1 // SPDX-License-Identifier: GPL-2.0-only
3 * Kernel-based Virtual Machine driver for Linux
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
8 * Copyright (C) 2006 Qumranet, Inc.
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
16 #include <linux/frame.h>
17 #include <linux/highmem.h>
18 #include <linux/hrtimer.h>
19 #include <linux/kernel.h>
20 #include <linux/kvm_host.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mod_devicetable.h>
25 #include <linux/sched.h>
26 #include <linux/sched/smt.h>
27 #include <linux/slab.h>
28 #include <linux/tboot.h>
29 #include <linux/trace_events.h>
34 #include <asm/debugreg.h>
36 #include <asm/fpu/internal.h>
38 #include <asm/irq_remapping.h>
39 #include <asm/kexec.h>
40 #include <asm/perf_event.h>
42 #include <asm/mmu_context.h>
43 #include <asm/mshyperv.h>
44 #include <asm/spec-ctrl.h>
45 #include <asm/virtext.h>
48 #include "capabilities.h"
52 #include "kvm_cache_regs.h"
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
67 static const struct x86_cpu_id vmx_cpu_id[] = {
68 X86_FEATURE_MATCH(X86_FEATURE_VMX),
71 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
73 bool __read_mostly enable_vpid = 1;
74 module_param_named(vpid, enable_vpid, bool, 0444);
76 static bool __read_mostly enable_vnmi = 1;
77 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
79 bool __read_mostly flexpriority_enabled = 1;
80 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
82 bool __read_mostly enable_ept = 1;
83 module_param_named(ept, enable_ept, bool, S_IRUGO);
85 bool __read_mostly enable_unrestricted_guest = 1;
86 module_param_named(unrestricted_guest,
87 enable_unrestricted_guest, bool, S_IRUGO);
89 bool __read_mostly enable_ept_ad_bits = 1;
90 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
92 static bool __read_mostly emulate_invalid_guest_state = true;
93 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
95 static bool __read_mostly fasteoi = 1;
96 module_param(fasteoi, bool, S_IRUGO);
98 static bool __read_mostly enable_apicv = 1;
99 module_param(enable_apicv, bool, S_IRUGO);
102 * If nested=1, nested virtualization is supported, i.e., guests may use
103 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
104 * use VMX instructions.
106 static bool __read_mostly nested = 1;
107 module_param(nested, bool, S_IRUGO);
109 static u64 __read_mostly host_xss;
111 bool __read_mostly enable_pml = 1;
112 module_param_named(pml, enable_pml, bool, S_IRUGO);
114 static bool __read_mostly dump_invalid_vmcs = 0;
115 module_param(dump_invalid_vmcs, bool, 0644);
117 #define MSR_BITMAP_MODE_X2APIC 1
118 #define MSR_BITMAP_MODE_X2APIC_APICV 2
120 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
122 /* Guest_tsc -> host_tsc conversion requires 64-bit division. */
123 static int __read_mostly cpu_preemption_timer_multi;
124 static bool __read_mostly enable_preemption_timer = 1;
126 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
129 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
130 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
131 #define KVM_VM_CR0_ALWAYS_ON \
132 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | \
133 X86_CR0_WP | X86_CR0_PG | X86_CR0_PE)
134 #define KVM_CR4_GUEST_OWNED_BITS \
135 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
136 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_TSD)
138 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
139 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
140 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
142 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
144 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
145 RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
146 RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
147 RTIT_STATUS_BYTECNT))
149 #define MSR_IA32_RTIT_OUTPUT_BASE_MASK \
150 (~((1UL << cpuid_query_maxphyaddr(vcpu)) - 1) | 0x7f)
153 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
154 * ple_gap: upper bound on the amount of time between two successive
155 * executions of PAUSE in a loop. Also indicate if ple enabled.
156 * According to test, this time is usually smaller than 128 cycles.
157 * ple_window: upper bound on the amount of time a guest is allowed to execute
158 * in a PAUSE loop. Tests indicate that most spinlocks are held for
159 * less than 2^12 cycles
160 * Time is measured based on a counter that runs at the same rate as the TSC,
161 * refer SDM volume 3b section 21.6.13 & 22.1.3.
163 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
164 module_param(ple_gap, uint, 0444);
166 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
167 module_param(ple_window, uint, 0444);
169 /* Default doubles per-vcpu window every exit. */
170 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
171 module_param(ple_window_grow, uint, 0444);
173 /* Default resets per-vcpu window every exit to ple_window. */
174 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
175 module_param(ple_window_shrink, uint, 0444);
177 /* Default is to compute the maximum so we can never overflow. */
178 static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
179 module_param(ple_window_max, uint, 0444);
181 /* Default is SYSTEM mode, 1 for host-guest mode */
182 int __read_mostly pt_mode = PT_MODE_SYSTEM;
183 module_param(pt_mode, int, S_IRUGO);
185 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
186 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
187 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
189 /* Storage for pre module init parameter parsing */
190 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
192 static const struct {
195 } vmentry_l1d_param[] = {
196 [VMENTER_L1D_FLUSH_AUTO] = {"auto", true},
197 [VMENTER_L1D_FLUSH_NEVER] = {"never", true},
198 [VMENTER_L1D_FLUSH_COND] = {"cond", true},
199 [VMENTER_L1D_FLUSH_ALWAYS] = {"always", true},
200 [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
201 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
204 #define L1D_CACHE_ORDER 4
205 static void *vmx_l1d_flush_pages;
207 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
212 if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
213 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
218 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
222 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
225 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
226 if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
227 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
232 /* If set to auto use the default l1tf mitigation method */
233 if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
234 switch (l1tf_mitigation) {
235 case L1TF_MITIGATION_OFF:
236 l1tf = VMENTER_L1D_FLUSH_NEVER;
238 case L1TF_MITIGATION_FLUSH_NOWARN:
239 case L1TF_MITIGATION_FLUSH:
240 case L1TF_MITIGATION_FLUSH_NOSMT:
241 l1tf = VMENTER_L1D_FLUSH_COND;
243 case L1TF_MITIGATION_FULL:
244 case L1TF_MITIGATION_FULL_FORCE:
245 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
248 } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
249 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
252 if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
253 !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
255 * This allocation for vmx_l1d_flush_pages is not tied to a VM
256 * lifetime and so should not be charged to a memcg.
258 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
261 vmx_l1d_flush_pages = page_address(page);
264 * Initialize each page with a different pattern in
265 * order to protect against KSM in the nested
266 * virtualization case.
268 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
269 memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
274 l1tf_vmx_mitigation = l1tf;
276 if (l1tf != VMENTER_L1D_FLUSH_NEVER)
277 static_branch_enable(&vmx_l1d_should_flush);
279 static_branch_disable(&vmx_l1d_should_flush);
281 if (l1tf == VMENTER_L1D_FLUSH_COND)
282 static_branch_enable(&vmx_l1d_flush_cond);
284 static_branch_disable(&vmx_l1d_flush_cond);
288 static int vmentry_l1d_flush_parse(const char *s)
293 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
294 if (vmentry_l1d_param[i].for_parse &&
295 sysfs_streq(s, vmentry_l1d_param[i].option))
302 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
306 l1tf = vmentry_l1d_flush_parse(s);
310 if (!boot_cpu_has(X86_BUG_L1TF))
314 * Has vmx_init() run already? If not then this is the pre init
315 * parameter parsing. In that case just store the value and let
316 * vmx_init() do the proper setup after enable_ept has been
319 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
320 vmentry_l1d_flush_param = l1tf;
324 mutex_lock(&vmx_l1d_flush_mutex);
325 ret = vmx_setup_l1d_flush(l1tf);
326 mutex_unlock(&vmx_l1d_flush_mutex);
330 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
332 if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
333 return sprintf(s, "???\n");
335 return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
338 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
339 .set = vmentry_l1d_flush_set,
340 .get = vmentry_l1d_flush_get,
342 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
344 static bool guest_state_valid(struct kvm_vcpu *vcpu);
345 static u32 vmx_segment_access_rights(struct kvm_segment *var);
346 static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
349 void vmx_vmexit(void);
351 #define vmx_insn_failed(fmt...) \
354 pr_warn_ratelimited(fmt); \
357 asmlinkage void vmread_error(unsigned long field, bool fault)
360 kvm_spurious_fault();
362 vmx_insn_failed("kvm: vmread failed: field=%lx\n", field);
365 noinline void vmwrite_error(unsigned long field, unsigned long value)
367 vmx_insn_failed("kvm: vmwrite failed: field=%lx val=%lx err=%d\n",
368 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
371 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
373 vmx_insn_failed("kvm: vmclear failed: %p/%llx\n", vmcs, phys_addr);
376 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
378 vmx_insn_failed("kvm: vmptrld failed: %p/%llx\n", vmcs, phys_addr);
381 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
383 vmx_insn_failed("kvm: invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
387 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
389 vmx_insn_failed("kvm: invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
393 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
394 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
396 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
397 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
399 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
402 * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
403 * can find which vCPU should be waken up.
405 static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
406 static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
408 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
409 static DEFINE_SPINLOCK(vmx_vpid_lock);
411 struct vmcs_config vmcs_config;
412 struct vmx_capability vmx_capability;
414 #define VMX_SEGMENT_FIELD(seg) \
415 [VCPU_SREG_##seg] = { \
416 .selector = GUEST_##seg##_SELECTOR, \
417 .base = GUEST_##seg##_BASE, \
418 .limit = GUEST_##seg##_LIMIT, \
419 .ar_bytes = GUEST_##seg##_AR_BYTES, \
422 static const struct kvm_vmx_segment_field {
427 } kvm_vmx_segment_fields[] = {
428 VMX_SEGMENT_FIELD(CS),
429 VMX_SEGMENT_FIELD(DS),
430 VMX_SEGMENT_FIELD(ES),
431 VMX_SEGMENT_FIELD(FS),
432 VMX_SEGMENT_FIELD(GS),
433 VMX_SEGMENT_FIELD(SS),
434 VMX_SEGMENT_FIELD(TR),
435 VMX_SEGMENT_FIELD(LDTR),
439 static unsigned long host_idt_base;
442 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
443 * will emulate SYSCALL in legacy mode if the vendor string in guest
444 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
445 * support this emulation, IA32_STAR must always be included in
446 * vmx_msr_index[], even in i386 builds.
448 const u32 vmx_msr_index[] = {
450 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
452 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
455 #if IS_ENABLED(CONFIG_HYPERV)
456 static bool __read_mostly enlightened_vmcs = true;
457 module_param(enlightened_vmcs, bool, 0444);
459 /* check_ept_pointer() should be under protection of ept_pointer_lock. */
460 static void check_ept_pointer_match(struct kvm *kvm)
462 struct kvm_vcpu *vcpu;
463 u64 tmp_eptp = INVALID_PAGE;
466 kvm_for_each_vcpu(i, vcpu, kvm) {
467 if (!VALID_PAGE(tmp_eptp)) {
468 tmp_eptp = to_vmx(vcpu)->ept_pointer;
469 } else if (tmp_eptp != to_vmx(vcpu)->ept_pointer) {
470 to_kvm_vmx(kvm)->ept_pointers_match
471 = EPT_POINTERS_MISMATCH;
476 to_kvm_vmx(kvm)->ept_pointers_match = EPT_POINTERS_MATCH;
479 static int kvm_fill_hv_flush_list_func(struct hv_guest_mapping_flush_list *flush,
482 struct kvm_tlb_range *range = data;
484 return hyperv_fill_flush_guest_mapping_list(flush, range->start_gfn,
488 static inline int __hv_remote_flush_tlb_with_range(struct kvm *kvm,
489 struct kvm_vcpu *vcpu, struct kvm_tlb_range *range)
491 u64 ept_pointer = to_vmx(vcpu)->ept_pointer;
494 * FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE hypercall needs address
495 * of the base of EPT PML4 table, strip off EPT configuration
499 return hyperv_flush_guest_mapping_range(ept_pointer & PAGE_MASK,
500 kvm_fill_hv_flush_list_func, (void *)range);
502 return hyperv_flush_guest_mapping(ept_pointer & PAGE_MASK);
505 static int hv_remote_flush_tlb_with_range(struct kvm *kvm,
506 struct kvm_tlb_range *range)
508 struct kvm_vcpu *vcpu;
511 spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
513 if (to_kvm_vmx(kvm)->ept_pointers_match == EPT_POINTERS_CHECK)
514 check_ept_pointer_match(kvm);
516 if (to_kvm_vmx(kvm)->ept_pointers_match != EPT_POINTERS_MATCH) {
517 kvm_for_each_vcpu(i, vcpu, kvm) {
518 /* If ept_pointer is invalid pointer, bypass flush request. */
519 if (VALID_PAGE(to_vmx(vcpu)->ept_pointer))
520 ret |= __hv_remote_flush_tlb_with_range(
524 ret = __hv_remote_flush_tlb_with_range(kvm,
525 kvm_get_vcpu(kvm, 0), range);
528 spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
531 static int hv_remote_flush_tlb(struct kvm *kvm)
533 return hv_remote_flush_tlb_with_range(kvm, NULL);
536 static int hv_enable_direct_tlbflush(struct kvm_vcpu *vcpu)
538 struct hv_enlightened_vmcs *evmcs;
539 struct hv_partition_assist_pg **p_hv_pa_pg =
540 &vcpu->kvm->arch.hyperv.hv_pa_pg;
542 * Synthetic VM-Exit is not enabled in current code and so All
543 * evmcs in singe VM shares same assist page.
546 *p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL);
551 evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
553 evmcs->partition_assist_page =
555 evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
556 evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
561 #endif /* IS_ENABLED(CONFIG_HYPERV) */
564 * Comment's format: document - errata name - stepping - processor name.
566 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
568 static u32 vmx_preemption_cpu_tfms[] = {
569 /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */
571 /* 323056.pdf - AAX65 - C2 - Xeon L3406 */
572 /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
573 /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
575 /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
577 /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */
578 /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */
580 * 320767.pdf - AAP86 - B1 -
581 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
584 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
586 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
588 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
590 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
591 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
592 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
594 /* Xeon E3-1220 V2 */
598 static inline bool cpu_has_broken_vmx_preemption_timer(void)
600 u32 eax = cpuid_eax(0x00000001), i;
602 /* Clear the reserved bits */
603 eax &= ~(0x3U << 14 | 0xfU << 28);
604 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
605 if (eax == vmx_preemption_cpu_tfms[i])
611 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
613 return flexpriority_enabled && lapic_in_kernel(vcpu);
616 static inline bool report_flexpriority(void)
618 return flexpriority_enabled;
621 static inline int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
625 for (i = 0; i < vmx->nmsrs; ++i)
626 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
631 struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
635 i = __find_msr_index(vmx, msr);
637 return &vmx->guest_msrs[i];
641 void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
643 vmcs_clear(loaded_vmcs->vmcs);
644 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
645 vmcs_clear(loaded_vmcs->shadow_vmcs);
646 loaded_vmcs->cpu = -1;
647 loaded_vmcs->launched = 0;
650 #ifdef CONFIG_KEXEC_CORE
652 * This bitmap is used to indicate whether the vmclear
653 * operation is enabled on all cpus. All disabled by
656 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
658 static inline void crash_enable_local_vmclear(int cpu)
660 cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
663 static inline void crash_disable_local_vmclear(int cpu)
665 cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
668 static inline int crash_local_vmclear_enabled(int cpu)
670 return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
673 static void crash_vmclear_local_loaded_vmcss(void)
675 int cpu = raw_smp_processor_id();
676 struct loaded_vmcs *v;
678 if (!crash_local_vmclear_enabled(cpu))
681 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
682 loaded_vmcss_on_cpu_link)
686 static inline void crash_enable_local_vmclear(int cpu) { }
687 static inline void crash_disable_local_vmclear(int cpu) { }
688 #endif /* CONFIG_KEXEC_CORE */
690 static void __loaded_vmcs_clear(void *arg)
692 struct loaded_vmcs *loaded_vmcs = arg;
693 int cpu = raw_smp_processor_id();
695 if (loaded_vmcs->cpu != cpu)
696 return; /* vcpu migration can race with cpu offline */
697 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
698 per_cpu(current_vmcs, cpu) = NULL;
699 crash_disable_local_vmclear(cpu);
700 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
703 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
704 * is before setting loaded_vmcs->vcpu to -1 which is done in
705 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
706 * then adds the vmcs into percpu list before it is deleted.
710 loaded_vmcs_init(loaded_vmcs);
711 crash_enable_local_vmclear(cpu);
714 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
716 int cpu = loaded_vmcs->cpu;
719 smp_call_function_single(cpu,
720 __loaded_vmcs_clear, loaded_vmcs, 1);
723 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
727 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
729 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
730 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
731 vmx->segment_cache.bitmask = 0;
733 ret = vmx->segment_cache.bitmask & mask;
734 vmx->segment_cache.bitmask |= mask;
738 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
740 u16 *p = &vmx->segment_cache.seg[seg].selector;
742 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
743 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
747 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
749 ulong *p = &vmx->segment_cache.seg[seg].base;
751 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
752 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
756 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
758 u32 *p = &vmx->segment_cache.seg[seg].limit;
760 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
761 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
765 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
767 u32 *p = &vmx->segment_cache.seg[seg].ar;
769 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
770 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
774 void update_exception_bitmap(struct kvm_vcpu *vcpu)
778 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
779 (1u << DB_VECTOR) | (1u << AC_VECTOR);
781 * Guest access to VMware backdoor ports could legitimately
782 * trigger #GP because of TSS I/O permission bitmap.
783 * We intercept those #GP and allow access to them anyway
786 if (enable_vmware_backdoor)
787 eb |= (1u << GP_VECTOR);
788 if ((vcpu->guest_debug &
789 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
790 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
791 eb |= 1u << BP_VECTOR;
792 if (to_vmx(vcpu)->rmode.vm86_active)
795 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
797 /* When we are running a nested L2 guest and L1 specified for it a
798 * certain exception bitmap, we must trap the same exceptions and pass
799 * them to L1. When running L2, we will only handle the exceptions
800 * specified above if L1 did not want them.
802 if (is_guest_mode(vcpu))
803 eb |= get_vmcs12(vcpu)->exception_bitmap;
805 vmcs_write32(EXCEPTION_BITMAP, eb);
809 * Check if MSR is intercepted for currently loaded MSR bitmap.
811 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
813 unsigned long *msr_bitmap;
814 int f = sizeof(unsigned long);
816 if (!cpu_has_vmx_msr_bitmap())
819 msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap;
822 return !!test_bit(msr, msr_bitmap + 0x800 / f);
823 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
825 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
831 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
832 unsigned long entry, unsigned long exit)
834 vm_entry_controls_clearbit(vmx, entry);
835 vm_exit_controls_clearbit(vmx, exit);
838 static int find_msr(struct vmx_msrs *m, unsigned int msr)
842 for (i = 0; i < m->nr; ++i) {
843 if (m->val[i].index == msr)
849 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
852 struct msr_autoload *m = &vmx->msr_autoload;
856 if (cpu_has_load_ia32_efer()) {
857 clear_atomic_switch_msr_special(vmx,
858 VM_ENTRY_LOAD_IA32_EFER,
859 VM_EXIT_LOAD_IA32_EFER);
863 case MSR_CORE_PERF_GLOBAL_CTRL:
864 if (cpu_has_load_perf_global_ctrl()) {
865 clear_atomic_switch_msr_special(vmx,
866 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
867 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
872 i = find_msr(&m->guest, msr);
876 m->guest.val[i] = m->guest.val[m->guest.nr];
877 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
880 i = find_msr(&m->host, msr);
885 m->host.val[i] = m->host.val[m->host.nr];
886 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
889 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
890 unsigned long entry, unsigned long exit,
891 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
892 u64 guest_val, u64 host_val)
894 vmcs_write64(guest_val_vmcs, guest_val);
895 if (host_val_vmcs != HOST_IA32_EFER)
896 vmcs_write64(host_val_vmcs, host_val);
897 vm_entry_controls_setbit(vmx, entry);
898 vm_exit_controls_setbit(vmx, exit);
901 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
902 u64 guest_val, u64 host_val, bool entry_only)
905 struct msr_autoload *m = &vmx->msr_autoload;
909 if (cpu_has_load_ia32_efer()) {
910 add_atomic_switch_msr_special(vmx,
911 VM_ENTRY_LOAD_IA32_EFER,
912 VM_EXIT_LOAD_IA32_EFER,
915 guest_val, host_val);
919 case MSR_CORE_PERF_GLOBAL_CTRL:
920 if (cpu_has_load_perf_global_ctrl()) {
921 add_atomic_switch_msr_special(vmx,
922 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
923 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
924 GUEST_IA32_PERF_GLOBAL_CTRL,
925 HOST_IA32_PERF_GLOBAL_CTRL,
926 guest_val, host_val);
930 case MSR_IA32_PEBS_ENABLE:
931 /* PEBS needs a quiescent period after being disabled (to write
932 * a record). Disabling PEBS through VMX MSR swapping doesn't
933 * provide that period, so a CPU could write host's record into
936 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
939 i = find_msr(&m->guest, msr);
941 j = find_msr(&m->host, msr);
943 if ((i < 0 && m->guest.nr == NR_AUTOLOAD_MSRS) ||
944 (j < 0 && m->host.nr == NR_AUTOLOAD_MSRS)) {
945 printk_once(KERN_WARNING "Not enough msr switch entries. "
946 "Can't add msr %x\n", msr);
951 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
953 m->guest.val[i].index = msr;
954 m->guest.val[i].value = guest_val;
961 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
963 m->host.val[j].index = msr;
964 m->host.val[j].value = host_val;
967 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
969 u64 guest_efer = vmx->vcpu.arch.efer;
972 /* Shadow paging assumes NX to be available. */
974 guest_efer |= EFER_NX;
977 * LMA and LME handled by hardware; SCE meaningless outside long mode.
979 ignore_bits |= EFER_SCE;
981 ignore_bits |= EFER_LMA | EFER_LME;
982 /* SCE is meaningful only in long mode on Intel */
983 if (guest_efer & EFER_LMA)
984 ignore_bits &= ~(u64)EFER_SCE;
988 * On EPT, we can't emulate NX, so we must switch EFER atomically.
989 * On CPUs that support "load IA32_EFER", always switch EFER
990 * atomically, since it's faster than switching it manually.
992 if (cpu_has_load_ia32_efer() ||
993 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
994 if (!(guest_efer & EFER_LMA))
995 guest_efer &= ~EFER_LME;
996 if (guest_efer != host_efer)
997 add_atomic_switch_msr(vmx, MSR_EFER,
998 guest_efer, host_efer, false);
1000 clear_atomic_switch_msr(vmx, MSR_EFER);
1003 clear_atomic_switch_msr(vmx, MSR_EFER);
1005 guest_efer &= ~ignore_bits;
1006 guest_efer |= host_efer & ignore_bits;
1008 vmx->guest_msrs[efer_offset].data = guest_efer;
1009 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
1015 #ifdef CONFIG_X86_32
1017 * On 32-bit kernels, VM exits still load the FS and GS bases from the
1018 * VMCS rather than the segment table. KVM uses this helper to figure
1019 * out the current bases to poke them into the VMCS before entry.
1021 static unsigned long segment_base(u16 selector)
1023 struct desc_struct *table;
1026 if (!(selector & ~SEGMENT_RPL_MASK))
1029 table = get_current_gdt_ro();
1031 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1032 u16 ldt_selector = kvm_read_ldt();
1034 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1037 table = (struct desc_struct *)segment_base(ldt_selector);
1039 v = get_desc_base(&table[selector >> 3]);
1044 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1048 wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1049 wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1050 wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1051 wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1052 for (i = 0; i < addr_range; i++) {
1053 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1054 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1058 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1062 rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1063 rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1064 rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1065 rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1066 for (i = 0; i < addr_range; i++) {
1067 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1068 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1072 static void pt_guest_enter(struct vcpu_vmx *vmx)
1074 if (pt_mode == PT_MODE_SYSTEM)
1078 * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1079 * Save host state before VM entry.
1081 rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1082 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1083 wrmsrl(MSR_IA32_RTIT_CTL, 0);
1084 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1085 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1089 static void pt_guest_exit(struct vcpu_vmx *vmx)
1091 if (pt_mode == PT_MODE_SYSTEM)
1094 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1095 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1096 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1099 /* Reload host state (IA32_RTIT_CTL will be cleared on VM exit). */
1100 wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1103 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1104 unsigned long fs_base, unsigned long gs_base)
1106 if (unlikely(fs_sel != host->fs_sel)) {
1108 vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1110 vmcs_write16(HOST_FS_SELECTOR, 0);
1111 host->fs_sel = fs_sel;
1113 if (unlikely(gs_sel != host->gs_sel)) {
1115 vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1117 vmcs_write16(HOST_GS_SELECTOR, 0);
1118 host->gs_sel = gs_sel;
1120 if (unlikely(fs_base != host->fs_base)) {
1121 vmcs_writel(HOST_FS_BASE, fs_base);
1122 host->fs_base = fs_base;
1124 if (unlikely(gs_base != host->gs_base)) {
1125 vmcs_writel(HOST_GS_BASE, gs_base);
1126 host->gs_base = gs_base;
1130 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1132 struct vcpu_vmx *vmx = to_vmx(vcpu);
1133 struct vmcs_host_state *host_state;
1134 #ifdef CONFIG_X86_64
1135 int cpu = raw_smp_processor_id();
1137 unsigned long fs_base, gs_base;
1141 vmx->req_immediate_exit = false;
1144 * Note that guest MSRs to be saved/restored can also be changed
1145 * when guest state is loaded. This happens when guest transitions
1146 * to/from long-mode by setting MSR_EFER.LMA.
1148 if (!vmx->guest_msrs_ready) {
1149 vmx->guest_msrs_ready = true;
1150 for (i = 0; i < vmx->save_nmsrs; ++i)
1151 kvm_set_shared_msr(vmx->guest_msrs[i].index,
1152 vmx->guest_msrs[i].data,
1153 vmx->guest_msrs[i].mask);
1156 if (vmx->guest_state_loaded)
1159 host_state = &vmx->loaded_vmcs->host_state;
1162 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1163 * allow segment selectors with cpl > 0 or ti == 1.
1165 host_state->ldt_sel = kvm_read_ldt();
1167 #ifdef CONFIG_X86_64
1168 savesegment(ds, host_state->ds_sel);
1169 savesegment(es, host_state->es_sel);
1171 gs_base = cpu_kernelmode_gs_base(cpu);
1172 if (likely(is_64bit_mm(current->mm))) {
1173 save_fsgs_for_kvm();
1174 fs_sel = current->thread.fsindex;
1175 gs_sel = current->thread.gsindex;
1176 fs_base = current->thread.fsbase;
1177 vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1179 savesegment(fs, fs_sel);
1180 savesegment(gs, gs_sel);
1181 fs_base = read_msr(MSR_FS_BASE);
1182 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1185 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1187 savesegment(fs, fs_sel);
1188 savesegment(gs, gs_sel);
1189 fs_base = segment_base(fs_sel);
1190 gs_base = segment_base(gs_sel);
1193 vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1194 vmx->guest_state_loaded = true;
1197 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1199 struct vmcs_host_state *host_state;
1201 if (!vmx->guest_state_loaded)
1204 host_state = &vmx->loaded_vmcs->host_state;
1206 ++vmx->vcpu.stat.host_state_reload;
1208 #ifdef CONFIG_X86_64
1209 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1211 if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1212 kvm_load_ldt(host_state->ldt_sel);
1213 #ifdef CONFIG_X86_64
1214 load_gs_index(host_state->gs_sel);
1216 loadsegment(gs, host_state->gs_sel);
1219 if (host_state->fs_sel & 7)
1220 loadsegment(fs, host_state->fs_sel);
1221 #ifdef CONFIG_X86_64
1222 if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1223 loadsegment(ds, host_state->ds_sel);
1224 loadsegment(es, host_state->es_sel);
1227 invalidate_tss_limit();
1228 #ifdef CONFIG_X86_64
1229 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1231 load_fixmap_gdt(raw_smp_processor_id());
1232 vmx->guest_state_loaded = false;
1233 vmx->guest_msrs_ready = false;
1236 #ifdef CONFIG_X86_64
1237 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1240 if (vmx->guest_state_loaded)
1241 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1243 return vmx->msr_guest_kernel_gs_base;
1246 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1249 if (vmx->guest_state_loaded)
1250 wrmsrl(MSR_KERNEL_GS_BASE, data);
1252 vmx->msr_guest_kernel_gs_base = data;
1256 static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
1258 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
1259 struct pi_desc old, new;
1263 * In case of hot-plug or hot-unplug, we may have to undo
1264 * vmx_vcpu_pi_put even if there is no assigned device. And we
1265 * always keep PI.NDST up to date for simplicity: it makes the
1266 * code easier, and CPU migration is not a fast path.
1268 if (!pi_test_sn(pi_desc) && vcpu->cpu == cpu)
1272 * If the 'nv' field is POSTED_INTR_WAKEUP_VECTOR, do not change
1273 * PI.NDST: pi_post_block is the one expected to change PID.NDST and the
1274 * wakeup handler expects the vCPU to be on the blocked_vcpu_list that
1275 * matches PI.NDST. Otherwise, a vcpu may not be able to be woken up
1278 if (pi_desc->nv == POSTED_INTR_WAKEUP_VECTOR || vcpu->cpu == cpu) {
1279 pi_clear_sn(pi_desc);
1280 goto after_clear_sn;
1283 /* The full case. */
1285 old.control = new.control = pi_desc->control;
1287 dest = cpu_physical_id(cpu);
1289 if (x2apic_enabled())
1292 new.ndst = (dest << 8) & 0xFF00;
1295 } while (cmpxchg64(&pi_desc->control, old.control,
1296 new.control) != old.control);
1301 * Clear SN before reading the bitmap. The VT-d firmware
1302 * writes the bitmap and reads SN atomically (5.2.3 in the
1303 * spec), so it doesn't really have a memory barrier that
1304 * pairs with this, but we cannot do that and we need one.
1306 smp_mb__after_atomic();
1308 if (!pi_is_pir_empty(pi_desc))
1312 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu)
1314 struct vcpu_vmx *vmx = to_vmx(vcpu);
1315 bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1317 if (!already_loaded) {
1318 loaded_vmcs_clear(vmx->loaded_vmcs);
1319 local_irq_disable();
1320 crash_disable_local_vmclear(cpu);
1323 * Read loaded_vmcs->cpu should be before fetching
1324 * loaded_vmcs->loaded_vmcss_on_cpu_link.
1325 * See the comments in __loaded_vmcs_clear().
1329 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1330 &per_cpu(loaded_vmcss_on_cpu, cpu));
1331 crash_enable_local_vmclear(cpu);
1335 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1336 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1337 vmcs_load(vmx->loaded_vmcs->vmcs);
1338 indirect_branch_prediction_barrier();
1341 if (!already_loaded) {
1342 void *gdt = get_current_gdt_ro();
1343 unsigned long sysenter_esp;
1345 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1348 * Linux uses per-cpu TSS and GDT, so set these when switching
1349 * processors. See 22.2.4.
1351 vmcs_writel(HOST_TR_BASE,
1352 (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1353 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */
1356 * VM exits change the host TR limit to 0x67 after a VM
1357 * exit. This is okay, since 0x67 covers everything except
1358 * the IO bitmap and have have code to handle the IO bitmap
1359 * being lost after a VM exit.
1361 BUILD_BUG_ON(IO_BITMAP_OFFSET - 1 != 0x67);
1363 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1364 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1366 vmx->loaded_vmcs->cpu = cpu;
1369 /* Setup TSC multiplier */
1370 if (kvm_has_tsc_control &&
1371 vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
1372 decache_tsc_multiplier(vmx);
1376 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1377 * vcpu mutex is already taken.
1379 void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1381 struct vcpu_vmx *vmx = to_vmx(vcpu);
1383 vmx_vcpu_load_vmcs(vcpu, cpu);
1385 vmx_vcpu_pi_load(vcpu, cpu);
1387 vmx->host_pkru = read_pkru();
1388 vmx->host_debugctlmsr = get_debugctlmsr();
1391 static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
1393 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
1395 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
1396 !irq_remapping_cap(IRQ_POSTING_CAP) ||
1397 !kvm_vcpu_apicv_active(vcpu))
1400 /* Set SN when the vCPU is preempted */
1401 if (vcpu->preempted)
1405 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1407 vmx_vcpu_pi_put(vcpu);
1409 vmx_prepare_switch_to_host(to_vmx(vcpu));
1412 static bool emulation_required(struct kvm_vcpu *vcpu)
1414 return emulate_invalid_guest_state && !guest_state_valid(vcpu);
1417 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1419 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1421 unsigned long rflags, save_rflags;
1423 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
1424 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1425 rflags = vmcs_readl(GUEST_RFLAGS);
1426 if (to_vmx(vcpu)->rmode.vm86_active) {
1427 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1428 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
1429 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1431 to_vmx(vcpu)->rflags = rflags;
1433 return to_vmx(vcpu)->rflags;
1436 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1438 unsigned long old_rflags = vmx_get_rflags(vcpu);
1440 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1441 to_vmx(vcpu)->rflags = rflags;
1442 if (to_vmx(vcpu)->rmode.vm86_active) {
1443 to_vmx(vcpu)->rmode.save_rflags = rflags;
1444 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1446 vmcs_writel(GUEST_RFLAGS, rflags);
1448 if ((old_rflags ^ to_vmx(vcpu)->rflags) & X86_EFLAGS_VM)
1449 to_vmx(vcpu)->emulation_required = emulation_required(vcpu);
1452 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1454 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1457 if (interruptibility & GUEST_INTR_STATE_STI)
1458 ret |= KVM_X86_SHADOW_INT_STI;
1459 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1460 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1465 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1467 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1468 u32 interruptibility = interruptibility_old;
1470 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1472 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1473 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1474 else if (mask & KVM_X86_SHADOW_INT_STI)
1475 interruptibility |= GUEST_INTR_STATE_STI;
1477 if ((interruptibility != interruptibility_old))
1478 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1481 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1483 struct vcpu_vmx *vmx = to_vmx(vcpu);
1484 unsigned long value;
1487 * Any MSR write that attempts to change bits marked reserved will
1490 if (data & vmx->pt_desc.ctl_bitmask)
1494 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1495 * result in a #GP unless the same write also clears TraceEn.
1497 if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1498 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1502 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1503 * and FabricEn would cause #GP, if
1504 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1506 if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1507 !(data & RTIT_CTL_FABRIC_EN) &&
1508 !intel_pt_validate_cap(vmx->pt_desc.caps,
1509 PT_CAP_single_range_output))
1513 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1514 * utilize encodings marked reserved will casue a #GP fault.
1516 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1517 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1518 !test_bit((data & RTIT_CTL_MTC_RANGE) >>
1519 RTIT_CTL_MTC_RANGE_OFFSET, &value))
1521 value = intel_pt_validate_cap(vmx->pt_desc.caps,
1522 PT_CAP_cycle_thresholds);
1523 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1524 !test_bit((data & RTIT_CTL_CYC_THRESH) >>
1525 RTIT_CTL_CYC_THRESH_OFFSET, &value))
1527 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1528 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1529 !test_bit((data & RTIT_CTL_PSB_FREQ) >>
1530 RTIT_CTL_PSB_FREQ_OFFSET, &value))
1534 * If ADDRx_CFG is reserved or the encodings is >2 will
1535 * cause a #GP fault.
1537 value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1538 if ((value && (vmx->pt_desc.addr_range < 1)) || (value > 2))
1540 value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1541 if ((value && (vmx->pt_desc.addr_range < 2)) || (value > 2))
1543 value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1544 if ((value && (vmx->pt_desc.addr_range < 3)) || (value > 2))
1546 value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1547 if ((value && (vmx->pt_desc.addr_range < 4)) || (value > 2))
1553 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1558 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1559 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1560 * set when EPT misconfig occurs. In practice, real hardware updates
1561 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1562 * (namely Hyper-V) don't set it due to it being undefined behavior,
1563 * i.e. we end up advancing IP with some random value.
1565 if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1566 to_vmx(vcpu)->exit_reason != EXIT_REASON_EPT_MISCONFIG) {
1567 rip = kvm_rip_read(vcpu);
1568 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1569 kvm_rip_write(vcpu, rip);
1571 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1575 /* skipping an emulated instruction also counts */
1576 vmx_set_interrupt_shadow(vcpu, 0);
1581 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1584 * Ensure that we clear the HLT state in the VMCS. We don't need to
1585 * explicitly skip the instruction because if the HLT state is set,
1586 * then the instruction is already executing and RIP has already been
1589 if (kvm_hlt_in_guest(vcpu->kvm) &&
1590 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1591 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1594 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
1596 struct vcpu_vmx *vmx = to_vmx(vcpu);
1597 unsigned nr = vcpu->arch.exception.nr;
1598 bool has_error_code = vcpu->arch.exception.has_error_code;
1599 u32 error_code = vcpu->arch.exception.error_code;
1600 u32 intr_info = nr | INTR_INFO_VALID_MASK;
1602 kvm_deliver_exception_payload(vcpu);
1604 if (has_error_code) {
1605 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1606 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1609 if (vmx->rmode.vm86_active) {
1611 if (kvm_exception_is_soft(nr))
1612 inc_eip = vcpu->arch.event_exit_inst_len;
1613 kvm_inject_realmode_interrupt(vcpu, nr, inc_eip);
1617 WARN_ON_ONCE(vmx->emulation_required);
1619 if (kvm_exception_is_soft(nr)) {
1620 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1621 vmx->vcpu.arch.event_exit_inst_len);
1622 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1624 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1626 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1628 vmx_clear_hlt(vcpu);
1631 static bool vmx_rdtscp_supported(void)
1633 return cpu_has_vmx_rdtscp();
1636 static bool vmx_invpcid_supported(void)
1638 return cpu_has_vmx_invpcid();
1642 * Swap MSR entry in host/guest MSR entry array.
1644 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
1646 struct shared_msr_entry tmp;
1648 tmp = vmx->guest_msrs[to];
1649 vmx->guest_msrs[to] = vmx->guest_msrs[from];
1650 vmx->guest_msrs[from] = tmp;
1654 * Set up the vmcs to automatically save and restore system
1655 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
1656 * mode, as fiddling with msrs is very expensive.
1658 static void setup_msrs(struct vcpu_vmx *vmx)
1660 int save_nmsrs, index;
1663 #ifdef CONFIG_X86_64
1665 * The SYSCALL MSRs are only needed on long mode guests, and only
1666 * when EFER.SCE is set.
1668 if (is_long_mode(&vmx->vcpu) && (vmx->vcpu.arch.efer & EFER_SCE)) {
1669 index = __find_msr_index(vmx, MSR_STAR);
1671 move_msr_up(vmx, index, save_nmsrs++);
1672 index = __find_msr_index(vmx, MSR_LSTAR);
1674 move_msr_up(vmx, index, save_nmsrs++);
1675 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
1677 move_msr_up(vmx, index, save_nmsrs++);
1680 index = __find_msr_index(vmx, MSR_EFER);
1681 if (index >= 0 && update_transition_efer(vmx, index))
1682 move_msr_up(vmx, index, save_nmsrs++);
1683 index = __find_msr_index(vmx, MSR_TSC_AUX);
1684 if (index >= 0 && guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP))
1685 move_msr_up(vmx, index, save_nmsrs++);
1687 vmx->save_nmsrs = save_nmsrs;
1688 vmx->guest_msrs_ready = false;
1690 if (cpu_has_vmx_msr_bitmap())
1691 vmx_update_msr_bitmap(&vmx->vcpu);
1694 static u64 vmx_read_l1_tsc_offset(struct kvm_vcpu *vcpu)
1696 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1698 if (is_guest_mode(vcpu) &&
1699 (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING))
1700 return vcpu->arch.tsc_offset - vmcs12->tsc_offset;
1702 return vcpu->arch.tsc_offset;
1705 static u64 vmx_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1707 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1708 u64 g_tsc_offset = 0;
1711 * We're here if L1 chose not to trap WRMSR to TSC. According
1712 * to the spec, this should set L1's TSC; The offset that L1
1713 * set for L2 remains unchanged, and still needs to be added
1714 * to the newly set TSC to get L2's TSC.
1716 if (is_guest_mode(vcpu) &&
1717 (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING))
1718 g_tsc_offset = vmcs12->tsc_offset;
1720 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1721 vcpu->arch.tsc_offset - g_tsc_offset,
1723 vmcs_write64(TSC_OFFSET, offset + g_tsc_offset);
1724 return offset + g_tsc_offset;
1728 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1729 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1730 * all guests if the "nested" module option is off, and can also be disabled
1731 * for a single guest by disabling its VMX cpuid bit.
1733 bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1735 return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
1738 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
1741 uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
1743 return !(val & ~valid_bits);
1746 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1748 switch (msr->index) {
1749 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1752 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1761 * Reads an msr value (of 'msr_index') into 'pdata'.
1762 * Returns 0 on success, non-0 otherwise.
1763 * Assumes vcpu_load() was already called.
1765 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1767 struct vcpu_vmx *vmx = to_vmx(vcpu);
1768 struct shared_msr_entry *msr;
1771 switch (msr_info->index) {
1772 #ifdef CONFIG_X86_64
1774 msr_info->data = vmcs_readl(GUEST_FS_BASE);
1777 msr_info->data = vmcs_readl(GUEST_GS_BASE);
1779 case MSR_KERNEL_GS_BASE:
1780 msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1784 return kvm_get_msr_common(vcpu, msr_info);
1785 case MSR_IA32_UMWAIT_CONTROL:
1786 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1789 msr_info->data = vmx->msr_ia32_umwait_control;
1791 case MSR_IA32_SPEC_CTRL:
1792 if (!msr_info->host_initiated &&
1793 !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
1796 msr_info->data = to_vmx(vcpu)->spec_ctrl;
1798 case MSR_IA32_SYSENTER_CS:
1799 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
1801 case MSR_IA32_SYSENTER_EIP:
1802 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
1804 case MSR_IA32_SYSENTER_ESP:
1805 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
1807 case MSR_IA32_BNDCFGS:
1808 if (!kvm_mpx_supported() ||
1809 (!msr_info->host_initiated &&
1810 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1812 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
1814 case MSR_IA32_MCG_EXT_CTL:
1815 if (!msr_info->host_initiated &&
1816 !(vmx->msr_ia32_feature_control &
1817 FEATURE_CONTROL_LMCE))
1819 msr_info->data = vcpu->arch.mcg_ext_ctl;
1821 case MSR_IA32_FEATURE_CONTROL:
1822 msr_info->data = vmx->msr_ia32_feature_control;
1824 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1825 if (!nested_vmx_allowed(vcpu))
1827 return vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
1830 if (!vmx_xsaves_supported() ||
1831 (!msr_info->host_initiated &&
1832 !(guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
1833 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))))
1835 msr_info->data = vcpu->arch.ia32_xss;
1837 case MSR_IA32_RTIT_CTL:
1838 if (pt_mode != PT_MODE_HOST_GUEST)
1840 msr_info->data = vmx->pt_desc.guest.ctl;
1842 case MSR_IA32_RTIT_STATUS:
1843 if (pt_mode != PT_MODE_HOST_GUEST)
1845 msr_info->data = vmx->pt_desc.guest.status;
1847 case MSR_IA32_RTIT_CR3_MATCH:
1848 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1849 !intel_pt_validate_cap(vmx->pt_desc.caps,
1850 PT_CAP_cr3_filtering))
1852 msr_info->data = vmx->pt_desc.guest.cr3_match;
1854 case MSR_IA32_RTIT_OUTPUT_BASE:
1855 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1856 (!intel_pt_validate_cap(vmx->pt_desc.caps,
1857 PT_CAP_topa_output) &&
1858 !intel_pt_validate_cap(vmx->pt_desc.caps,
1859 PT_CAP_single_range_output)))
1861 msr_info->data = vmx->pt_desc.guest.output_base;
1863 case MSR_IA32_RTIT_OUTPUT_MASK:
1864 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1865 (!intel_pt_validate_cap(vmx->pt_desc.caps,
1866 PT_CAP_topa_output) &&
1867 !intel_pt_validate_cap(vmx->pt_desc.caps,
1868 PT_CAP_single_range_output)))
1870 msr_info->data = vmx->pt_desc.guest.output_mask;
1872 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
1873 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
1874 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1875 (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
1876 PT_CAP_num_address_ranges)))
1879 msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
1881 msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
1884 if (!msr_info->host_initiated &&
1885 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
1887 /* Else, falls through */
1889 msr = find_msr_entry(vmx, msr_info->index);
1891 msr_info->data = msr->data;
1894 return kvm_get_msr_common(vcpu, msr_info);
1901 * Writes msr value into into the appropriate "register".
1902 * Returns 0 on success, non-0 otherwise.
1903 * Assumes vcpu_load() was already called.
1905 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1907 struct vcpu_vmx *vmx = to_vmx(vcpu);
1908 struct shared_msr_entry *msr;
1910 u32 msr_index = msr_info->index;
1911 u64 data = msr_info->data;
1914 switch (msr_index) {
1916 ret = kvm_set_msr_common(vcpu, msr_info);
1918 #ifdef CONFIG_X86_64
1920 vmx_segment_cache_clear(vmx);
1921 vmcs_writel(GUEST_FS_BASE, data);
1924 vmx_segment_cache_clear(vmx);
1925 vmcs_writel(GUEST_GS_BASE, data);
1927 case MSR_KERNEL_GS_BASE:
1928 vmx_write_guest_kernel_gs_base(vmx, data);
1931 case MSR_IA32_SYSENTER_CS:
1932 if (is_guest_mode(vcpu))
1933 get_vmcs12(vcpu)->guest_sysenter_cs = data;
1934 vmcs_write32(GUEST_SYSENTER_CS, data);
1936 case MSR_IA32_SYSENTER_EIP:
1937 if (is_guest_mode(vcpu))
1938 get_vmcs12(vcpu)->guest_sysenter_eip = data;
1939 vmcs_writel(GUEST_SYSENTER_EIP, data);
1941 case MSR_IA32_SYSENTER_ESP:
1942 if (is_guest_mode(vcpu))
1943 get_vmcs12(vcpu)->guest_sysenter_esp = data;
1944 vmcs_writel(GUEST_SYSENTER_ESP, data);
1946 case MSR_IA32_DEBUGCTLMSR:
1947 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
1948 VM_EXIT_SAVE_DEBUG_CONTROLS)
1949 get_vmcs12(vcpu)->guest_ia32_debugctl = data;
1951 ret = kvm_set_msr_common(vcpu, msr_info);
1954 case MSR_IA32_BNDCFGS:
1955 if (!kvm_mpx_supported() ||
1956 (!msr_info->host_initiated &&
1957 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1959 if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
1960 (data & MSR_IA32_BNDCFGS_RSVD))
1962 vmcs_write64(GUEST_BNDCFGS, data);
1964 case MSR_IA32_UMWAIT_CONTROL:
1965 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1968 /* The reserved bit 1 and non-32 bit [63:32] should be zero */
1969 if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
1972 vmx->msr_ia32_umwait_control = data;
1974 case MSR_IA32_SPEC_CTRL:
1975 if (!msr_info->host_initiated &&
1976 !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
1979 /* The STIBP bit doesn't fault even if it's not advertised */
1980 if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD))
1983 vmx->spec_ctrl = data;
1990 * When it's written (to non-zero) for the first time, pass
1994 * The handling of the MSR bitmap for L2 guests is done in
1995 * nested_vmx_merge_msr_bitmap. We should not touch the
1996 * vmcs02.msr_bitmap here since it gets completely overwritten
1997 * in the merging. We update the vmcs01 here for L1 as well
1998 * since it will end up touching the MSR anyway now.
2000 vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap,
2004 case MSR_IA32_PRED_CMD:
2005 if (!msr_info->host_initiated &&
2006 !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
2009 if (data & ~PRED_CMD_IBPB)
2015 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2019 * When it's written (to non-zero) for the first time, pass
2023 * The handling of the MSR bitmap for L2 guests is done in
2024 * nested_vmx_merge_msr_bitmap. We should not touch the
2025 * vmcs02.msr_bitmap here since it gets completely overwritten
2028 vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap, MSR_IA32_PRED_CMD,
2031 case MSR_IA32_CR_PAT:
2032 if (!kvm_pat_valid(data))
2035 if (is_guest_mode(vcpu) &&
2036 get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2037 get_vmcs12(vcpu)->guest_ia32_pat = data;
2039 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2040 vmcs_write64(GUEST_IA32_PAT, data);
2041 vcpu->arch.pat = data;
2044 ret = kvm_set_msr_common(vcpu, msr_info);
2046 case MSR_IA32_TSC_ADJUST:
2047 ret = kvm_set_msr_common(vcpu, msr_info);
2049 case MSR_IA32_MCG_EXT_CTL:
2050 if ((!msr_info->host_initiated &&
2051 !(to_vmx(vcpu)->msr_ia32_feature_control &
2052 FEATURE_CONTROL_LMCE)) ||
2053 (data & ~MCG_EXT_CTL_LMCE_EN))
2055 vcpu->arch.mcg_ext_ctl = data;
2057 case MSR_IA32_FEATURE_CONTROL:
2058 if (!vmx_feature_control_msr_valid(vcpu, data) ||
2059 (to_vmx(vcpu)->msr_ia32_feature_control &
2060 FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
2062 vmx->msr_ia32_feature_control = data;
2063 if (msr_info->host_initiated && data == 0)
2064 vmx_leave_nested(vcpu);
2066 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2067 if (!msr_info->host_initiated)
2068 return 1; /* they are read-only */
2069 if (!nested_vmx_allowed(vcpu))
2071 return vmx_set_vmx_msr(vcpu, msr_index, data);
2073 if (!vmx_xsaves_supported() ||
2074 (!msr_info->host_initiated &&
2075 !(guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
2076 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))))
2079 * The only supported bit as of Skylake is bit 8, but
2080 * it is not supported on KVM.
2084 vcpu->arch.ia32_xss = data;
2085 if (vcpu->arch.ia32_xss != host_xss)
2086 add_atomic_switch_msr(vmx, MSR_IA32_XSS,
2087 vcpu->arch.ia32_xss, host_xss, false);
2089 clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
2091 case MSR_IA32_RTIT_CTL:
2092 if ((pt_mode != PT_MODE_HOST_GUEST) ||
2093 vmx_rtit_ctl_check(vcpu, data) ||
2096 vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2097 vmx->pt_desc.guest.ctl = data;
2098 pt_update_intercept_for_msr(vmx);
2100 case MSR_IA32_RTIT_STATUS:
2101 if ((pt_mode != PT_MODE_HOST_GUEST) ||
2102 (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
2103 (data & MSR_IA32_RTIT_STATUS_MASK))
2105 vmx->pt_desc.guest.status = data;
2107 case MSR_IA32_RTIT_CR3_MATCH:
2108 if ((pt_mode != PT_MODE_HOST_GUEST) ||
2109 (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
2110 !intel_pt_validate_cap(vmx->pt_desc.caps,
2111 PT_CAP_cr3_filtering))
2113 vmx->pt_desc.guest.cr3_match = data;
2115 case MSR_IA32_RTIT_OUTPUT_BASE:
2116 if ((pt_mode != PT_MODE_HOST_GUEST) ||
2117 (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
2118 (!intel_pt_validate_cap(vmx->pt_desc.caps,
2119 PT_CAP_topa_output) &&
2120 !intel_pt_validate_cap(vmx->pt_desc.caps,
2121 PT_CAP_single_range_output)) ||
2122 (data & MSR_IA32_RTIT_OUTPUT_BASE_MASK))
2124 vmx->pt_desc.guest.output_base = data;
2126 case MSR_IA32_RTIT_OUTPUT_MASK:
2127 if ((pt_mode != PT_MODE_HOST_GUEST) ||
2128 (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
2129 (!intel_pt_validate_cap(vmx->pt_desc.caps,
2130 PT_CAP_topa_output) &&
2131 !intel_pt_validate_cap(vmx->pt_desc.caps,
2132 PT_CAP_single_range_output)))
2134 vmx->pt_desc.guest.output_mask = data;
2136 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2137 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2138 if ((pt_mode != PT_MODE_HOST_GUEST) ||
2139 (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
2140 (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
2141 PT_CAP_num_address_ranges)))
2144 vmx->pt_desc.guest.addr_b[index / 2] = data;
2146 vmx->pt_desc.guest.addr_a[index / 2] = data;
2149 if (!msr_info->host_initiated &&
2150 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
2152 /* Check reserved bit, higher 32 bits should be zero */
2153 if ((data >> 32) != 0)
2155 /* Else, falls through */
2157 msr = find_msr_entry(vmx, msr_index);
2159 u64 old_msr_data = msr->data;
2161 if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
2163 ret = kvm_set_shared_msr(msr->index, msr->data,
2167 msr->data = old_msr_data;
2171 ret = kvm_set_msr_common(vcpu, msr_info);
2177 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2179 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2182 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2185 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2187 case VCPU_EXREG_PDPTR:
2189 ept_save_pdptrs(vcpu);
2196 static __init int cpu_has_kvm_support(void)
2198 return cpu_has_vmx();
2201 static __init int vmx_disabled_by_bios(void)
2205 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
2206 if (msr & FEATURE_CONTROL_LOCKED) {
2207 /* launched w/ TXT and VMX disabled */
2208 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2211 /* launched w/o TXT and VMX only enabled w/ TXT */
2212 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2213 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2214 && !tboot_enabled()) {
2215 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
2216 "activate TXT before enabling KVM\n");
2219 /* launched w/o TXT and VMX disabled */
2220 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2221 && !tboot_enabled())
2228 static void kvm_cpu_vmxon(u64 addr)
2230 cr4_set_bits(X86_CR4_VMXE);
2231 intel_pt_handle_vmx(1);
2233 asm volatile ("vmxon %0" : : "m"(addr));
2236 static int hardware_enable(void)
2238 int cpu = raw_smp_processor_id();
2239 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2242 if (cr4_read_shadow() & X86_CR4_VMXE)
2246 * This can happen if we hot-added a CPU but failed to allocate
2247 * VP assist page for it.
2249 if (static_branch_unlikely(&enable_evmcs) &&
2250 !hv_get_vp_assist_page(cpu))
2253 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
2254 INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
2255 spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
2258 * Now we can enable the vmclear operation in kdump
2259 * since the loaded_vmcss_on_cpu list on this cpu
2260 * has been initialized.
2262 * Though the cpu is not in VMX operation now, there
2263 * is no problem to enable the vmclear operation
2264 * for the loaded_vmcss_on_cpu list is empty!
2266 crash_enable_local_vmclear(cpu);
2268 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
2270 test_bits = FEATURE_CONTROL_LOCKED;
2271 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2272 if (tboot_enabled())
2273 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2275 if ((old & test_bits) != test_bits) {
2276 /* enable and lock */
2277 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2279 kvm_cpu_vmxon(phys_addr);
2286 static void vmclear_local_loaded_vmcss(void)
2288 int cpu = raw_smp_processor_id();
2289 struct loaded_vmcs *v, *n;
2291 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2292 loaded_vmcss_on_cpu_link)
2293 __loaded_vmcs_clear(v);
2297 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2300 static void kvm_cpu_vmxoff(void)
2302 asm volatile (__ex("vmxoff"));
2304 intel_pt_handle_vmx(0);
2305 cr4_clear_bits(X86_CR4_VMXE);
2308 static void hardware_disable(void)
2310 vmclear_local_loaded_vmcss();
2314 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2315 u32 msr, u32 *result)
2317 u32 vmx_msr_low, vmx_msr_high;
2318 u32 ctl = ctl_min | ctl_opt;
2320 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2322 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2323 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
2325 /* Ensure minimum (required) set of control bits are supported. */
2333 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2334 struct vmx_capability *vmx_cap)
2336 u32 vmx_msr_low, vmx_msr_high;
2337 u32 min, opt, min2, opt2;
2338 u32 _pin_based_exec_control = 0;
2339 u32 _cpu_based_exec_control = 0;
2340 u32 _cpu_based_2nd_exec_control = 0;
2341 u32 _vmexit_control = 0;
2342 u32 _vmentry_control = 0;
2344 memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2345 min = CPU_BASED_HLT_EXITING |
2346 #ifdef CONFIG_X86_64
2347 CPU_BASED_CR8_LOAD_EXITING |
2348 CPU_BASED_CR8_STORE_EXITING |
2350 CPU_BASED_CR3_LOAD_EXITING |
2351 CPU_BASED_CR3_STORE_EXITING |
2352 CPU_BASED_UNCOND_IO_EXITING |
2353 CPU_BASED_MOV_DR_EXITING |
2354 CPU_BASED_USE_TSC_OFFSETING |
2355 CPU_BASED_MWAIT_EXITING |
2356 CPU_BASED_MONITOR_EXITING |
2357 CPU_BASED_INVLPG_EXITING |
2358 CPU_BASED_RDPMC_EXITING;
2360 opt = CPU_BASED_TPR_SHADOW |
2361 CPU_BASED_USE_MSR_BITMAPS |
2362 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2363 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2364 &_cpu_based_exec_control) < 0)
2366 #ifdef CONFIG_X86_64
2367 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2368 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2369 ~CPU_BASED_CR8_STORE_EXITING;
2371 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2373 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2374 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2375 SECONDARY_EXEC_WBINVD_EXITING |
2376 SECONDARY_EXEC_ENABLE_VPID |
2377 SECONDARY_EXEC_ENABLE_EPT |
2378 SECONDARY_EXEC_UNRESTRICTED_GUEST |
2379 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2380 SECONDARY_EXEC_DESC |
2381 SECONDARY_EXEC_RDTSCP |
2382 SECONDARY_EXEC_ENABLE_INVPCID |
2383 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2384 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2385 SECONDARY_EXEC_SHADOW_VMCS |
2386 SECONDARY_EXEC_XSAVES |
2387 SECONDARY_EXEC_RDSEED_EXITING |
2388 SECONDARY_EXEC_RDRAND_EXITING |
2389 SECONDARY_EXEC_ENABLE_PML |
2390 SECONDARY_EXEC_TSC_SCALING |
2391 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2392 SECONDARY_EXEC_PT_USE_GPA |
2393 SECONDARY_EXEC_PT_CONCEAL_VMX |
2394 SECONDARY_EXEC_ENABLE_VMFUNC |
2395 SECONDARY_EXEC_ENCLS_EXITING;
2396 if (adjust_vmx_controls(min2, opt2,
2397 MSR_IA32_VMX_PROCBASED_CTLS2,
2398 &_cpu_based_2nd_exec_control) < 0)
2401 #ifndef CONFIG_X86_64
2402 if (!(_cpu_based_2nd_exec_control &
2403 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2404 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2407 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2408 _cpu_based_2nd_exec_control &= ~(
2409 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2410 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2411 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2413 rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2414 &vmx_cap->ept, &vmx_cap->vpid);
2416 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2417 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2419 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2420 CPU_BASED_CR3_STORE_EXITING |
2421 CPU_BASED_INVLPG_EXITING);
2422 } else if (vmx_cap->ept) {
2424 pr_warn_once("EPT CAP should not exist if not support "
2425 "1-setting enable EPT VM-execution control\n");
2427 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2430 pr_warn_once("VPID CAP should not exist if not support "
2431 "1-setting enable VPID VM-execution control\n");
2434 min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
2435 #ifdef CONFIG_X86_64
2436 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2438 opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |
2439 VM_EXIT_LOAD_IA32_PAT |
2440 VM_EXIT_LOAD_IA32_EFER |
2441 VM_EXIT_CLEAR_BNDCFGS |
2442 VM_EXIT_PT_CONCEAL_PIP |
2443 VM_EXIT_CLEAR_IA32_RTIT_CTL;
2444 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2445 &_vmexit_control) < 0)
2448 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2449 opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
2450 PIN_BASED_VMX_PREEMPTION_TIMER;
2451 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2452 &_pin_based_exec_control) < 0)
2455 if (cpu_has_broken_vmx_preemption_timer())
2456 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2457 if (!(_cpu_based_2nd_exec_control &
2458 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2459 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2461 min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
2462 opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
2463 VM_ENTRY_LOAD_IA32_PAT |
2464 VM_ENTRY_LOAD_IA32_EFER |
2465 VM_ENTRY_LOAD_BNDCFGS |
2466 VM_ENTRY_PT_CONCEAL_PIP |
2467 VM_ENTRY_LOAD_IA32_RTIT_CTL;
2468 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2469 &_vmentry_control) < 0)
2473 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2474 * can't be used due to an errata where VM Exit may incorrectly clear
2475 * IA32_PERF_GLOBAL_CTRL[34:32]. Workaround the errata by using the
2476 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2478 if (boot_cpu_data.x86 == 0x6) {
2479 switch (boot_cpu_data.x86_model) {
2480 case 26: /* AAK155 */
2481 case 30: /* AAP115 */
2482 case 37: /* AAT100 */
2483 case 44: /* BC86,AAY89,BD102 */
2485 _vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
2486 _vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
2487 pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2488 "does not work properly. Using workaround\n");
2496 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2498 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2499 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2502 #ifdef CONFIG_X86_64
2503 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2504 if (vmx_msr_high & (1u<<16))
2508 /* Require Write-Back (WB) memory type for VMCS accesses. */
2509 if (((vmx_msr_high >> 18) & 15) != 6)
2512 vmcs_conf->size = vmx_msr_high & 0x1fff;
2513 vmcs_conf->order = get_order(vmcs_conf->size);
2514 vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2516 vmcs_conf->revision_id = vmx_msr_low;
2518 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2519 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2520 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2521 vmcs_conf->vmexit_ctrl = _vmexit_control;
2522 vmcs_conf->vmentry_ctrl = _vmentry_control;
2524 if (static_branch_unlikely(&enable_evmcs))
2525 evmcs_sanitize_exec_ctrls(vmcs_conf);
2530 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2532 int node = cpu_to_node(cpu);
2536 pages = __alloc_pages_node(node, flags, vmcs_config.order);
2539 vmcs = page_address(pages);
2540 memset(vmcs, 0, vmcs_config.size);
2542 /* KVM supports Enlightened VMCS v1 only */
2543 if (static_branch_unlikely(&enable_evmcs))
2544 vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2546 vmcs->hdr.revision_id = vmcs_config.revision_id;
2549 vmcs->hdr.shadow_vmcs = 1;
2553 void free_vmcs(struct vmcs *vmcs)
2555 free_pages((unsigned long)vmcs, vmcs_config.order);
2559 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2561 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2563 if (!loaded_vmcs->vmcs)
2565 loaded_vmcs_clear(loaded_vmcs);
2566 free_vmcs(loaded_vmcs->vmcs);
2567 loaded_vmcs->vmcs = NULL;
2568 if (loaded_vmcs->msr_bitmap)
2569 free_page((unsigned long)loaded_vmcs->msr_bitmap);
2570 WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2573 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2575 loaded_vmcs->vmcs = alloc_vmcs(false);
2576 if (!loaded_vmcs->vmcs)
2579 loaded_vmcs->shadow_vmcs = NULL;
2580 loaded_vmcs->hv_timer_soft_disabled = false;
2581 loaded_vmcs_init(loaded_vmcs);
2583 if (cpu_has_vmx_msr_bitmap()) {
2584 loaded_vmcs->msr_bitmap = (unsigned long *)
2585 __get_free_page(GFP_KERNEL_ACCOUNT);
2586 if (!loaded_vmcs->msr_bitmap)
2588 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2590 if (IS_ENABLED(CONFIG_HYPERV) &&
2591 static_branch_unlikely(&enable_evmcs) &&
2592 (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
2593 struct hv_enlightened_vmcs *evmcs =
2594 (struct hv_enlightened_vmcs *)loaded_vmcs->vmcs;
2596 evmcs->hv_enlightenments_control.msr_bitmap = 1;
2600 memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2601 memset(&loaded_vmcs->controls_shadow, 0,
2602 sizeof(struct vmcs_controls_shadow));
2607 free_loaded_vmcs(loaded_vmcs);
2611 static void free_kvm_area(void)
2615 for_each_possible_cpu(cpu) {
2616 free_vmcs(per_cpu(vmxarea, cpu));
2617 per_cpu(vmxarea, cpu) = NULL;
2621 static __init int alloc_kvm_area(void)
2625 for_each_possible_cpu(cpu) {
2628 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2635 * When eVMCS is enabled, alloc_vmcs_cpu() sets
2636 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2637 * revision_id reported by MSR_IA32_VMX_BASIC.
2639 * However, even though not explicitly documented by
2640 * TLFS, VMXArea passed as VMXON argument should
2641 * still be marked with revision_id reported by
2644 if (static_branch_unlikely(&enable_evmcs))
2645 vmcs->hdr.revision_id = vmcs_config.revision_id;
2647 per_cpu(vmxarea, cpu) = vmcs;
2652 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2653 struct kvm_segment *save)
2655 if (!emulate_invalid_guest_state) {
2657 * CS and SS RPL should be equal during guest entry according
2658 * to VMX spec, but in reality it is not always so. Since vcpu
2659 * is in the middle of the transition from real mode to
2660 * protected mode it is safe to assume that RPL 0 is a good
2663 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2664 save->selector &= ~SEGMENT_RPL_MASK;
2665 save->dpl = save->selector & SEGMENT_RPL_MASK;
2668 vmx_set_segment(vcpu, save, seg);
2671 static void enter_pmode(struct kvm_vcpu *vcpu)
2673 unsigned long flags;
2674 struct vcpu_vmx *vmx = to_vmx(vcpu);
2677 * Update real mode segment cache. It may be not up-to-date if sement
2678 * register was written while vcpu was in a guest mode.
2680 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2681 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2682 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2683 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2684 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2685 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2687 vmx->rmode.vm86_active = 0;
2689 vmx_segment_cache_clear(vmx);
2691 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2693 flags = vmcs_readl(GUEST_RFLAGS);
2694 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2695 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2696 vmcs_writel(GUEST_RFLAGS, flags);
2698 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2699 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2701 update_exception_bitmap(vcpu);
2703 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2704 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2705 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2706 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2707 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2708 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2711 static void fix_rmode_seg(int seg, struct kvm_segment *save)
2713 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2714 struct kvm_segment var = *save;
2717 if (seg == VCPU_SREG_CS)
2720 if (!emulate_invalid_guest_state) {
2721 var.selector = var.base >> 4;
2722 var.base = var.base & 0xffff0;
2732 if (save->base & 0xf)
2733 printk_once(KERN_WARNING "kvm: segment base is not "
2734 "paragraph aligned when entering "
2735 "protected mode (seg=%d)", seg);
2738 vmcs_write16(sf->selector, var.selector);
2739 vmcs_writel(sf->base, var.base);
2740 vmcs_write32(sf->limit, var.limit);
2741 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
2744 static void enter_rmode(struct kvm_vcpu *vcpu)
2746 unsigned long flags;
2747 struct vcpu_vmx *vmx = to_vmx(vcpu);
2748 struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
2750 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2751 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2752 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2753 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2754 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2755 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2756 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2758 vmx->rmode.vm86_active = 1;
2761 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2762 * vcpu. Warn the user that an update is overdue.
2764 if (!kvm_vmx->tss_addr)
2765 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2766 "called before entering vcpu\n");
2768 vmx_segment_cache_clear(vmx);
2770 vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
2771 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2772 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2774 flags = vmcs_readl(GUEST_RFLAGS);
2775 vmx->rmode.save_rflags = flags;
2777 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2779 vmcs_writel(GUEST_RFLAGS, flags);
2780 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2781 update_exception_bitmap(vcpu);
2783 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2784 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2785 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2786 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2787 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2788 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2790 kvm_mmu_reset_context(vcpu);
2793 void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2795 struct vcpu_vmx *vmx = to_vmx(vcpu);
2796 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
2801 vcpu->arch.efer = efer;
2802 if (efer & EFER_LMA) {
2803 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2806 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2808 msr->data = efer & ~EFER_LME;
2813 #ifdef CONFIG_X86_64
2815 static void enter_lmode(struct kvm_vcpu *vcpu)
2819 vmx_segment_cache_clear(to_vmx(vcpu));
2821 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2822 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
2823 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2825 vmcs_write32(GUEST_TR_AR_BYTES,
2826 (guest_tr_ar & ~VMX_AR_TYPE_MASK)
2827 | VMX_AR_TYPE_BUSY_64_TSS);
2829 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2832 static void exit_lmode(struct kvm_vcpu *vcpu)
2834 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2835 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2840 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
2842 int vpid = to_vmx(vcpu)->vpid;
2844 if (!vpid_sync_vcpu_addr(vpid, addr))
2845 vpid_sync_context(vpid);
2848 * If VPIDs are not supported or enabled, then the above is a no-op.
2849 * But we don't really need a TLB flush in that case anyway, because
2850 * each VM entry/exit includes an implicit flush when VPID is 0.
2854 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2856 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2858 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
2859 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
2862 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
2864 if (enable_unrestricted_guest || (enable_ept && is_paging(vcpu)))
2865 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2866 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
2869 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
2871 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2873 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
2874 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
2877 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
2879 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2881 if (!test_bit(VCPU_EXREG_PDPTR,
2882 (unsigned long *)&vcpu->arch.regs_dirty))
2885 if (is_pae_paging(vcpu)) {
2886 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
2887 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
2888 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
2889 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
2893 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
2895 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2897 if (is_pae_paging(vcpu)) {
2898 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
2899 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
2900 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
2901 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
2904 __set_bit(VCPU_EXREG_PDPTR,
2905 (unsigned long *)&vcpu->arch.regs_avail);
2906 __set_bit(VCPU_EXREG_PDPTR,
2907 (unsigned long *)&vcpu->arch.regs_dirty);
2910 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
2912 struct kvm_vcpu *vcpu)
2914 struct vcpu_vmx *vmx = to_vmx(vcpu);
2916 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
2917 vmx_decache_cr3(vcpu);
2918 if (!(cr0 & X86_CR0_PG)) {
2919 /* From paging/starting to nonpaging */
2920 exec_controls_setbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
2921 CPU_BASED_CR3_STORE_EXITING);
2922 vcpu->arch.cr0 = cr0;
2923 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2924 } else if (!is_paging(vcpu)) {
2925 /* From nonpaging to paging */
2926 exec_controls_clearbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
2927 CPU_BASED_CR3_STORE_EXITING);
2928 vcpu->arch.cr0 = cr0;
2929 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2932 if (!(cr0 & X86_CR0_WP))
2933 *hw_cr0 &= ~X86_CR0_WP;
2936 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2938 struct vcpu_vmx *vmx = to_vmx(vcpu);
2939 unsigned long hw_cr0;
2941 hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
2942 if (enable_unrestricted_guest)
2943 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
2945 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
2947 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
2950 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
2954 #ifdef CONFIG_X86_64
2955 if (vcpu->arch.efer & EFER_LME) {
2956 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
2958 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
2963 if (enable_ept && !enable_unrestricted_guest)
2964 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
2966 vmcs_writel(CR0_READ_SHADOW, cr0);
2967 vmcs_writel(GUEST_CR0, hw_cr0);
2968 vcpu->arch.cr0 = cr0;
2970 /* depends on vcpu->arch.cr0 to be set to a new value */
2971 vmx->emulation_required = emulation_required(vcpu);
2974 static int get_ept_level(struct kvm_vcpu *vcpu)
2976 if (cpu_has_vmx_ept_5levels() && (cpuid_maxphyaddr(vcpu) > 48))
2981 u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa)
2983 u64 eptp = VMX_EPTP_MT_WB;
2985 eptp |= (get_ept_level(vcpu) == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
2987 if (enable_ept_ad_bits &&
2988 (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
2989 eptp |= VMX_EPTP_AD_ENABLE_BIT;
2990 eptp |= (root_hpa & PAGE_MASK);
2995 void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
2997 struct kvm *kvm = vcpu->kvm;
2998 unsigned long guest_cr3;
3003 eptp = construct_eptp(vcpu, cr3);
3004 vmcs_write64(EPT_POINTER, eptp);
3006 if (kvm_x86_ops->tlb_remote_flush) {
3007 spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
3008 to_vmx(vcpu)->ept_pointer = eptp;
3009 to_kvm_vmx(kvm)->ept_pointers_match
3010 = EPT_POINTERS_CHECK;
3011 spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
3014 if (enable_unrestricted_guest || is_paging(vcpu) ||
3015 is_guest_mode(vcpu))
3016 guest_cr3 = kvm_read_cr3(vcpu);
3018 guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3019 ept_load_pdptrs(vcpu);
3022 vmcs_writel(GUEST_CR3, guest_cr3);
3025 int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3027 struct vcpu_vmx *vmx = to_vmx(vcpu);
3029 * Pass through host's Machine Check Enable value to hw_cr4, which
3030 * is in force while we are in guest mode. Do not let guests control
3031 * this bit, even if host CR4.MCE == 0.
3033 unsigned long hw_cr4;
3035 hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3036 if (enable_unrestricted_guest)
3037 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3038 else if (vmx->rmode.vm86_active)
3039 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3041 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3043 if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
3044 if (cr4 & X86_CR4_UMIP) {
3045 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3046 hw_cr4 &= ~X86_CR4_UMIP;
3047 } else if (!is_guest_mode(vcpu) ||
3048 !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3049 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3053 if (cr4 & X86_CR4_VMXE) {
3055 * To use VMXON (and later other VMX instructions), a guest
3056 * must first be able to turn on cr4.VMXE (see handle_vmon()).
3057 * So basically the check on whether to allow nested VMX
3058 * is here. We operate under the default treatment of SMM,
3059 * so VMX cannot be enabled under SMM.
3061 if (!nested_vmx_allowed(vcpu) || is_smm(vcpu))
3065 if (vmx->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3068 vcpu->arch.cr4 = cr4;
3070 if (!enable_unrestricted_guest) {
3072 if (!is_paging(vcpu)) {
3073 hw_cr4 &= ~X86_CR4_PAE;
3074 hw_cr4 |= X86_CR4_PSE;
3075 } else if (!(cr4 & X86_CR4_PAE)) {
3076 hw_cr4 &= ~X86_CR4_PAE;
3081 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3082 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs
3083 * to be manually disabled when guest switches to non-paging
3086 * If !enable_unrestricted_guest, the CPU is always running
3087 * with CR0.PG=1 and CR4 needs to be modified.
3088 * If enable_unrestricted_guest, the CPU automatically
3089 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3091 if (!is_paging(vcpu))
3092 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3095 vmcs_writel(CR4_READ_SHADOW, cr4);
3096 vmcs_writel(GUEST_CR4, hw_cr4);
3100 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3102 struct vcpu_vmx *vmx = to_vmx(vcpu);
3105 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3106 *var = vmx->rmode.segs[seg];
3107 if (seg == VCPU_SREG_TR
3108 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3110 var->base = vmx_read_guest_seg_base(vmx, seg);
3111 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3114 var->base = vmx_read_guest_seg_base(vmx, seg);
3115 var->limit = vmx_read_guest_seg_limit(vmx, seg);
3116 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3117 ar = vmx_read_guest_seg_ar(vmx, seg);
3118 var->unusable = (ar >> 16) & 1;
3119 var->type = ar & 15;
3120 var->s = (ar >> 4) & 1;
3121 var->dpl = (ar >> 5) & 3;
3123 * Some userspaces do not preserve unusable property. Since usable
3124 * segment has to be present according to VMX spec we can use present
3125 * property to amend userspace bug by making unusable segment always
3126 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3127 * segment as unusable.
3129 var->present = !var->unusable;
3130 var->avl = (ar >> 12) & 1;
3131 var->l = (ar >> 13) & 1;
3132 var->db = (ar >> 14) & 1;
3133 var->g = (ar >> 15) & 1;
3136 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3138 struct kvm_segment s;
3140 if (to_vmx(vcpu)->rmode.vm86_active) {
3141 vmx_get_segment(vcpu, &s, seg);
3144 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3147 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3149 struct vcpu_vmx *vmx = to_vmx(vcpu);
3151 if (unlikely(vmx->rmode.vm86_active))
3154 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3155 return VMX_AR_DPL(ar);
3159 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3163 if (var->unusable || !var->present)
3166 ar = var->type & 15;
3167 ar |= (var->s & 1) << 4;
3168 ar |= (var->dpl & 3) << 5;
3169 ar |= (var->present & 1) << 7;
3170 ar |= (var->avl & 1) << 12;
3171 ar |= (var->l & 1) << 13;
3172 ar |= (var->db & 1) << 14;
3173 ar |= (var->g & 1) << 15;
3179 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3181 struct vcpu_vmx *vmx = to_vmx(vcpu);
3182 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3184 vmx_segment_cache_clear(vmx);
3186 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3187 vmx->rmode.segs[seg] = *var;
3188 if (seg == VCPU_SREG_TR)
3189 vmcs_write16(sf->selector, var->selector);
3191 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3195 vmcs_writel(sf->base, var->base);
3196 vmcs_write32(sf->limit, var->limit);
3197 vmcs_write16(sf->selector, var->selector);
3200 * Fix the "Accessed" bit in AR field of segment registers for older
3202 * IA32 arch specifies that at the time of processor reset the
3203 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3204 * is setting it to 0 in the userland code. This causes invalid guest
3205 * state vmexit when "unrestricted guest" mode is turned on.
3206 * Fix for this setup issue in cpu_reset is being pushed in the qemu
3207 * tree. Newer qemu binaries with that qemu fix would not need this
3210 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3211 var->type |= 0x1; /* Accessed */
3213 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3216 vmx->emulation_required = emulation_required(vcpu);
3219 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3221 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3223 *db = (ar >> 14) & 1;
3224 *l = (ar >> 13) & 1;
3227 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3229 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3230 dt->address = vmcs_readl(GUEST_IDTR_BASE);
3233 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3235 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3236 vmcs_writel(GUEST_IDTR_BASE, dt->address);
3239 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3241 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3242 dt->address = vmcs_readl(GUEST_GDTR_BASE);
3245 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3247 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3248 vmcs_writel(GUEST_GDTR_BASE, dt->address);
3251 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3253 struct kvm_segment var;
3256 vmx_get_segment(vcpu, &var, seg);
3258 if (seg == VCPU_SREG_CS)
3260 ar = vmx_segment_access_rights(&var);
3262 if (var.base != (var.selector << 4))
3264 if (var.limit != 0xffff)
3272 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3274 struct kvm_segment cs;
3275 unsigned int cs_rpl;
3277 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3278 cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3282 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3286 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3287 if (cs.dpl > cs_rpl)
3290 if (cs.dpl != cs_rpl)
3296 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3300 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3302 struct kvm_segment ss;
3303 unsigned int ss_rpl;
3305 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3306 ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3310 if (ss.type != 3 && ss.type != 7)
3314 if (ss.dpl != ss_rpl) /* DPL != RPL */
3322 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3324 struct kvm_segment var;
3327 vmx_get_segment(vcpu, &var, seg);
3328 rpl = var.selector & SEGMENT_RPL_MASK;
3336 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3337 if (var.dpl < rpl) /* DPL < RPL */
3341 /* TODO: Add other members to kvm_segment_field to allow checking for other access
3347 static bool tr_valid(struct kvm_vcpu *vcpu)
3349 struct kvm_segment tr;
3351 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3355 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
3357 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3365 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3367 struct kvm_segment ldtr;
3369 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3373 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
3383 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3385 struct kvm_segment cs, ss;
3387 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3388 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3390 return ((cs.selector & SEGMENT_RPL_MASK) ==
3391 (ss.selector & SEGMENT_RPL_MASK));
3395 * Check if guest state is valid. Returns true if valid, false if
3397 * We assume that registers are always usable
3399 static bool guest_state_valid(struct kvm_vcpu *vcpu)
3401 if (enable_unrestricted_guest)
3404 /* real mode guest state checks */
3405 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3406 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3408 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3410 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3412 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3414 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3416 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3419 /* protected mode guest state checks */
3420 if (!cs_ss_rpl_check(vcpu))
3422 if (!code_segment_valid(vcpu))
3424 if (!stack_segment_valid(vcpu))
3426 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3428 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3430 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3432 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3434 if (!tr_valid(vcpu))
3436 if (!ldtr_valid(vcpu))
3440 * - Add checks on RIP
3441 * - Add checks on RFLAGS
3447 static int init_rmode_tss(struct kvm *kvm)
3453 idx = srcu_read_lock(&kvm->srcu);
3454 fn = to_kvm_vmx(kvm)->tss_addr >> PAGE_SHIFT;
3455 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3458 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3459 r = kvm_write_guest_page(kvm, fn++, &data,
3460 TSS_IOPB_BASE_OFFSET, sizeof(u16));
3463 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3466 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3470 r = kvm_write_guest_page(kvm, fn, &data,
3471 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3474 srcu_read_unlock(&kvm->srcu, idx);
3478 static int init_rmode_identity_map(struct kvm *kvm)
3480 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3482 kvm_pfn_t identity_map_pfn;
3485 /* Protect kvm_vmx->ept_identity_pagetable_done. */
3486 mutex_lock(&kvm->slots_lock);
3488 if (likely(kvm_vmx->ept_identity_pagetable_done))
3491 if (!kvm_vmx->ept_identity_map_addr)
3492 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3493 identity_map_pfn = kvm_vmx->ept_identity_map_addr >> PAGE_SHIFT;
3495 r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3496 kvm_vmx->ept_identity_map_addr, PAGE_SIZE);
3500 idx = srcu_read_lock(&kvm->srcu);
3501 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3504 /* Set up identity-mapping pagetable for EPT in real mode */
3505 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3506 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3507 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3508 r = kvm_write_guest_page(kvm, identity_map_pfn,
3509 &tmp, i * sizeof(tmp), sizeof(tmp));
3513 kvm_vmx->ept_identity_pagetable_done = true;
3516 srcu_read_unlock(&kvm->srcu, idx);
3519 mutex_unlock(&kvm->slots_lock);
3523 static void seg_setup(int seg)
3525 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3528 vmcs_write16(sf->selector, 0);
3529 vmcs_writel(sf->base, 0);
3530 vmcs_write32(sf->limit, 0xffff);
3532 if (seg == VCPU_SREG_CS)
3533 ar |= 0x08; /* code segment */
3535 vmcs_write32(sf->ar_bytes, ar);
3538 static int alloc_apic_access_page(struct kvm *kvm)
3543 mutex_lock(&kvm->slots_lock);
3544 if (kvm->arch.apic_access_page_done)
3546 r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
3547 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
3551 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
3552 if (is_error_page(page)) {
3558 * Do not pin the page in memory, so that memory hot-unplug
3559 * is able to migrate it.
3562 kvm->arch.apic_access_page_done = true;
3564 mutex_unlock(&kvm->slots_lock);
3568 int allocate_vpid(void)
3574 spin_lock(&vmx_vpid_lock);
3575 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3576 if (vpid < VMX_NR_VPIDS)
3577 __set_bit(vpid, vmx_vpid_bitmap);
3580 spin_unlock(&vmx_vpid_lock);
3584 void free_vpid(int vpid)
3586 if (!enable_vpid || vpid == 0)
3588 spin_lock(&vmx_vpid_lock);
3589 __clear_bit(vpid, vmx_vpid_bitmap);
3590 spin_unlock(&vmx_vpid_lock);
3593 static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
3596 int f = sizeof(unsigned long);
3598 if (!cpu_has_vmx_msr_bitmap())
3601 if (static_branch_unlikely(&enable_evmcs))
3602 evmcs_touch_msr_bitmap();
3605 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3606 * have the write-low and read-high bitmap offsets the wrong way round.
3607 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3609 if (msr <= 0x1fff) {
3610 if (type & MSR_TYPE_R)
3612 __clear_bit(msr, msr_bitmap + 0x000 / f);
3614 if (type & MSR_TYPE_W)
3616 __clear_bit(msr, msr_bitmap + 0x800 / f);
3618 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3620 if (type & MSR_TYPE_R)
3622 __clear_bit(msr, msr_bitmap + 0x400 / f);
3624 if (type & MSR_TYPE_W)
3626 __clear_bit(msr, msr_bitmap + 0xc00 / f);
3631 static __always_inline void vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
3634 int f = sizeof(unsigned long);
3636 if (!cpu_has_vmx_msr_bitmap())
3639 if (static_branch_unlikely(&enable_evmcs))
3640 evmcs_touch_msr_bitmap();
3643 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3644 * have the write-low and read-high bitmap offsets the wrong way round.
3645 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3647 if (msr <= 0x1fff) {
3648 if (type & MSR_TYPE_R)
3650 __set_bit(msr, msr_bitmap + 0x000 / f);
3652 if (type & MSR_TYPE_W)
3654 __set_bit(msr, msr_bitmap + 0x800 / f);
3656 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3658 if (type & MSR_TYPE_R)
3660 __set_bit(msr, msr_bitmap + 0x400 / f);
3662 if (type & MSR_TYPE_W)
3664 __set_bit(msr, msr_bitmap + 0xc00 / f);
3669 static __always_inline void vmx_set_intercept_for_msr(unsigned long *msr_bitmap,
3670 u32 msr, int type, bool value)
3673 vmx_enable_intercept_for_msr(msr_bitmap, msr, type);
3675 vmx_disable_intercept_for_msr(msr_bitmap, msr, type);
3678 static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu)
3682 if (cpu_has_secondary_exec_ctrls() &&
3683 (secondary_exec_controls_get(to_vmx(vcpu)) &
3684 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
3685 mode |= MSR_BITMAP_MODE_X2APIC;
3686 if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
3687 mode |= MSR_BITMAP_MODE_X2APIC_APICV;
3693 static void vmx_update_msr_bitmap_x2apic(unsigned long *msr_bitmap,
3698 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
3699 unsigned word = msr / BITS_PER_LONG;
3700 msr_bitmap[word] = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
3701 msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
3704 if (mode & MSR_BITMAP_MODE_X2APIC) {
3706 * TPR reads and writes can be virtualized even if virtual interrupt
3707 * delivery is not in use.
3709 vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW);
3710 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
3711 vmx_enable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_R);
3712 vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
3713 vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
3718 void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu)
3720 struct vcpu_vmx *vmx = to_vmx(vcpu);
3721 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3722 u8 mode = vmx_msr_bitmap_mode(vcpu);
3723 u8 changed = mode ^ vmx->msr_bitmap_mode;
3728 if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV))
3729 vmx_update_msr_bitmap_x2apic(msr_bitmap, mode);
3731 vmx->msr_bitmap_mode = mode;
3734 void pt_update_intercept_for_msr(struct vcpu_vmx *vmx)
3736 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3737 bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
3740 vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_STATUS,
3742 vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_BASE,
3744 vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_MASK,
3746 vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_CR3_MATCH,
3748 for (i = 0; i < vmx->pt_desc.addr_range; i++) {
3749 vmx_set_intercept_for_msr(msr_bitmap,
3750 MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
3751 vmx_set_intercept_for_msr(msr_bitmap,
3752 MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
3756 static bool vmx_get_enable_apicv(struct kvm_vcpu *vcpu)
3758 return enable_apicv;
3761 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
3763 struct vcpu_vmx *vmx = to_vmx(vcpu);
3768 if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
3769 !nested_cpu_has_vid(get_vmcs12(vcpu)) ||
3770 WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
3773 rvi = vmx_get_rvi();
3775 vapic_page = vmx->nested.virtual_apic_map.hva;
3776 vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
3778 return ((rvi & 0xf0) > (vppr & 0xf0));
3781 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
3785 int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
3787 if (vcpu->mode == IN_GUEST_MODE) {
3789 * The vector of interrupt to be delivered to vcpu had
3790 * been set in PIR before this function.
3792 * Following cases will be reached in this block, and
3793 * we always send a notification event in all cases as
3796 * Case 1: vcpu keeps in non-root mode. Sending a
3797 * notification event posts the interrupt to vcpu.
3799 * Case 2: vcpu exits to root mode and is still
3800 * runnable. PIR will be synced to vIRR before the
3801 * next vcpu entry. Sending a notification event in
3802 * this case has no effect, as vcpu is not in root
3805 * Case 3: vcpu exits to root mode and is blocked.
3806 * vcpu_block() has already synced PIR to vIRR and
3807 * never blocks vcpu if vIRR is not cleared. Therefore,
3808 * a blocked vcpu here does not wait for any requested
3809 * interrupts in PIR, and sending a notification event
3810 * which has no effect is safe here.
3813 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
3820 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
3823 struct vcpu_vmx *vmx = to_vmx(vcpu);
3825 if (is_guest_mode(vcpu) &&
3826 vector == vmx->nested.posted_intr_nv) {
3828 * If a posted intr is not recognized by hardware,
3829 * we will accomplish it in the next vmentry.
3831 vmx->nested.pi_pending = true;
3832 kvm_make_request(KVM_REQ_EVENT, vcpu);
3833 /* the PIR and ON have been set by L1. */
3834 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true))
3835 kvm_vcpu_kick(vcpu);
3841 * Send interrupt to vcpu via posted interrupt way.
3842 * 1. If target vcpu is running(non-root mode), send posted interrupt
3843 * notification to vcpu and hardware will sync PIR to vIRR atomically.
3844 * 2. If target vcpu isn't running(root mode), kick it to pick up the
3845 * interrupt from PIR in next vmentry.
3847 static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
3849 struct vcpu_vmx *vmx = to_vmx(vcpu);
3852 r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
3856 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
3859 /* If a previous notification has sent the IPI, nothing to do. */
3860 if (pi_test_and_set_on(&vmx->pi_desc))
3863 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false))
3864 kvm_vcpu_kick(vcpu);
3868 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
3869 * will not change in the lifetime of the guest.
3870 * Note that host-state that does change is set elsewhere. E.g., host-state
3871 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
3873 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
3877 unsigned long cr0, cr3, cr4;
3880 WARN_ON(cr0 & X86_CR0_TS);
3881 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */
3884 * Save the most likely value for this task's CR3 in the VMCS.
3885 * We can't use __get_current_cr3_fast() because we're not atomic.
3888 vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */
3889 vmx->loaded_vmcs->host_state.cr3 = cr3;
3891 /* Save the most likely value for this task's CR4 in the VMCS. */
3892 cr4 = cr4_read_shadow();
3893 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
3894 vmx->loaded_vmcs->host_state.cr4 = cr4;
3896 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
3897 #ifdef CONFIG_X86_64
3899 * Load null selectors, so we can avoid reloading them in
3900 * vmx_prepare_switch_to_host(), in case userspace uses
3901 * the null selectors too (the expected case).
3903 vmcs_write16(HOST_DS_SELECTOR, 0);
3904 vmcs_write16(HOST_ES_SELECTOR, 0);
3906 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3907 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3909 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3910 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
3912 vmcs_writel(HOST_IDTR_BASE, host_idt_base); /* 22.2.4 */
3914 vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
3916 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
3917 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
3918 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
3919 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
3921 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
3922 rdmsr(MSR_IA32_CR_PAT, low32, high32);
3923 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
3926 if (cpu_has_load_ia32_efer())
3927 vmcs_write64(HOST_IA32_EFER, host_efer);
3930 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
3932 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
3934 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
3935 if (is_guest_mode(&vmx->vcpu))
3936 vmx->vcpu.arch.cr4_guest_owned_bits &=
3937 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
3938 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
3941 u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
3943 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
3945 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
3946 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
3949 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
3951 if (!enable_preemption_timer)
3952 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
3954 return pin_based_exec_ctrl;
3957 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
3959 struct vcpu_vmx *vmx = to_vmx(vcpu);
3961 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
3962 if (cpu_has_secondary_exec_ctrls()) {
3963 if (kvm_vcpu_apicv_active(vcpu))
3964 secondary_exec_controls_setbit(vmx,
3965 SECONDARY_EXEC_APIC_REGISTER_VIRT |
3966 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3968 secondary_exec_controls_clearbit(vmx,
3969 SECONDARY_EXEC_APIC_REGISTER_VIRT |
3970 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3973 if (cpu_has_vmx_msr_bitmap())
3974 vmx_update_msr_bitmap(vcpu);
3977 u32 vmx_exec_control(struct vcpu_vmx *vmx)
3979 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
3981 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
3982 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
3984 if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
3985 exec_control &= ~CPU_BASED_TPR_SHADOW;
3986 #ifdef CONFIG_X86_64
3987 exec_control |= CPU_BASED_CR8_STORE_EXITING |
3988 CPU_BASED_CR8_LOAD_EXITING;
3992 exec_control |= CPU_BASED_CR3_STORE_EXITING |
3993 CPU_BASED_CR3_LOAD_EXITING |
3994 CPU_BASED_INVLPG_EXITING;
3995 if (kvm_mwait_in_guest(vmx->vcpu.kvm))
3996 exec_control &= ~(CPU_BASED_MWAIT_EXITING |
3997 CPU_BASED_MONITOR_EXITING);
3998 if (kvm_hlt_in_guest(vmx->vcpu.kvm))
3999 exec_control &= ~CPU_BASED_HLT_EXITING;
4000 return exec_control;
4004 static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
4006 struct kvm_vcpu *vcpu = &vmx->vcpu;
4008 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4010 if (pt_mode == PT_MODE_SYSTEM)
4011 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4012 if (!cpu_need_virtualize_apic_accesses(vcpu))
4013 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4015 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4017 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4018 enable_unrestricted_guest = 0;
4020 if (!enable_unrestricted_guest)
4021 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4022 if (kvm_pause_in_guest(vmx->vcpu.kvm))
4023 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4024 if (!kvm_vcpu_apicv_active(vcpu))
4025 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4026 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4027 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4029 /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4030 * in vmx_set_cr4. */
4031 exec_control &= ~SECONDARY_EXEC_DESC;
4033 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4035 We can NOT enable shadow_vmcs here because we don't have yet
4038 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4041 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4043 if (vmx_xsaves_supported()) {
4044 /* Exposing XSAVES only when XSAVE is exposed */
4045 bool xsaves_enabled =
4046 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4047 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
4049 if (!xsaves_enabled)
4050 exec_control &= ~SECONDARY_EXEC_XSAVES;
4054 vmx->nested.msrs.secondary_ctls_high |=
4055 SECONDARY_EXEC_XSAVES;
4057 vmx->nested.msrs.secondary_ctls_high &=
4058 ~SECONDARY_EXEC_XSAVES;
4062 if (vmx_rdtscp_supported()) {
4063 bool rdtscp_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP);
4064 if (!rdtscp_enabled)
4065 exec_control &= ~SECONDARY_EXEC_RDTSCP;
4069 vmx->nested.msrs.secondary_ctls_high |=
4070 SECONDARY_EXEC_RDTSCP;
4072 vmx->nested.msrs.secondary_ctls_high &=
4073 ~SECONDARY_EXEC_RDTSCP;
4077 if (vmx_invpcid_supported()) {
4078 /* Exposing INVPCID only when PCID is exposed */
4079 bool invpcid_enabled =
4080 guest_cpuid_has(vcpu, X86_FEATURE_INVPCID) &&
4081 guest_cpuid_has(vcpu, X86_FEATURE_PCID);
4083 if (!invpcid_enabled) {
4084 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
4085 guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID);
4089 if (invpcid_enabled)
4090 vmx->nested.msrs.secondary_ctls_high |=
4091 SECONDARY_EXEC_ENABLE_INVPCID;
4093 vmx->nested.msrs.secondary_ctls_high &=
4094 ~SECONDARY_EXEC_ENABLE_INVPCID;
4098 if (vmx_rdrand_supported()) {
4099 bool rdrand_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDRAND);
4101 exec_control &= ~SECONDARY_EXEC_RDRAND_EXITING;
4105 vmx->nested.msrs.secondary_ctls_high |=
4106 SECONDARY_EXEC_RDRAND_EXITING;
4108 vmx->nested.msrs.secondary_ctls_high &=
4109 ~SECONDARY_EXEC_RDRAND_EXITING;
4113 if (vmx_rdseed_supported()) {
4114 bool rdseed_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDSEED);
4116 exec_control &= ~SECONDARY_EXEC_RDSEED_EXITING;
4120 vmx->nested.msrs.secondary_ctls_high |=
4121 SECONDARY_EXEC_RDSEED_EXITING;
4123 vmx->nested.msrs.secondary_ctls_high &=
4124 ~SECONDARY_EXEC_RDSEED_EXITING;
4128 if (vmx_waitpkg_supported()) {
4129 bool waitpkg_enabled =
4130 guest_cpuid_has(vcpu, X86_FEATURE_WAITPKG);
4132 if (!waitpkg_enabled)
4133 exec_control &= ~SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
4136 if (waitpkg_enabled)
4137 vmx->nested.msrs.secondary_ctls_high |=
4138 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
4140 vmx->nested.msrs.secondary_ctls_high &=
4141 ~SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
4145 vmx->secondary_exec_control = exec_control;
4148 static void ept_set_mmio_spte_mask(void)
4151 * EPT Misconfigurations can be generated if the value of bits 2:0
4152 * of an EPT paging-structure entry is 110b (write/execute).
4154 kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK,
4155 VMX_EPT_MISCONFIG_WX_VALUE, 0);
4158 #define VMX_XSS_EXIT_BITMAP 0
4161 * Sets up the vmcs for emulated real mode.
4163 static void vmx_vcpu_setup(struct vcpu_vmx *vmx)
4168 nested_vmx_vcpu_setup();
4170 if (cpu_has_vmx_msr_bitmap())
4171 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4173 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4176 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4177 vmx->hv_deadline_tsc = -1;
4179 exec_controls_set(vmx, vmx_exec_control(vmx));
4181 if (cpu_has_secondary_exec_ctrls()) {
4182 vmx_compute_secondary_exec_control(vmx);
4183 secondary_exec_controls_set(vmx, vmx->secondary_exec_control);
4186 if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
4187 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4188 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4189 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4190 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4192 vmcs_write16(GUEST_INTR_STATUS, 0);
4194 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4195 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4198 if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
4199 vmcs_write32(PLE_GAP, ple_gap);
4200 vmx->ple_window = ple_window;
4201 vmx->ple_window_dirty = true;
4204 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4205 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4206 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
4208 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
4209 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
4210 vmx_set_constant_host_state(vmx);
4211 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4212 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4214 if (cpu_has_vmx_vmfunc())
4215 vmcs_write64(VM_FUNCTION_CONTROL, 0);
4217 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4218 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4219 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4220 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4221 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4223 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4224 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4226 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
4227 u32 index = vmx_msr_index[i];
4228 u32 data_low, data_high;
4231 if (rdmsr_safe(index, &data_low, &data_high) < 0)
4233 if (wrmsr_safe(index, data_low, data_high) < 0)
4235 vmx->guest_msrs[j].index = i;
4236 vmx->guest_msrs[j].data = 0;
4237 vmx->guest_msrs[j].mask = -1ull;
4241 vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4243 /* 22.2.1, 20.8.1 */
4244 vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4246 vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS;
4247 vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS);
4249 set_cr4_guest_host_mask(vmx);
4251 if (vmx_xsaves_supported())
4252 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4255 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4256 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4259 if (cpu_has_vmx_encls_vmexit())
4260 vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
4262 if (pt_mode == PT_MODE_HOST_GUEST) {
4263 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4264 /* Bit[6~0] are forced to 1, writes are ignored. */
4265 vmx->pt_desc.guest.output_mask = 0x7F;
4266 vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4270 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4272 struct vcpu_vmx *vmx = to_vmx(vcpu);
4273 struct msr_data apic_base_msr;
4276 vmx->rmode.vm86_active = 0;
4279 vmx->msr_ia32_umwait_control = 0;
4281 vcpu->arch.microcode_version = 0x100000000ULL;
4282 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4283 vmx->hv_deadline_tsc = -1;
4284 kvm_set_cr8(vcpu, 0);
4287 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
4288 MSR_IA32_APICBASE_ENABLE;
4289 if (kvm_vcpu_is_reset_bsp(vcpu))
4290 apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4291 apic_base_msr.host_initiated = true;
4292 kvm_set_apic_base(vcpu, &apic_base_msr);
4295 vmx_segment_cache_clear(vmx);
4297 seg_setup(VCPU_SREG_CS);
4298 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4299 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4301 seg_setup(VCPU_SREG_DS);
4302 seg_setup(VCPU_SREG_ES);
4303 seg_setup(VCPU_SREG_FS);
4304 seg_setup(VCPU_SREG_GS);
4305 seg_setup(VCPU_SREG_SS);
4307 vmcs_write16(GUEST_TR_SELECTOR, 0);
4308 vmcs_writel(GUEST_TR_BASE, 0);
4309 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4310 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4312 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4313 vmcs_writel(GUEST_LDTR_BASE, 0);
4314 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4315 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4318 vmcs_write32(GUEST_SYSENTER_CS, 0);
4319 vmcs_writel(GUEST_SYSENTER_ESP, 0);
4320 vmcs_writel(GUEST_SYSENTER_EIP, 0);
4321 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4324 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
4325 kvm_rip_write(vcpu, 0xfff0);
4327 vmcs_writel(GUEST_GDTR_BASE, 0);
4328 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4330 vmcs_writel(GUEST_IDTR_BASE, 0);
4331 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4333 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4334 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4335 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4336 if (kvm_mpx_supported())
4337 vmcs_write64(GUEST_BNDCFGS, 0);
4341 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
4343 if (cpu_has_vmx_tpr_shadow() && !init_event) {
4344 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4345 if (cpu_need_tpr_shadow(vcpu))
4346 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4347 __pa(vcpu->arch.apic->regs));
4348 vmcs_write32(TPR_THRESHOLD, 0);
4351 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4354 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4356 cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4357 vmx->vcpu.arch.cr0 = cr0;
4358 vmx_set_cr0(vcpu, cr0); /* enter rmode */
4359 vmx_set_cr4(vcpu, 0);
4360 vmx_set_efer(vcpu, 0);
4362 update_exception_bitmap(vcpu);
4364 vpid_sync_context(vmx->vpid);
4366 vmx_clear_hlt(vcpu);
4369 static void enable_irq_window(struct kvm_vcpu *vcpu)
4371 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_VIRTUAL_INTR_PENDING);
4374 static void enable_nmi_window(struct kvm_vcpu *vcpu)
4377 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4378 enable_irq_window(vcpu);
4382 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_VIRTUAL_NMI_PENDING);
4385 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4387 struct vcpu_vmx *vmx = to_vmx(vcpu);
4389 int irq = vcpu->arch.interrupt.nr;
4391 trace_kvm_inj_virq(irq);
4393 ++vcpu->stat.irq_injections;
4394 if (vmx->rmode.vm86_active) {
4396 if (vcpu->arch.interrupt.soft)
4397 inc_eip = vcpu->arch.event_exit_inst_len;
4398 kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4401 intr = irq | INTR_INFO_VALID_MASK;
4402 if (vcpu->arch.interrupt.soft) {
4403 intr |= INTR_TYPE_SOFT_INTR;
4404 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4405 vmx->vcpu.arch.event_exit_inst_len);
4407 intr |= INTR_TYPE_EXT_INTR;
4408 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4410 vmx_clear_hlt(vcpu);
4413 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4415 struct vcpu_vmx *vmx = to_vmx(vcpu);
4419 * Tracking the NMI-blocked state in software is built upon
4420 * finding the next open IRQ window. This, in turn, depends on
4421 * well-behaving guests: They have to keep IRQs disabled at
4422 * least as long as the NMI handler runs. Otherwise we may
4423 * cause NMI nesting, maybe breaking the guest. But as this is
4424 * highly unlikely, we can live with the residual risk.
4426 vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4427 vmx->loaded_vmcs->vnmi_blocked_time = 0;
4430 ++vcpu->stat.nmi_injections;
4431 vmx->loaded_vmcs->nmi_known_unmasked = false;
4433 if (vmx->rmode.vm86_active) {
4434 kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4438 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4439 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4441 vmx_clear_hlt(vcpu);
4444 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4446 struct vcpu_vmx *vmx = to_vmx(vcpu);
4450 return vmx->loaded_vmcs->soft_vnmi_blocked;
4451 if (vmx->loaded_vmcs->nmi_known_unmasked)
4453 masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4454 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4458 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4460 struct vcpu_vmx *vmx = to_vmx(vcpu);
4463 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4464 vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4465 vmx->loaded_vmcs->vnmi_blocked_time = 0;
4468 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4470 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4471 GUEST_INTR_STATE_NMI);
4473 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4474 GUEST_INTR_STATE_NMI);
4478 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4480 if (to_vmx(vcpu)->nested.nested_run_pending)
4484 to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
4487 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4488 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4489 | GUEST_INTR_STATE_NMI));
4492 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4494 return (!to_vmx(vcpu)->nested.nested_run_pending &&
4495 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4496 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4497 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4500 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4504 if (enable_unrestricted_guest)
4507 ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
4511 to_kvm_vmx(kvm)->tss_addr = addr;
4512 return init_rmode_tss(kvm);
4515 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
4517 to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
4521 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4526 * Update instruction length as we may reinject the exception
4527 * from user space while in guest debugging mode.
4529 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4530 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4531 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4535 if (vcpu->guest_debug &
4536 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4553 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4554 int vec, u32 err_code)
4557 * Instruction with address size override prefix opcode 0x67
4558 * Cause the #SS fault with 0 error code in VM86 mode.
4560 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4561 if (kvm_emulate_instruction(vcpu, 0)) {
4562 if (vcpu->arch.halt_request) {
4563 vcpu->arch.halt_request = 0;
4564 return kvm_vcpu_halt(vcpu);
4572 * Forward all other exceptions that are valid in real mode.
4573 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4574 * the required debugging infrastructure rework.
4576 kvm_queue_exception(vcpu, vec);
4581 * Trigger machine check on the host. We assume all the MSRs are already set up
4582 * by the CPU and that we still run on the same CPU as the MCE occurred on.
4583 * We pass a fake environment to the machine check handler because we want
4584 * the guest to be always treated like user space, no matter what context
4585 * it used internally.
4587 static void kvm_machine_check(void)
4589 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4590 struct pt_regs regs = {
4591 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4592 .flags = X86_EFLAGS_IF,
4595 do_machine_check(®s, 0);
4599 static int handle_machine_check(struct kvm_vcpu *vcpu)
4601 /* handled by vmx_vcpu_run() */
4605 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
4607 struct vcpu_vmx *vmx = to_vmx(vcpu);
4608 struct kvm_run *kvm_run = vcpu->run;
4609 u32 intr_info, ex_no, error_code;
4610 unsigned long cr2, rip, dr6;
4613 vect_info = vmx->idt_vectoring_info;
4614 intr_info = vmx->exit_intr_info;
4616 if (is_machine_check(intr_info) || is_nmi(intr_info))
4617 return 1; /* handled by handle_exception_nmi_irqoff() */
4619 if (is_invalid_opcode(intr_info))
4620 return handle_ud(vcpu);
4623 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4624 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4626 if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
4627 WARN_ON_ONCE(!enable_vmware_backdoor);
4630 * VMware backdoor emulation on #GP interception only handles
4631 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
4632 * error code on #GP.
4635 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
4638 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
4642 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4643 * MMIO, it is better to report an internal error.
4644 * See the comments in vmx_handle_exit.
4646 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4647 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4648 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4649 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4650 vcpu->run->internal.ndata = 3;
4651 vcpu->run->internal.data[0] = vect_info;
4652 vcpu->run->internal.data[1] = intr_info;
4653 vcpu->run->internal.data[2] = error_code;
4657 if (is_page_fault(intr_info)) {
4658 cr2 = vmcs_readl(EXIT_QUALIFICATION);
4659 /* EPT won't cause page fault directly */
4660 WARN_ON_ONCE(!vcpu->arch.apf.host_apf_reason && enable_ept);
4661 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
4664 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4666 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4667 return handle_rmode_exception(vcpu, ex_no, error_code);
4671 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
4674 dr6 = vmcs_readl(EXIT_QUALIFICATION);
4675 if (!(vcpu->guest_debug &
4676 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4677 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
4678 vcpu->arch.dr6 |= dr6 | DR6_RTM;
4679 if (is_icebp(intr_info))
4680 WARN_ON(!skip_emulated_instruction(vcpu));
4682 kvm_queue_exception(vcpu, DB_VECTOR);
4685 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
4686 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4690 * Update instruction length as we may reinject #BP from
4691 * user space while in guest debugging mode. Reading it for
4692 * #DB as well causes no harm, it is not used in that case.
4694 vmx->vcpu.arch.event_exit_inst_len =
4695 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4696 kvm_run->exit_reason = KVM_EXIT_DEBUG;
4697 rip = kvm_rip_read(vcpu);
4698 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4699 kvm_run->debug.arch.exception = ex_no;
4702 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4703 kvm_run->ex.exception = ex_no;
4704 kvm_run->ex.error_code = error_code;
4710 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
4712 ++vcpu->stat.irq_exits;
4716 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4718 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4719 vcpu->mmio_needed = 0;
4723 static int handle_io(struct kvm_vcpu *vcpu)
4725 unsigned long exit_qualification;
4726 int size, in, string;
4729 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4730 string = (exit_qualification & 16) != 0;
4732 ++vcpu->stat.io_exits;
4735 return kvm_emulate_instruction(vcpu, 0);
4737 port = exit_qualification >> 16;
4738 size = (exit_qualification & 7) + 1;
4739 in = (exit_qualification & 8) != 0;
4741 return kvm_fast_pio(vcpu, size, port, in);
4745 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4748 * Patch in the VMCALL instruction:
4750 hypercall[0] = 0x0f;
4751 hypercall[1] = 0x01;
4752 hypercall[2] = 0xc1;
4755 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
4756 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4758 if (is_guest_mode(vcpu)) {
4759 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4760 unsigned long orig_val = val;
4763 * We get here when L2 changed cr0 in a way that did not change
4764 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4765 * but did change L0 shadowed bits. So we first calculate the
4766 * effective cr0 value that L1 would like to write into the
4767 * hardware. It consists of the L2-owned bits from the new
4768 * value combined with the L1-owned bits from L1's guest_cr0.
4770 val = (val & ~vmcs12->cr0_guest_host_mask) |
4771 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
4773 if (!nested_guest_cr0_valid(vcpu, val))
4776 if (kvm_set_cr0(vcpu, val))
4778 vmcs_writel(CR0_READ_SHADOW, orig_val);
4781 if (to_vmx(vcpu)->nested.vmxon &&
4782 !nested_host_cr0_valid(vcpu, val))
4785 return kvm_set_cr0(vcpu, val);
4789 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4791 if (is_guest_mode(vcpu)) {
4792 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4793 unsigned long orig_val = val;
4795 /* analogously to handle_set_cr0 */
4796 val = (val & ~vmcs12->cr4_guest_host_mask) |
4797 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
4798 if (kvm_set_cr4(vcpu, val))
4800 vmcs_writel(CR4_READ_SHADOW, orig_val);
4803 return kvm_set_cr4(vcpu, val);
4806 static int handle_desc(struct kvm_vcpu *vcpu)
4808 WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
4809 return kvm_emulate_instruction(vcpu, 0);
4812 static int handle_cr(struct kvm_vcpu *vcpu)
4814 unsigned long exit_qualification, val;
4820 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4821 cr = exit_qualification & 15;
4822 reg = (exit_qualification >> 8) & 15;
4823 switch ((exit_qualification >> 4) & 3) {
4824 case 0: /* mov to cr */
4825 val = kvm_register_readl(vcpu, reg);
4826 trace_kvm_cr_write(cr, val);
4829 err = handle_set_cr0(vcpu, val);
4830 return kvm_complete_insn_gp(vcpu, err);
4832 WARN_ON_ONCE(enable_unrestricted_guest);
4833 err = kvm_set_cr3(vcpu, val);
4834 return kvm_complete_insn_gp(vcpu, err);
4836 err = handle_set_cr4(vcpu, val);
4837 return kvm_complete_insn_gp(vcpu, err);
4839 u8 cr8_prev = kvm_get_cr8(vcpu);
4841 err = kvm_set_cr8(vcpu, cr8);
4842 ret = kvm_complete_insn_gp(vcpu, err);
4843 if (lapic_in_kernel(vcpu))
4845 if (cr8_prev <= cr8)
4848 * TODO: we might be squashing a
4849 * KVM_GUESTDBG_SINGLESTEP-triggered
4850 * KVM_EXIT_DEBUG here.
4852 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
4858 WARN_ONCE(1, "Guest should always own CR0.TS");
4859 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4860 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
4861 return kvm_skip_emulated_instruction(vcpu);
4862 case 1: /*mov from cr*/
4865 WARN_ON_ONCE(enable_unrestricted_guest);
4866 val = kvm_read_cr3(vcpu);
4867 kvm_register_write(vcpu, reg, val);
4868 trace_kvm_cr_read(cr, val);
4869 return kvm_skip_emulated_instruction(vcpu);
4871 val = kvm_get_cr8(vcpu);
4872 kvm_register_write(vcpu, reg, val);
4873 trace_kvm_cr_read(cr, val);
4874 return kvm_skip_emulated_instruction(vcpu);
4878 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4879 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
4880 kvm_lmsw(vcpu, val);
4882 return kvm_skip_emulated_instruction(vcpu);
4886 vcpu->run->exit_reason = 0;
4887 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
4888 (int)(exit_qualification >> 4) & 3, cr);
4892 static int handle_dr(struct kvm_vcpu *vcpu)
4894 unsigned long exit_qualification;
4897 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4898 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
4900 /* First, if DR does not exist, trigger UD */
4901 if (!kvm_require_dr(vcpu, dr))
4904 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
4905 if (!kvm_require_cpl(vcpu, 0))
4907 dr7 = vmcs_readl(GUEST_DR7);
4910 * As the vm-exit takes precedence over the debug trap, we
4911 * need to emulate the latter, either for the host or the
4912 * guest debugging itself.
4914 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
4915 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
4916 vcpu->run->debug.arch.dr7 = dr7;
4917 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
4918 vcpu->run->debug.arch.exception = DB_VECTOR;
4919 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
4922 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
4923 vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
4924 kvm_queue_exception(vcpu, DB_VECTOR);
4929 if (vcpu->guest_debug == 0) {
4930 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
4933 * No more DR vmexits; force a reload of the debug registers
4934 * and reenter on this instruction. The next vmexit will
4935 * retrieve the full state of the debug registers.
4937 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
4941 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
4942 if (exit_qualification & TYPE_MOV_FROM_DR) {
4945 if (kvm_get_dr(vcpu, dr, &val))
4947 kvm_register_write(vcpu, reg, val);
4949 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
4952 return kvm_skip_emulated_instruction(vcpu);
4955 static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
4957 return vcpu->arch.dr6;
4960 static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
4964 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
4966 get_debugreg(vcpu->arch.db[0], 0);
4967 get_debugreg(vcpu->arch.db[1], 1);
4968 get_debugreg(vcpu->arch.db[2], 2);
4969 get_debugreg(vcpu->arch.db[3], 3);
4970 get_debugreg(vcpu->arch.dr6, 6);
4971 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
4973 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
4974 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
4977 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
4979 vmcs_writel(GUEST_DR7, val);
4982 static int handle_cpuid(struct kvm_vcpu *vcpu)
4984 return kvm_emulate_cpuid(vcpu);
4987 static int handle_rdmsr(struct kvm_vcpu *vcpu)
4989 return kvm_emulate_rdmsr(vcpu);
4992 static int handle_wrmsr(struct kvm_vcpu *vcpu)
4994 return kvm_emulate_wrmsr(vcpu);
4997 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
4999 kvm_apic_update_ppr(vcpu);
5003 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5005 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_VIRTUAL_INTR_PENDING);
5007 kvm_make_request(KVM_REQ_EVENT, vcpu);
5009 ++vcpu->stat.irq_window_exits;
5013 static int handle_halt(struct kvm_vcpu *vcpu)
5015 return kvm_emulate_halt(vcpu);
5018 static int handle_vmcall(struct kvm_vcpu *vcpu)
5020 return kvm_emulate_hypercall(vcpu);
5023 static int handle_invd(struct kvm_vcpu *vcpu)
5025 return kvm_emulate_instruction(vcpu, 0);
5028 static int handle_invlpg(struct kvm_vcpu *vcpu)
5030 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5032 kvm_mmu_invlpg(vcpu, exit_qualification);
5033 return kvm_skip_emulated_instruction(vcpu);
5036 static int handle_rdpmc(struct kvm_vcpu *vcpu)
5040 err = kvm_rdpmc(vcpu);
5041 return kvm_complete_insn_gp(vcpu, err);
5044 static int handle_wbinvd(struct kvm_vcpu *vcpu)
5046 return kvm_emulate_wbinvd(vcpu);
5049 static int handle_xsetbv(struct kvm_vcpu *vcpu)
5051 u64 new_bv = kvm_read_edx_eax(vcpu);
5052 u32 index = kvm_rcx_read(vcpu);
5054 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5055 return kvm_skip_emulated_instruction(vcpu);
5059 static int handle_apic_access(struct kvm_vcpu *vcpu)
5061 if (likely(fasteoi)) {
5062 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5063 int access_type, offset;
5065 access_type = exit_qualification & APIC_ACCESS_TYPE;
5066 offset = exit_qualification & APIC_ACCESS_OFFSET;
5068 * Sane guest uses MOV to write EOI, with written value
5069 * not cared. So make a short-circuit here by avoiding
5070 * heavy instruction emulation.
5072 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5073 (offset == APIC_EOI)) {
5074 kvm_lapic_set_eoi(vcpu);
5075 return kvm_skip_emulated_instruction(vcpu);
5078 return kvm_emulate_instruction(vcpu, 0);
5081 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5083 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5084 int vector = exit_qualification & 0xff;
5086 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5087 kvm_apic_set_eoi_accelerated(vcpu, vector);
5091 static int handle_apic_write(struct kvm_vcpu *vcpu)
5093 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5094 u32 offset = exit_qualification & 0xfff;
5096 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5097 kvm_apic_write_nodecode(vcpu, offset);
5101 static int handle_task_switch(struct kvm_vcpu *vcpu)
5103 struct vcpu_vmx *vmx = to_vmx(vcpu);
5104 unsigned long exit_qualification;
5105 bool has_error_code = false;
5108 int reason, type, idt_v, idt_index;
5110 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5111 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5112 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5114 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5116 reason = (u32)exit_qualification >> 30;
5117 if (reason == TASK_SWITCH_GATE && idt_v) {
5119 case INTR_TYPE_NMI_INTR:
5120 vcpu->arch.nmi_injected = false;
5121 vmx_set_nmi_mask(vcpu, true);
5123 case INTR_TYPE_EXT_INTR:
5124 case INTR_TYPE_SOFT_INTR:
5125 kvm_clear_interrupt_queue(vcpu);
5127 case INTR_TYPE_HARD_EXCEPTION:
5128 if (vmx->idt_vectoring_info &
5129 VECTORING_INFO_DELIVER_CODE_MASK) {
5130 has_error_code = true;
5132 vmcs_read32(IDT_VECTORING_ERROR_CODE);
5135 case INTR_TYPE_SOFT_EXCEPTION:
5136 kvm_clear_exception_queue(vcpu);
5142 tss_selector = exit_qualification;
5144 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5145 type != INTR_TYPE_EXT_INTR &&
5146 type != INTR_TYPE_NMI_INTR))
5147 WARN_ON(!skip_emulated_instruction(vcpu));
5150 * TODO: What about debug traps on tss switch?
5151 * Are we supposed to inject them and update dr6?
5153 return kvm_task_switch(vcpu, tss_selector,
5154 type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5155 reason, has_error_code, error_code);
5158 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5160 unsigned long exit_qualification;
5164 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5167 * EPT violation happened while executing iret from NMI,
5168 * "blocked by NMI" bit has to be set before next VM entry.
5169 * There are errata that may cause this bit to not be set:
5172 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5174 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5175 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5177 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5178 trace_kvm_page_fault(gpa, exit_qualification);
5180 /* Is it a read fault? */
5181 error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5182 ? PFERR_USER_MASK : 0;
5183 /* Is it a write fault? */
5184 error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5185 ? PFERR_WRITE_MASK : 0;
5186 /* Is it a fetch fault? */
5187 error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5188 ? PFERR_FETCH_MASK : 0;
5189 /* ept page table entry is present? */
5190 error_code |= (exit_qualification &
5191 (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
5192 EPT_VIOLATION_EXECUTABLE))
5193 ? PFERR_PRESENT_MASK : 0;
5195 error_code |= (exit_qualification & 0x100) != 0 ?
5196 PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5198 vcpu->arch.exit_qualification = exit_qualification;
5199 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5202 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5207 * A nested guest cannot optimize MMIO vmexits, because we have an
5208 * nGPA here instead of the required GPA.
5210 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5211 if (!is_guest_mode(vcpu) &&
5212 !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5213 trace_kvm_fast_mmio(gpa);
5214 return kvm_skip_emulated_instruction(vcpu);
5217 return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5220 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5222 WARN_ON_ONCE(!enable_vnmi);
5223 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_VIRTUAL_NMI_PENDING);
5224 ++vcpu->stat.nmi_window_exits;
5225 kvm_make_request(KVM_REQ_EVENT, vcpu);
5230 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5232 struct vcpu_vmx *vmx = to_vmx(vcpu);
5233 bool intr_window_requested;
5234 unsigned count = 130;
5237 * We should never reach the point where we are emulating L2
5238 * due to invalid guest state as that means we incorrectly
5239 * allowed a nested VMEntry with an invalid vmcs12.
5241 WARN_ON_ONCE(vmx->emulation_required && vmx->nested.nested_run_pending);
5243 intr_window_requested = exec_controls_get(vmx) &
5244 CPU_BASED_VIRTUAL_INTR_PENDING;
5246 while (vmx->emulation_required && count-- != 0) {
5247 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
5248 return handle_interrupt_window(&vmx->vcpu);
5250 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5253 if (!kvm_emulate_instruction(vcpu, 0))
5256 if (vmx->emulation_required && !vmx->rmode.vm86_active &&
5257 vcpu->arch.exception.pending) {
5258 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5259 vcpu->run->internal.suberror =
5260 KVM_INTERNAL_ERROR_EMULATION;
5261 vcpu->run->internal.ndata = 0;
5265 if (vcpu->arch.halt_request) {
5266 vcpu->arch.halt_request = 0;
5267 return kvm_vcpu_halt(vcpu);
5271 * Note, return 1 and not 0, vcpu_run() is responsible for
5272 * morphing the pending signal into the proper return code.
5274 if (signal_pending(current))
5284 static void grow_ple_window(struct kvm_vcpu *vcpu)
5286 struct vcpu_vmx *vmx = to_vmx(vcpu);
5287 unsigned int old = vmx->ple_window;
5289 vmx->ple_window = __grow_ple_window(old, ple_window,
5293 if (vmx->ple_window != old) {
5294 vmx->ple_window_dirty = true;
5295 trace_kvm_ple_window_update(vcpu->vcpu_id,
5296 vmx->ple_window, old);
5300 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5302 struct vcpu_vmx *vmx = to_vmx(vcpu);
5303 unsigned int old = vmx->ple_window;
5305 vmx->ple_window = __shrink_ple_window(old, ple_window,
5309 if (vmx->ple_window != old) {
5310 vmx->ple_window_dirty = true;
5311 trace_kvm_ple_window_update(vcpu->vcpu_id,
5312 vmx->ple_window, old);
5317 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
5319 static void wakeup_handler(void)
5321 struct kvm_vcpu *vcpu;
5322 int cpu = smp_processor_id();
5324 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
5325 list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
5326 blocked_vcpu_list) {
5327 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
5329 if (pi_test_on(pi_desc) == 1)
5330 kvm_vcpu_kick(vcpu);
5332 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
5335 static void vmx_enable_tdp(void)
5337 kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
5338 enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
5339 enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
5340 0ull, VMX_EPT_EXECUTABLE_MASK,
5341 cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
5342 VMX_EPT_RWX_MASK, 0ull);
5344 ept_set_mmio_spte_mask();
5349 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5350 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5352 static int handle_pause(struct kvm_vcpu *vcpu)
5354 if (!kvm_pause_in_guest(vcpu->kvm))
5355 grow_ple_window(vcpu);
5358 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5359 * VM-execution control is ignored if CPL > 0. OTOH, KVM
5360 * never set PAUSE_EXITING and just set PLE if supported,
5361 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5363 kvm_vcpu_on_spin(vcpu, true);
5364 return kvm_skip_emulated_instruction(vcpu);
5367 static int handle_nop(struct kvm_vcpu *vcpu)
5369 return kvm_skip_emulated_instruction(vcpu);
5372 static int handle_mwait(struct kvm_vcpu *vcpu)
5374 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
5375 return handle_nop(vcpu);
5378 static int handle_invalid_op(struct kvm_vcpu *vcpu)
5380 kvm_queue_exception(vcpu, UD_VECTOR);
5384 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5389 static int handle_monitor(struct kvm_vcpu *vcpu)
5391 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
5392 return handle_nop(vcpu);
5395 static int handle_invpcid(struct kvm_vcpu *vcpu)
5397 u32 vmx_instruction_info;
5401 struct x86_exception e;
5403 unsigned long roots_to_free = 0;
5409 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5410 kvm_queue_exception(vcpu, UD_VECTOR);
5414 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5415 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5418 kvm_inject_gp(vcpu, 0);
5422 /* According to the Intel instruction reference, the memory operand
5423 * is read even if it isn't needed (e.g., for type==all)
5425 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5426 vmx_instruction_info, false,
5427 sizeof(operand), &gva))
5430 if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
5431 kvm_inject_page_fault(vcpu, &e);
5435 if (operand.pcid >> 12 != 0) {
5436 kvm_inject_gp(vcpu, 0);
5440 pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
5443 case INVPCID_TYPE_INDIV_ADDR:
5444 if ((!pcid_enabled && (operand.pcid != 0)) ||
5445 is_noncanonical_address(operand.gla, vcpu)) {
5446 kvm_inject_gp(vcpu, 0);
5449 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
5450 return kvm_skip_emulated_instruction(vcpu);
5452 case INVPCID_TYPE_SINGLE_CTXT:
5453 if (!pcid_enabled && (operand.pcid != 0)) {
5454 kvm_inject_gp(vcpu, 0);
5458 if (kvm_get_active_pcid(vcpu) == operand.pcid) {
5459 kvm_mmu_sync_roots(vcpu);
5460 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
5463 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5464 if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].cr3)
5466 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5468 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
5470 * If neither the current cr3 nor any of the prev_roots use the
5471 * given PCID, then nothing needs to be done here because a
5472 * resync will happen anyway before switching to any other CR3.
5475 return kvm_skip_emulated_instruction(vcpu);
5477 case INVPCID_TYPE_ALL_NON_GLOBAL:
5479 * Currently, KVM doesn't mark global entries in the shadow
5480 * page tables, so a non-global flush just degenerates to a
5481 * global flush. If needed, we could optimize this later by
5482 * keeping track of global entries in shadow page tables.
5486 case INVPCID_TYPE_ALL_INCL_GLOBAL:
5487 kvm_mmu_unload(vcpu);
5488 return kvm_skip_emulated_instruction(vcpu);
5491 BUG(); /* We have already checked above that type <= 3 */
5495 static int handle_pml_full(struct kvm_vcpu *vcpu)
5497 unsigned long exit_qualification;
5499 trace_kvm_pml_full(vcpu->vcpu_id);
5501 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5504 * PML buffer FULL happened while executing iret from NMI,
5505 * "blocked by NMI" bit has to be set before next VM entry.
5507 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5509 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5510 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5511 GUEST_INTR_STATE_NMI);
5514 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5515 * here.., and there's no userspace involvement needed for PML.
5520 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
5522 struct vcpu_vmx *vmx = to_vmx(vcpu);
5524 if (!vmx->req_immediate_exit &&
5525 !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled))
5526 kvm_lapic_expired_hv_timer(vcpu);
5532 * When nested=0, all VMX instruction VM Exits filter here. The handlers
5533 * are overwritten by nested_vmx_setup() when nested=1.
5535 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
5537 kvm_queue_exception(vcpu, UD_VECTOR);
5541 static int handle_encls(struct kvm_vcpu *vcpu)
5544 * SGX virtualization is not yet supported. There is no software
5545 * enable bit for SGX, so we have to trap ENCLS and inject a #UD
5546 * to prevent the guest from executing ENCLS.
5548 kvm_queue_exception(vcpu, UD_VECTOR);
5553 * The exit handlers return 1 if the exit was handled fully and guest execution
5554 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
5555 * to be done to userspace and return 0.
5557 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5558 [EXIT_REASON_EXCEPTION_NMI] = handle_exception_nmi,
5559 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
5560 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
5561 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
5562 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
5563 [EXIT_REASON_CR_ACCESS] = handle_cr,
5564 [EXIT_REASON_DR_ACCESS] = handle_dr,
5565 [EXIT_REASON_CPUID] = handle_cpuid,
5566 [EXIT_REASON_MSR_READ] = handle_rdmsr,
5567 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
5568 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
5569 [EXIT_REASON_HLT] = handle_halt,
5570 [EXIT_REASON_INVD] = handle_invd,
5571 [EXIT_REASON_INVLPG] = handle_invlpg,
5572 [EXIT_REASON_RDPMC] = handle_rdpmc,
5573 [EXIT_REASON_VMCALL] = handle_vmcall,
5574 [EXIT_REASON_VMCLEAR] = handle_vmx_instruction,
5575 [EXIT_REASON_VMLAUNCH] = handle_vmx_instruction,
5576 [EXIT_REASON_VMPTRLD] = handle_vmx_instruction,
5577 [EXIT_REASON_VMPTRST] = handle_vmx_instruction,
5578 [EXIT_REASON_VMREAD] = handle_vmx_instruction,
5579 [EXIT_REASON_VMRESUME] = handle_vmx_instruction,
5580 [EXIT_REASON_VMWRITE] = handle_vmx_instruction,
5581 [EXIT_REASON_VMOFF] = handle_vmx_instruction,
5582 [EXIT_REASON_VMON] = handle_vmx_instruction,
5583 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
5584 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
5585 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
5586 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
5587 [EXIT_REASON_WBINVD] = handle_wbinvd,
5588 [EXIT_REASON_XSETBV] = handle_xsetbv,
5589 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
5590 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
5591 [EXIT_REASON_GDTR_IDTR] = handle_desc,
5592 [EXIT_REASON_LDTR_TR] = handle_desc,
5593 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
5594 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
5595 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
5596 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait,
5597 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap,
5598 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor,
5599 [EXIT_REASON_INVEPT] = handle_vmx_instruction,
5600 [EXIT_REASON_INVVPID] = handle_vmx_instruction,
5601 [EXIT_REASON_RDRAND] = handle_invalid_op,
5602 [EXIT_REASON_RDSEED] = handle_invalid_op,
5603 [EXIT_REASON_PML_FULL] = handle_pml_full,
5604 [EXIT_REASON_INVPCID] = handle_invpcid,
5605 [EXIT_REASON_VMFUNC] = handle_vmx_instruction,
5606 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer,
5607 [EXIT_REASON_ENCLS] = handle_encls,
5610 static const int kvm_vmx_max_exit_handlers =
5611 ARRAY_SIZE(kvm_vmx_exit_handlers);
5613 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
5615 *info1 = vmcs_readl(EXIT_QUALIFICATION);
5616 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
5619 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
5622 __free_page(vmx->pml_pg);
5627 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
5629 struct vcpu_vmx *vmx = to_vmx(vcpu);
5633 pml_idx = vmcs_read16(GUEST_PML_INDEX);
5635 /* Do nothing if PML buffer is empty */
5636 if (pml_idx == (PML_ENTITY_NUM - 1))
5639 /* PML index always points to next available PML buffer entity */
5640 if (pml_idx >= PML_ENTITY_NUM)
5645 pml_buf = page_address(vmx->pml_pg);
5646 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
5649 gpa = pml_buf[pml_idx];
5650 WARN_ON(gpa & (PAGE_SIZE - 1));
5651 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5654 /* reset PML index */
5655 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5659 * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
5660 * Called before reporting dirty_bitmap to userspace.
5662 static void kvm_flush_pml_buffers(struct kvm *kvm)
5665 struct kvm_vcpu *vcpu;
5667 * We only need to kick vcpu out of guest mode here, as PML buffer
5668 * is flushed at beginning of all VMEXITs, and it's obvious that only
5669 * vcpus running in guest are possible to have unflushed GPAs in PML
5672 kvm_for_each_vcpu(i, vcpu, kvm)
5673 kvm_vcpu_kick(vcpu);
5676 static void vmx_dump_sel(char *name, uint32_t sel)
5678 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
5679 name, vmcs_read16(sel),
5680 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
5681 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
5682 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
5685 static void vmx_dump_dtsel(char *name, uint32_t limit)
5687 pr_err("%s limit=0x%08x, base=0x%016lx\n",
5688 name, vmcs_read32(limit),
5689 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
5692 void dump_vmcs(void)
5694 u32 vmentry_ctl, vmexit_ctl;
5695 u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
5700 if (!dump_invalid_vmcs) {
5701 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
5705 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
5706 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
5707 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5708 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
5709 cr4 = vmcs_readl(GUEST_CR4);
5710 efer = vmcs_read64(GUEST_IA32_EFER);
5711 secondary_exec_control = 0;
5712 if (cpu_has_secondary_exec_ctrls())
5713 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5715 pr_err("*** Guest State ***\n");
5716 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5717 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
5718 vmcs_readl(CR0_GUEST_HOST_MASK));
5719 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5720 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
5721 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
5722 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
5723 (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
5725 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n",
5726 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
5727 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n",
5728 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
5730 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
5731 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
5732 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
5733 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
5734 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5735 vmcs_readl(GUEST_SYSENTER_ESP),
5736 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
5737 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR);
5738 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR);
5739 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR);
5740 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR);
5741 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR);
5742 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR);
5743 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
5744 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
5745 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
5746 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR);
5747 if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
5748 (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
5749 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
5750 efer, vmcs_read64(GUEST_IA32_PAT));
5751 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n",
5752 vmcs_read64(GUEST_IA32_DEBUGCTL),
5753 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
5754 if (cpu_has_load_perf_global_ctrl() &&
5755 vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
5756 pr_err("PerfGlobCtl = 0x%016llx\n",
5757 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
5758 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
5759 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
5760 pr_err("Interruptibility = %08x ActivityState = %08x\n",
5761 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
5762 vmcs_read32(GUEST_ACTIVITY_STATE));
5763 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
5764 pr_err("InterruptStatus = %04x\n",
5765 vmcs_read16(GUEST_INTR_STATUS));
5767 pr_err("*** Host State ***\n");
5768 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
5769 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
5770 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
5771 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
5772 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
5773 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
5774 vmcs_read16(HOST_TR_SELECTOR));
5775 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
5776 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
5777 vmcs_readl(HOST_TR_BASE));
5778 pr_err("GDTBase=%016lx IDTBase=%016lx\n",
5779 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
5780 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
5781 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
5782 vmcs_readl(HOST_CR4));
5783 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5784 vmcs_readl(HOST_IA32_SYSENTER_ESP),
5785 vmcs_read32(HOST_IA32_SYSENTER_CS),
5786 vmcs_readl(HOST_IA32_SYSENTER_EIP));
5787 if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
5788 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
5789 vmcs_read64(HOST_IA32_EFER),
5790 vmcs_read64(HOST_IA32_PAT));
5791 if (cpu_has_load_perf_global_ctrl() &&
5792 vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
5793 pr_err("PerfGlobCtl = 0x%016llx\n",
5794 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
5796 pr_err("*** Control State ***\n");
5797 pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
5798 pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
5799 pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
5800 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
5801 vmcs_read32(EXCEPTION_BITMAP),
5802 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
5803 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
5804 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
5805 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
5806 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
5807 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
5808 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
5809 vmcs_read32(VM_EXIT_INTR_INFO),
5810 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5811 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
5812 pr_err(" reason=%08x qualification=%016lx\n",
5813 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
5814 pr_err("IDTVectoring: info=%08x errcode=%08x\n",
5815 vmcs_read32(IDT_VECTORING_INFO_FIELD),
5816 vmcs_read32(IDT_VECTORING_ERROR_CODE));
5817 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
5818 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
5819 pr_err("TSC Multiplier = 0x%016llx\n",
5820 vmcs_read64(TSC_MULTIPLIER));
5821 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
5822 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
5823 u16 status = vmcs_read16(GUEST_INTR_STATUS);
5824 pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
5826 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
5827 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
5828 pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
5829 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
5831 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
5832 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
5833 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
5834 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
5835 n = vmcs_read32(CR3_TARGET_COUNT);
5836 for (i = 0; i + 1 < n; i += 4)
5837 pr_err("CR3 target%u=%016lx target%u=%016lx\n",
5838 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
5839 i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
5841 pr_err("CR3 target%u=%016lx\n",
5842 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
5843 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
5844 pr_err("PLE Gap=%08x Window=%08x\n",
5845 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
5846 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
5847 pr_err("Virtual processor ID = 0x%04x\n",
5848 vmcs_read16(VIRTUAL_PROCESSOR_ID));
5852 * The guest has exited. See if we can fix it or if we need userspace
5855 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
5857 struct vcpu_vmx *vmx = to_vmx(vcpu);
5858 u32 exit_reason = vmx->exit_reason;
5859 u32 vectoring_info = vmx->idt_vectoring_info;
5861 trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
5864 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
5865 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
5866 * querying dirty_bitmap, we only need to kick all vcpus out of guest
5867 * mode as if vcpus is in root mode, the PML buffer must has been
5871 vmx_flush_pml_buffer(vcpu);
5873 /* If guest state is invalid, start emulating */
5874 if (vmx->emulation_required)
5875 return handle_invalid_guest_state(vcpu);
5877 if (is_guest_mode(vcpu) && nested_vmx_exit_reflected(vcpu, exit_reason))
5878 return nested_vmx_reflect_vmexit(vcpu, exit_reason);
5880 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
5882 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5883 vcpu->run->fail_entry.hardware_entry_failure_reason
5888 if (unlikely(vmx->fail)) {
5890 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5891 vcpu->run->fail_entry.hardware_entry_failure_reason
5892 = vmcs_read32(VM_INSTRUCTION_ERROR);
5898 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
5899 * delivery event since it indicates guest is accessing MMIO.
5900 * The vm-exit can be triggered again after return to guest that
5901 * will cause infinite loop.
5903 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
5904 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
5905 exit_reason != EXIT_REASON_EPT_VIOLATION &&
5906 exit_reason != EXIT_REASON_PML_FULL &&
5907 exit_reason != EXIT_REASON_TASK_SWITCH)) {
5908 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5909 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
5910 vcpu->run->internal.ndata = 3;
5911 vcpu->run->internal.data[0] = vectoring_info;
5912 vcpu->run->internal.data[1] = exit_reason;
5913 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
5914 if (exit_reason == EXIT_REASON_EPT_MISCONFIG) {
5915 vcpu->run->internal.ndata++;
5916 vcpu->run->internal.data[3] =
5917 vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5922 if (unlikely(!enable_vnmi &&
5923 vmx->loaded_vmcs->soft_vnmi_blocked)) {
5924 if (vmx_interrupt_allowed(vcpu)) {
5925 vmx->loaded_vmcs->soft_vnmi_blocked = 0;
5926 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
5927 vcpu->arch.nmi_pending) {
5929 * This CPU don't support us in finding the end of an
5930 * NMI-blocked window if the guest runs with IRQs
5931 * disabled. So we pull the trigger after 1 s of
5932 * futile waiting, but inform the user about this.
5934 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
5935 "state on VCPU %d after 1 s timeout\n",
5936 __func__, vcpu->vcpu_id);
5937 vmx->loaded_vmcs->soft_vnmi_blocked = 0;
5941 if (exit_reason < kvm_vmx_max_exit_handlers
5942 && kvm_vmx_exit_handlers[exit_reason])
5943 return kvm_vmx_exit_handlers[exit_reason](vcpu);
5945 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
5948 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5949 vcpu->run->internal.suberror =
5950 KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
5951 vcpu->run->internal.ndata = 1;
5952 vcpu->run->internal.data[0] = exit_reason;
5958 * Software based L1D cache flush which is used when microcode providing
5959 * the cache control MSR is not loaded.
5961 * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
5962 * flush it is required to read in 64 KiB because the replacement algorithm
5963 * is not exactly LRU. This could be sized at runtime via topology
5964 * information but as all relevant affected CPUs have 32KiB L1D cache size
5965 * there is no point in doing so.
5967 static void vmx_l1d_flush(struct kvm_vcpu *vcpu)
5969 int size = PAGE_SIZE << L1D_CACHE_ORDER;
5972 * This code is only executed when the the flush mode is 'cond' or
5975 if (static_branch_likely(&vmx_l1d_flush_cond)) {
5979 * Clear the per-vcpu flush bit, it gets set again
5980 * either from vcpu_run() or from one of the unsafe
5983 flush_l1d = vcpu->arch.l1tf_flush_l1d;
5984 vcpu->arch.l1tf_flush_l1d = false;
5987 * Clear the per-cpu flush bit, it gets set again from
5988 * the interrupt handlers.
5990 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
5991 kvm_clear_cpu_l1tf_flush_l1d();
5997 vcpu->stat.l1d_flush++;
5999 if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6000 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6005 /* First ensure the pages are in the TLB */
6006 "xorl %%eax, %%eax\n"
6007 ".Lpopulate_tlb:\n\t"
6008 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6009 "addl $4096, %%eax\n\t"
6010 "cmpl %%eax, %[size]\n\t"
6011 "jne .Lpopulate_tlb\n\t"
6012 "xorl %%eax, %%eax\n\t"
6014 /* Now fill the cache */
6015 "xorl %%eax, %%eax\n"
6017 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6018 "addl $64, %%eax\n\t"
6019 "cmpl %%eax, %[size]\n\t"
6020 "jne .Lfill_cache\n\t"
6022 :: [flush_pages] "r" (vmx_l1d_flush_pages),
6024 : "eax", "ebx", "ecx", "edx");
6027 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6029 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6031 if (is_guest_mode(vcpu) &&
6032 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6035 if (irr == -1 || tpr < irr) {
6036 vmcs_write32(TPR_THRESHOLD, 0);
6040 vmcs_write32(TPR_THRESHOLD, irr);
6043 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6045 struct vcpu_vmx *vmx = to_vmx(vcpu);
6046 u32 sec_exec_control;
6048 if (!lapic_in_kernel(vcpu))
6051 if (!flexpriority_enabled &&
6052 !cpu_has_vmx_virtualize_x2apic_mode())
6055 /* Postpone execution until vmcs01 is the current VMCS. */
6056 if (is_guest_mode(vcpu)) {
6057 vmx->nested.change_vmcs01_virtual_apic_mode = true;
6061 sec_exec_control = secondary_exec_controls_get(vmx);
6062 sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6063 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6065 switch (kvm_get_apic_mode(vcpu)) {
6066 case LAPIC_MODE_INVALID:
6067 WARN_ONCE(true, "Invalid local APIC state");
6068 case LAPIC_MODE_DISABLED:
6070 case LAPIC_MODE_XAPIC:
6071 if (flexpriority_enabled) {
6073 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6074 vmx_flush_tlb(vcpu, true);
6077 case LAPIC_MODE_X2APIC:
6078 if (cpu_has_vmx_virtualize_x2apic_mode())
6080 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6083 secondary_exec_controls_set(vmx, sec_exec_control);
6085 vmx_update_msr_bitmap(vcpu);
6088 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
6090 if (!is_guest_mode(vcpu)) {
6091 vmcs_write64(APIC_ACCESS_ADDR, hpa);
6092 vmx_flush_tlb(vcpu, true);
6096 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
6104 status = vmcs_read16(GUEST_INTR_STATUS);
6106 if (max_isr != old) {
6108 status |= max_isr << 8;
6109 vmcs_write16(GUEST_INTR_STATUS, status);
6113 static void vmx_set_rvi(int vector)
6121 status = vmcs_read16(GUEST_INTR_STATUS);
6122 old = (u8)status & 0xff;
6123 if ((u8)vector != old) {
6125 status |= (u8)vector;
6126 vmcs_write16(GUEST_INTR_STATUS, status);
6130 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6133 * When running L2, updating RVI is only relevant when
6134 * vmcs12 virtual-interrupt-delivery enabled.
6135 * However, it can be enabled only when L1 also
6136 * intercepts external-interrupts and in that case
6137 * we should not update vmcs02 RVI but instead intercept
6138 * interrupt. Therefore, do nothing when running L2.
6140 if (!is_guest_mode(vcpu))
6141 vmx_set_rvi(max_irr);
6144 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6146 struct vcpu_vmx *vmx = to_vmx(vcpu);
6148 bool max_irr_updated;
6150 WARN_ON(!vcpu->arch.apicv_active);
6151 if (pi_test_on(&vmx->pi_desc)) {
6152 pi_clear_on(&vmx->pi_desc);
6154 * IOMMU can write to PID.ON, so the barrier matters even on UP.
6155 * But on x86 this is just a compiler barrier anyway.
6157 smp_mb__after_atomic();
6159 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6162 * If we are running L2 and L1 has a new pending interrupt
6163 * which can be injected, we should re-evaluate
6164 * what should be done with this new L1 interrupt.
6165 * If L1 intercepts external-interrupts, we should
6166 * exit from L2 to L1. Otherwise, interrupt should be
6167 * delivered directly to L2.
6169 if (is_guest_mode(vcpu) && max_irr_updated) {
6170 if (nested_exit_on_intr(vcpu))
6171 kvm_vcpu_exiting_guest_mode(vcpu);
6173 kvm_make_request(KVM_REQ_EVENT, vcpu);
6176 max_irr = kvm_lapic_find_highest_irr(vcpu);
6178 vmx_hwapic_irr_update(vcpu, max_irr);
6182 static bool vmx_dy_apicv_has_pending_interrupt(struct kvm_vcpu *vcpu)
6184 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
6186 return pi_test_on(pi_desc) ||
6187 (pi_test_sn(pi_desc) && !pi_is_pir_empty(pi_desc));
6190 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6192 if (!kvm_vcpu_apicv_active(vcpu))
6195 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6196 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6197 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6198 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6201 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
6203 struct vcpu_vmx *vmx = to_vmx(vcpu);
6205 pi_clear_on(&vmx->pi_desc);
6206 memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6209 static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx)
6211 vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6213 /* if exit due to PF check for async PF */
6214 if (is_page_fault(vmx->exit_intr_info))
6215 vmx->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
6217 /* Handle machine checks before interrupts are enabled */
6218 if (is_machine_check(vmx->exit_intr_info))
6219 kvm_machine_check();
6221 /* We need to handle NMIs before interrupts are enabled */
6222 if (is_nmi(vmx->exit_intr_info)) {
6223 kvm_before_interrupt(&vmx->vcpu);
6225 kvm_after_interrupt(&vmx->vcpu);
6229 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6231 unsigned int vector;
6232 unsigned long entry;
6233 #ifdef CONFIG_X86_64
6239 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6240 if (WARN_ONCE(!is_external_intr(intr_info),
6241 "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info))
6244 vector = intr_info & INTR_INFO_VECTOR_MASK;
6245 desc = (gate_desc *)host_idt_base + vector;
6246 entry = gate_offset(desc);
6248 kvm_before_interrupt(vcpu);
6251 #ifdef CONFIG_X86_64
6252 "mov %%" _ASM_SP ", %[sp]\n\t"
6253 "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
6258 __ASM_SIZE(push) " $%c[cs]\n\t"
6261 #ifdef CONFIG_X86_64
6266 THUNK_TARGET(entry),
6267 [ss]"i"(__KERNEL_DS),
6268 [cs]"i"(__KERNEL_CS)
6271 kvm_after_interrupt(vcpu);
6273 STACK_FRAME_NON_STANDARD(handle_external_interrupt_irqoff);
6275 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6277 struct vcpu_vmx *vmx = to_vmx(vcpu);
6279 if (vmx->exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
6280 handle_external_interrupt_irqoff(vcpu);
6281 else if (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI)
6282 handle_exception_nmi_irqoff(vmx);
6285 static bool vmx_has_emulated_msr(int index)
6288 case MSR_IA32_SMBASE:
6290 * We cannot do SMM unless we can run the guest in big
6293 return enable_unrestricted_guest || emulate_invalid_guest_state;
6294 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
6296 case MSR_AMD64_VIRT_SPEC_CTRL:
6297 /* This is AMD only. */
6304 static bool vmx_pt_supported(void)
6306 return pt_mode == PT_MODE_HOST_GUEST;
6309 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6314 bool idtv_info_valid;
6316 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6319 if (vmx->loaded_vmcs->nmi_known_unmasked)
6322 * Can't use vmx->exit_intr_info since we're not sure what
6323 * the exit reason is.
6325 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6326 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6327 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6329 * SDM 3: 27.7.1.2 (September 2008)
6330 * Re-set bit "block by NMI" before VM entry if vmexit caused by
6331 * a guest IRET fault.
6332 * SDM 3: 23.2.2 (September 2008)
6333 * Bit 12 is undefined in any of the following cases:
6334 * If the VM exit sets the valid bit in the IDT-vectoring
6335 * information field.
6336 * If the VM exit is due to a double fault.
6338 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6339 vector != DF_VECTOR && !idtv_info_valid)
6340 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6341 GUEST_INTR_STATE_NMI);
6343 vmx->loaded_vmcs->nmi_known_unmasked =
6344 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6345 & GUEST_INTR_STATE_NMI);
6346 } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
6347 vmx->loaded_vmcs->vnmi_blocked_time +=
6348 ktime_to_ns(ktime_sub(ktime_get(),
6349 vmx->loaded_vmcs->entry_time));
6352 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
6353 u32 idt_vectoring_info,
6354 int instr_len_field,
6355 int error_code_field)
6359 bool idtv_info_valid;
6361 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6363 vcpu->arch.nmi_injected = false;
6364 kvm_clear_exception_queue(vcpu);
6365 kvm_clear_interrupt_queue(vcpu);
6367 if (!idtv_info_valid)
6370 kvm_make_request(KVM_REQ_EVENT, vcpu);
6372 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6373 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6376 case INTR_TYPE_NMI_INTR:
6377 vcpu->arch.nmi_injected = true;
6379 * SDM 3: 27.7.1.2 (September 2008)
6380 * Clear bit "block by NMI" before VM entry if a NMI
6383 vmx_set_nmi_mask(vcpu, false);
6385 case INTR_TYPE_SOFT_EXCEPTION:
6386 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6388 case INTR_TYPE_HARD_EXCEPTION:
6389 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6390 u32 err = vmcs_read32(error_code_field);
6391 kvm_requeue_exception_e(vcpu, vector, err);
6393 kvm_requeue_exception(vcpu, vector);
6395 case INTR_TYPE_SOFT_INTR:
6396 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6398 case INTR_TYPE_EXT_INTR:
6399 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
6406 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6408 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
6409 VM_EXIT_INSTRUCTION_LEN,
6410 IDT_VECTORING_ERROR_CODE);
6413 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6415 __vmx_complete_interrupts(vcpu,
6416 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6417 VM_ENTRY_INSTRUCTION_LEN,
6418 VM_ENTRY_EXCEPTION_ERROR_CODE);
6420 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6423 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6426 struct perf_guest_switch_msr *msrs;
6428 msrs = perf_guest_get_msrs(&nr_msrs);
6433 for (i = 0; i < nr_msrs; i++)
6434 if (msrs[i].host == msrs[i].guest)
6435 clear_atomic_switch_msr(vmx, msrs[i].msr);
6437 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6438 msrs[i].host, false);
6441 static void atomic_switch_umwait_control_msr(struct vcpu_vmx *vmx)
6443 u32 host_umwait_control;
6445 if (!vmx_has_waitpkg(vmx))
6448 host_umwait_control = get_umwait_control_msr();
6450 if (vmx->msr_ia32_umwait_control != host_umwait_control)
6451 add_atomic_switch_msr(vmx, MSR_IA32_UMWAIT_CONTROL,
6452 vmx->msr_ia32_umwait_control,
6453 host_umwait_control, false);
6455 clear_atomic_switch_msr(vmx, MSR_IA32_UMWAIT_CONTROL);
6458 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
6460 struct vcpu_vmx *vmx = to_vmx(vcpu);
6464 if (vmx->req_immediate_exit) {
6465 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
6466 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6467 } else if (vmx->hv_deadline_tsc != -1) {
6469 if (vmx->hv_deadline_tsc > tscl)
6470 /* set_hv_timer ensures the delta fits in 32-bits */
6471 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
6472 cpu_preemption_timer_multi);
6476 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
6477 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6478 } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
6479 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
6480 vmx->loaded_vmcs->hv_timer_soft_disabled = true;
6484 void vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
6486 if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
6487 vmx->loaded_vmcs->host_state.rsp = host_rsp;
6488 vmcs_writel(HOST_RSP, host_rsp);
6492 bool __vmx_vcpu_run(struct vcpu_vmx *vmx, unsigned long *regs, bool launched);
6494 static void vmx_vcpu_run(struct kvm_vcpu *vcpu)
6496 struct vcpu_vmx *vmx = to_vmx(vcpu);
6497 unsigned long cr3, cr4;
6499 /* Record the guest's net vcpu time for enforced NMI injections. */
6500 if (unlikely(!enable_vnmi &&
6501 vmx->loaded_vmcs->soft_vnmi_blocked))
6502 vmx->loaded_vmcs->entry_time = ktime_get();
6504 /* Don't enter VMX if guest state is invalid, let the exit handler
6505 start emulation until we arrive back to a valid state */
6506 if (vmx->emulation_required)
6509 if (vmx->ple_window_dirty) {
6510 vmx->ple_window_dirty = false;
6511 vmcs_write32(PLE_WINDOW, vmx->ple_window);
6514 if (vmx->nested.need_vmcs12_to_shadow_sync)
6515 nested_sync_vmcs12_to_shadow(vcpu);
6517 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
6518 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6519 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
6520 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6522 cr3 = __get_current_cr3_fast();
6523 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
6524 vmcs_writel(HOST_CR3, cr3);
6525 vmx->loaded_vmcs->host_state.cr3 = cr3;
6528 cr4 = cr4_read_shadow();
6529 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
6530 vmcs_writel(HOST_CR4, cr4);
6531 vmx->loaded_vmcs->host_state.cr4 = cr4;
6534 /* When single-stepping over STI and MOV SS, we must clear the
6535 * corresponding interruptibility bits in the guest state. Otherwise
6536 * vmentry fails as it then expects bit 14 (BS) in pending debug
6537 * exceptions being set, but that's not correct for the guest debugging
6539 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6540 vmx_set_interrupt_shadow(vcpu, 0);
6542 kvm_load_guest_xcr0(vcpu);
6544 if (static_cpu_has(X86_FEATURE_PKU) &&
6545 kvm_read_cr4_bits(vcpu, X86_CR4_PKE) &&
6546 vcpu->arch.pkru != vmx->host_pkru)
6547 __write_pkru(vcpu->arch.pkru);
6549 pt_guest_enter(vmx);
6551 atomic_switch_perf_msrs(vmx);
6552 atomic_switch_umwait_control_msr(vmx);
6554 if (enable_preemption_timer)
6555 vmx_update_hv_timer(vcpu);
6557 if (lapic_in_kernel(vcpu) &&
6558 vcpu->arch.apic->lapic_timer.timer_advance_ns)
6559 kvm_wait_lapic_expire(vcpu);
6562 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
6563 * it's non-zero. Since vmentry is serialising on affected CPUs, there
6564 * is no need to worry about the conditional branch over the wrmsr
6565 * being speculatively taken.
6567 x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
6569 /* L1D Flush includes CPU buffer clear to mitigate MDS */
6570 if (static_branch_unlikely(&vmx_l1d_should_flush))
6571 vmx_l1d_flush(vcpu);
6572 else if (static_branch_unlikely(&mds_user_clear))
6573 mds_clear_cpu_buffers();
6575 if (vcpu->arch.cr2 != read_cr2())
6576 write_cr2(vcpu->arch.cr2);
6578 vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
6579 vmx->loaded_vmcs->launched);
6581 vcpu->arch.cr2 = read_cr2();
6584 * We do not use IBRS in the kernel. If this vCPU has used the
6585 * SPEC_CTRL MSR it may have left it on; save the value and
6586 * turn it off. This is much more efficient than blindly adding
6587 * it to the atomic save/restore list. Especially as the former
6588 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
6590 * For non-nested case:
6591 * If the L01 MSR bitmap does not intercept the MSR, then we need to
6595 * If the L02 MSR bitmap does not intercept the MSR, then we need to
6598 if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
6599 vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
6601 x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0);
6603 /* All fields are clean at this point */
6604 if (static_branch_unlikely(&enable_evmcs))
6605 current_evmcs->hv_clean_fields |=
6606 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
6608 if (static_branch_unlikely(&enable_evmcs))
6609 current_evmcs->hv_vp_id = vcpu->arch.hyperv.vp_index;
6611 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
6612 if (vmx->host_debugctlmsr)
6613 update_debugctlmsr(vmx->host_debugctlmsr);
6615 #ifndef CONFIG_X86_64
6617 * The sysexit path does not restore ds/es, so we must set them to
6618 * a reasonable value ourselves.
6620 * We can't defer this to vmx_prepare_switch_to_host() since that
6621 * function may be executed in interrupt context, which saves and
6622 * restore segments around it, nullifying its effect.
6624 loadsegment(ds, __USER_DS);
6625 loadsegment(es, __USER_DS);
6628 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
6629 | (1 << VCPU_EXREG_RFLAGS)
6630 | (1 << VCPU_EXREG_PDPTR)
6631 | (1 << VCPU_EXREG_SEGMENTS)
6632 | (1 << VCPU_EXREG_CR3));
6633 vcpu->arch.regs_dirty = 0;
6638 * eager fpu is enabled if PKEY is supported and CR4 is switched
6639 * back on host, so it is safe to read guest PKRU from current
6642 if (static_cpu_has(X86_FEATURE_PKU) &&
6643 kvm_read_cr4_bits(vcpu, X86_CR4_PKE)) {
6644 vcpu->arch.pkru = rdpkru();
6645 if (vcpu->arch.pkru != vmx->host_pkru)
6646 __write_pkru(vmx->host_pkru);
6649 kvm_put_guest_xcr0(vcpu);
6651 vmx->nested.nested_run_pending = 0;
6652 vmx->idt_vectoring_info = 0;
6654 vmx->exit_reason = vmx->fail ? 0xdead : vmcs_read32(VM_EXIT_REASON);
6655 if ((u16)vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY)
6656 kvm_machine_check();
6658 if (vmx->fail || (vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
6661 vmx->loaded_vmcs->launched = 1;
6662 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6664 vmx_recover_nmi_blocking(vmx);
6665 vmx_complete_interrupts(vmx);
6668 static struct kvm *vmx_vm_alloc(void)
6670 struct kvm_vmx *kvm_vmx = __vmalloc(sizeof(struct kvm_vmx),
6671 GFP_KERNEL_ACCOUNT | __GFP_ZERO,
6673 return &kvm_vmx->kvm;
6676 static void vmx_vm_free(struct kvm *kvm)
6678 kfree(kvm->arch.hyperv.hv_pa_pg);
6679 vfree(to_kvm_vmx(kvm));
6682 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6684 struct vcpu_vmx *vmx = to_vmx(vcpu);
6687 vmx_destroy_pml_buffer(vmx);
6688 free_vpid(vmx->vpid);
6689 nested_vmx_free_vcpu(vcpu);
6690 free_loaded_vmcs(vmx->loaded_vmcs);
6691 kfree(vmx->guest_msrs);
6692 kvm_vcpu_uninit(vcpu);
6693 kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.user_fpu);
6694 kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.guest_fpu);
6695 kmem_cache_free(kvm_vcpu_cache, vmx);
6698 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
6701 struct vcpu_vmx *vmx;
6702 unsigned long *msr_bitmap;
6705 BUILD_BUG_ON_MSG(offsetof(struct vcpu_vmx, vcpu) != 0,
6706 "struct kvm_vcpu must be at offset 0 for arch usercopy region");
6708 vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
6710 return ERR_PTR(-ENOMEM);
6712 vmx->vcpu.arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
6713 GFP_KERNEL_ACCOUNT);
6714 if (!vmx->vcpu.arch.user_fpu) {
6715 printk(KERN_ERR "kvm: failed to allocate kvm userspace's fpu\n");
6717 goto free_partial_vcpu;
6720 vmx->vcpu.arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
6721 GFP_KERNEL_ACCOUNT);
6722 if (!vmx->vcpu.arch.guest_fpu) {
6723 printk(KERN_ERR "kvm: failed to allocate vcpu's fpu\n");
6728 vmx->vpid = allocate_vpid();
6730 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
6737 * If PML is turned on, failure on enabling PML just results in failure
6738 * of creating the vcpu, therefore we can simplify PML logic (by
6739 * avoiding dealing with cases, such as enabling PML partially on vcpus
6740 * for the guest, etc.
6743 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
6748 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT);
6749 BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
6752 if (!vmx->guest_msrs)
6755 err = alloc_loaded_vmcs(&vmx->vmcs01);
6759 msr_bitmap = vmx->vmcs01.msr_bitmap;
6760 vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_TSC, MSR_TYPE_R);
6761 vmx_disable_intercept_for_msr(msr_bitmap, MSR_FS_BASE, MSR_TYPE_RW);
6762 vmx_disable_intercept_for_msr(msr_bitmap, MSR_GS_BASE, MSR_TYPE_RW);
6763 vmx_disable_intercept_for_msr(msr_bitmap, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
6764 vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
6765 vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
6766 vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
6767 if (kvm_cstate_in_guest(kvm)) {
6768 vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C1_RES, MSR_TYPE_R);
6769 vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
6770 vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
6771 vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
6773 vmx->msr_bitmap_mode = 0;
6775 vmx->loaded_vmcs = &vmx->vmcs01;
6777 vmx_vcpu_load(&vmx->vcpu, cpu);
6778 vmx->vcpu.cpu = cpu;
6779 vmx_vcpu_setup(vmx);
6780 vmx_vcpu_put(&vmx->vcpu);
6782 if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
6783 err = alloc_apic_access_page(kvm);
6788 if (enable_ept && !enable_unrestricted_guest) {
6789 err = init_rmode_identity_map(kvm);
6795 nested_vmx_setup_ctls_msrs(&vmx->nested.msrs,
6797 kvm_vcpu_apicv_active(&vmx->vcpu));
6799 memset(&vmx->nested.msrs, 0, sizeof(vmx->nested.msrs));
6801 vmx->nested.posted_intr_nv = -1;
6802 vmx->nested.current_vmptr = -1ull;
6804 vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED;
6807 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
6808 * or POSTED_INTR_WAKEUP_VECTOR.
6810 vmx->pi_desc.nv = POSTED_INTR_VECTOR;
6811 vmx->pi_desc.sn = 1;
6813 vmx->ept_pointer = INVALID_PAGE;
6818 free_loaded_vmcs(vmx->loaded_vmcs);
6820 kfree(vmx->guest_msrs);
6822 vmx_destroy_pml_buffer(vmx);
6824 kvm_vcpu_uninit(&vmx->vcpu);
6826 free_vpid(vmx->vpid);
6827 kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.guest_fpu);
6829 kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.user_fpu);
6831 kmem_cache_free(kvm_vcpu_cache, vmx);
6832 return ERR_PTR(err);
6835 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6836 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6838 static int vmx_vm_init(struct kvm *kvm)
6840 spin_lock_init(&to_kvm_vmx(kvm)->ept_pointer_lock);
6843 kvm->arch.pause_in_guest = true;
6845 if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
6846 switch (l1tf_mitigation) {
6847 case L1TF_MITIGATION_OFF:
6848 case L1TF_MITIGATION_FLUSH_NOWARN:
6849 /* 'I explicitly don't care' is set */
6851 case L1TF_MITIGATION_FLUSH:
6852 case L1TF_MITIGATION_FLUSH_NOSMT:
6853 case L1TF_MITIGATION_FULL:
6855 * Warn upon starting the first VM in a potentially
6856 * insecure environment.
6858 if (sched_smt_active())
6859 pr_warn_once(L1TF_MSG_SMT);
6860 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
6861 pr_warn_once(L1TF_MSG_L1D);
6863 case L1TF_MITIGATION_FULL_FORCE:
6864 /* Flush is enforced */
6871 static int __init vmx_check_processor_compat(void)
6873 struct vmcs_config vmcs_conf;
6874 struct vmx_capability vmx_cap;
6876 if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0)
6879 nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept,
6881 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
6882 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
6883 smp_processor_id());
6889 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
6894 /* For VT-d and EPT combination
6895 * 1. MMIO: always map as UC
6897 * a. VT-d without snooping control feature: can't guarantee the
6898 * result, try to trust guest.
6899 * b. VT-d with snooping control feature: snooping control feature of
6900 * VT-d engine can guarantee the cache correctness. Just set it
6901 * to WB to keep consistent with host. So the same as item 3.
6902 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
6903 * consistent with host MTRR
6906 cache = MTRR_TYPE_UNCACHABLE;
6910 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
6911 ipat = VMX_EPT_IPAT_BIT;
6912 cache = MTRR_TYPE_WRBACK;
6916 if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
6917 ipat = VMX_EPT_IPAT_BIT;
6918 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
6919 cache = MTRR_TYPE_WRBACK;
6921 cache = MTRR_TYPE_UNCACHABLE;
6925 cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
6928 return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
6931 static int vmx_get_lpage_level(void)
6933 if (enable_ept && !cpu_has_vmx_ept_1g_page())
6934 return PT_DIRECTORY_LEVEL;
6936 /* For shadow and EPT supported 1GB page */
6937 return PT_PDPE_LEVEL;
6940 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx)
6943 * These bits in the secondary execution controls field
6944 * are dynamic, the others are mostly based on the hypervisor
6945 * architecture and the guest's CPUID. Do not touch the
6949 SECONDARY_EXEC_SHADOW_VMCS |
6950 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
6951 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6952 SECONDARY_EXEC_DESC;
6954 u32 new_ctl = vmx->secondary_exec_control;
6955 u32 cur_ctl = secondary_exec_controls_get(vmx);
6957 secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
6961 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
6962 * (indicating "allowed-1") if they are supported in the guest's CPUID.
6964 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
6966 struct vcpu_vmx *vmx = to_vmx(vcpu);
6967 struct kvm_cpuid_entry2 *entry;
6969 vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
6970 vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
6972 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \
6973 if (entry && (entry->_reg & (_cpuid_mask))) \
6974 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \
6977 entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
6978 cr4_fixed1_update(X86_CR4_VME, edx, bit(X86_FEATURE_VME));
6979 cr4_fixed1_update(X86_CR4_PVI, edx, bit(X86_FEATURE_VME));
6980 cr4_fixed1_update(X86_CR4_TSD, edx, bit(X86_FEATURE_TSC));
6981 cr4_fixed1_update(X86_CR4_DE, edx, bit(X86_FEATURE_DE));
6982 cr4_fixed1_update(X86_CR4_PSE, edx, bit(X86_FEATURE_PSE));
6983 cr4_fixed1_update(X86_CR4_PAE, edx, bit(X86_FEATURE_PAE));
6984 cr4_fixed1_update(X86_CR4_MCE, edx, bit(X86_FEATURE_MCE));
6985 cr4_fixed1_update(X86_CR4_PGE, edx, bit(X86_FEATURE_PGE));
6986 cr4_fixed1_update(X86_CR4_OSFXSR, edx, bit(X86_FEATURE_FXSR));
6987 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, bit(X86_FEATURE_XMM));
6988 cr4_fixed1_update(X86_CR4_VMXE, ecx, bit(X86_FEATURE_VMX));
6989 cr4_fixed1_update(X86_CR4_SMXE, ecx, bit(X86_FEATURE_SMX));
6990 cr4_fixed1_update(X86_CR4_PCIDE, ecx, bit(X86_FEATURE_PCID));
6991 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, bit(X86_FEATURE_XSAVE));
6993 entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
6994 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, bit(X86_FEATURE_FSGSBASE));
6995 cr4_fixed1_update(X86_CR4_SMEP, ebx, bit(X86_FEATURE_SMEP));
6996 cr4_fixed1_update(X86_CR4_SMAP, ebx, bit(X86_FEATURE_SMAP));
6997 cr4_fixed1_update(X86_CR4_PKE, ecx, bit(X86_FEATURE_PKU));
6998 cr4_fixed1_update(X86_CR4_UMIP, ecx, bit(X86_FEATURE_UMIP));
7000 #undef cr4_fixed1_update
7003 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
7005 struct vcpu_vmx *vmx = to_vmx(vcpu);
7007 if (kvm_mpx_supported()) {
7008 bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX);
7011 vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
7012 vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
7014 vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS;
7015 vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS;
7020 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7022 struct vcpu_vmx *vmx = to_vmx(vcpu);
7023 struct kvm_cpuid_entry2 *best = NULL;
7026 for (i = 0; i < PT_CPUID_LEAVES; i++) {
7027 best = kvm_find_cpuid_entry(vcpu, 0x14, i);
7030 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7031 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7032 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7033 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7036 /* Get the number of configurable Address Ranges for filtering */
7037 vmx->pt_desc.addr_range = intel_pt_validate_cap(vmx->pt_desc.caps,
7038 PT_CAP_num_address_ranges);
7040 /* Initialize and clear the no dependency bits */
7041 vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7042 RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC);
7045 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7046 * will inject an #GP
7048 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7049 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7052 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7053 * PSBFreq can be set
7055 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7056 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7057 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7060 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn BranchEn and
7061 * MTCFreq can be set
7063 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7064 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7065 RTIT_CTL_BRANCH_EN | RTIT_CTL_MTC_RANGE);
7067 /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7068 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7069 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7072 /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7073 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7074 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7076 /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7077 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7078 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7080 /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabircEn can be set */
7081 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7082 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7084 /* unmask address range configure area */
7085 for (i = 0; i < vmx->pt_desc.addr_range; i++)
7086 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7089 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
7091 struct vcpu_vmx *vmx = to_vmx(vcpu);
7093 if (cpu_has_secondary_exec_ctrls()) {
7094 vmx_compute_secondary_exec_control(vmx);
7095 vmcs_set_secondary_exec_control(vmx);
7098 if (nested_vmx_allowed(vcpu))
7099 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7100 FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
7102 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7103 ~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
7105 if (nested_vmx_allowed(vcpu)) {
7106 nested_vmx_cr_fixed1_bits_update(vcpu);
7107 nested_vmx_entry_exit_ctls_update(vcpu);
7110 if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7111 guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7112 update_intel_pt_cfg(vcpu);
7115 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
7117 if (func == 1 && nested)
7118 entry->ecx |= bit(X86_FEATURE_VMX);
7121 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
7123 to_vmx(vcpu)->req_immediate_exit = true;
7126 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7127 struct x86_instruction_info *info,
7128 enum x86_intercept_stage stage)
7130 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7131 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7134 * RDPID causes #UD if disabled through secondary execution controls.
7135 * Because it is marked as EmulateOnUD, we need to intercept it here.
7137 if (info->intercept == x86_intercept_rdtscp &&
7138 !nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDTSCP)) {
7139 ctxt->exception.vector = UD_VECTOR;
7140 ctxt->exception.error_code_valid = false;
7141 return X86EMUL_PROPAGATE_FAULT;
7144 /* TODO: check more intercepts... */
7145 return X86EMUL_CONTINUE;
7148 #ifdef CONFIG_X86_64
7149 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
7150 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
7151 u64 divisor, u64 *result)
7153 u64 low = a << shift, high = a >> (64 - shift);
7155 /* To avoid the overflow on divq */
7156 if (high >= divisor)
7159 /* Low hold the result, high hold rem which is discarded */
7160 asm("divq %2\n\t" : "=a" (low), "=d" (high) :
7161 "rm" (divisor), "0" (low), "1" (high));
7167 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
7170 struct vcpu_vmx *vmx;
7171 u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
7172 struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
7174 if (kvm_mwait_in_guest(vcpu->kvm) ||
7175 kvm_can_post_timer_interrupt(vcpu))
7180 guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
7181 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
7182 lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
7183 ktimer->timer_advance_ns);
7185 if (delta_tsc > lapic_timer_advance_cycles)
7186 delta_tsc -= lapic_timer_advance_cycles;
7190 /* Convert to host delta tsc if tsc scaling is enabled */
7191 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
7192 delta_tsc && u64_shl_div_u64(delta_tsc,
7193 kvm_tsc_scaling_ratio_frac_bits,
7194 vcpu->arch.tsc_scaling_ratio, &delta_tsc))
7198 * If the delta tsc can't fit in the 32 bit after the multi shift,
7199 * we can't use the preemption timer.
7200 * It's possible that it fits on later vmentries, but checking
7201 * on every vmentry is costly so we just use an hrtimer.
7203 if (delta_tsc >> (cpu_preemption_timer_multi + 32))
7206 vmx->hv_deadline_tsc = tscl + delta_tsc;
7207 *expired = !delta_tsc;
7211 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
7213 to_vmx(vcpu)->hv_deadline_tsc = -1;
7217 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
7219 if (!kvm_pause_in_guest(vcpu->kvm))
7220 shrink_ple_window(vcpu);
7223 static void vmx_slot_enable_log_dirty(struct kvm *kvm,
7224 struct kvm_memory_slot *slot)
7226 kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
7227 kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
7230 static void vmx_slot_disable_log_dirty(struct kvm *kvm,
7231 struct kvm_memory_slot *slot)
7233 kvm_mmu_slot_set_dirty(kvm, slot);
7236 static void vmx_flush_log_dirty(struct kvm *kvm)
7238 kvm_flush_pml_buffers(kvm);
7241 static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu)
7243 struct vmcs12 *vmcs12;
7244 struct vcpu_vmx *vmx = to_vmx(vcpu);
7247 if (is_guest_mode(vcpu)) {
7248 WARN_ON_ONCE(vmx->nested.pml_full);
7251 * Check if PML is enabled for the nested guest.
7252 * Whether eptp bit 6 is set is already checked
7253 * as part of A/D emulation.
7255 vmcs12 = get_vmcs12(vcpu);
7256 if (!nested_cpu_has_pml(vmcs12))
7259 if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
7260 vmx->nested.pml_full = true;
7264 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS) & ~0xFFFull;
7265 dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;
7267 if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa,
7268 offset_in_page(dst), sizeof(gpa)))
7271 vmcs12->guest_pml_index--;
7277 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
7278 struct kvm_memory_slot *memslot,
7279 gfn_t offset, unsigned long mask)
7281 kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
7284 static void __pi_post_block(struct kvm_vcpu *vcpu)
7286 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
7287 struct pi_desc old, new;
7291 old.control = new.control = pi_desc->control;
7292 WARN(old.nv != POSTED_INTR_WAKEUP_VECTOR,
7293 "Wakeup handler not enabled while the VCPU is blocked\n");
7295 dest = cpu_physical_id(vcpu->cpu);
7297 if (x2apic_enabled())
7300 new.ndst = (dest << 8) & 0xFF00;
7302 /* set 'NV' to 'notification vector' */
7303 new.nv = POSTED_INTR_VECTOR;
7304 } while (cmpxchg64(&pi_desc->control, old.control,
7305 new.control) != old.control);
7307 if (!WARN_ON_ONCE(vcpu->pre_pcpu == -1)) {
7308 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7309 list_del(&vcpu->blocked_vcpu_list);
7310 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7311 vcpu->pre_pcpu = -1;
7316 * This routine does the following things for vCPU which is going
7317 * to be blocked if VT-d PI is enabled.
7318 * - Store the vCPU to the wakeup list, so when interrupts happen
7319 * we can find the right vCPU to wake up.
7320 * - Change the Posted-interrupt descriptor as below:
7321 * 'NDST' <-- vcpu->pre_pcpu
7322 * 'NV' <-- POSTED_INTR_WAKEUP_VECTOR
7323 * - If 'ON' is set during this process, which means at least one
7324 * interrupt is posted for this vCPU, we cannot block it, in
7325 * this case, return 1, otherwise, return 0.
7328 static int pi_pre_block(struct kvm_vcpu *vcpu)
7331 struct pi_desc old, new;
7332 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
7334 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
7335 !irq_remapping_cap(IRQ_POSTING_CAP) ||
7336 !kvm_vcpu_apicv_active(vcpu))
7339 WARN_ON(irqs_disabled());
7340 local_irq_disable();
7341 if (!WARN_ON_ONCE(vcpu->pre_pcpu != -1)) {
7342 vcpu->pre_pcpu = vcpu->cpu;
7343 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7344 list_add_tail(&vcpu->blocked_vcpu_list,
7345 &per_cpu(blocked_vcpu_on_cpu,
7347 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7351 old.control = new.control = pi_desc->control;
7353 WARN((pi_desc->sn == 1),
7354 "Warning: SN field of posted-interrupts "
7355 "is set before blocking\n");
7358 * Since vCPU can be preempted during this process,
7359 * vcpu->cpu could be different with pre_pcpu, we
7360 * need to set pre_pcpu as the destination of wakeup
7361 * notification event, then we can find the right vCPU
7362 * to wakeup in wakeup handler if interrupts happen
7363 * when the vCPU is in blocked state.
7365 dest = cpu_physical_id(vcpu->pre_pcpu);
7367 if (x2apic_enabled())
7370 new.ndst = (dest << 8) & 0xFF00;
7372 /* set 'NV' to 'wakeup vector' */
7373 new.nv = POSTED_INTR_WAKEUP_VECTOR;
7374 } while (cmpxchg64(&pi_desc->control, old.control,
7375 new.control) != old.control);
7377 /* We should not block the vCPU if an interrupt is posted for it. */
7378 if (pi_test_on(pi_desc) == 1)
7379 __pi_post_block(vcpu);
7382 return (vcpu->pre_pcpu == -1);
7385 static int vmx_pre_block(struct kvm_vcpu *vcpu)
7387 if (pi_pre_block(vcpu))
7390 if (kvm_lapic_hv_timer_in_use(vcpu))
7391 kvm_lapic_switch_to_sw_timer(vcpu);
7396 static void pi_post_block(struct kvm_vcpu *vcpu)
7398 if (vcpu->pre_pcpu == -1)
7401 WARN_ON(irqs_disabled());
7402 local_irq_disable();
7403 __pi_post_block(vcpu);
7407 static void vmx_post_block(struct kvm_vcpu *vcpu)
7409 if (kvm_x86_ops->set_hv_timer)
7410 kvm_lapic_switch_to_hv_timer(vcpu);
7412 pi_post_block(vcpu);
7416 * vmx_update_pi_irte - set IRTE for Posted-Interrupts
7419 * @host_irq: host irq of the interrupt
7420 * @guest_irq: gsi of the interrupt
7421 * @set: set or unset PI
7422 * returns 0 on success, < 0 on failure
7424 static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
7425 uint32_t guest_irq, bool set)
7427 struct kvm_kernel_irq_routing_entry *e;
7428 struct kvm_irq_routing_table *irq_rt;
7429 struct kvm_lapic_irq irq;
7430 struct kvm_vcpu *vcpu;
7431 struct vcpu_data vcpu_info;
7434 if (!kvm_arch_has_assigned_device(kvm) ||
7435 !irq_remapping_cap(IRQ_POSTING_CAP) ||
7436 !kvm_vcpu_apicv_active(kvm->vcpus[0]))
7439 idx = srcu_read_lock(&kvm->irq_srcu);
7440 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
7441 if (guest_irq >= irq_rt->nr_rt_entries ||
7442 hlist_empty(&irq_rt->map[guest_irq])) {
7443 pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
7444 guest_irq, irq_rt->nr_rt_entries);
7448 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
7449 if (e->type != KVM_IRQ_ROUTING_MSI)
7452 * VT-d PI cannot support posting multicast/broadcast
7453 * interrupts to a vCPU, we still use interrupt remapping
7454 * for these kind of interrupts.
7456 * For lowest-priority interrupts, we only support
7457 * those with single CPU as the destination, e.g. user
7458 * configures the interrupts via /proc/irq or uses
7459 * irqbalance to make the interrupts single-CPU.
7461 * We will support full lowest-priority interrupt later.
7463 * In addition, we can only inject generic interrupts using
7464 * the PI mechanism, refuse to route others through it.
7467 kvm_set_msi_irq(kvm, e, &irq);
7468 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu) ||
7469 !kvm_irq_is_postable(&irq)) {
7471 * Make sure the IRTE is in remapped mode if
7472 * we don't handle it in posted mode.
7474 ret = irq_set_vcpu_affinity(host_irq, NULL);
7477 "failed to back to remapped mode, irq: %u\n",
7485 vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
7486 vcpu_info.vector = irq.vector;
7488 trace_kvm_pi_irte_update(host_irq, vcpu->vcpu_id, e->gsi,
7489 vcpu_info.vector, vcpu_info.pi_desc_addr, set);
7492 ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
7494 ret = irq_set_vcpu_affinity(host_irq, NULL);
7497 printk(KERN_INFO "%s: failed to update PI IRTE\n",
7505 srcu_read_unlock(&kvm->irq_srcu, idx);
7509 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
7511 if (vcpu->arch.mcg_cap & MCG_LMCE_P)
7512 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7513 FEATURE_CONTROL_LMCE;
7515 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7516 ~FEATURE_CONTROL_LMCE;
7519 static int vmx_smi_allowed(struct kvm_vcpu *vcpu)
7521 /* we need a nested vmexit to enter SMM, postpone if run is pending */
7522 if (to_vmx(vcpu)->nested.nested_run_pending)
7527 static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
7529 struct vcpu_vmx *vmx = to_vmx(vcpu);
7531 vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
7532 if (vmx->nested.smm.guest_mode)
7533 nested_vmx_vmexit(vcpu, -1, 0, 0);
7535 vmx->nested.smm.vmxon = vmx->nested.vmxon;
7536 vmx->nested.vmxon = false;
7537 vmx_clear_hlt(vcpu);
7541 static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
7543 struct vcpu_vmx *vmx = to_vmx(vcpu);
7546 if (vmx->nested.smm.vmxon) {
7547 vmx->nested.vmxon = true;
7548 vmx->nested.smm.vmxon = false;
7551 if (vmx->nested.smm.guest_mode) {
7552 ret = nested_vmx_enter_non_root_mode(vcpu, false);
7556 vmx->nested.smm.guest_mode = false;
7561 static int enable_smi_window(struct kvm_vcpu *vcpu)
7566 static bool vmx_need_emulation_on_page_fault(struct kvm_vcpu *vcpu)
7571 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
7573 return to_vmx(vcpu)->nested.vmxon;
7576 static __init int hardware_setup(void)
7578 unsigned long host_bndcfgs;
7582 rdmsrl_safe(MSR_EFER, &host_efer);
7585 host_idt_base = dt.address;
7587 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
7588 kvm_define_shared_msr(i, vmx_msr_index[i]);
7590 if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
7593 if (boot_cpu_has(X86_FEATURE_NX))
7594 kvm_enable_efer_bits(EFER_NX);
7596 if (boot_cpu_has(X86_FEATURE_MPX)) {
7597 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
7598 WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
7601 if (boot_cpu_has(X86_FEATURE_XSAVES))
7602 rdmsrl(MSR_IA32_XSS, host_xss);
7604 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
7605 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
7608 if (!cpu_has_vmx_ept() ||
7609 !cpu_has_vmx_ept_4levels() ||
7610 !cpu_has_vmx_ept_mt_wb() ||
7611 !cpu_has_vmx_invept_global())
7614 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
7615 enable_ept_ad_bits = 0;
7617 if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
7618 enable_unrestricted_guest = 0;
7620 if (!cpu_has_vmx_flexpriority())
7621 flexpriority_enabled = 0;
7623 if (!cpu_has_virtual_nmis())
7627 * set_apic_access_page_addr() is used to reload apic access
7628 * page upon invalidation. No need to do anything if not
7629 * using the APIC_ACCESS_ADDR VMCS field.
7631 if (!flexpriority_enabled)
7632 kvm_x86_ops->set_apic_access_page_addr = NULL;
7634 if (!cpu_has_vmx_tpr_shadow())
7635 kvm_x86_ops->update_cr8_intercept = NULL;
7637 if (enable_ept && !cpu_has_vmx_ept_2m_page())
7638 kvm_disable_largepages();
7640 #if IS_ENABLED(CONFIG_HYPERV)
7641 if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
7643 kvm_x86_ops->tlb_remote_flush = hv_remote_flush_tlb;
7644 kvm_x86_ops->tlb_remote_flush_with_range =
7645 hv_remote_flush_tlb_with_range;
7649 if (!cpu_has_vmx_ple()) {
7652 ple_window_grow = 0;
7654 ple_window_shrink = 0;
7657 if (!cpu_has_vmx_apicv()) {
7659 kvm_x86_ops->sync_pir_to_irr = NULL;
7662 if (cpu_has_vmx_tsc_scaling()) {
7663 kvm_has_tsc_control = true;
7664 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
7665 kvm_tsc_scaling_ratio_frac_bits = 48;
7668 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7676 * Only enable PML when hardware supports PML feature, and both EPT
7677 * and EPT A/D bit features are enabled -- PML depends on them to work.
7679 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
7683 kvm_x86_ops->slot_enable_log_dirty = NULL;
7684 kvm_x86_ops->slot_disable_log_dirty = NULL;
7685 kvm_x86_ops->flush_log_dirty = NULL;
7686 kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
7689 if (!cpu_has_vmx_preemption_timer())
7690 enable_preemption_timer = false;
7692 if (enable_preemption_timer) {
7693 u64 use_timer_freq = 5000ULL * 1000 * 1000;
7696 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
7697 cpu_preemption_timer_multi =
7698 vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
7701 use_timer_freq = (u64)tsc_khz * 1000;
7702 use_timer_freq >>= cpu_preemption_timer_multi;
7705 * KVM "disables" the preemption timer by setting it to its max
7706 * value. Don't use the timer if it might cause spurious exits
7707 * at a rate faster than 0.1 Hz (of uninterrupted guest time).
7709 if (use_timer_freq > 0xffffffffu / 10)
7710 enable_preemption_timer = false;
7713 if (!enable_preemption_timer) {
7714 kvm_x86_ops->set_hv_timer = NULL;
7715 kvm_x86_ops->cancel_hv_timer = NULL;
7716 kvm_x86_ops->request_immediate_exit = __kvm_request_immediate_exit;
7719 kvm_set_posted_intr_wakeup_handler(wakeup_handler);
7721 kvm_mce_cap_supported |= MCG_LMCE_P;
7723 if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
7725 if (!enable_ept || !cpu_has_vmx_intel_pt())
7726 pt_mode = PT_MODE_SYSTEM;
7729 nested_vmx_setup_ctls_msrs(&vmcs_config.nested,
7730 vmx_capability.ept, enable_apicv);
7732 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
7737 r = alloc_kvm_area();
7739 nested_vmx_hardware_unsetup();
7743 static __exit void hardware_unsetup(void)
7746 nested_vmx_hardware_unsetup();
7751 static struct kvm_x86_ops vmx_x86_ops __ro_after_init = {
7752 .cpu_has_kvm_support = cpu_has_kvm_support,
7753 .disabled_by_bios = vmx_disabled_by_bios,
7754 .hardware_setup = hardware_setup,
7755 .hardware_unsetup = hardware_unsetup,
7756 .check_processor_compatibility = vmx_check_processor_compat,
7757 .hardware_enable = hardware_enable,
7758 .hardware_disable = hardware_disable,
7759 .cpu_has_accelerated_tpr = report_flexpriority,
7760 .has_emulated_msr = vmx_has_emulated_msr,
7762 .vm_init = vmx_vm_init,
7763 .vm_alloc = vmx_vm_alloc,
7764 .vm_free = vmx_vm_free,
7766 .vcpu_create = vmx_create_vcpu,
7767 .vcpu_free = vmx_free_vcpu,
7768 .vcpu_reset = vmx_vcpu_reset,
7770 .prepare_guest_switch = vmx_prepare_switch_to_guest,
7771 .vcpu_load = vmx_vcpu_load,
7772 .vcpu_put = vmx_vcpu_put,
7774 .update_bp_intercept = update_exception_bitmap,
7775 .get_msr_feature = vmx_get_msr_feature,
7776 .get_msr = vmx_get_msr,
7777 .set_msr = vmx_set_msr,
7778 .get_segment_base = vmx_get_segment_base,
7779 .get_segment = vmx_get_segment,
7780 .set_segment = vmx_set_segment,
7781 .get_cpl = vmx_get_cpl,
7782 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
7783 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
7784 .decache_cr3 = vmx_decache_cr3,
7785 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
7786 .set_cr0 = vmx_set_cr0,
7787 .set_cr3 = vmx_set_cr3,
7788 .set_cr4 = vmx_set_cr4,
7789 .set_efer = vmx_set_efer,
7790 .get_idt = vmx_get_idt,
7791 .set_idt = vmx_set_idt,
7792 .get_gdt = vmx_get_gdt,
7793 .set_gdt = vmx_set_gdt,
7794 .get_dr6 = vmx_get_dr6,
7795 .set_dr6 = vmx_set_dr6,
7796 .set_dr7 = vmx_set_dr7,
7797 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
7798 .cache_reg = vmx_cache_reg,
7799 .get_rflags = vmx_get_rflags,
7800 .set_rflags = vmx_set_rflags,
7802 .tlb_flush = vmx_flush_tlb,
7803 .tlb_flush_gva = vmx_flush_tlb_gva,
7805 .run = vmx_vcpu_run,
7806 .handle_exit = vmx_handle_exit,
7807 .skip_emulated_instruction = skip_emulated_instruction,
7808 .set_interrupt_shadow = vmx_set_interrupt_shadow,
7809 .get_interrupt_shadow = vmx_get_interrupt_shadow,
7810 .patch_hypercall = vmx_patch_hypercall,
7811 .set_irq = vmx_inject_irq,
7812 .set_nmi = vmx_inject_nmi,
7813 .queue_exception = vmx_queue_exception,
7814 .cancel_injection = vmx_cancel_injection,
7815 .interrupt_allowed = vmx_interrupt_allowed,
7816 .nmi_allowed = vmx_nmi_allowed,
7817 .get_nmi_mask = vmx_get_nmi_mask,
7818 .set_nmi_mask = vmx_set_nmi_mask,
7819 .enable_nmi_window = enable_nmi_window,
7820 .enable_irq_window = enable_irq_window,
7821 .update_cr8_intercept = update_cr8_intercept,
7822 .set_virtual_apic_mode = vmx_set_virtual_apic_mode,
7823 .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
7824 .get_enable_apicv = vmx_get_enable_apicv,
7825 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
7826 .load_eoi_exitmap = vmx_load_eoi_exitmap,
7827 .apicv_post_state_restore = vmx_apicv_post_state_restore,
7828 .hwapic_irr_update = vmx_hwapic_irr_update,
7829 .hwapic_isr_update = vmx_hwapic_isr_update,
7830 .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
7831 .sync_pir_to_irr = vmx_sync_pir_to_irr,
7832 .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
7833 .dy_apicv_has_pending_interrupt = vmx_dy_apicv_has_pending_interrupt,
7835 .set_tss_addr = vmx_set_tss_addr,
7836 .set_identity_map_addr = vmx_set_identity_map_addr,
7837 .get_tdp_level = get_ept_level,
7838 .get_mt_mask = vmx_get_mt_mask,
7840 .get_exit_info = vmx_get_exit_info,
7842 .get_lpage_level = vmx_get_lpage_level,
7844 .cpuid_update = vmx_cpuid_update,
7846 .rdtscp_supported = vmx_rdtscp_supported,
7847 .invpcid_supported = vmx_invpcid_supported,
7849 .set_supported_cpuid = vmx_set_supported_cpuid,
7851 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7853 .read_l1_tsc_offset = vmx_read_l1_tsc_offset,
7854 .write_l1_tsc_offset = vmx_write_l1_tsc_offset,
7856 .set_tdp_cr3 = vmx_set_cr3,
7858 .check_intercept = vmx_check_intercept,
7859 .handle_exit_irqoff = vmx_handle_exit_irqoff,
7860 .mpx_supported = vmx_mpx_supported,
7861 .xsaves_supported = vmx_xsaves_supported,
7862 .umip_emulated = vmx_umip_emulated,
7863 .pt_supported = vmx_pt_supported,
7865 .request_immediate_exit = vmx_request_immediate_exit,
7867 .sched_in = vmx_sched_in,
7869 .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
7870 .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
7871 .flush_log_dirty = vmx_flush_log_dirty,
7872 .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
7873 .write_log_dirty = vmx_write_pml_buffer,
7875 .pre_block = vmx_pre_block,
7876 .post_block = vmx_post_block,
7878 .pmu_ops = &intel_pmu_ops,
7880 .update_pi_irte = vmx_update_pi_irte,
7882 #ifdef CONFIG_X86_64
7883 .set_hv_timer = vmx_set_hv_timer,
7884 .cancel_hv_timer = vmx_cancel_hv_timer,
7887 .setup_mce = vmx_setup_mce,
7889 .smi_allowed = vmx_smi_allowed,
7890 .pre_enter_smm = vmx_pre_enter_smm,
7891 .pre_leave_smm = vmx_pre_leave_smm,
7892 .enable_smi_window = enable_smi_window,
7894 .check_nested_events = NULL,
7895 .get_nested_state = NULL,
7896 .set_nested_state = NULL,
7897 .get_vmcs12_pages = NULL,
7898 .nested_enable_evmcs = NULL,
7899 .nested_get_evmcs_version = NULL,
7900 .need_emulation_on_page_fault = vmx_need_emulation_on_page_fault,
7901 .apic_init_signal_blocked = vmx_apic_init_signal_blocked,
7904 static void vmx_cleanup_l1d_flush(void)
7906 if (vmx_l1d_flush_pages) {
7907 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
7908 vmx_l1d_flush_pages = NULL;
7910 /* Restore state so sysfs ignores VMX */
7911 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
7914 static void vmx_exit(void)
7916 #ifdef CONFIG_KEXEC_CORE
7917 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
7923 #if IS_ENABLED(CONFIG_HYPERV)
7924 if (static_branch_unlikely(&enable_evmcs)) {
7926 struct hv_vp_assist_page *vp_ap;
7928 * Reset everything to support using non-enlightened VMCS
7929 * access later (e.g. when we reload the module with
7930 * enlightened_vmcs=0)
7932 for_each_online_cpu(cpu) {
7933 vp_ap = hv_get_vp_assist_page(cpu);
7938 vp_ap->nested_control.features.directhypercall = 0;
7939 vp_ap->current_nested_vmcs = 0;
7940 vp_ap->enlighten_vmentry = 0;
7943 static_branch_disable(&enable_evmcs);
7946 vmx_cleanup_l1d_flush();
7948 module_exit(vmx_exit);
7950 static int __init vmx_init(void)
7954 #if IS_ENABLED(CONFIG_HYPERV)
7956 * Enlightened VMCS usage should be recommended and the host needs
7957 * to support eVMCS v1 or above. We can also disable eVMCS support
7958 * with module parameter.
7960 if (enlightened_vmcs &&
7961 ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
7962 (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
7963 KVM_EVMCS_VERSION) {
7966 /* Check that we have assist pages on all online CPUs */
7967 for_each_online_cpu(cpu) {
7968 if (!hv_get_vp_assist_page(cpu)) {
7969 enlightened_vmcs = false;
7974 if (enlightened_vmcs) {
7975 pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
7976 static_branch_enable(&enable_evmcs);
7979 if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
7980 vmx_x86_ops.enable_direct_tlbflush
7981 = hv_enable_direct_tlbflush;
7984 enlightened_vmcs = false;
7988 r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
7989 __alignof__(struct vcpu_vmx), THIS_MODULE);
7994 * Must be called after kvm_init() so enable_ept is properly set
7995 * up. Hand the parameter mitigation value in which was stored in
7996 * the pre module init parser. If no parameter was given, it will
7997 * contain 'auto' which will be turned into the default 'cond'
8000 r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8006 #ifdef CONFIG_KEXEC_CORE
8007 rcu_assign_pointer(crash_vmclear_loaded_vmcss,
8008 crash_vmclear_local_loaded_vmcss);
8010 vmx_check_vmcs12_offsets();
8014 module_init(vmx_init);