENT_FILTER:
7066 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
7068 case KVM_X86_SET_MSR_FILTER: {
7069 struct kvm_msr_filter __user *user_msr_filter = argp;
7070 struct kvm_msr_filter filter;
7072 if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
7075 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
7085 static void kvm_probe_feature_msr(u32 msr_index)
7087 struct kvm_msr_entry msr = {
7091 if (kvm_get_msr_feature(&msr))
7094 msr_based_features[num_msr_based_features++] = msr_index;
7097 static void kvm_probe_msr_to_save(u32 msr_index)
7101 if (rdmsr_safe(msr_index, &dummy[0], &dummy[1]))
7105 * Even MSRs that are valid in the host may not be exposed to guests in
7108 switch (msr_index) {
7109 case MSR_IA32_BNDCFGS:
7110 if (!kvm_mpx_supported())
7114 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
7115 !kvm_cpu_cap_has(X86_FEATURE_RDPID))
7118 case MSR_IA32_UMWAIT_CONTROL:
7119 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
7122 case MSR_IA32_RTIT_CTL:
7123 case MSR_IA32_RTIT_STATUS:
7124 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
7127 case MSR_IA32_RTIT_CR3_MATCH:
7128 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7129 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
7132 case MSR_IA32_RTIT_OUTPUT_BASE:
7133 case MSR_IA32_RTIT_OUTPUT_MASK:
7134 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7135 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
7136 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
7139 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
7140 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7141 (msr_index - MSR_IA32_RTIT_ADDR0_A >=
7142 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2))
7145 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR_MAX:
7146 if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >=
7147 kvm_pmu_cap.num_counters_gp)
7150 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL_MAX:
7151 if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >=
7152 kvm_pmu_cap.num_counters_gp)
7155 case MSR_ARCH_PERFMON_FIXED_CTR0 ... MSR_ARCH_PERFMON_FIXED_CTR_MAX:
7156 if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >=
7157 kvm_pmu_cap.num_counters_fixed)
7160 case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
7161 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
7162 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
7163 if (!kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2))
7167 case MSR_IA32_XFD_ERR:
7168 if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
7171 case MSR_IA32_TSX_CTRL:
7172 if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR))
7179 msrs_to_save[num_msrs_to_save++] = msr_index;
7182 static void kvm_init_msr_lists(void)
7186 BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3,
7187 "Please update the fixed PMCs in msrs_to_save_pmu[]");
7189 num_msrs_to_save = 0;
7190 num_emulated_msrs = 0;
7191 num_msr_based_features = 0;
7193 for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++)
7194 kvm_probe_msr_to_save(msrs_to_save_base[i]);
7197 for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++)
7198 kvm_probe_msr_to_save(msrs_to_save_pmu[i]);
7201 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
7202 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
7205 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
7208 for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++)
7209 kvm_probe_feature_msr(i);
7211 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++)
7212 kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]);
7215 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
7223 if (!(lapic_in_kernel(vcpu) &&
7224 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
7225 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
7236 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
7243 if (!(lapic_in_kernel(vcpu) &&
7244 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
7246 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
7248 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
7258 void kvm_set_segment(struct kvm_vcpu *vcpu,
7259 struct kvm_segment *var, int seg)
7261 static_call(kvm_x86_set_segment)(vcpu, var, seg);
7264 void kvm_get_segment(struct kvm_vcpu *vcpu,
7265 struct kvm_segment *var, int seg)
7267 static_call(kvm_x86_get_segment)(vcpu, var, seg);
7270 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
7271 struct x86_exception *exception)
7273 struct kvm_mmu *mmu = vcpu->arch.mmu;
7276 BUG_ON(!mmu_is_nested(vcpu));
7278 /* NPT walks are always user-walks */
7279 access |= PFERR_USER_MASK;
7280 t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
7285 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
7286 struct x86_exception *exception)
7288 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7290 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7291 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7293 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
7295 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
7296 struct x86_exception *exception)
7298 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7300 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7301 access |= PFERR_WRITE_MASK;
7302 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7304 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
7306 /* uses this to access any guest's mapped memory without checking CPL */
7307 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
7308 struct x86_exception *exception)
7310 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7312 return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
7315 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7316 struct kvm_vcpu *vcpu, u64 access,
7317 struct x86_exception *exception)
7319 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7321 int r = X86EMUL_CONTINUE;
7324 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7325 unsigned offset = addr & (PAGE_SIZE-1);
7326 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
7329 if (gpa == INVALID_GPA)
7330 return X86EMUL_PROPAGATE_FAULT;
7331 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
7334 r = X86EMUL_IO_NEEDED;
7346 /* used for instruction fetching */
7347 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
7348 gva_t addr, void *val, unsigned int bytes,
7349 struct x86_exception *exception)
7351 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7352 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7353 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7357 /* Inline kvm_read_guest_virt_helper for speed. */
7358 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
7360 if (unlikely(gpa == INVALID_GPA))
7361 return X86EMUL_PROPAGATE_FAULT;
7363 offset = addr & (PAGE_SIZE-1);
7364 if (WARN_ON(offset + bytes > PAGE_SIZE))
7365 bytes = (unsigned)PAGE_SIZE - offset;
7366 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
7368 if (unlikely(ret < 0))
7369 return X86EMUL_IO_NEEDED;
7371 return X86EMUL_CONTINUE;
7374 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
7375 gva_t addr, void *val, unsigned int bytes,
7376 struct x86_exception *exception)
7378 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7381 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
7382 * is returned, but our callers are not ready for that and they blindly
7383 * call kvm_inject_page_fault. Ensure that they at least do not leak
7384 * uninitialized kernel stack memory into cr2 and error code.
7386 memset(exception, 0, sizeof(*exception));
7387 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
7390 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
7392 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
7393 gva_t addr, void *val, unsigned int bytes,
7394 struct x86_exception *exception, bool system)
7396 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7400 access |= PFERR_IMPLICIT_ACCESS;
7401 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7402 access |= PFERR_USER_MASK;
7404 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
7407 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7408 struct kvm_vcpu *vcpu, u64 access,
7409 struct x86_exception *exception)
7411 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7413 int r = X86EMUL_CONTINUE;
7416 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7417 unsigned offset = addr & (PAGE_SIZE-1);
7418 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
7421 if (gpa == INVALID_GPA)
7422 return X86EMUL_PROPAGATE_FAULT;
7423 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
7425 r = X86EMUL_IO_NEEDED;
7437 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
7438 unsigned int bytes, struct x86_exception *exception,
7441 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7442 u64 access = PFERR_WRITE_MASK;
7445 access |= PFERR_IMPLICIT_ACCESS;
7446 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7447 access |= PFERR_USER_MASK;
7449 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7453 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
7454 unsigned int bytes, struct x86_exception *exception)
7456 /* kvm_write_guest_virt_system can pull in tons of pages. */
7457 vcpu->arch.l1tf_flush_l1d = true;
7459 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7460 PFERR_WRITE_MASK, exception);
7462 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
7464 static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
7465 void *insn, int insn_len)
7467 return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type,
7471 int handle_ud(struct kvm_vcpu *vcpu)
7473 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
7474 int fep_flags = READ_ONCE(force_emulation_prefix);
7475 int emul_type = EMULTYPE_TRAP_UD;
7476 char sig[5]; /* ud2; .ascii "kvm" */
7477 struct x86_exception e;
7479 if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0)))
7483 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
7484 sig, sizeof(sig), &e) == 0 &&
7485 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
7486 if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF)
7487 kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF);
7488 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
7489 emul_type = EMULTYPE_TRAP_UD_FORCED;
7492 return kvm_emulate_instruction(vcpu, emul_type);
7494 EXPORT_SYMBOL_GPL(handle_ud);
7496 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7497 gpa_t gpa, bool write)
7499 /* For APIC access vmexit */
7500 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7503 if (vcpu_match_mmio_gpa(vcpu, gpa)) {
7504 trace_vcpu_match_mmio(gva, gpa, write, true);
7511 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7512 gpa_t *gpa, struct x86_exception *exception,
7515 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7516 u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
7517 | (write ? PFERR_WRITE_MASK : 0);
7520 * currently PKRU is only applied to ept enabled guest so
7521 * there is no pkey in EPT page table for L1 guest or EPT
7522 * shadow page table for L2 guest.
7524 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
7525 !permission_fault(vcpu, vcpu->arch.walk_mmu,
7526 vcpu->arch.mmio_access, 0, access))) {
7527 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
7528 (gva & (PAGE_SIZE - 1));
7529 trace_vcpu_match_mmio(gva, *gpa, write, false);
7533 *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7535 if (*gpa == INVALID_GPA)
7538 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
7541 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
7542 const void *val, int bytes)
7546 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
7549 kvm_page_track_write(vcpu, gpa, val, bytes);
7553 struct read_write_emulator_ops {
7554 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
7556 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
7557 void *val, int bytes);
7558 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7559 int bytes, void *val);
7560 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7561 void *val, int bytes);
7565 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
7567 if (vcpu->mmio_read_completed) {
7568 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
7569 vcpu->mmio_fragments[0].gpa, val);
7570 vcpu->mmio_read_completed = 0;
7577 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7578 void *val, int bytes)
7580 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
7583 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7584 void *val, int bytes)
7586 return emulator_write_phys(vcpu, gpa, val, bytes);
7589 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7591 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7592 return vcpu_mmio_write(vcpu, gpa, bytes, val);
7595 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7596 void *val, int bytes)
7598 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7599 return X86EMUL_IO_NEEDED;
7602 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7603 void *val, int bytes)
7605 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7607 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7608 return X86EMUL_CONTINUE;
7611 static const struct read_write_emulator_ops read_emultor = {
7612 .read_write_prepare = read_prepare,
7613 .read_write_emulate = read_emulate,
7614 .read_write_mmio = vcpu_mmio_read,
7615 .read_write_exit_mmio = read_exit_mmio,
7618 static const struct read_write_emulator_ops write_emultor = {
7619 .read_write_emulate = write_emulate,
7620 .read_write_mmio = write_mmio,
7621 .read_write_exit_mmio = write_exit_mmio,
7625 static int emulator_read_write_onepage(unsigned long addr, void *val,
7627 struct x86_exception *exception,
7628 struct kvm_vcpu *vcpu,
7629 const struct read_write_emulator_ops *ops)
7633 bool write = ops->write;
7634 struct kvm_mmio_fragment *frag;
7635 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7638 * If the exit was due to a NPF we may already have a GPA.
7639 * If the GPA is present, use it to avoid the GVA to GPA table walk.
7640 * Note, this cannot be used on string operations since string
7641 * operation using rep will only have the initial GPA from the NPF
7644 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7645 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7646 gpa = ctxt->gpa_val;
7647 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7649 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7651 return X86EMUL_PROPAGATE_FAULT;
7654 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7655 return X86EMUL_CONTINUE;
7658 * Is this MMIO handled locally?
7660 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7661 if (handled == bytes)
7662 return X86EMUL_CONTINUE;
7668 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7669 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7673 return X86EMUL_CONTINUE;
7676 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7678 void *val, unsigned int bytes,
7679 struct x86_exception *exception,
7680 const struct read_write_emulator_ops *ops)
7682 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7686 if (ops->read_write_prepare &&
7687 ops->read_write_prepare(vcpu, val, bytes))
7688 return X86EMUL_CONTINUE;
7690 vcpu->mmio_nr_fragments = 0;
7692 /* Crossing a page boundary? */
7693 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7696 now = -addr & ~PAGE_MASK;
7697 rc = emulator_read_write_onepage(addr, val, now, exception,
7700 if (rc != X86EMUL_CONTINUE)
7703 if (ctxt->mode != X86EMUL_MODE_PROT64)
7709 rc = emulator_read_write_onepage(addr, val, bytes, exception,
7711 if (rc != X86EMUL_CONTINUE)
7714 if (!vcpu->mmio_nr_fragments)
7717 gpa = vcpu->mmio_fragments[0].gpa;
7719 vcpu->mmio_needed = 1;
7720 vcpu->mmio_cur_fragment = 0;
7722 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
7723 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
7724 vcpu->run->exit_reason = KVM_EXIT_MMIO;
7725 vcpu->run->mmio.phys_addr = gpa;
7727 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
7730 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
7734 struct x86_exception *exception)
7736 return emulator_read_write(ctxt, addr, val, bytes,
7737 exception, &read_emultor);
7740 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
7744 struct x86_exception *exception)
7746 return emulator_read_write(ctxt, addr, (void *)val, bytes,
7747 exception, &write_emultor);
7750 #define emulator_try_cmpxchg_user(t, ptr, old, new) \
7751 (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
7753 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
7758 struct x86_exception *exception)
7760 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7766 /* guests cmpxchg8b have to be emulated atomically */
7767 if (bytes > 8 || (bytes & (bytes - 1)))
7770 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
7772 if (gpa == INVALID_GPA ||
7773 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7777 * Emulate the atomic as a straight write to avoid #AC if SLD is
7778 * enabled in the host and the access splits a cache line.
7780 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
7781 page_line_mask = ~(cache_line_size() - 1);
7783 page_line_mask = PAGE_MASK;
7785 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
7788 hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa));
7789 if (kvm_is_error_hva(hva))
7792 hva += offset_in_page(gpa);
7796 r = emulator_try_cmpxchg_user(u8, hva, old, new);
7799 r = emulator_try_cmpxchg_user(u16, hva, old, new);
7802 r = emulator_try_cmpxchg_user(u32, hva, old, new);
7805 r = emulator_try_cmpxchg_user(u64, hva, old, new);
7812 return X86EMUL_UNHANDLEABLE;
7814 return X86EMUL_CMPXCHG_FAILED;
7816 kvm_page_track_write(vcpu, gpa, new, bytes);
7818 return X86EMUL_CONTINUE;
7821 pr_warn_once("emulating exchange as write\n");
7823 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
7826 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
7827 unsigned short port, void *data,
7828 unsigned int count, bool in)
7833 WARN_ON_ONCE(vcpu->arch.pio.count);
7834 for (i = 0; i < count; i++) {
7836 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data);
7838 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data);
7845 * Userspace must have unregistered the device while PIO
7846 * was running. Drop writes / read as 0.
7849 memset(data, 0, size * (count - i));
7858 vcpu->arch.pio.port = port;
7859 vcpu->arch.pio.in = in;
7860 vcpu->arch.pio.count = count;
7861 vcpu->arch.pio.size = size;
7864 memset(vcpu->arch.pio_data, 0, size * count);
7866 memcpy(vcpu->arch.pio_data, data, size * count);
7868 vcpu->run->exit_reason = KVM_EXIT_IO;
7869 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
7870 vcpu->run->io.size = size;
7871 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
7872 vcpu->run->io.count = count;
7873 vcpu->run->io.port = port;
7877 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7878 unsigned short port, void *val, unsigned int count)
7880 int r = emulator_pio_in_out(vcpu, size, port, val, count, true);
7882 trace_kvm_pio(KVM_PIO_IN, port, size, count, val);
7887 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
7889 int size = vcpu->arch.pio.size;
7890 unsigned int count = vcpu->arch.pio.count;
7891 memcpy(val, vcpu->arch.pio_data, size * count);
7892 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
7893 vcpu->arch.pio.count = 0;
7896 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
7897 int size, unsigned short port, void *val,
7900 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7901 if (vcpu->arch.pio.count) {
7903 * Complete a previous iteration that required userspace I/O.
7904 * Note, @count isn't guaranteed to match pio.count as userspace
7905 * can modify ECX before rerunning the vCPU. Ignore any such
7906 * shenanigans as KVM doesn't support modifying the rep count,
7907 * and the emulator ensures @count doesn't overflow the buffer.
7909 complete_emulator_pio_in(vcpu, val);
7913 return emulator_pio_in(vcpu, size, port, val, count);
7916 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
7917 unsigned short port, const void *val,
7920 trace_kvm_pio(KVM_PIO_OUT, port, size, count, val);
7921 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
7924 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
7925 int size, unsigned short port,
7926 const void *val, unsigned int count)
7928 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
7931 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
7933 return static_call(kvm_x86_get_segment_base)(vcpu, seg);
7936 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
7938 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
7941 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
7943 if (!need_emulate_wbinvd(vcpu))
7944 return X86EMUL_CONTINUE;
7946 if (static_call(kvm_x86_has_wbinvd_exit)()) {
7947 int cpu = get_cpu();
7949 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
7950 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
7951 wbinvd_ipi, NULL, 1);
7953 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
7956 return X86EMUL_CONTINUE;
7959 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
7961 kvm_emulate_wbinvd_noskip(vcpu);
7962 return kvm_skip_emulated_instruction(vcpu);
7964 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
7968 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
7970 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
7973 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
7974 unsigned long *dest)
7976 kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
7979 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
7980 unsigned long value)
7983 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
7986 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
7988 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
7991 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
7993 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7994 unsigned long value;
7998 value = kvm_read_cr0(vcpu);
8001 value = vcpu->arch.cr2;
8004 value = kvm_read_cr3(vcpu);
8007 value = kvm_read_cr4(vcpu);
8010 value = kvm_get_cr8(vcpu);
8013 kvm_err("%s: unexpected cr %u\n", __func__, cr);
8020 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
8022 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8027 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
8030 vcpu->arch.cr2 = val;
8033 res = kvm_set_cr3(vcpu, val);
8036 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
8039 res = kvm_set_cr8(vcpu, val);
8042 kvm_err("%s: unexpected cr %u\n", __func__, cr);
8049 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
8051 return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
8054 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8056 static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
8059 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8061 static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
8064 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8066 static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
8069 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8071 static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
8074 static unsigned long emulator_get_cached_segment_base(
8075 struct x86_emulate_ctxt *ctxt, int seg)
8077 return get_segment_base(emul_to_vcpu(ctxt), seg);
8080 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
8081 struct desc_struct *desc, u32 *base3,
8084 struct kvm_segment var;
8086 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
8087 *selector = var.selector;
8090 memset(desc, 0, sizeof(*desc));
8098 set_desc_limit(desc, var.limit);
8099 set_desc_base(desc, (unsigned long)var.base);
8100 #ifdef CONFIG_X86_64
8102 *base3 = var.base >> 32;
8104 desc->type = var.type;
8106 desc->dpl = var.dpl;
8107 desc->p = var.present;
8108 desc->avl = var.avl;
8116 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
8117 struct desc_struct *desc, u32 base3,
8120 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8121 struct kvm_segment var;
8123 var.selector = selector;
8124 var.base = get_desc_base(desc);
8125 #ifdef CONFIG_X86_64
8126 var.base |= ((u64)base3) << 32;
8128 var.limit = get_desc_limit(desc);
8130 var.limit = (var.limit << 12) | 0xfff;
8131 var.type = desc->type;
8132 var.dpl = desc->dpl;
8137 var.avl = desc->avl;
8138 var.present = desc->p;
8139 var.unusable = !var.present;
8142 kvm_set_segment(vcpu, &var, seg);
8146 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8147 u32 msr_index, u64 *pdata)
8149 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8152 r = kvm_get_msr_with_filter(vcpu, msr_index, pdata);
8154 return X86EMUL_UNHANDLEABLE;
8157 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
8158 complete_emulated_rdmsr, r))
8159 return X86EMUL_IO_NEEDED;
8161 trace_kvm_msr_read_ex(msr_index);
8162 return X86EMUL_PROPAGATE_FAULT;
8165 trace_kvm_msr_read(msr_index, *pdata);
8166 return X86EMUL_CONTINUE;
8169 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8170 u32 msr_index, u64 data)
8172 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8175 r = kvm_set_msr_with_filter(vcpu, msr_index, data);
8177 return X86EMUL_UNHANDLEABLE;
8180 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
8181 complete_emulated_msr_access, r))
8182 return X86EMUL_IO_NEEDED;
8184 trace_kvm_msr_write_ex(msr_index, data);
8185 return X86EMUL_PROPAGATE_FAULT;
8188 trace_kvm_msr_write(msr_index, data);
8189 return X86EMUL_CONTINUE;
8192 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
8193 u32 msr_index, u64 *pdata)
8195 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
8198 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
8201 if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc))
8206 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
8207 u32 pmc, u64 *pdata)
8209 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
8212 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
8214 emul_to_vcpu(ctxt)->arch.halt_request = 1;
8217 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
8218 struct x86_instruction_info *info,
8219 enum x86_intercept_stage stage)
8221 return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
8225 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
8226 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
8229 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
8232 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
8234 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
8237 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
8239 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
8242 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
8244 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
8247 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
8249 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
8252 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
8254 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
8257 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
8259 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
8262 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
8264 static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
8267 static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt)
8269 return is_smm(emul_to_vcpu(ctxt));
8272 static bool emulator_is_guest_mode(struct x86_emulate_ctxt *ctxt)
8274 return is_guest_mode(emul_to_vcpu(ctxt));
8277 #ifndef CONFIG_KVM_SMM
8278 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt)
8281 return X86EMUL_UNHANDLEABLE;
8285 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
8287 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
8290 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
8292 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
8295 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt)
8297 struct kvm *kvm = emul_to_vcpu(ctxt)->kvm;
8299 if (!kvm->vm_bugged)
8303 static const struct x86_emulate_ops emulate_ops = {
8304 .vm_bugged = emulator_vm_bugged,
8305 .read_gpr = emulator_read_gpr,
8306 .write_gpr = emulator_write_gpr,
8307 .read_std = emulator_read_std,
8308 .write_std = emulator_write_std,
8309 .fetch = kvm_fetch_guest_virt,
8310 .read_emulated = emulator_read_emulated,
8311 .write_emulated = emulator_write_emulated,
8312 .cmpxchg_emulated = emulator_cmpxchg_emulated,
8313 .invlpg = emulator_invlpg,
8314 .pio_in_emulated = emulator_pio_in_emulated,
8315 .pio_out_emulated = emulator_pio_out_emulated,
8316 .get_segment = emulator_get_segment,
8317 .set_segment = emulator_set_segment,
8318 .get_cached_segment_base = emulator_get_cached_segment_base,
8319 .get_gdt = emulator_get_gdt,
8320 .get_idt = emulator_get_idt,
8321 .set_gdt = emulator_set_gdt,
8322 .set_idt = emulator_set_idt,
8323 .get_cr = emulator_get_cr,
8324 .set_cr = emulator_set_cr,
8325 .cpl = emulator_get_cpl,
8326 .get_dr = emulator_get_dr,
8327 .set_dr = emulator_set_dr,
8328 .set_msr_with_filter = emulator_set_msr_with_filter,
8329 .get_msr_with_filter = emulator_get_msr_with_filter,
8330 .get_msr = emulator_get_msr,
8331 .check_pmc = emulator_check_pmc,
8332 .read_pmc = emulator_read_pmc,
8333 .halt = emulator_halt,
8334 .wbinvd = emulator_wbinvd,
8335 .fix_hypercall = emulator_fix_hypercall,
8336 .intercept = emulator_intercept,
8337 .get_cpuid = emulator_get_cpuid,
8338 .guest_has_long_mode = emulator_guest_has_long_mode,
8339 .guest_has_movbe = emulator_guest_has_movbe,
8340 .guest_has_fxsr = emulator_guest_has_fxsr,
8341 .guest_has_rdpid = emulator_guest_has_rdpid,
8342 .set_nmi_mask = emulator_set_nmi_mask,
8343 .is_smm = emulator_is_smm,
8344 .is_guest_mode = emulator_is_guest_mode,
8345 .leave_smm = emulator_leave_smm,
8346 .triple_fault = emulator_triple_fault,
8347 .set_xcr = emulator_set_xcr,
8350 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
8352 u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8354 * an sti; sti; sequence only disable interrupts for the first
8355 * instruction. So, if the last instruction, be it emulated or
8356 * not, left the system with the INT_STI flag enabled, it
8357 * means that the last instruction is an sti. We should not
8358 * leave the flag on in this case. The same goes for mov ss
8360 if (int_shadow & mask)
8362 if (unlikely(int_shadow || mask)) {
8363 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
8365 kvm_make_request(KVM_REQ_EVENT, vcpu);
8369 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
8371 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8373 if (ctxt->exception.vector == PF_VECTOR)
8374 kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
8375 else if (ctxt->exception.error_code_valid)
8376 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
8377 ctxt->exception.error_code);
8379 kvm_queue_exception(vcpu, ctxt->exception.vector);
8382 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
8384 struct x86_emulate_ctxt *ctxt;
8386 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
8388 pr_err("failed to allocate vcpu's emulator\n");
8393 ctxt->ops = &emulate_ops;
8394 vcpu->arch.emulate_ctxt = ctxt;
8399 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
8401 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8404 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
8406 ctxt->gpa_available = false;
8407 ctxt->eflags = kvm_get_rflags(vcpu);
8408 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
8410 ctxt->eip = kvm_rip_read(vcpu);
8411 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
8412 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
8413 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
8414 cs_db ? X86EMUL_MODE_PROT32 :
8415 X86EMUL_MODE_PROT16;
8416 ctxt->interruptibility = 0;
8417 ctxt->have_exception = false;
8418 ctxt->exception.vector = -1;
8419 ctxt->perm_ok = false;
8421 init_decode_cache(ctxt);
8422 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8425 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
8427 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8430 init_emulate_ctxt(vcpu);
8434 ctxt->_eip = ctxt->eip + inc_eip;
8435 ret = emulate_int_real(ctxt, irq);
8437 if (ret != X86EMUL_CONTINUE) {
8438 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8440 ctxt->eip = ctxt->_eip;
8441 kvm_rip_write(vcpu, ctxt->eip);
8442 kvm_set_rflags(vcpu, ctxt->eflags);
8445 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
8447 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8448 u8 ndata, u8 *insn_bytes, u8 insn_size)
8450 struct kvm_run *run = vcpu->run;
8455 * Zero the whole array used to retrieve the exit info, as casting to
8456 * u32 for select entries will leave some chunks uninitialized.
8458 memset(&info, 0, sizeof(info));
8460 static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1],
8461 &info[2], (u32 *)&info[3],
8464 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8465 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
8468 * There's currently space for 13 entries, but 5 are used for the exit
8469 * reason and info. Restrict to 4 to reduce the maintenance burden
8470 * when expanding kvm_run.emulation_failure in the future.
8472 if (WARN_ON_ONCE(ndata > 4))
8475 /* Always include the flags as a 'data' entry. */
8477 run->emulation_failure.flags = 0;
8480 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
8481 sizeof(run->emulation_failure.insn_bytes) != 16));
8483 run->emulation_failure.flags |=
8484 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
8485 run->emulation_failure.insn_size = insn_size;
8486 memset(run->emulation_failure.insn_bytes, 0x90,
8487 sizeof(run->emulation_failure.insn_bytes));
8488 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
8491 memcpy(&run->internal.data[info_start], info, sizeof(info));
8492 memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
8493 ndata * sizeof(data[0]));
8495 run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
8498 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
8500 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8502 prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
8503 ctxt->fetch.end - ctxt->fetch.data);
8506 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8509 prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
8511 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
8513 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
8515 __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
8517 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
8519 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
8521 struct kvm *kvm = vcpu->kvm;
8523 ++vcpu->stat.insn_emulation_fail;
8524 trace_kvm_emulate_insn_failed(vcpu);
8526 if (emulation_type & EMULTYPE_VMWARE_GP) {
8527 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8531 if (kvm->arch.exit_on_emulation_error ||
8532 (emulation_type & EMULTYPE_SKIP)) {
8533 prepare_emulation_ctxt_failure_exit(vcpu);
8537 kvm_queue_exception(vcpu, UD_VECTOR);
8539 if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
8540 prepare_emulation_ctxt_failure_exit(vcpu);
8547 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8550 gpa_t gpa = cr2_or_gpa;
8553 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8556 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8557 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8560 if (!vcpu->arch.mmu->root_role.direct) {
8562 * Write permission should be allowed since only
8563 * write access need to be emulated.
8565 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8568 * If the mapping is invalid in guest, let cpu retry
8569 * it to generate fault.
8571 if (gpa == INVALID_GPA)
8576 * Do not retry the unhandleable instruction if it faults on the
8577 * readonly host memory, otherwise it will goto a infinite loop:
8578 * retry instruction -> write #PF -> emulation fail -> retry
8579 * instruction -> ...
8581 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
8584 * If the instruction failed on the error pfn, it can not be fixed,
8585 * report the error to userspace.
8587 if (is_error_noslot_pfn(pfn))
8590 kvm_release_pfn_clean(pfn);
8592 /* The instructions are well-emulated on direct mmu. */
8593 if (vcpu->arch.mmu->root_role.direct) {
8594 unsigned int indirect_shadow_pages;
8596 write_lock(&vcpu->kvm->mmu_lock);
8597 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
8598 write_unlock(&vcpu->kvm->mmu_lock);
8600 if (indirect_shadow_pages)
8601 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8607 * if emulation was due to access to shadowed page table
8608 * and it failed try to unshadow page and re-enter the
8609 * guest to let CPU execute the instruction.
8611 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8614 * If the access faults on its page table, it can not
8615 * be fixed by unprotecting shadow page and it should
8616 * be reported to userspace.
8618 return !(emulation_type & EMULTYPE_WRITE_PF_TO_SP);
8621 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
8622 gpa_t cr2_or_gpa, int emulation_type)
8624 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8625 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
8627 last_retry_eip = vcpu->arch.last_retry_eip;
8628 last_retry_addr = vcpu->arch.last_retry_addr;
8631 * If the emulation is caused by #PF and it is non-page_table
8632 * writing instruction, it means the VM-EXIT is caused by shadow
8633 * page protected, we can zap the shadow page and retry this
8634 * instruction directly.
8636 * Note: if the guest uses a non-page-table modifying instruction
8637 * on the PDE that points to the instruction, then we will unmap
8638 * the instruction and go to an infinite loop. So, we cache the
8639 * last retried eip and the last fault address, if we meet the eip
8640 * and the address again, we can break out of the potential infinite
8643 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
8645 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8648 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8649 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8652 if (x86_page_table_writing_insn(ctxt))
8655 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
8658 vcpu->arch.last_retry_eip = ctxt->eip;
8659 vcpu->arch.last_retry_addr = cr2_or_gpa;
8661 if (!vcpu->arch.mmu->root_role.direct)
8662 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8664 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8669 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8670 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8672 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8681 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8682 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8687 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8689 struct kvm_run *kvm_run = vcpu->run;
8691 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8692 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8693 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8694 kvm_run->debug.arch.exception = DB_VECTOR;
8695 kvm_run->exit_reason = KVM_EXIT_DEBUG;
8698 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8702 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8704 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8707 r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
8711 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8714 * rflags is the old, "raw" value of the flags. The new value has
8715 * not been saved yet.
8717 * This is correct even for TF set by the guest, because "the
8718 * processor will not generate this exception after the instruction
8719 * that sets the TF flag".
8721 if (unlikely(rflags & X86_EFLAGS_TF))
8722 r = kvm_vcpu_do_singlestep(vcpu);
8725 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8727 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu)
8731 if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF)
8735 * Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active,
8736 * but AMD CPUs do not. MOV/POP SS blocking is rare, check that first
8737 * to avoid the relatively expensive CPUID lookup.
8739 shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8740 return (shadow & KVM_X86_SHADOW_INT_MOV_SS) &&
8741 guest_cpuid_is_intel(vcpu);
8744 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu,
8745 int emulation_type, int *r)
8747 WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE);
8750 * Do not check for code breakpoints if hardware has already done the
8751 * checks, as inferred from the emulation type. On NO_DECODE and SKIP,
8752 * the instruction has passed all exception checks, and all intercepted
8753 * exceptions that trigger emulation have lower priority than code
8754 * breakpoints, i.e. the fact that the intercepted exception occurred
8755 * means any code breakpoints have already been serviced.
8757 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as
8758 * hardware has checked the RIP of the magic prefix, but not the RIP of
8759 * the instruction being emulated. The intent of forced emulation is
8760 * to behave as if KVM intercepted the instruction without an exception
8761 * and without a prefix.
8763 if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
8764 EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF))
8767 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
8768 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
8769 struct kvm_run *kvm_run = vcpu->run;
8770 unsigned long eip = kvm_get_linear_rip(vcpu);
8771 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8772 vcpu->arch.guest_debug_dr7,
8776 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
8777 kvm_run->debug.arch.pc = eip;
8778 kvm_run->debug.arch.exception = DB_VECTOR;
8779 kvm_run->exit_reason = KVM_EXIT_DEBUG;
8785 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
8786 !kvm_is_code_breakpoint_inhibited(vcpu)) {
8787 unsigned long eip = kvm_get_linear_rip(vcpu);
8788 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8793 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
8802 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
8804 switch (ctxt->opcode_len) {
8811 case 0xe6: /* OUT */
8815 case 0x6c: /* INS */
8817 case 0x6e: /* OUTS */
8824 case 0x33: /* RDPMC */
8834 * Decode an instruction for emulation. The caller is responsible for handling
8835 * code breakpoints. Note, manually detecting code breakpoints is unnecessary
8836 * (and wrong) when emulating on an intercepted fault-like exception[*], as
8837 * code breakpoints have higher priority and thus have already been done by
8840 * [*] Except #MC, which is higher priority, but KVM should never emulate in
8841 * response to a machine check.
8843 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
8844 void *insn, int insn_len)
8846 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8849 init_emulate_ctxt(vcpu);
8851 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
8853 trace_kvm_emulate_insn_start(vcpu);
8854 ++vcpu->stat.insn_emulation;
8858 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
8860 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8861 int emulation_type, void *insn, int insn_len)
8864 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8865 bool writeback = true;
8867 if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len)))
8870 vcpu->arch.l1tf_flush_l1d = true;
8872 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
8873 kvm_clear_exception_queue(vcpu);
8876 * Return immediately if RIP hits a code breakpoint, such #DBs
8877 * are fault-like and are higher priority than any faults on
8878 * the code fetch itself.
8880 if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r))
8883 r = x86_decode_emulated_instruction(vcpu, emulation_type,
8885 if (r != EMULATION_OK) {
8886 if ((emulation_type & EMULTYPE_TRAP_UD) ||
8887 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
8888 kvm_queue_exception(vcpu, UD_VECTOR);
8891 if (reexecute_instruction(vcpu, cr2_or_gpa,
8895 if (ctxt->have_exception &&
8896 !(emulation_type & EMULTYPE_SKIP)) {
8898 * #UD should result in just EMULATION_FAILED, and trap-like
8899 * exception should not be encountered during decode.
8901 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
8902 exception_type(ctxt->exception.vector) == EXCPT_TRAP);
8903 inject_emulated_exception(vcpu);
8906 return handle_emulation_failure(vcpu, emulation_type);
8910 if ((emulation_type & EMULTYPE_VMWARE_GP) &&
8911 !is_vmware_backdoor_opcode(ctxt)) {
8912 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8917 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
8918 * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
8919 * The caller is responsible for updating interruptibility state and
8920 * injecting single-step #DBs.
8922 if (emulation_type & EMULTYPE_SKIP) {
8923 if (ctxt->mode != X86EMUL_MODE_PROT64)
8924 ctxt->eip = (u32)ctxt->_eip;
8926 ctxt->eip = ctxt->_eip;
8928 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
8933 kvm_rip_write(vcpu, ctxt->eip);
8934 if (ctxt->eflags & X86_EFLAGS_RF)
8935 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
8939 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
8942 /* this is needed for vmware backdoor interface to work since it
8943 changes registers values during IO operation */
8944 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
8945 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8946 emulator_invalidate_register_cache(ctxt);
8950 if (emulation_type & EMULTYPE_PF) {
8951 /* Save the faulting GPA (cr2) in the address field */
8952 ctxt->exception.address = cr2_or_gpa;
8954 /* With shadow page tables, cr2 contains a GVA or nGPA. */
8955 if (vcpu->arch.mmu->root_role.direct) {
8956 ctxt->gpa_available = true;
8957 ctxt->gpa_val = cr2_or_gpa;
8960 /* Sanitize the address out of an abundance of paranoia. */
8961 ctxt->exception.address = 0;
8964 r = x86_emulate_insn(ctxt);
8966 if (r == EMULATION_INTERCEPTED)
8969 if (r == EMULATION_FAILED) {
8970 if (reexecute_instruction(vcpu, cr2_or_gpa, emulation_type))
8973 return handle_emulation_failure(vcpu, emulation_type);
8976 if (ctxt->have_exception) {
8977 WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write);
8978 vcpu->mmio_needed = false;
8980 inject_emulated_exception(vcpu);
8981 } else if (vcpu->arch.pio.count) {
8982 if (!vcpu->arch.pio.in) {
8983 /* FIXME: return into emulator if single-stepping. */
8984 vcpu->arch.pio.count = 0;
8987 vcpu->arch.complete_userspace_io = complete_emulated_pio;
8990 } else if (vcpu->mmio_needed) {
8991 ++vcpu->stat.mmio_exits;
8993 if (!vcpu->mmio_is_write)
8996 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8997 } else if (vcpu->arch.complete_userspace_io) {
9000 } else if (r == EMULATION_RESTART)
9007 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
9008 toggle_interruptibility(vcpu, ctxt->interruptibility);
9009 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9012 * Note, EXCPT_DB is assumed to be fault-like as the emulator
9013 * only supports code breakpoints and general detect #DB, both
9014 * of which are fault-like.
9016 if (!ctxt->have_exception ||
9017 exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
9018 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
9019 if (ctxt->is_branch)
9020 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
9021 kvm_rip_write(vcpu, ctxt->eip);
9022 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
9023 r = kvm_vcpu_do_singlestep(vcpu);
9024 static_call_cond(kvm_x86_update_emulated_instruction)(vcpu);
9025 __kvm_set_rflags(vcpu, ctxt->eflags);
9029 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
9030 * do nothing, and it will be requested again as soon as
9031 * the shadow expires. But we still need to check here,
9032 * because POPF has no interrupt shadow.
9034 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
9035 kvm_make_request(KVM_REQ_EVENT, vcpu);
9037 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
9042 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
9044 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
9046 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
9048 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
9049 void *insn, int insn_len)
9051 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
9053 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
9055 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
9057 vcpu->arch.pio.count = 0;
9061 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
9063 vcpu->arch.pio.count = 0;
9065 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
9068 return kvm_skip_emulated_instruction(vcpu);
9071 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
9072 unsigned short port)
9074 unsigned long val = kvm_rax_read(vcpu);
9075 int ret = emulator_pio_out(vcpu, size, port, &val, 1);
9081 * Workaround userspace that relies on old KVM behavior of %rip being
9082 * incremented prior to exiting to userspace to handle "OUT 0x7e".
9085 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
9086 vcpu->arch.complete_userspace_io =
9087 complete_fast_pio_out_port_0x7e;
9088 kvm_skip_emulated_instruction(vcpu);
9090 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9091 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
9096 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
9100 /* We should only ever be called with arch.pio.count equal to 1 */
9101 BUG_ON(vcpu->arch.pio.count != 1);
9103 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
9104 vcpu->arch.pio.count = 0;
9108 /* For size less than 4 we merge, else we zero extend */
9109 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
9111 complete_emulator_pio_in(vcpu, &val);
9112 kvm_rax_write(vcpu, val);
9114 return kvm_skip_emulated_instruction(vcpu);
9117 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
9118 unsigned short port)
9123 /* For size less than 4 we merge, else we zero extend */
9124 val = (size < 4) ? kvm_rax_read(vcpu) : 0;
9126 ret = emulator_pio_in(vcpu, size, port, &val, 1);
9128 kvm_rax_write(vcpu, val);
9132 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9133 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
9138 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
9143 ret = kvm_fast_pio_in(vcpu, size, port);
9145 ret = kvm_fast_pio_out(vcpu, size, port);
9146 return ret && kvm_skip_emulated_instruction(vcpu);
9148 EXPORT_SYMBOL_GPL(kvm_fast_pio);
9150 static int kvmclock_cpu_down_prep(unsigned int cpu)
9152 __this_cpu_write(cpu_tsc_khz, 0);
9156 static void tsc_khz_changed(void *data)
9158 struct cpufreq_freqs *freq = data;
9159 unsigned long khz = 0;
9161 WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC));
9166 khz = cpufreq_quick_get(raw_smp_processor_id());
9169 __this_cpu_write(cpu_tsc_khz, khz);
9172 #ifdef CONFIG_X86_64
9173 static void kvm_hyperv_tsc_notifier(void)
9178 mutex_lock(&kvm_lock);
9179 list_for_each_entry(kvm, &vm_list, vm_list)
9180 kvm_make_mclock_inprogress_request(kvm);
9182 /* no guest entries from this point */
9183 hyperv_stop_tsc_emulation();
9185 /* TSC frequency always matches when on Hyper-V */
9186 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9187 for_each_present_cpu(cpu)
9188 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
9190 kvm_caps.max_guest_tsc_khz = tsc_khz;
9192 list_for_each_entry(kvm, &vm_list, vm_list) {
9193 __kvm_start_pvclock_update(kvm);
9194 pvclock_update_vm_gtod_copy(kvm);
9195 kvm_end_pvclock_update(kvm);
9198 mutex_unlock(&kvm_lock);
9202 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
9205 struct kvm_vcpu *vcpu;
9210 * We allow guests to temporarily run on slowing clocks,
9211 * provided we notify them after, or to run on accelerating
9212 * clocks, provided we notify them before. Thus time never
9215 * However, we have a problem. We can't atomically update
9216 * the frequency of a given CPU from this function; it is
9217 * merely a notifier, which can be called from any CPU.
9218 * Changing the TSC frequency at arbitrary points in time
9219 * requires a recomputation of local variables related to
9220 * the TSC for each VCPU. We must flag these local variables
9221 * to be updated and be sure the update takes place with the
9222 * new frequency before any guests proceed.
9224 * Unfortunately, the combination of hotplug CPU and frequency
9225 * change creates an intractable locking scenario; the order
9226 * of when these callouts happen is undefined with respect to
9227 * CPU hotplug, and they can race with each other. As such,
9228 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
9229 * undefined; you can actually have a CPU frequency change take
9230 * place in between the computation of X and the setting of the
9231 * variable. To protect against this problem, all updates of
9232 * the per_cpu tsc_khz variable are done in an interrupt
9233 * protected IPI, and all callers wishing to update the value
9234 * must wait for a synchronous IPI to complete (which is trivial
9235 * if the caller is on the CPU already). This establishes the
9236 * necessary total order on variable updates.
9238 * Note that because a guest time update may take place
9239 * anytime after the setting of the VCPU's request bit, the
9240 * correct TSC value must be set before the request. However,
9241 * to ensure the update actually makes it to any guest which
9242 * starts running in hardware virtualization between the set
9243 * and the acquisition of the spinlock, we must also ping the
9244 * CPU after setting the request bit.
9248 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9250 mutex_lock(&kvm_lock);
9251 list_for_each_entry(kvm, &vm_list, vm_list) {
9252 kvm_for_each_vcpu(i, vcpu, kvm) {
9253 if (vcpu->cpu != cpu)
9255 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9256 if (vcpu->cpu != raw_smp_processor_id())
9260 mutex_unlock(&kvm_lock);
9262 if (freq->old < freq->new && send_ipi) {
9264 * We upscale the frequency. Must make the guest
9265 * doesn't see old kvmclock values while running with
9266 * the new frequency, otherwise we risk the guest sees
9267 * time go backwards.
9269 * In case we update the frequency for another cpu
9270 * (which might be in guest context) send an interrupt
9271 * to kick the cpu out of guest context. Next time
9272 * guest context is entered kvmclock will be updated,
9273 * so the guest will not see stale values.
9275 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9279 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
9282 struct cpufreq_freqs *freq = data;
9285 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
9287 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
9290 for_each_cpu(cpu, freq->policy->cpus)
9291 __kvmclock_cpufreq_notifier(freq, cpu);
9296 static struct notifier_block kvmclock_cpufreq_notifier_block = {
9297 .notifier_call = kvmclock_cpufreq_notifier
9300 static int kvmclock_cpu_online(unsigned int cpu)
9302 tsc_khz_changed(NULL);
9306 static void kvm_timer_init(void)
9308 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9309 max_tsc_khz = tsc_khz;
9311 if (IS_ENABLED(CONFIG_CPU_FREQ)) {
9312 struct cpufreq_policy *policy;
9316 policy = cpufreq_cpu_get(cpu);
9318 if (policy->cpuinfo.max_freq)
9319 max_tsc_khz = policy->cpuinfo.max_freq;
9320 cpufreq_cpu_put(policy);
9324 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
9325 CPUFREQ_TRANSITION_NOTIFIER);
9327 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
9328 kvmclock_cpu_online, kvmclock_cpu_down_prep);
9332 #ifdef CONFIG_X86_64
9333 static void pvclock_gtod_update_fn(struct work_struct *work)
9336 struct kvm_vcpu *vcpu;
9339 mutex_lock(&kvm_lock);
9340 list_for_each_entry(kvm, &vm_list, vm_list)
9341 kvm_for_each_vcpu(i, vcpu, kvm)
9342 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9343 atomic_set(&kvm_guest_has_master_clock, 0);
9344 mutex_unlock(&kvm_lock);
9347 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
9350 * Indirection to move queue_work() out of the tk_core.seq write held
9351 * region to prevent possible deadlocks against time accessors which
9352 * are invoked with work related locks held.
9354 static void pvclock_irq_work_fn(struct irq_work *w)
9356 queue_work(system_long_wq, &pvclock_gtod_work);
9359 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
9362 * Notification about pvclock gtod data update.
9364 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
9367 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
9368 struct timekeeper *tk = priv;
9370 update_pvclock_gtod(tk);
9373 * Disable master clock if host does not trust, or does not use,
9374 * TSC based clocksource. Delegate queue_work() to irq_work as
9375 * this is invoked with tk_core.seq write held.
9377 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
9378 atomic_read(&kvm_guest_has_master_clock) != 0)
9379 irq_work_queue(&pvclock_irq_work);
9383 static struct notifier_block pvclock_gtod_notifier = {
9384 .notifier_call = pvclock_gtod_notify,
9388 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops)
9390 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
9392 #define __KVM_X86_OP(func) \
9393 static_call_update(kvm_x86_##func, kvm_x86_ops.func);
9394 #define KVM_X86_OP(func) \
9395 WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func)
9396 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP
9397 #define KVM_X86_OP_OPTIONAL_RET0(func) \
9398 static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \
9399 (void *)__static_call_return0);
9400 #include <asm/kvm-x86-ops.h>
9403 kvm_pmu_ops_update(ops->pmu_ops);
9406 static int kvm_x86_check_processor_compatibility(void)
9408 int cpu = smp_processor_id();
9409 struct cpuinfo_x86 *c = &cpu_data(cpu);
9412 * Compatibility checks are done when loading KVM and when enabling
9413 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are
9414 * compatible, i.e. KVM should never perform a compatibility check on
9417 WARN_ON(!cpu_online(cpu));
9419 if (__cr4_reserved_bits(cpu_has, c) !=
9420 __cr4_reserved_bits(cpu_has, &boot_cpu_data))
9423 return static_call(kvm_x86_check_processor_compatibility)();
9426 static void kvm_x86_check_cpu_compat(void *ret)
9428 *(int *)ret = kvm_x86_check_processor_compatibility();
9431 static int __kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9436 if (kvm_x86_ops.hardware_enable) {
9437 pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name);
9442 * KVM explicitly assumes that the guest has an FPU and
9443 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
9444 * vCPU's FPU state as a fxregs_state struct.
9446 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
9447 pr_err("inadequate fpu\n");
9451 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9452 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
9457 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes
9458 * the PAT bits in SPTEs. Bail if PAT[0] is programmed to something
9459 * other than WB. Note, EPT doesn't utilize the PAT, but don't bother
9460 * with an exception. PAT[0] is set to WB on RESET and also by the
9461 * kernel, i.e. failure indicates a kernel bug or broken firmware.
9463 if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) ||
9464 (host_pat & GENMASK(2, 0)) != 6) {
9465 pr_err("host PAT[0] is not WB\n");
9469 x86_emulator_cache = kvm_alloc_emulator_cache();
9470 if (!x86_emulator_cache) {
9471 pr_err("failed to allocate cache for x86 emulator\n");
9475 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
9476 if (!user_return_msrs) {
9477 pr_err("failed to allocate percpu kvm_user_return_msrs\n");
9479 goto out_free_x86_emulator_cache;
9481 kvm_nr_uret_msrs = 0;
9483 r = kvm_mmu_vendor_module_init();
9485 goto out_free_percpu;
9487 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
9488 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
9489 kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
9492 rdmsrl_safe(MSR_EFER, &host_efer);
9494 if (boot_cpu_has(X86_FEATURE_XSAVES))
9495 rdmsrl(MSR_IA32_XSS, host_xss);
9497 kvm_init_pmu_capability(ops->pmu_ops);
9499 r = ops->hardware_setup();
9503 kvm_ops_update(ops);
9505 for_each_online_cpu(cpu) {
9506 smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1);
9508 goto out_unwind_ops;
9512 * Point of no return! DO NOT add error paths below this point unless
9513 * absolutely necessary, as most operations from this point forward
9514 * require unwinding.
9518 if (pi_inject_timer == -1)
9519 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
9520 #ifdef CONFIG_X86_64
9521 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
9523 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9524 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
9527 kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
9529 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
9530 kvm_caps.supported_xss = 0;
9532 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
9533 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
9534 #undef __kvm_cpu_cap_has
9536 if (kvm_caps.has_tsc_control) {
9538 * Make sure the user can only configure tsc_khz values that
9539 * fit into a signed integer.
9540 * A min value is not calculated because it will always
9541 * be 1 on all machines.
9543 u64 max = min(0x7fffffffULL,
9544 __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz));
9545 kvm_caps.max_guest_tsc_khz = max;
9547 kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits;
9548 kvm_init_msr_lists();
9552 kvm_x86_ops.hardware_enable = NULL;
9553 static_call(kvm_x86_hardware_unsetup)();
9555 kvm_mmu_vendor_module_exit();
9557 free_percpu(user_return_msrs);
9558 out_free_x86_emulator_cache:
9559 kmem_cache_destroy(x86_emulator_cache);
9563 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9567 mutex_lock(&vendor_module_lock);
9568 r = __kvm_x86_vendor_init(ops);
9569 mutex_unlock(&vendor_module_lock);
9573 EXPORT_SYMBOL_GPL(kvm_x86_vendor_init);
9575 void kvm_x86_vendor_exit(void)
9577 kvm_unregister_perf_callbacks();
9579 #ifdef CONFIG_X86_64
9580 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9581 clear_hv_tscchange_cb();
9585 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9586 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
9587 CPUFREQ_TRANSITION_NOTIFIER);
9588 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
9590 #ifdef CONFIG_X86_64
9591 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
9592 irq_work_sync(&pvclock_irq_work);
9593 cancel_work_sync(&pvclock_gtod_work);
9595 static_call(kvm_x86_hardware_unsetup)();
9596 kvm_mmu_vendor_module_exit();
9597 free_percpu(user_return_msrs);
9598 kmem_cache_destroy(x86_emulator_cache);
9599 #ifdef CONFIG_KVM_XEN
9600 static_key_deferred_flush(&kvm_xen_enabled);
9601 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
9603 mutex_lock(&vendor_module_lock);
9604 kvm_x86_ops.hardware_enable = NULL;
9605 mutex_unlock(&vendor_module_lock);
9607 EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit);
9609 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
9612 * The vCPU has halted, e.g. executed HLT. Update the run state if the
9613 * local APIC is in-kernel, the run loop will detect the non-runnable
9614 * state and halt the vCPU. Exit to userspace if the local APIC is
9615 * managed by userspace, in which case userspace is responsible for
9616 * handling wake events.
9618 ++vcpu->stat.halt_exits;
9619 if (lapic_in_kernel(vcpu)) {
9620 vcpu->arch.mp_state = state;
9623 vcpu->run->exit_reason = reason;
9628 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
9630 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
9632 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
9634 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
9636 int ret = kvm_skip_emulated_instruction(vcpu);
9638 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
9639 * KVM_EXIT_DEBUG here.
9641 return kvm_emulate_halt_noskip(vcpu) && ret;
9643 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
9645 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
9647 int ret = kvm_skip_emulated_instruction(vcpu);
9649 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
9650 KVM_EXIT_AP_RESET_HOLD) && ret;
9652 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
9654 #ifdef CONFIG_X86_64
9655 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
9656 unsigned long clock_type)
9658 struct kvm_clock_pairing clock_pairing;
9659 struct timespec64 ts;
9663 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
9664 return -KVM_EOPNOTSUPP;
9667 * When tsc is in permanent catchup mode guests won't be able to use
9668 * pvclock_read_retry loop to get consistent view of pvclock
9670 if (vcpu->arch.tsc_always_catchup)
9671 return -KVM_EOPNOTSUPP;
9673 if (!kvm_get_walltime_and_clockread(&ts, &cycle))
9674 return -KVM_EOPNOTSUPP;
9676 clock_pairing.sec = ts.tv_sec;
9677 clock_pairing.nsec = ts.tv_nsec;
9678 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
9679 clock_pairing.flags = 0;
9680 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
9683 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
9684 sizeof(struct kvm_clock_pairing)))
9692 * kvm_pv_kick_cpu_op: Kick a vcpu.
9694 * @apicid - apicid of vcpu to be kicked.
9696 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
9699 * All other fields are unused for APIC_DM_REMRD, but may be consumed by
9700 * common code, e.g. for tracing. Defer initialization to the compiler.
9702 struct kvm_lapic_irq lapic_irq = {
9703 .delivery_mode = APIC_DM_REMRD,
9704 .dest_mode = APIC_DEST_PHYSICAL,
9705 .shorthand = APIC_DEST_NOSHORT,
9709 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
9712 bool kvm_apicv_activated(struct kvm *kvm)
9714 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
9716 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
9718 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
9720 ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons);
9721 ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu);
9723 return (vm_reasons | vcpu_reasons) == 0;
9725 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated);
9727 static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
9728 enum kvm_apicv_inhibit reason, bool set)
9731 __set_bit(reason, inhibits);
9733 __clear_bit(reason, inhibits);
9735 trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
9738 static void kvm_apicv_init(struct kvm *kvm)
9740 unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons;
9742 init_rwsem(&kvm->arch.apicv_update_lock);
9744 set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true);
9747 set_or_clear_apicv_inhibit(inhibits,
9748 APICV_INHIBIT_REASON_DISABLE, true);
9751 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
9753 struct kvm_vcpu *target = NULL;
9754 struct kvm_apic_map *map;
9756 vcpu->stat.directed_yield_attempted++;
9758 if (single_task_running())
9762 map = rcu_dereference(vcpu->kvm->arch.apic_map);
9764 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
9765 target = map->phys_map[dest_id]->vcpu;
9769 if (!target || !READ_ONCE(target->ready))
9772 /* Ignore requests to yield to self */
9776 if (kvm_vcpu_yield_to(target) <= 0)
9779 vcpu->stat.directed_yield_successful++;
9785 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
9787 u64 ret = vcpu->run->hypercall.ret;
9789 if (!is_64_bit_mode(vcpu))
9791 kvm_rax_write(vcpu, ret);
9792 ++vcpu->stat.hypercalls;
9793 return kvm_skip_emulated_instruction(vcpu);
9796 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
9798 unsigned long nr, a0, a1, a2, a3, ret;
9801 if (kvm_xen_hypercall_enabled(vcpu->kvm))
9802 return kvm_xen_hypercall(vcpu);
9804 if (kvm_hv_hypercall_enabled(vcpu))
9805 return kvm_hv_hypercall(vcpu);
9807 nr = kvm_rax_read(vcpu);
9808 a0 = kvm_rbx_read(vcpu);
9809 a1 = kvm_rcx_read(vcpu);
9810 a2 = kvm_rdx_read(vcpu);
9811 a3 = kvm_rsi_read(vcpu);
9813 trace_kvm_hypercall(nr, a0, a1, a2, a3);
9815 op_64_bit = is_64_bit_hypercall(vcpu);
9824 if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
9832 case KVM_HC_VAPIC_POLL_IRQ:
9835 case KVM_HC_KICK_CPU:
9836 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
9839 kvm_pv_kick_cpu_op(vcpu->kvm, a1);
9840 kvm_sched_yield(vcpu, a1);
9843 #ifdef CONFIG_X86_64
9844 case KVM_HC_CLOCK_PAIRING:
9845 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
9848 case KVM_HC_SEND_IPI:
9849 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
9852 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
9854 case KVM_HC_SCHED_YIELD:
9855 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
9858 kvm_sched_yield(vcpu, a0);
9861 case KVM_HC_MAP_GPA_RANGE: {
9862 u64 gpa = a0, npages = a1, attrs = a2;
9865 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
9868 if (!PAGE_ALIGNED(gpa) || !npages ||
9869 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
9874 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL;
9875 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE;
9876 vcpu->run->hypercall.args[0] = gpa;
9877 vcpu->run->hypercall.args[1] = npages;
9878 vcpu->run->hypercall.args[2] = attrs;
9879 vcpu->run->hypercall.flags = 0;
9881 vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE;
9883 WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ);
9884 vcpu->arch.complete_userspace_io = complete_hypercall_exit;
9894 kvm_rax_write(vcpu, ret);
9896 ++vcpu->stat.hypercalls;
9897 return kvm_skip_emulated_instruction(vcpu);
9899 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
9901 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
9903 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
9904 char instruction[3];
9905 unsigned long rip = kvm_rip_read(vcpu);
9908 * If the quirk is disabled, synthesize a #UD and let the guest pick up
9911 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) {
9912 ctxt->exception.error_code_valid = false;
9913 ctxt->exception.vector = UD_VECTOR;
9914 ctxt->have_exception = true;
9915 return X86EMUL_PROPAGATE_FAULT;
9918 static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
9920 return emulator_write_emulated(ctxt, rip, instruction, 3,
9924 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
9926 return vcpu->run->request_interrupt_window &&
9927 likely(!pic_in_kernel(vcpu->kvm));
9930 /* Called within kvm->srcu read side. */
9931 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
9933 struct kvm_run *kvm_run = vcpu->run;
9935 kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu);
9936 kvm_run->cr8 = kvm_get_cr8(vcpu);
9937 kvm_run->apic_base = kvm_get_apic_base(vcpu);
9939 kvm_run->ready_for_interrupt_injection =
9940 pic_in_kernel(vcpu->kvm) ||
9941 kvm_vcpu_ready_for_interrupt_injection(vcpu);
9944 kvm_run->flags |= KVM_RUN_X86_SMM;
9947 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
9951 if (!kvm_x86_ops.update_cr8_intercept)
9954 if (!lapic_in_kernel(vcpu))
9957 if (vcpu->arch.apic->apicv_active)
9960 if (!vcpu->arch.apic->vapic_addr)
9961 max_irr = kvm_lapic_find_highest_irr(vcpu);
9968 tpr = kvm_lapic_get_cr8(vcpu);
9970 static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
9974 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
9976 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9977 kvm_x86_ops.nested_ops->triple_fault(vcpu);
9981 return kvm_x86_ops.nested_ops->check_events(vcpu);
9984 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
9987 * Suppress the error code if the vCPU is in Real Mode, as Real Mode
9988 * exceptions don't report error codes. The presence of an error code
9989 * is carried with the exception and only stripped when the exception
9990 * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do
9991 * report an error code despite the CPU being in Real Mode.
9993 vcpu->arch.exception.has_error_code &= is_protmode(vcpu);
9995 trace_kvm_inj_exception(vcpu->arch.exception.vector,
9996 vcpu->arch.exception.has_error_code,
9997 vcpu->arch.exception.error_code,
9998 vcpu->arch.exception.injected);
10000 static_call(kvm_x86_inject_exception)(vcpu);
10004 * Check for any event (interrupt or exception) that is ready to be injected,
10005 * and if there is at least one event, inject the event with the highest
10006 * priority. This handles both "pending" events, i.e. events that have never
10007 * been injected into the guest, and "injected" events, i.e. events that were
10008 * injected as part of a previous VM-Enter, but weren't successfully delivered
10009 * and need to be re-injected.
10011 * Note, this is not guaranteed to be invoked on a guest instruction boundary,
10012 * i.e. doesn't guarantee that there's an event window in the guest. KVM must
10013 * be able to inject exceptions in the "middle" of an instruction, and so must
10014 * also be able to re-inject NMIs and IRQs in the middle of an instruction.
10015 * I.e. for exceptions and re-injected events, NOT invoking this on instruction
10016 * boundaries is necessary and correct.
10018 * For simplicity, KVM uses a single path to inject all events (except events
10019 * that are injected directly from L1 to L2) and doesn't explicitly track
10020 * instruction boundaries for asynchronous events. However, because VM-Exits
10021 * that can occur during instruction execution typically result in KVM skipping
10022 * the instruction or injecting an exception, e.g. instruction and exception
10023 * intercepts, and because pending exceptions have higher priority than pending
10024 * interrupts, KVM still honors instruction boundaries in most scenarios.
10026 * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip
10027 * the instruction or inject an exception, then KVM can incorrecty inject a new
10028 * asynchrounous event if the event became pending after the CPU fetched the
10029 * instruction (in the guest). E.g. if a page fault (#PF, #NPF, EPT violation)
10030 * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be
10031 * injected on the restarted instruction instead of being deferred until the
10032 * instruction completes.
10034 * In practice, this virtualization hole is unlikely to be observed by the
10035 * guest, and even less likely to cause functional problems. To detect the
10036 * hole, the guest would have to trigger an event on a side effect of an early
10037 * phase of instruction execution, e.g. on the instruction fetch from memory.
10038 * And for it to be a functional problem, the guest would need to depend on the
10039 * ordering between that side effect, the instruction completing, _and_ the
10040 * delivery of the asynchronous event.
10042 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu,
10043 bool *req_immediate_exit)
10049 * Process nested events first, as nested VM-Exit supercedes event
10050 * re-injection. If there's an event queued for re-injection, it will
10051 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit.
10053 if (is_guest_mode(vcpu))
10054 r = kvm_check_nested_events(vcpu);
10059 * Re-inject exceptions and events *especially* if immediate entry+exit
10060 * to/from L2 is needed, as any event that has already been injected
10061 * into L2 needs to complete its lifecycle before injecting a new event.
10063 * Don't re-inject an NMI or interrupt if there is a pending exception.
10064 * This collision arises if an exception occurred while vectoring the
10065 * injected event, KVM intercepted said exception, and KVM ultimately
10066 * determined the fault belongs to the guest and queues the exception
10067 * for injection back into the guest.
10069 * "Injected" interrupts can also collide with pending exceptions if
10070 * userspace ignores the "ready for injection" flag and blindly queues
10071 * an interrupt. In that case, prioritizing the exception is correct,
10072 * as the exception "occurred" before the exit to userspace. Trap-like
10073 * exceptions, e.g. most #DBs, have higher priority than interrupts.
10074 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest
10075 * priority, they're only generated (pended) during instruction
10076 * execution, and interrupts are recognized at instruction boundaries.
10077 * Thus a pending fault-like exception means the fault occurred on the
10078 * *previous* instruction and must be serviced prior to recognizing any
10079 * new events in order to fully complete the previous instruction.
10081 if (vcpu->arch.exception.injected)
10082 kvm_inject_exception(vcpu);
10083 else if (kvm_is_exception_pending(vcpu))
10085 else if (vcpu->arch.nmi_injected)
10086 static_call(kvm_x86_inject_nmi)(vcpu);
10087 else if (vcpu->arch.interrupt.injected)
10088 static_call(kvm_x86_inject_irq)(vcpu, true);
10091 * Exceptions that morph to VM-Exits are handled above, and pending
10092 * exceptions on top of injected exceptions that do not VM-Exit should
10093 * either morph to #DF or, sadly, override the injected exception.
10095 WARN_ON_ONCE(vcpu->arch.exception.injected &&
10096 vcpu->arch.exception.pending);
10099 * Bail if immediate entry+exit to/from the guest is needed to complete
10100 * nested VM-Enter or event re-injection so that a different pending
10101 * event can be serviced (or if KVM needs to exit to userspace).
10103 * Otherwise, continue processing events even if VM-Exit occurred. The
10104 * VM-Exit will have cleared exceptions that were meant for L2, but
10105 * there may now be events that can be injected into L1.
10111 * A pending exception VM-Exit should either result in nested VM-Exit
10112 * or force an immediate re-entry and exit to/from L2, and exception
10113 * VM-Exits cannot be injected (flag should _never_ be set).
10115 WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected ||
10116 vcpu->arch.exception_vmexit.pending);
10119 * New events, other than exceptions, cannot be injected if KVM needs
10120 * to re-inject a previous event. See above comments on re-injecting
10121 * for why pending exceptions get priority.
10123 can_inject = !kvm_event_needs_reinjection(vcpu);
10125 if (vcpu->arch.exception.pending) {
10127 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS
10128 * value pushed on the stack. Trap-like exception and all #DBs
10129 * leave RF as-is (KVM follows Intel's behavior in this regard;
10130 * AMD states that code breakpoint #DBs excplitly clear RF=0).
10132 * Note, most versions of Intel's SDM and AMD's APM incorrectly
10133 * describe the behavior of General Detect #DBs, which are
10134 * fault-like. They do _not_ set RF, a la code breakpoints.
10136 if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT)
10137 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
10140 if (vcpu->arch.exception.vector == DB_VECTOR) {
10141 kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception);
10142 if (vcpu->arch.dr7 & DR7_GD) {
10143 vcpu->arch.dr7 &= ~DR7_GD;
10144 kvm_update_dr7(vcpu);
10148 kvm_inject_exception(vcpu);
10150 vcpu->arch.exception.pending = false;
10151 vcpu->arch.exception.injected = true;
10153 can_inject = false;
10156 /* Don't inject interrupts if the user asked to avoid doing so */
10157 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
10161 * Finally, inject interrupt events. If an event cannot be injected
10162 * due to architectural conditions (e.g. IF=0) a window-open exit
10163 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending
10164 * and can architecturally be injected, but we cannot do it right now:
10165 * an interrupt could have arrived just now and we have to inject it
10166 * as a vmexit, or there could already an event in the queue, which is
10167 * indicated by can_inject. In that case we request an immediate exit
10168 * in order to make progress and get back here for another iteration.
10169 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
10171 #ifdef CONFIG_KVM_SMM
10172 if (vcpu->arch.smi_pending) {
10173 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
10177 vcpu->arch.smi_pending = false;
10178 ++vcpu->arch.smi_count;
10180 can_inject = false;
10182 static_call(kvm_x86_enable_smi_window)(vcpu);
10186 if (vcpu->arch.nmi_pending) {
10187 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
10191 --vcpu->arch.nmi_pending;
10192 vcpu->arch.nmi_injected = true;
10193 static_call(kvm_x86_inject_nmi)(vcpu);
10194 can_inject = false;
10195 WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
10197 if (vcpu->arch.nmi_pending)
10198 static_call(kvm_x86_enable_nmi_window)(vcpu);
10201 if (kvm_cpu_has_injectable_intr(vcpu)) {
10202 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
10206 int irq = kvm_cpu_get_interrupt(vcpu);
10208 if (!WARN_ON_ONCE(irq == -1)) {
10209 kvm_queue_interrupt(vcpu, irq, false);
10210 static_call(kvm_x86_inject_irq)(vcpu, false);
10211 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
10214 if (kvm_cpu_has_injectable_intr(vcpu))
10215 static_call(kvm_x86_enable_irq_window)(vcpu);
10218 if (is_guest_mode(vcpu) &&
10219 kvm_x86_ops.nested_ops->has_events &&
10220 kvm_x86_ops.nested_ops->has_events(vcpu))
10221 *req_immediate_exit = true;
10224 * KVM must never queue a new exception while injecting an event; KVM
10225 * is done emulating and should only propagate the to-be-injected event
10226 * to the VMCS/VMCB. Queueing a new exception can put the vCPU into an
10227 * infinite loop as KVM will bail from VM-Enter to inject the pending
10228 * exception and start the cycle all over.
10230 * Exempt triple faults as they have special handling and won't put the
10231 * vCPU into an infinite loop. Triple fault can be queued when running
10232 * VMX without unrestricted guest, as that requires KVM to emulate Real
10233 * Mode events (see kvm_inject_realmode_interrupt()).
10235 WARN_ON_ONCE(vcpu->arch.exception.pending ||
10236 vcpu->arch.exception_vmexit.pending);
10241 *req_immediate_exit = true;
10247 static void process_nmi(struct kvm_vcpu *vcpu)
10249 unsigned int limit;
10252 * x86 is limited to one NMI pending, but because KVM can't react to
10253 * incoming NMIs as quickly as bare metal, e.g. if the vCPU is
10254 * scheduled out, KVM needs to play nice with two queued NMIs showing
10255 * up at the same time. To handle this scenario, allow two NMIs to be
10256 * (temporarily) pending so long as NMIs are not blocked and KVM is not
10257 * waiting for a previous NMI injection to complete (which effectively
10258 * blocks NMIs). KVM will immediately inject one of the two NMIs, and
10259 * will request an NMI window to handle the second NMI.
10261 if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
10267 * Adjust the limit to account for pending virtual NMIs, which aren't
10268 * tracked in vcpu->arch.nmi_pending.
10270 if (static_call(kvm_x86_is_vnmi_pending)(vcpu))
10273 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
10274 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
10276 if (vcpu->arch.nmi_pending &&
10277 (static_call(kvm_x86_set_vnmi_pending)(vcpu)))
10278 vcpu->arch.nmi_pending--;
10280 if (vcpu->arch.nmi_pending)
10281 kvm_make_request(KVM_REQ_EVENT, vcpu);
10284 /* Return total number of NMIs pending injection to the VM */
10285 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu)
10287 return vcpu->arch.nmi_pending +
10288 static_call(kvm_x86_is_vnmi_pending)(vcpu);
10291 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
10292 unsigned long *vcpu_bitmap)
10294 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
10297 void kvm_make_scan_ioapic_request(struct kvm *kvm)
10299 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
10302 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10304 struct kvm_lapic *apic = vcpu->arch.apic;
10307 if (!lapic_in_kernel(vcpu))
10310 down_read(&vcpu->kvm->arch.apicv_update_lock);
10313 /* Do not activate APICV when APIC is disabled */
10314 activate = kvm_vcpu_apicv_activated(vcpu) &&
10315 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED);
10317 if (apic->apicv_active == activate)
10320 apic->apicv_active = activate;
10321 kvm_apic_update_apicv(vcpu);
10322 static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
10325 * When APICv gets disabled, we may still have injected interrupts
10326 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
10327 * still active when the interrupt got accepted. Make sure
10328 * kvm_check_and_inject_events() is called to check for that.
10330 if (!apic->apicv_active)
10331 kvm_make_request(KVM_REQ_EVENT, vcpu);
10335 up_read(&vcpu->kvm->arch.apicv_update_lock);
10337 EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv);
10339 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10341 if (!lapic_in_kernel(vcpu))
10345 * Due to sharing page tables across vCPUs, the xAPIC memslot must be
10346 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but
10347 * and hardware doesn't support x2APIC virtualization. E.g. some AMD
10348 * CPUs support AVIC but not x2APIC. KVM still allows enabling AVIC in
10349 * this case so that KVM can the AVIC doorbell to inject interrupts to
10350 * running vCPUs, but KVM must not create SPTEs for the APIC base as
10351 * the vCPU would incorrectly be able to access the vAPIC page via MMIO
10352 * despite being in x2APIC mode. For simplicity, inhibiting the APIC
10353 * access page is sticky.
10355 if (apic_x2apic_mode(vcpu->arch.apic) &&
10356 kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization)
10357 kvm_inhibit_apic_access_page(vcpu);
10359 __kvm_vcpu_update_apicv(vcpu);
10362 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10363 enum kvm_apicv_inhibit reason, bool set)
10365 unsigned long old, new;
10367 lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
10369 if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason)))
10372 old = new = kvm->arch.apicv_inhibit_reasons;
10374 set_or_clear_apicv_inhibit(&new, reason, set);
10376 if (!!old != !!new) {
10378 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
10379 * false positives in the sanity check WARN in svm_vcpu_run().
10380 * This task will wait for all vCPUs to ack the kick IRQ before
10381 * updating apicv_inhibit_reasons, and all other vCPUs will
10382 * block on acquiring apicv_update_lock so that vCPUs can't
10383 * redo svm_vcpu_run() without seeing the new inhibit state.
10385 * Note, holding apicv_update_lock and taking it in the read
10386 * side (handling the request) also prevents other vCPUs from
10387 * servicing the request with a stale apicv_inhibit_reasons.
10389 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
10390 kvm->arch.apicv_inhibit_reasons = new;
10392 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
10393 int idx = srcu_read_lock(&kvm->srcu);
10395 kvm_zap_gfn_range(kvm, gfn, gfn+1);
10396 srcu_read_unlock(&kvm->srcu, idx);
10399 kvm->arch.apicv_inhibit_reasons = new;
10403 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10404 enum kvm_apicv_inhibit reason, bool set)
10409 down_write(&kvm->arch.apicv_update_lock);
10410 __kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
10411 up_write(&kvm->arch.apicv_update_lock);
10413 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit);
10415 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
10417 if (!kvm_apic_present(vcpu))
10420 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
10422 if (irqchip_split(vcpu->kvm))
10423 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
10425 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10426 if (ioapic_in_kernel(vcpu->kvm))
10427 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
10430 if (is_guest_mode(vcpu))
10431 vcpu->arch.load_eoi_exitmap_pending = true;
10433 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
10436 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
10438 u64 eoi_exit_bitmap[4];
10440 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
10443 if (to_hv_vcpu(vcpu)) {
10444 bitmap_or((ulong *)eoi_exit_bitmap,
10445 vcpu->arch.ioapic_handled_vectors,
10446 to_hv_synic(vcpu)->vec_bitmap, 256);
10447 static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
10451 static_call_cond(kvm_x86_load_eoi_exitmap)(
10452 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
10455 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
10457 static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm);
10460 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
10462 if (!lapic_in_kernel(vcpu))
10465 static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu);
10468 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
10470 smp_send_reschedule(vcpu->cpu);
10472 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
10475 * Called within kvm->srcu read side.
10476 * Returns 1 to let vcpu_run() continue the guest execution loop without
10477 * exiting to the userspace. Otherwise, the value will be returned to the
10480 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
10484 dm_request_for_irq_injection(vcpu) &&
10485 kvm_cpu_accept_dm_intr(vcpu);
10486 fastpath_t exit_fastpath;
10488 bool req_immediate_exit = false;
10490 if (kvm_request_pending(vcpu)) {
10491 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
10496 if (kvm_dirty_ring_check_request(vcpu)) {
10501 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
10502 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
10507 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
10508 kvm_mmu_free_obsolete_roots(vcpu);
10509 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
10510 __kvm_migrate_timers(vcpu);
10511 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
10512 kvm_update_masterclock(vcpu->kvm);
10513 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
10514 kvm_gen_kvmclock_update(vcpu);
10515 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
10516 r = kvm_guest_time_update(vcpu);
10520 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
10521 kvm_mmu_sync_roots(vcpu);
10522 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
10523 kvm_mmu_load_pgd(vcpu);
10526 * Note, the order matters here, as flushing "all" TLB entries
10527 * also flushes the "current" TLB entries, i.e. servicing the
10528 * flush "all" will clear any request to flush "current".
10530 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
10531 kvm_vcpu_flush_tlb_all(vcpu);
10533 kvm_service_local_tlb_flush_requests(vcpu);
10536 * Fall back to a "full" guest flush if Hyper-V's precise
10537 * flushing fails. Note, Hyper-V's flushing is per-vCPU, but
10538 * the flushes are considered "remote" and not "local" because
10539 * the requests can be initiated from other vCPUs.
10541 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) &&
10542 kvm_hv_vcpu_flush_tlb(vcpu))
10543 kvm_vcpu_flush_tlb_guest(vcpu);
10545 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
10546 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
10550 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10551 if (is_guest_mode(vcpu))
10552 kvm_x86_ops.nested_ops->triple_fault(vcpu);
10554 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10555 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
10556 vcpu->mmio_needed = 0;
10561 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
10562 /* Page is swapped out. Do synthetic halt */
10563 vcpu->arch.apf.halted = true;
10567 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
10568 record_steal_time(vcpu);
10569 #ifdef CONFIG_KVM_SMM
10570 if (kvm_check_request(KVM_REQ_SMI, vcpu))
10573 if (kvm_check_request(KVM_REQ_NMI, vcpu))
10575 if (kvm_check_request(KVM_REQ_PMU, vcpu))
10576 kvm_pmu_handle_event(vcpu);
10577 if (kvm_check_request(KVM_REQ_PMI, vcpu))
10578 kvm_pmu_deliver_pmi(vcpu);
10579 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
10580 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
10581 if (test_bit(vcpu->arch.pending_ioapic_eoi,
10582 vcpu->arch.ioapic_handled_vectors)) {
10583 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
10584 vcpu->run->eoi.vector =
10585 vcpu->arch.pending_ioapic_eoi;
10590 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
10591 vcpu_scan_ioapic(vcpu);
10592 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
10593 vcpu_load_eoi_exitmap(vcpu);
10594 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
10595 kvm_vcpu_reload_apic_access_page(vcpu);
10596 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
10597 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10598 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
10599 vcpu->run->system_event.ndata = 0;
10603 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
10604 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10605 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
10606 vcpu->run->system_event.ndata = 0;
10610 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
10611 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
10613 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
10614 vcpu->run->hyperv = hv_vcpu->exit;
10620 * KVM_REQ_HV_STIMER has to be processed after
10621 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
10622 * depend on the guest clock being up-to-date
10624 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
10625 kvm_hv_process_stimers(vcpu);
10626 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
10627 kvm_vcpu_update_apicv(vcpu);
10628 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
10629 kvm_check_async_pf_completion(vcpu);
10630 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
10631 static_call(kvm_x86_msr_filter_changed)(vcpu);
10633 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
10634 static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
10637 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
10638 kvm_xen_has_interrupt(vcpu)) {
10639 ++vcpu->stat.req_event;
10640 r = kvm_apic_accept_events(vcpu);
10645 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
10650 r = kvm_check_and_inject_events(vcpu, &req_immediate_exit);
10656 static_call(kvm_x86_enable_irq_window)(vcpu);
10658 if (kvm_lapic_enabled(vcpu)) {
10659 update_cr8_intercept(vcpu);
10660 kvm_lapic_sync_to_vapic(vcpu);
10664 r = kvm_mmu_reload(vcpu);
10666 goto cancel_injection;
10671 static_call(kvm_x86_prepare_switch_to_guest)(vcpu);
10674 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
10675 * IPI are then delayed after guest entry, which ensures that they
10676 * result in virtual interrupt delivery.
10678 local_irq_disable();
10680 /* Store vcpu->apicv_active before vcpu->mode. */
10681 smp_store_release(&vcpu->mode, IN_GUEST_MODE);
10683 kvm_vcpu_srcu_read_unlock(vcpu);
10686 * 1) We should set ->mode before checking ->requests. Please see
10687 * the comment in kvm_vcpu_exiting_guest_mode().
10689 * 2) For APICv, we should set ->mode before checking PID.ON. This
10690 * pairs with the memory barrier implicit in pi_test_and_set_on
10691 * (see vmx_deliver_posted_interrupt).
10693 * 3) This also orders the write to mode from any reads to the page
10694 * tables done while the VCPU is running. Please see the comment
10695 * in kvm_flush_remote_tlbs.
10697 smp_mb__after_srcu_read_unlock();
10700 * Process pending posted interrupts to handle the case where the
10701 * notification IRQ arrived in the host, or was never sent (because the
10702 * target vCPU wasn't running). Do this regardless of the vCPU's APICv
10703 * status, KVM doesn't update assigned devices when APICv is inhibited,
10704 * i.e. they can post interrupts even if APICv is temporarily disabled.
10706 if (kvm_lapic_enabled(vcpu))
10707 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10709 if (kvm_vcpu_exit_request(vcpu)) {
10710 vcpu->mode = OUTSIDE_GUEST_MODE;
10712 local_irq_enable();
10714 kvm_vcpu_srcu_read_lock(vcpu);
10716 goto cancel_injection;
10719 if (req_immediate_exit) {
10720 kvm_make_request(KVM_REQ_EVENT, vcpu);
10721 static_call(kvm_x86_request_immediate_exit)(vcpu);
10724 fpregs_assert_state_consistent();
10725 if (test_thread_flag(TIF_NEED_FPU_LOAD))
10726 switch_fpu_return();
10728 if (vcpu->arch.guest_fpu.xfd_err)
10729 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
10731 if (unlikely(vcpu->arch.switch_db_regs)) {
10732 set_debugreg(0, 7);
10733 set_debugreg(vcpu->arch.eff_db[0], 0);
10734 set_debugreg(vcpu->arch.eff_db[1], 1);
10735 set_debugreg(vcpu->arch.eff_db[2], 2);
10736 set_debugreg(vcpu->arch.eff_db[3], 3);
10737 } else if (unlikely(hw_breakpoint_active())) {
10738 set_debugreg(0, 7);
10741 guest_timing_enter_irqoff();
10745 * Assert that vCPU vs. VM APICv state is consistent. An APICv
10746 * update must kick and wait for all vCPUs before toggling the
10747 * per-VM state, and responsing vCPUs must wait for the update
10748 * to complete before servicing KVM_REQ_APICV_UPDATE.
10750 WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) &&
10751 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED));
10753 exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu);
10754 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
10757 if (kvm_lapic_enabled(vcpu))
10758 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10760 if (unlikely(kvm_vcpu_exit_request(vcpu))) {
10761 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
10765 /* Note, VM-Exits that go down the "slow" path are accounted below. */
10766 ++vcpu->stat.exits;
10770 * Do this here before restoring debug registers on the host. And
10771 * since we do this before handling the vmexit, a DR access vmexit
10772 * can (a) read the correct value of the debug registers, (b) set
10773 * KVM_DEBUGREG_WONT_EXIT again.
10775 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
10776 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
10777 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
10778 kvm_update_dr0123(vcpu);
10779 kvm_update_dr7(vcpu);
10783 * If the guest has used debug registers, at least dr7
10784 * will be disabled while returning to the host.
10785 * If we don't have active breakpoints in the host, we don't
10786 * care about the messed up debug address registers. But if
10787 * we have some of them active, restore the old state.
10789 if (hw_breakpoint_active())
10790 hw_breakpoint_restore();
10792 vcpu->arch.last_vmentry_cpu = vcpu->cpu;
10793 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
10795 vcpu->mode = OUTSIDE_GUEST_MODE;
10799 * Sync xfd before calling handle_exit_irqoff() which may
10800 * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
10801 * in #NM irqoff handler).
10803 if (vcpu->arch.xfd_no_write_intercept)
10804 fpu_sync_guest_vmexit_xfd_state();
10806 static_call(kvm_x86_handle_exit_irqoff)(vcpu);
10808 if (vcpu->arch.guest_fpu.xfd_err)
10809 wrmsrl(MSR_IA32_XFD_ERR, 0);
10812 * Consume any pending interrupts, including the possible source of
10813 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
10814 * An instruction is required after local_irq_enable() to fully unblock
10815 * interrupts on processors that implement an interrupt shadow, the
10816 * stat.exits increment will do nicely.
10818 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
10819 local_irq_enable();
10820 ++vcpu->stat.exits;
10821 local_irq_disable();
10822 kvm_after_interrupt(vcpu);
10825 * Wait until after servicing IRQs to account guest time so that any
10826 * ticks that occurred while running the guest are properly accounted
10827 * to the guest. Waiting until IRQs are enabled degrades the accuracy
10828 * of accounting via context tracking, but the loss of accuracy is
10829 * acceptable for all known use cases.
10831 guest_timing_exit_irqoff();
10833 local_irq_enable();
10836 kvm_vcpu_srcu_read_lock(vcpu);
10839 * Profile KVM exit RIPs:
10841 if (unlikely(prof_on == KVM_PROFILING)) {
10842 unsigned long rip = kvm_rip_read(vcpu);
10843 profile_hit(KVM_PROFILING, (void *)rip);
10846 if (unlikely(vcpu->arch.tsc_always_catchup))
10847 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10849 if (vcpu->arch.apic_attention)
10850 kvm_lapic_sync_from_vapic(vcpu);
10852 r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
10856 if (req_immediate_exit)
10857 kvm_make_request(KVM_REQ_EVENT, vcpu);
10858 static_call(kvm_x86_cancel_injection)(vcpu);
10859 if (unlikely(vcpu->arch.apic_attention))
10860 kvm_lapic_sync_from_vapic(vcpu);
10865 /* Called within kvm->srcu read side. */
10866 static inline int vcpu_block(struct kvm_vcpu *vcpu)
10870 if (!kvm_arch_vcpu_runnable(vcpu)) {
10872 * Switch to the software timer before halt-polling/blocking as
10873 * the guest's timer may be a break event for the vCPU, and the
10874 * hypervisor timer runs only when the CPU is in guest mode.
10875 * Switch before halt-polling so that KVM recognizes an expired
10876 * timer before blocking.
10878 hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
10880 kvm_lapic_switch_to_sw_timer(vcpu);
10882 kvm_vcpu_srcu_read_unlock(vcpu);
10883 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10884 kvm_vcpu_halt(vcpu);
10886 kvm_vcpu_block(vcpu);
10887 kvm_vcpu_srcu_read_lock(vcpu);
10890 kvm_lapic_switch_to_hv_timer(vcpu);
10893 * If the vCPU is not runnable, a signal or another host event
10894 * of some kind is pending; service it without changing the
10895 * vCPU's activity state.
10897 if (!kvm_arch_vcpu_runnable(vcpu))
10902 * Evaluate nested events before exiting the halted state. This allows
10903 * the halt state to be recorded properly in the VMCS12's activity
10904 * state field (AMD does not have a similar field and a VM-Exit always
10905 * causes a spurious wakeup from HLT).
10907 if (is_guest_mode(vcpu)) {
10908 if (kvm_check_nested_events(vcpu) < 0)
10912 if (kvm_apic_accept_events(vcpu) < 0)
10914 switch(vcpu->arch.mp_state) {
10915 case KVM_MP_STATE_HALTED:
10916 case KVM_MP_STATE_AP_RESET_HOLD:
10917 vcpu->arch.pv.pv_unhalted = false;
10918 vcpu->arch.mp_state =
10919 KVM_MP_STATE_RUNNABLE;
10921 case KVM_MP_STATE_RUNNABLE:
10922 vcpu->arch.apf.halted = false;
10924 case KVM_MP_STATE_INIT_RECEIVED:
10933 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
10935 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
10936 !vcpu->arch.apf.halted);
10939 /* Called within kvm->srcu read side. */
10940 static int vcpu_run(struct kvm_vcpu *vcpu)
10944 vcpu->arch.l1tf_flush_l1d = true;
10948 * If another guest vCPU requests a PV TLB flush in the middle
10949 * of instruction emulation, the rest of the emulation could
10950 * use a stale page translation. Assume that any code after
10951 * this point can start executing an instruction.
10953 vcpu->arch.at_instruction_boundary = false;
10954 if (kvm_vcpu_running(vcpu)) {
10955 r = vcpu_enter_guest(vcpu);
10957 r = vcpu_block(vcpu);
10963 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
10964 if (kvm_xen_has_pending_events(vcpu))
10965 kvm_xen_inject_pending_events(vcpu);
10967 if (kvm_cpu_has_pending_timer(vcpu))
10968 kvm_inject_pending_timer_irqs(vcpu);
10970 if (dm_request_for_irq_injection(vcpu) &&
10971 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
10973 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
10974 ++vcpu->stat.request_irq_exits;
10978 if (__xfer_to_guest_mode_work_pending()) {
10979 kvm_vcpu_srcu_read_unlock(vcpu);
10980 r = xfer_to_guest_mode_handle_work(vcpu);
10981 kvm_vcpu_srcu_read_lock(vcpu);
10990 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
10992 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
10995 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
10997 BUG_ON(!vcpu->arch.pio.count);
10999 return complete_emulated_io(vcpu);
11003 * Implements the following, as a state machine:
11006 * for each fragment
11007 * for each mmio piece in the fragment
11014 * for each fragment
11015 * for each mmio piece in the fragment
11020 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
11022 struct kvm_run *run = vcpu->run;
11023 struct kvm_mmio_fragment *frag;
11026 BUG_ON(!vcpu->mmio_needed);
11028 /* Complete previous fragment */
11029 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
11030 len = min(8u, frag->len);
11031 if (!vcpu->mmio_is_write)
11032 memcpy(frag->data, run->mmio.data, len);
11034 if (frag->len <= 8) {
11035 /* Switch to the next fragment. */
11037 vcpu->mmio_cur_fragment++;
11039 /* Go forward to the next mmio piece. */
11045 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
11046 vcpu->mmio_needed = 0;
11048 /* FIXME: return into emulator if single-stepping. */
11049 if (vcpu->mmio_is_write)
11051 vcpu->mmio_read_completed = 1;
11052 return complete_emulated_io(vcpu);
11055 run->exit_reason = KVM_EXIT_MMIO;
11056 run->mmio.phys_addr = frag->gpa;
11057 if (vcpu->mmio_is_write)
11058 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
11059 run->mmio.len = min(8u, frag->len);
11060 run->mmio.is_write = vcpu->mmio_is_write;
11061 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
11065 /* Swap (qemu) user FPU context for the guest FPU context. */
11066 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
11068 /* Exclude PKRU, it's restored separately immediately after VM-Exit. */
11069 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
11073 /* When vcpu_run ends, restore user space FPU context. */
11074 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
11076 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
11077 ++vcpu->stat.fpu_reload;
11081 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
11083 struct kvm_queued_exception *ex = &vcpu->arch.exception;
11084 struct kvm_run *kvm_run = vcpu->run;
11088 kvm_sigset_activate(vcpu);
11089 kvm_run->flags = 0;
11090 kvm_load_guest_fpu(vcpu);
11092 kvm_vcpu_srcu_read_lock(vcpu);
11093 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
11094 if (kvm_run->immediate_exit) {
11099 * It should be impossible for the hypervisor timer to be in
11100 * use before KVM has ever run the vCPU.
11102 WARN_ON_ONCE(kvm_lapic_hv_timer_in_use(vcpu));
11104 kvm_vcpu_srcu_read_unlock(vcpu);
11105 kvm_vcpu_block(vcpu);
11106 kvm_vcpu_srcu_read_lock(vcpu);
11108 if (kvm_apic_accept_events(vcpu) < 0) {
11113 if (signal_pending(current)) {
11115 kvm_run->exit_reason = KVM_EXIT_INTR;
11116 ++vcpu->stat.signal_exits;
11121 if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
11122 (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
11127 if (kvm_run->kvm_dirty_regs) {
11128 r = sync_regs(vcpu);
11133 /* re-sync apic's tpr */
11134 if (!lapic_in_kernel(vcpu)) {
11135 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
11142 * If userspace set a pending exception and L2 is active, convert it to
11143 * a pending VM-Exit if L1 wants to intercept the exception.
11145 if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) &&
11146 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector,
11148 kvm_queue_exception_vmexit(vcpu, ex->vector,
11149 ex->has_error_code, ex->error_code,
11150 ex->has_payload, ex->payload);
11151 ex->injected = false;
11152 ex->pending = false;
11154 vcpu->arch.exception_from_userspace = false;
11156 if (unlikely(vcpu->arch.complete_userspace_io)) {
11157 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
11158 vcpu->arch.complete_userspace_io = NULL;
11163 WARN_ON_ONCE(vcpu->arch.pio.count);
11164 WARN_ON_ONCE(vcpu->mmio_needed);
11167 if (kvm_run->immediate_exit) {
11172 r = static_call(kvm_x86_vcpu_pre_run)(vcpu);
11176 r = vcpu_run(vcpu);
11179 kvm_put_guest_fpu(vcpu);
11180 if (kvm_run->kvm_valid_regs)
11182 post_kvm_run_save(vcpu);
11183 kvm_vcpu_srcu_read_unlock(vcpu);
11185 kvm_sigset_deactivate(vcpu);
11190 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11192 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
11194 * We are here if userspace calls get_regs() in the middle of
11195 * instruction emulation. Registers state needs to be copied
11196 * back from emulation context to vcpu. Userspace shouldn't do
11197 * that usually, but some bad designed PV devices (vmware
11198 * backdoor interface) need this to work
11200 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
11201 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11203 regs->rax = kvm_rax_read(vcpu);
11204 regs->rbx = kvm_rbx_read(vcpu);
11205 regs->rcx = kvm_rcx_read(vcpu);
11206 regs->rdx = kvm_rdx_read(vcpu);
11207 regs->rsi = kvm_rsi_read(vcpu);
11208 regs->rdi = kvm_rdi_read(vcpu);
11209 regs->rsp = kvm_rsp_read(vcpu);
11210 regs->rbp = kvm_rbp_read(vcpu);
11211 #ifdef CONFIG_X86_64
11212 regs->r8 = kvm_r8_read(vcpu);
11213 regs->r9 = kvm_r9_read(vcpu);
11214 regs->r10 = kvm_r10_read(vcpu);
11215 regs->r11 = kvm_r11_read(vcpu);
11216 regs->r12 = kvm_r12_read(vcpu);
11217 regs->r13 = kvm_r13_read(vcpu);
11218 regs->r14 = kvm_r14_read(vcpu);
11219 regs->r15 = kvm_r15_read(vcpu);
11222 regs->rip = kvm_rip_read(vcpu);
11223 regs->rflags = kvm_get_rflags(vcpu);
11226 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11229 __get_regs(vcpu, regs);
11234 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11236 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
11237 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11239 kvm_rax_write(vcpu, regs->rax);
11240 kvm_rbx_write(vcpu, regs->rbx);
11241 kvm_rcx_write(vcpu, regs->rcx);
11242 kvm_rdx_write(vcpu, regs->rdx);
11243 kvm_rsi_write(vcpu, regs->rsi);
11244 kvm_rdi_write(vcpu, regs->rdi);
11245 kvm_rsp_write(vcpu, regs->rsp);
11246 kvm_rbp_write(vcpu, regs->rbp);
11247 #ifdef CONFIG_X86_64
11248 kvm_r8_write(vcpu, regs->r8);
11249 kvm_r9_write(vcpu, regs->r9);
11250 kvm_r10_write(vcpu, regs->r10);
11251 kvm_r11_write(vcpu, regs->r11);
11252 kvm_r12_write(vcpu, regs->r12);
11253 kvm_r13_write(vcpu, regs->r13);
11254 kvm_r14_write(vcpu, regs->r14);
11255 kvm_r15_write(vcpu, regs->r15);
11258 kvm_rip_write(vcpu, regs->rip);
11259 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
11261 vcpu->arch.exception.pending = false;
11262 vcpu->arch.exception_vmexit.pending = false;
11264 kvm_make_request(KVM_REQ_EVENT, vcpu);
11267 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11270 __set_regs(vcpu, regs);
11275 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11277 struct desc_ptr dt;
11279 if (vcpu->arch.guest_state_protected)
11280 goto skip_protected_regs;
11282 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11283 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11284 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11285 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11286 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11287 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11289 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11290 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11292 static_call(kvm_x86_get_idt)(vcpu, &dt);
11293 sregs->idt.limit = dt.size;
11294 sregs->idt.base = dt.address;
11295 static_call(kvm_x86_get_gdt)(vcpu, &dt);
11296 sregs->gdt.limit = dt.size;
11297 sregs->gdt.base = dt.address;
11299 sregs->cr2 = vcpu->arch.cr2;
11300 sregs->cr3 = kvm_read_cr3(vcpu);
11302 skip_protected_regs:
11303 sregs->cr0 = kvm_read_cr0(vcpu);
11304 sregs->cr4 = kvm_read_cr4(vcpu);
11305 sregs->cr8 = kvm_get_cr8(vcpu);
11306 sregs->efer = vcpu->arch.efer;
11307 sregs->apic_base = kvm_get_apic_base(vcpu);
11310 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11312 __get_sregs_common(vcpu, sregs);
11314 if (vcpu->arch.guest_state_protected)
11317 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
11318 set_bit(vcpu->arch.interrupt.nr,
11319 (unsigned long *)sregs->interrupt_bitmap);
11322 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11326 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
11328 if (vcpu->arch.guest_state_protected)
11331 if (is_pae_paging(vcpu)) {
11332 for (i = 0 ; i < 4 ; i++)
11333 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
11334 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
11338 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
11339 struct kvm_sregs *sregs)
11342 __get_sregs(vcpu, sregs);
11347 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
11348 struct kvm_mp_state *mp_state)
11353 if (kvm_mpx_supported())
11354 kvm_load_guest_fpu(vcpu);
11356 r = kvm_apic_accept_events(vcpu);
11361 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
11362 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
11363 vcpu->arch.pv.pv_unhalted)
11364 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
11366 mp_state->mp_state = vcpu->arch.mp_state;
11369 if (kvm_mpx_supported())
11370 kvm_put_guest_fpu(vcpu);
11375 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
11376 struct kvm_mp_state *mp_state)
11382 switch (mp_state->mp_state) {
11383 case KVM_MP_STATE_UNINITIALIZED:
11384 case KVM_MP_STATE_HALTED:
11385 case KVM_MP_STATE_AP_RESET_HOLD:
11386 case KVM_MP_STATE_INIT_RECEIVED:
11387 case KVM_MP_STATE_SIPI_RECEIVED:
11388 if (!lapic_in_kernel(vcpu))
11392 case KVM_MP_STATE_RUNNABLE:
11400 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow
11401 * forcing the guest into INIT/SIPI if those events are supposed to be
11402 * blocked. KVM prioritizes SMI over INIT, so reject INIT/SIPI state
11403 * if an SMI is pending as well.
11405 if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) &&
11406 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
11407 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
11410 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
11411 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
11412 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
11414 vcpu->arch.mp_state = mp_state->mp_state;
11415 kvm_make_request(KVM_REQ_EVENT, vcpu);
11423 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
11424 int reason, bool has_error_code, u32 error_code)
11426 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
11429 init_emulate_ctxt(vcpu);
11431 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
11432 has_error_code, error_code);
11434 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11435 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11436 vcpu->run->internal.ndata = 0;
11440 kvm_rip_write(vcpu, ctxt->eip);
11441 kvm_set_rflags(vcpu, ctxt->eflags);
11444 EXPORT_SYMBOL_GPL(kvm_task_switch);
11446 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11448 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
11450 * When EFER.LME and CR0.PG are set, the processor is in
11451 * 64-bit mode (though maybe in a 32-bit code segment).
11452 * CR4.PAE and EFER.LMA must be set.
11454 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
11456 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
11460 * Not in 64-bit mode: EFER.LMA is clear and the code
11461 * segment cannot be 64-bit.
11463 if (sregs->efer & EFER_LMA || sregs->cs.l)
11467 return kvm_is_valid_cr4(vcpu, sregs->cr4);
11470 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
11471 int *mmu_reset_needed, bool update_pdptrs)
11473 struct msr_data apic_base_msr;
11475 struct desc_ptr dt;
11477 if (!kvm_is_valid_sregs(vcpu, sregs))
11480 apic_base_msr.data = sregs->apic_base;
11481 apic_base_msr.host_initiated = true;
11482 if (kvm_set_apic_base(vcpu, &apic_base_msr))
11485 if (vcpu->arch.guest_state_protected)
11488 dt.size = sregs->idt.limit;
11489 dt.address = sregs->idt.base;
11490 static_call(kvm_x86_set_idt)(vcpu, &dt);
11491 dt.size = sregs->gdt.limit;
11492 dt.address = sregs->gdt.base;
11493 static_call(kvm_x86_set_gdt)(vcpu, &dt);
11495 vcpu->arch.cr2 = sregs->cr2;
11496 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
11497 vcpu->arch.cr3 = sregs->cr3;
11498 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11499 static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3);
11501 kvm_set_cr8(vcpu, sregs->cr8);
11503 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
11504 static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
11506 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
11507 static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
11508 vcpu->arch.cr0 = sregs->cr0;
11510 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
11511 static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
11513 if (update_pdptrs) {
11514 idx = srcu_read_lock(&vcpu->kvm->srcu);
11515 if (is_pae_paging(vcpu)) {
11516 load_pdptrs(vcpu, kvm_read_cr3(vcpu));
11517 *mmu_reset_needed = 1;
11519 srcu_read_unlock(&vcpu->kvm->srcu, idx);
11522 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11523 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11524 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11525 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11526 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11527 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11529 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11530 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11532 update_cr8_intercept(vcpu);
11534 /* Older userspace won't unhalt the vcpu on reset. */
11535 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
11536 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
11537 !is_protmode(vcpu))
11538 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11543 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11545 int pending_vec, max_bits;
11546 int mmu_reset_needed = 0;
11547 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
11552 if (mmu_reset_needed)
11553 kvm_mmu_reset_context(vcpu);
11555 max_bits = KVM_NR_INTERRUPTS;
11556 pending_vec = find_first_bit(
11557 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
11559 if (pending_vec < max_bits) {
11560 kvm_queue_interrupt(vcpu, pending_vec, false);
11561 pr_debug("Set back pending irq %d\n", pending_vec);
11562 kvm_make_request(KVM_REQ_EVENT, vcpu);
11567 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11569 int mmu_reset_needed = 0;
11570 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
11571 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
11572 !(sregs2->efer & EFER_LMA);
11575 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
11578 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
11581 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
11582 &mmu_reset_needed, !valid_pdptrs);
11586 if (valid_pdptrs) {
11587 for (i = 0; i < 4 ; i++)
11588 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
11590 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
11591 mmu_reset_needed = 1;
11592 vcpu->arch.pdptrs_from_userspace = true;
11594 if (mmu_reset_needed)
11595 kvm_mmu_reset_context(vcpu);
11599 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
11600 struct kvm_sregs *sregs)
11605 ret = __set_sregs(vcpu, sregs);
11610 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
11613 struct kvm_vcpu *vcpu;
11619 down_write(&kvm->arch.apicv_update_lock);
11621 kvm_for_each_vcpu(i, vcpu, kvm) {
11622 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
11627 __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
11628 up_write(&kvm->arch.apicv_update_lock);
11631 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
11632 struct kvm_guest_debug *dbg)
11634 unsigned long rflags;
11637 if (vcpu->arch.guest_state_protected)
11642 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
11644 if (kvm_is_exception_pending(vcpu))
11646 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
11647 kvm_queue_exception(vcpu, DB_VECTOR);
11649 kvm_queue_exception(vcpu, BP_VECTOR);
11653 * Read rflags as long as potentially injected trace flags are still
11656 rflags = kvm_get_rflags(vcpu);
11658 vcpu->guest_debug = dbg->control;
11659 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
11660 vcpu->guest_debug = 0;
11662 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
11663 for (i = 0; i < KVM_NR_DB_REGS; ++i)
11664 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
11665 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
11667 for (i = 0; i < KVM_NR_DB_REGS; i++)
11668 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
11670 kvm_update_dr7(vcpu);
11672 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11673 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
11676 * Trigger an rflags update that will inject or remove the trace
11679 kvm_set_rflags(vcpu, rflags);
11681 static_call(kvm_x86_update_exception_bitmap)(vcpu);
11683 kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
11693 * Translate a guest virtual address to a guest physical address.
11695 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
11696 struct kvm_translation *tr)
11698 unsigned long vaddr = tr->linear_address;
11704 idx = srcu_read_lock(&vcpu->kvm->srcu);
11705 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
11706 srcu_read_unlock(&vcpu->kvm->srcu, idx);
11707 tr->physical_address = gpa;
11708 tr->valid = gpa != INVALID_GPA;
11716 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11718 struct fxregs_state *fxsave;
11720 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11725 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11726 memcpy(fpu->fpr, fxsave->st_space, 128);
11727 fpu->fcw = fxsave->cwd;
11728 fpu->fsw = fxsave->swd;
11729 fpu->ftwx = fxsave->twd;
11730 fpu->last_opcode = fxsave->fop;
11731 fpu->last_ip = fxsave->rip;
11732 fpu->last_dp = fxsave->rdp;
11733 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
11739 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11741 struct fxregs_state *fxsave;
11743 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11748 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11750 memcpy(fxsave->st_space, fpu->fpr, 128);
11751 fxsave->cwd = fpu->fcw;
11752 fxsave->swd = fpu->fsw;
11753 fxsave->twd = fpu->ftwx;
11754 fxsave->fop = fpu->last_opcode;
11755 fxsave->rip = fpu->last_ip;
11756 fxsave->rdp = fpu->last_dp;
11757 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
11763 static void store_regs(struct kvm_vcpu *vcpu)
11765 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
11767 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
11768 __get_regs(vcpu, &vcpu->run->s.regs.regs);
11770 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
11771 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
11773 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
11774 kvm_vcpu_ioctl_x86_get_vcpu_events(
11775 vcpu, &vcpu->run->s.regs.events);
11778 static int sync_regs(struct kvm_vcpu *vcpu)
11780 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
11781 __set_regs(vcpu, &vcpu->run->s.regs.regs);
11782 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
11784 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
11785 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
11787 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
11789 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
11790 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
11791 vcpu, &vcpu->run->s.regs.events))
11793 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
11799 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
11801 if (kvm_check_tsc_unstable() && kvm->created_vcpus)
11802 pr_warn_once("SMP vm created on host with unstable TSC; "
11803 "guest TSC will not be reliable\n");
11805 if (!kvm->arch.max_vcpu_ids)
11806 kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS;
11808 if (id >= kvm->arch.max_vcpu_ids)
11811 return static_call(kvm_x86_vcpu_precreate)(kvm);
11814 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
11819 vcpu->arch.last_vmentry_cpu = -1;
11820 vcpu->arch.regs_avail = ~0;
11821 vcpu->arch.regs_dirty = ~0;
11823 kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm, vcpu, KVM_HOST_USES_PFN);
11825 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
11826 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11828 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
11830 r = kvm_mmu_create(vcpu);
11834 if (irqchip_in_kernel(vcpu->kvm)) {
11835 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
11837 goto fail_mmu_destroy;
11840 * Defer evaluating inhibits until the vCPU is first run, as
11841 * this vCPU will not get notified of any changes until this
11842 * vCPU is visible to other vCPUs (marked online and added to
11843 * the set of vCPUs). Opportunistically mark APICv active as
11844 * VMX in particularly is highly unlikely to have inhibits.
11845 * Ignore the current per-VM APICv state so that vCPU creation
11846 * is guaranteed to run with a deterministic value, the request
11847 * will ensure the vCPU gets the correct state before VM-Entry.
11849 if (enable_apicv) {
11850 vcpu->arch.apic->apicv_active = true;
11851 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
11854 static_branch_inc(&kvm_has_noapic_vcpu);
11858 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
11860 goto fail_free_lapic;
11861 vcpu->arch.pio_data = page_address(page);
11863 vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64),
11864 GFP_KERNEL_ACCOUNT);
11865 vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64),
11866 GFP_KERNEL_ACCOUNT);
11867 if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks)
11868 goto fail_free_mce_banks;
11869 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
11871 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
11872 GFP_KERNEL_ACCOUNT))
11873 goto fail_free_mce_banks;
11875 if (!alloc_emulate_ctxt(vcpu))
11876 goto free_wbinvd_dirty_mask;
11878 if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
11879 pr_err("failed to allocate vcpu's fpu\n");
11880 goto free_emulate_ctxt;
11883 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
11884 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
11886 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
11888 kvm_async_pf_hash_reset(vcpu);
11890 vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap;
11891 kvm_pmu_init(vcpu);
11893 vcpu->arch.pending_external_vector = -1;
11894 vcpu->arch.preempted_in_kernel = false;
11896 #if IS_ENABLED(CONFIG_HYPERV)
11897 vcpu->arch.hv_root_tdp = INVALID_PAGE;
11900 r = static_call(kvm_x86_vcpu_create)(vcpu);
11902 goto free_guest_fpu;
11904 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
11905 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
11906 kvm_xen_init_vcpu(vcpu);
11907 kvm_vcpu_mtrr_init(vcpu);
11909 kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz);
11910 kvm_vcpu_reset(vcpu, false);
11911 kvm_init_mmu(vcpu);
11916 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11918 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11919 free_wbinvd_dirty_mask:
11920 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11921 fail_free_mce_banks:
11922 kfree(vcpu->arch.mce_banks);
11923 kfree(vcpu->arch.mci_ctl2_banks);
11924 free_page((unsigned long)vcpu->arch.pio_data);
11926 kvm_free_lapic(vcpu);
11928 kvm_mmu_destroy(vcpu);
11932 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
11934 struct kvm *kvm = vcpu->kvm;
11936 if (mutex_lock_killable(&vcpu->mutex))
11939 kvm_synchronize_tsc(vcpu, 0);
11942 /* poll control enabled by default */
11943 vcpu->arch.msr_kvm_poll_control = 1;
11945 mutex_unlock(&vcpu->mutex);
11947 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
11948 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
11949 KVMCLOCK_SYNC_PERIOD);
11952 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
11956 kvmclock_reset(vcpu);
11958 static_call(kvm_x86_vcpu_free)(vcpu);
11960 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11961 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11962 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11964 kvm_xen_destroy_vcpu(vcpu);
11965 kvm_hv_vcpu_uninit(vcpu);
11966 kvm_pmu_destroy(vcpu);
11967 kfree(vcpu->arch.mce_banks);
11968 kfree(vcpu->arch.mci_ctl2_banks);
11969 kvm_free_lapic(vcpu);
11970 idx = srcu_read_lock(&vcpu->kvm->srcu);
11971 kvm_mmu_destroy(vcpu);
11972 srcu_read_unlock(&vcpu->kvm->srcu, idx);
11973 free_page((unsigned long)vcpu->arch.pio_data);
11974 kvfree(vcpu->arch.cpuid_entries);
11975 if (!lapic_in_kernel(vcpu))
11976 static_branch_dec(&kvm_has_noapic_vcpu);
11979 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
11981 struct kvm_cpuid_entry2 *cpuid_0x1;
11982 unsigned long old_cr0 = kvm_read_cr0(vcpu);
11983 unsigned long new_cr0;
11986 * Several of the "set" flows, e.g. ->set_cr0(), read other registers
11987 * to handle side effects. RESET emulation hits those flows and relies
11988 * on emulated/virtualized registers, including those that are loaded
11989 * into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel
11990 * to detect improper or missing initialization.
11992 WARN_ON_ONCE(!init_event &&
11993 (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
11996 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's
11997 * possible to INIT the vCPU while L2 is active. Force the vCPU back
11998 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER
11999 * bits), i.e. virtualization is disabled.
12001 if (is_guest_mode(vcpu))
12002 kvm_leave_nested(vcpu);
12004 kvm_lapic_reset(vcpu, init_event);
12006 WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu));
12007 vcpu->arch.hflags = 0;
12009 vcpu->arch.smi_pending = 0;
12010 vcpu->arch.smi_count = 0;
12011 atomic_set(&vcpu->arch.nmi_queued, 0);
12012 vcpu->arch.nmi_pending = 0;
12013 vcpu->arch.nmi_injected = false;
12014 kvm_clear_interrupt_queue(vcpu);
12015 kvm_clear_exception_queue(vcpu);
12017 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
12018 kvm_update_dr0123(vcpu);
12019 vcpu->arch.dr6 = DR6_ACTIVE_LOW;
12020 vcpu->arch.dr7 = DR7_FIXED_1;
12021 kvm_update_dr7(vcpu);
12023 vcpu->arch.cr2 = 0;
12025 kvm_make_request(KVM_REQ_EVENT, vcpu);
12026 vcpu->arch.apf.msr_en_val = 0;
12027 vcpu->arch.apf.msr_int_val = 0;
12028 vcpu->arch.st.msr_val = 0;
12030 kvmclock_reset(vcpu);
12032 kvm_clear_async_pf_completion_queue(vcpu);
12033 kvm_async_pf_hash_reset(vcpu);
12034 vcpu->arch.apf.halted = false;
12036 if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
12037 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
12040 * All paths that lead to INIT are required to load the guest's
12041 * FPU state (because most paths are buried in KVM_RUN).
12044 kvm_put_guest_fpu(vcpu);
12046 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
12047 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
12050 kvm_load_guest_fpu(vcpu);
12054 kvm_pmu_reset(vcpu);
12055 vcpu->arch.smbase = 0x30000;
12057 vcpu->arch.msr_misc_features_enables = 0;
12058 vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL |
12059 MSR_IA32_MISC_ENABLE_BTS_UNAVAIL;
12061 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
12062 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
12065 /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
12066 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
12067 kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
12070 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
12071 * if no CPUID match is found. Note, it's impossible to get a match at
12072 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
12073 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
12074 * on RESET. But, go through the motions in case that's ever remedied.
12076 cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1);
12077 kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
12079 static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
12081 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
12082 kvm_rip_write(vcpu, 0xfff0);
12084 vcpu->arch.cr3 = 0;
12085 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
12088 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions
12089 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
12090 * (or qualify) that with a footnote stating that CD/NW are preserved.
12092 new_cr0 = X86_CR0_ET;
12094 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
12096 new_cr0 |= X86_CR0_NW | X86_CR0_CD;
12098 static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
12099 static_call(kvm_x86_set_cr4)(vcpu, 0);
12100 static_call(kvm_x86_set_efer)(vcpu, 0);
12101 static_call(kvm_x86_update_exception_bitmap)(vcpu);
12104 * On the standard CR0/CR4/EFER modification paths, there are several
12105 * complex conditions determining whether the MMU has to be reset and/or
12106 * which PCIDs have to be flushed. However, CR0.WP and the paging-related
12107 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
12108 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
12109 * CR0 will be '0' prior to RESET). So we only need to check CR0.PG here.
12111 if (old_cr0 & X86_CR0_PG) {
12112 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12113 kvm_mmu_reset_context(vcpu);
12117 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's
12118 * APM states the TLBs are untouched by INIT, but it also states that
12119 * the TLBs are flushed on "External initialization of the processor."
12120 * Flush the guest TLB regardless of vendor, there is no meaningful
12121 * benefit in relying on the guest to flush the TLB immediately after
12122 * INIT. A spurious TLB flush is benign and likely negligible from a
12123 * performance perspective.
12126 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12128 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
12130 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
12132 struct kvm_segment cs;
12134 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
12135 cs.selector = vector << 8;
12136 cs.base = vector << 12;
12137 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
12138 kvm_rip_write(vcpu, 0);
12140 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
12142 int kvm_arch_hardware_enable(void)
12145 struct kvm_vcpu *vcpu;
12150 bool stable, backwards_tsc = false;
12152 kvm_user_return_msr_cpu_online();
12154 ret = kvm_x86_check_processor_compatibility();
12158 ret = static_call(kvm_x86_hardware_enable)();
12162 local_tsc = rdtsc();
12163 stable = !kvm_check_tsc_unstable();
12164 list_for_each_entry(kvm, &vm_list, vm_list) {
12165 kvm_for_each_vcpu(i, vcpu, kvm) {
12166 if (!stable && vcpu->cpu == smp_processor_id())
12167 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
12168 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
12169 backwards_tsc = true;
12170 if (vcpu->arch.last_host_tsc > max_tsc)
12171 max_tsc = vcpu->arch.last_host_tsc;
12177 * Sometimes, even reliable TSCs go backwards. This happens on
12178 * platforms that reset TSC during suspend or hibernate actions, but
12179 * maintain synchronization. We must compensate. Fortunately, we can
12180 * detect that condition here, which happens early in CPU bringup,
12181 * before any KVM threads can be running. Unfortunately, we can't
12182 * bring the TSCs fully up to date with real time, as we aren't yet far
12183 * enough into CPU bringup that we know how much real time has actually
12184 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
12185 * variables that haven't been updated yet.
12187 * So we simply find the maximum observed TSC above, then record the
12188 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
12189 * the adjustment will be applied. Note that we accumulate
12190 * adjustments, in case multiple suspend cycles happen before some VCPU
12191 * gets a chance to run again. In the event that no KVM threads get a
12192 * chance to run, we will miss the entire elapsed period, as we'll have
12193 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
12194 * loose cycle time. This isn't too big a deal, since the loss will be
12195 * uniform across all VCPUs (not to mention the scenario is extremely
12196 * unlikely). It is possible that a second hibernate recovery happens
12197 * much faster than a first, causing the observed TSC here to be
12198 * smaller; this would require additional padding adjustment, which is
12199 * why we set last_host_tsc to the local tsc observed here.
12201 * N.B. - this code below runs only on platforms with reliable TSC,
12202 * as that is the only way backwards_tsc is set above. Also note
12203 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
12204 * have the same delta_cyc adjustment applied if backwards_tsc
12205 * is detected. Note further, this adjustment is only done once,
12206 * as we reset last_host_tsc on all VCPUs to stop this from being
12207 * called multiple times (one for each physical CPU bringup).
12209 * Platforms with unreliable TSCs don't have to deal with this, they
12210 * will be compensated by the logic in vcpu_load, which sets the TSC to
12211 * catchup mode. This will catchup all VCPUs to real time, but cannot
12212 * guarantee that they stay in perfect synchronization.
12214 if (backwards_tsc) {
12215 u64 delta_cyc = max_tsc - local_tsc;
12216 list_for_each_entry(kvm, &vm_list, vm_list) {
12217 kvm->arch.backwards_tsc_observed = true;
12218 kvm_for_each_vcpu(i, vcpu, kvm) {
12219 vcpu->arch.tsc_offset_adjustment += delta_cyc;
12220 vcpu->arch.last_host_tsc = local_tsc;
12221 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
12225 * We have to disable TSC offset matching.. if you were
12226 * booting a VM while issuing an S4 host suspend....
12227 * you may have some problem. Solving this issue is
12228 * left as an exercise to the reader.
12230 kvm->arch.last_tsc_nsec = 0;
12231 kvm->arch.last_tsc_write = 0;
12238 void kvm_arch_hardware_disable(void)
12240 static_call(kvm_x86_hardware_disable)();
12241 drop_user_return_notifiers();
12244 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
12246 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
12249 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
12251 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
12254 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
12255 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
12257 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
12259 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
12261 vcpu->arch.l1tf_flush_l1d = true;
12262 if (pmu->version && unlikely(pmu->event_count)) {
12263 pmu->need_cleanup = true;
12264 kvm_make_request(KVM_REQ_PMU, vcpu);
12266 static_call(kvm_x86_sched_in)(vcpu, cpu);
12269 void kvm_arch_free_vm(struct kvm *kvm)
12271 kfree(to_kvm_hv(kvm)->hv_pa_pg);
12272 __kvm_arch_free_vm(kvm);
12276 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
12279 unsigned long flags;
12284 ret = kvm_page_track_init(kvm);
12288 ret = kvm_mmu_init_vm(kvm);
12290 goto out_page_track;
12292 ret = static_call(kvm_x86_vm_init)(kvm);
12294 goto out_uninit_mmu;
12296 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
12297 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
12298 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
12300 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
12301 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
12302 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
12303 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
12304 &kvm->arch.irq_sources_bitmap);
12306 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
12307 mutex_init(&kvm->arch.apic_map_lock);
12308 seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
12309 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
12311 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
12312 pvclock_update_vm_gtod_copy(kvm);
12313 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
12315 kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz;
12316 kvm->arch.guest_can_read_msr_platform_info = true;
12317 kvm->arch.enable_pmu = enable_pmu;
12319 #if IS_ENABLED(CONFIG_HYPERV)
12320 spin_lock_init(&kvm->arch.hv_root_tdp_lock);
12321 kvm->arch.hv_root_tdp = INVALID_PAGE;
12324 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
12325 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
12327 kvm_apicv_init(kvm);
12328 kvm_hv_init_vm(kvm);
12329 kvm_xen_init_vm(kvm);
12334 kvm_mmu_uninit_vm(kvm);
12336 kvm_page_track_cleanup(kvm);
12341 int kvm_arch_post_init_vm(struct kvm *kvm)
12343 return kvm_mmu_post_init_vm(kvm);
12346 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
12349 kvm_mmu_unload(vcpu);
12353 static void kvm_unload_vcpu_mmus(struct kvm *kvm)
12356 struct kvm_vcpu *vcpu;
12358 kvm_for_each_vcpu(i, vcpu, kvm) {
12359 kvm_clear_async_pf_completion_queue(vcpu);
12360 kvm_unload_vcpu_mmu(vcpu);
12364 void kvm_arch_sync_events(struct kvm *kvm)
12366 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
12367 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
12372 * __x86_set_memory_region: Setup KVM internal memory slot
12374 * @kvm: the kvm pointer to the VM.
12375 * @id: the slot ID to setup.
12376 * @gpa: the GPA to install the slot (unused when @size == 0).
12377 * @size: the size of the slot. Set to zero to uninstall a slot.
12379 * This function helps to setup a KVM internal memory slot. Specify
12380 * @size > 0 to install a new slot, while @size == 0 to uninstall a
12381 * slot. The return code can be one of the following:
12383 * HVA: on success (uninstall will return a bogus HVA)
12386 * The caller should always use IS_ERR() to check the return value
12387 * before use. Note, the KVM internal memory slots are guaranteed to
12388 * remain valid and unchanged until the VM is destroyed, i.e., the
12389 * GPA->HVA translation will not change. However, the HVA is a user
12390 * address, i.e. its accessibility is not guaranteed, and must be
12391 * accessed via __copy_{to,from}_user().
12393 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
12397 unsigned long hva, old_npages;
12398 struct kvm_memslots *slots = kvm_memslots(kvm);
12399 struct kvm_memory_slot *slot;
12401 /* Called with kvm->slots_lock held. */
12402 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
12403 return ERR_PTR_USR(-EINVAL);
12405 slot = id_to_memslot(slots, id);
12407 if (slot && slot->npages)
12408 return ERR_PTR_USR(-EEXIST);
12411 * MAP_SHARED to prevent internal slot pages from being moved
12414 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
12415 MAP_SHARED | MAP_ANONYMOUS, 0);
12416 if (IS_ERR_VALUE(hva))
12417 return (void __user *)hva;
12419 if (!slot || !slot->npages)
12422 old_npages = slot->npages;
12423 hva = slot->userspace_addr;
12426 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
12427 struct kvm_userspace_memory_region m;
12429 m.slot = id | (i << 16);
12431 m.guest_phys_addr = gpa;
12432 m.userspace_addr = hva;
12433 m.memory_size = size;
12434 r = __kvm_set_memory_region(kvm, &m);
12436 return ERR_PTR_USR(r);
12440 vm_munmap(hva, old_npages * PAGE_SIZE);
12442 return (void __user *)hva;
12444 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
12446 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
12448 kvm_mmu_pre_destroy_vm(kvm);
12451 void kvm_arch_destroy_vm(struct kvm *kvm)
12453 if (current->mm == kvm->mm) {
12455 * Free memory regions allocated on behalf of userspace,
12456 * unless the memory map has changed due to process exit
12459 mutex_lock(&kvm->slots_lock);
12460 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
12462 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
12464 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
12465 mutex_unlock(&kvm->slots_lock);
12467 kvm_unload_vcpu_mmus(kvm);
12468 static_call_cond(kvm_x86_vm_destroy)(kvm);
12469 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
12470 kvm_pic_destroy(kvm);
12471 kvm_ioapic_destroy(kvm);
12472 kvm_destroy_vcpus(kvm);
12473 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
12474 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
12475 kvm_mmu_uninit_vm(kvm);
12476 kvm_page_track_cleanup(kvm);
12477 kvm_xen_destroy_vm(kvm);
12478 kvm_hv_destroy_vm(kvm);
12481 static void memslot_rmap_free(struct kvm_memory_slot *slot)
12485 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12486 kvfree(slot->arch.rmap[i]);
12487 slot->arch.rmap[i] = NULL;
12491 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
12495 memslot_rmap_free(slot);
12497 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12498 kvfree(slot->arch.lpage_info[i - 1]);
12499 slot->arch.lpage_info[i - 1] = NULL;
12502 kvm_page_track_free_memslot(slot);
12505 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
12507 const int sz = sizeof(*slot->arch.rmap[0]);
12510 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12512 int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12514 if (slot->arch.rmap[i])
12517 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
12518 if (!slot->arch.rmap[i]) {
12519 memslot_rmap_free(slot);
12527 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
12528 struct kvm_memory_slot *slot)
12530 unsigned long npages = slot->npages;
12534 * Clear out the previous array pointers for the KVM_MR_MOVE case. The
12535 * old arrays will be freed by __kvm_set_memory_region() if installing
12536 * the new memslot is successful.
12538 memset(&slot->arch, 0, sizeof(slot->arch));
12540 if (kvm_memslots_have_rmaps(kvm)) {
12541 r = memslot_rmap_alloc(slot, npages);
12546 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12547 struct kvm_lpage_info *linfo;
12548 unsigned long ugfn;
12552 lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12554 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
12558 slot->arch.lpage_info[i - 1] = linfo;
12560 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
12561 linfo[0].disallow_lpage = 1;
12562 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
12563 linfo[lpages - 1].disallow_lpage = 1;
12564 ugfn = slot->userspace_addr >> PAGE_SHIFT;
12566 * If the gfn and userspace address are not aligned wrt each
12567 * other, disable large page support for this slot.
12569 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
12572 for (j = 0; j < lpages; ++j)
12573 linfo[j].disallow_lpage = 1;
12577 if (kvm_page_track_create_memslot(kvm, slot, npages))
12583 memslot_rmap_free(slot);
12585 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12586 kvfree(slot->arch.lpage_info[i - 1]);
12587 slot->arch.lpage_info[i - 1] = NULL;
12592 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
12594 struct kvm_vcpu *vcpu;
12598 * memslots->generation has been incremented.
12599 * mmio generation may have reached its maximum value.
12601 kvm_mmu_invalidate_mmio_sptes(kvm, gen);
12603 /* Force re-initialization of steal_time cache */
12604 kvm_for_each_vcpu(i, vcpu, kvm)
12605 kvm_vcpu_kick(vcpu);
12608 int kvm_arch_prepare_memory_region(struct kvm *kvm,
12609 const struct kvm_memory_slot *old,
12610 struct kvm_memory_slot *new,
12611 enum kvm_mr_change change)
12613 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
12614 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
12617 return kvm_alloc_memslot_metadata(kvm, new);
12620 if (change == KVM_MR_FLAGS_ONLY)
12621 memcpy(&new->arch, &old->arch, sizeof(old->arch));
12622 else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
12629 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
12633 if (!kvm_x86_ops.cpu_dirty_log_size)
12636 nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging);
12637 if ((enable && nr_slots == 1) || !nr_slots)
12638 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
12641 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
12642 struct kvm_memory_slot *old,
12643 const struct kvm_memory_slot *new,
12644 enum kvm_mr_change change)
12646 u32 old_flags = old ? old->flags : 0;
12647 u32 new_flags = new ? new->flags : 0;
12648 bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
12651 * Update CPU dirty logging if dirty logging is being toggled. This
12652 * applies to all operations.
12654 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
12655 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
12658 * Nothing more to do for RO slots (which can't be dirtied and can't be
12659 * made writable) or CREATE/MOVE/DELETE of a slot.
12661 * For a memslot with dirty logging disabled:
12662 * CREATE: No dirty mappings will already exist.
12663 * MOVE/DELETE: The old mappings will already have been cleaned up by
12664 * kvm_arch_flush_shadow_memslot()
12666 * For a memslot with dirty logging enabled:
12667 * CREATE: No shadow pages exist, thus nothing to write-protect
12668 * and no dirty bits to clear.
12669 * MOVE/DELETE: The old mappings will already have been cleaned up by
12670 * kvm_arch_flush_shadow_memslot().
12672 if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
12676 * READONLY and non-flags changes were filtered out above, and the only
12677 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
12678 * logging isn't being toggled on or off.
12680 if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
12683 if (!log_dirty_pages) {
12685 * Dirty logging tracks sptes in 4k granularity, meaning that
12686 * large sptes have to be split. If live migration succeeds,
12687 * the guest in the source machine will be destroyed and large
12688 * sptes will be created in the destination. However, if the
12689 * guest continues to run in the source machine (for example if
12690 * live migration fails), small sptes will remain around and
12691 * cause bad performance.
12693 * Scan sptes if dirty logging has been stopped, dropping those
12694 * which can be collapsed into a single large-page spte. Later
12695 * page faults will create the large-page sptes.
12697 kvm_mmu_zap_collapsible_sptes(kvm, new);
12700 * Initially-all-set does not require write protecting any page,
12701 * because they're all assumed to be dirty.
12703 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
12706 if (READ_ONCE(eager_page_split))
12707 kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
12709 if (kvm_x86_ops.cpu_dirty_log_size) {
12710 kvm_mmu_slot_leaf_clear_dirty(kvm, new);
12711 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
12713 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
12717 * Unconditionally flush the TLBs after enabling dirty logging.
12718 * A flush is almost always going to be necessary (see below),
12719 * and unconditionally flushing allows the helpers to omit
12720 * the subtly complex checks when removing write access.
12722 * Do the flush outside of mmu_lock to reduce the amount of
12723 * time mmu_lock is held. Flushing after dropping mmu_lock is
12724 * safe as KVM only needs to guarantee the slot is fully
12725 * write-protected before returning to userspace, i.e. before
12726 * userspace can consume the dirty status.
12728 * Flushing outside of mmu_lock requires KVM to be careful when
12729 * making decisions based on writable status of an SPTE, e.g. a
12730 * !writable SPTE doesn't guarantee a CPU can't perform writes.
12732 * Specifically, KVM also write-protects guest page tables to
12733 * monitor changes when using shadow paging, and must guarantee
12734 * no CPUs can write to those page before mmu_lock is dropped.
12735 * Because CPUs may have stale TLB entries at this point, a
12736 * !writable SPTE doesn't guarantee CPUs can't perform writes.
12738 * KVM also allows making SPTES writable outside of mmu_lock,
12739 * e.g. to allow dirty logging without taking mmu_lock.
12741 * To handle these scenarios, KVM uses a separate software-only
12742 * bit (MMU-writable) to track if a SPTE is !writable due to
12743 * a guest page table being write-protected (KVM clears the
12744 * MMU-writable flag when write-protecting for shadow paging).
12746 * The use of MMU-writable is also the primary motivation for
12747 * the unconditional flush. Because KVM must guarantee that a
12748 * CPU doesn't contain stale, writable TLB entries for a
12749 * !MMU-writable SPTE, KVM must flush if it encounters any
12750 * MMU-writable SPTE regardless of whether the actual hardware
12751 * writable bit was set. I.e. KVM is almost guaranteed to need
12752 * to flush, while unconditionally flushing allows the "remove
12753 * write access" helpers to ignore MMU-writable entirely.
12755 * See is_writable_pte() for more details (the case involving
12756 * access-tracked SPTEs is particularly relevant).
12758 kvm_arch_flush_remote_tlbs_memslot(kvm, new);
12762 void kvm_arch_commit_memory_region(struct kvm *kvm,
12763 struct kvm_memory_slot *old,
12764 const struct kvm_memory_slot *new,
12765 enum kvm_mr_change change)
12767 if (!kvm->arch.n_requested_mmu_pages &&
12768 (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
12769 unsigned long nr_mmu_pages;
12771 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
12772 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
12773 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
12776 kvm_mmu_slot_apply_flags(kvm, old, new, change);
12778 /* Free the arrays associated with the old memslot. */
12779 if (change == KVM_MR_MOVE)
12780 kvm_arch_free_memslot(kvm, old);
12783 void kvm_arch_flush_shadow_all(struct kvm *kvm)
12785 kvm_mmu_zap_all(kvm);
12788 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
12789 struct kvm_memory_slot *slot)
12791 kvm_page_track_flush_slot(kvm, slot);
12794 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
12796 return (is_guest_mode(vcpu) &&
12797 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
12800 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
12802 if (!list_empty_careful(&vcpu->async_pf.done))
12805 if (kvm_apic_has_pending_init_or_sipi(vcpu) &&
12806 kvm_apic_init_sipi_allowed(vcpu))
12809 if (vcpu->arch.pv.pv_unhalted)
12812 if (kvm_is_exception_pending(vcpu))
12815 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12816 (vcpu->arch.nmi_pending &&
12817 static_call(kvm_x86_nmi_allowed)(vcpu, false)))
12820 #ifdef CONFIG_KVM_SMM
12821 if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
12822 (vcpu->arch.smi_pending &&
12823 static_call(kvm_x86_smi_allowed)(vcpu, false)))
12827 if (kvm_arch_interrupt_allowed(vcpu) &&
12828 (kvm_cpu_has_interrupt(vcpu) ||
12829 kvm_guest_apic_has_interrupt(vcpu)))
12832 if (kvm_hv_has_stimer_pending(vcpu))
12835 if (is_guest_mode(vcpu) &&
12836 kvm_x86_ops.nested_ops->has_events &&
12837 kvm_x86_ops.nested_ops->has_events(vcpu))
12840 if (kvm_xen_has_pending_events(vcpu))
12846 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
12848 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
12851 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
12853 if (kvm_vcpu_apicv_active(vcpu) &&
12854 static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
12860 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
12862 if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
12865 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12866 #ifdef CONFIG_KVM_SMM
12867 kvm_test_request(KVM_REQ_SMI, vcpu) ||
12869 kvm_test_request(KVM_REQ_EVENT, vcpu))
12872 return kvm_arch_dy_has_pending_interrupt(vcpu);
12875 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
12877 if (vcpu->arch.guest_state_protected)
12880 return vcpu->arch.preempted_in_kernel;
12883 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
12885 return kvm_rip_read(vcpu);
12888 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
12890 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
12893 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
12895 return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
12898 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
12900 /* Can't read the RIP when guest state is protected, just return 0 */
12901 if (vcpu->arch.guest_state_protected)
12904 if (is_64_bit_mode(vcpu))
12905 return kvm_rip_read(vcpu);
12906 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
12907 kvm_rip_read(vcpu));
12909 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
12911 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
12913 return kvm_get_linear_rip(vcpu) == linear_rip;
12915 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
12917 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
12919 unsigned long rflags;
12921 rflags = static_call(kvm_x86_get_rflags)(vcpu);
12922 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
12923 rflags &= ~X86_EFLAGS_TF;
12926 EXPORT_SYMBOL_GPL(kvm_get_rflags);
12928 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12930 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
12931 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
12932 rflags |= X86_EFLAGS_TF;
12933 static_call(kvm_x86_set_rflags)(vcpu, rflags);
12936 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12938 __kvm_set_rflags(vcpu, rflags);
12939 kvm_make_request(KVM_REQ_EVENT, vcpu);
12941 EXPORT_SYMBOL_GPL(kvm_set_rflags);
12943 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
12945 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
12947 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
12950 static inline u32 kvm_async_pf_next_probe(u32 key)
12952 return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
12955 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12957 u32 key = kvm_async_pf_hash_fn(gfn);
12959 while (vcpu->arch.apf.gfns[key] != ~0)
12960 key = kvm_async_pf_next_probe(key);
12962 vcpu->arch.apf.gfns[key] = gfn;
12965 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
12968 u32 key = kvm_async_pf_hash_fn(gfn);
12970 for (i = 0; i < ASYNC_PF_PER_VCPU &&
12971 (vcpu->arch.apf.gfns[key] != gfn &&
12972 vcpu->arch.apf.gfns[key] != ~0); i++)
12973 key = kvm_async_pf_next_probe(key);
12978 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12980 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
12983 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12987 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
12989 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
12993 vcpu->arch.apf.gfns[i] = ~0;
12995 j = kvm_async_pf_next_probe(j);
12996 if (vcpu->arch.apf.gfns[j] == ~0)
12998 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
13000 * k lies cyclically in ]i,j]
13002 * |....j i.k.| or |.k..j i...|
13004 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
13005 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
13010 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
13012 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
13014 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
13018 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
13020 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13022 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13023 &token, offset, sizeof(token));
13026 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
13028 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13031 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13032 &val, offset, sizeof(val)))
13038 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
13041 if (!kvm_pv_async_pf_enabled(vcpu))
13044 if (vcpu->arch.apf.send_user_only &&
13045 static_call(kvm_x86_get_cpl)(vcpu) == 0)
13048 if (is_guest_mode(vcpu)) {
13050 * L1 needs to opt into the special #PF vmexits that are
13051 * used to deliver async page faults.
13053 return vcpu->arch.apf.delivery_as_pf_vmexit;
13056 * Play it safe in case the guest temporarily disables paging.
13057 * The real mode IDT in particular is unlikely to have a #PF
13060 return is_paging(vcpu);
13064 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
13066 if (unlikely(!lapic_in_kernel(vcpu) ||
13067 kvm_event_needs_reinjection(vcpu) ||
13068 kvm_is_exception_pending(vcpu)))
13071 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
13075 * If interrupts are off we cannot even use an artificial
13078 return kvm_arch_interrupt_allowed(vcpu);
13081 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
13082 struct kvm_async_pf *work)
13084 struct x86_exception fault;
13086 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
13087 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
13089 if (kvm_can_deliver_async_pf(vcpu) &&
13090 !apf_put_user_notpresent(vcpu)) {
13091 fault.vector = PF_VECTOR;
13092 fault.error_code_valid = true;
13093 fault.error_code = 0;
13094 fault.nested_page_fault = false;
13095 fault.address = work->arch.token;
13096 fault.async_page_fault = true;
13097 kvm_inject_page_fault(vcpu, &fault);
13101 * It is not possible to deliver a paravirtualized asynchronous
13102 * page fault, but putting the guest in an artificial halt state
13103 * can be beneficial nevertheless: if an interrupt arrives, we
13104 * can deliver it timely and perhaps the guest will schedule
13105 * another process. When the instruction that triggered a page
13106 * fault is retried, hopefully the page will be ready in the host.
13108 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
13113 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
13114 struct kvm_async_pf *work)
13116 struct kvm_lapic_irq irq = {
13117 .delivery_mode = APIC_DM_FIXED,
13118 .vector = vcpu->arch.apf.vec
13121 if (work->wakeup_all)
13122 work->arch.token = ~0; /* broadcast wakeup */
13124 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
13125 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
13127 if ((work->wakeup_all || work->notpresent_injected) &&
13128 kvm_pv_async_pf_enabled(vcpu) &&
13129 !apf_put_user_ready(vcpu, work->arch.token)) {
13130 vcpu->arch.apf.pageready_pending = true;
13131 kvm_apic_set_irq(vcpu, &irq, NULL);
13134 vcpu->arch.apf.halted = false;
13135 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
13138 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
13140 kvm_make_request(KVM_REQ_APF_READY, vcpu);
13141 if (!vcpu->arch.apf.pageready_pending)
13142 kvm_vcpu_kick(vcpu);
13145 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
13147 if (!kvm_pv_async_pf_enabled(vcpu))
13150 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
13153 void kvm_arch_start_assignment(struct kvm *kvm)
13155 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
13156 static_call_cond(kvm_x86_pi_start_assignment)(kvm);
13158 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
13160 void kvm_arch_end_assignment(struct kvm *kvm)
13162 atomic_dec(&kvm->arch.assigned_device_count);
13164 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
13166 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm)
13168 return raw_atomic_read(&kvm->arch.assigned_device_count);
13170 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
13172 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
13174 atomic_inc(&kvm->arch.noncoherent_dma_count);
13176 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
13178 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
13180 atomic_dec(&kvm->arch.noncoherent_dma_count);
13182 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
13184 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
13186 return atomic_read(&kvm->arch.noncoherent_dma_count);
13188 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
13190 bool kvm_arch_has_irq_bypass(void)
13195 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
13196 struct irq_bypass_producer *prod)
13198 struct kvm_kernel_irqfd *irqfd =
13199 container_of(cons, struct kvm_kernel_irqfd, consumer);
13202 irqfd->producer = prod;
13203 kvm_arch_start_assignment(irqfd->kvm);
13204 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm,
13205 prod->irq, irqfd->gsi, 1);
13208 kvm_arch_end_assignment(irqfd->kvm);
13213 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
13214 struct irq_bypass_producer *prod)
13217 struct kvm_kernel_irqfd *irqfd =
13218 container_of(cons, struct kvm_kernel_irqfd, consumer);
13220 WARN_ON(irqfd->producer != prod);
13221 irqfd->producer = NULL;
13224 * When producer of consumer is unregistered, we change back to
13225 * remapped mode, so we can re-use the current implementation
13226 * when the irq is masked/disabled or the consumer side (KVM
13227 * int this case doesn't want to receive the interrupts.
13229 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
13231 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
13232 " fails: %d\n", irqfd->consumer.token, ret);
13234 kvm_arch_end_assignment(irqfd->kvm);
13237 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
13238 uint32_t guest_irq, bool set)
13240 return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set);
13243 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
13244 struct kvm_kernel_irq_routing_entry *new)
13246 if (new->type != KVM_IRQ_ROUTING_MSI)
13249 return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
13252 bool kvm_vector_hashing_enabled(void)
13254 return vector_hashing;
13257 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
13259 return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
13261 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
13264 int kvm_spec_ctrl_test_value(u64 value)
13267 * test that setting IA32_SPEC_CTRL to given value
13268 * is allowed by the host processor
13272 unsigned long flags;
13275 local_irq_save(flags);
13277 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
13279 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
13282 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
13284 local_irq_restore(flags);
13288 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
13290 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
13292 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
13293 struct x86_exception fault;
13294 u64 access = error_code &
13295 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
13297 if (!(error_code & PFERR_PRESENT_MASK) ||
13298 mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) {
13300 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
13301 * tables probably do not match the TLB. Just proceed
13302 * with the error code that the processor gave.
13304 fault.vector = PF_VECTOR;
13305 fault.error_code_valid = true;
13306 fault.error_code = error_code;
13307 fault.nested_page_fault = false;
13308 fault.address = gva;
13309 fault.async_page_fault = false;
13311 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
13313 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
13316 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
13317 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
13318 * indicates whether exit to userspace is needed.
13320 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
13321 struct x86_exception *e)
13323 if (r == X86EMUL_PROPAGATE_FAULT) {
13324 if (KVM_BUG_ON(!e, vcpu->kvm))
13327 kvm_inject_emulated_page_fault(vcpu, e);
13332 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
13333 * while handling a VMX instruction KVM could've handled the request
13334 * correctly by exiting to userspace and performing I/O but there
13335 * doesn't seem to be a real use-case behind such requests, just return
13336 * KVM_EXIT_INTERNAL_ERROR for now.
13338 kvm_prepare_emulation_failure_exit(vcpu);
13342 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
13344 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
13347 struct x86_exception e;
13354 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
13355 if (r != X86EMUL_CONTINUE)
13356 return kvm_handle_memory_failure(vcpu, r, &e);
13358 if (operand.pcid >> 12 != 0) {
13359 kvm_inject_gp(vcpu, 0);
13363 pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE);
13366 case INVPCID_TYPE_INDIV_ADDR:
13367 if ((!pcid_enabled && (operand.pcid != 0)) ||
13368 is_noncanonical_address(operand.gla, vcpu)) {
13369 kvm_inject_gp(vcpu, 0);
13372 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
13373 return kvm_skip_emulated_instruction(vcpu);
13375 case INVPCID_TYPE_SINGLE_CTXT:
13376 if (!pcid_enabled && (operand.pcid != 0)) {
13377 kvm_inject_gp(vcpu, 0);
13381 kvm_invalidate_pcid(vcpu, operand.pcid);
13382 return kvm_skip_emulated_instruction(vcpu);
13384 case INVPCID_TYPE_ALL_NON_GLOBAL:
13386 * Currently, KVM doesn't mark global entries in the shadow
13387 * page tables, so a non-global flush just degenerates to a
13388 * global flush. If needed, we could optimize this later by
13389 * keeping track of global entries in shadow page tables.
13393 case INVPCID_TYPE_ALL_INCL_GLOBAL:
13394 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
13395 return kvm_skip_emulated_instruction(vcpu);
13398 kvm_inject_gp(vcpu, 0);
13402 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
13404 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
13406 struct kvm_run *run = vcpu->run;
13407 struct kvm_mmio_fragment *frag;
13410 BUG_ON(!vcpu->mmio_needed);
13412 /* Complete previous fragment */
13413 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
13414 len = min(8u, frag->len);
13415 if (!vcpu->mmio_is_write)
13416 memcpy(frag->data, run->mmio.data, len);
13418 if (frag->len <= 8) {
13419 /* Switch to the next fragment. */
13421 vcpu->mmio_cur_fragment++;
13423 /* Go forward to the next mmio piece. */
13429 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
13430 vcpu->mmio_needed = 0;
13432 // VMG change, at this point, we're always done
13433 // RIP has already been advanced
13437 // More MMIO is needed
13438 run->mmio.phys_addr = frag->gpa;
13439 run->mmio.len = min(8u, frag->len);
13440 run->mmio.is_write = vcpu->mmio_is_write;
13441 if (run->mmio.is_write)
13442 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
13443 run->exit_reason = KVM_EXIT_MMIO;
13445 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13450 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13454 struct kvm_mmio_fragment *frag;
13459 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13460 if (handled == bytes)
13467 /*TODO: Check if need to increment number of frags */
13468 frag = vcpu->mmio_fragments;
13469 vcpu->mmio_nr_fragments = 1;
13474 vcpu->mmio_needed = 1;
13475 vcpu->mmio_cur_fragment = 0;
13477 vcpu->run->mmio.phys_addr = gpa;
13478 vcpu->run->mmio.len = min(8u, frag->len);
13479 vcpu->run->mmio.is_write = 1;
13480 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
13481 vcpu->run->exit_reason = KVM_EXIT_MMIO;
13483 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13487 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
13489 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13493 struct kvm_mmio_fragment *frag;
13498 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13499 if (handled == bytes)
13506 /*TODO: Check if need to increment number of frags */
13507 frag = vcpu->mmio_fragments;
13508 vcpu->mmio_nr_fragments = 1;
13513 vcpu->mmio_needed = 1;
13514 vcpu->mmio_cur_fragment = 0;
13516 vcpu->run->mmio.phys_addr = gpa;
13517 vcpu->run->mmio.len = min(8u, frag->len);
13518 vcpu->run->mmio.is_write = 0;
13519 vcpu->run->exit_reason = KVM_EXIT_MMIO;
13521 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13525 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
13527 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size)
13529 vcpu->arch.sev_pio_count -= count;
13530 vcpu->arch.sev_pio_data += count * size;
13533 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13534 unsigned int port);
13536 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
13538 int size = vcpu->arch.pio.size;
13539 int port = vcpu->arch.pio.port;
13541 vcpu->arch.pio.count = 0;
13542 if (vcpu->arch.sev_pio_count)
13543 return kvm_sev_es_outs(vcpu, size, port);
13547 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13551 unsigned int count =
13552 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13553 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
13555 /* memcpy done already by emulator_pio_out. */
13556 advance_sev_es_emulated_pio(vcpu, count, size);
13560 /* Emulation done by the kernel. */
13561 if (!vcpu->arch.sev_pio_count)
13565 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
13569 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13570 unsigned int port);
13572 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
13574 unsigned count = vcpu->arch.pio.count;
13575 int size = vcpu->arch.pio.size;
13576 int port = vcpu->arch.pio.port;
13578 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
13579 advance_sev_es_emulated_pio(vcpu, count, size);
13580 if (vcpu->arch.sev_pio_count)
13581 return kvm_sev_es_ins(vcpu, size, port);
13585 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13589 unsigned int count =
13590 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13591 if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count))
13594 /* Emulation done by the kernel. */
13595 advance_sev_es_emulated_pio(vcpu, count, size);
13596 if (!vcpu->arch.sev_pio_count)
13600 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
13604 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
13605 unsigned int port, void *data, unsigned int count,
13608 vcpu->arch.sev_pio_data = data;
13609 vcpu->arch.sev_pio_count = count;
13610 return in ? kvm_sev_es_ins(vcpu, size, port)
13611 : kvm_sev_es_outs(vcpu, size, port);
13613 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
13615 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
13616 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
13617 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
13618 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
13619 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
13620 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
13621 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
13622 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter);
13623 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
13624 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
13625 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
13626 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
13627 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
13628 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
13629 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
13630 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
13631 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
13632 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
13633 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
13634 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
13635 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
13636 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
13637 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath);
13638 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell);
13639 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
13640 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
13641 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
13642 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
13643 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
13645 static int __init kvm_x86_init(void)
13647 kvm_mmu_x86_module_init();
13648 mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible();
13651 module_init(kvm_x86_init);
13653 static void __exit kvm_x86_exit(void)
13656 * If module_init() is implemented, module_exit() must also be
13657 * implemented to allow module unload.
13660 module_exit(kvm_x86_exit);