1 // SPDX-License-Identifier: GPL-2.0-only
3 * Kernel-based Virtual Machine driver for Linux
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
8 * Copyright (C) 2006 Qumranet, Inc.
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
16 #include <linux/frame.h>
17 #include <linux/highmem.h>
18 #include <linux/hrtimer.h>
19 #include <linux/kernel.h>
20 #include <linux/kvm_host.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mod_devicetable.h>
25 #include <linux/sched.h>
26 #include <linux/sched/smt.h>
27 #include <linux/slab.h>
28 #include <linux/tboot.h>
29 #include <linux/trace_events.h>
34 #include <asm/debugreg.h>
36 #include <asm/fpu/internal.h>
38 #include <asm/irq_remapping.h>
39 #include <asm/kexec.h>
40 #include <asm/perf_event.h>
42 #include <asm/mmu_context.h>
43 #include <asm/mshyperv.h>
44 #include <asm/spec-ctrl.h>
45 #include <asm/virtext.h>
48 #include "capabilities.h"
52 #include "kvm_cache_regs.h"
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
67 static const struct x86_cpu_id vmx_cpu_id[] = {
68 X86_FEATURE_MATCH(X86_FEATURE_VMX),
71 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
73 bool __read_mostly enable_vpid = 1;
74 module_param_named(vpid, enable_vpid, bool, 0444);
76 static bool __read_mostly enable_vnmi = 1;
77 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
79 bool __read_mostly flexpriority_enabled = 1;
80 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
82 bool __read_mostly enable_ept = 1;
83 module_param_named(ept, enable_ept, bool, S_IRUGO);
85 bool __read_mostly enable_unrestricted_guest = 1;
86 module_param_named(unrestricted_guest,
87 enable_unrestricted_guest, bool, S_IRUGO);
89 bool __read_mostly enable_ept_ad_bits = 1;
90 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
92 static bool __read_mostly emulate_invalid_guest_state = true;
93 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
95 static bool __read_mostly fasteoi = 1;
96 module_param(fasteoi, bool, S_IRUGO);
98 static bool __read_mostly enable_apicv = 1;
99 module_param(enable_apicv, bool, S_IRUGO);
102 * If nested=1, nested virtualization is supported, i.e., guests may use
103 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
104 * use VMX instructions.
106 static bool __read_mostly nested = 1;
107 module_param(nested, bool, S_IRUGO);
109 static u64 __read_mostly host_xss;
111 bool __read_mostly enable_pml = 1;
112 module_param_named(pml, enable_pml, bool, S_IRUGO);
114 static bool __read_mostly dump_invalid_vmcs = 0;
115 module_param(dump_invalid_vmcs, bool, 0644);
117 #define MSR_BITMAP_MODE_X2APIC 1
118 #define MSR_BITMAP_MODE_X2APIC_APICV 2
120 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
122 /* Guest_tsc -> host_tsc conversion requires 64-bit division. */
123 static int __read_mostly cpu_preemption_timer_multi;
124 static bool __read_mostly enable_preemption_timer = 1;
126 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
129 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
130 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
131 #define KVM_VM_CR0_ALWAYS_ON \
132 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | \
133 X86_CR0_WP | X86_CR0_PG | X86_CR0_PE)
134 #define KVM_CR4_GUEST_OWNED_BITS \
135 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
136 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_TSD)
138 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
139 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
140 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
142 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
144 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
145 RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
146 RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
147 RTIT_STATUS_BYTECNT))
149 #define MSR_IA32_RTIT_OUTPUT_BASE_MASK \
150 (~((1UL << cpuid_query_maxphyaddr(vcpu)) - 1) | 0x7f)
153 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
154 * ple_gap: upper bound on the amount of time between two successive
155 * executions of PAUSE in a loop. Also indicate if ple enabled.
156 * According to test, this time is usually smaller than 128 cycles.
157 * ple_window: upper bound on the amount of time a guest is allowed to execute
158 * in a PAUSE loop. Tests indicate that most spinlocks are held for
159 * less than 2^12 cycles
160 * Time is measured based on a counter that runs at the same rate as the TSC,
161 * refer SDM volume 3b section 21.6.13 & 22.1.3.
163 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
164 module_param(ple_gap, uint, 0444);
166 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
167 module_param(ple_window, uint, 0444);
169 /* Default doubles per-vcpu window every exit. */
170 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
171 module_param(ple_window_grow, uint, 0444);
173 /* Default resets per-vcpu window every exit to ple_window. */
174 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
175 module_param(ple_window_shrink, uint, 0444);
177 /* Default is to compute the maximum so we can never overflow. */
178 static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
179 module_param(ple_window_max, uint, 0444);
181 /* Default is SYSTEM mode, 1 for host-guest mode */
182 int __read_mostly pt_mode = PT_MODE_SYSTEM;
183 module_param(pt_mode, int, S_IRUGO);
185 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
186 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
187 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
189 /* Storage for pre module init parameter parsing */
190 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
192 static const struct {
195 } vmentry_l1d_param[] = {
196 [VMENTER_L1D_FLUSH_AUTO] = {"auto", true},
197 [VMENTER_L1D_FLUSH_NEVER] = {"never", true},
198 [VMENTER_L1D_FLUSH_COND] = {"cond", true},
199 [VMENTER_L1D_FLUSH_ALWAYS] = {"always", true},
200 [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
201 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
204 #define L1D_CACHE_ORDER 4
205 static void *vmx_l1d_flush_pages;
207 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
212 if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
213 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
218 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
222 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
225 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
226 if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
227 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
232 /* If set to auto use the default l1tf mitigation method */
233 if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
234 switch (l1tf_mitigation) {
235 case L1TF_MITIGATION_OFF:
236 l1tf = VMENTER_L1D_FLUSH_NEVER;
238 case L1TF_MITIGATION_FLUSH_NOWARN:
239 case L1TF_MITIGATION_FLUSH:
240 case L1TF_MITIGATION_FLUSH_NOSMT:
241 l1tf = VMENTER_L1D_FLUSH_COND;
243 case L1TF_MITIGATION_FULL:
244 case L1TF_MITIGATION_FULL_FORCE:
245 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
248 } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
249 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
252 if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
253 !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
255 * This allocation for vmx_l1d_flush_pages is not tied to a VM
256 * lifetime and so should not be charged to a memcg.
258 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
261 vmx_l1d_flush_pages = page_address(page);
264 * Initialize each page with a different pattern in
265 * order to protect against KSM in the nested
266 * virtualization case.
268 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
269 memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
274 l1tf_vmx_mitigation = l1tf;
276 if (l1tf != VMENTER_L1D_FLUSH_NEVER)
277 static_branch_enable(&vmx_l1d_should_flush);
279 static_branch_disable(&vmx_l1d_should_flush);
281 if (l1tf == VMENTER_L1D_FLUSH_COND)
282 static_branch_enable(&vmx_l1d_flush_cond);
284 static_branch_disable(&vmx_l1d_flush_cond);
288 static int vmentry_l1d_flush_parse(const char *s)
293 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
294 if (vmentry_l1d_param[i].for_parse &&
295 sysfs_streq(s, vmentry_l1d_param[i].option))
302 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
306 l1tf = vmentry_l1d_flush_parse(s);
310 if (!boot_cpu_has(X86_BUG_L1TF))
314 * Has vmx_init() run already? If not then this is the pre init
315 * parameter parsing. In that case just store the value and let
316 * vmx_init() do the proper setup after enable_ept has been
319 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
320 vmentry_l1d_flush_param = l1tf;
324 mutex_lock(&vmx_l1d_flush_mutex);
325 ret = vmx_setup_l1d_flush(l1tf);
326 mutex_unlock(&vmx_l1d_flush_mutex);
330 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
332 if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
333 return sprintf(s, "???\n");
335 return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
338 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
339 .set = vmentry_l1d_flush_set,
340 .get = vmentry_l1d_flush_get,
342 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
344 static bool guest_state_valid(struct kvm_vcpu *vcpu);
345 static u32 vmx_segment_access_rights(struct kvm_segment *var);
346 static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
349 void vmx_vmexit(void);
351 #define vmx_insn_failed(fmt...) \
354 pr_warn_ratelimited(fmt); \
357 asmlinkage void vmread_error(unsigned long field, bool fault)
360 kvm_spurious_fault();
362 vmx_insn_failed("kvm: vmread failed: field=%lx\n", field);
365 noinline void vmwrite_error(unsigned long field, unsigned long value)
367 vmx_insn_failed("kvm: vmwrite failed: field=%lx val=%lx err=%d\n",
368 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
371 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
373 vmx_insn_failed("kvm: vmclear failed: %p/%llx\n", vmcs, phys_addr);
376 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
378 vmx_insn_failed("kvm: vmptrld failed: %p/%llx\n", vmcs, phys_addr);
381 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
383 vmx_insn_failed("kvm: invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
387 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
389 vmx_insn_failed("kvm: invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
393 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
394 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
396 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
397 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
399 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
402 * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
403 * can find which vCPU should be waken up.
405 static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
406 static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
408 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
409 static DEFINE_SPINLOCK(vmx_vpid_lock);
411 struct vmcs_config vmcs_config;
412 struct vmx_capability vmx_capability;
414 #define VMX_SEGMENT_FIELD(seg) \
415 [VCPU_SREG_##seg] = { \
416 .selector = GUEST_##seg##_SELECTOR, \
417 .base = GUEST_##seg##_BASE, \
418 .limit = GUEST_##seg##_LIMIT, \
419 .ar_bytes = GUEST_##seg##_AR_BYTES, \
422 static const struct kvm_vmx_segment_field {
427 } kvm_vmx_segment_fields[] = {
428 VMX_SEGMENT_FIELD(CS),
429 VMX_SEGMENT_FIELD(DS),
430 VMX_SEGMENT_FIELD(ES),
431 VMX_SEGMENT_FIELD(FS),
432 VMX_SEGMENT_FIELD(GS),
433 VMX_SEGMENT_FIELD(SS),
434 VMX_SEGMENT_FIELD(TR),
435 VMX_SEGMENT_FIELD(LDTR),
439 static unsigned long host_idt_base;
442 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
443 * will emulate SYSCALL in legacy mode if the vendor string in guest
444 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
445 * support this emulation, IA32_STAR must always be included in
446 * vmx_msr_index[], even in i386 builds.
448 const u32 vmx_msr_index[] = {
450 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
452 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
455 #if IS_ENABLED(CONFIG_HYPERV)
456 static bool __read_mostly enlightened_vmcs = true;
457 module_param(enlightened_vmcs, bool, 0444);
459 /* check_ept_pointer() should be under protection of ept_pointer_lock. */
460 static void check_ept_pointer_match(struct kvm *kvm)
462 struct kvm_vcpu *vcpu;
463 u64 tmp_eptp = INVALID_PAGE;
466 kvm_for_each_vcpu(i, vcpu, kvm) {
467 if (!VALID_PAGE(tmp_eptp)) {
468 tmp_eptp = to_vmx(vcpu)->ept_pointer;
469 } else if (tmp_eptp != to_vmx(vcpu)->ept_pointer) {
470 to_kvm_vmx(kvm)->ept_pointers_match
471 = EPT_POINTERS_MISMATCH;
476 to_kvm_vmx(kvm)->ept_pointers_match = EPT_POINTERS_MATCH;
479 static int kvm_fill_hv_flush_list_func(struct hv_guest_mapping_flush_list *flush,
482 struct kvm_tlb_range *range = data;
484 return hyperv_fill_flush_guest_mapping_list(flush, range->start_gfn,
488 static inline int __hv_remote_flush_tlb_with_range(struct kvm *kvm,
489 struct kvm_vcpu *vcpu, struct kvm_tlb_range *range)
491 u64 ept_pointer = to_vmx(vcpu)->ept_pointer;
494 * FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE hypercall needs address
495 * of the base of EPT PML4 table, strip off EPT configuration
499 return hyperv_flush_guest_mapping_range(ept_pointer & PAGE_MASK,
500 kvm_fill_hv_flush_list_func, (void *)range);
502 return hyperv_flush_guest_mapping(ept_pointer & PAGE_MASK);
505 static int hv_remote_flush_tlb_with_range(struct kvm *kvm,
506 struct kvm_tlb_range *range)
508 struct kvm_vcpu *vcpu;
511 spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
513 if (to_kvm_vmx(kvm)->ept_pointers_match == EPT_POINTERS_CHECK)
514 check_ept_pointer_match(kvm);
516 if (to_kvm_vmx(kvm)->ept_pointers_match != EPT_POINTERS_MATCH) {
517 kvm_for_each_vcpu(i, vcpu, kvm) {
518 /* If ept_pointer is invalid pointer, bypass flush request. */
519 if (VALID_PAGE(to_vmx(vcpu)->ept_pointer))
520 ret |= __hv_remote_flush_tlb_with_range(
524 ret = __hv_remote_flush_tlb_with_range(kvm,
525 kvm_get_vcpu(kvm, 0), range);
528 spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
531 static int hv_remote_flush_tlb(struct kvm *kvm)
533 return hv_remote_flush_tlb_with_range(kvm, NULL);
536 static int hv_enable_direct_tlbflush(struct kvm_vcpu *vcpu)
538 struct hv_enlightened_vmcs *evmcs;
539 struct hv_partition_assist_pg **p_hv_pa_pg =
540 &vcpu->kvm->arch.hyperv.hv_pa_pg;
542 * Synthetic VM-Exit is not enabled in current code and so All
543 * evmcs in singe VM shares same assist page.
546 *p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL);
551 evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
553 evmcs->partition_assist_page =
555 evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
556 evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
561 #endif /* IS_ENABLED(CONFIG_HYPERV) */
564 * Comment's format: document - errata name - stepping - processor name.
566 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
568 static u32 vmx_preemption_cpu_tfms[] = {
569 /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */
571 /* 323056.pdf - AAX65 - C2 - Xeon L3406 */
572 /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
573 /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
575 /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
577 /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */
578 /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */
580 * 320767.pdf - AAP86 - B1 -
581 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
584 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
586 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
588 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
590 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
591 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
592 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
594 /* Xeon E3-1220 V2 */
598 static inline bool cpu_has_broken_vmx_preemption_timer(void)
600 u32 eax = cpuid_eax(0x00000001), i;
602 /* Clear the reserved bits */
603 eax &= ~(0x3U << 14 | 0xfU << 28);
604 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
605 if (eax == vmx_preemption_cpu_tfms[i])
611 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
613 return flexpriority_enabled && lapic_in_kernel(vcpu);
616 static inline bool report_flexpriority(void)
618 return flexpriority_enabled;
621 static inline int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
625 for (i = 0; i < vmx->nmsrs; ++i)
626 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
631 struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
635 i = __find_msr_index(vmx, msr);
637 return &vmx->guest_msrs[i];
641 void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
643 vmcs_clear(loaded_vmcs->vmcs);
644 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
645 vmcs_clear(loaded_vmcs->shadow_vmcs);
646 loaded_vmcs->cpu = -1;
647 loaded_vmcs->launched = 0;
650 #ifdef CONFIG_KEXEC_CORE
652 * This bitmap is used to indicate whether the vmclear
653 * operation is enabled on all cpus. All disabled by
656 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
658 static inline void crash_enable_local_vmclear(int cpu)
660 cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
663 static inline void crash_disable_local_vmclear(int cpu)
665 cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
668 static inline int crash_local_vmclear_enabled(int cpu)
670 return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
673 static void crash_vmclear_local_loaded_vmcss(void)
675 int cpu = raw_smp_processor_id();
676 struct loaded_vmcs *v;
678 if (!crash_local_vmclear_enabled(cpu))
681 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
682 loaded_vmcss_on_cpu_link)
686 static inline void crash_enable_local_vmclear(int cpu) { }
687 static inline void crash_disable_local_vmclear(int cpu) { }
688 #endif /* CONFIG_KEXEC_CORE */
690 static void __loaded_vmcs_clear(void *arg)
692 struct loaded_vmcs *loaded_vmcs = arg;
693 int cpu = raw_smp_processor_id();
695 if (loaded_vmcs->cpu != cpu)
696 return; /* vcpu migration can race with cpu offline */
697 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
698 per_cpu(current_vmcs, cpu) = NULL;
699 crash_disable_local_vmclear(cpu);
700 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
703 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
704 * is before setting loaded_vmcs->vcpu to -1 which is done in
705 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
706 * then adds the vmcs into percpu list before it is deleted.
710 loaded_vmcs_init(loaded_vmcs);
711 crash_enable_local_vmclear(cpu);
714 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
716 int cpu = loaded_vmcs->cpu;
719 smp_call_function_single(cpu,
720 __loaded_vmcs_clear, loaded_vmcs, 1);
723 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
727 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
729 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
730 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
731 vmx->segment_cache.bitmask = 0;
733 ret = vmx->segment_cache.bitmask & mask;
734 vmx->segment_cache.bitmask |= mask;
738 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
740 u16 *p = &vmx->segment_cache.seg[seg].selector;
742 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
743 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
747 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
749 ulong *p = &vmx->segment_cache.seg[seg].base;
751 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
752 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
756 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
758 u32 *p = &vmx->segment_cache.seg[seg].limit;
760 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
761 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
765 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
767 u32 *p = &vmx->segment_cache.seg[seg].ar;
769 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
770 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
774 void update_exception_bitmap(struct kvm_vcpu *vcpu)
778 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
779 (1u << DB_VECTOR) | (1u << AC_VECTOR);
781 * Guest access to VMware backdoor ports could legitimately
782 * trigger #GP because of TSS I/O permission bitmap.
783 * We intercept those #GP and allow access to them anyway
786 if (enable_vmware_backdoor)
787 eb |= (1u << GP_VECTOR);
788 if ((vcpu->guest_debug &
789 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
790 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
791 eb |= 1u << BP_VECTOR;
792 if (to_vmx(vcpu)->rmode.vm86_active)
795 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
797 /* When we are running a nested L2 guest and L1 specified for it a
798 * certain exception bitmap, we must trap the same exceptions and pass
799 * them to L1. When running L2, we will only handle the exceptions
800 * specified above if L1 did not want them.
802 if (is_guest_mode(vcpu))
803 eb |= get_vmcs12(vcpu)->exception_bitmap;
805 vmcs_write32(EXCEPTION_BITMAP, eb);
809 * Check if MSR is intercepted for currently loaded MSR bitmap.
811 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
813 unsigned long *msr_bitmap;
814 int f = sizeof(unsigned long);
816 if (!cpu_has_vmx_msr_bitmap())
819 msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap;
822 return !!test_bit(msr, msr_bitmap + 0x800 / f);
823 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
825 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
831 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
832 unsigned long entry, unsigned long exit)
834 vm_entry_controls_clearbit(vmx, entry);
835 vm_exit_controls_clearbit(vmx, exit);
838 static int find_msr(struct vmx_msrs *m, unsigned int msr)
842 for (i = 0; i < m->nr; ++i) {
843 if (m->val[i].index == msr)
849 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
852 struct msr_autoload *m = &vmx->msr_autoload;
856 if (cpu_has_load_ia32_efer()) {
857 clear_atomic_switch_msr_special(vmx,
858 VM_ENTRY_LOAD_IA32_EFER,
859 VM_EXIT_LOAD_IA32_EFER);
863 case MSR_CORE_PERF_GLOBAL_CTRL:
864 if (cpu_has_load_perf_global_ctrl()) {
865 clear_atomic_switch_msr_special(vmx,
866 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
867 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
872 i = find_msr(&m->guest, msr);
876 m->guest.val[i] = m->guest.val[m->guest.nr];
877 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
880 i = find_msr(&m->host, msr);
885 m->host.val[i] = m->host.val[m->host.nr];
886 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
889 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
890 unsigned long entry, unsigned long exit,
891 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
892 u64 guest_val, u64 host_val)
894 vmcs_write64(guest_val_vmcs, guest_val);
895 if (host_val_vmcs != HOST_IA32_EFER)
896 vmcs_write64(host_val_vmcs, host_val);
897 vm_entry_controls_setbit(vmx, entry);
898 vm_exit_controls_setbit(vmx, exit);
901 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
902 u64 guest_val, u64 host_val, bool entry_only)
905 struct msr_autoload *m = &vmx->msr_autoload;
909 if (cpu_has_load_ia32_efer()) {
910 add_atomic_switch_msr_special(vmx,
911 VM_ENTRY_LOAD_IA32_EFER,
912 VM_EXIT_LOAD_IA32_EFER,
915 guest_val, host_val);
919 case MSR_CORE_PERF_GLOBAL_CTRL:
920 if (cpu_has_load_perf_global_ctrl()) {
921 add_atomic_switch_msr_special(vmx,
922 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
923 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
924 GUEST_IA32_PERF_GLOBAL_CTRL,
925 HOST_IA32_PERF_GLOBAL_CTRL,
926 guest_val, host_val);
930 case MSR_IA32_PEBS_ENABLE:
931 /* PEBS needs a quiescent period after being disabled (to write
932 * a record). Disabling PEBS through VMX MSR swapping doesn't
933 * provide that period, so a CPU could write host's record into
936 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
939 i = find_msr(&m->guest, msr);
941 j = find_msr(&m->host, msr);
943 if ((i < 0 && m->guest.nr == NR_AUTOLOAD_MSRS) ||
944 (j < 0 && m->host.nr == NR_AUTOLOAD_MSRS)) {
945 printk_once(KERN_WARNING "Not enough msr switch entries. "
946 "Can't add msr %x\n", msr);
951 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
953 m->guest.val[i].index = msr;
954 m->guest.val[i].value = guest_val;
961 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
963 m->host.val[j].index = msr;
964 m->host.val[j].value = host_val;
967 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
969 u64 guest_efer = vmx->vcpu.arch.efer;
974 * NX is needed to handle CR0.WP=1, CR4.SMEP=1. Testing
975 * host CPUID is more efficient than testing guest CPUID
976 * or CR4. Host SMEP is anyway a requirement for guest SMEP.
978 if (boot_cpu_has(X86_FEATURE_SMEP))
979 guest_efer |= EFER_NX;
980 else if (!(guest_efer & EFER_NX))
981 ignore_bits |= EFER_NX;
985 * LMA and LME handled by hardware; SCE meaningless outside long mode.
987 ignore_bits |= EFER_SCE;
989 ignore_bits |= EFER_LMA | EFER_LME;
990 /* SCE is meaningful only in long mode on Intel */
991 if (guest_efer & EFER_LMA)
992 ignore_bits &= ~(u64)EFER_SCE;
996 * On EPT, we can't emulate NX, so we must switch EFER atomically.
997 * On CPUs that support "load IA32_EFER", always switch EFER
998 * atomically, since it's faster than switching it manually.
1000 if (cpu_has_load_ia32_efer() ||
1001 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
1002 if (!(guest_efer & EFER_LMA))
1003 guest_efer &= ~EFER_LME;
1004 if (guest_efer != host_efer)
1005 add_atomic_switch_msr(vmx, MSR_EFER,
1006 guest_efer, host_efer, false);
1008 clear_atomic_switch_msr(vmx, MSR_EFER);
1011 clear_atomic_switch_msr(vmx, MSR_EFER);
1013 guest_efer &= ~ignore_bits;
1014 guest_efer |= host_efer & ignore_bits;
1016 vmx->guest_msrs[efer_offset].data = guest_efer;
1017 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
1023 #ifdef CONFIG_X86_32
1025 * On 32-bit kernels, VM exits still load the FS and GS bases from the
1026 * VMCS rather than the segment table. KVM uses this helper to figure
1027 * out the current bases to poke them into the VMCS before entry.
1029 static unsigned long segment_base(u16 selector)
1031 struct desc_struct *table;
1034 if (!(selector & ~SEGMENT_RPL_MASK))
1037 table = get_current_gdt_ro();
1039 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1040 u16 ldt_selector = kvm_read_ldt();
1042 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1045 table = (struct desc_struct *)segment_base(ldt_selector);
1047 v = get_desc_base(&table[selector >> 3]);
1052 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1056 wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1057 wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1058 wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1059 wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1060 for (i = 0; i < addr_range; i++) {
1061 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1062 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1066 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1070 rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1071 rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1072 rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1073 rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1074 for (i = 0; i < addr_range; i++) {
1075 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1076 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1080 static void pt_guest_enter(struct vcpu_vmx *vmx)
1082 if (pt_mode == PT_MODE_SYSTEM)
1086 * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1087 * Save host state before VM entry.
1089 rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1090 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1091 wrmsrl(MSR_IA32_RTIT_CTL, 0);
1092 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1093 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1097 static void pt_guest_exit(struct vcpu_vmx *vmx)
1099 if (pt_mode == PT_MODE_SYSTEM)
1102 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1103 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1104 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1107 /* Reload host state (IA32_RTIT_CTL will be cleared on VM exit). */
1108 wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1111 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1112 unsigned long fs_base, unsigned long gs_base)
1114 if (unlikely(fs_sel != host->fs_sel)) {
1116 vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1118 vmcs_write16(HOST_FS_SELECTOR, 0);
1119 host->fs_sel = fs_sel;
1121 if (unlikely(gs_sel != host->gs_sel)) {
1123 vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1125 vmcs_write16(HOST_GS_SELECTOR, 0);
1126 host->gs_sel = gs_sel;
1128 if (unlikely(fs_base != host->fs_base)) {
1129 vmcs_writel(HOST_FS_BASE, fs_base);
1130 host->fs_base = fs_base;
1132 if (unlikely(gs_base != host->gs_base)) {
1133 vmcs_writel(HOST_GS_BASE, gs_base);
1134 host->gs_base = gs_base;
1138 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1140 struct vcpu_vmx *vmx = to_vmx(vcpu);
1141 struct vmcs_host_state *host_state;
1142 #ifdef CONFIG_X86_64
1143 int cpu = raw_smp_processor_id();
1145 unsigned long fs_base, gs_base;
1149 vmx->req_immediate_exit = false;
1152 * Note that guest MSRs to be saved/restored can also be changed
1153 * when guest state is loaded. This happens when guest transitions
1154 * to/from long-mode by setting MSR_EFER.LMA.
1156 if (!vmx->guest_msrs_ready) {
1157 vmx->guest_msrs_ready = true;
1158 for (i = 0; i < vmx->save_nmsrs; ++i)
1159 kvm_set_shared_msr(vmx->guest_msrs[i].index,
1160 vmx->guest_msrs[i].data,
1161 vmx->guest_msrs[i].mask);
1164 if (vmx->guest_state_loaded)
1167 host_state = &vmx->loaded_vmcs->host_state;
1170 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1171 * allow segment selectors with cpl > 0 or ti == 1.
1173 host_state->ldt_sel = kvm_read_ldt();
1175 #ifdef CONFIG_X86_64
1176 savesegment(ds, host_state->ds_sel);
1177 savesegment(es, host_state->es_sel);
1179 gs_base = cpu_kernelmode_gs_base(cpu);
1180 if (likely(is_64bit_mm(current->mm))) {
1181 save_fsgs_for_kvm();
1182 fs_sel = current->thread.fsindex;
1183 gs_sel = current->thread.gsindex;
1184 fs_base = current->thread.fsbase;
1185 vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1187 savesegment(fs, fs_sel);
1188 savesegment(gs, gs_sel);
1189 fs_base = read_msr(MSR_FS_BASE);
1190 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1193 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1195 savesegment(fs, fs_sel);
1196 savesegment(gs, gs_sel);
1197 fs_base = segment_base(fs_sel);
1198 gs_base = segment_base(gs_sel);
1201 vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1202 vmx->guest_state_loaded = true;
1205 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1207 struct vmcs_host_state *host_state;
1209 if (!vmx->guest_state_loaded)
1212 host_state = &vmx->loaded_vmcs->host_state;
1214 ++vmx->vcpu.stat.host_state_reload;
1216 #ifdef CONFIG_X86_64
1217 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1219 if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1220 kvm_load_ldt(host_state->ldt_sel);
1221 #ifdef CONFIG_X86_64
1222 load_gs_index(host_state->gs_sel);
1224 loadsegment(gs, host_state->gs_sel);
1227 if (host_state->fs_sel & 7)
1228 loadsegment(fs, host_state->fs_sel);
1229 #ifdef CONFIG_X86_64
1230 if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1231 loadsegment(ds, host_state->ds_sel);
1232 loadsegment(es, host_state->es_sel);
1235 invalidate_tss_limit();
1236 #ifdef CONFIG_X86_64
1237 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1239 load_fixmap_gdt(raw_smp_processor_id());
1240 vmx->guest_state_loaded = false;
1241 vmx->guest_msrs_ready = false;
1244 #ifdef CONFIG_X86_64
1245 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1248 if (vmx->guest_state_loaded)
1249 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1251 return vmx->msr_guest_kernel_gs_base;
1254 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1257 if (vmx->guest_state_loaded)
1258 wrmsrl(MSR_KERNEL_GS_BASE, data);
1260 vmx->msr_guest_kernel_gs_base = data;
1264 static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
1266 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
1267 struct pi_desc old, new;
1271 * In case of hot-plug or hot-unplug, we may have to undo
1272 * vmx_vcpu_pi_put even if there is no assigned device. And we
1273 * always keep PI.NDST up to date for simplicity: it makes the
1274 * code easier, and CPU migration is not a fast path.
1276 if (!pi_test_sn(pi_desc) && vcpu->cpu == cpu)
1279 /* The full case. */
1281 old.control = new.control = pi_desc->control;
1283 dest = cpu_physical_id(cpu);
1285 if (x2apic_enabled())
1288 new.ndst = (dest << 8) & 0xFF00;
1291 } while (cmpxchg64(&pi_desc->control, old.control,
1292 new.control) != old.control);
1295 * Clear SN before reading the bitmap. The VT-d firmware
1296 * writes the bitmap and reads SN atomically (5.2.3 in the
1297 * spec), so it doesn't really have a memory barrier that
1298 * pairs with this, but we cannot do that and we need one.
1300 smp_mb__after_atomic();
1302 if (!bitmap_empty((unsigned long *)pi_desc->pir, NR_VECTORS))
1306 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu)
1308 struct vcpu_vmx *vmx = to_vmx(vcpu);
1309 bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1311 if (!already_loaded) {
1312 loaded_vmcs_clear(vmx->loaded_vmcs);
1313 local_irq_disable();
1314 crash_disable_local_vmclear(cpu);
1317 * Read loaded_vmcs->cpu should be before fetching
1318 * loaded_vmcs->loaded_vmcss_on_cpu_link.
1319 * See the comments in __loaded_vmcs_clear().
1323 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1324 &per_cpu(loaded_vmcss_on_cpu, cpu));
1325 crash_enable_local_vmclear(cpu);
1329 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1330 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1331 vmcs_load(vmx->loaded_vmcs->vmcs);
1332 indirect_branch_prediction_barrier();
1335 if (!already_loaded) {
1336 void *gdt = get_current_gdt_ro();
1337 unsigned long sysenter_esp;
1339 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1342 * Linux uses per-cpu TSS and GDT, so set these when switching
1343 * processors. See 22.2.4.
1345 vmcs_writel(HOST_TR_BASE,
1346 (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1347 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */
1350 * VM exits change the host TR limit to 0x67 after a VM
1351 * exit. This is okay, since 0x67 covers everything except
1352 * the IO bitmap and have have code to handle the IO bitmap
1353 * being lost after a VM exit.
1355 BUILD_BUG_ON(IO_BITMAP_OFFSET - 1 != 0x67);
1357 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1358 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1360 vmx->loaded_vmcs->cpu = cpu;
1363 /* Setup TSC multiplier */
1364 if (kvm_has_tsc_control &&
1365 vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
1366 decache_tsc_multiplier(vmx);
1370 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1371 * vcpu mutex is already taken.
1373 void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1375 struct vcpu_vmx *vmx = to_vmx(vcpu);
1377 vmx_vcpu_load_vmcs(vcpu, cpu);
1379 vmx_vcpu_pi_load(vcpu, cpu);
1381 vmx->host_pkru = read_pkru();
1382 vmx->host_debugctlmsr = get_debugctlmsr();
1385 static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
1387 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
1389 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
1390 !irq_remapping_cap(IRQ_POSTING_CAP) ||
1391 !kvm_vcpu_apicv_active(vcpu))
1394 /* Set SN when the vCPU is preempted */
1395 if (vcpu->preempted)
1399 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1401 vmx_vcpu_pi_put(vcpu);
1403 vmx_prepare_switch_to_host(to_vmx(vcpu));
1406 static bool emulation_required(struct kvm_vcpu *vcpu)
1408 return emulate_invalid_guest_state && !guest_state_valid(vcpu);
1411 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1413 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1415 unsigned long rflags, save_rflags;
1417 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
1418 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1419 rflags = vmcs_readl(GUEST_RFLAGS);
1420 if (to_vmx(vcpu)->rmode.vm86_active) {
1421 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1422 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
1423 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1425 to_vmx(vcpu)->rflags = rflags;
1427 return to_vmx(vcpu)->rflags;
1430 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1432 unsigned long old_rflags = vmx_get_rflags(vcpu);
1434 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1435 to_vmx(vcpu)->rflags = rflags;
1436 if (to_vmx(vcpu)->rmode.vm86_active) {
1437 to_vmx(vcpu)->rmode.save_rflags = rflags;
1438 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1440 vmcs_writel(GUEST_RFLAGS, rflags);
1442 if ((old_rflags ^ to_vmx(vcpu)->rflags) & X86_EFLAGS_VM)
1443 to_vmx(vcpu)->emulation_required = emulation_required(vcpu);
1446 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1448 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1451 if (interruptibility & GUEST_INTR_STATE_STI)
1452 ret |= KVM_X86_SHADOW_INT_STI;
1453 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1454 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1459 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1461 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1462 u32 interruptibility = interruptibility_old;
1464 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1466 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1467 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1468 else if (mask & KVM_X86_SHADOW_INT_STI)
1469 interruptibility |= GUEST_INTR_STATE_STI;
1471 if ((interruptibility != interruptibility_old))
1472 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1475 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1477 struct vcpu_vmx *vmx = to_vmx(vcpu);
1478 unsigned long value;
1481 * Any MSR write that attempts to change bits marked reserved will
1484 if (data & vmx->pt_desc.ctl_bitmask)
1488 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1489 * result in a #GP unless the same write also clears TraceEn.
1491 if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1492 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1496 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1497 * and FabricEn would cause #GP, if
1498 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1500 if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1501 !(data & RTIT_CTL_FABRIC_EN) &&
1502 !intel_pt_validate_cap(vmx->pt_desc.caps,
1503 PT_CAP_single_range_output))
1507 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1508 * utilize encodings marked reserved will casue a #GP fault.
1510 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1511 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1512 !test_bit((data & RTIT_CTL_MTC_RANGE) >>
1513 RTIT_CTL_MTC_RANGE_OFFSET, &value))
1515 value = intel_pt_validate_cap(vmx->pt_desc.caps,
1516 PT_CAP_cycle_thresholds);
1517 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1518 !test_bit((data & RTIT_CTL_CYC_THRESH) >>
1519 RTIT_CTL_CYC_THRESH_OFFSET, &value))
1521 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1522 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1523 !test_bit((data & RTIT_CTL_PSB_FREQ) >>
1524 RTIT_CTL_PSB_FREQ_OFFSET, &value))
1528 * If ADDRx_CFG is reserved or the encodings is >2 will
1529 * cause a #GP fault.
1531 value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1532 if ((value && (vmx->pt_desc.addr_range < 1)) || (value > 2))
1534 value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1535 if ((value && (vmx->pt_desc.addr_range < 2)) || (value > 2))
1537 value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1538 if ((value && (vmx->pt_desc.addr_range < 3)) || (value > 2))
1540 value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1541 if ((value && (vmx->pt_desc.addr_range < 4)) || (value > 2))
1547 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1552 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1553 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1554 * set when EPT misconfig occurs. In practice, real hardware updates
1555 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1556 * (namely Hyper-V) don't set it due to it being undefined behavior,
1557 * i.e. we end up advancing IP with some random value.
1559 if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1560 to_vmx(vcpu)->exit_reason != EXIT_REASON_EPT_MISCONFIG) {
1561 rip = kvm_rip_read(vcpu);
1562 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1563 kvm_rip_write(vcpu, rip);
1565 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1569 /* skipping an emulated instruction also counts */
1570 vmx_set_interrupt_shadow(vcpu, 0);
1575 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1578 * Ensure that we clear the HLT state in the VMCS. We don't need to
1579 * explicitly skip the instruction because if the HLT state is set,
1580 * then the instruction is already executing and RIP has already been
1583 if (kvm_hlt_in_guest(vcpu->kvm) &&
1584 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1585 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1588 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
1590 struct vcpu_vmx *vmx = to_vmx(vcpu);
1591 unsigned nr = vcpu->arch.exception.nr;
1592 bool has_error_code = vcpu->arch.exception.has_error_code;
1593 u32 error_code = vcpu->arch.exception.error_code;
1594 u32 intr_info = nr | INTR_INFO_VALID_MASK;
1596 kvm_deliver_exception_payload(vcpu);
1598 if (has_error_code) {
1599 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1600 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1603 if (vmx->rmode.vm86_active) {
1605 if (kvm_exception_is_soft(nr))
1606 inc_eip = vcpu->arch.event_exit_inst_len;
1607 kvm_inject_realmode_interrupt(vcpu, nr, inc_eip);
1611 WARN_ON_ONCE(vmx->emulation_required);
1613 if (kvm_exception_is_soft(nr)) {
1614 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1615 vmx->vcpu.arch.event_exit_inst_len);
1616 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1618 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1620 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1622 vmx_clear_hlt(vcpu);
1625 static bool vmx_rdtscp_supported(void)
1627 return cpu_has_vmx_rdtscp();
1630 static bool vmx_invpcid_supported(void)
1632 return cpu_has_vmx_invpcid();
1636 * Swap MSR entry in host/guest MSR entry array.
1638 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
1640 struct shared_msr_entry tmp;
1642 tmp = vmx->guest_msrs[to];
1643 vmx->guest_msrs[to] = vmx->guest_msrs[from];
1644 vmx->guest_msrs[from] = tmp;
1648 * Set up the vmcs to automatically save and restore system
1649 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
1650 * mode, as fiddling with msrs is very expensive.
1652 static void setup_msrs(struct vcpu_vmx *vmx)
1654 int save_nmsrs, index;
1657 #ifdef CONFIG_X86_64
1659 * The SYSCALL MSRs are only needed on long mode guests, and only
1660 * when EFER.SCE is set.
1662 if (is_long_mode(&vmx->vcpu) && (vmx->vcpu.arch.efer & EFER_SCE)) {
1663 index = __find_msr_index(vmx, MSR_STAR);
1665 move_msr_up(vmx, index, save_nmsrs++);
1666 index = __find_msr_index(vmx, MSR_LSTAR);
1668 move_msr_up(vmx, index, save_nmsrs++);
1669 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
1671 move_msr_up(vmx, index, save_nmsrs++);
1674 index = __find_msr_index(vmx, MSR_EFER);
1675 if (index >= 0 && update_transition_efer(vmx, index))
1676 move_msr_up(vmx, index, save_nmsrs++);
1677 index = __find_msr_index(vmx, MSR_TSC_AUX);
1678 if (index >= 0 && guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP))
1679 move_msr_up(vmx, index, save_nmsrs++);
1681 vmx->save_nmsrs = save_nmsrs;
1682 vmx->guest_msrs_ready = false;
1684 if (cpu_has_vmx_msr_bitmap())
1685 vmx_update_msr_bitmap(&vmx->vcpu);
1688 static u64 vmx_read_l1_tsc_offset(struct kvm_vcpu *vcpu)
1690 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1692 if (is_guest_mode(vcpu) &&
1693 (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING))
1694 return vcpu->arch.tsc_offset - vmcs12->tsc_offset;
1696 return vcpu->arch.tsc_offset;
1699 static u64 vmx_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1701 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1702 u64 g_tsc_offset = 0;
1705 * We're here if L1 chose not to trap WRMSR to TSC. According
1706 * to the spec, this should set L1's TSC; The offset that L1
1707 * set for L2 remains unchanged, and still needs to be added
1708 * to the newly set TSC to get L2's TSC.
1710 if (is_guest_mode(vcpu) &&
1711 (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING))
1712 g_tsc_offset = vmcs12->tsc_offset;
1714 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1715 vcpu->arch.tsc_offset - g_tsc_offset,
1717 vmcs_write64(TSC_OFFSET, offset + g_tsc_offset);
1718 return offset + g_tsc_offset;
1722 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1723 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1724 * all guests if the "nested" module option is off, and can also be disabled
1725 * for a single guest by disabling its VMX cpuid bit.
1727 bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1729 return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
1732 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
1735 uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
1737 return !(val & ~valid_bits);
1740 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1742 switch (msr->index) {
1743 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1746 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1755 * Reads an msr value (of 'msr_index') into 'pdata'.
1756 * Returns 0 on success, non-0 otherwise.
1757 * Assumes vcpu_load() was already called.
1759 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1761 struct vcpu_vmx *vmx = to_vmx(vcpu);
1762 struct shared_msr_entry *msr;
1765 switch (msr_info->index) {
1766 #ifdef CONFIG_X86_64
1768 msr_info->data = vmcs_readl(GUEST_FS_BASE);
1771 msr_info->data = vmcs_readl(GUEST_GS_BASE);
1773 case MSR_KERNEL_GS_BASE:
1774 msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1778 return kvm_get_msr_common(vcpu, msr_info);
1779 case MSR_IA32_UMWAIT_CONTROL:
1780 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1783 msr_info->data = vmx->msr_ia32_umwait_control;
1785 case MSR_IA32_SPEC_CTRL:
1786 if (!msr_info->host_initiated &&
1787 !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
1790 msr_info->data = to_vmx(vcpu)->spec_ctrl;
1792 case MSR_IA32_SYSENTER_CS:
1793 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
1795 case MSR_IA32_SYSENTER_EIP:
1796 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
1798 case MSR_IA32_SYSENTER_ESP:
1799 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
1801 case MSR_IA32_BNDCFGS:
1802 if (!kvm_mpx_supported() ||
1803 (!msr_info->host_initiated &&
1804 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1806 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
1808 case MSR_IA32_MCG_EXT_CTL:
1809 if (!msr_info->host_initiated &&
1810 !(vmx->msr_ia32_feature_control &
1811 FEATURE_CONTROL_LMCE))
1813 msr_info->data = vcpu->arch.mcg_ext_ctl;
1815 case MSR_IA32_FEATURE_CONTROL:
1816 msr_info->data = vmx->msr_ia32_feature_control;
1818 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1819 if (!nested_vmx_allowed(vcpu))
1821 return vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
1824 if (!vmx_xsaves_supported() ||
1825 (!msr_info->host_initiated &&
1826 !(guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
1827 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))))
1829 msr_info->data = vcpu->arch.ia32_xss;
1831 case MSR_IA32_RTIT_CTL:
1832 if (pt_mode != PT_MODE_HOST_GUEST)
1834 msr_info->data = vmx->pt_desc.guest.ctl;
1836 case MSR_IA32_RTIT_STATUS:
1837 if (pt_mode != PT_MODE_HOST_GUEST)
1839 msr_info->data = vmx->pt_desc.guest.status;
1841 case MSR_IA32_RTIT_CR3_MATCH:
1842 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1843 !intel_pt_validate_cap(vmx->pt_desc.caps,
1844 PT_CAP_cr3_filtering))
1846 msr_info->data = vmx->pt_desc.guest.cr3_match;
1848 case MSR_IA32_RTIT_OUTPUT_BASE:
1849 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1850 (!intel_pt_validate_cap(vmx->pt_desc.caps,
1851 PT_CAP_topa_output) &&
1852 !intel_pt_validate_cap(vmx->pt_desc.caps,
1853 PT_CAP_single_range_output)))
1855 msr_info->data = vmx->pt_desc.guest.output_base;
1857 case MSR_IA32_RTIT_OUTPUT_MASK:
1858 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1859 (!intel_pt_validate_cap(vmx->pt_desc.caps,
1860 PT_CAP_topa_output) &&
1861 !intel_pt_validate_cap(vmx->pt_desc.caps,
1862 PT_CAP_single_range_output)))
1864 msr_info->data = vmx->pt_desc.guest.output_mask;
1866 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
1867 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
1868 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1869 (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
1870 PT_CAP_num_address_ranges)))
1873 msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
1875 msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
1878 if (!msr_info->host_initiated &&
1879 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
1881 /* Else, falls through */
1883 msr = find_msr_entry(vmx, msr_info->index);
1885 msr_info->data = msr->data;
1888 return kvm_get_msr_common(vcpu, msr_info);
1895 * Writes msr value into into the appropriate "register".
1896 * Returns 0 on success, non-0 otherwise.
1897 * Assumes vcpu_load() was already called.
1899 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1901 struct vcpu_vmx *vmx = to_vmx(vcpu);
1902 struct shared_msr_entry *msr;
1904 u32 msr_index = msr_info->index;
1905 u64 data = msr_info->data;
1908 switch (msr_index) {
1910 ret = kvm_set_msr_common(vcpu, msr_info);
1912 #ifdef CONFIG_X86_64
1914 vmx_segment_cache_clear(vmx);
1915 vmcs_writel(GUEST_FS_BASE, data);
1918 vmx_segment_cache_clear(vmx);
1919 vmcs_writel(GUEST_GS_BASE, data);
1921 case MSR_KERNEL_GS_BASE:
1922 vmx_write_guest_kernel_gs_base(vmx, data);
1925 case MSR_IA32_SYSENTER_CS:
1926 if (is_guest_mode(vcpu))
1927 get_vmcs12(vcpu)->guest_sysenter_cs = data;
1928 vmcs_write32(GUEST_SYSENTER_CS, data);
1930 case MSR_IA32_SYSENTER_EIP:
1931 if (is_guest_mode(vcpu))
1932 get_vmcs12(vcpu)->guest_sysenter_eip = data;
1933 vmcs_writel(GUEST_SYSENTER_EIP, data);
1935 case MSR_IA32_SYSENTER_ESP:
1936 if (is_guest_mode(vcpu))
1937 get_vmcs12(vcpu)->guest_sysenter_esp = data;
1938 vmcs_writel(GUEST_SYSENTER_ESP, data);
1940 case MSR_IA32_DEBUGCTLMSR:
1941 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
1942 VM_EXIT_SAVE_DEBUG_CONTROLS)
1943 get_vmcs12(vcpu)->guest_ia32_debugctl = data;
1945 ret = kvm_set_msr_common(vcpu, msr_info);
1948 case MSR_IA32_BNDCFGS:
1949 if (!kvm_mpx_supported() ||
1950 (!msr_info->host_initiated &&
1951 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1953 if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
1954 (data & MSR_IA32_BNDCFGS_RSVD))
1956 vmcs_write64(GUEST_BNDCFGS, data);
1958 case MSR_IA32_UMWAIT_CONTROL:
1959 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1962 /* The reserved bit 1 and non-32 bit [63:32] should be zero */
1963 if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
1966 vmx->msr_ia32_umwait_control = data;
1968 case MSR_IA32_SPEC_CTRL:
1969 if (!msr_info->host_initiated &&
1970 !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
1973 /* The STIBP bit doesn't fault even if it's not advertised */
1974 if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD))
1977 vmx->spec_ctrl = data;
1984 * When it's written (to non-zero) for the first time, pass
1988 * The handling of the MSR bitmap for L2 guests is done in
1989 * nested_vmx_merge_msr_bitmap. We should not touch the
1990 * vmcs02.msr_bitmap here since it gets completely overwritten
1991 * in the merging. We update the vmcs01 here for L1 as well
1992 * since it will end up touching the MSR anyway now.
1994 vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap,
1998 case MSR_IA32_PRED_CMD:
1999 if (!msr_info->host_initiated &&
2000 !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
2003 if (data & ~PRED_CMD_IBPB)
2009 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2013 * When it's written (to non-zero) for the first time, pass
2017 * The handling of the MSR bitmap for L2 guests is done in
2018 * nested_vmx_merge_msr_bitmap. We should not touch the
2019 * vmcs02.msr_bitmap here since it gets completely overwritten
2022 vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap, MSR_IA32_PRED_CMD,
2025 case MSR_IA32_CR_PAT:
2026 if (!kvm_pat_valid(data))
2029 if (is_guest_mode(vcpu) &&
2030 get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2031 get_vmcs12(vcpu)->guest_ia32_pat = data;
2033 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2034 vmcs_write64(GUEST_IA32_PAT, data);
2035 vcpu->arch.pat = data;
2038 ret = kvm_set_msr_common(vcpu, msr_info);
2040 case MSR_IA32_TSC_ADJUST:
2041 ret = kvm_set_msr_common(vcpu, msr_info);
2043 case MSR_IA32_MCG_EXT_CTL:
2044 if ((!msr_info->host_initiated &&
2045 !(to_vmx(vcpu)->msr_ia32_feature_control &
2046 FEATURE_CONTROL_LMCE)) ||
2047 (data & ~MCG_EXT_CTL_LMCE_EN))
2049 vcpu->arch.mcg_ext_ctl = data;
2051 case MSR_IA32_FEATURE_CONTROL:
2052 if (!vmx_feature_control_msr_valid(vcpu, data) ||
2053 (to_vmx(vcpu)->msr_ia32_feature_control &
2054 FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
2056 vmx->msr_ia32_feature_control = data;
2057 if (msr_info->host_initiated && data == 0)
2058 vmx_leave_nested(vcpu);
2060 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2061 if (!msr_info->host_initiated)
2062 return 1; /* they are read-only */
2063 if (!nested_vmx_allowed(vcpu))
2065 return vmx_set_vmx_msr(vcpu, msr_index, data);
2067 if (!vmx_xsaves_supported() ||
2068 (!msr_info->host_initiated &&
2069 !(guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
2070 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))))
2073 * The only supported bit as of Skylake is bit 8, but
2074 * it is not supported on KVM.
2078 vcpu->arch.ia32_xss = data;
2079 if (vcpu->arch.ia32_xss != host_xss)
2080 add_atomic_switch_msr(vmx, MSR_IA32_XSS,
2081 vcpu->arch.ia32_xss, host_xss, false);
2083 clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
2085 case MSR_IA32_RTIT_CTL:
2086 if ((pt_mode != PT_MODE_HOST_GUEST) ||
2087 vmx_rtit_ctl_check(vcpu, data) ||
2090 vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2091 vmx->pt_desc.guest.ctl = data;
2092 pt_update_intercept_for_msr(vmx);
2094 case MSR_IA32_RTIT_STATUS:
2095 if ((pt_mode != PT_MODE_HOST_GUEST) ||
2096 (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
2097 (data & MSR_IA32_RTIT_STATUS_MASK))
2099 vmx->pt_desc.guest.status = data;
2101 case MSR_IA32_RTIT_CR3_MATCH:
2102 if ((pt_mode != PT_MODE_HOST_GUEST) ||
2103 (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
2104 !intel_pt_validate_cap(vmx->pt_desc.caps,
2105 PT_CAP_cr3_filtering))
2107 vmx->pt_desc.guest.cr3_match = data;
2109 case MSR_IA32_RTIT_OUTPUT_BASE:
2110 if ((pt_mode != PT_MODE_HOST_GUEST) ||
2111 (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
2112 (!intel_pt_validate_cap(vmx->pt_desc.caps,
2113 PT_CAP_topa_output) &&
2114 !intel_pt_validate_cap(vmx->pt_desc.caps,
2115 PT_CAP_single_range_output)) ||
2116 (data & MSR_IA32_RTIT_OUTPUT_BASE_MASK))
2118 vmx->pt_desc.guest.output_base = data;
2120 case MSR_IA32_RTIT_OUTPUT_MASK:
2121 if ((pt_mode != PT_MODE_HOST_GUEST) ||
2122 (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
2123 (!intel_pt_validate_cap(vmx->pt_desc.caps,
2124 PT_CAP_topa_output) &&
2125 !intel_pt_validate_cap(vmx->pt_desc.caps,
2126 PT_CAP_single_range_output)))
2128 vmx->pt_desc.guest.output_mask = data;
2130 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2131 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2132 if ((pt_mode != PT_MODE_HOST_GUEST) ||
2133 (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
2134 (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
2135 PT_CAP_num_address_ranges)))
2138 vmx->pt_desc.guest.addr_b[index / 2] = data;
2140 vmx->pt_desc.guest.addr_a[index / 2] = data;
2143 if (!msr_info->host_initiated &&
2144 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
2146 /* Check reserved bit, higher 32 bits should be zero */
2147 if ((data >> 32) != 0)
2149 /* Else, falls through */
2151 msr = find_msr_entry(vmx, msr_index);
2153 u64 old_msr_data = msr->data;
2155 if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
2157 ret = kvm_set_shared_msr(msr->index, msr->data,
2161 msr->data = old_msr_data;
2165 ret = kvm_set_msr_common(vcpu, msr_info);
2171 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2173 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2176 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2179 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2181 case VCPU_EXREG_PDPTR:
2183 ept_save_pdptrs(vcpu);
2190 static __init int cpu_has_kvm_support(void)
2192 return cpu_has_vmx();
2195 static __init int vmx_disabled_by_bios(void)
2199 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
2200 if (msr & FEATURE_CONTROL_LOCKED) {
2201 /* launched w/ TXT and VMX disabled */
2202 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2205 /* launched w/o TXT and VMX only enabled w/ TXT */
2206 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2207 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2208 && !tboot_enabled()) {
2209 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
2210 "activate TXT before enabling KVM\n");
2213 /* launched w/o TXT and VMX disabled */
2214 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2215 && !tboot_enabled())
2222 static void kvm_cpu_vmxon(u64 addr)
2224 cr4_set_bits(X86_CR4_VMXE);
2225 intel_pt_handle_vmx(1);
2227 asm volatile ("vmxon %0" : : "m"(addr));
2230 static int hardware_enable(void)
2232 int cpu = raw_smp_processor_id();
2233 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2236 if (cr4_read_shadow() & X86_CR4_VMXE)
2240 * This can happen if we hot-added a CPU but failed to allocate
2241 * VP assist page for it.
2243 if (static_branch_unlikely(&enable_evmcs) &&
2244 !hv_get_vp_assist_page(cpu))
2247 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
2248 INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
2249 spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
2252 * Now we can enable the vmclear operation in kdump
2253 * since the loaded_vmcss_on_cpu list on this cpu
2254 * has been initialized.
2256 * Though the cpu is not in VMX operation now, there
2257 * is no problem to enable the vmclear operation
2258 * for the loaded_vmcss_on_cpu list is empty!
2260 crash_enable_local_vmclear(cpu);
2262 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
2264 test_bits = FEATURE_CONTROL_LOCKED;
2265 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2266 if (tboot_enabled())
2267 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2269 if ((old & test_bits) != test_bits) {
2270 /* enable and lock */
2271 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2273 kvm_cpu_vmxon(phys_addr);
2280 static void vmclear_local_loaded_vmcss(void)
2282 int cpu = raw_smp_processor_id();
2283 struct loaded_vmcs *v, *n;
2285 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2286 loaded_vmcss_on_cpu_link)
2287 __loaded_vmcs_clear(v);
2291 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2294 static void kvm_cpu_vmxoff(void)
2296 asm volatile (__ex("vmxoff"));
2298 intel_pt_handle_vmx(0);
2299 cr4_clear_bits(X86_CR4_VMXE);
2302 static void hardware_disable(void)
2304 vmclear_local_loaded_vmcss();
2308 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2309 u32 msr, u32 *result)
2311 u32 vmx_msr_low, vmx_msr_high;
2312 u32 ctl = ctl_min | ctl_opt;
2314 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2316 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2317 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
2319 /* Ensure minimum (required) set of control bits are supported. */
2327 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2328 struct vmx_capability *vmx_cap)
2330 u32 vmx_msr_low, vmx_msr_high;
2331 u32 min, opt, min2, opt2;
2332 u32 _pin_based_exec_control = 0;
2333 u32 _cpu_based_exec_control = 0;
2334 u32 _cpu_based_2nd_exec_control = 0;
2335 u32 _vmexit_control = 0;
2336 u32 _vmentry_control = 0;
2338 memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2339 min = CPU_BASED_HLT_EXITING |
2340 #ifdef CONFIG_X86_64
2341 CPU_BASED_CR8_LOAD_EXITING |
2342 CPU_BASED_CR8_STORE_EXITING |
2344 CPU_BASED_CR3_LOAD_EXITING |
2345 CPU_BASED_CR3_STORE_EXITING |
2346 CPU_BASED_UNCOND_IO_EXITING |
2347 CPU_BASED_MOV_DR_EXITING |
2348 CPU_BASED_USE_TSC_OFFSETING |
2349 CPU_BASED_MWAIT_EXITING |
2350 CPU_BASED_MONITOR_EXITING |
2351 CPU_BASED_INVLPG_EXITING |
2352 CPU_BASED_RDPMC_EXITING;
2354 opt = CPU_BASED_TPR_SHADOW |
2355 CPU_BASED_USE_MSR_BITMAPS |
2356 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2357 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2358 &_cpu_based_exec_control) < 0)
2360 #ifdef CONFIG_X86_64
2361 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2362 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2363 ~CPU_BASED_CR8_STORE_EXITING;
2365 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2367 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2368 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2369 SECONDARY_EXEC_WBINVD_EXITING |
2370 SECONDARY_EXEC_ENABLE_VPID |
2371 SECONDARY_EXEC_ENABLE_EPT |
2372 SECONDARY_EXEC_UNRESTRICTED_GUEST |
2373 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2374 SECONDARY_EXEC_DESC |
2375 SECONDARY_EXEC_RDTSCP |
2376 SECONDARY_EXEC_ENABLE_INVPCID |
2377 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2378 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2379 SECONDARY_EXEC_SHADOW_VMCS |
2380 SECONDARY_EXEC_XSAVES |
2381 SECONDARY_EXEC_RDSEED_EXITING |
2382 SECONDARY_EXEC_RDRAND_EXITING |
2383 SECONDARY_EXEC_ENABLE_PML |
2384 SECONDARY_EXEC_TSC_SCALING |
2385 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2386 SECONDARY_EXEC_PT_USE_GPA |
2387 SECONDARY_EXEC_PT_CONCEAL_VMX |
2388 SECONDARY_EXEC_ENABLE_VMFUNC |
2389 SECONDARY_EXEC_ENCLS_EXITING;
2390 if (adjust_vmx_controls(min2, opt2,
2391 MSR_IA32_VMX_PROCBASED_CTLS2,
2392 &_cpu_based_2nd_exec_control) < 0)
2395 #ifndef CONFIG_X86_64
2396 if (!(_cpu_based_2nd_exec_control &
2397 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2398 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2401 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2402 _cpu_based_2nd_exec_control &= ~(
2403 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2404 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2405 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2407 rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2408 &vmx_cap->ept, &vmx_cap->vpid);
2410 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2411 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2413 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2414 CPU_BASED_CR3_STORE_EXITING |
2415 CPU_BASED_INVLPG_EXITING);
2416 } else if (vmx_cap->ept) {
2418 pr_warn_once("EPT CAP should not exist if not support "
2419 "1-setting enable EPT VM-execution control\n");
2421 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2424 pr_warn_once("VPID CAP should not exist if not support "
2425 "1-setting enable VPID VM-execution control\n");
2428 min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
2429 #ifdef CONFIG_X86_64
2430 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2432 opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |
2433 VM_EXIT_LOAD_IA32_PAT |
2434 VM_EXIT_LOAD_IA32_EFER |
2435 VM_EXIT_CLEAR_BNDCFGS |
2436 VM_EXIT_PT_CONCEAL_PIP |
2437 VM_EXIT_CLEAR_IA32_RTIT_CTL;
2438 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2439 &_vmexit_control) < 0)
2442 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2443 opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
2444 PIN_BASED_VMX_PREEMPTION_TIMER;
2445 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2446 &_pin_based_exec_control) < 0)
2449 if (cpu_has_broken_vmx_preemption_timer())
2450 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2451 if (!(_cpu_based_2nd_exec_control &
2452 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2453 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2455 min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
2456 opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
2457 VM_ENTRY_LOAD_IA32_PAT |
2458 VM_ENTRY_LOAD_IA32_EFER |
2459 VM_ENTRY_LOAD_BNDCFGS |
2460 VM_ENTRY_PT_CONCEAL_PIP |
2461 VM_ENTRY_LOAD_IA32_RTIT_CTL;
2462 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2463 &_vmentry_control) < 0)
2467 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2468 * can't be used due to an errata where VM Exit may incorrectly clear
2469 * IA32_PERF_GLOBAL_CTRL[34:32]. Workaround the errata by using the
2470 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2472 if (boot_cpu_data.x86 == 0x6) {
2473 switch (boot_cpu_data.x86_model) {
2474 case 26: /* AAK155 */
2475 case 30: /* AAP115 */
2476 case 37: /* AAT100 */
2477 case 44: /* BC86,AAY89,BD102 */
2479 _vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
2480 _vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
2481 pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2482 "does not work properly. Using workaround\n");
2490 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2492 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2493 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2496 #ifdef CONFIG_X86_64
2497 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2498 if (vmx_msr_high & (1u<<16))
2502 /* Require Write-Back (WB) memory type for VMCS accesses. */
2503 if (((vmx_msr_high >> 18) & 15) != 6)
2506 vmcs_conf->size = vmx_msr_high & 0x1fff;
2507 vmcs_conf->order = get_order(vmcs_conf->size);
2508 vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2510 vmcs_conf->revision_id = vmx_msr_low;
2512 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2513 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2514 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2515 vmcs_conf->vmexit_ctrl = _vmexit_control;
2516 vmcs_conf->vmentry_ctrl = _vmentry_control;
2518 if (static_branch_unlikely(&enable_evmcs))
2519 evmcs_sanitize_exec_ctrls(vmcs_conf);
2524 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2526 int node = cpu_to_node(cpu);
2530 pages = __alloc_pages_node(node, flags, vmcs_config.order);
2533 vmcs = page_address(pages);
2534 memset(vmcs, 0, vmcs_config.size);
2536 /* KVM supports Enlightened VMCS v1 only */
2537 if (static_branch_unlikely(&enable_evmcs))
2538 vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2540 vmcs->hdr.revision_id = vmcs_config.revision_id;
2543 vmcs->hdr.shadow_vmcs = 1;
2547 void free_vmcs(struct vmcs *vmcs)
2549 free_pages((unsigned long)vmcs, vmcs_config.order);
2553 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2555 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2557 if (!loaded_vmcs->vmcs)
2559 loaded_vmcs_clear(loaded_vmcs);
2560 free_vmcs(loaded_vmcs->vmcs);
2561 loaded_vmcs->vmcs = NULL;
2562 if (loaded_vmcs->msr_bitmap)
2563 free_page((unsigned long)loaded_vmcs->msr_bitmap);
2564 WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2567 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2569 loaded_vmcs->vmcs = alloc_vmcs(false);
2570 if (!loaded_vmcs->vmcs)
2573 loaded_vmcs->shadow_vmcs = NULL;
2574 loaded_vmcs->hv_timer_soft_disabled = false;
2575 loaded_vmcs_init(loaded_vmcs);
2577 if (cpu_has_vmx_msr_bitmap()) {
2578 loaded_vmcs->msr_bitmap = (unsigned long *)
2579 __get_free_page(GFP_KERNEL_ACCOUNT);
2580 if (!loaded_vmcs->msr_bitmap)
2582 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2584 if (IS_ENABLED(CONFIG_HYPERV) &&
2585 static_branch_unlikely(&enable_evmcs) &&
2586 (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
2587 struct hv_enlightened_vmcs *evmcs =
2588 (struct hv_enlightened_vmcs *)loaded_vmcs->vmcs;
2590 evmcs->hv_enlightenments_control.msr_bitmap = 1;
2594 memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2595 memset(&loaded_vmcs->controls_shadow, 0,
2596 sizeof(struct vmcs_controls_shadow));
2601 free_loaded_vmcs(loaded_vmcs);
2605 static void free_kvm_area(void)
2609 for_each_possible_cpu(cpu) {
2610 free_vmcs(per_cpu(vmxarea, cpu));
2611 per_cpu(vmxarea, cpu) = NULL;
2615 static __init int alloc_kvm_area(void)
2619 for_each_possible_cpu(cpu) {
2622 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2629 * When eVMCS is enabled, alloc_vmcs_cpu() sets
2630 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2631 * revision_id reported by MSR_IA32_VMX_BASIC.
2633 * However, even though not explicitly documented by
2634 * TLFS, VMXArea passed as VMXON argument should
2635 * still be marked with revision_id reported by
2638 if (static_branch_unlikely(&enable_evmcs))
2639 vmcs->hdr.revision_id = vmcs_config.revision_id;
2641 per_cpu(vmxarea, cpu) = vmcs;
2646 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2647 struct kvm_segment *save)
2649 if (!emulate_invalid_guest_state) {
2651 * CS and SS RPL should be equal during guest entry according
2652 * to VMX spec, but in reality it is not always so. Since vcpu
2653 * is in the middle of the transition from real mode to
2654 * protected mode it is safe to assume that RPL 0 is a good
2657 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2658 save->selector &= ~SEGMENT_RPL_MASK;
2659 save->dpl = save->selector & SEGMENT_RPL_MASK;
2662 vmx_set_segment(vcpu, save, seg);
2665 static void enter_pmode(struct kvm_vcpu *vcpu)
2667 unsigned long flags;
2668 struct vcpu_vmx *vmx = to_vmx(vcpu);
2671 * Update real mode segment cache. It may be not up-to-date if sement
2672 * register was written while vcpu was in a guest mode.
2674 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2675 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2676 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2677 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2678 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2679 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2681 vmx->rmode.vm86_active = 0;
2683 vmx_segment_cache_clear(vmx);
2685 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2687 flags = vmcs_readl(GUEST_RFLAGS);
2688 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2689 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2690 vmcs_writel(GUEST_RFLAGS, flags);
2692 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2693 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2695 update_exception_bitmap(vcpu);
2697 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2698 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2699 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2700 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2701 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2702 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2705 static void fix_rmode_seg(int seg, struct kvm_segment *save)
2707 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2708 struct kvm_segment var = *save;
2711 if (seg == VCPU_SREG_CS)
2714 if (!emulate_invalid_guest_state) {
2715 var.selector = var.base >> 4;
2716 var.base = var.base & 0xffff0;
2726 if (save->base & 0xf)
2727 printk_once(KERN_WARNING "kvm: segment base is not "
2728 "paragraph aligned when entering "
2729 "protected mode (seg=%d)", seg);
2732 vmcs_write16(sf->selector, var.selector);
2733 vmcs_writel(sf->base, var.base);
2734 vmcs_write32(sf->limit, var.limit);
2735 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
2738 static void enter_rmode(struct kvm_vcpu *vcpu)
2740 unsigned long flags;
2741 struct vcpu_vmx *vmx = to_vmx(vcpu);
2742 struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
2744 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2745 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2746 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2747 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2748 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2749 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2750 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2752 vmx->rmode.vm86_active = 1;
2755 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2756 * vcpu. Warn the user that an update is overdue.
2758 if (!kvm_vmx->tss_addr)
2759 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2760 "called before entering vcpu\n");
2762 vmx_segment_cache_clear(vmx);
2764 vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
2765 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2766 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2768 flags = vmcs_readl(GUEST_RFLAGS);
2769 vmx->rmode.save_rflags = flags;
2771 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2773 vmcs_writel(GUEST_RFLAGS, flags);
2774 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2775 update_exception_bitmap(vcpu);
2777 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2778 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2779 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2780 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2781 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2782 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2784 kvm_mmu_reset_context(vcpu);
2787 void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2789 struct vcpu_vmx *vmx = to_vmx(vcpu);
2790 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
2795 vcpu->arch.efer = efer;
2796 if (efer & EFER_LMA) {
2797 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2800 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2802 msr->data = efer & ~EFER_LME;
2807 #ifdef CONFIG_X86_64
2809 static void enter_lmode(struct kvm_vcpu *vcpu)
2813 vmx_segment_cache_clear(to_vmx(vcpu));
2815 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2816 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
2817 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2819 vmcs_write32(GUEST_TR_AR_BYTES,
2820 (guest_tr_ar & ~VMX_AR_TYPE_MASK)
2821 | VMX_AR_TYPE_BUSY_64_TSS);
2823 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2826 static void exit_lmode(struct kvm_vcpu *vcpu)
2828 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2829 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2834 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
2836 int vpid = to_vmx(vcpu)->vpid;
2838 if (!vpid_sync_vcpu_addr(vpid, addr))
2839 vpid_sync_context(vpid);
2842 * If VPIDs are not supported or enabled, then the above is a no-op.
2843 * But we don't really need a TLB flush in that case anyway, because
2844 * each VM entry/exit includes an implicit flush when VPID is 0.
2848 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2850 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2852 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
2853 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
2856 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
2858 if (enable_unrestricted_guest || (enable_ept && is_paging(vcpu)))
2859 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2860 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
2863 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
2865 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2867 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
2868 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
2871 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
2873 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2875 if (!test_bit(VCPU_EXREG_PDPTR,
2876 (unsigned long *)&vcpu->arch.regs_dirty))
2879 if (is_pae_paging(vcpu)) {
2880 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
2881 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
2882 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
2883 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
2887 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
2889 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2891 if (is_pae_paging(vcpu)) {
2892 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
2893 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
2894 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
2895 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
2898 __set_bit(VCPU_EXREG_PDPTR,
2899 (unsigned long *)&vcpu->arch.regs_avail);
2900 __set_bit(VCPU_EXREG_PDPTR,
2901 (unsigned long *)&vcpu->arch.regs_dirty);
2904 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
2906 struct kvm_vcpu *vcpu)
2908 struct vcpu_vmx *vmx = to_vmx(vcpu);
2910 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
2911 vmx_decache_cr3(vcpu);
2912 if (!(cr0 & X86_CR0_PG)) {
2913 /* From paging/starting to nonpaging */
2914 exec_controls_setbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
2915 CPU_BASED_CR3_STORE_EXITING);
2916 vcpu->arch.cr0 = cr0;
2917 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2918 } else if (!is_paging(vcpu)) {
2919 /* From nonpaging to paging */
2920 exec_controls_clearbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
2921 CPU_BASED_CR3_STORE_EXITING);
2922 vcpu->arch.cr0 = cr0;
2923 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2926 if (!(cr0 & X86_CR0_WP))
2927 *hw_cr0 &= ~X86_CR0_WP;
2930 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2932 struct vcpu_vmx *vmx = to_vmx(vcpu);
2933 unsigned long hw_cr0;
2935 hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
2936 if (enable_unrestricted_guest)
2937 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
2939 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
2941 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
2944 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
2948 #ifdef CONFIG_X86_64
2949 if (vcpu->arch.efer & EFER_LME) {
2950 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
2952 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
2957 if (enable_ept && !enable_unrestricted_guest)
2958 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
2960 vmcs_writel(CR0_READ_SHADOW, cr0);
2961 vmcs_writel(GUEST_CR0, hw_cr0);
2962 vcpu->arch.cr0 = cr0;
2964 /* depends on vcpu->arch.cr0 to be set to a new value */
2965 vmx->emulation_required = emulation_required(vcpu);
2968 static int get_ept_level(struct kvm_vcpu *vcpu)
2970 if (cpu_has_vmx_ept_5levels() && (cpuid_maxphyaddr(vcpu) > 48))
2975 u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa)
2977 u64 eptp = VMX_EPTP_MT_WB;
2979 eptp |= (get_ept_level(vcpu) == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
2981 if (enable_ept_ad_bits &&
2982 (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
2983 eptp |= VMX_EPTP_AD_ENABLE_BIT;
2984 eptp |= (root_hpa & PAGE_MASK);
2989 void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
2991 struct kvm *kvm = vcpu->kvm;
2992 unsigned long guest_cr3;
2997 eptp = construct_eptp(vcpu, cr3);
2998 vmcs_write64(EPT_POINTER, eptp);
3000 if (kvm_x86_ops->tlb_remote_flush) {
3001 spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
3002 to_vmx(vcpu)->ept_pointer = eptp;
3003 to_kvm_vmx(kvm)->ept_pointers_match
3004 = EPT_POINTERS_CHECK;
3005 spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
3008 if (enable_unrestricted_guest || is_paging(vcpu) ||
3009 is_guest_mode(vcpu))
3010 guest_cr3 = kvm_read_cr3(vcpu);
3012 guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3013 ept_load_pdptrs(vcpu);
3016 vmcs_writel(GUEST_CR3, guest_cr3);
3019 int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3021 struct vcpu_vmx *vmx = to_vmx(vcpu);
3023 * Pass through host's Machine Check Enable value to hw_cr4, which
3024 * is in force while we are in guest mode. Do not let guests control
3025 * this bit, even if host CR4.MCE == 0.
3027 unsigned long hw_cr4;
3029 hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3030 if (enable_unrestricted_guest)
3031 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3032 else if (vmx->rmode.vm86_active)
3033 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3035 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3037 if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
3038 if (cr4 & X86_CR4_UMIP) {
3039 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3040 hw_cr4 &= ~X86_CR4_UMIP;
3041 } else if (!is_guest_mode(vcpu) ||
3042 !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3043 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3047 if (cr4 & X86_CR4_VMXE) {
3049 * To use VMXON (and later other VMX instructions), a guest
3050 * must first be able to turn on cr4.VMXE (see handle_vmon()).
3051 * So basically the check on whether to allow nested VMX
3052 * is here. We operate under the default treatment of SMM,
3053 * so VMX cannot be enabled under SMM.
3055 if (!nested_vmx_allowed(vcpu) || is_smm(vcpu))
3059 if (vmx->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3062 vcpu->arch.cr4 = cr4;
3064 if (!enable_unrestricted_guest) {
3066 if (!is_paging(vcpu)) {
3067 hw_cr4 &= ~X86_CR4_PAE;
3068 hw_cr4 |= X86_CR4_PSE;
3069 } else if (!(cr4 & X86_CR4_PAE)) {
3070 hw_cr4 &= ~X86_CR4_PAE;
3075 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3076 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs
3077 * to be manually disabled when guest switches to non-paging
3080 * If !enable_unrestricted_guest, the CPU is always running
3081 * with CR0.PG=1 and CR4 needs to be modified.
3082 * If enable_unrestricted_guest, the CPU automatically
3083 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3085 if (!is_paging(vcpu))
3086 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3089 vmcs_writel(CR4_READ_SHADOW, cr4);
3090 vmcs_writel(GUEST_CR4, hw_cr4);
3094 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3096 struct vcpu_vmx *vmx = to_vmx(vcpu);
3099 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3100 *var = vmx->rmode.segs[seg];
3101 if (seg == VCPU_SREG_TR
3102 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3104 var->base = vmx_read_guest_seg_base(vmx, seg);
3105 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3108 var->base = vmx_read_guest_seg_base(vmx, seg);
3109 var->limit = vmx_read_guest_seg_limit(vmx, seg);
3110 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3111 ar = vmx_read_guest_seg_ar(vmx, seg);
3112 var->unusable = (ar >> 16) & 1;
3113 var->type = ar & 15;
3114 var->s = (ar >> 4) & 1;
3115 var->dpl = (ar >> 5) & 3;
3117 * Some userspaces do not preserve unusable property. Since usable
3118 * segment has to be present according to VMX spec we can use present
3119 * property to amend userspace bug by making unusable segment always
3120 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3121 * segment as unusable.
3123 var->present = !var->unusable;
3124 var->avl = (ar >> 12) & 1;
3125 var->l = (ar >> 13) & 1;
3126 var->db = (ar >> 14) & 1;
3127 var->g = (ar >> 15) & 1;
3130 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3132 struct kvm_segment s;
3134 if (to_vmx(vcpu)->rmode.vm86_active) {
3135 vmx_get_segment(vcpu, &s, seg);
3138 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3141 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3143 struct vcpu_vmx *vmx = to_vmx(vcpu);
3145 if (unlikely(vmx->rmode.vm86_active))
3148 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3149 return VMX_AR_DPL(ar);
3153 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3157 if (var->unusable || !var->present)
3160 ar = var->type & 15;
3161 ar |= (var->s & 1) << 4;
3162 ar |= (var->dpl & 3) << 5;
3163 ar |= (var->present & 1) << 7;
3164 ar |= (var->avl & 1) << 12;
3165 ar |= (var->l & 1) << 13;
3166 ar |= (var->db & 1) << 14;
3167 ar |= (var->g & 1) << 15;
3173 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3175 struct vcpu_vmx *vmx = to_vmx(vcpu);
3176 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3178 vmx_segment_cache_clear(vmx);
3180 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3181 vmx->rmode.segs[seg] = *var;
3182 if (seg == VCPU_SREG_TR)
3183 vmcs_write16(sf->selector, var->selector);
3185 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3189 vmcs_writel(sf->base, var->base);
3190 vmcs_write32(sf->limit, var->limit);
3191 vmcs_write16(sf->selector, var->selector);
3194 * Fix the "Accessed" bit in AR field of segment registers for older
3196 * IA32 arch specifies that at the time of processor reset the
3197 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3198 * is setting it to 0 in the userland code. This causes invalid guest
3199 * state vmexit when "unrestricted guest" mode is turned on.
3200 * Fix for this setup issue in cpu_reset is being pushed in the qemu
3201 * tree. Newer qemu binaries with that qemu fix would not need this
3204 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3205 var->type |= 0x1; /* Accessed */
3207 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3210 vmx->emulation_required = emulation_required(vcpu);
3213 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3215 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3217 *db = (ar >> 14) & 1;
3218 *l = (ar >> 13) & 1;
3221 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3223 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3224 dt->address = vmcs_readl(GUEST_IDTR_BASE);
3227 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3229 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3230 vmcs_writel(GUEST_IDTR_BASE, dt->address);
3233 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3235 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3236 dt->address = vmcs_readl(GUEST_GDTR_BASE);
3239 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3241 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3242 vmcs_writel(GUEST_GDTR_BASE, dt->address);
3245 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3247 struct kvm_segment var;
3250 vmx_get_segment(vcpu, &var, seg);
3252 if (seg == VCPU_SREG_CS)
3254 ar = vmx_segment_access_rights(&var);
3256 if (var.base != (var.selector << 4))
3258 if (var.limit != 0xffff)
3266 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3268 struct kvm_segment cs;
3269 unsigned int cs_rpl;
3271 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3272 cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3276 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3280 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3281 if (cs.dpl > cs_rpl)
3284 if (cs.dpl != cs_rpl)
3290 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3294 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3296 struct kvm_segment ss;
3297 unsigned int ss_rpl;
3299 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3300 ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3304 if (ss.type != 3 && ss.type != 7)
3308 if (ss.dpl != ss_rpl) /* DPL != RPL */
3316 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3318 struct kvm_segment var;
3321 vmx_get_segment(vcpu, &var, seg);
3322 rpl = var.selector & SEGMENT_RPL_MASK;
3330 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3331 if (var.dpl < rpl) /* DPL < RPL */
3335 /* TODO: Add other members to kvm_segment_field to allow checking for other access
3341 static bool tr_valid(struct kvm_vcpu *vcpu)
3343 struct kvm_segment tr;
3345 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3349 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
3351 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3359 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3361 struct kvm_segment ldtr;
3363 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3367 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
3377 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3379 struct kvm_segment cs, ss;
3381 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3382 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3384 return ((cs.selector & SEGMENT_RPL_MASK) ==
3385 (ss.selector & SEGMENT_RPL_MASK));
3389 * Check if guest state is valid. Returns true if valid, false if
3391 * We assume that registers are always usable
3393 static bool guest_state_valid(struct kvm_vcpu *vcpu)
3395 if (enable_unrestricted_guest)
3398 /* real mode guest state checks */
3399 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3400 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3402 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3404 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3406 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3408 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3410 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3413 /* protected mode guest state checks */
3414 if (!cs_ss_rpl_check(vcpu))
3416 if (!code_segment_valid(vcpu))
3418 if (!stack_segment_valid(vcpu))
3420 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3422 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3424 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3426 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3428 if (!tr_valid(vcpu))
3430 if (!ldtr_valid(vcpu))
3434 * - Add checks on RIP
3435 * - Add checks on RFLAGS
3441 static int init_rmode_tss(struct kvm *kvm)
3447 idx = srcu_read_lock(&kvm->srcu);
3448 fn = to_kvm_vmx(kvm)->tss_addr >> PAGE_SHIFT;
3449 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3452 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3453 r = kvm_write_guest_page(kvm, fn++, &data,
3454 TSS_IOPB_BASE_OFFSET, sizeof(u16));
3457 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3460 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3464 r = kvm_write_guest_page(kvm, fn, &data,
3465 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3468 srcu_read_unlock(&kvm->srcu, idx);
3472 static int init_rmode_identity_map(struct kvm *kvm)
3474 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3476 kvm_pfn_t identity_map_pfn;
3479 /* Protect kvm_vmx->ept_identity_pagetable_done. */
3480 mutex_lock(&kvm->slots_lock);
3482 if (likely(kvm_vmx->ept_identity_pagetable_done))
3485 if (!kvm_vmx->ept_identity_map_addr)
3486 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3487 identity_map_pfn = kvm_vmx->ept_identity_map_addr >> PAGE_SHIFT;
3489 r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3490 kvm_vmx->ept_identity_map_addr, PAGE_SIZE);
3494 idx = srcu_read_lock(&kvm->srcu);
3495 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3498 /* Set up identity-mapping pagetable for EPT in real mode */
3499 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3500 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3501 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3502 r = kvm_write_guest_page(kvm, identity_map_pfn,
3503 &tmp, i * sizeof(tmp), sizeof(tmp));
3507 kvm_vmx->ept_identity_pagetable_done = true;
3510 srcu_read_unlock(&kvm->srcu, idx);
3513 mutex_unlock(&kvm->slots_lock);
3517 static void seg_setup(int seg)
3519 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3522 vmcs_write16(sf->selector, 0);
3523 vmcs_writel(sf->base, 0);
3524 vmcs_write32(sf->limit, 0xffff);
3526 if (seg == VCPU_SREG_CS)
3527 ar |= 0x08; /* code segment */
3529 vmcs_write32(sf->ar_bytes, ar);
3532 static int alloc_apic_access_page(struct kvm *kvm)
3537 mutex_lock(&kvm->slots_lock);
3538 if (kvm->arch.apic_access_page_done)
3540 r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
3541 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
3545 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
3546 if (is_error_page(page)) {
3552 * Do not pin the page in memory, so that memory hot-unplug
3553 * is able to migrate it.
3556 kvm->arch.apic_access_page_done = true;
3558 mutex_unlock(&kvm->slots_lock);
3562 int allocate_vpid(void)
3568 spin_lock(&vmx_vpid_lock);
3569 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3570 if (vpid < VMX_NR_VPIDS)
3571 __set_bit(vpid, vmx_vpid_bitmap);
3574 spin_unlock(&vmx_vpid_lock);
3578 void free_vpid(int vpid)
3580 if (!enable_vpid || vpid == 0)
3582 spin_lock(&vmx_vpid_lock);
3583 __clear_bit(vpid, vmx_vpid_bitmap);
3584 spin_unlock(&vmx_vpid_lock);
3587 static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
3590 int f = sizeof(unsigned long);
3592 if (!cpu_has_vmx_msr_bitmap())
3595 if (static_branch_unlikely(&enable_evmcs))
3596 evmcs_touch_msr_bitmap();
3599 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3600 * have the write-low and read-high bitmap offsets the wrong way round.
3601 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3603 if (msr <= 0x1fff) {
3604 if (type & MSR_TYPE_R)
3606 __clear_bit(msr, msr_bitmap + 0x000 / f);
3608 if (type & MSR_TYPE_W)
3610 __clear_bit(msr, msr_bitmap + 0x800 / f);
3612 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3614 if (type & MSR_TYPE_R)
3616 __clear_bit(msr, msr_bitmap + 0x400 / f);
3618 if (type & MSR_TYPE_W)
3620 __clear_bit(msr, msr_bitmap + 0xc00 / f);
3625 static __always_inline void vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
3628 int f = sizeof(unsigned long);
3630 if (!cpu_has_vmx_msr_bitmap())
3633 if (static_branch_unlikely(&enable_evmcs))
3634 evmcs_touch_msr_bitmap();
3637 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3638 * have the write-low and read-high bitmap offsets the wrong way round.
3639 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3641 if (msr <= 0x1fff) {
3642 if (type & MSR_TYPE_R)
3644 __set_bit(msr, msr_bitmap + 0x000 / f);
3646 if (type & MSR_TYPE_W)
3648 __set_bit(msr, msr_bitmap + 0x800 / f);
3650 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3652 if (type & MSR_TYPE_R)
3654 __set_bit(msr, msr_bitmap + 0x400 / f);
3656 if (type & MSR_TYPE_W)
3658 __set_bit(msr, msr_bitmap + 0xc00 / f);
3663 static __always_inline void vmx_set_intercept_for_msr(unsigned long *msr_bitmap,
3664 u32 msr, int type, bool value)
3667 vmx_enable_intercept_for_msr(msr_bitmap, msr, type);
3669 vmx_disable_intercept_for_msr(msr_bitmap, msr, type);
3672 static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu)
3676 if (cpu_has_secondary_exec_ctrls() &&
3677 (secondary_exec_controls_get(to_vmx(vcpu)) &
3678 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
3679 mode |= MSR_BITMAP_MODE_X2APIC;
3680 if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
3681 mode |= MSR_BITMAP_MODE_X2APIC_APICV;
3687 static void vmx_update_msr_bitmap_x2apic(unsigned long *msr_bitmap,
3692 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
3693 unsigned word = msr / BITS_PER_LONG;
3694 msr_bitmap[word] = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
3695 msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
3698 if (mode & MSR_BITMAP_MODE_X2APIC) {
3700 * TPR reads and writes can be virtualized even if virtual interrupt
3701 * delivery is not in use.
3703 vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW);
3704 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
3705 vmx_enable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_R);
3706 vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
3707 vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
3712 void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu)
3714 struct vcpu_vmx *vmx = to_vmx(vcpu);
3715 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3716 u8 mode = vmx_msr_bitmap_mode(vcpu);
3717 u8 changed = mode ^ vmx->msr_bitmap_mode;
3722 if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV))
3723 vmx_update_msr_bitmap_x2apic(msr_bitmap, mode);
3725 vmx->msr_bitmap_mode = mode;
3728 void pt_update_intercept_for_msr(struct vcpu_vmx *vmx)
3730 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3731 bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
3734 vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_STATUS,
3736 vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_BASE,
3738 vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_MASK,
3740 vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_CR3_MATCH,
3742 for (i = 0; i < vmx->pt_desc.addr_range; i++) {
3743 vmx_set_intercept_for_msr(msr_bitmap,
3744 MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
3745 vmx_set_intercept_for_msr(msr_bitmap,
3746 MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
3750 static bool vmx_get_enable_apicv(struct kvm_vcpu *vcpu)
3752 return enable_apicv;
3755 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
3757 struct vcpu_vmx *vmx = to_vmx(vcpu);
3762 if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
3763 !nested_cpu_has_vid(get_vmcs12(vcpu)) ||
3764 WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
3767 rvi = vmx_get_rvi();
3769 vapic_page = vmx->nested.virtual_apic_map.hva;
3770 vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
3772 return ((rvi & 0xf0) > (vppr & 0xf0));
3775 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
3779 int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
3781 if (vcpu->mode == IN_GUEST_MODE) {
3783 * The vector of interrupt to be delivered to vcpu had
3784 * been set in PIR before this function.
3786 * Following cases will be reached in this block, and
3787 * we always send a notification event in all cases as
3790 * Case 1: vcpu keeps in non-root mode. Sending a
3791 * notification event posts the interrupt to vcpu.
3793 * Case 2: vcpu exits to root mode and is still
3794 * runnable. PIR will be synced to vIRR before the
3795 * next vcpu entry. Sending a notification event in
3796 * this case has no effect, as vcpu is not in root
3799 * Case 3: vcpu exits to root mode and is blocked.
3800 * vcpu_block() has already synced PIR to vIRR and
3801 * never blocks vcpu if vIRR is not cleared. Therefore,
3802 * a blocked vcpu here does not wait for any requested
3803 * interrupts in PIR, and sending a notification event
3804 * which has no effect is safe here.
3807 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
3814 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
3817 struct vcpu_vmx *vmx = to_vmx(vcpu);
3819 if (is_guest_mode(vcpu) &&
3820 vector == vmx->nested.posted_intr_nv) {
3822 * If a posted intr is not recognized by hardware,
3823 * we will accomplish it in the next vmentry.
3825 vmx->nested.pi_pending = true;
3826 kvm_make_request(KVM_REQ_EVENT, vcpu);
3827 /* the PIR and ON have been set by L1. */
3828 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true))
3829 kvm_vcpu_kick(vcpu);
3835 * Send interrupt to vcpu via posted interrupt way.
3836 * 1. If target vcpu is running(non-root mode), send posted interrupt
3837 * notification to vcpu and hardware will sync PIR to vIRR atomically.
3838 * 2. If target vcpu isn't running(root mode), kick it to pick up the
3839 * interrupt from PIR in next vmentry.
3841 static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
3843 struct vcpu_vmx *vmx = to_vmx(vcpu);
3846 r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
3850 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
3853 /* If a previous notification has sent the IPI, nothing to do. */
3854 if (pi_test_and_set_on(&vmx->pi_desc))
3857 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false))
3858 kvm_vcpu_kick(vcpu);
3862 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
3863 * will not change in the lifetime of the guest.
3864 * Note that host-state that does change is set elsewhere. E.g., host-state
3865 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
3867 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
3871 unsigned long cr0, cr3, cr4;
3874 WARN_ON(cr0 & X86_CR0_TS);
3875 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */
3878 * Save the most likely value for this task's CR3 in the VMCS.
3879 * We can't use __get_current_cr3_fast() because we're not atomic.
3882 vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */
3883 vmx->loaded_vmcs->host_state.cr3 = cr3;
3885 /* Save the most likely value for this task's CR4 in the VMCS. */
3886 cr4 = cr4_read_shadow();
3887 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
3888 vmx->loaded_vmcs->host_state.cr4 = cr4;
3890 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
3891 #ifdef CONFIG_X86_64
3893 * Load null selectors, so we can avoid reloading them in
3894 * vmx_prepare_switch_to_host(), in case userspace uses
3895 * the null selectors too (the expected case).
3897 vmcs_write16(HOST_DS_SELECTOR, 0);
3898 vmcs_write16(HOST_ES_SELECTOR, 0);
3900 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3901 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3903 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3904 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
3906 vmcs_writel(HOST_IDTR_BASE, host_idt_base); /* 22.2.4 */
3908 vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
3910 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
3911 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
3912 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
3913 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
3915 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
3916 rdmsr(MSR_IA32_CR_PAT, low32, high32);
3917 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
3920 if (cpu_has_load_ia32_efer())
3921 vmcs_write64(HOST_IA32_EFER, host_efer);
3924 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
3926 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
3928 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
3929 if (is_guest_mode(&vmx->vcpu))
3930 vmx->vcpu.arch.cr4_guest_owned_bits &=
3931 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
3932 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
3935 u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
3937 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
3939 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
3940 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
3943 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
3945 if (!enable_preemption_timer)
3946 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
3948 return pin_based_exec_ctrl;
3951 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
3953 struct vcpu_vmx *vmx = to_vmx(vcpu);
3955 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
3956 if (cpu_has_secondary_exec_ctrls()) {
3957 if (kvm_vcpu_apicv_active(vcpu))
3958 secondary_exec_controls_setbit(vmx,
3959 SECONDARY_EXEC_APIC_REGISTER_VIRT |
3960 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3962 secondary_exec_controls_clearbit(vmx,
3963 SECONDARY_EXEC_APIC_REGISTER_VIRT |
3964 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3967 if (cpu_has_vmx_msr_bitmap())
3968 vmx_update_msr_bitmap(vcpu);
3971 u32 vmx_exec_control(struct vcpu_vmx *vmx)
3973 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
3975 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
3976 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
3978 if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
3979 exec_control &= ~CPU_BASED_TPR_SHADOW;
3980 #ifdef CONFIG_X86_64
3981 exec_control |= CPU_BASED_CR8_STORE_EXITING |
3982 CPU_BASED_CR8_LOAD_EXITING;
3986 exec_control |= CPU_BASED_CR3_STORE_EXITING |
3987 CPU_BASED_CR3_LOAD_EXITING |
3988 CPU_BASED_INVLPG_EXITING;
3989 if (kvm_mwait_in_guest(vmx->vcpu.kvm))
3990 exec_control &= ~(CPU_BASED_MWAIT_EXITING |
3991 CPU_BASED_MONITOR_EXITING);
3992 if (kvm_hlt_in_guest(vmx->vcpu.kvm))
3993 exec_control &= ~CPU_BASED_HLT_EXITING;
3994 return exec_control;
3998 static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
4000 struct kvm_vcpu *vcpu = &vmx->vcpu;
4002 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4004 if (pt_mode == PT_MODE_SYSTEM)
4005 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4006 if (!cpu_need_virtualize_apic_accesses(vcpu))
4007 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4009 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4011 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4012 enable_unrestricted_guest = 0;
4014 if (!enable_unrestricted_guest)
4015 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4016 if (kvm_pause_in_guest(vmx->vcpu.kvm))
4017 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4018 if (!kvm_vcpu_apicv_active(vcpu))
4019 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4020 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4021 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4023 /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4024 * in vmx_set_cr4. */
4025 exec_control &= ~SECONDARY_EXEC_DESC;
4027 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4029 We can NOT enable shadow_vmcs here because we don't have yet
4032 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4035 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4037 if (vmx_xsaves_supported()) {
4038 /* Exposing XSAVES only when XSAVE is exposed */
4039 bool xsaves_enabled =
4040 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4041 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
4043 if (!xsaves_enabled)
4044 exec_control &= ~SECONDARY_EXEC_XSAVES;
4048 vmx->nested.msrs.secondary_ctls_high |=
4049 SECONDARY_EXEC_XSAVES;
4051 vmx->nested.msrs.secondary_ctls_high &=
4052 ~SECONDARY_EXEC_XSAVES;
4056 if (vmx_rdtscp_supported()) {
4057 bool rdtscp_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP);
4058 if (!rdtscp_enabled)
4059 exec_control &= ~SECONDARY_EXEC_RDTSCP;
4063 vmx->nested.msrs.secondary_ctls_high |=
4064 SECONDARY_EXEC_RDTSCP;
4066 vmx->nested.msrs.secondary_ctls_high &=
4067 ~SECONDARY_EXEC_RDTSCP;
4071 if (vmx_invpcid_supported()) {
4072 /* Exposing INVPCID only when PCID is exposed */
4073 bool invpcid_enabled =
4074 guest_cpuid_has(vcpu, X86_FEATURE_INVPCID) &&
4075 guest_cpuid_has(vcpu, X86_FEATURE_PCID);
4077 if (!invpcid_enabled) {
4078 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
4079 guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID);
4083 if (invpcid_enabled)
4084 vmx->nested.msrs.secondary_ctls_high |=
4085 SECONDARY_EXEC_ENABLE_INVPCID;
4087 vmx->nested.msrs.secondary_ctls_high &=
4088 ~SECONDARY_EXEC_ENABLE_INVPCID;
4092 if (vmx_rdrand_supported()) {
4093 bool rdrand_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDRAND);
4095 exec_control &= ~SECONDARY_EXEC_RDRAND_EXITING;
4099 vmx->nested.msrs.secondary_ctls_high |=
4100 SECONDARY_EXEC_RDRAND_EXITING;
4102 vmx->nested.msrs.secondary_ctls_high &=
4103 ~SECONDARY_EXEC_RDRAND_EXITING;
4107 if (vmx_rdseed_supported()) {
4108 bool rdseed_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDSEED);
4110 exec_control &= ~SECONDARY_EXEC_RDSEED_EXITING;
4114 vmx->nested.msrs.secondary_ctls_high |=
4115 SECONDARY_EXEC_RDSEED_EXITING;
4117 vmx->nested.msrs.secondary_ctls_high &=
4118 ~SECONDARY_EXEC_RDSEED_EXITING;
4122 if (vmx_waitpkg_supported()) {
4123 bool waitpkg_enabled =
4124 guest_cpuid_has(vcpu, X86_FEATURE_WAITPKG);
4126 if (!waitpkg_enabled)
4127 exec_control &= ~SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
4130 if (waitpkg_enabled)
4131 vmx->nested.msrs.secondary_ctls_high |=
4132 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
4134 vmx->nested.msrs.secondary_ctls_high &=
4135 ~SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
4139 vmx->secondary_exec_control = exec_control;
4142 static void ept_set_mmio_spte_mask(void)
4145 * EPT Misconfigurations can be generated if the value of bits 2:0
4146 * of an EPT paging-structure entry is 110b (write/execute).
4148 kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK,
4149 VMX_EPT_MISCONFIG_WX_VALUE, 0);
4152 #define VMX_XSS_EXIT_BITMAP 0
4155 * Sets up the vmcs for emulated real mode.
4157 static void vmx_vcpu_setup(struct vcpu_vmx *vmx)
4162 nested_vmx_vcpu_setup();
4164 if (cpu_has_vmx_msr_bitmap())
4165 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4167 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4170 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4171 vmx->hv_deadline_tsc = -1;
4173 exec_controls_set(vmx, vmx_exec_control(vmx));
4175 if (cpu_has_secondary_exec_ctrls()) {
4176 vmx_compute_secondary_exec_control(vmx);
4177 secondary_exec_controls_set(vmx, vmx->secondary_exec_control);
4180 if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
4181 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4182 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4183 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4184 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4186 vmcs_write16(GUEST_INTR_STATUS, 0);
4188 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4189 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4192 if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
4193 vmcs_write32(PLE_GAP, ple_gap);
4194 vmx->ple_window = ple_window;
4195 vmx->ple_window_dirty = true;
4198 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4199 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4200 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
4202 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
4203 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
4204 vmx_set_constant_host_state(vmx);
4205 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4206 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4208 if (cpu_has_vmx_vmfunc())
4209 vmcs_write64(VM_FUNCTION_CONTROL, 0);
4211 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4212 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4213 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4214 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4215 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4217 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4218 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4220 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
4221 u32 index = vmx_msr_index[i];
4222 u32 data_low, data_high;
4225 if (rdmsr_safe(index, &data_low, &data_high) < 0)
4227 if (wrmsr_safe(index, data_low, data_high) < 0)
4229 vmx->guest_msrs[j].index = i;
4230 vmx->guest_msrs[j].data = 0;
4231 vmx->guest_msrs[j].mask = -1ull;
4235 vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4237 /* 22.2.1, 20.8.1 */
4238 vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4240 vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS;
4241 vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS);
4243 set_cr4_guest_host_mask(vmx);
4245 if (vmx_xsaves_supported())
4246 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4249 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4250 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4253 if (cpu_has_vmx_encls_vmexit())
4254 vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
4256 if (pt_mode == PT_MODE_HOST_GUEST) {
4257 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4258 /* Bit[6~0] are forced to 1, writes are ignored. */
4259 vmx->pt_desc.guest.output_mask = 0x7F;
4260 vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4264 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4266 struct vcpu_vmx *vmx = to_vmx(vcpu);
4267 struct msr_data apic_base_msr;
4270 vmx->rmode.vm86_active = 0;
4273 vmx->msr_ia32_umwait_control = 0;
4275 vcpu->arch.microcode_version = 0x100000000ULL;
4276 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4277 vmx->hv_deadline_tsc = -1;
4278 kvm_set_cr8(vcpu, 0);
4281 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
4282 MSR_IA32_APICBASE_ENABLE;
4283 if (kvm_vcpu_is_reset_bsp(vcpu))
4284 apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4285 apic_base_msr.host_initiated = true;
4286 kvm_set_apic_base(vcpu, &apic_base_msr);
4289 vmx_segment_cache_clear(vmx);
4291 seg_setup(VCPU_SREG_CS);
4292 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4293 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4295 seg_setup(VCPU_SREG_DS);
4296 seg_setup(VCPU_SREG_ES);
4297 seg_setup(VCPU_SREG_FS);
4298 seg_setup(VCPU_SREG_GS);
4299 seg_setup(VCPU_SREG_SS);
4301 vmcs_write16(GUEST_TR_SELECTOR, 0);
4302 vmcs_writel(GUEST_TR_BASE, 0);
4303 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4304 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4306 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4307 vmcs_writel(GUEST_LDTR_BASE, 0);
4308 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4309 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4312 vmcs_write32(GUEST_SYSENTER_CS, 0);
4313 vmcs_writel(GUEST_SYSENTER_ESP, 0);
4314 vmcs_writel(GUEST_SYSENTER_EIP, 0);
4315 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4318 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
4319 kvm_rip_write(vcpu, 0xfff0);
4321 vmcs_writel(GUEST_GDTR_BASE, 0);
4322 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4324 vmcs_writel(GUEST_IDTR_BASE, 0);
4325 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4327 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4328 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4329 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4330 if (kvm_mpx_supported())
4331 vmcs_write64(GUEST_BNDCFGS, 0);
4335 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
4337 if (cpu_has_vmx_tpr_shadow() && !init_event) {
4338 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4339 if (cpu_need_tpr_shadow(vcpu))
4340 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4341 __pa(vcpu->arch.apic->regs));
4342 vmcs_write32(TPR_THRESHOLD, 0);
4345 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4348 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4350 cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4351 vmx->vcpu.arch.cr0 = cr0;
4352 vmx_set_cr0(vcpu, cr0); /* enter rmode */
4353 vmx_set_cr4(vcpu, 0);
4354 vmx_set_efer(vcpu, 0);
4356 update_exception_bitmap(vcpu);
4358 vpid_sync_context(vmx->vpid);
4360 vmx_clear_hlt(vcpu);
4363 static void enable_irq_window(struct kvm_vcpu *vcpu)
4365 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_VIRTUAL_INTR_PENDING);
4368 static void enable_nmi_window(struct kvm_vcpu *vcpu)
4371 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4372 enable_irq_window(vcpu);
4376 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_VIRTUAL_NMI_PENDING);
4379 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4381 struct vcpu_vmx *vmx = to_vmx(vcpu);
4383 int irq = vcpu->arch.interrupt.nr;
4385 trace_kvm_inj_virq(irq);
4387 ++vcpu->stat.irq_injections;
4388 if (vmx->rmode.vm86_active) {
4390 if (vcpu->arch.interrupt.soft)
4391 inc_eip = vcpu->arch.event_exit_inst_len;
4392 kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4395 intr = irq | INTR_INFO_VALID_MASK;
4396 if (vcpu->arch.interrupt.soft) {
4397 intr |= INTR_TYPE_SOFT_INTR;
4398 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4399 vmx->vcpu.arch.event_exit_inst_len);
4401 intr |= INTR_TYPE_EXT_INTR;
4402 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4404 vmx_clear_hlt(vcpu);
4407 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4409 struct vcpu_vmx *vmx = to_vmx(vcpu);
4413 * Tracking the NMI-blocked state in software is built upon
4414 * finding the next open IRQ window. This, in turn, depends on
4415 * well-behaving guests: They have to keep IRQs disabled at
4416 * least as long as the NMI handler runs. Otherwise we may
4417 * cause NMI nesting, maybe breaking the guest. But as this is
4418 * highly unlikely, we can live with the residual risk.
4420 vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4421 vmx->loaded_vmcs->vnmi_blocked_time = 0;
4424 ++vcpu->stat.nmi_injections;
4425 vmx->loaded_vmcs->nmi_known_unmasked = false;
4427 if (vmx->rmode.vm86_active) {
4428 kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4432 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4433 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4435 vmx_clear_hlt(vcpu);
4438 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4440 struct vcpu_vmx *vmx = to_vmx(vcpu);
4444 return vmx->loaded_vmcs->soft_vnmi_blocked;
4445 if (vmx->loaded_vmcs->nmi_known_unmasked)
4447 masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4448 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4452 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4454 struct vcpu_vmx *vmx = to_vmx(vcpu);
4457 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4458 vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4459 vmx->loaded_vmcs->vnmi_blocked_time = 0;
4462 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4464 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4465 GUEST_INTR_STATE_NMI);
4467 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4468 GUEST_INTR_STATE_NMI);
4472 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4474 if (to_vmx(vcpu)->nested.nested_run_pending)
4478 to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
4481 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4482 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4483 | GUEST_INTR_STATE_NMI));
4486 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4488 return (!to_vmx(vcpu)->nested.nested_run_pending &&
4489 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4490 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4491 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4494 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4498 if (enable_unrestricted_guest)
4501 ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
4505 to_kvm_vmx(kvm)->tss_addr = addr;
4506 return init_rmode_tss(kvm);
4509 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
4511 to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
4515 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4520 * Update instruction length as we may reinject the exception
4521 * from user space while in guest debugging mode.
4523 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4524 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4525 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4529 if (vcpu->guest_debug &
4530 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4547 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4548 int vec, u32 err_code)
4551 * Instruction with address size override prefix opcode 0x67
4552 * Cause the #SS fault with 0 error code in VM86 mode.
4554 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4555 if (kvm_emulate_instruction(vcpu, 0)) {
4556 if (vcpu->arch.halt_request) {
4557 vcpu->arch.halt_request = 0;
4558 return kvm_vcpu_halt(vcpu);
4566 * Forward all other exceptions that are valid in real mode.
4567 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4568 * the required debugging infrastructure rework.
4570 kvm_queue_exception(vcpu, vec);
4575 * Trigger machine check on the host. We assume all the MSRs are already set up
4576 * by the CPU and that we still run on the same CPU as the MCE occurred on.
4577 * We pass a fake environment to the machine check handler because we want
4578 * the guest to be always treated like user space, no matter what context
4579 * it used internally.
4581 static void kvm_machine_check(void)
4583 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4584 struct pt_regs regs = {
4585 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4586 .flags = X86_EFLAGS_IF,
4589 do_machine_check(®s, 0);
4593 static int handle_machine_check(struct kvm_vcpu *vcpu)
4595 /* handled by vmx_vcpu_run() */
4599 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
4601 struct vcpu_vmx *vmx = to_vmx(vcpu);
4602 struct kvm_run *kvm_run = vcpu->run;
4603 u32 intr_info, ex_no, error_code;
4604 unsigned long cr2, rip, dr6;
4607 vect_info = vmx->idt_vectoring_info;
4608 intr_info = vmx->exit_intr_info;
4610 if (is_machine_check(intr_info) || is_nmi(intr_info))
4611 return 1; /* handled by handle_exception_nmi_irqoff() */
4613 if (is_invalid_opcode(intr_info))
4614 return handle_ud(vcpu);
4617 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4618 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4620 if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
4621 WARN_ON_ONCE(!enable_vmware_backdoor);
4624 * VMware backdoor emulation on #GP interception only handles
4625 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
4626 * error code on #GP.
4629 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
4632 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
4636 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4637 * MMIO, it is better to report an internal error.
4638 * See the comments in vmx_handle_exit.
4640 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4641 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4642 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4643 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4644 vcpu->run->internal.ndata = 3;
4645 vcpu->run->internal.data[0] = vect_info;
4646 vcpu->run->internal.data[1] = intr_info;
4647 vcpu->run->internal.data[2] = error_code;
4651 if (is_page_fault(intr_info)) {
4652 cr2 = vmcs_readl(EXIT_QUALIFICATION);
4653 /* EPT won't cause page fault directly */
4654 WARN_ON_ONCE(!vcpu->arch.apf.host_apf_reason && enable_ept);
4655 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
4658 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4660 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4661 return handle_rmode_exception(vcpu, ex_no, error_code);
4665 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
4668 dr6 = vmcs_readl(EXIT_QUALIFICATION);
4669 if (!(vcpu->guest_debug &
4670 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4671 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
4672 vcpu->arch.dr6 |= dr6 | DR6_RTM;
4673 if (is_icebp(intr_info))
4674 WARN_ON(!skip_emulated_instruction(vcpu));
4676 kvm_queue_exception(vcpu, DB_VECTOR);
4679 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
4680 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4684 * Update instruction length as we may reinject #BP from
4685 * user space while in guest debugging mode. Reading it for
4686 * #DB as well causes no harm, it is not used in that case.
4688 vmx->vcpu.arch.event_exit_inst_len =
4689 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4690 kvm_run->exit_reason = KVM_EXIT_DEBUG;
4691 rip = kvm_rip_read(vcpu);
4692 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4693 kvm_run->debug.arch.exception = ex_no;
4696 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4697 kvm_run->ex.exception = ex_no;
4698 kvm_run->ex.error_code = error_code;
4704 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
4706 ++vcpu->stat.irq_exits;
4710 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4712 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4713 vcpu->mmio_needed = 0;
4717 static int handle_io(struct kvm_vcpu *vcpu)
4719 unsigned long exit_qualification;
4720 int size, in, string;
4723 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4724 string = (exit_qualification & 16) != 0;
4726 ++vcpu->stat.io_exits;
4729 return kvm_emulate_instruction(vcpu, 0);
4731 port = exit_qualification >> 16;
4732 size = (exit_qualification & 7) + 1;
4733 in = (exit_qualification & 8) != 0;
4735 return kvm_fast_pio(vcpu, size, port, in);
4739 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4742 * Patch in the VMCALL instruction:
4744 hypercall[0] = 0x0f;
4745 hypercall[1] = 0x01;
4746 hypercall[2] = 0xc1;
4749 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
4750 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4752 if (is_guest_mode(vcpu)) {
4753 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4754 unsigned long orig_val = val;
4757 * We get here when L2 changed cr0 in a way that did not change
4758 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4759 * but did change L0 shadowed bits. So we first calculate the
4760 * effective cr0 value that L1 would like to write into the
4761 * hardware. It consists of the L2-owned bits from the new
4762 * value combined with the L1-owned bits from L1's guest_cr0.
4764 val = (val & ~vmcs12->cr0_guest_host_mask) |
4765 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
4767 if (!nested_guest_cr0_valid(vcpu, val))
4770 if (kvm_set_cr0(vcpu, val))
4772 vmcs_writel(CR0_READ_SHADOW, orig_val);
4775 if (to_vmx(vcpu)->nested.vmxon &&
4776 !nested_host_cr0_valid(vcpu, val))
4779 return kvm_set_cr0(vcpu, val);
4783 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4785 if (is_guest_mode(vcpu)) {
4786 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4787 unsigned long orig_val = val;
4789 /* analogously to handle_set_cr0 */
4790 val = (val & ~vmcs12->cr4_guest_host_mask) |
4791 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
4792 if (kvm_set_cr4(vcpu, val))
4794 vmcs_writel(CR4_READ_SHADOW, orig_val);
4797 return kvm_set_cr4(vcpu, val);
4800 static int handle_desc(struct kvm_vcpu *vcpu)
4802 WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
4803 return kvm_emulate_instruction(vcpu, 0);
4806 static int handle_cr(struct kvm_vcpu *vcpu)
4808 unsigned long exit_qualification, val;
4814 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4815 cr = exit_qualification & 15;
4816 reg = (exit_qualification >> 8) & 15;
4817 switch ((exit_qualification >> 4) & 3) {
4818 case 0: /* mov to cr */
4819 val = kvm_register_readl(vcpu, reg);
4820 trace_kvm_cr_write(cr, val);
4823 err = handle_set_cr0(vcpu, val);
4824 return kvm_complete_insn_gp(vcpu, err);
4826 WARN_ON_ONCE(enable_unrestricted_guest);
4827 err = kvm_set_cr3(vcpu, val);
4828 return kvm_complete_insn_gp(vcpu, err);
4830 err = handle_set_cr4(vcpu, val);
4831 return kvm_complete_insn_gp(vcpu, err);
4833 u8 cr8_prev = kvm_get_cr8(vcpu);
4835 err = kvm_set_cr8(vcpu, cr8);
4836 ret = kvm_complete_insn_gp(vcpu, err);
4837 if (lapic_in_kernel(vcpu))
4839 if (cr8_prev <= cr8)
4842 * TODO: we might be squashing a
4843 * KVM_GUESTDBG_SINGLESTEP-triggered
4844 * KVM_EXIT_DEBUG here.
4846 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
4852 WARN_ONCE(1, "Guest should always own CR0.TS");
4853 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4854 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
4855 return kvm_skip_emulated_instruction(vcpu);
4856 case 1: /*mov from cr*/
4859 WARN_ON_ONCE(enable_unrestricted_guest);
4860 val = kvm_read_cr3(vcpu);
4861 kvm_register_write(vcpu, reg, val);
4862 trace_kvm_cr_read(cr, val);
4863 return kvm_skip_emulated_instruction(vcpu);
4865 val = kvm_get_cr8(vcpu);
4866 kvm_register_write(vcpu, reg, val);
4867 trace_kvm_cr_read(cr, val);
4868 return kvm_skip_emulated_instruction(vcpu);
4872 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4873 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
4874 kvm_lmsw(vcpu, val);
4876 return kvm_skip_emulated_instruction(vcpu);
4880 vcpu->run->exit_reason = 0;
4881 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
4882 (int)(exit_qualification >> 4) & 3, cr);
4886 static int handle_dr(struct kvm_vcpu *vcpu)
4888 unsigned long exit_qualification;
4891 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4892 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
4894 /* First, if DR does not exist, trigger UD */
4895 if (!kvm_require_dr(vcpu, dr))
4898 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
4899 if (!kvm_require_cpl(vcpu, 0))
4901 dr7 = vmcs_readl(GUEST_DR7);
4904 * As the vm-exit takes precedence over the debug trap, we
4905 * need to emulate the latter, either for the host or the
4906 * guest debugging itself.
4908 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
4909 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
4910 vcpu->run->debug.arch.dr7 = dr7;
4911 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
4912 vcpu->run->debug.arch.exception = DB_VECTOR;
4913 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
4916 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
4917 vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
4918 kvm_queue_exception(vcpu, DB_VECTOR);
4923 if (vcpu->guest_debug == 0) {
4924 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
4927 * No more DR vmexits; force a reload of the debug registers
4928 * and reenter on this instruction. The next vmexit will
4929 * retrieve the full state of the debug registers.
4931 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
4935 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
4936 if (exit_qualification & TYPE_MOV_FROM_DR) {
4939 if (kvm_get_dr(vcpu, dr, &val))
4941 kvm_register_write(vcpu, reg, val);
4943 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
4946 return kvm_skip_emulated_instruction(vcpu);
4949 static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
4951 return vcpu->arch.dr6;
4954 static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
4958 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
4960 get_debugreg(vcpu->arch.db[0], 0);
4961 get_debugreg(vcpu->arch.db[1], 1);
4962 get_debugreg(vcpu->arch.db[2], 2);
4963 get_debugreg(vcpu->arch.db[3], 3);
4964 get_debugreg(vcpu->arch.dr6, 6);
4965 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
4967 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
4968 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
4971 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
4973 vmcs_writel(GUEST_DR7, val);
4976 static int handle_cpuid(struct kvm_vcpu *vcpu)
4978 return kvm_emulate_cpuid(vcpu);
4981 static int handle_rdmsr(struct kvm_vcpu *vcpu)
4983 return kvm_emulate_rdmsr(vcpu);
4986 static int handle_wrmsr(struct kvm_vcpu *vcpu)
4988 return kvm_emulate_wrmsr(vcpu);
4991 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
4993 kvm_apic_update_ppr(vcpu);
4997 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
4999 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_VIRTUAL_INTR_PENDING);
5001 kvm_make_request(KVM_REQ_EVENT, vcpu);
5003 ++vcpu->stat.irq_window_exits;
5007 static int handle_halt(struct kvm_vcpu *vcpu)
5009 return kvm_emulate_halt(vcpu);
5012 static int handle_vmcall(struct kvm_vcpu *vcpu)
5014 return kvm_emulate_hypercall(vcpu);
5017 static int handle_invd(struct kvm_vcpu *vcpu)
5019 return kvm_emulate_instruction(vcpu, 0);
5022 static int handle_invlpg(struct kvm_vcpu *vcpu)
5024 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5026 kvm_mmu_invlpg(vcpu, exit_qualification);
5027 return kvm_skip_emulated_instruction(vcpu);
5030 static int handle_rdpmc(struct kvm_vcpu *vcpu)
5034 err = kvm_rdpmc(vcpu);
5035 return kvm_complete_insn_gp(vcpu, err);
5038 static int handle_wbinvd(struct kvm_vcpu *vcpu)
5040 return kvm_emulate_wbinvd(vcpu);
5043 static int handle_xsetbv(struct kvm_vcpu *vcpu)
5045 u64 new_bv = kvm_read_edx_eax(vcpu);
5046 u32 index = kvm_rcx_read(vcpu);
5048 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5049 return kvm_skip_emulated_instruction(vcpu);
5053 static int handle_apic_access(struct kvm_vcpu *vcpu)
5055 if (likely(fasteoi)) {
5056 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5057 int access_type, offset;
5059 access_type = exit_qualification & APIC_ACCESS_TYPE;
5060 offset = exit_qualification & APIC_ACCESS_OFFSET;
5062 * Sane guest uses MOV to write EOI, with written value
5063 * not cared. So make a short-circuit here by avoiding
5064 * heavy instruction emulation.
5066 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5067 (offset == APIC_EOI)) {
5068 kvm_lapic_set_eoi(vcpu);
5069 return kvm_skip_emulated_instruction(vcpu);
5072 return kvm_emulate_instruction(vcpu, 0);
5075 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5077 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5078 int vector = exit_qualification & 0xff;
5080 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5081 kvm_apic_set_eoi_accelerated(vcpu, vector);
5085 static int handle_apic_write(struct kvm_vcpu *vcpu)
5087 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5088 u32 offset = exit_qualification & 0xfff;
5090 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5091 kvm_apic_write_nodecode(vcpu, offset);
5095 static int handle_task_switch(struct kvm_vcpu *vcpu)
5097 struct vcpu_vmx *vmx = to_vmx(vcpu);
5098 unsigned long exit_qualification;
5099 bool has_error_code = false;
5102 int reason, type, idt_v, idt_index;
5104 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5105 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5106 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5108 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5110 reason = (u32)exit_qualification >> 30;
5111 if (reason == TASK_SWITCH_GATE && idt_v) {
5113 case INTR_TYPE_NMI_INTR:
5114 vcpu->arch.nmi_injected = false;
5115 vmx_set_nmi_mask(vcpu, true);
5117 case INTR_TYPE_EXT_INTR:
5118 case INTR_TYPE_SOFT_INTR:
5119 kvm_clear_interrupt_queue(vcpu);
5121 case INTR_TYPE_HARD_EXCEPTION:
5122 if (vmx->idt_vectoring_info &
5123 VECTORING_INFO_DELIVER_CODE_MASK) {
5124 has_error_code = true;
5126 vmcs_read32(IDT_VECTORING_ERROR_CODE);
5129 case INTR_TYPE_SOFT_EXCEPTION:
5130 kvm_clear_exception_queue(vcpu);
5136 tss_selector = exit_qualification;
5138 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5139 type != INTR_TYPE_EXT_INTR &&
5140 type != INTR_TYPE_NMI_INTR))
5141 WARN_ON(!skip_emulated_instruction(vcpu));
5144 * TODO: What about debug traps on tss switch?
5145 * Are we supposed to inject them and update dr6?
5147 return kvm_task_switch(vcpu, tss_selector,
5148 type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5149 reason, has_error_code, error_code);
5152 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5154 unsigned long exit_qualification;
5158 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5161 * EPT violation happened while executing iret from NMI,
5162 * "blocked by NMI" bit has to be set before next VM entry.
5163 * There are errata that may cause this bit to not be set:
5166 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5168 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5169 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5171 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5172 trace_kvm_page_fault(gpa, exit_qualification);
5174 /* Is it a read fault? */
5175 error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5176 ? PFERR_USER_MASK : 0;
5177 /* Is it a write fault? */
5178 error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5179 ? PFERR_WRITE_MASK : 0;
5180 /* Is it a fetch fault? */
5181 error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5182 ? PFERR_FETCH_MASK : 0;
5183 /* ept page table entry is present? */
5184 error_code |= (exit_qualification &
5185 (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
5186 EPT_VIOLATION_EXECUTABLE))
5187 ? PFERR_PRESENT_MASK : 0;
5189 error_code |= (exit_qualification & 0x100) != 0 ?
5190 PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5192 vcpu->arch.exit_qualification = exit_qualification;
5193 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5196 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5201 * A nested guest cannot optimize MMIO vmexits, because we have an
5202 * nGPA here instead of the required GPA.
5204 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5205 if (!is_guest_mode(vcpu) &&
5206 !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5207 trace_kvm_fast_mmio(gpa);
5208 return kvm_skip_emulated_instruction(vcpu);
5211 return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5214 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5216 WARN_ON_ONCE(!enable_vnmi);
5217 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_VIRTUAL_NMI_PENDING);
5218 ++vcpu->stat.nmi_window_exits;
5219 kvm_make_request(KVM_REQ_EVENT, vcpu);
5224 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5226 struct vcpu_vmx *vmx = to_vmx(vcpu);
5227 bool intr_window_requested;
5228 unsigned count = 130;
5231 * We should never reach the point where we are emulating L2
5232 * due to invalid guest state as that means we incorrectly
5233 * allowed a nested VMEntry with an invalid vmcs12.
5235 WARN_ON_ONCE(vmx->emulation_required && vmx->nested.nested_run_pending);
5237 intr_window_requested = exec_controls_get(vmx) &
5238 CPU_BASED_VIRTUAL_INTR_PENDING;
5240 while (vmx->emulation_required && count-- != 0) {
5241 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
5242 return handle_interrupt_window(&vmx->vcpu);
5244 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5247 if (!kvm_emulate_instruction(vcpu, 0))
5250 if (vmx->emulation_required && !vmx->rmode.vm86_active &&
5251 vcpu->arch.exception.pending) {
5252 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5253 vcpu->run->internal.suberror =
5254 KVM_INTERNAL_ERROR_EMULATION;
5255 vcpu->run->internal.ndata = 0;
5259 if (vcpu->arch.halt_request) {
5260 vcpu->arch.halt_request = 0;
5261 return kvm_vcpu_halt(vcpu);
5265 * Note, return 1 and not 0, vcpu_run() is responsible for
5266 * morphing the pending signal into the proper return code.
5268 if (signal_pending(current))
5278 static void grow_ple_window(struct kvm_vcpu *vcpu)
5280 struct vcpu_vmx *vmx = to_vmx(vcpu);
5281 unsigned int old = vmx->ple_window;
5283 vmx->ple_window = __grow_ple_window(old, ple_window,
5287 if (vmx->ple_window != old) {
5288 vmx->ple_window_dirty = true;
5289 trace_kvm_ple_window_update(vcpu->vcpu_id,
5290 vmx->ple_window, old);
5294 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5296 struct vcpu_vmx *vmx = to_vmx(vcpu);
5297 unsigned int old = vmx->ple_window;
5299 vmx->ple_window = __shrink_ple_window(old, ple_window,
5303 if (vmx->ple_window != old) {
5304 vmx->ple_window_dirty = true;
5305 trace_kvm_ple_window_update(vcpu->vcpu_id,
5306 vmx->ple_window, old);
5311 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
5313 static void wakeup_handler(void)
5315 struct kvm_vcpu *vcpu;
5316 int cpu = smp_processor_id();
5318 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
5319 list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
5320 blocked_vcpu_list) {
5321 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
5323 if (pi_test_on(pi_desc) == 1)
5324 kvm_vcpu_kick(vcpu);
5326 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
5329 static void vmx_enable_tdp(void)
5331 kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
5332 enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
5333 enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
5334 0ull, VMX_EPT_EXECUTABLE_MASK,
5335 cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
5336 VMX_EPT_RWX_MASK, 0ull);
5338 ept_set_mmio_spte_mask();
5343 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5344 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5346 static int handle_pause(struct kvm_vcpu *vcpu)
5348 if (!kvm_pause_in_guest(vcpu->kvm))
5349 grow_ple_window(vcpu);
5352 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5353 * VM-execution control is ignored if CPL > 0. OTOH, KVM
5354 * never set PAUSE_EXITING and just set PLE if supported,
5355 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5357 kvm_vcpu_on_spin(vcpu, true);
5358 return kvm_skip_emulated_instruction(vcpu);
5361 static int handle_nop(struct kvm_vcpu *vcpu)
5363 return kvm_skip_emulated_instruction(vcpu);
5366 static int handle_mwait(struct kvm_vcpu *vcpu)
5368 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
5369 return handle_nop(vcpu);
5372 static int handle_invalid_op(struct kvm_vcpu *vcpu)
5374 kvm_queue_exception(vcpu, UD_VECTOR);
5378 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5383 static int handle_monitor(struct kvm_vcpu *vcpu)
5385 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
5386 return handle_nop(vcpu);
5389 static int handle_invpcid(struct kvm_vcpu *vcpu)
5391 u32 vmx_instruction_info;
5395 struct x86_exception e;
5397 unsigned long roots_to_free = 0;
5403 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5404 kvm_queue_exception(vcpu, UD_VECTOR);
5408 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5409 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5412 kvm_inject_gp(vcpu, 0);
5416 /* According to the Intel instruction reference, the memory operand
5417 * is read even if it isn't needed (e.g., for type==all)
5419 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5420 vmx_instruction_info, false,
5421 sizeof(operand), &gva))
5424 if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
5425 kvm_inject_page_fault(vcpu, &e);
5429 if (operand.pcid >> 12 != 0) {
5430 kvm_inject_gp(vcpu, 0);
5434 pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
5437 case INVPCID_TYPE_INDIV_ADDR:
5438 if ((!pcid_enabled && (operand.pcid != 0)) ||
5439 is_noncanonical_address(operand.gla, vcpu)) {
5440 kvm_inject_gp(vcpu, 0);
5443 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
5444 return kvm_skip_emulated_instruction(vcpu);
5446 case INVPCID_TYPE_SINGLE_CTXT:
5447 if (!pcid_enabled && (operand.pcid != 0)) {
5448 kvm_inject_gp(vcpu, 0);
5452 if (kvm_get_active_pcid(vcpu) == operand.pcid) {
5453 kvm_mmu_sync_roots(vcpu);
5454 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
5457 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5458 if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].cr3)
5460 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5462 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
5464 * If neither the current cr3 nor any of the prev_roots use the
5465 * given PCID, then nothing needs to be done here because a
5466 * resync will happen anyway before switching to any other CR3.
5469 return kvm_skip_emulated_instruction(vcpu);
5471 case INVPCID_TYPE_ALL_NON_GLOBAL:
5473 * Currently, KVM doesn't mark global entries in the shadow
5474 * page tables, so a non-global flush just degenerates to a
5475 * global flush. If needed, we could optimize this later by
5476 * keeping track of global entries in shadow page tables.
5480 case INVPCID_TYPE_ALL_INCL_GLOBAL:
5481 kvm_mmu_unload(vcpu);
5482 return kvm_skip_emulated_instruction(vcpu);
5485 BUG(); /* We have already checked above that type <= 3 */
5489 static int handle_pml_full(struct kvm_vcpu *vcpu)
5491 unsigned long exit_qualification;
5493 trace_kvm_pml_full(vcpu->vcpu_id);
5495 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5498 * PML buffer FULL happened while executing iret from NMI,
5499 * "blocked by NMI" bit has to be set before next VM entry.
5501 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5503 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5504 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5505 GUEST_INTR_STATE_NMI);
5508 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5509 * here.., and there's no userspace involvement needed for PML.
5514 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
5516 struct vcpu_vmx *vmx = to_vmx(vcpu);
5518 if (!vmx->req_immediate_exit &&
5519 !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled))
5520 kvm_lapic_expired_hv_timer(vcpu);
5526 * When nested=0, all VMX instruction VM Exits filter here. The handlers
5527 * are overwritten by nested_vmx_setup() when nested=1.
5529 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
5531 kvm_queue_exception(vcpu, UD_VECTOR);
5535 static int handle_encls(struct kvm_vcpu *vcpu)
5538 * SGX virtualization is not yet supported. There is no software
5539 * enable bit for SGX, so we have to trap ENCLS and inject a #UD
5540 * to prevent the guest from executing ENCLS.
5542 kvm_queue_exception(vcpu, UD_VECTOR);
5547 * The exit handlers return 1 if the exit was handled fully and guest execution
5548 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
5549 * to be done to userspace and return 0.
5551 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5552 [EXIT_REASON_EXCEPTION_NMI] = handle_exception_nmi,
5553 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
5554 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
5555 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
5556 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
5557 [EXIT_REASON_CR_ACCESS] = handle_cr,
5558 [EXIT_REASON_DR_ACCESS] = handle_dr,
5559 [EXIT_REASON_CPUID] = handle_cpuid,
5560 [EXIT_REASON_MSR_READ] = handle_rdmsr,
5561 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
5562 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
5563 [EXIT_REASON_HLT] = handle_halt,
5564 [EXIT_REASON_INVD] = handle_invd,
5565 [EXIT_REASON_INVLPG] = handle_invlpg,
5566 [EXIT_REASON_RDPMC] = handle_rdpmc,
5567 [EXIT_REASON_VMCALL] = handle_vmcall,
5568 [EXIT_REASON_VMCLEAR] = handle_vmx_instruction,
5569 [EXIT_REASON_VMLAUNCH] = handle_vmx_instruction,
5570 [EXIT_REASON_VMPTRLD] = handle_vmx_instruction,
5571 [EXIT_REASON_VMPTRST] = handle_vmx_instruction,
5572 [EXIT_REASON_VMREAD] = handle_vmx_instruction,
5573 [EXIT_REASON_VMRESUME] = handle_vmx_instruction,
5574 [EXIT_REASON_VMWRITE] = handle_vmx_instruction,
5575 [EXIT_REASON_VMOFF] = handle_vmx_instruction,
5576 [EXIT_REASON_VMON] = handle_vmx_instruction,
5577 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
5578 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
5579 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
5580 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
5581 [EXIT_REASON_WBINVD] = handle_wbinvd,
5582 [EXIT_REASON_XSETBV] = handle_xsetbv,
5583 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
5584 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
5585 [EXIT_REASON_GDTR_IDTR] = handle_desc,
5586 [EXIT_REASON_LDTR_TR] = handle_desc,
5587 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
5588 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
5589 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
5590 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait,
5591 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap,
5592 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor,
5593 [EXIT_REASON_INVEPT] = handle_vmx_instruction,
5594 [EXIT_REASON_INVVPID] = handle_vmx_instruction,
5595 [EXIT_REASON_RDRAND] = handle_invalid_op,
5596 [EXIT_REASON_RDSEED] = handle_invalid_op,
5597 [EXIT_REASON_PML_FULL] = handle_pml_full,
5598 [EXIT_REASON_INVPCID] = handle_invpcid,
5599 [EXIT_REASON_VMFUNC] = handle_vmx_instruction,
5600 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer,
5601 [EXIT_REASON_ENCLS] = handle_encls,
5604 static const int kvm_vmx_max_exit_handlers =
5605 ARRAY_SIZE(kvm_vmx_exit_handlers);
5607 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
5609 *info1 = vmcs_readl(EXIT_QUALIFICATION);
5610 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
5613 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
5616 __free_page(vmx->pml_pg);
5621 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
5623 struct vcpu_vmx *vmx = to_vmx(vcpu);
5627 pml_idx = vmcs_read16(GUEST_PML_INDEX);
5629 /* Do nothing if PML buffer is empty */
5630 if (pml_idx == (PML_ENTITY_NUM - 1))
5633 /* PML index always points to next available PML buffer entity */
5634 if (pml_idx >= PML_ENTITY_NUM)
5639 pml_buf = page_address(vmx->pml_pg);
5640 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
5643 gpa = pml_buf[pml_idx];
5644 WARN_ON(gpa & (PAGE_SIZE - 1));
5645 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5648 /* reset PML index */
5649 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5653 * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
5654 * Called before reporting dirty_bitmap to userspace.
5656 static void kvm_flush_pml_buffers(struct kvm *kvm)
5659 struct kvm_vcpu *vcpu;
5661 * We only need to kick vcpu out of guest mode here, as PML buffer
5662 * is flushed at beginning of all VMEXITs, and it's obvious that only
5663 * vcpus running in guest are possible to have unflushed GPAs in PML
5666 kvm_for_each_vcpu(i, vcpu, kvm)
5667 kvm_vcpu_kick(vcpu);
5670 static void vmx_dump_sel(char *name, uint32_t sel)
5672 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
5673 name, vmcs_read16(sel),
5674 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
5675 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
5676 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
5679 static void vmx_dump_dtsel(char *name, uint32_t limit)
5681 pr_err("%s limit=0x%08x, base=0x%016lx\n",
5682 name, vmcs_read32(limit),
5683 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
5686 void dump_vmcs(void)
5688 u32 vmentry_ctl, vmexit_ctl;
5689 u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
5694 if (!dump_invalid_vmcs) {
5695 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
5699 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
5700 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
5701 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5702 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
5703 cr4 = vmcs_readl(GUEST_CR4);
5704 efer = vmcs_read64(GUEST_IA32_EFER);
5705 secondary_exec_control = 0;
5706 if (cpu_has_secondary_exec_ctrls())
5707 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5709 pr_err("*** Guest State ***\n");
5710 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5711 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
5712 vmcs_readl(CR0_GUEST_HOST_MASK));
5713 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5714 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
5715 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
5716 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
5717 (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
5719 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n",
5720 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
5721 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n",
5722 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
5724 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
5725 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
5726 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
5727 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
5728 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5729 vmcs_readl(GUEST_SYSENTER_ESP),
5730 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
5731 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR);
5732 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR);
5733 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR);
5734 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR);
5735 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR);
5736 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR);
5737 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
5738 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
5739 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
5740 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR);
5741 if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
5742 (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
5743 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
5744 efer, vmcs_read64(GUEST_IA32_PAT));
5745 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n",
5746 vmcs_read64(GUEST_IA32_DEBUGCTL),
5747 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
5748 if (cpu_has_load_perf_global_ctrl() &&
5749 vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
5750 pr_err("PerfGlobCtl = 0x%016llx\n",
5751 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
5752 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
5753 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
5754 pr_err("Interruptibility = %08x ActivityState = %08x\n",
5755 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
5756 vmcs_read32(GUEST_ACTIVITY_STATE));
5757 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
5758 pr_err("InterruptStatus = %04x\n",
5759 vmcs_read16(GUEST_INTR_STATUS));
5761 pr_err("*** Host State ***\n");
5762 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
5763 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
5764 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
5765 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
5766 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
5767 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
5768 vmcs_read16(HOST_TR_SELECTOR));
5769 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
5770 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
5771 vmcs_readl(HOST_TR_BASE));
5772 pr_err("GDTBase=%016lx IDTBase=%016lx\n",
5773 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
5774 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
5775 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
5776 vmcs_readl(HOST_CR4));
5777 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5778 vmcs_readl(HOST_IA32_SYSENTER_ESP),
5779 vmcs_read32(HOST_IA32_SYSENTER_CS),
5780 vmcs_readl(HOST_IA32_SYSENTER_EIP));
5781 if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
5782 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
5783 vmcs_read64(HOST_IA32_EFER),
5784 vmcs_read64(HOST_IA32_PAT));
5785 if (cpu_has_load_perf_global_ctrl() &&
5786 vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
5787 pr_err("PerfGlobCtl = 0x%016llx\n",
5788 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
5790 pr_err("*** Control State ***\n");
5791 pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
5792 pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
5793 pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
5794 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
5795 vmcs_read32(EXCEPTION_BITMAP),
5796 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
5797 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
5798 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
5799 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
5800 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
5801 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
5802 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
5803 vmcs_read32(VM_EXIT_INTR_INFO),
5804 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5805 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
5806 pr_err(" reason=%08x qualification=%016lx\n",
5807 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
5808 pr_err("IDTVectoring: info=%08x errcode=%08x\n",
5809 vmcs_read32(IDT_VECTORING_INFO_FIELD),
5810 vmcs_read32(IDT_VECTORING_ERROR_CODE));
5811 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
5812 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
5813 pr_err("TSC Multiplier = 0x%016llx\n",
5814 vmcs_read64(TSC_MULTIPLIER));
5815 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
5816 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
5817 u16 status = vmcs_read16(GUEST_INTR_STATUS);
5818 pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
5820 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
5821 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
5822 pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
5823 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
5825 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
5826 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
5827 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
5828 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
5829 n = vmcs_read32(CR3_TARGET_COUNT);
5830 for (i = 0; i + 1 < n; i += 4)
5831 pr_err("CR3 target%u=%016lx target%u=%016lx\n",
5832 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
5833 i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
5835 pr_err("CR3 target%u=%016lx\n",
5836 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
5837 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
5838 pr_err("PLE Gap=%08x Window=%08x\n",
5839 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
5840 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
5841 pr_err("Virtual processor ID = 0x%04x\n",
5842 vmcs_read16(VIRTUAL_PROCESSOR_ID));
5846 * The guest has exited. See if we can fix it or if we need userspace
5849 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
5851 struct vcpu_vmx *vmx = to_vmx(vcpu);
5852 u32 exit_reason = vmx->exit_reason;
5853 u32 vectoring_info = vmx->idt_vectoring_info;
5855 trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
5858 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
5859 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
5860 * querying dirty_bitmap, we only need to kick all vcpus out of guest
5861 * mode as if vcpus is in root mode, the PML buffer must has been
5865 vmx_flush_pml_buffer(vcpu);
5867 /* If guest state is invalid, start emulating */
5868 if (vmx->emulation_required)
5869 return handle_invalid_guest_state(vcpu);
5871 if (is_guest_mode(vcpu) && nested_vmx_exit_reflected(vcpu, exit_reason))
5872 return nested_vmx_reflect_vmexit(vcpu, exit_reason);
5874 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
5876 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5877 vcpu->run->fail_entry.hardware_entry_failure_reason
5882 if (unlikely(vmx->fail)) {
5884 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5885 vcpu->run->fail_entry.hardware_entry_failure_reason
5886 = vmcs_read32(VM_INSTRUCTION_ERROR);
5892 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
5893 * delivery event since it indicates guest is accessing MMIO.
5894 * The vm-exit can be triggered again after return to guest that
5895 * will cause infinite loop.
5897 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
5898 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
5899 exit_reason != EXIT_REASON_EPT_VIOLATION &&
5900 exit_reason != EXIT_REASON_PML_FULL &&
5901 exit_reason != EXIT_REASON_TASK_SWITCH)) {
5902 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5903 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
5904 vcpu->run->internal.ndata = 3;
5905 vcpu->run->internal.data[0] = vectoring_info;
5906 vcpu->run->internal.data[1] = exit_reason;
5907 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
5908 if (exit_reason == EXIT_REASON_EPT_MISCONFIG) {
5909 vcpu->run->internal.ndata++;
5910 vcpu->run->internal.data[3] =
5911 vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5916 if (unlikely(!enable_vnmi &&
5917 vmx->loaded_vmcs->soft_vnmi_blocked)) {
5918 if (vmx_interrupt_allowed(vcpu)) {
5919 vmx->loaded_vmcs->soft_vnmi_blocked = 0;
5920 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
5921 vcpu->arch.nmi_pending) {
5923 * This CPU don't support us in finding the end of an
5924 * NMI-blocked window if the guest runs with IRQs
5925 * disabled. So we pull the trigger after 1 s of
5926 * futile waiting, but inform the user about this.
5928 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
5929 "state on VCPU %d after 1 s timeout\n",
5930 __func__, vcpu->vcpu_id);
5931 vmx->loaded_vmcs->soft_vnmi_blocked = 0;
5935 if (exit_reason < kvm_vmx_max_exit_handlers
5936 && kvm_vmx_exit_handlers[exit_reason])
5937 return kvm_vmx_exit_handlers[exit_reason](vcpu);
5939 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
5942 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5943 vcpu->run->internal.suberror =
5944 KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
5945 vcpu->run->internal.ndata = 1;
5946 vcpu->run->internal.data[0] = exit_reason;
5952 * Software based L1D cache flush which is used when microcode providing
5953 * the cache control MSR is not loaded.
5955 * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
5956 * flush it is required to read in 64 KiB because the replacement algorithm
5957 * is not exactly LRU. This could be sized at runtime via topology
5958 * information but as all relevant affected CPUs have 32KiB L1D cache size
5959 * there is no point in doing so.
5961 static void vmx_l1d_flush(struct kvm_vcpu *vcpu)
5963 int size = PAGE_SIZE << L1D_CACHE_ORDER;
5966 * This code is only executed when the the flush mode is 'cond' or
5969 if (static_branch_likely(&vmx_l1d_flush_cond)) {
5973 * Clear the per-vcpu flush bit, it gets set again
5974 * either from vcpu_run() or from one of the unsafe
5977 flush_l1d = vcpu->arch.l1tf_flush_l1d;
5978 vcpu->arch.l1tf_flush_l1d = false;
5981 * Clear the per-cpu flush bit, it gets set again from
5982 * the interrupt handlers.
5984 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
5985 kvm_clear_cpu_l1tf_flush_l1d();
5991 vcpu->stat.l1d_flush++;
5993 if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
5994 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
5999 /* First ensure the pages are in the TLB */
6000 "xorl %%eax, %%eax\n"
6001 ".Lpopulate_tlb:\n\t"
6002 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6003 "addl $4096, %%eax\n\t"
6004 "cmpl %%eax, %[size]\n\t"
6005 "jne .Lpopulate_tlb\n\t"
6006 "xorl %%eax, %%eax\n\t"
6008 /* Now fill the cache */
6009 "xorl %%eax, %%eax\n"
6011 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6012 "addl $64, %%eax\n\t"
6013 "cmpl %%eax, %[size]\n\t"
6014 "jne .Lfill_cache\n\t"
6016 :: [flush_pages] "r" (vmx_l1d_flush_pages),
6018 : "eax", "ebx", "ecx", "edx");
6021 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6023 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6025 if (is_guest_mode(vcpu) &&
6026 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6029 if (irr == -1 || tpr < irr) {
6030 vmcs_write32(TPR_THRESHOLD, 0);
6034 vmcs_write32(TPR_THRESHOLD, irr);
6037 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6039 struct vcpu_vmx *vmx = to_vmx(vcpu);
6040 u32 sec_exec_control;
6042 if (!lapic_in_kernel(vcpu))
6045 if (!flexpriority_enabled &&
6046 !cpu_has_vmx_virtualize_x2apic_mode())
6049 /* Postpone execution until vmcs01 is the current VMCS. */
6050 if (is_guest_mode(vcpu)) {
6051 vmx->nested.change_vmcs01_virtual_apic_mode = true;
6055 sec_exec_control = secondary_exec_controls_get(vmx);
6056 sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6057 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6059 switch (kvm_get_apic_mode(vcpu)) {
6060 case LAPIC_MODE_INVALID:
6061 WARN_ONCE(true, "Invalid local APIC state");
6062 case LAPIC_MODE_DISABLED:
6064 case LAPIC_MODE_XAPIC:
6065 if (flexpriority_enabled) {
6067 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6068 vmx_flush_tlb(vcpu, true);
6071 case LAPIC_MODE_X2APIC:
6072 if (cpu_has_vmx_virtualize_x2apic_mode())
6074 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6077 secondary_exec_controls_set(vmx, sec_exec_control);
6079 vmx_update_msr_bitmap(vcpu);
6082 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
6084 if (!is_guest_mode(vcpu)) {
6085 vmcs_write64(APIC_ACCESS_ADDR, hpa);
6086 vmx_flush_tlb(vcpu, true);
6090 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
6098 status = vmcs_read16(GUEST_INTR_STATUS);
6100 if (max_isr != old) {
6102 status |= max_isr << 8;
6103 vmcs_write16(GUEST_INTR_STATUS, status);
6107 static void vmx_set_rvi(int vector)
6115 status = vmcs_read16(GUEST_INTR_STATUS);
6116 old = (u8)status & 0xff;
6117 if ((u8)vector != old) {
6119 status |= (u8)vector;
6120 vmcs_write16(GUEST_INTR_STATUS, status);
6124 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6127 * When running L2, updating RVI is only relevant when
6128 * vmcs12 virtual-interrupt-delivery enabled.
6129 * However, it can be enabled only when L1 also
6130 * intercepts external-interrupts and in that case
6131 * we should not update vmcs02 RVI but instead intercept
6132 * interrupt. Therefore, do nothing when running L2.
6134 if (!is_guest_mode(vcpu))
6135 vmx_set_rvi(max_irr);
6138 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6140 struct vcpu_vmx *vmx = to_vmx(vcpu);
6142 bool max_irr_updated;
6144 WARN_ON(!vcpu->arch.apicv_active);
6145 if (pi_test_on(&vmx->pi_desc)) {
6146 pi_clear_on(&vmx->pi_desc);
6148 * IOMMU can write to PIR.ON, so the barrier matters even on UP.
6149 * But on x86 this is just a compiler barrier anyway.
6151 smp_mb__after_atomic();
6153 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6156 * If we are running L2 and L1 has a new pending interrupt
6157 * which can be injected, we should re-evaluate
6158 * what should be done with this new L1 interrupt.
6159 * If L1 intercepts external-interrupts, we should
6160 * exit from L2 to L1. Otherwise, interrupt should be
6161 * delivered directly to L2.
6163 if (is_guest_mode(vcpu) && max_irr_updated) {
6164 if (nested_exit_on_intr(vcpu))
6165 kvm_vcpu_exiting_guest_mode(vcpu);
6167 kvm_make_request(KVM_REQ_EVENT, vcpu);
6170 max_irr = kvm_lapic_find_highest_irr(vcpu);
6172 vmx_hwapic_irr_update(vcpu, max_irr);
6176 static bool vmx_dy_apicv_has_pending_interrupt(struct kvm_vcpu *vcpu)
6178 return pi_test_on(vcpu_to_pi_desc(vcpu));
6181 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6183 if (!kvm_vcpu_apicv_active(vcpu))
6186 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6187 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6188 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6189 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6192 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
6194 struct vcpu_vmx *vmx = to_vmx(vcpu);
6196 pi_clear_on(&vmx->pi_desc);
6197 memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6200 static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx)
6202 vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6204 /* if exit due to PF check for async PF */
6205 if (is_page_fault(vmx->exit_intr_info))
6206 vmx->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
6208 /* Handle machine checks before interrupts are enabled */
6209 if (is_machine_check(vmx->exit_intr_info))
6210 kvm_machine_check();
6212 /* We need to handle NMIs before interrupts are enabled */
6213 if (is_nmi(vmx->exit_intr_info)) {
6214 kvm_before_interrupt(&vmx->vcpu);
6216 kvm_after_interrupt(&vmx->vcpu);
6220 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6222 unsigned int vector;
6223 unsigned long entry;
6224 #ifdef CONFIG_X86_64
6230 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6231 if (WARN_ONCE(!is_external_intr(intr_info),
6232 "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info))
6235 vector = intr_info & INTR_INFO_VECTOR_MASK;
6236 desc = (gate_desc *)host_idt_base + vector;
6237 entry = gate_offset(desc);
6239 kvm_before_interrupt(vcpu);
6242 #ifdef CONFIG_X86_64
6243 "mov %%" _ASM_SP ", %[sp]\n\t"
6244 "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
6249 __ASM_SIZE(push) " $%c[cs]\n\t"
6252 #ifdef CONFIG_X86_64
6257 THUNK_TARGET(entry),
6258 [ss]"i"(__KERNEL_DS),
6259 [cs]"i"(__KERNEL_CS)
6262 kvm_after_interrupt(vcpu);
6264 STACK_FRAME_NON_STANDARD(handle_external_interrupt_irqoff);
6266 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6268 struct vcpu_vmx *vmx = to_vmx(vcpu);
6270 if (vmx->exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
6271 handle_external_interrupt_irqoff(vcpu);
6272 else if (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI)
6273 handle_exception_nmi_irqoff(vmx);
6276 static bool vmx_has_emulated_msr(int index)
6279 case MSR_IA32_SMBASE:
6281 * We cannot do SMM unless we can run the guest in big
6284 return enable_unrestricted_guest || emulate_invalid_guest_state;
6285 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
6287 case MSR_AMD64_VIRT_SPEC_CTRL:
6288 /* This is AMD only. */
6295 static bool vmx_pt_supported(void)
6297 return pt_mode == PT_MODE_HOST_GUEST;
6300 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6305 bool idtv_info_valid;
6307 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6310 if (vmx->loaded_vmcs->nmi_known_unmasked)
6313 * Can't use vmx->exit_intr_info since we're not sure what
6314 * the exit reason is.
6316 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6317 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6318 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6320 * SDM 3: 27.7.1.2 (September 2008)
6321 * Re-set bit "block by NMI" before VM entry if vmexit caused by
6322 * a guest IRET fault.
6323 * SDM 3: 23.2.2 (September 2008)
6324 * Bit 12 is undefined in any of the following cases:
6325 * If the VM exit sets the valid bit in the IDT-vectoring
6326 * information field.
6327 * If the VM exit is due to a double fault.
6329 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6330 vector != DF_VECTOR && !idtv_info_valid)
6331 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6332 GUEST_INTR_STATE_NMI);
6334 vmx->loaded_vmcs->nmi_known_unmasked =
6335 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6336 & GUEST_INTR_STATE_NMI);
6337 } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
6338 vmx->loaded_vmcs->vnmi_blocked_time +=
6339 ktime_to_ns(ktime_sub(ktime_get(),
6340 vmx->loaded_vmcs->entry_time));
6343 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
6344 u32 idt_vectoring_info,
6345 int instr_len_field,
6346 int error_code_field)
6350 bool idtv_info_valid;
6352 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6354 vcpu->arch.nmi_injected = false;
6355 kvm_clear_exception_queue(vcpu);
6356 kvm_clear_interrupt_queue(vcpu);
6358 if (!idtv_info_valid)
6361 kvm_make_request(KVM_REQ_EVENT, vcpu);
6363 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6364 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6367 case INTR_TYPE_NMI_INTR:
6368 vcpu->arch.nmi_injected = true;
6370 * SDM 3: 27.7.1.2 (September 2008)
6371 * Clear bit "block by NMI" before VM entry if a NMI
6374 vmx_set_nmi_mask(vcpu, false);
6376 case INTR_TYPE_SOFT_EXCEPTION:
6377 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6379 case INTR_TYPE_HARD_EXCEPTION:
6380 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6381 u32 err = vmcs_read32(error_code_field);
6382 kvm_requeue_exception_e(vcpu, vector, err);
6384 kvm_requeue_exception(vcpu, vector);
6386 case INTR_TYPE_SOFT_INTR:
6387 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6389 case INTR_TYPE_EXT_INTR:
6390 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
6397 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6399 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
6400 VM_EXIT_INSTRUCTION_LEN,
6401 IDT_VECTORING_ERROR_CODE);
6404 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6406 __vmx_complete_interrupts(vcpu,
6407 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6408 VM_ENTRY_INSTRUCTION_LEN,
6409 VM_ENTRY_EXCEPTION_ERROR_CODE);
6411 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6414 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6417 struct perf_guest_switch_msr *msrs;
6419 msrs = perf_guest_get_msrs(&nr_msrs);
6424 for (i = 0; i < nr_msrs; i++)
6425 if (msrs[i].host == msrs[i].guest)
6426 clear_atomic_switch_msr(vmx, msrs[i].msr);
6428 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6429 msrs[i].host, false);
6432 static void atomic_switch_umwait_control_msr(struct vcpu_vmx *vmx)
6434 u32 host_umwait_control;
6436 if (!vmx_has_waitpkg(vmx))
6439 host_umwait_control = get_umwait_control_msr();
6441 if (vmx->msr_ia32_umwait_control != host_umwait_control)
6442 add_atomic_switch_msr(vmx, MSR_IA32_UMWAIT_CONTROL,
6443 vmx->msr_ia32_umwait_control,
6444 host_umwait_control, false);
6446 clear_atomic_switch_msr(vmx, MSR_IA32_UMWAIT_CONTROL);
6449 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
6451 struct vcpu_vmx *vmx = to_vmx(vcpu);
6455 if (vmx->req_immediate_exit) {
6456 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
6457 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6458 } else if (vmx->hv_deadline_tsc != -1) {
6460 if (vmx->hv_deadline_tsc > tscl)
6461 /* set_hv_timer ensures the delta fits in 32-bits */
6462 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
6463 cpu_preemption_timer_multi);
6467 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
6468 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6469 } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
6470 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
6471 vmx->loaded_vmcs->hv_timer_soft_disabled = true;
6475 void vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
6477 if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
6478 vmx->loaded_vmcs->host_state.rsp = host_rsp;
6479 vmcs_writel(HOST_RSP, host_rsp);
6483 bool __vmx_vcpu_run(struct vcpu_vmx *vmx, unsigned long *regs, bool launched);
6485 static void vmx_vcpu_run(struct kvm_vcpu *vcpu)
6487 struct vcpu_vmx *vmx = to_vmx(vcpu);
6488 unsigned long cr3, cr4;
6490 /* Record the guest's net vcpu time for enforced NMI injections. */
6491 if (unlikely(!enable_vnmi &&
6492 vmx->loaded_vmcs->soft_vnmi_blocked))
6493 vmx->loaded_vmcs->entry_time = ktime_get();
6495 /* Don't enter VMX if guest state is invalid, let the exit handler
6496 start emulation until we arrive back to a valid state */
6497 if (vmx->emulation_required)
6500 if (vmx->ple_window_dirty) {
6501 vmx->ple_window_dirty = false;
6502 vmcs_write32(PLE_WINDOW, vmx->ple_window);
6505 if (vmx->nested.need_vmcs12_to_shadow_sync)
6506 nested_sync_vmcs12_to_shadow(vcpu);
6508 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
6509 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6510 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
6511 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6513 cr3 = __get_current_cr3_fast();
6514 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
6515 vmcs_writel(HOST_CR3, cr3);
6516 vmx->loaded_vmcs->host_state.cr3 = cr3;
6519 cr4 = cr4_read_shadow();
6520 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
6521 vmcs_writel(HOST_CR4, cr4);
6522 vmx->loaded_vmcs->host_state.cr4 = cr4;
6525 /* When single-stepping over STI and MOV SS, we must clear the
6526 * corresponding interruptibility bits in the guest state. Otherwise
6527 * vmentry fails as it then expects bit 14 (BS) in pending debug
6528 * exceptions being set, but that's not correct for the guest debugging
6530 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6531 vmx_set_interrupt_shadow(vcpu, 0);
6533 kvm_load_guest_xcr0(vcpu);
6535 if (static_cpu_has(X86_FEATURE_PKU) &&
6536 kvm_read_cr4_bits(vcpu, X86_CR4_PKE) &&
6537 vcpu->arch.pkru != vmx->host_pkru)
6538 __write_pkru(vcpu->arch.pkru);
6540 pt_guest_enter(vmx);
6542 atomic_switch_perf_msrs(vmx);
6543 atomic_switch_umwait_control_msr(vmx);
6545 if (enable_preemption_timer)
6546 vmx_update_hv_timer(vcpu);
6548 if (lapic_in_kernel(vcpu) &&
6549 vcpu->arch.apic->lapic_timer.timer_advance_ns)
6550 kvm_wait_lapic_expire(vcpu);
6553 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
6554 * it's non-zero. Since vmentry is serialising on affected CPUs, there
6555 * is no need to worry about the conditional branch over the wrmsr
6556 * being speculatively taken.
6558 x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
6560 /* L1D Flush includes CPU buffer clear to mitigate MDS */
6561 if (static_branch_unlikely(&vmx_l1d_should_flush))
6562 vmx_l1d_flush(vcpu);
6563 else if (static_branch_unlikely(&mds_user_clear))
6564 mds_clear_cpu_buffers();
6566 if (vcpu->arch.cr2 != read_cr2())
6567 write_cr2(vcpu->arch.cr2);
6569 vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
6570 vmx->loaded_vmcs->launched);
6572 vcpu->arch.cr2 = read_cr2();
6575 * We do not use IBRS in the kernel. If this vCPU has used the
6576 * SPEC_CTRL MSR it may have left it on; save the value and
6577 * turn it off. This is much more efficient than blindly adding
6578 * it to the atomic save/restore list. Especially as the former
6579 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
6581 * For non-nested case:
6582 * If the L01 MSR bitmap does not intercept the MSR, then we need to
6586 * If the L02 MSR bitmap does not intercept the MSR, then we need to
6589 if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
6590 vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
6592 x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0);
6594 /* All fields are clean at this point */
6595 if (static_branch_unlikely(&enable_evmcs))
6596 current_evmcs->hv_clean_fields |=
6597 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
6599 if (static_branch_unlikely(&enable_evmcs))
6600 current_evmcs->hv_vp_id = vcpu->arch.hyperv.vp_index;
6602 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
6603 if (vmx->host_debugctlmsr)
6604 update_debugctlmsr(vmx->host_debugctlmsr);
6606 #ifndef CONFIG_X86_64
6608 * The sysexit path does not restore ds/es, so we must set them to
6609 * a reasonable value ourselves.
6611 * We can't defer this to vmx_prepare_switch_to_host() since that
6612 * function may be executed in interrupt context, which saves and
6613 * restore segments around it, nullifying its effect.
6615 loadsegment(ds, __USER_DS);
6616 loadsegment(es, __USER_DS);
6619 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
6620 | (1 << VCPU_EXREG_RFLAGS)
6621 | (1 << VCPU_EXREG_PDPTR)
6622 | (1 << VCPU_EXREG_SEGMENTS)
6623 | (1 << VCPU_EXREG_CR3));
6624 vcpu->arch.regs_dirty = 0;
6629 * eager fpu is enabled if PKEY is supported and CR4 is switched
6630 * back on host, so it is safe to read guest PKRU from current
6633 if (static_cpu_has(X86_FEATURE_PKU) &&
6634 kvm_read_cr4_bits(vcpu, X86_CR4_PKE)) {
6635 vcpu->arch.pkru = rdpkru();
6636 if (vcpu->arch.pkru != vmx->host_pkru)
6637 __write_pkru(vmx->host_pkru);
6640 kvm_put_guest_xcr0(vcpu);
6642 vmx->nested.nested_run_pending = 0;
6643 vmx->idt_vectoring_info = 0;
6645 vmx->exit_reason = vmx->fail ? 0xdead : vmcs_read32(VM_EXIT_REASON);
6646 if ((u16)vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY)
6647 kvm_machine_check();
6649 if (vmx->fail || (vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
6652 vmx->loaded_vmcs->launched = 1;
6653 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6655 vmx_recover_nmi_blocking(vmx);
6656 vmx_complete_interrupts(vmx);
6659 static struct kvm *vmx_vm_alloc(void)
6661 struct kvm_vmx *kvm_vmx = __vmalloc(sizeof(struct kvm_vmx),
6662 GFP_KERNEL_ACCOUNT | __GFP_ZERO,
6664 return &kvm_vmx->kvm;
6667 static void vmx_vm_free(struct kvm *kvm)
6669 kfree(kvm->arch.hyperv.hv_pa_pg);
6670 vfree(to_kvm_vmx(kvm));
6673 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6675 struct vcpu_vmx *vmx = to_vmx(vcpu);
6678 vmx_destroy_pml_buffer(vmx);
6679 free_vpid(vmx->vpid);
6680 nested_vmx_free_vcpu(vcpu);
6681 free_loaded_vmcs(vmx->loaded_vmcs);
6682 kfree(vmx->guest_msrs);
6683 kvm_vcpu_uninit(vcpu);
6684 kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.user_fpu);
6685 kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.guest_fpu);
6686 kmem_cache_free(kvm_vcpu_cache, vmx);
6689 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
6692 struct vcpu_vmx *vmx;
6693 unsigned long *msr_bitmap;
6696 BUILD_BUG_ON_MSG(offsetof(struct vcpu_vmx, vcpu) != 0,
6697 "struct kvm_vcpu must be at offset 0 for arch usercopy region");
6699 vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
6701 return ERR_PTR(-ENOMEM);
6703 vmx->vcpu.arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
6704 GFP_KERNEL_ACCOUNT);
6705 if (!vmx->vcpu.arch.user_fpu) {
6706 printk(KERN_ERR "kvm: failed to allocate kvm userspace's fpu\n");
6708 goto free_partial_vcpu;
6711 vmx->vcpu.arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
6712 GFP_KERNEL_ACCOUNT);
6713 if (!vmx->vcpu.arch.guest_fpu) {
6714 printk(KERN_ERR "kvm: failed to allocate vcpu's fpu\n");
6719 vmx->vpid = allocate_vpid();
6721 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
6728 * If PML is turned on, failure on enabling PML just results in failure
6729 * of creating the vcpu, therefore we can simplify PML logic (by
6730 * avoiding dealing with cases, such as enabling PML partially on vcpus
6731 * for the guest, etc.
6734 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
6739 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT);
6740 BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
6743 if (!vmx->guest_msrs)
6746 err = alloc_loaded_vmcs(&vmx->vmcs01);
6750 msr_bitmap = vmx->vmcs01.msr_bitmap;
6751 vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_TSC, MSR_TYPE_R);
6752 vmx_disable_intercept_for_msr(msr_bitmap, MSR_FS_BASE, MSR_TYPE_RW);
6753 vmx_disable_intercept_for_msr(msr_bitmap, MSR_GS_BASE, MSR_TYPE_RW);
6754 vmx_disable_intercept_for_msr(msr_bitmap, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
6755 vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
6756 vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
6757 vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
6758 if (kvm_cstate_in_guest(kvm)) {
6759 vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C1_RES, MSR_TYPE_R);
6760 vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
6761 vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
6762 vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
6764 vmx->msr_bitmap_mode = 0;
6766 vmx->loaded_vmcs = &vmx->vmcs01;
6768 vmx_vcpu_load(&vmx->vcpu, cpu);
6769 vmx->vcpu.cpu = cpu;
6770 vmx_vcpu_setup(vmx);
6771 vmx_vcpu_put(&vmx->vcpu);
6773 if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
6774 err = alloc_apic_access_page(kvm);
6779 if (enable_ept && !enable_unrestricted_guest) {
6780 err = init_rmode_identity_map(kvm);
6786 nested_vmx_setup_ctls_msrs(&vmx->nested.msrs,
6788 kvm_vcpu_apicv_active(&vmx->vcpu));
6790 memset(&vmx->nested.msrs, 0, sizeof(vmx->nested.msrs));
6792 vmx->nested.posted_intr_nv = -1;
6793 vmx->nested.current_vmptr = -1ull;
6795 vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED;
6798 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
6799 * or POSTED_INTR_WAKEUP_VECTOR.
6801 vmx->pi_desc.nv = POSTED_INTR_VECTOR;
6802 vmx->pi_desc.sn = 1;
6804 vmx->ept_pointer = INVALID_PAGE;
6809 free_loaded_vmcs(vmx->loaded_vmcs);
6811 kfree(vmx->guest_msrs);
6813 vmx_destroy_pml_buffer(vmx);
6815 kvm_vcpu_uninit(&vmx->vcpu);
6817 free_vpid(vmx->vpid);
6818 kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.guest_fpu);
6820 kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.user_fpu);
6822 kmem_cache_free(kvm_vcpu_cache, vmx);
6823 return ERR_PTR(err);
6826 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6827 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6829 static int vmx_vm_init(struct kvm *kvm)
6831 spin_lock_init(&to_kvm_vmx(kvm)->ept_pointer_lock);
6834 kvm->arch.pause_in_guest = true;
6836 if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
6837 switch (l1tf_mitigation) {
6838 case L1TF_MITIGATION_OFF:
6839 case L1TF_MITIGATION_FLUSH_NOWARN:
6840 /* 'I explicitly don't care' is set */
6842 case L1TF_MITIGATION_FLUSH:
6843 case L1TF_MITIGATION_FLUSH_NOSMT:
6844 case L1TF_MITIGATION_FULL:
6846 * Warn upon starting the first VM in a potentially
6847 * insecure environment.
6849 if (sched_smt_active())
6850 pr_warn_once(L1TF_MSG_SMT);
6851 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
6852 pr_warn_once(L1TF_MSG_L1D);
6854 case L1TF_MITIGATION_FULL_FORCE:
6855 /* Flush is enforced */
6862 static int __init vmx_check_processor_compat(void)
6864 struct vmcs_config vmcs_conf;
6865 struct vmx_capability vmx_cap;
6867 if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0)
6870 nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept,
6872 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
6873 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
6874 smp_processor_id());
6880 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
6885 /* For VT-d and EPT combination
6886 * 1. MMIO: always map as UC
6888 * a. VT-d without snooping control feature: can't guarantee the
6889 * result, try to trust guest.
6890 * b. VT-d with snooping control feature: snooping control feature of
6891 * VT-d engine can guarantee the cache correctness. Just set it
6892 * to WB to keep consistent with host. So the same as item 3.
6893 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
6894 * consistent with host MTRR
6897 cache = MTRR_TYPE_UNCACHABLE;
6901 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
6902 ipat = VMX_EPT_IPAT_BIT;
6903 cache = MTRR_TYPE_WRBACK;
6907 if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
6908 ipat = VMX_EPT_IPAT_BIT;
6909 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
6910 cache = MTRR_TYPE_WRBACK;
6912 cache = MTRR_TYPE_UNCACHABLE;
6916 cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
6919 return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
6922 static int vmx_get_lpage_level(void)
6924 if (enable_ept && !cpu_has_vmx_ept_1g_page())
6925 return PT_DIRECTORY_LEVEL;
6927 /* For shadow and EPT supported 1GB page */
6928 return PT_PDPE_LEVEL;
6931 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx)
6934 * These bits in the secondary execution controls field
6935 * are dynamic, the others are mostly based on the hypervisor
6936 * architecture and the guest's CPUID. Do not touch the
6940 SECONDARY_EXEC_SHADOW_VMCS |
6941 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
6942 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6943 SECONDARY_EXEC_DESC;
6945 u32 new_ctl = vmx->secondary_exec_control;
6946 u32 cur_ctl = secondary_exec_controls_get(vmx);
6948 secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
6952 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
6953 * (indicating "allowed-1") if they are supported in the guest's CPUID.
6955 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
6957 struct vcpu_vmx *vmx = to_vmx(vcpu);
6958 struct kvm_cpuid_entry2 *entry;
6960 vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
6961 vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
6963 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \
6964 if (entry && (entry->_reg & (_cpuid_mask))) \
6965 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \
6968 entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
6969 cr4_fixed1_update(X86_CR4_VME, edx, bit(X86_FEATURE_VME));
6970 cr4_fixed1_update(X86_CR4_PVI, edx, bit(X86_FEATURE_VME));
6971 cr4_fixed1_update(X86_CR4_TSD, edx, bit(X86_FEATURE_TSC));
6972 cr4_fixed1_update(X86_CR4_DE, edx, bit(X86_FEATURE_DE));
6973 cr4_fixed1_update(X86_CR4_PSE, edx, bit(X86_FEATURE_PSE));
6974 cr4_fixed1_update(X86_CR4_PAE, edx, bit(X86_FEATURE_PAE));
6975 cr4_fixed1_update(X86_CR4_MCE, edx, bit(X86_FEATURE_MCE));
6976 cr4_fixed1_update(X86_CR4_PGE, edx, bit(X86_FEATURE_PGE));
6977 cr4_fixed1_update(X86_CR4_OSFXSR, edx, bit(X86_FEATURE_FXSR));
6978 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, bit(X86_FEATURE_XMM));
6979 cr4_fixed1_update(X86_CR4_VMXE, ecx, bit(X86_FEATURE_VMX));
6980 cr4_fixed1_update(X86_CR4_SMXE, ecx, bit(X86_FEATURE_SMX));
6981 cr4_fixed1_update(X86_CR4_PCIDE, ecx, bit(X86_FEATURE_PCID));
6982 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, bit(X86_FEATURE_XSAVE));
6984 entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
6985 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, bit(X86_FEATURE_FSGSBASE));
6986 cr4_fixed1_update(X86_CR4_SMEP, ebx, bit(X86_FEATURE_SMEP));
6987 cr4_fixed1_update(X86_CR4_SMAP, ebx, bit(X86_FEATURE_SMAP));
6988 cr4_fixed1_update(X86_CR4_PKE, ecx, bit(X86_FEATURE_PKU));
6989 cr4_fixed1_update(X86_CR4_UMIP, ecx, bit(X86_FEATURE_UMIP));
6991 #undef cr4_fixed1_update
6994 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
6996 struct vcpu_vmx *vmx = to_vmx(vcpu);
6998 if (kvm_mpx_supported()) {
6999 bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX);
7002 vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
7003 vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
7005 vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS;
7006 vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS;
7011 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7013 struct vcpu_vmx *vmx = to_vmx(vcpu);
7014 struct kvm_cpuid_entry2 *best = NULL;
7017 for (i = 0; i < PT_CPUID_LEAVES; i++) {
7018 best = kvm_find_cpuid_entry(vcpu, 0x14, i);
7021 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7022 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7023 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7024 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7027 /* Get the number of configurable Address Ranges for filtering */
7028 vmx->pt_desc.addr_range = intel_pt_validate_cap(vmx->pt_desc.caps,
7029 PT_CAP_num_address_ranges);
7031 /* Initialize and clear the no dependency bits */
7032 vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7033 RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC);
7036 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7037 * will inject an #GP
7039 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7040 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7043 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7044 * PSBFreq can be set
7046 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7047 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7048 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7051 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn BranchEn and
7052 * MTCFreq can be set
7054 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7055 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7056 RTIT_CTL_BRANCH_EN | RTIT_CTL_MTC_RANGE);
7058 /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7059 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7060 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7063 /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7064 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7065 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7067 /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7068 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7069 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7071 /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabircEn can be set */
7072 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7073 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7075 /* unmask address range configure area */
7076 for (i = 0; i < vmx->pt_desc.addr_range; i++)
7077 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7080 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
7082 struct vcpu_vmx *vmx = to_vmx(vcpu);
7084 if (cpu_has_secondary_exec_ctrls()) {
7085 vmx_compute_secondary_exec_control(vmx);
7086 vmcs_set_secondary_exec_control(vmx);
7089 if (nested_vmx_allowed(vcpu))
7090 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7091 FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
7093 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7094 ~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
7096 if (nested_vmx_allowed(vcpu)) {
7097 nested_vmx_cr_fixed1_bits_update(vcpu);
7098 nested_vmx_entry_exit_ctls_update(vcpu);
7101 if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7102 guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7103 update_intel_pt_cfg(vcpu);
7106 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
7108 if (func == 1 && nested)
7109 entry->ecx |= bit(X86_FEATURE_VMX);
7112 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
7114 to_vmx(vcpu)->req_immediate_exit = true;
7117 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7118 struct x86_instruction_info *info,
7119 enum x86_intercept_stage stage)
7121 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7122 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7125 * RDPID causes #UD if disabled through secondary execution controls.
7126 * Because it is marked as EmulateOnUD, we need to intercept it here.
7128 if (info->intercept == x86_intercept_rdtscp &&
7129 !nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDTSCP)) {
7130 ctxt->exception.vector = UD_VECTOR;
7131 ctxt->exception.error_code_valid = false;
7132 return X86EMUL_PROPAGATE_FAULT;
7135 /* TODO: check more intercepts... */
7136 return X86EMUL_CONTINUE;
7139 #ifdef CONFIG_X86_64
7140 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
7141 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
7142 u64 divisor, u64 *result)
7144 u64 low = a << shift, high = a >> (64 - shift);
7146 /* To avoid the overflow on divq */
7147 if (high >= divisor)
7150 /* Low hold the result, high hold rem which is discarded */
7151 asm("divq %2\n\t" : "=a" (low), "=d" (high) :
7152 "rm" (divisor), "0" (low), "1" (high));
7158 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
7161 struct vcpu_vmx *vmx;
7162 u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
7163 struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
7165 if (kvm_mwait_in_guest(vcpu->kvm) ||
7166 kvm_can_post_timer_interrupt(vcpu))
7171 guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
7172 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
7173 lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
7174 ktimer->timer_advance_ns);
7176 if (delta_tsc > lapic_timer_advance_cycles)
7177 delta_tsc -= lapic_timer_advance_cycles;
7181 /* Convert to host delta tsc if tsc scaling is enabled */
7182 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
7183 delta_tsc && u64_shl_div_u64(delta_tsc,
7184 kvm_tsc_scaling_ratio_frac_bits,
7185 vcpu->arch.tsc_scaling_ratio, &delta_tsc))
7189 * If the delta tsc can't fit in the 32 bit after the multi shift,
7190 * we can't use the preemption timer.
7191 * It's possible that it fits on later vmentries, but checking
7192 * on every vmentry is costly so we just use an hrtimer.
7194 if (delta_tsc >> (cpu_preemption_timer_multi + 32))
7197 vmx->hv_deadline_tsc = tscl + delta_tsc;
7198 *expired = !delta_tsc;
7202 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
7204 to_vmx(vcpu)->hv_deadline_tsc = -1;
7208 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
7210 if (!kvm_pause_in_guest(vcpu->kvm))
7211 shrink_ple_window(vcpu);
7214 static void vmx_slot_enable_log_dirty(struct kvm *kvm,
7215 struct kvm_memory_slot *slot)
7217 kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
7218 kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
7221 static void vmx_slot_disable_log_dirty(struct kvm *kvm,
7222 struct kvm_memory_slot *slot)
7224 kvm_mmu_slot_set_dirty(kvm, slot);
7227 static void vmx_flush_log_dirty(struct kvm *kvm)
7229 kvm_flush_pml_buffers(kvm);
7232 static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu)
7234 struct vmcs12 *vmcs12;
7235 struct vcpu_vmx *vmx = to_vmx(vcpu);
7238 if (is_guest_mode(vcpu)) {
7239 WARN_ON_ONCE(vmx->nested.pml_full);
7242 * Check if PML is enabled for the nested guest.
7243 * Whether eptp bit 6 is set is already checked
7244 * as part of A/D emulation.
7246 vmcs12 = get_vmcs12(vcpu);
7247 if (!nested_cpu_has_pml(vmcs12))
7250 if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
7251 vmx->nested.pml_full = true;
7255 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS) & ~0xFFFull;
7256 dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;
7258 if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa,
7259 offset_in_page(dst), sizeof(gpa)))
7262 vmcs12->guest_pml_index--;
7268 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
7269 struct kvm_memory_slot *memslot,
7270 gfn_t offset, unsigned long mask)
7272 kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
7275 static void __pi_post_block(struct kvm_vcpu *vcpu)
7277 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
7278 struct pi_desc old, new;
7282 old.control = new.control = pi_desc->control;
7283 WARN(old.nv != POSTED_INTR_WAKEUP_VECTOR,
7284 "Wakeup handler not enabled while the VCPU is blocked\n");
7286 dest = cpu_physical_id(vcpu->cpu);
7288 if (x2apic_enabled())
7291 new.ndst = (dest << 8) & 0xFF00;
7293 /* set 'NV' to 'notification vector' */
7294 new.nv = POSTED_INTR_VECTOR;
7295 } while (cmpxchg64(&pi_desc->control, old.control,
7296 new.control) != old.control);
7298 if (!WARN_ON_ONCE(vcpu->pre_pcpu == -1)) {
7299 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7300 list_del(&vcpu->blocked_vcpu_list);
7301 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7302 vcpu->pre_pcpu = -1;
7307 * This routine does the following things for vCPU which is going
7308 * to be blocked if VT-d PI is enabled.
7309 * - Store the vCPU to the wakeup list, so when interrupts happen
7310 * we can find the right vCPU to wake up.
7311 * - Change the Posted-interrupt descriptor as below:
7312 * 'NDST' <-- vcpu->pre_pcpu
7313 * 'NV' <-- POSTED_INTR_WAKEUP_VECTOR
7314 * - If 'ON' is set during this process, which means at least one
7315 * interrupt is posted for this vCPU, we cannot block it, in
7316 * this case, return 1, otherwise, return 0.
7319 static int pi_pre_block(struct kvm_vcpu *vcpu)
7322 struct pi_desc old, new;
7323 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
7325 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
7326 !irq_remapping_cap(IRQ_POSTING_CAP) ||
7327 !kvm_vcpu_apicv_active(vcpu))
7330 WARN_ON(irqs_disabled());
7331 local_irq_disable();
7332 if (!WARN_ON_ONCE(vcpu->pre_pcpu != -1)) {
7333 vcpu->pre_pcpu = vcpu->cpu;
7334 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7335 list_add_tail(&vcpu->blocked_vcpu_list,
7336 &per_cpu(blocked_vcpu_on_cpu,
7338 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7342 old.control = new.control = pi_desc->control;
7344 WARN((pi_desc->sn == 1),
7345 "Warning: SN field of posted-interrupts "
7346 "is set before blocking\n");
7349 * Since vCPU can be preempted during this process,
7350 * vcpu->cpu could be different with pre_pcpu, we
7351 * need to set pre_pcpu as the destination of wakeup
7352 * notification event, then we can find the right vCPU
7353 * to wakeup in wakeup handler if interrupts happen
7354 * when the vCPU is in blocked state.
7356 dest = cpu_physical_id(vcpu->pre_pcpu);
7358 if (x2apic_enabled())
7361 new.ndst = (dest << 8) & 0xFF00;
7363 /* set 'NV' to 'wakeup vector' */
7364 new.nv = POSTED_INTR_WAKEUP_VECTOR;
7365 } while (cmpxchg64(&pi_desc->control, old.control,
7366 new.control) != old.control);
7368 /* We should not block the vCPU if an interrupt is posted for it. */
7369 if (pi_test_on(pi_desc) == 1)
7370 __pi_post_block(vcpu);
7373 return (vcpu->pre_pcpu == -1);
7376 static int vmx_pre_block(struct kvm_vcpu *vcpu)
7378 if (pi_pre_block(vcpu))
7381 if (kvm_lapic_hv_timer_in_use(vcpu))
7382 kvm_lapic_switch_to_sw_timer(vcpu);
7387 static void pi_post_block(struct kvm_vcpu *vcpu)
7389 if (vcpu->pre_pcpu == -1)
7392 WARN_ON(irqs_disabled());
7393 local_irq_disable();
7394 __pi_post_block(vcpu);
7398 static void vmx_post_block(struct kvm_vcpu *vcpu)
7400 if (kvm_x86_ops->set_hv_timer)
7401 kvm_lapic_switch_to_hv_timer(vcpu);
7403 pi_post_block(vcpu);
7407 * vmx_update_pi_irte - set IRTE for Posted-Interrupts
7410 * @host_irq: host irq of the interrupt
7411 * @guest_irq: gsi of the interrupt
7412 * @set: set or unset PI
7413 * returns 0 on success, < 0 on failure
7415 static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
7416 uint32_t guest_irq, bool set)
7418 struct kvm_kernel_irq_routing_entry *e;
7419 struct kvm_irq_routing_table *irq_rt;
7420 struct kvm_lapic_irq irq;
7421 struct kvm_vcpu *vcpu;
7422 struct vcpu_data vcpu_info;
7425 if (!kvm_arch_has_assigned_device(kvm) ||
7426 !irq_remapping_cap(IRQ_POSTING_CAP) ||
7427 !kvm_vcpu_apicv_active(kvm->vcpus[0]))
7430 idx = srcu_read_lock(&kvm->irq_srcu);
7431 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
7432 if (guest_irq >= irq_rt->nr_rt_entries ||
7433 hlist_empty(&irq_rt->map[guest_irq])) {
7434 pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
7435 guest_irq, irq_rt->nr_rt_entries);
7439 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
7440 if (e->type != KVM_IRQ_ROUTING_MSI)
7443 * VT-d PI cannot support posting multicast/broadcast
7444 * interrupts to a vCPU, we still use interrupt remapping
7445 * for these kind of interrupts.
7447 * For lowest-priority interrupts, we only support
7448 * those with single CPU as the destination, e.g. user
7449 * configures the interrupts via /proc/irq or uses
7450 * irqbalance to make the interrupts single-CPU.
7452 * We will support full lowest-priority interrupt later.
7454 * In addition, we can only inject generic interrupts using
7455 * the PI mechanism, refuse to route others through it.
7458 kvm_set_msi_irq(kvm, e, &irq);
7459 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu) ||
7460 !kvm_irq_is_postable(&irq)) {
7462 * Make sure the IRTE is in remapped mode if
7463 * we don't handle it in posted mode.
7465 ret = irq_set_vcpu_affinity(host_irq, NULL);
7468 "failed to back to remapped mode, irq: %u\n",
7476 vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
7477 vcpu_info.vector = irq.vector;
7479 trace_kvm_pi_irte_update(host_irq, vcpu->vcpu_id, e->gsi,
7480 vcpu_info.vector, vcpu_info.pi_desc_addr, set);
7483 ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
7485 ret = irq_set_vcpu_affinity(host_irq, NULL);
7488 printk(KERN_INFO "%s: failed to update PI IRTE\n",
7496 srcu_read_unlock(&kvm->irq_srcu, idx);
7500 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
7502 if (vcpu->arch.mcg_cap & MCG_LMCE_P)
7503 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7504 FEATURE_CONTROL_LMCE;
7506 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7507 ~FEATURE_CONTROL_LMCE;
7510 static int vmx_smi_allowed(struct kvm_vcpu *vcpu)
7512 /* we need a nested vmexit to enter SMM, postpone if run is pending */
7513 if (to_vmx(vcpu)->nested.nested_run_pending)
7518 static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
7520 struct vcpu_vmx *vmx = to_vmx(vcpu);
7522 vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
7523 if (vmx->nested.smm.guest_mode)
7524 nested_vmx_vmexit(vcpu, -1, 0, 0);
7526 vmx->nested.smm.vmxon = vmx->nested.vmxon;
7527 vmx->nested.vmxon = false;
7528 vmx_clear_hlt(vcpu);
7532 static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
7534 struct vcpu_vmx *vmx = to_vmx(vcpu);
7537 if (vmx->nested.smm.vmxon) {
7538 vmx->nested.vmxon = true;
7539 vmx->nested.smm.vmxon = false;
7542 if (vmx->nested.smm.guest_mode) {
7543 ret = nested_vmx_enter_non_root_mode(vcpu, false);
7547 vmx->nested.smm.guest_mode = false;
7552 static int enable_smi_window(struct kvm_vcpu *vcpu)
7557 static bool vmx_need_emulation_on_page_fault(struct kvm_vcpu *vcpu)
7562 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
7564 return to_vmx(vcpu)->nested.vmxon;
7567 static __init int hardware_setup(void)
7569 unsigned long host_bndcfgs;
7573 rdmsrl_safe(MSR_EFER, &host_efer);
7576 host_idt_base = dt.address;
7578 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
7579 kvm_define_shared_msr(i, vmx_msr_index[i]);
7581 if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
7584 if (boot_cpu_has(X86_FEATURE_NX))
7585 kvm_enable_efer_bits(EFER_NX);
7587 if (boot_cpu_has(X86_FEATURE_MPX)) {
7588 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
7589 WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
7592 if (boot_cpu_has(X86_FEATURE_XSAVES))
7593 rdmsrl(MSR_IA32_XSS, host_xss);
7595 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
7596 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
7599 if (!cpu_has_vmx_ept() ||
7600 !cpu_has_vmx_ept_4levels() ||
7601 !cpu_has_vmx_ept_mt_wb() ||
7602 !cpu_has_vmx_invept_global())
7605 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
7606 enable_ept_ad_bits = 0;
7608 if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
7609 enable_unrestricted_guest = 0;
7611 if (!cpu_has_vmx_flexpriority())
7612 flexpriority_enabled = 0;
7614 if (!cpu_has_virtual_nmis())
7618 * set_apic_access_page_addr() is used to reload apic access
7619 * page upon invalidation. No need to do anything if not
7620 * using the APIC_ACCESS_ADDR VMCS field.
7622 if (!flexpriority_enabled)
7623 kvm_x86_ops->set_apic_access_page_addr = NULL;
7625 if (!cpu_has_vmx_tpr_shadow())
7626 kvm_x86_ops->update_cr8_intercept = NULL;
7628 if (enable_ept && !cpu_has_vmx_ept_2m_page())
7629 kvm_disable_largepages();
7631 #if IS_ENABLED(CONFIG_HYPERV)
7632 if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
7634 kvm_x86_ops->tlb_remote_flush = hv_remote_flush_tlb;
7635 kvm_x86_ops->tlb_remote_flush_with_range =
7636 hv_remote_flush_tlb_with_range;
7640 if (!cpu_has_vmx_ple()) {
7643 ple_window_grow = 0;
7645 ple_window_shrink = 0;
7648 if (!cpu_has_vmx_apicv()) {
7650 kvm_x86_ops->sync_pir_to_irr = NULL;
7653 if (cpu_has_vmx_tsc_scaling()) {
7654 kvm_has_tsc_control = true;
7655 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
7656 kvm_tsc_scaling_ratio_frac_bits = 48;
7659 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7667 * Only enable PML when hardware supports PML feature, and both EPT
7668 * and EPT A/D bit features are enabled -- PML depends on them to work.
7670 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
7674 kvm_x86_ops->slot_enable_log_dirty = NULL;
7675 kvm_x86_ops->slot_disable_log_dirty = NULL;
7676 kvm_x86_ops->flush_log_dirty = NULL;
7677 kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
7680 if (!cpu_has_vmx_preemption_timer())
7681 enable_preemption_timer = false;
7683 if (enable_preemption_timer) {
7684 u64 use_timer_freq = 5000ULL * 1000 * 1000;
7687 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
7688 cpu_preemption_timer_multi =
7689 vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
7692 use_timer_freq = (u64)tsc_khz * 1000;
7693 use_timer_freq >>= cpu_preemption_timer_multi;
7696 * KVM "disables" the preemption timer by setting it to its max
7697 * value. Don't use the timer if it might cause spurious exits
7698 * at a rate faster than 0.1 Hz (of uninterrupted guest time).
7700 if (use_timer_freq > 0xffffffffu / 10)
7701 enable_preemption_timer = false;
7704 if (!enable_preemption_timer) {
7705 kvm_x86_ops->set_hv_timer = NULL;
7706 kvm_x86_ops->cancel_hv_timer = NULL;
7707 kvm_x86_ops->request_immediate_exit = __kvm_request_immediate_exit;
7710 kvm_set_posted_intr_wakeup_handler(wakeup_handler);
7712 kvm_mce_cap_supported |= MCG_LMCE_P;
7714 if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
7716 if (!enable_ept || !cpu_has_vmx_intel_pt())
7717 pt_mode = PT_MODE_SYSTEM;
7720 nested_vmx_setup_ctls_msrs(&vmcs_config.nested,
7721 vmx_capability.ept, enable_apicv);
7723 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
7728 r = alloc_kvm_area();
7730 nested_vmx_hardware_unsetup();
7734 static __exit void hardware_unsetup(void)
7737 nested_vmx_hardware_unsetup();
7742 static struct kvm_x86_ops vmx_x86_ops __ro_after_init = {
7743 .cpu_has_kvm_support = cpu_has_kvm_support,
7744 .disabled_by_bios = vmx_disabled_by_bios,
7745 .hardware_setup = hardware_setup,
7746 .hardware_unsetup = hardware_unsetup,
7747 .check_processor_compatibility = vmx_check_processor_compat,
7748 .hardware_enable = hardware_enable,
7749 .hardware_disable = hardware_disable,
7750 .cpu_has_accelerated_tpr = report_flexpriority,
7751 .has_emulated_msr = vmx_has_emulated_msr,
7753 .vm_init = vmx_vm_init,
7754 .vm_alloc = vmx_vm_alloc,
7755 .vm_free = vmx_vm_free,
7757 .vcpu_create = vmx_create_vcpu,
7758 .vcpu_free = vmx_free_vcpu,
7759 .vcpu_reset = vmx_vcpu_reset,
7761 .prepare_guest_switch = vmx_prepare_switch_to_guest,
7762 .vcpu_load = vmx_vcpu_load,
7763 .vcpu_put = vmx_vcpu_put,
7765 .update_bp_intercept = update_exception_bitmap,
7766 .get_msr_feature = vmx_get_msr_feature,
7767 .get_msr = vmx_get_msr,
7768 .set_msr = vmx_set_msr,
7769 .get_segment_base = vmx_get_segment_base,
7770 .get_segment = vmx_get_segment,
7771 .set_segment = vmx_set_segment,
7772 .get_cpl = vmx_get_cpl,
7773 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
7774 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
7775 .decache_cr3 = vmx_decache_cr3,
7776 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
7777 .set_cr0 = vmx_set_cr0,
7778 .set_cr3 = vmx_set_cr3,
7779 .set_cr4 = vmx_set_cr4,
7780 .set_efer = vmx_set_efer,
7781 .get_idt = vmx_get_idt,
7782 .set_idt = vmx_set_idt,
7783 .get_gdt = vmx_get_gdt,
7784 .set_gdt = vmx_set_gdt,
7785 .get_dr6 = vmx_get_dr6,
7786 .set_dr6 = vmx_set_dr6,
7787 .set_dr7 = vmx_set_dr7,
7788 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
7789 .cache_reg = vmx_cache_reg,
7790 .get_rflags = vmx_get_rflags,
7791 .set_rflags = vmx_set_rflags,
7793 .tlb_flush = vmx_flush_tlb,
7794 .tlb_flush_gva = vmx_flush_tlb_gva,
7796 .run = vmx_vcpu_run,
7797 .handle_exit = vmx_handle_exit,
7798 .skip_emulated_instruction = skip_emulated_instruction,
7799 .set_interrupt_shadow = vmx_set_interrupt_shadow,
7800 .get_interrupt_shadow = vmx_get_interrupt_shadow,
7801 .patch_hypercall = vmx_patch_hypercall,
7802 .set_irq = vmx_inject_irq,
7803 .set_nmi = vmx_inject_nmi,
7804 .queue_exception = vmx_queue_exception,
7805 .cancel_injection = vmx_cancel_injection,
7806 .interrupt_allowed = vmx_interrupt_allowed,
7807 .nmi_allowed = vmx_nmi_allowed,
7808 .get_nmi_mask = vmx_get_nmi_mask,
7809 .set_nmi_mask = vmx_set_nmi_mask,
7810 .enable_nmi_window = enable_nmi_window,
7811 .enable_irq_window = enable_irq_window,
7812 .update_cr8_intercept = update_cr8_intercept,
7813 .set_virtual_apic_mode = vmx_set_virtual_apic_mode,
7814 .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
7815 .get_enable_apicv = vmx_get_enable_apicv,
7816 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
7817 .load_eoi_exitmap = vmx_load_eoi_exitmap,
7818 .apicv_post_state_restore = vmx_apicv_post_state_restore,
7819 .hwapic_irr_update = vmx_hwapic_irr_update,
7820 .hwapic_isr_update = vmx_hwapic_isr_update,
7821 .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
7822 .sync_pir_to_irr = vmx_sync_pir_to_irr,
7823 .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
7824 .dy_apicv_has_pending_interrupt = vmx_dy_apicv_has_pending_interrupt,
7826 .set_tss_addr = vmx_set_tss_addr,
7827 .set_identity_map_addr = vmx_set_identity_map_addr,
7828 .get_tdp_level = get_ept_level,
7829 .get_mt_mask = vmx_get_mt_mask,
7831 .get_exit_info = vmx_get_exit_info,
7833 .get_lpage_level = vmx_get_lpage_level,
7835 .cpuid_update = vmx_cpuid_update,
7837 .rdtscp_supported = vmx_rdtscp_supported,
7838 .invpcid_supported = vmx_invpcid_supported,
7840 .set_supported_cpuid = vmx_set_supported_cpuid,
7842 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7844 .read_l1_tsc_offset = vmx_read_l1_tsc_offset,
7845 .write_l1_tsc_offset = vmx_write_l1_tsc_offset,
7847 .set_tdp_cr3 = vmx_set_cr3,
7849 .check_intercept = vmx_check_intercept,
7850 .handle_exit_irqoff = vmx_handle_exit_irqoff,
7851 .mpx_supported = vmx_mpx_supported,
7852 .xsaves_supported = vmx_xsaves_supported,
7853 .umip_emulated = vmx_umip_emulated,
7854 .pt_supported = vmx_pt_supported,
7856 .request_immediate_exit = vmx_request_immediate_exit,
7858 .sched_in = vmx_sched_in,
7860 .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
7861 .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
7862 .flush_log_dirty = vmx_flush_log_dirty,
7863 .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
7864 .write_log_dirty = vmx_write_pml_buffer,
7866 .pre_block = vmx_pre_block,
7867 .post_block = vmx_post_block,
7869 .pmu_ops = &intel_pmu_ops,
7871 .update_pi_irte = vmx_update_pi_irte,
7873 #ifdef CONFIG_X86_64
7874 .set_hv_timer = vmx_set_hv_timer,
7875 .cancel_hv_timer = vmx_cancel_hv_timer,
7878 .setup_mce = vmx_setup_mce,
7880 .smi_allowed = vmx_smi_allowed,
7881 .pre_enter_smm = vmx_pre_enter_smm,
7882 .pre_leave_smm = vmx_pre_leave_smm,
7883 .enable_smi_window = enable_smi_window,
7885 .check_nested_events = NULL,
7886 .get_nested_state = NULL,
7887 .set_nested_state = NULL,
7888 .get_vmcs12_pages = NULL,
7889 .nested_enable_evmcs = NULL,
7890 .nested_get_evmcs_version = NULL,
7891 .need_emulation_on_page_fault = vmx_need_emulation_on_page_fault,
7892 .apic_init_signal_blocked = vmx_apic_init_signal_blocked,
7895 static void vmx_cleanup_l1d_flush(void)
7897 if (vmx_l1d_flush_pages) {
7898 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
7899 vmx_l1d_flush_pages = NULL;
7901 /* Restore state so sysfs ignores VMX */
7902 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
7905 static void vmx_exit(void)
7907 #ifdef CONFIG_KEXEC_CORE
7908 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
7914 #if IS_ENABLED(CONFIG_HYPERV)
7915 if (static_branch_unlikely(&enable_evmcs)) {
7917 struct hv_vp_assist_page *vp_ap;
7919 * Reset everything to support using non-enlightened VMCS
7920 * access later (e.g. when we reload the module with
7921 * enlightened_vmcs=0)
7923 for_each_online_cpu(cpu) {
7924 vp_ap = hv_get_vp_assist_page(cpu);
7929 vp_ap->nested_control.features.directhypercall = 0;
7930 vp_ap->current_nested_vmcs = 0;
7931 vp_ap->enlighten_vmentry = 0;
7934 static_branch_disable(&enable_evmcs);
7937 vmx_cleanup_l1d_flush();
7939 module_exit(vmx_exit);
7941 static int __init vmx_init(void)
7945 #if IS_ENABLED(CONFIG_HYPERV)
7947 * Enlightened VMCS usage should be recommended and the host needs
7948 * to support eVMCS v1 or above. We can also disable eVMCS support
7949 * with module parameter.
7951 if (enlightened_vmcs &&
7952 ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
7953 (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
7954 KVM_EVMCS_VERSION) {
7957 /* Check that we have assist pages on all online CPUs */
7958 for_each_online_cpu(cpu) {
7959 if (!hv_get_vp_assist_page(cpu)) {
7960 enlightened_vmcs = false;
7965 if (enlightened_vmcs) {
7966 pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
7967 static_branch_enable(&enable_evmcs);
7970 if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
7971 vmx_x86_ops.enable_direct_tlbflush
7972 = hv_enable_direct_tlbflush;
7975 enlightened_vmcs = false;
7979 r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
7980 __alignof__(struct vcpu_vmx), THIS_MODULE);
7985 * Must be called after kvm_init() so enable_ept is properly set
7986 * up. Hand the parameter mitigation value in which was stored in
7987 * the pre module init parser. If no parameter was given, it will
7988 * contain 'auto' which will be turned into the default 'cond'
7991 r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
7997 #ifdef CONFIG_KEXEC_CORE
7998 rcu_assign_pointer(crash_vmclear_loaded_vmcss,
7999 crash_vmclear_local_loaded_vmcss);
8001 vmx_check_vmcs12_offsets();
8005 module_init(vmx_init);