1 // SPDX-License-Identifier: GPL-2.0-only
3 * Kernel-based Virtual Machine driver for Linux
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
8 * Copyright (C) 2006 Qumranet, Inc.
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
16 #include <linux/frame.h>
17 #include <linux/highmem.h>
18 #include <linux/hrtimer.h>
19 #include <linux/kernel.h>
20 #include <linux/kvm_host.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mod_devicetable.h>
25 #include <linux/sched.h>
26 #include <linux/sched/smt.h>
27 #include <linux/slab.h>
28 #include <linux/tboot.h>
29 #include <linux/trace_events.h>
34 #include <asm/debugreg.h>
36 #include <asm/fpu/internal.h>
38 #include <asm/irq_remapping.h>
39 #include <asm/kexec.h>
40 #include <asm/perf_event.h>
42 #include <asm/mmu_context.h>
43 #include <asm/mshyperv.h>
44 #include <asm/spec-ctrl.h>
45 #include <asm/virtext.h>
48 #include "capabilities.h"
52 #include "kvm_cache_regs.h"
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
67 static const struct x86_cpu_id vmx_cpu_id[] = {
68 X86_FEATURE_MATCH(X86_FEATURE_VMX),
71 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
73 bool __read_mostly enable_vpid = 1;
74 module_param_named(vpid, enable_vpid, bool, 0444);
76 static bool __read_mostly enable_vnmi = 1;
77 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
79 bool __read_mostly flexpriority_enabled = 1;
80 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
82 bool __read_mostly enable_ept = 1;
83 module_param_named(ept, enable_ept, bool, S_IRUGO);
85 bool __read_mostly enable_unrestricted_guest = 1;
86 module_param_named(unrestricted_guest,
87 enable_unrestricted_guest, bool, S_IRUGO);
89 bool __read_mostly enable_ept_ad_bits = 1;
90 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
92 static bool __read_mostly emulate_invalid_guest_state = true;
93 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
95 static bool __read_mostly fasteoi = 1;
96 module_param(fasteoi, bool, S_IRUGO);
98 static bool __read_mostly enable_apicv = 1;
99 module_param(enable_apicv, bool, S_IRUGO);
102 * If nested=1, nested virtualization is supported, i.e., guests may use
103 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
104 * use VMX instructions.
106 static bool __read_mostly nested = 1;
107 module_param(nested, bool, S_IRUGO);
109 static u64 __read_mostly host_xss;
111 bool __read_mostly enable_pml = 1;
112 module_param_named(pml, enable_pml, bool, S_IRUGO);
114 static bool __read_mostly dump_invalid_vmcs = 0;
115 module_param(dump_invalid_vmcs, bool, 0644);
117 #define MSR_BITMAP_MODE_X2APIC 1
118 #define MSR_BITMAP_MODE_X2APIC_APICV 2
120 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
122 /* Guest_tsc -> host_tsc conversion requires 64-bit division. */
123 static int __read_mostly cpu_preemption_timer_multi;
124 static bool __read_mostly enable_preemption_timer = 1;
126 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
129 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
130 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
131 #define KVM_VM_CR0_ALWAYS_ON \
132 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | \
133 X86_CR0_WP | X86_CR0_PG | X86_CR0_PE)
134 #define KVM_CR4_GUEST_OWNED_BITS \
135 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
136 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_TSD)
138 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
139 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
140 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
142 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
144 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
145 RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
146 RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
147 RTIT_STATUS_BYTECNT))
149 #define MSR_IA32_RTIT_OUTPUT_BASE_MASK \
150 (~((1UL << cpuid_query_maxphyaddr(vcpu)) - 1) | 0x7f)
153 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
154 * ple_gap: upper bound on the amount of time between two successive
155 * executions of PAUSE in a loop. Also indicate if ple enabled.
156 * According to test, this time is usually smaller than 128 cycles.
157 * ple_window: upper bound on the amount of time a guest is allowed to execute
158 * in a PAUSE loop. Tests indicate that most spinlocks are held for
159 * less than 2^12 cycles
160 * Time is measured based on a counter that runs at the same rate as the TSC,
161 * refer SDM volume 3b section 21.6.13 & 22.1.3.
163 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
164 module_param(ple_gap, uint, 0444);
166 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
167 module_param(ple_window, uint, 0444);
169 /* Default doubles per-vcpu window every exit. */
170 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
171 module_param(ple_window_grow, uint, 0444);
173 /* Default resets per-vcpu window every exit to ple_window. */
174 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
175 module_param(ple_window_shrink, uint, 0444);
177 /* Default is to compute the maximum so we can never overflow. */
178 static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
179 module_param(ple_window_max, uint, 0444);
181 /* Default is SYSTEM mode, 1 for host-guest mode */
182 int __read_mostly pt_mode = PT_MODE_SYSTEM;
183 module_param(pt_mode, int, S_IRUGO);
185 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
186 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
187 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
189 /* Storage for pre module init parameter parsing */
190 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
192 static const struct {
195 } vmentry_l1d_param[] = {
196 [VMENTER_L1D_FLUSH_AUTO] = {"auto", true},
197 [VMENTER_L1D_FLUSH_NEVER] = {"never", true},
198 [VMENTER_L1D_FLUSH_COND] = {"cond", true},
199 [VMENTER_L1D_FLUSH_ALWAYS] = {"always", true},
200 [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
201 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
204 #define L1D_CACHE_ORDER 4
205 static void *vmx_l1d_flush_pages;
207 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
212 if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
213 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
218 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
222 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
225 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
226 if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
227 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
232 /* If set to auto use the default l1tf mitigation method */
233 if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
234 switch (l1tf_mitigation) {
235 case L1TF_MITIGATION_OFF:
236 l1tf = VMENTER_L1D_FLUSH_NEVER;
238 case L1TF_MITIGATION_FLUSH_NOWARN:
239 case L1TF_MITIGATION_FLUSH:
240 case L1TF_MITIGATION_FLUSH_NOSMT:
241 l1tf = VMENTER_L1D_FLUSH_COND;
243 case L1TF_MITIGATION_FULL:
244 case L1TF_MITIGATION_FULL_FORCE:
245 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
248 } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
249 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
252 if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
253 !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
255 * This allocation for vmx_l1d_flush_pages is not tied to a VM
256 * lifetime and so should not be charged to a memcg.
258 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
261 vmx_l1d_flush_pages = page_address(page);
264 * Initialize each page with a different pattern in
265 * order to protect against KSM in the nested
266 * virtualization case.
268 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
269 memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
274 l1tf_vmx_mitigation = l1tf;
276 if (l1tf != VMENTER_L1D_FLUSH_NEVER)
277 static_branch_enable(&vmx_l1d_should_flush);
279 static_branch_disable(&vmx_l1d_should_flush);
281 if (l1tf == VMENTER_L1D_FLUSH_COND)
282 static_branch_enable(&vmx_l1d_flush_cond);
284 static_branch_disable(&vmx_l1d_flush_cond);
288 static int vmentry_l1d_flush_parse(const char *s)
293 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
294 if (vmentry_l1d_param[i].for_parse &&
295 sysfs_streq(s, vmentry_l1d_param[i].option))
302 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
306 l1tf = vmentry_l1d_flush_parse(s);
310 if (!boot_cpu_has(X86_BUG_L1TF))
314 * Has vmx_init() run already? If not then this is the pre init
315 * parameter parsing. In that case just store the value and let
316 * vmx_init() do the proper setup after enable_ept has been
319 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
320 vmentry_l1d_flush_param = l1tf;
324 mutex_lock(&vmx_l1d_flush_mutex);
325 ret = vmx_setup_l1d_flush(l1tf);
326 mutex_unlock(&vmx_l1d_flush_mutex);
330 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
332 if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
333 return sprintf(s, "???\n");
335 return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
338 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
339 .set = vmentry_l1d_flush_set,
340 .get = vmentry_l1d_flush_get,
342 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
344 static bool guest_state_valid(struct kvm_vcpu *vcpu);
345 static u32 vmx_segment_access_rights(struct kvm_segment *var);
346 static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
349 void vmx_vmexit(void);
351 #define vmx_insn_failed(fmt...) \
354 pr_warn_ratelimited(fmt); \
357 asmlinkage void vmread_error(unsigned long field, bool fault)
360 kvm_spurious_fault();
362 vmx_insn_failed("kvm: vmread failed: field=%lx\n", field);
365 noinline void vmwrite_error(unsigned long field, unsigned long value)
367 vmx_insn_failed("kvm: vmwrite failed: field=%lx val=%lx err=%d\n",
368 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
371 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
373 vmx_insn_failed("kvm: vmclear failed: %p/%llx\n", vmcs, phys_addr);
376 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
378 vmx_insn_failed("kvm: vmptrld failed: %p/%llx\n", vmcs, phys_addr);
381 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
383 vmx_insn_failed("kvm: invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
387 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
389 vmx_insn_failed("kvm: invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
393 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
394 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
396 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
397 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
399 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
402 * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
403 * can find which vCPU should be waken up.
405 static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
406 static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
408 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
409 static DEFINE_SPINLOCK(vmx_vpid_lock);
411 struct vmcs_config vmcs_config;
412 struct vmx_capability vmx_capability;
414 #define VMX_SEGMENT_FIELD(seg) \
415 [VCPU_SREG_##seg] = { \
416 .selector = GUEST_##seg##_SELECTOR, \
417 .base = GUEST_##seg##_BASE, \
418 .limit = GUEST_##seg##_LIMIT, \
419 .ar_bytes = GUEST_##seg##_AR_BYTES, \
422 static const struct kvm_vmx_segment_field {
427 } kvm_vmx_segment_fields[] = {
428 VMX_SEGMENT_FIELD(CS),
429 VMX_SEGMENT_FIELD(DS),
430 VMX_SEGMENT_FIELD(ES),
431 VMX_SEGMENT_FIELD(FS),
432 VMX_SEGMENT_FIELD(GS),
433 VMX_SEGMENT_FIELD(SS),
434 VMX_SEGMENT_FIELD(TR),
435 VMX_SEGMENT_FIELD(LDTR),
439 static unsigned long host_idt_base;
442 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
443 * will emulate SYSCALL in legacy mode if the vendor string in guest
444 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
445 * support this emulation, IA32_STAR must always be included in
446 * vmx_msr_index[], even in i386 builds.
448 const u32 vmx_msr_index[] = {
450 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
452 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
455 #if IS_ENABLED(CONFIG_HYPERV)
456 static bool __read_mostly enlightened_vmcs = true;
457 module_param(enlightened_vmcs, bool, 0444);
459 /* check_ept_pointer() should be under protection of ept_pointer_lock. */
460 static void check_ept_pointer_match(struct kvm *kvm)
462 struct kvm_vcpu *vcpu;
463 u64 tmp_eptp = INVALID_PAGE;
466 kvm_for_each_vcpu(i, vcpu, kvm) {
467 if (!VALID_PAGE(tmp_eptp)) {
468 tmp_eptp = to_vmx(vcpu)->ept_pointer;
469 } else if (tmp_eptp != to_vmx(vcpu)->ept_pointer) {
470 to_kvm_vmx(kvm)->ept_pointers_match
471 = EPT_POINTERS_MISMATCH;
476 to_kvm_vmx(kvm)->ept_pointers_match = EPT_POINTERS_MATCH;
479 static int kvm_fill_hv_flush_list_func(struct hv_guest_mapping_flush_list *flush,
482 struct kvm_tlb_range *range = data;
484 return hyperv_fill_flush_guest_mapping_list(flush, range->start_gfn,
488 static inline int __hv_remote_flush_tlb_with_range(struct kvm *kvm,
489 struct kvm_vcpu *vcpu, struct kvm_tlb_range *range)
491 u64 ept_pointer = to_vmx(vcpu)->ept_pointer;
494 * FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE hypercall needs address
495 * of the base of EPT PML4 table, strip off EPT configuration
499 return hyperv_flush_guest_mapping_range(ept_pointer & PAGE_MASK,
500 kvm_fill_hv_flush_list_func, (void *)range);
502 return hyperv_flush_guest_mapping(ept_pointer & PAGE_MASK);
505 static int hv_remote_flush_tlb_with_range(struct kvm *kvm,
506 struct kvm_tlb_range *range)
508 struct kvm_vcpu *vcpu;
511 spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
513 if (to_kvm_vmx(kvm)->ept_pointers_match == EPT_POINTERS_CHECK)
514 check_ept_pointer_match(kvm);
516 if (to_kvm_vmx(kvm)->ept_pointers_match != EPT_POINTERS_MATCH) {
517 kvm_for_each_vcpu(i, vcpu, kvm) {
518 /* If ept_pointer is invalid pointer, bypass flush request. */
519 if (VALID_PAGE(to_vmx(vcpu)->ept_pointer))
520 ret |= __hv_remote_flush_tlb_with_range(
524 ret = __hv_remote_flush_tlb_with_range(kvm,
525 kvm_get_vcpu(kvm, 0), range);
528 spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
531 static int hv_remote_flush_tlb(struct kvm *kvm)
533 return hv_remote_flush_tlb_with_range(kvm, NULL);
536 static int hv_enable_direct_tlbflush(struct kvm_vcpu *vcpu)
538 struct hv_enlightened_vmcs *evmcs;
539 struct hv_partition_assist_pg **p_hv_pa_pg =
540 &vcpu->kvm->arch.hyperv.hv_pa_pg;
542 * Synthetic VM-Exit is not enabled in current code and so All
543 * evmcs in singe VM shares same assist page.
546 *p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL);
551 evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
553 evmcs->partition_assist_page =
555 evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
556 evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
561 #endif /* IS_ENABLED(CONFIG_HYPERV) */
564 * Comment's format: document - errata name - stepping - processor name.
566 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
568 static u32 vmx_preemption_cpu_tfms[] = {
569 /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */
571 /* 323056.pdf - AAX65 - C2 - Xeon L3406 */
572 /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
573 /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
575 /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
577 /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */
578 /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */
580 * 320767.pdf - AAP86 - B1 -
581 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
584 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
586 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
588 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
590 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
591 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
592 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
594 /* Xeon E3-1220 V2 */
598 static inline bool cpu_has_broken_vmx_preemption_timer(void)
600 u32 eax = cpuid_eax(0x00000001), i;
602 /* Clear the reserved bits */
603 eax &= ~(0x3U << 14 | 0xfU << 28);
604 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
605 if (eax == vmx_preemption_cpu_tfms[i])
611 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
613 return flexpriority_enabled && lapic_in_kernel(vcpu);
616 static inline bool report_flexpriority(void)
618 return flexpriority_enabled;
621 static inline int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
625 for (i = 0; i < vmx->nmsrs; ++i)
626 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
631 struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
635 i = __find_msr_index(vmx, msr);
637 return &vmx->guest_msrs[i];
641 void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
643 vmcs_clear(loaded_vmcs->vmcs);
644 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
645 vmcs_clear(loaded_vmcs->shadow_vmcs);
646 loaded_vmcs->cpu = -1;
647 loaded_vmcs->launched = 0;
650 #ifdef CONFIG_KEXEC_CORE
652 * This bitmap is used to indicate whether the vmclear
653 * operation is enabled on all cpus. All disabled by
656 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
658 static inline void crash_enable_local_vmclear(int cpu)
660 cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
663 static inline void crash_disable_local_vmclear(int cpu)
665 cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
668 static inline int crash_local_vmclear_enabled(int cpu)
670 return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
673 static void crash_vmclear_local_loaded_vmcss(void)
675 int cpu = raw_smp_processor_id();
676 struct loaded_vmcs *v;
678 if (!crash_local_vmclear_enabled(cpu))
681 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
682 loaded_vmcss_on_cpu_link)
686 static inline void crash_enable_local_vmclear(int cpu) { }
687 static inline void crash_disable_local_vmclear(int cpu) { }
688 #endif /* CONFIG_KEXEC_CORE */
690 static void __loaded_vmcs_clear(void *arg)
692 struct loaded_vmcs *loaded_vmcs = arg;
693 int cpu = raw_smp_processor_id();
695 if (loaded_vmcs->cpu != cpu)
696 return; /* vcpu migration can race with cpu offline */
697 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
698 per_cpu(current_vmcs, cpu) = NULL;
699 crash_disable_local_vmclear(cpu);
700 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
703 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
704 * is before setting loaded_vmcs->vcpu to -1 which is done in
705 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
706 * then adds the vmcs into percpu list before it is deleted.
710 loaded_vmcs_init(loaded_vmcs);
711 crash_enable_local_vmclear(cpu);
714 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
716 int cpu = loaded_vmcs->cpu;
719 smp_call_function_single(cpu,
720 __loaded_vmcs_clear, loaded_vmcs, 1);
723 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
727 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
729 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
730 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
731 vmx->segment_cache.bitmask = 0;
733 ret = vmx->segment_cache.bitmask & mask;
734 vmx->segment_cache.bitmask |= mask;
738 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
740 u16 *p = &vmx->segment_cache.seg[seg].selector;
742 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
743 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
747 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
749 ulong *p = &vmx->segment_cache.seg[seg].base;
751 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
752 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
756 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
758 u32 *p = &vmx->segment_cache.seg[seg].limit;
760 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
761 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
765 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
767 u32 *p = &vmx->segment_cache.seg[seg].ar;
769 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
770 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
774 void update_exception_bitmap(struct kvm_vcpu *vcpu)
778 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
779 (1u << DB_VECTOR) | (1u << AC_VECTOR);
781 * Guest access to VMware backdoor ports could legitimately
782 * trigger #GP because of TSS I/O permission bitmap.
783 * We intercept those #GP and allow access to them anyway
786 if (enable_vmware_backdoor)
787 eb |= (1u << GP_VECTOR);
788 if ((vcpu->guest_debug &
789 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
790 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
791 eb |= 1u << BP_VECTOR;
792 if (to_vmx(vcpu)->rmode.vm86_active)
795 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
797 /* When we are running a nested L2 guest and L1 specified for it a
798 * certain exception bitmap, we must trap the same exceptions and pass
799 * them to L1. When running L2, we will only handle the exceptions
800 * specified above if L1 did not want them.
802 if (is_guest_mode(vcpu))
803 eb |= get_vmcs12(vcpu)->exception_bitmap;
805 vmcs_write32(EXCEPTION_BITMAP, eb);
809 * Check if MSR is intercepted for currently loaded MSR bitmap.
811 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
813 unsigned long *msr_bitmap;
814 int f = sizeof(unsigned long);
816 if (!cpu_has_vmx_msr_bitmap())
819 msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap;
822 return !!test_bit(msr, msr_bitmap + 0x800 / f);
823 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
825 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
831 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
832 unsigned long entry, unsigned long exit)
834 vm_entry_controls_clearbit(vmx, entry);
835 vm_exit_controls_clearbit(vmx, exit);
838 static int find_msr(struct vmx_msrs *m, unsigned int msr)
842 for (i = 0; i < m->nr; ++i) {
843 if (m->val[i].index == msr)
849 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
852 struct msr_autoload *m = &vmx->msr_autoload;
856 if (cpu_has_load_ia32_efer()) {
857 clear_atomic_switch_msr_special(vmx,
858 VM_ENTRY_LOAD_IA32_EFER,
859 VM_EXIT_LOAD_IA32_EFER);
863 case MSR_CORE_PERF_GLOBAL_CTRL:
864 if (cpu_has_load_perf_global_ctrl()) {
865 clear_atomic_switch_msr_special(vmx,
866 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
867 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
872 i = find_msr(&m->guest, msr);
876 m->guest.val[i] = m->guest.val[m->guest.nr];
877 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
880 i = find_msr(&m->host, msr);
885 m->host.val[i] = m->host.val[m->host.nr];
886 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
889 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
890 unsigned long entry, unsigned long exit,
891 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
892 u64 guest_val, u64 host_val)
894 vmcs_write64(guest_val_vmcs, guest_val);
895 if (host_val_vmcs != HOST_IA32_EFER)
896 vmcs_write64(host_val_vmcs, host_val);
897 vm_entry_controls_setbit(vmx, entry);
898 vm_exit_controls_setbit(vmx, exit);
901 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
902 u64 guest_val, u64 host_val, bool entry_only)
905 struct msr_autoload *m = &vmx->msr_autoload;
909 if (cpu_has_load_ia32_efer()) {
910 add_atomic_switch_msr_special(vmx,
911 VM_ENTRY_LOAD_IA32_EFER,
912 VM_EXIT_LOAD_IA32_EFER,
915 guest_val, host_val);
919 case MSR_CORE_PERF_GLOBAL_CTRL:
920 if (cpu_has_load_perf_global_ctrl()) {
921 add_atomic_switch_msr_special(vmx,
922 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
923 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
924 GUEST_IA32_PERF_GLOBAL_CTRL,
925 HOST_IA32_PERF_GLOBAL_CTRL,
926 guest_val, host_val);
930 case MSR_IA32_PEBS_ENABLE:
931 /* PEBS needs a quiescent period after being disabled (to write
932 * a record). Disabling PEBS through VMX MSR swapping doesn't
933 * provide that period, so a CPU could write host's record into
936 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
939 i = find_msr(&m->guest, msr);
941 j = find_msr(&m->host, msr);
943 if ((i < 0 && m->guest.nr == NR_AUTOLOAD_MSRS) ||
944 (j < 0 && m->host.nr == NR_AUTOLOAD_MSRS)) {
945 printk_once(KERN_WARNING "Not enough msr switch entries. "
946 "Can't add msr %x\n", msr);
951 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
953 m->guest.val[i].index = msr;
954 m->guest.val[i].value = guest_val;
961 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
963 m->host.val[j].index = msr;
964 m->host.val[j].value = host_val;
967 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
969 u64 guest_efer = vmx->vcpu.arch.efer;
972 /* Shadow paging assumes NX to be available. */
974 guest_efer |= EFER_NX;
977 * LMA and LME handled by hardware; SCE meaningless outside long mode.
979 ignore_bits |= EFER_SCE;
981 ignore_bits |= EFER_LMA | EFER_LME;
982 /* SCE is meaningful only in long mode on Intel */
983 if (guest_efer & EFER_LMA)
984 ignore_bits &= ~(u64)EFER_SCE;
988 * On EPT, we can't emulate NX, so we must switch EFER atomically.
989 * On CPUs that support "load IA32_EFER", always switch EFER
990 * atomically, since it's faster than switching it manually.
992 if (cpu_has_load_ia32_efer() ||
993 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
994 if (!(guest_efer & EFER_LMA))
995 guest_efer &= ~EFER_LME;
996 if (guest_efer != host_efer)
997 add_atomic_switch_msr(vmx, MSR_EFER,
998 guest_efer, host_efer, false);
1000 clear_atomic_switch_msr(vmx, MSR_EFER);
1003 clear_atomic_switch_msr(vmx, MSR_EFER);
1005 guest_efer &= ~ignore_bits;
1006 guest_efer |= host_efer & ignore_bits;
1008 vmx->guest_msrs[efer_offset].data = guest_efer;
1009 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
1015 #ifdef CONFIG_X86_32
1017 * On 32-bit kernels, VM exits still load the FS and GS bases from the
1018 * VMCS rather than the segment table. KVM uses this helper to figure
1019 * out the current bases to poke them into the VMCS before entry.
1021 static unsigned long segment_base(u16 selector)
1023 struct desc_struct *table;
1026 if (!(selector & ~SEGMENT_RPL_MASK))
1029 table = get_current_gdt_ro();
1031 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1032 u16 ldt_selector = kvm_read_ldt();
1034 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1037 table = (struct desc_struct *)segment_base(ldt_selector);
1039 v = get_desc_base(&table[selector >> 3]);
1044 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1048 wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1049 wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1050 wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1051 wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1052 for (i = 0; i < addr_range; i++) {
1053 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1054 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1058 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1062 rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1063 rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1064 rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1065 rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1066 for (i = 0; i < addr_range; i++) {
1067 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1068 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1072 static void pt_guest_enter(struct vcpu_vmx *vmx)
1074 if (pt_mode == PT_MODE_SYSTEM)
1078 * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1079 * Save host state before VM entry.
1081 rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1082 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1083 wrmsrl(MSR_IA32_RTIT_CTL, 0);
1084 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1085 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1089 static void pt_guest_exit(struct vcpu_vmx *vmx)
1091 if (pt_mode == PT_MODE_SYSTEM)
1094 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1095 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1096 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1099 /* Reload host state (IA32_RTIT_CTL will be cleared on VM exit). */
1100 wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1103 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1104 unsigned long fs_base, unsigned long gs_base)
1106 if (unlikely(fs_sel != host->fs_sel)) {
1108 vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1110 vmcs_write16(HOST_FS_SELECTOR, 0);
1111 host->fs_sel = fs_sel;
1113 if (unlikely(gs_sel != host->gs_sel)) {
1115 vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1117 vmcs_write16(HOST_GS_SELECTOR, 0);
1118 host->gs_sel = gs_sel;
1120 if (unlikely(fs_base != host->fs_base)) {
1121 vmcs_writel(HOST_FS_BASE, fs_base);
1122 host->fs_base = fs_base;
1124 if (unlikely(gs_base != host->gs_base)) {
1125 vmcs_writel(HOST_GS_BASE, gs_base);
1126 host->gs_base = gs_base;
1130 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1132 struct vcpu_vmx *vmx = to_vmx(vcpu);
1133 struct vmcs_host_state *host_state;
1134 #ifdef CONFIG_X86_64
1135 int cpu = raw_smp_processor_id();
1137 unsigned long fs_base, gs_base;
1141 vmx->req_immediate_exit = false;
1144 * Note that guest MSRs to be saved/restored can also be changed
1145 * when guest state is loaded. This happens when guest transitions
1146 * to/from long-mode by setting MSR_EFER.LMA.
1148 if (!vmx->guest_msrs_ready) {
1149 vmx->guest_msrs_ready = true;
1150 for (i = 0; i < vmx->save_nmsrs; ++i)
1151 kvm_set_shared_msr(vmx->guest_msrs[i].index,
1152 vmx->guest_msrs[i].data,
1153 vmx->guest_msrs[i].mask);
1156 if (vmx->guest_state_loaded)
1159 host_state = &vmx->loaded_vmcs->host_state;
1162 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1163 * allow segment selectors with cpl > 0 or ti == 1.
1165 host_state->ldt_sel = kvm_read_ldt();
1167 #ifdef CONFIG_X86_64
1168 savesegment(ds, host_state->ds_sel);
1169 savesegment(es, host_state->es_sel);
1171 gs_base = cpu_kernelmode_gs_base(cpu);
1172 if (likely(is_64bit_mm(current->mm))) {
1173 save_fsgs_for_kvm();
1174 fs_sel = current->thread.fsindex;
1175 gs_sel = current->thread.gsindex;
1176 fs_base = current->thread.fsbase;
1177 vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1179 savesegment(fs, fs_sel);
1180 savesegment(gs, gs_sel);
1181 fs_base = read_msr(MSR_FS_BASE);
1182 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1185 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1187 savesegment(fs, fs_sel);
1188 savesegment(gs, gs_sel);
1189 fs_base = segment_base(fs_sel);
1190 gs_base = segment_base(gs_sel);
1193 vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1194 vmx->guest_state_loaded = true;
1197 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1199 struct vmcs_host_state *host_state;
1201 if (!vmx->guest_state_loaded)
1204 host_state = &vmx->loaded_vmcs->host_state;
1206 ++vmx->vcpu.stat.host_state_reload;
1208 #ifdef CONFIG_X86_64
1209 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1211 if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1212 kvm_load_ldt(host_state->ldt_sel);
1213 #ifdef CONFIG_X86_64
1214 load_gs_index(host_state->gs_sel);
1216 loadsegment(gs, host_state->gs_sel);
1219 if (host_state->fs_sel & 7)
1220 loadsegment(fs, host_state->fs_sel);
1221 #ifdef CONFIG_X86_64
1222 if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1223 loadsegment(ds, host_state->ds_sel);
1224 loadsegment(es, host_state->es_sel);
1227 invalidate_tss_limit();
1228 #ifdef CONFIG_X86_64
1229 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1231 load_fixmap_gdt(raw_smp_processor_id());
1232 vmx->guest_state_loaded = false;
1233 vmx->guest_msrs_ready = false;
1236 #ifdef CONFIG_X86_64
1237 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1240 if (vmx->guest_state_loaded)
1241 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1243 return vmx->msr_guest_kernel_gs_base;
1246 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1249 if (vmx->guest_state_loaded)
1250 wrmsrl(MSR_KERNEL_GS_BASE, data);
1252 vmx->msr_guest_kernel_gs_base = data;
1256 static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
1258 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
1259 struct pi_desc old, new;
1263 * In case of hot-plug or hot-unplug, we may have to undo
1264 * vmx_vcpu_pi_put even if there is no assigned device. And we
1265 * always keep PI.NDST up to date for simplicity: it makes the
1266 * code easier, and CPU migration is not a fast path.
1268 if (!pi_test_sn(pi_desc) && vcpu->cpu == cpu)
1271 /* The full case. */
1273 old.control = new.control = pi_desc->control;
1275 dest = cpu_physical_id(cpu);
1277 if (x2apic_enabled())
1280 new.ndst = (dest << 8) & 0xFF00;
1283 } while (cmpxchg64(&pi_desc->control, old.control,
1284 new.control) != old.control);
1287 * Clear SN before reading the bitmap. The VT-d firmware
1288 * writes the bitmap and reads SN atomically (5.2.3 in the
1289 * spec), so it doesn't really have a memory barrier that
1290 * pairs with this, but we cannot do that and we need one.
1292 smp_mb__after_atomic();
1294 if (!bitmap_empty((unsigned long *)pi_desc->pir, NR_VECTORS))
1298 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu)
1300 struct vcpu_vmx *vmx = to_vmx(vcpu);
1301 bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1303 if (!already_loaded) {
1304 loaded_vmcs_clear(vmx->loaded_vmcs);
1305 local_irq_disable();
1306 crash_disable_local_vmclear(cpu);
1309 * Read loaded_vmcs->cpu should be before fetching
1310 * loaded_vmcs->loaded_vmcss_on_cpu_link.
1311 * See the comments in __loaded_vmcs_clear().
1315 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1316 &per_cpu(loaded_vmcss_on_cpu, cpu));
1317 crash_enable_local_vmclear(cpu);
1321 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1322 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1323 vmcs_load(vmx->loaded_vmcs->vmcs);
1324 indirect_branch_prediction_barrier();
1327 if (!already_loaded) {
1328 void *gdt = get_current_gdt_ro();
1329 unsigned long sysenter_esp;
1331 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1334 * Linux uses per-cpu TSS and GDT, so set these when switching
1335 * processors. See 22.2.4.
1337 vmcs_writel(HOST_TR_BASE,
1338 (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1339 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */
1342 * VM exits change the host TR limit to 0x67 after a VM
1343 * exit. This is okay, since 0x67 covers everything except
1344 * the IO bitmap and have have code to handle the IO bitmap
1345 * being lost after a VM exit.
1347 BUILD_BUG_ON(IO_BITMAP_OFFSET - 1 != 0x67);
1349 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1350 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1352 vmx->loaded_vmcs->cpu = cpu;
1355 /* Setup TSC multiplier */
1356 if (kvm_has_tsc_control &&
1357 vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
1358 decache_tsc_multiplier(vmx);
1362 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1363 * vcpu mutex is already taken.
1365 void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1367 struct vcpu_vmx *vmx = to_vmx(vcpu);
1369 vmx_vcpu_load_vmcs(vcpu, cpu);
1371 vmx_vcpu_pi_load(vcpu, cpu);
1373 vmx->host_pkru = read_pkru();
1374 vmx->host_debugctlmsr = get_debugctlmsr();
1377 static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
1379 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
1381 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
1382 !irq_remapping_cap(IRQ_POSTING_CAP) ||
1383 !kvm_vcpu_apicv_active(vcpu))
1386 /* Set SN when the vCPU is preempted */
1387 if (vcpu->preempted)
1391 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1393 vmx_vcpu_pi_put(vcpu);
1395 vmx_prepare_switch_to_host(to_vmx(vcpu));
1398 static bool emulation_required(struct kvm_vcpu *vcpu)
1400 return emulate_invalid_guest_state && !guest_state_valid(vcpu);
1403 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1405 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1407 unsigned long rflags, save_rflags;
1409 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
1410 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1411 rflags = vmcs_readl(GUEST_RFLAGS);
1412 if (to_vmx(vcpu)->rmode.vm86_active) {
1413 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1414 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
1415 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1417 to_vmx(vcpu)->rflags = rflags;
1419 return to_vmx(vcpu)->rflags;
1422 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1424 unsigned long old_rflags = vmx_get_rflags(vcpu);
1426 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1427 to_vmx(vcpu)->rflags = rflags;
1428 if (to_vmx(vcpu)->rmode.vm86_active) {
1429 to_vmx(vcpu)->rmode.save_rflags = rflags;
1430 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1432 vmcs_writel(GUEST_RFLAGS, rflags);
1434 if ((old_rflags ^ to_vmx(vcpu)->rflags) & X86_EFLAGS_VM)
1435 to_vmx(vcpu)->emulation_required = emulation_required(vcpu);
1438 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1440 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1443 if (interruptibility & GUEST_INTR_STATE_STI)
1444 ret |= KVM_X86_SHADOW_INT_STI;
1445 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1446 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1451 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1453 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1454 u32 interruptibility = interruptibility_old;
1456 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1458 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1459 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1460 else if (mask & KVM_X86_SHADOW_INT_STI)
1461 interruptibility |= GUEST_INTR_STATE_STI;
1463 if ((interruptibility != interruptibility_old))
1464 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1467 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1469 struct vcpu_vmx *vmx = to_vmx(vcpu);
1470 unsigned long value;
1473 * Any MSR write that attempts to change bits marked reserved will
1476 if (data & vmx->pt_desc.ctl_bitmask)
1480 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1481 * result in a #GP unless the same write also clears TraceEn.
1483 if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1484 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1488 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1489 * and FabricEn would cause #GP, if
1490 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1492 if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1493 !(data & RTIT_CTL_FABRIC_EN) &&
1494 !intel_pt_validate_cap(vmx->pt_desc.caps,
1495 PT_CAP_single_range_output))
1499 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1500 * utilize encodings marked reserved will casue a #GP fault.
1502 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1503 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1504 !test_bit((data & RTIT_CTL_MTC_RANGE) >>
1505 RTIT_CTL_MTC_RANGE_OFFSET, &value))
1507 value = intel_pt_validate_cap(vmx->pt_desc.caps,
1508 PT_CAP_cycle_thresholds);
1509 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1510 !test_bit((data & RTIT_CTL_CYC_THRESH) >>
1511 RTIT_CTL_CYC_THRESH_OFFSET, &value))
1513 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1514 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1515 !test_bit((data & RTIT_CTL_PSB_FREQ) >>
1516 RTIT_CTL_PSB_FREQ_OFFSET, &value))
1520 * If ADDRx_CFG is reserved or the encodings is >2 will
1521 * cause a #GP fault.
1523 value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1524 if ((value && (vmx->pt_desc.addr_range < 1)) || (value > 2))
1526 value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1527 if ((value && (vmx->pt_desc.addr_range < 2)) || (value > 2))
1529 value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1530 if ((value && (vmx->pt_desc.addr_range < 3)) || (value > 2))
1532 value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1533 if ((value && (vmx->pt_desc.addr_range < 4)) || (value > 2))
1539 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1544 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1545 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1546 * set when EPT misconfig occurs. In practice, real hardware updates
1547 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1548 * (namely Hyper-V) don't set it due to it being undefined behavior,
1549 * i.e. we end up advancing IP with some random value.
1551 if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1552 to_vmx(vcpu)->exit_reason != EXIT_REASON_EPT_MISCONFIG) {
1553 rip = kvm_rip_read(vcpu);
1554 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1555 kvm_rip_write(vcpu, rip);
1557 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1561 /* skipping an emulated instruction also counts */
1562 vmx_set_interrupt_shadow(vcpu, 0);
1567 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1570 * Ensure that we clear the HLT state in the VMCS. We don't need to
1571 * explicitly skip the instruction because if the HLT state is set,
1572 * then the instruction is already executing and RIP has already been
1575 if (kvm_hlt_in_guest(vcpu->kvm) &&
1576 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1577 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1580 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
1582 struct vcpu_vmx *vmx = to_vmx(vcpu);
1583 unsigned nr = vcpu->arch.exception.nr;
1584 bool has_error_code = vcpu->arch.exception.has_error_code;
1585 u32 error_code = vcpu->arch.exception.error_code;
1586 u32 intr_info = nr | INTR_INFO_VALID_MASK;
1588 kvm_deliver_exception_payload(vcpu);
1590 if (has_error_code) {
1591 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1592 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1595 if (vmx->rmode.vm86_active) {
1597 if (kvm_exception_is_soft(nr))
1598 inc_eip = vcpu->arch.event_exit_inst_len;
1599 kvm_inject_realmode_interrupt(vcpu, nr, inc_eip);
1603 WARN_ON_ONCE(vmx->emulation_required);
1605 if (kvm_exception_is_soft(nr)) {
1606 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1607 vmx->vcpu.arch.event_exit_inst_len);
1608 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1610 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1612 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1614 vmx_clear_hlt(vcpu);
1617 static bool vmx_rdtscp_supported(void)
1619 return cpu_has_vmx_rdtscp();
1622 static bool vmx_invpcid_supported(void)
1624 return cpu_has_vmx_invpcid();
1628 * Swap MSR entry in host/guest MSR entry array.
1630 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
1632 struct shared_msr_entry tmp;
1634 tmp = vmx->guest_msrs[to];
1635 vmx->guest_msrs[to] = vmx->guest_msrs[from];
1636 vmx->guest_msrs[from] = tmp;
1640 * Set up the vmcs to automatically save and restore system
1641 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
1642 * mode, as fiddling with msrs is very expensive.
1644 static void setup_msrs(struct vcpu_vmx *vmx)
1646 int save_nmsrs, index;
1649 #ifdef CONFIG_X86_64
1651 * The SYSCALL MSRs are only needed on long mode guests, and only
1652 * when EFER.SCE is set.
1654 if (is_long_mode(&vmx->vcpu) && (vmx->vcpu.arch.efer & EFER_SCE)) {
1655 index = __find_msr_index(vmx, MSR_STAR);
1657 move_msr_up(vmx, index, save_nmsrs++);
1658 index = __find_msr_index(vmx, MSR_LSTAR);
1660 move_msr_up(vmx, index, save_nmsrs++);
1661 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
1663 move_msr_up(vmx, index, save_nmsrs++);
1666 index = __find_msr_index(vmx, MSR_EFER);
1667 if (index >= 0 && update_transition_efer(vmx, index))
1668 move_msr_up(vmx, index, save_nmsrs++);
1669 index = __find_msr_index(vmx, MSR_TSC_AUX);
1670 if (index >= 0 && guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP))
1671 move_msr_up(vmx, index, save_nmsrs++);
1673 vmx->save_nmsrs = save_nmsrs;
1674 vmx->guest_msrs_ready = false;
1676 if (cpu_has_vmx_msr_bitmap())
1677 vmx_update_msr_bitmap(&vmx->vcpu);
1680 static u64 vmx_read_l1_tsc_offset(struct kvm_vcpu *vcpu)
1682 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1684 if (is_guest_mode(vcpu) &&
1685 (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING))
1686 return vcpu->arch.tsc_offset - vmcs12->tsc_offset;
1688 return vcpu->arch.tsc_offset;
1691 static u64 vmx_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1693 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1694 u64 g_tsc_offset = 0;
1697 * We're here if L1 chose not to trap WRMSR to TSC. According
1698 * to the spec, this should set L1's TSC; The offset that L1
1699 * set for L2 remains unchanged, and still needs to be added
1700 * to the newly set TSC to get L2's TSC.
1702 if (is_guest_mode(vcpu) &&
1703 (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING))
1704 g_tsc_offset = vmcs12->tsc_offset;
1706 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1707 vcpu->arch.tsc_offset - g_tsc_offset,
1709 vmcs_write64(TSC_OFFSET, offset + g_tsc_offset);
1710 return offset + g_tsc_offset;
1714 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1715 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1716 * all guests if the "nested" module option is off, and can also be disabled
1717 * for a single guest by disabling its VMX cpuid bit.
1719 bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1721 return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
1724 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
1727 uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
1729 return !(val & ~valid_bits);
1732 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1734 switch (msr->index) {
1735 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1738 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1747 * Reads an msr value (of 'msr_index') into 'pdata'.
1748 * Returns 0 on success, non-0 otherwise.
1749 * Assumes vcpu_load() was already called.
1751 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1753 struct vcpu_vmx *vmx = to_vmx(vcpu);
1754 struct shared_msr_entry *msr;
1757 switch (msr_info->index) {
1758 #ifdef CONFIG_X86_64
1760 msr_info->data = vmcs_readl(GUEST_FS_BASE);
1763 msr_info->data = vmcs_readl(GUEST_GS_BASE);
1765 case MSR_KERNEL_GS_BASE:
1766 msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1770 return kvm_get_msr_common(vcpu, msr_info);
1771 case MSR_IA32_UMWAIT_CONTROL:
1772 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1775 msr_info->data = vmx->msr_ia32_umwait_control;
1777 case MSR_IA32_SPEC_CTRL:
1778 if (!msr_info->host_initiated &&
1779 !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
1782 msr_info->data = to_vmx(vcpu)->spec_ctrl;
1784 case MSR_IA32_SYSENTER_CS:
1785 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
1787 case MSR_IA32_SYSENTER_EIP:
1788 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
1790 case MSR_IA32_SYSENTER_ESP:
1791 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
1793 case MSR_IA32_BNDCFGS:
1794 if (!kvm_mpx_supported() ||
1795 (!msr_info->host_initiated &&
1796 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1798 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
1800 case MSR_IA32_MCG_EXT_CTL:
1801 if (!msr_info->host_initiated &&
1802 !(vmx->msr_ia32_feature_control &
1803 FEATURE_CONTROL_LMCE))
1805 msr_info->data = vcpu->arch.mcg_ext_ctl;
1807 case MSR_IA32_FEATURE_CONTROL:
1808 msr_info->data = vmx->msr_ia32_feature_control;
1810 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1811 if (!nested_vmx_allowed(vcpu))
1813 return vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
1816 if (!vmx_xsaves_supported() ||
1817 (!msr_info->host_initiated &&
1818 !(guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
1819 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))))
1821 msr_info->data = vcpu->arch.ia32_xss;
1823 case MSR_IA32_RTIT_CTL:
1824 if (pt_mode != PT_MODE_HOST_GUEST)
1826 msr_info->data = vmx->pt_desc.guest.ctl;
1828 case MSR_IA32_RTIT_STATUS:
1829 if (pt_mode != PT_MODE_HOST_GUEST)
1831 msr_info->data = vmx->pt_desc.guest.status;
1833 case MSR_IA32_RTIT_CR3_MATCH:
1834 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1835 !intel_pt_validate_cap(vmx->pt_desc.caps,
1836 PT_CAP_cr3_filtering))
1838 msr_info->data = vmx->pt_desc.guest.cr3_match;
1840 case MSR_IA32_RTIT_OUTPUT_BASE:
1841 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1842 (!intel_pt_validate_cap(vmx->pt_desc.caps,
1843 PT_CAP_topa_output) &&
1844 !intel_pt_validate_cap(vmx->pt_desc.caps,
1845 PT_CAP_single_range_output)))
1847 msr_info->data = vmx->pt_desc.guest.output_base;
1849 case MSR_IA32_RTIT_OUTPUT_MASK:
1850 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1851 (!intel_pt_validate_cap(vmx->pt_desc.caps,
1852 PT_CAP_topa_output) &&
1853 !intel_pt_validate_cap(vmx->pt_desc.caps,
1854 PT_CAP_single_range_output)))
1856 msr_info->data = vmx->pt_desc.guest.output_mask;
1858 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
1859 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
1860 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1861 (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
1862 PT_CAP_num_address_ranges)))
1865 msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
1867 msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
1870 if (!msr_info->host_initiated &&
1871 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
1873 /* Else, falls through */
1875 msr = find_msr_entry(vmx, msr_info->index);
1877 msr_info->data = msr->data;
1880 return kvm_get_msr_common(vcpu, msr_info);
1887 * Writes msr value into into the appropriate "register".
1888 * Returns 0 on success, non-0 otherwise.
1889 * Assumes vcpu_load() was already called.
1891 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1893 struct vcpu_vmx *vmx = to_vmx(vcpu);
1894 struct shared_msr_entry *msr;
1896 u32 msr_index = msr_info->index;
1897 u64 data = msr_info->data;
1900 switch (msr_index) {
1902 ret = kvm_set_msr_common(vcpu, msr_info);
1904 #ifdef CONFIG_X86_64
1906 vmx_segment_cache_clear(vmx);
1907 vmcs_writel(GUEST_FS_BASE, data);
1910 vmx_segment_cache_clear(vmx);
1911 vmcs_writel(GUEST_GS_BASE, data);
1913 case MSR_KERNEL_GS_BASE:
1914 vmx_write_guest_kernel_gs_base(vmx, data);
1917 case MSR_IA32_SYSENTER_CS:
1918 if (is_guest_mode(vcpu))
1919 get_vmcs12(vcpu)->guest_sysenter_cs = data;
1920 vmcs_write32(GUEST_SYSENTER_CS, data);
1922 case MSR_IA32_SYSENTER_EIP:
1923 if (is_guest_mode(vcpu))
1924 get_vmcs12(vcpu)->guest_sysenter_eip = data;
1925 vmcs_writel(GUEST_SYSENTER_EIP, data);
1927 case MSR_IA32_SYSENTER_ESP:
1928 if (is_guest_mode(vcpu))
1929 get_vmcs12(vcpu)->guest_sysenter_esp = data;
1930 vmcs_writel(GUEST_SYSENTER_ESP, data);
1932 case MSR_IA32_DEBUGCTLMSR:
1933 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
1934 VM_EXIT_SAVE_DEBUG_CONTROLS)
1935 get_vmcs12(vcpu)->guest_ia32_debugctl = data;
1937 ret = kvm_set_msr_common(vcpu, msr_info);
1940 case MSR_IA32_BNDCFGS:
1941 if (!kvm_mpx_supported() ||
1942 (!msr_info->host_initiated &&
1943 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1945 if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
1946 (data & MSR_IA32_BNDCFGS_RSVD))
1948 vmcs_write64(GUEST_BNDCFGS, data);
1950 case MSR_IA32_UMWAIT_CONTROL:
1951 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1954 /* The reserved bit 1 and non-32 bit [63:32] should be zero */
1955 if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
1958 vmx->msr_ia32_umwait_control = data;
1960 case MSR_IA32_SPEC_CTRL:
1961 if (!msr_info->host_initiated &&
1962 !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
1965 /* The STIBP bit doesn't fault even if it's not advertised */
1966 if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD))
1969 vmx->spec_ctrl = data;
1976 * When it's written (to non-zero) for the first time, pass
1980 * The handling of the MSR bitmap for L2 guests is done in
1981 * nested_vmx_merge_msr_bitmap. We should not touch the
1982 * vmcs02.msr_bitmap here since it gets completely overwritten
1983 * in the merging. We update the vmcs01 here for L1 as well
1984 * since it will end up touching the MSR anyway now.
1986 vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap,
1990 case MSR_IA32_PRED_CMD:
1991 if (!msr_info->host_initiated &&
1992 !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
1995 if (data & ~PRED_CMD_IBPB)
2001 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2005 * When it's written (to non-zero) for the first time, pass
2009 * The handling of the MSR bitmap for L2 guests is done in
2010 * nested_vmx_merge_msr_bitmap. We should not touch the
2011 * vmcs02.msr_bitmap here since it gets completely overwritten
2014 vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap, MSR_IA32_PRED_CMD,
2017 case MSR_IA32_CR_PAT:
2018 if (!kvm_pat_valid(data))
2021 if (is_guest_mode(vcpu) &&
2022 get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2023 get_vmcs12(vcpu)->guest_ia32_pat = data;
2025 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2026 vmcs_write64(GUEST_IA32_PAT, data);
2027 vcpu->arch.pat = data;
2030 ret = kvm_set_msr_common(vcpu, msr_info);
2032 case MSR_IA32_TSC_ADJUST:
2033 ret = kvm_set_msr_common(vcpu, msr_info);
2035 case MSR_IA32_MCG_EXT_CTL:
2036 if ((!msr_info->host_initiated &&
2037 !(to_vmx(vcpu)->msr_ia32_feature_control &
2038 FEATURE_CONTROL_LMCE)) ||
2039 (data & ~MCG_EXT_CTL_LMCE_EN))
2041 vcpu->arch.mcg_ext_ctl = data;
2043 case MSR_IA32_FEATURE_CONTROL:
2044 if (!vmx_feature_control_msr_valid(vcpu, data) ||
2045 (to_vmx(vcpu)->msr_ia32_feature_control &
2046 FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
2048 vmx->msr_ia32_feature_control = data;
2049 if (msr_info->host_initiated && data == 0)
2050 vmx_leave_nested(vcpu);
2052 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2053 if (!msr_info->host_initiated)
2054 return 1; /* they are read-only */
2055 if (!nested_vmx_allowed(vcpu))
2057 return vmx_set_vmx_msr(vcpu, msr_index, data);
2059 if (!vmx_xsaves_supported() ||
2060 (!msr_info->host_initiated &&
2061 !(guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
2062 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))))
2065 * The only supported bit as of Skylake is bit 8, but
2066 * it is not supported on KVM.
2070 vcpu->arch.ia32_xss = data;
2071 if (vcpu->arch.ia32_xss != host_xss)
2072 add_atomic_switch_msr(vmx, MSR_IA32_XSS,
2073 vcpu->arch.ia32_xss, host_xss, false);
2075 clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
2077 case MSR_IA32_RTIT_CTL:
2078 if ((pt_mode != PT_MODE_HOST_GUEST) ||
2079 vmx_rtit_ctl_check(vcpu, data) ||
2082 vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2083 vmx->pt_desc.guest.ctl = data;
2084 pt_update_intercept_for_msr(vmx);
2086 case MSR_IA32_RTIT_STATUS:
2087 if ((pt_mode != PT_MODE_HOST_GUEST) ||
2088 (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
2089 (data & MSR_IA32_RTIT_STATUS_MASK))
2091 vmx->pt_desc.guest.status = data;
2093 case MSR_IA32_RTIT_CR3_MATCH:
2094 if ((pt_mode != PT_MODE_HOST_GUEST) ||
2095 (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
2096 !intel_pt_validate_cap(vmx->pt_desc.caps,
2097 PT_CAP_cr3_filtering))
2099 vmx->pt_desc.guest.cr3_match = data;
2101 case MSR_IA32_RTIT_OUTPUT_BASE:
2102 if ((pt_mode != PT_MODE_HOST_GUEST) ||
2103 (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
2104 (!intel_pt_validate_cap(vmx->pt_desc.caps,
2105 PT_CAP_topa_output) &&
2106 !intel_pt_validate_cap(vmx->pt_desc.caps,
2107 PT_CAP_single_range_output)) ||
2108 (data & MSR_IA32_RTIT_OUTPUT_BASE_MASK))
2110 vmx->pt_desc.guest.output_base = data;
2112 case MSR_IA32_RTIT_OUTPUT_MASK:
2113 if ((pt_mode != PT_MODE_HOST_GUEST) ||
2114 (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
2115 (!intel_pt_validate_cap(vmx->pt_desc.caps,
2116 PT_CAP_topa_output) &&
2117 !intel_pt_validate_cap(vmx->pt_desc.caps,
2118 PT_CAP_single_range_output)))
2120 vmx->pt_desc.guest.output_mask = data;
2122 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2123 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2124 if ((pt_mode != PT_MODE_HOST_GUEST) ||
2125 (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
2126 (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
2127 PT_CAP_num_address_ranges)))
2130 vmx->pt_desc.guest.addr_b[index / 2] = data;
2132 vmx->pt_desc.guest.addr_a[index / 2] = data;
2135 if (!msr_info->host_initiated &&
2136 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
2138 /* Check reserved bit, higher 32 bits should be zero */
2139 if ((data >> 32) != 0)
2141 /* Else, falls through */
2143 msr = find_msr_entry(vmx, msr_index);
2145 u64 old_msr_data = msr->data;
2147 if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
2149 ret = kvm_set_shared_msr(msr->index, msr->data,
2153 msr->data = old_msr_data;
2157 ret = kvm_set_msr_common(vcpu, msr_info);
2163 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2165 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2168 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2171 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2173 case VCPU_EXREG_PDPTR:
2175 ept_save_pdptrs(vcpu);
2182 static __init int cpu_has_kvm_support(void)
2184 return cpu_has_vmx();
2187 static __init int vmx_disabled_by_bios(void)
2191 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
2192 if (msr & FEATURE_CONTROL_LOCKED) {
2193 /* launched w/ TXT and VMX disabled */
2194 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2197 /* launched w/o TXT and VMX only enabled w/ TXT */
2198 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2199 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2200 && !tboot_enabled()) {
2201 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
2202 "activate TXT before enabling KVM\n");
2205 /* launched w/o TXT and VMX disabled */
2206 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2207 && !tboot_enabled())
2214 static void kvm_cpu_vmxon(u64 addr)
2216 cr4_set_bits(X86_CR4_VMXE);
2217 intel_pt_handle_vmx(1);
2219 asm volatile ("vmxon %0" : : "m"(addr));
2222 static int hardware_enable(void)
2224 int cpu = raw_smp_processor_id();
2225 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2228 if (cr4_read_shadow() & X86_CR4_VMXE)
2232 * This can happen if we hot-added a CPU but failed to allocate
2233 * VP assist page for it.
2235 if (static_branch_unlikely(&enable_evmcs) &&
2236 !hv_get_vp_assist_page(cpu))
2239 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
2240 INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
2241 spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
2244 * Now we can enable the vmclear operation in kdump
2245 * since the loaded_vmcss_on_cpu list on this cpu
2246 * has been initialized.
2248 * Though the cpu is not in VMX operation now, there
2249 * is no problem to enable the vmclear operation
2250 * for the loaded_vmcss_on_cpu list is empty!
2252 crash_enable_local_vmclear(cpu);
2254 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
2256 test_bits = FEATURE_CONTROL_LOCKED;
2257 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2258 if (tboot_enabled())
2259 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2261 if ((old & test_bits) != test_bits) {
2262 /* enable and lock */
2263 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2265 kvm_cpu_vmxon(phys_addr);
2272 static void vmclear_local_loaded_vmcss(void)
2274 int cpu = raw_smp_processor_id();
2275 struct loaded_vmcs *v, *n;
2277 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2278 loaded_vmcss_on_cpu_link)
2279 __loaded_vmcs_clear(v);
2283 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2286 static void kvm_cpu_vmxoff(void)
2288 asm volatile (__ex("vmxoff"));
2290 intel_pt_handle_vmx(0);
2291 cr4_clear_bits(X86_CR4_VMXE);
2294 static void hardware_disable(void)
2296 vmclear_local_loaded_vmcss();
2300 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2301 u32 msr, u32 *result)
2303 u32 vmx_msr_low, vmx_msr_high;
2304 u32 ctl = ctl_min | ctl_opt;
2306 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2308 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2309 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
2311 /* Ensure minimum (required) set of control bits are supported. */
2319 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2320 struct vmx_capability *vmx_cap)
2322 u32 vmx_msr_low, vmx_msr_high;
2323 u32 min, opt, min2, opt2;
2324 u32 _pin_based_exec_control = 0;
2325 u32 _cpu_based_exec_control = 0;
2326 u32 _cpu_based_2nd_exec_control = 0;
2327 u32 _vmexit_control = 0;
2328 u32 _vmentry_control = 0;
2330 memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2331 min = CPU_BASED_HLT_EXITING |
2332 #ifdef CONFIG_X86_64
2333 CPU_BASED_CR8_LOAD_EXITING |
2334 CPU_BASED_CR8_STORE_EXITING |
2336 CPU_BASED_CR3_LOAD_EXITING |
2337 CPU_BASED_CR3_STORE_EXITING |
2338 CPU_BASED_UNCOND_IO_EXITING |
2339 CPU_BASED_MOV_DR_EXITING |
2340 CPU_BASED_USE_TSC_OFFSETING |
2341 CPU_BASED_MWAIT_EXITING |
2342 CPU_BASED_MONITOR_EXITING |
2343 CPU_BASED_INVLPG_EXITING |
2344 CPU_BASED_RDPMC_EXITING;
2346 opt = CPU_BASED_TPR_SHADOW |
2347 CPU_BASED_USE_MSR_BITMAPS |
2348 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2349 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2350 &_cpu_based_exec_control) < 0)
2352 #ifdef CONFIG_X86_64
2353 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2354 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2355 ~CPU_BASED_CR8_STORE_EXITING;
2357 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2359 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2360 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2361 SECONDARY_EXEC_WBINVD_EXITING |
2362 SECONDARY_EXEC_ENABLE_VPID |
2363 SECONDARY_EXEC_ENABLE_EPT |
2364 SECONDARY_EXEC_UNRESTRICTED_GUEST |
2365 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2366 SECONDARY_EXEC_DESC |
2367 SECONDARY_EXEC_RDTSCP |
2368 SECONDARY_EXEC_ENABLE_INVPCID |
2369 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2370 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2371 SECONDARY_EXEC_SHADOW_VMCS |
2372 SECONDARY_EXEC_XSAVES |
2373 SECONDARY_EXEC_RDSEED_EXITING |
2374 SECONDARY_EXEC_RDRAND_EXITING |
2375 SECONDARY_EXEC_ENABLE_PML |
2376 SECONDARY_EXEC_TSC_SCALING |
2377 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2378 SECONDARY_EXEC_PT_USE_GPA |
2379 SECONDARY_EXEC_PT_CONCEAL_VMX |
2380 SECONDARY_EXEC_ENABLE_VMFUNC |
2381 SECONDARY_EXEC_ENCLS_EXITING;
2382 if (adjust_vmx_controls(min2, opt2,
2383 MSR_IA32_VMX_PROCBASED_CTLS2,
2384 &_cpu_based_2nd_exec_control) < 0)
2387 #ifndef CONFIG_X86_64
2388 if (!(_cpu_based_2nd_exec_control &
2389 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2390 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2393 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2394 _cpu_based_2nd_exec_control &= ~(
2395 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2396 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2397 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2399 rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2400 &vmx_cap->ept, &vmx_cap->vpid);
2402 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2403 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2405 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2406 CPU_BASED_CR3_STORE_EXITING |
2407 CPU_BASED_INVLPG_EXITING);
2408 } else if (vmx_cap->ept) {
2410 pr_warn_once("EPT CAP should not exist if not support "
2411 "1-setting enable EPT VM-execution control\n");
2413 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2416 pr_warn_once("VPID CAP should not exist if not support "
2417 "1-setting enable VPID VM-execution control\n");
2420 min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
2421 #ifdef CONFIG_X86_64
2422 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2424 opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |
2425 VM_EXIT_LOAD_IA32_PAT |
2426 VM_EXIT_LOAD_IA32_EFER |
2427 VM_EXIT_CLEAR_BNDCFGS |
2428 VM_EXIT_PT_CONCEAL_PIP |
2429 VM_EXIT_CLEAR_IA32_RTIT_CTL;
2430 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2431 &_vmexit_control) < 0)
2434 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2435 opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
2436 PIN_BASED_VMX_PREEMPTION_TIMER;
2437 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2438 &_pin_based_exec_control) < 0)
2441 if (cpu_has_broken_vmx_preemption_timer())
2442 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2443 if (!(_cpu_based_2nd_exec_control &
2444 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2445 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2447 min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
2448 opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
2449 VM_ENTRY_LOAD_IA32_PAT |
2450 VM_ENTRY_LOAD_IA32_EFER |
2451 VM_ENTRY_LOAD_BNDCFGS |
2452 VM_ENTRY_PT_CONCEAL_PIP |
2453 VM_ENTRY_LOAD_IA32_RTIT_CTL;
2454 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2455 &_vmentry_control) < 0)
2459 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2460 * can't be used due to an errata where VM Exit may incorrectly clear
2461 * IA32_PERF_GLOBAL_CTRL[34:32]. Workaround the errata by using the
2462 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2464 if (boot_cpu_data.x86 == 0x6) {
2465 switch (boot_cpu_data.x86_model) {
2466 case 26: /* AAK155 */
2467 case 30: /* AAP115 */
2468 case 37: /* AAT100 */
2469 case 44: /* BC86,AAY89,BD102 */
2471 _vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
2472 _vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
2473 pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2474 "does not work properly. Using workaround\n");
2482 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2484 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2485 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2488 #ifdef CONFIG_X86_64
2489 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2490 if (vmx_msr_high & (1u<<16))
2494 /* Require Write-Back (WB) memory type for VMCS accesses. */
2495 if (((vmx_msr_high >> 18) & 15) != 6)
2498 vmcs_conf->size = vmx_msr_high & 0x1fff;
2499 vmcs_conf->order = get_order(vmcs_conf->size);
2500 vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2502 vmcs_conf->revision_id = vmx_msr_low;
2504 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2505 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2506 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2507 vmcs_conf->vmexit_ctrl = _vmexit_control;
2508 vmcs_conf->vmentry_ctrl = _vmentry_control;
2510 if (static_branch_unlikely(&enable_evmcs))
2511 evmcs_sanitize_exec_ctrls(vmcs_conf);
2516 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2518 int node = cpu_to_node(cpu);
2522 pages = __alloc_pages_node(node, flags, vmcs_config.order);
2525 vmcs = page_address(pages);
2526 memset(vmcs, 0, vmcs_config.size);
2528 /* KVM supports Enlightened VMCS v1 only */
2529 if (static_branch_unlikely(&enable_evmcs))
2530 vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2532 vmcs->hdr.revision_id = vmcs_config.revision_id;
2535 vmcs->hdr.shadow_vmcs = 1;
2539 void free_vmcs(struct vmcs *vmcs)
2541 free_pages((unsigned long)vmcs, vmcs_config.order);
2545 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2547 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2549 if (!loaded_vmcs->vmcs)
2551 loaded_vmcs_clear(loaded_vmcs);
2552 free_vmcs(loaded_vmcs->vmcs);
2553 loaded_vmcs->vmcs = NULL;
2554 if (loaded_vmcs->msr_bitmap)
2555 free_page((unsigned long)loaded_vmcs->msr_bitmap);
2556 WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2559 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2561 loaded_vmcs->vmcs = alloc_vmcs(false);
2562 if (!loaded_vmcs->vmcs)
2565 loaded_vmcs->shadow_vmcs = NULL;
2566 loaded_vmcs->hv_timer_soft_disabled = false;
2567 loaded_vmcs_init(loaded_vmcs);
2569 if (cpu_has_vmx_msr_bitmap()) {
2570 loaded_vmcs->msr_bitmap = (unsigned long *)
2571 __get_free_page(GFP_KERNEL_ACCOUNT);
2572 if (!loaded_vmcs->msr_bitmap)
2574 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2576 if (IS_ENABLED(CONFIG_HYPERV) &&
2577 static_branch_unlikely(&enable_evmcs) &&
2578 (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
2579 struct hv_enlightened_vmcs *evmcs =
2580 (struct hv_enlightened_vmcs *)loaded_vmcs->vmcs;
2582 evmcs->hv_enlightenments_control.msr_bitmap = 1;
2586 memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2587 memset(&loaded_vmcs->controls_shadow, 0,
2588 sizeof(struct vmcs_controls_shadow));
2593 free_loaded_vmcs(loaded_vmcs);
2597 static void free_kvm_area(void)
2601 for_each_possible_cpu(cpu) {
2602 free_vmcs(per_cpu(vmxarea, cpu));
2603 per_cpu(vmxarea, cpu) = NULL;
2607 static __init int alloc_kvm_area(void)
2611 for_each_possible_cpu(cpu) {
2614 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2621 * When eVMCS is enabled, alloc_vmcs_cpu() sets
2622 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2623 * revision_id reported by MSR_IA32_VMX_BASIC.
2625 * However, even though not explicitly documented by
2626 * TLFS, VMXArea passed as VMXON argument should
2627 * still be marked with revision_id reported by
2630 if (static_branch_unlikely(&enable_evmcs))
2631 vmcs->hdr.revision_id = vmcs_config.revision_id;
2633 per_cpu(vmxarea, cpu) = vmcs;
2638 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2639 struct kvm_segment *save)
2641 if (!emulate_invalid_guest_state) {
2643 * CS and SS RPL should be equal during guest entry according
2644 * to VMX spec, but in reality it is not always so. Since vcpu
2645 * is in the middle of the transition from real mode to
2646 * protected mode it is safe to assume that RPL 0 is a good
2649 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2650 save->selector &= ~SEGMENT_RPL_MASK;
2651 save->dpl = save->selector & SEGMENT_RPL_MASK;
2654 vmx_set_segment(vcpu, save, seg);
2657 static void enter_pmode(struct kvm_vcpu *vcpu)
2659 unsigned long flags;
2660 struct vcpu_vmx *vmx = to_vmx(vcpu);
2663 * Update real mode segment cache. It may be not up-to-date if sement
2664 * register was written while vcpu was in a guest mode.
2666 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2667 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2668 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2669 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2670 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2671 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2673 vmx->rmode.vm86_active = 0;
2675 vmx_segment_cache_clear(vmx);
2677 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2679 flags = vmcs_readl(GUEST_RFLAGS);
2680 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2681 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2682 vmcs_writel(GUEST_RFLAGS, flags);
2684 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2685 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2687 update_exception_bitmap(vcpu);
2689 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2690 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2691 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2692 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2693 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2694 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2697 static void fix_rmode_seg(int seg, struct kvm_segment *save)
2699 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2700 struct kvm_segment var = *save;
2703 if (seg == VCPU_SREG_CS)
2706 if (!emulate_invalid_guest_state) {
2707 var.selector = var.base >> 4;
2708 var.base = var.base & 0xffff0;
2718 if (save->base & 0xf)
2719 printk_once(KERN_WARNING "kvm: segment base is not "
2720 "paragraph aligned when entering "
2721 "protected mode (seg=%d)", seg);
2724 vmcs_write16(sf->selector, var.selector);
2725 vmcs_writel(sf->base, var.base);
2726 vmcs_write32(sf->limit, var.limit);
2727 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
2730 static void enter_rmode(struct kvm_vcpu *vcpu)
2732 unsigned long flags;
2733 struct vcpu_vmx *vmx = to_vmx(vcpu);
2734 struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
2736 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2737 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2738 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2739 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2740 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2741 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2742 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2744 vmx->rmode.vm86_active = 1;
2747 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2748 * vcpu. Warn the user that an update is overdue.
2750 if (!kvm_vmx->tss_addr)
2751 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2752 "called before entering vcpu\n");
2754 vmx_segment_cache_clear(vmx);
2756 vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
2757 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2758 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2760 flags = vmcs_readl(GUEST_RFLAGS);
2761 vmx->rmode.save_rflags = flags;
2763 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2765 vmcs_writel(GUEST_RFLAGS, flags);
2766 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2767 update_exception_bitmap(vcpu);
2769 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2770 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2771 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2772 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2773 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2774 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2776 kvm_mmu_reset_context(vcpu);
2779 void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2781 struct vcpu_vmx *vmx = to_vmx(vcpu);
2782 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
2787 vcpu->arch.efer = efer;
2788 if (efer & EFER_LMA) {
2789 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2792 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2794 msr->data = efer & ~EFER_LME;
2799 #ifdef CONFIG_X86_64
2801 static void enter_lmode(struct kvm_vcpu *vcpu)
2805 vmx_segment_cache_clear(to_vmx(vcpu));
2807 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2808 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
2809 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2811 vmcs_write32(GUEST_TR_AR_BYTES,
2812 (guest_tr_ar & ~VMX_AR_TYPE_MASK)
2813 | VMX_AR_TYPE_BUSY_64_TSS);
2815 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2818 static void exit_lmode(struct kvm_vcpu *vcpu)
2820 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2821 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2826 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
2828 int vpid = to_vmx(vcpu)->vpid;
2830 if (!vpid_sync_vcpu_addr(vpid, addr))
2831 vpid_sync_context(vpid);
2834 * If VPIDs are not supported or enabled, then the above is a no-op.
2835 * But we don't really need a TLB flush in that case anyway, because
2836 * each VM entry/exit includes an implicit flush when VPID is 0.
2840 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2842 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2844 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
2845 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
2848 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
2850 if (enable_unrestricted_guest || (enable_ept && is_paging(vcpu)))
2851 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2852 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
2855 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
2857 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2859 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
2860 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
2863 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
2865 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2867 if (!test_bit(VCPU_EXREG_PDPTR,
2868 (unsigned long *)&vcpu->arch.regs_dirty))
2871 if (is_pae_paging(vcpu)) {
2872 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
2873 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
2874 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
2875 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
2879 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
2881 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2883 if (is_pae_paging(vcpu)) {
2884 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
2885 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
2886 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
2887 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
2890 __set_bit(VCPU_EXREG_PDPTR,
2891 (unsigned long *)&vcpu->arch.regs_avail);
2892 __set_bit(VCPU_EXREG_PDPTR,
2893 (unsigned long *)&vcpu->arch.regs_dirty);
2896 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
2898 struct kvm_vcpu *vcpu)
2900 struct vcpu_vmx *vmx = to_vmx(vcpu);
2902 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
2903 vmx_decache_cr3(vcpu);
2904 if (!(cr0 & X86_CR0_PG)) {
2905 /* From paging/starting to nonpaging */
2906 exec_controls_setbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
2907 CPU_BASED_CR3_STORE_EXITING);
2908 vcpu->arch.cr0 = cr0;
2909 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2910 } else if (!is_paging(vcpu)) {
2911 /* From nonpaging to paging */
2912 exec_controls_clearbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
2913 CPU_BASED_CR3_STORE_EXITING);
2914 vcpu->arch.cr0 = cr0;
2915 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2918 if (!(cr0 & X86_CR0_WP))
2919 *hw_cr0 &= ~X86_CR0_WP;
2922 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2924 struct vcpu_vmx *vmx = to_vmx(vcpu);
2925 unsigned long hw_cr0;
2927 hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
2928 if (enable_unrestricted_guest)
2929 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
2931 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
2933 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
2936 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
2940 #ifdef CONFIG_X86_64
2941 if (vcpu->arch.efer & EFER_LME) {
2942 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
2944 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
2949 if (enable_ept && !enable_unrestricted_guest)
2950 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
2952 vmcs_writel(CR0_READ_SHADOW, cr0);
2953 vmcs_writel(GUEST_CR0, hw_cr0);
2954 vcpu->arch.cr0 = cr0;
2956 /* depends on vcpu->arch.cr0 to be set to a new value */
2957 vmx->emulation_required = emulation_required(vcpu);
2960 static int get_ept_level(struct kvm_vcpu *vcpu)
2962 if (cpu_has_vmx_ept_5levels() && (cpuid_maxphyaddr(vcpu) > 48))
2967 u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa)
2969 u64 eptp = VMX_EPTP_MT_WB;
2971 eptp |= (get_ept_level(vcpu) == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
2973 if (enable_ept_ad_bits &&
2974 (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
2975 eptp |= VMX_EPTP_AD_ENABLE_BIT;
2976 eptp |= (root_hpa & PAGE_MASK);
2981 void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
2983 struct kvm *kvm = vcpu->kvm;
2984 unsigned long guest_cr3;
2989 eptp = construct_eptp(vcpu, cr3);
2990 vmcs_write64(EPT_POINTER, eptp);
2992 if (kvm_x86_ops->tlb_remote_flush) {
2993 spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
2994 to_vmx(vcpu)->ept_pointer = eptp;
2995 to_kvm_vmx(kvm)->ept_pointers_match
2996 = EPT_POINTERS_CHECK;
2997 spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
3000 if (enable_unrestricted_guest || is_paging(vcpu) ||
3001 is_guest_mode(vcpu))
3002 guest_cr3 = kvm_read_cr3(vcpu);
3004 guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3005 ept_load_pdptrs(vcpu);
3008 vmcs_writel(GUEST_CR3, guest_cr3);
3011 int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3013 struct vcpu_vmx *vmx = to_vmx(vcpu);
3015 * Pass through host's Machine Check Enable value to hw_cr4, which
3016 * is in force while we are in guest mode. Do not let guests control
3017 * this bit, even if host CR4.MCE == 0.
3019 unsigned long hw_cr4;
3021 hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3022 if (enable_unrestricted_guest)
3023 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3024 else if (vmx->rmode.vm86_active)
3025 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3027 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3029 if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
3030 if (cr4 & X86_CR4_UMIP) {
3031 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3032 hw_cr4 &= ~X86_CR4_UMIP;
3033 } else if (!is_guest_mode(vcpu) ||
3034 !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3035 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3039 if (cr4 & X86_CR4_VMXE) {
3041 * To use VMXON (and later other VMX instructions), a guest
3042 * must first be able to turn on cr4.VMXE (see handle_vmon()).
3043 * So basically the check on whether to allow nested VMX
3044 * is here. We operate under the default treatment of SMM,
3045 * so VMX cannot be enabled under SMM.
3047 if (!nested_vmx_allowed(vcpu) || is_smm(vcpu))
3051 if (vmx->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3054 vcpu->arch.cr4 = cr4;
3056 if (!enable_unrestricted_guest) {
3058 if (!is_paging(vcpu)) {
3059 hw_cr4 &= ~X86_CR4_PAE;
3060 hw_cr4 |= X86_CR4_PSE;
3061 } else if (!(cr4 & X86_CR4_PAE)) {
3062 hw_cr4 &= ~X86_CR4_PAE;
3067 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3068 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs
3069 * to be manually disabled when guest switches to non-paging
3072 * If !enable_unrestricted_guest, the CPU is always running
3073 * with CR0.PG=1 and CR4 needs to be modified.
3074 * If enable_unrestricted_guest, the CPU automatically
3075 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3077 if (!is_paging(vcpu))
3078 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3081 vmcs_writel(CR4_READ_SHADOW, cr4);
3082 vmcs_writel(GUEST_CR4, hw_cr4);
3086 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3088 struct vcpu_vmx *vmx = to_vmx(vcpu);
3091 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3092 *var = vmx->rmode.segs[seg];
3093 if (seg == VCPU_SREG_TR
3094 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3096 var->base = vmx_read_guest_seg_base(vmx, seg);
3097 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3100 var->base = vmx_read_guest_seg_base(vmx, seg);
3101 var->limit = vmx_read_guest_seg_limit(vmx, seg);
3102 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3103 ar = vmx_read_guest_seg_ar(vmx, seg);
3104 var->unusable = (ar >> 16) & 1;
3105 var->type = ar & 15;
3106 var->s = (ar >> 4) & 1;
3107 var->dpl = (ar >> 5) & 3;
3109 * Some userspaces do not preserve unusable property. Since usable
3110 * segment has to be present according to VMX spec we can use present
3111 * property to amend userspace bug by making unusable segment always
3112 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3113 * segment as unusable.
3115 var->present = !var->unusable;
3116 var->avl = (ar >> 12) & 1;
3117 var->l = (ar >> 13) & 1;
3118 var->db = (ar >> 14) & 1;
3119 var->g = (ar >> 15) & 1;
3122 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3124 struct kvm_segment s;
3126 if (to_vmx(vcpu)->rmode.vm86_active) {
3127 vmx_get_segment(vcpu, &s, seg);
3130 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3133 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3135 struct vcpu_vmx *vmx = to_vmx(vcpu);
3137 if (unlikely(vmx->rmode.vm86_active))
3140 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3141 return VMX_AR_DPL(ar);
3145 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3149 if (var->unusable || !var->present)
3152 ar = var->type & 15;
3153 ar |= (var->s & 1) << 4;
3154 ar |= (var->dpl & 3) << 5;
3155 ar |= (var->present & 1) << 7;
3156 ar |= (var->avl & 1) << 12;
3157 ar |= (var->l & 1) << 13;
3158 ar |= (var->db & 1) << 14;
3159 ar |= (var->g & 1) << 15;
3165 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3167 struct vcpu_vmx *vmx = to_vmx(vcpu);
3168 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3170 vmx_segment_cache_clear(vmx);
3172 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3173 vmx->rmode.segs[seg] = *var;
3174 if (seg == VCPU_SREG_TR)
3175 vmcs_write16(sf->selector, var->selector);
3177 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3181 vmcs_writel(sf->base, var->base);
3182 vmcs_write32(sf->limit, var->limit);
3183 vmcs_write16(sf->selector, var->selector);
3186 * Fix the "Accessed" bit in AR field of segment registers for older
3188 * IA32 arch specifies that at the time of processor reset the
3189 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3190 * is setting it to 0 in the userland code. This causes invalid guest
3191 * state vmexit when "unrestricted guest" mode is turned on.
3192 * Fix for this setup issue in cpu_reset is being pushed in the qemu
3193 * tree. Newer qemu binaries with that qemu fix would not need this
3196 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3197 var->type |= 0x1; /* Accessed */
3199 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3202 vmx->emulation_required = emulation_required(vcpu);
3205 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3207 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3209 *db = (ar >> 14) & 1;
3210 *l = (ar >> 13) & 1;
3213 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3215 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3216 dt->address = vmcs_readl(GUEST_IDTR_BASE);
3219 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3221 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3222 vmcs_writel(GUEST_IDTR_BASE, dt->address);
3225 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3227 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3228 dt->address = vmcs_readl(GUEST_GDTR_BASE);
3231 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3233 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3234 vmcs_writel(GUEST_GDTR_BASE, dt->address);
3237 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3239 struct kvm_segment var;
3242 vmx_get_segment(vcpu, &var, seg);
3244 if (seg == VCPU_SREG_CS)
3246 ar = vmx_segment_access_rights(&var);
3248 if (var.base != (var.selector << 4))
3250 if (var.limit != 0xffff)
3258 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3260 struct kvm_segment cs;
3261 unsigned int cs_rpl;
3263 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3264 cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3268 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3272 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3273 if (cs.dpl > cs_rpl)
3276 if (cs.dpl != cs_rpl)
3282 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3286 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3288 struct kvm_segment ss;
3289 unsigned int ss_rpl;
3291 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3292 ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3296 if (ss.type != 3 && ss.type != 7)
3300 if (ss.dpl != ss_rpl) /* DPL != RPL */
3308 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3310 struct kvm_segment var;
3313 vmx_get_segment(vcpu, &var, seg);
3314 rpl = var.selector & SEGMENT_RPL_MASK;
3322 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3323 if (var.dpl < rpl) /* DPL < RPL */
3327 /* TODO: Add other members to kvm_segment_field to allow checking for other access
3333 static bool tr_valid(struct kvm_vcpu *vcpu)
3335 struct kvm_segment tr;
3337 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3341 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
3343 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3351 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3353 struct kvm_segment ldtr;
3355 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3359 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
3369 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3371 struct kvm_segment cs, ss;
3373 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3374 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3376 return ((cs.selector & SEGMENT_RPL_MASK) ==
3377 (ss.selector & SEGMENT_RPL_MASK));
3381 * Check if guest state is valid. Returns true if valid, false if
3383 * We assume that registers are always usable
3385 static bool guest_state_valid(struct kvm_vcpu *vcpu)
3387 if (enable_unrestricted_guest)
3390 /* real mode guest state checks */
3391 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3392 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3394 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3396 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3398 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3400 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3402 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3405 /* protected mode guest state checks */
3406 if (!cs_ss_rpl_check(vcpu))
3408 if (!code_segment_valid(vcpu))
3410 if (!stack_segment_valid(vcpu))
3412 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3414 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3416 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3418 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3420 if (!tr_valid(vcpu))
3422 if (!ldtr_valid(vcpu))
3426 * - Add checks on RIP
3427 * - Add checks on RFLAGS
3433 static int init_rmode_tss(struct kvm *kvm)
3439 idx = srcu_read_lock(&kvm->srcu);
3440 fn = to_kvm_vmx(kvm)->tss_addr >> PAGE_SHIFT;
3441 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3444 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3445 r = kvm_write_guest_page(kvm, fn++, &data,
3446 TSS_IOPB_BASE_OFFSET, sizeof(u16));
3449 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3452 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3456 r = kvm_write_guest_page(kvm, fn, &data,
3457 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3460 srcu_read_unlock(&kvm->srcu, idx);
3464 static int init_rmode_identity_map(struct kvm *kvm)
3466 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3468 kvm_pfn_t identity_map_pfn;
3471 /* Protect kvm_vmx->ept_identity_pagetable_done. */
3472 mutex_lock(&kvm->slots_lock);
3474 if (likely(kvm_vmx->ept_identity_pagetable_done))
3477 if (!kvm_vmx->ept_identity_map_addr)
3478 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3479 identity_map_pfn = kvm_vmx->ept_identity_map_addr >> PAGE_SHIFT;
3481 r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3482 kvm_vmx->ept_identity_map_addr, PAGE_SIZE);
3486 idx = srcu_read_lock(&kvm->srcu);
3487 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3490 /* Set up identity-mapping pagetable for EPT in real mode */
3491 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3492 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3493 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3494 r = kvm_write_guest_page(kvm, identity_map_pfn,
3495 &tmp, i * sizeof(tmp), sizeof(tmp));
3499 kvm_vmx->ept_identity_pagetable_done = true;
3502 srcu_read_unlock(&kvm->srcu, idx);
3505 mutex_unlock(&kvm->slots_lock);
3509 static void seg_setup(int seg)
3511 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3514 vmcs_write16(sf->selector, 0);
3515 vmcs_writel(sf->base, 0);
3516 vmcs_write32(sf->limit, 0xffff);
3518 if (seg == VCPU_SREG_CS)
3519 ar |= 0x08; /* code segment */
3521 vmcs_write32(sf->ar_bytes, ar);
3524 static int alloc_apic_access_page(struct kvm *kvm)
3529 mutex_lock(&kvm->slots_lock);
3530 if (kvm->arch.apic_access_page_done)
3532 r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
3533 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
3537 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
3538 if (is_error_page(page)) {
3544 * Do not pin the page in memory, so that memory hot-unplug
3545 * is able to migrate it.
3548 kvm->arch.apic_access_page_done = true;
3550 mutex_unlock(&kvm->slots_lock);
3554 int allocate_vpid(void)
3560 spin_lock(&vmx_vpid_lock);
3561 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3562 if (vpid < VMX_NR_VPIDS)
3563 __set_bit(vpid, vmx_vpid_bitmap);
3566 spin_unlock(&vmx_vpid_lock);
3570 void free_vpid(int vpid)
3572 if (!enable_vpid || vpid == 0)
3574 spin_lock(&vmx_vpid_lock);
3575 __clear_bit(vpid, vmx_vpid_bitmap);
3576 spin_unlock(&vmx_vpid_lock);
3579 static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
3582 int f = sizeof(unsigned long);
3584 if (!cpu_has_vmx_msr_bitmap())
3587 if (static_branch_unlikely(&enable_evmcs))
3588 evmcs_touch_msr_bitmap();
3591 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3592 * have the write-low and read-high bitmap offsets the wrong way round.
3593 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3595 if (msr <= 0x1fff) {
3596 if (type & MSR_TYPE_R)
3598 __clear_bit(msr, msr_bitmap + 0x000 / f);
3600 if (type & MSR_TYPE_W)
3602 __clear_bit(msr, msr_bitmap + 0x800 / f);
3604 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3606 if (type & MSR_TYPE_R)
3608 __clear_bit(msr, msr_bitmap + 0x400 / f);
3610 if (type & MSR_TYPE_W)
3612 __clear_bit(msr, msr_bitmap + 0xc00 / f);
3617 static __always_inline void vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
3620 int f = sizeof(unsigned long);
3622 if (!cpu_has_vmx_msr_bitmap())
3625 if (static_branch_unlikely(&enable_evmcs))
3626 evmcs_touch_msr_bitmap();
3629 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3630 * have the write-low and read-high bitmap offsets the wrong way round.
3631 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3633 if (msr <= 0x1fff) {
3634 if (type & MSR_TYPE_R)
3636 __set_bit(msr, msr_bitmap + 0x000 / f);
3638 if (type & MSR_TYPE_W)
3640 __set_bit(msr, msr_bitmap + 0x800 / f);
3642 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3644 if (type & MSR_TYPE_R)
3646 __set_bit(msr, msr_bitmap + 0x400 / f);
3648 if (type & MSR_TYPE_W)
3650 __set_bit(msr, msr_bitmap + 0xc00 / f);
3655 static __always_inline void vmx_set_intercept_for_msr(unsigned long *msr_bitmap,
3656 u32 msr, int type, bool value)
3659 vmx_enable_intercept_for_msr(msr_bitmap, msr, type);
3661 vmx_disable_intercept_for_msr(msr_bitmap, msr, type);
3664 static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu)
3668 if (cpu_has_secondary_exec_ctrls() &&
3669 (secondary_exec_controls_get(to_vmx(vcpu)) &
3670 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
3671 mode |= MSR_BITMAP_MODE_X2APIC;
3672 if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
3673 mode |= MSR_BITMAP_MODE_X2APIC_APICV;
3679 static void vmx_update_msr_bitmap_x2apic(unsigned long *msr_bitmap,
3684 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
3685 unsigned word = msr / BITS_PER_LONG;
3686 msr_bitmap[word] = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
3687 msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
3690 if (mode & MSR_BITMAP_MODE_X2APIC) {
3692 * TPR reads and writes can be virtualized even if virtual interrupt
3693 * delivery is not in use.
3695 vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW);
3696 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
3697 vmx_enable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_R);
3698 vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
3699 vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
3704 void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu)
3706 struct vcpu_vmx *vmx = to_vmx(vcpu);
3707 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3708 u8 mode = vmx_msr_bitmap_mode(vcpu);
3709 u8 changed = mode ^ vmx->msr_bitmap_mode;
3714 if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV))
3715 vmx_update_msr_bitmap_x2apic(msr_bitmap, mode);
3717 vmx->msr_bitmap_mode = mode;
3720 void pt_update_intercept_for_msr(struct vcpu_vmx *vmx)
3722 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3723 bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
3726 vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_STATUS,
3728 vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_BASE,
3730 vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_MASK,
3732 vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_CR3_MATCH,
3734 for (i = 0; i < vmx->pt_desc.addr_range; i++) {
3735 vmx_set_intercept_for_msr(msr_bitmap,
3736 MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
3737 vmx_set_intercept_for_msr(msr_bitmap,
3738 MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
3742 static bool vmx_get_enable_apicv(struct kvm_vcpu *vcpu)
3744 return enable_apicv;
3747 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
3749 struct vcpu_vmx *vmx = to_vmx(vcpu);
3754 if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
3755 !nested_cpu_has_vid(get_vmcs12(vcpu)) ||
3756 WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
3759 rvi = vmx_get_rvi();
3761 vapic_page = vmx->nested.virtual_apic_map.hva;
3762 vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
3764 return ((rvi & 0xf0) > (vppr & 0xf0));
3767 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
3771 int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
3773 if (vcpu->mode == IN_GUEST_MODE) {
3775 * The vector of interrupt to be delivered to vcpu had
3776 * been set in PIR before this function.
3778 * Following cases will be reached in this block, and
3779 * we always send a notification event in all cases as
3782 * Case 1: vcpu keeps in non-root mode. Sending a
3783 * notification event posts the interrupt to vcpu.
3785 * Case 2: vcpu exits to root mode and is still
3786 * runnable. PIR will be synced to vIRR before the
3787 * next vcpu entry. Sending a notification event in
3788 * this case has no effect, as vcpu is not in root
3791 * Case 3: vcpu exits to root mode and is blocked.
3792 * vcpu_block() has already synced PIR to vIRR and
3793 * never blocks vcpu if vIRR is not cleared. Therefore,
3794 * a blocked vcpu here does not wait for any requested
3795 * interrupts in PIR, and sending a notification event
3796 * which has no effect is safe here.
3799 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
3806 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
3809 struct vcpu_vmx *vmx = to_vmx(vcpu);
3811 if (is_guest_mode(vcpu) &&
3812 vector == vmx->nested.posted_intr_nv) {
3814 * If a posted intr is not recognized by hardware,
3815 * we will accomplish it in the next vmentry.
3817 vmx->nested.pi_pending = true;
3818 kvm_make_request(KVM_REQ_EVENT, vcpu);
3819 /* the PIR and ON have been set by L1. */
3820 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true))
3821 kvm_vcpu_kick(vcpu);
3827 * Send interrupt to vcpu via posted interrupt way.
3828 * 1. If target vcpu is running(non-root mode), send posted interrupt
3829 * notification to vcpu and hardware will sync PIR to vIRR atomically.
3830 * 2. If target vcpu isn't running(root mode), kick it to pick up the
3831 * interrupt from PIR in next vmentry.
3833 static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
3835 struct vcpu_vmx *vmx = to_vmx(vcpu);
3838 r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
3842 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
3845 /* If a previous notification has sent the IPI, nothing to do. */
3846 if (pi_test_and_set_on(&vmx->pi_desc))
3849 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false))
3850 kvm_vcpu_kick(vcpu);
3854 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
3855 * will not change in the lifetime of the guest.
3856 * Note that host-state that does change is set elsewhere. E.g., host-state
3857 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
3859 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
3863 unsigned long cr0, cr3, cr4;
3866 WARN_ON(cr0 & X86_CR0_TS);
3867 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */
3870 * Save the most likely value for this task's CR3 in the VMCS.
3871 * We can't use __get_current_cr3_fast() because we're not atomic.
3874 vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */
3875 vmx->loaded_vmcs->host_state.cr3 = cr3;
3877 /* Save the most likely value for this task's CR4 in the VMCS. */
3878 cr4 = cr4_read_shadow();
3879 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
3880 vmx->loaded_vmcs->host_state.cr4 = cr4;
3882 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
3883 #ifdef CONFIG_X86_64
3885 * Load null selectors, so we can avoid reloading them in
3886 * vmx_prepare_switch_to_host(), in case userspace uses
3887 * the null selectors too (the expected case).
3889 vmcs_write16(HOST_DS_SELECTOR, 0);
3890 vmcs_write16(HOST_ES_SELECTOR, 0);
3892 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3893 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3895 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3896 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
3898 vmcs_writel(HOST_IDTR_BASE, host_idt_base); /* 22.2.4 */
3900 vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
3902 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
3903 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
3904 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
3905 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
3907 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
3908 rdmsr(MSR_IA32_CR_PAT, low32, high32);
3909 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
3912 if (cpu_has_load_ia32_efer())
3913 vmcs_write64(HOST_IA32_EFER, host_efer);
3916 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
3918 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
3920 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
3921 if (is_guest_mode(&vmx->vcpu))
3922 vmx->vcpu.arch.cr4_guest_owned_bits &=
3923 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
3924 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
3927 u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
3929 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
3931 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
3932 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
3935 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
3937 if (!enable_preemption_timer)
3938 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
3940 return pin_based_exec_ctrl;
3943 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
3945 struct vcpu_vmx *vmx = to_vmx(vcpu);
3947 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
3948 if (cpu_has_secondary_exec_ctrls()) {
3949 if (kvm_vcpu_apicv_active(vcpu))
3950 secondary_exec_controls_setbit(vmx,
3951 SECONDARY_EXEC_APIC_REGISTER_VIRT |
3952 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3954 secondary_exec_controls_clearbit(vmx,
3955 SECONDARY_EXEC_APIC_REGISTER_VIRT |
3956 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3959 if (cpu_has_vmx_msr_bitmap())
3960 vmx_update_msr_bitmap(vcpu);
3963 u32 vmx_exec_control(struct vcpu_vmx *vmx)
3965 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
3967 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
3968 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
3970 if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
3971 exec_control &= ~CPU_BASED_TPR_SHADOW;
3972 #ifdef CONFIG_X86_64
3973 exec_control |= CPU_BASED_CR8_STORE_EXITING |
3974 CPU_BASED_CR8_LOAD_EXITING;
3978 exec_control |= CPU_BASED_CR3_STORE_EXITING |
3979 CPU_BASED_CR3_LOAD_EXITING |
3980 CPU_BASED_INVLPG_EXITING;
3981 if (kvm_mwait_in_guest(vmx->vcpu.kvm))
3982 exec_control &= ~(CPU_BASED_MWAIT_EXITING |
3983 CPU_BASED_MONITOR_EXITING);
3984 if (kvm_hlt_in_guest(vmx->vcpu.kvm))
3985 exec_control &= ~CPU_BASED_HLT_EXITING;
3986 return exec_control;
3990 static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
3992 struct kvm_vcpu *vcpu = &vmx->vcpu;
3994 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
3996 if (pt_mode == PT_MODE_SYSTEM)
3997 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
3998 if (!cpu_need_virtualize_apic_accesses(vcpu))
3999 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4001 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4003 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4004 enable_unrestricted_guest = 0;
4006 if (!enable_unrestricted_guest)
4007 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4008 if (kvm_pause_in_guest(vmx->vcpu.kvm))
4009 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4010 if (!kvm_vcpu_apicv_active(vcpu))
4011 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4012 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4013 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4015 /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4016 * in vmx_set_cr4. */
4017 exec_control &= ~SECONDARY_EXEC_DESC;
4019 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4021 We can NOT enable shadow_vmcs here because we don't have yet
4024 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4027 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4029 if (vmx_xsaves_supported()) {
4030 /* Exposing XSAVES only when XSAVE is exposed */
4031 bool xsaves_enabled =
4032 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4033 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
4035 if (!xsaves_enabled)
4036 exec_control &= ~SECONDARY_EXEC_XSAVES;
4040 vmx->nested.msrs.secondary_ctls_high |=
4041 SECONDARY_EXEC_XSAVES;
4043 vmx->nested.msrs.secondary_ctls_high &=
4044 ~SECONDARY_EXEC_XSAVES;
4048 if (vmx_rdtscp_supported()) {
4049 bool rdtscp_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP);
4050 if (!rdtscp_enabled)
4051 exec_control &= ~SECONDARY_EXEC_RDTSCP;
4055 vmx->nested.msrs.secondary_ctls_high |=
4056 SECONDARY_EXEC_RDTSCP;
4058 vmx->nested.msrs.secondary_ctls_high &=
4059 ~SECONDARY_EXEC_RDTSCP;
4063 if (vmx_invpcid_supported()) {
4064 /* Exposing INVPCID only when PCID is exposed */
4065 bool invpcid_enabled =
4066 guest_cpuid_has(vcpu, X86_FEATURE_INVPCID) &&
4067 guest_cpuid_has(vcpu, X86_FEATURE_PCID);
4069 if (!invpcid_enabled) {
4070 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
4071 guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID);
4075 if (invpcid_enabled)
4076 vmx->nested.msrs.secondary_ctls_high |=
4077 SECONDARY_EXEC_ENABLE_INVPCID;
4079 vmx->nested.msrs.secondary_ctls_high &=
4080 ~SECONDARY_EXEC_ENABLE_INVPCID;
4084 if (vmx_rdrand_supported()) {
4085 bool rdrand_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDRAND);
4087 exec_control &= ~SECONDARY_EXEC_RDRAND_EXITING;
4091 vmx->nested.msrs.secondary_ctls_high |=
4092 SECONDARY_EXEC_RDRAND_EXITING;
4094 vmx->nested.msrs.secondary_ctls_high &=
4095 ~SECONDARY_EXEC_RDRAND_EXITING;
4099 if (vmx_rdseed_supported()) {
4100 bool rdseed_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDSEED);
4102 exec_control &= ~SECONDARY_EXEC_RDSEED_EXITING;
4106 vmx->nested.msrs.secondary_ctls_high |=
4107 SECONDARY_EXEC_RDSEED_EXITING;
4109 vmx->nested.msrs.secondary_ctls_high &=
4110 ~SECONDARY_EXEC_RDSEED_EXITING;
4114 if (vmx_waitpkg_supported()) {
4115 bool waitpkg_enabled =
4116 guest_cpuid_has(vcpu, X86_FEATURE_WAITPKG);
4118 if (!waitpkg_enabled)
4119 exec_control &= ~SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
4122 if (waitpkg_enabled)
4123 vmx->nested.msrs.secondary_ctls_high |=
4124 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
4126 vmx->nested.msrs.secondary_ctls_high &=
4127 ~SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
4131 vmx->secondary_exec_control = exec_control;
4134 static void ept_set_mmio_spte_mask(void)
4137 * EPT Misconfigurations can be generated if the value of bits 2:0
4138 * of an EPT paging-structure entry is 110b (write/execute).
4140 kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK,
4141 VMX_EPT_MISCONFIG_WX_VALUE, 0);
4144 #define VMX_XSS_EXIT_BITMAP 0
4147 * Sets up the vmcs for emulated real mode.
4149 static void vmx_vcpu_setup(struct vcpu_vmx *vmx)
4154 nested_vmx_vcpu_setup();
4156 if (cpu_has_vmx_msr_bitmap())
4157 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4159 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4162 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4163 vmx->hv_deadline_tsc = -1;
4165 exec_controls_set(vmx, vmx_exec_control(vmx));
4167 if (cpu_has_secondary_exec_ctrls()) {
4168 vmx_compute_secondary_exec_control(vmx);
4169 secondary_exec_controls_set(vmx, vmx->secondary_exec_control);
4172 if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
4173 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4174 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4175 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4176 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4178 vmcs_write16(GUEST_INTR_STATUS, 0);
4180 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4181 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4184 if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
4185 vmcs_write32(PLE_GAP, ple_gap);
4186 vmx->ple_window = ple_window;
4187 vmx->ple_window_dirty = true;
4190 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4191 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4192 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
4194 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
4195 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
4196 vmx_set_constant_host_state(vmx);
4197 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4198 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4200 if (cpu_has_vmx_vmfunc())
4201 vmcs_write64(VM_FUNCTION_CONTROL, 0);
4203 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4204 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4205 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4206 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4207 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4209 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4210 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4212 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
4213 u32 index = vmx_msr_index[i];
4214 u32 data_low, data_high;
4217 if (rdmsr_safe(index, &data_low, &data_high) < 0)
4219 if (wrmsr_safe(index, data_low, data_high) < 0)
4221 vmx->guest_msrs[j].index = i;
4222 vmx->guest_msrs[j].data = 0;
4223 vmx->guest_msrs[j].mask = -1ull;
4227 vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4229 /* 22.2.1, 20.8.1 */
4230 vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4232 vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS;
4233 vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS);
4235 set_cr4_guest_host_mask(vmx);
4237 if (vmx_xsaves_supported())
4238 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4241 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4242 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4245 if (cpu_has_vmx_encls_vmexit())
4246 vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
4248 if (pt_mode == PT_MODE_HOST_GUEST) {
4249 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4250 /* Bit[6~0] are forced to 1, writes are ignored. */
4251 vmx->pt_desc.guest.output_mask = 0x7F;
4252 vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4256 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4258 struct vcpu_vmx *vmx = to_vmx(vcpu);
4259 struct msr_data apic_base_msr;
4262 vmx->rmode.vm86_active = 0;
4265 vmx->msr_ia32_umwait_control = 0;
4267 vcpu->arch.microcode_version = 0x100000000ULL;
4268 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4269 vmx->hv_deadline_tsc = -1;
4270 kvm_set_cr8(vcpu, 0);
4273 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
4274 MSR_IA32_APICBASE_ENABLE;
4275 if (kvm_vcpu_is_reset_bsp(vcpu))
4276 apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4277 apic_base_msr.host_initiated = true;
4278 kvm_set_apic_base(vcpu, &apic_base_msr);
4281 vmx_segment_cache_clear(vmx);
4283 seg_setup(VCPU_SREG_CS);
4284 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4285 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4287 seg_setup(VCPU_SREG_DS);
4288 seg_setup(VCPU_SREG_ES);
4289 seg_setup(VCPU_SREG_FS);
4290 seg_setup(VCPU_SREG_GS);
4291 seg_setup(VCPU_SREG_SS);
4293 vmcs_write16(GUEST_TR_SELECTOR, 0);
4294 vmcs_writel(GUEST_TR_BASE, 0);
4295 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4296 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4298 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4299 vmcs_writel(GUEST_LDTR_BASE, 0);
4300 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4301 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4304 vmcs_write32(GUEST_SYSENTER_CS, 0);
4305 vmcs_writel(GUEST_SYSENTER_ESP, 0);
4306 vmcs_writel(GUEST_SYSENTER_EIP, 0);
4307 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4310 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
4311 kvm_rip_write(vcpu, 0xfff0);
4313 vmcs_writel(GUEST_GDTR_BASE, 0);
4314 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4316 vmcs_writel(GUEST_IDTR_BASE, 0);
4317 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4319 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4320 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4321 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4322 if (kvm_mpx_supported())
4323 vmcs_write64(GUEST_BNDCFGS, 0);
4327 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
4329 if (cpu_has_vmx_tpr_shadow() && !init_event) {
4330 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4331 if (cpu_need_tpr_shadow(vcpu))
4332 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4333 __pa(vcpu->arch.apic->regs));
4334 vmcs_write32(TPR_THRESHOLD, 0);
4337 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4340 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4342 cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4343 vmx->vcpu.arch.cr0 = cr0;
4344 vmx_set_cr0(vcpu, cr0); /* enter rmode */
4345 vmx_set_cr4(vcpu, 0);
4346 vmx_set_efer(vcpu, 0);
4348 update_exception_bitmap(vcpu);
4350 vpid_sync_context(vmx->vpid);
4352 vmx_clear_hlt(vcpu);
4355 static void enable_irq_window(struct kvm_vcpu *vcpu)
4357 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_VIRTUAL_INTR_PENDING);
4360 static void enable_nmi_window(struct kvm_vcpu *vcpu)
4363 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4364 enable_irq_window(vcpu);
4368 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_VIRTUAL_NMI_PENDING);
4371 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4373 struct vcpu_vmx *vmx = to_vmx(vcpu);
4375 int irq = vcpu->arch.interrupt.nr;
4377 trace_kvm_inj_virq(irq);
4379 ++vcpu->stat.irq_injections;
4380 if (vmx->rmode.vm86_active) {
4382 if (vcpu->arch.interrupt.soft)
4383 inc_eip = vcpu->arch.event_exit_inst_len;
4384 kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4387 intr = irq | INTR_INFO_VALID_MASK;
4388 if (vcpu->arch.interrupt.soft) {
4389 intr |= INTR_TYPE_SOFT_INTR;
4390 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4391 vmx->vcpu.arch.event_exit_inst_len);
4393 intr |= INTR_TYPE_EXT_INTR;
4394 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4396 vmx_clear_hlt(vcpu);
4399 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4401 struct vcpu_vmx *vmx = to_vmx(vcpu);
4405 * Tracking the NMI-blocked state in software is built upon
4406 * finding the next open IRQ window. This, in turn, depends on
4407 * well-behaving guests: They have to keep IRQs disabled at
4408 * least as long as the NMI handler runs. Otherwise we may
4409 * cause NMI nesting, maybe breaking the guest. But as this is
4410 * highly unlikely, we can live with the residual risk.
4412 vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4413 vmx->loaded_vmcs->vnmi_blocked_time = 0;
4416 ++vcpu->stat.nmi_injections;
4417 vmx->loaded_vmcs->nmi_known_unmasked = false;
4419 if (vmx->rmode.vm86_active) {
4420 kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4424 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4425 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4427 vmx_clear_hlt(vcpu);
4430 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4432 struct vcpu_vmx *vmx = to_vmx(vcpu);
4436 return vmx->loaded_vmcs->soft_vnmi_blocked;
4437 if (vmx->loaded_vmcs->nmi_known_unmasked)
4439 masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4440 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4444 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4446 struct vcpu_vmx *vmx = to_vmx(vcpu);
4449 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4450 vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4451 vmx->loaded_vmcs->vnmi_blocked_time = 0;
4454 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4456 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4457 GUEST_INTR_STATE_NMI);
4459 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4460 GUEST_INTR_STATE_NMI);
4464 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4466 if (to_vmx(vcpu)->nested.nested_run_pending)
4470 to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
4473 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4474 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4475 | GUEST_INTR_STATE_NMI));
4478 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4480 return (!to_vmx(vcpu)->nested.nested_run_pending &&
4481 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4482 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4483 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4486 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4490 if (enable_unrestricted_guest)
4493 ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
4497 to_kvm_vmx(kvm)->tss_addr = addr;
4498 return init_rmode_tss(kvm);
4501 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
4503 to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
4507 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4512 * Update instruction length as we may reinject the exception
4513 * from user space while in guest debugging mode.
4515 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4516 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4517 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4521 if (vcpu->guest_debug &
4522 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4539 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4540 int vec, u32 err_code)
4543 * Instruction with address size override prefix opcode 0x67
4544 * Cause the #SS fault with 0 error code in VM86 mode.
4546 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4547 if (kvm_emulate_instruction(vcpu, 0)) {
4548 if (vcpu->arch.halt_request) {
4549 vcpu->arch.halt_request = 0;
4550 return kvm_vcpu_halt(vcpu);
4558 * Forward all other exceptions that are valid in real mode.
4559 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4560 * the required debugging infrastructure rework.
4562 kvm_queue_exception(vcpu, vec);
4567 * Trigger machine check on the host. We assume all the MSRs are already set up
4568 * by the CPU and that we still run on the same CPU as the MCE occurred on.
4569 * We pass a fake environment to the machine check handler because we want
4570 * the guest to be always treated like user space, no matter what context
4571 * it used internally.
4573 static void kvm_machine_check(void)
4575 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4576 struct pt_regs regs = {
4577 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4578 .flags = X86_EFLAGS_IF,
4581 do_machine_check(®s, 0);
4585 static int handle_machine_check(struct kvm_vcpu *vcpu)
4587 /* handled by vmx_vcpu_run() */
4591 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
4593 struct vcpu_vmx *vmx = to_vmx(vcpu);
4594 struct kvm_run *kvm_run = vcpu->run;
4595 u32 intr_info, ex_no, error_code;
4596 unsigned long cr2, rip, dr6;
4599 vect_info = vmx->idt_vectoring_info;
4600 intr_info = vmx->exit_intr_info;
4602 if (is_machine_check(intr_info) || is_nmi(intr_info))
4603 return 1; /* handled by handle_exception_nmi_irqoff() */
4605 if (is_invalid_opcode(intr_info))
4606 return handle_ud(vcpu);
4609 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4610 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4612 if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
4613 WARN_ON_ONCE(!enable_vmware_backdoor);
4616 * VMware backdoor emulation on #GP interception only handles
4617 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
4618 * error code on #GP.
4621 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
4624 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
4628 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4629 * MMIO, it is better to report an internal error.
4630 * See the comments in vmx_handle_exit.
4632 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4633 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4634 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4635 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4636 vcpu->run->internal.ndata = 3;
4637 vcpu->run->internal.data[0] = vect_info;
4638 vcpu->run->internal.data[1] = intr_info;
4639 vcpu->run->internal.data[2] = error_code;
4643 if (is_page_fault(intr_info)) {
4644 cr2 = vmcs_readl(EXIT_QUALIFICATION);
4645 /* EPT won't cause page fault directly */
4646 WARN_ON_ONCE(!vcpu->arch.apf.host_apf_reason && enable_ept);
4647 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
4650 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4652 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4653 return handle_rmode_exception(vcpu, ex_no, error_code);
4657 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
4660 dr6 = vmcs_readl(EXIT_QUALIFICATION);
4661 if (!(vcpu->guest_debug &
4662 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4663 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
4664 vcpu->arch.dr6 |= dr6 | DR6_RTM;
4665 if (is_icebp(intr_info))
4666 WARN_ON(!skip_emulated_instruction(vcpu));
4668 kvm_queue_exception(vcpu, DB_VECTOR);
4671 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
4672 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4676 * Update instruction length as we may reinject #BP from
4677 * user space while in guest debugging mode. Reading it for
4678 * #DB as well causes no harm, it is not used in that case.
4680 vmx->vcpu.arch.event_exit_inst_len =
4681 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4682 kvm_run->exit_reason = KVM_EXIT_DEBUG;
4683 rip = kvm_rip_read(vcpu);
4684 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4685 kvm_run->debug.arch.exception = ex_no;
4688 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4689 kvm_run->ex.exception = ex_no;
4690 kvm_run->ex.error_code = error_code;
4696 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
4698 ++vcpu->stat.irq_exits;
4702 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4704 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4705 vcpu->mmio_needed = 0;
4709 static int handle_io(struct kvm_vcpu *vcpu)
4711 unsigned long exit_qualification;
4712 int size, in, string;
4715 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4716 string = (exit_qualification & 16) != 0;
4718 ++vcpu->stat.io_exits;
4721 return kvm_emulate_instruction(vcpu, 0);
4723 port = exit_qualification >> 16;
4724 size = (exit_qualification & 7) + 1;
4725 in = (exit_qualification & 8) != 0;
4727 return kvm_fast_pio(vcpu, size, port, in);
4731 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4734 * Patch in the VMCALL instruction:
4736 hypercall[0] = 0x0f;
4737 hypercall[1] = 0x01;
4738 hypercall[2] = 0xc1;
4741 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
4742 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4744 if (is_guest_mode(vcpu)) {
4745 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4746 unsigned long orig_val = val;
4749 * We get here when L2 changed cr0 in a way that did not change
4750 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4751 * but did change L0 shadowed bits. So we first calculate the
4752 * effective cr0 value that L1 would like to write into the
4753 * hardware. It consists of the L2-owned bits from the new
4754 * value combined with the L1-owned bits from L1's guest_cr0.
4756 val = (val & ~vmcs12->cr0_guest_host_mask) |
4757 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
4759 if (!nested_guest_cr0_valid(vcpu, val))
4762 if (kvm_set_cr0(vcpu, val))
4764 vmcs_writel(CR0_READ_SHADOW, orig_val);
4767 if (to_vmx(vcpu)->nested.vmxon &&
4768 !nested_host_cr0_valid(vcpu, val))
4771 return kvm_set_cr0(vcpu, val);
4775 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4777 if (is_guest_mode(vcpu)) {
4778 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4779 unsigned long orig_val = val;
4781 /* analogously to handle_set_cr0 */
4782 val = (val & ~vmcs12->cr4_guest_host_mask) |
4783 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
4784 if (kvm_set_cr4(vcpu, val))
4786 vmcs_writel(CR4_READ_SHADOW, orig_val);
4789 return kvm_set_cr4(vcpu, val);
4792 static int handle_desc(struct kvm_vcpu *vcpu)
4794 WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
4795 return kvm_emulate_instruction(vcpu, 0);
4798 static int handle_cr(struct kvm_vcpu *vcpu)
4800 unsigned long exit_qualification, val;
4806 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4807 cr = exit_qualification & 15;
4808 reg = (exit_qualification >> 8) & 15;
4809 switch ((exit_qualification >> 4) & 3) {
4810 case 0: /* mov to cr */
4811 val = kvm_register_readl(vcpu, reg);
4812 trace_kvm_cr_write(cr, val);
4815 err = handle_set_cr0(vcpu, val);
4816 return kvm_complete_insn_gp(vcpu, err);
4818 WARN_ON_ONCE(enable_unrestricted_guest);
4819 err = kvm_set_cr3(vcpu, val);
4820 return kvm_complete_insn_gp(vcpu, err);
4822 err = handle_set_cr4(vcpu, val);
4823 return kvm_complete_insn_gp(vcpu, err);
4825 u8 cr8_prev = kvm_get_cr8(vcpu);
4827 err = kvm_set_cr8(vcpu, cr8);
4828 ret = kvm_complete_insn_gp(vcpu, err);
4829 if (lapic_in_kernel(vcpu))
4831 if (cr8_prev <= cr8)
4834 * TODO: we might be squashing a
4835 * KVM_GUESTDBG_SINGLESTEP-triggered
4836 * KVM_EXIT_DEBUG here.
4838 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
4844 WARN_ONCE(1, "Guest should always own CR0.TS");
4845 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4846 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
4847 return kvm_skip_emulated_instruction(vcpu);
4848 case 1: /*mov from cr*/
4851 WARN_ON_ONCE(enable_unrestricted_guest);
4852 val = kvm_read_cr3(vcpu);
4853 kvm_register_write(vcpu, reg, val);
4854 trace_kvm_cr_read(cr, val);
4855 return kvm_skip_emulated_instruction(vcpu);
4857 val = kvm_get_cr8(vcpu);
4858 kvm_register_write(vcpu, reg, val);
4859 trace_kvm_cr_read(cr, val);
4860 return kvm_skip_emulated_instruction(vcpu);
4864 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4865 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
4866 kvm_lmsw(vcpu, val);
4868 return kvm_skip_emulated_instruction(vcpu);
4872 vcpu->run->exit_reason = 0;
4873 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
4874 (int)(exit_qualification >> 4) & 3, cr);
4878 static int handle_dr(struct kvm_vcpu *vcpu)
4880 unsigned long exit_qualification;
4883 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4884 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
4886 /* First, if DR does not exist, trigger UD */
4887 if (!kvm_require_dr(vcpu, dr))
4890 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
4891 if (!kvm_require_cpl(vcpu, 0))
4893 dr7 = vmcs_readl(GUEST_DR7);
4896 * As the vm-exit takes precedence over the debug trap, we
4897 * need to emulate the latter, either for the host or the
4898 * guest debugging itself.
4900 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
4901 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
4902 vcpu->run->debug.arch.dr7 = dr7;
4903 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
4904 vcpu->run->debug.arch.exception = DB_VECTOR;
4905 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
4908 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
4909 vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
4910 kvm_queue_exception(vcpu, DB_VECTOR);
4915 if (vcpu->guest_debug == 0) {
4916 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
4919 * No more DR vmexits; force a reload of the debug registers
4920 * and reenter on this instruction. The next vmexit will
4921 * retrieve the full state of the debug registers.
4923 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
4927 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
4928 if (exit_qualification & TYPE_MOV_FROM_DR) {
4931 if (kvm_get_dr(vcpu, dr, &val))
4933 kvm_register_write(vcpu, reg, val);
4935 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
4938 return kvm_skip_emulated_instruction(vcpu);
4941 static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
4943 return vcpu->arch.dr6;
4946 static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
4950 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
4952 get_debugreg(vcpu->arch.db[0], 0);
4953 get_debugreg(vcpu->arch.db[1], 1);
4954 get_debugreg(vcpu->arch.db[2], 2);
4955 get_debugreg(vcpu->arch.db[3], 3);
4956 get_debugreg(vcpu->arch.dr6, 6);
4957 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
4959 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
4960 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
4963 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
4965 vmcs_writel(GUEST_DR7, val);
4968 static int handle_cpuid(struct kvm_vcpu *vcpu)
4970 return kvm_emulate_cpuid(vcpu);
4973 static int handle_rdmsr(struct kvm_vcpu *vcpu)
4975 return kvm_emulate_rdmsr(vcpu);
4978 static int handle_wrmsr(struct kvm_vcpu *vcpu)
4980 return kvm_emulate_wrmsr(vcpu);
4983 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
4985 kvm_apic_update_ppr(vcpu);
4989 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
4991 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_VIRTUAL_INTR_PENDING);
4993 kvm_make_request(KVM_REQ_EVENT, vcpu);
4995 ++vcpu->stat.irq_window_exits;
4999 static int handle_halt(struct kvm_vcpu *vcpu)
5001 return kvm_emulate_halt(vcpu);
5004 static int handle_vmcall(struct kvm_vcpu *vcpu)
5006 return kvm_emulate_hypercall(vcpu);
5009 static int handle_invd(struct kvm_vcpu *vcpu)
5011 return kvm_emulate_instruction(vcpu, 0);
5014 static int handle_invlpg(struct kvm_vcpu *vcpu)
5016 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5018 kvm_mmu_invlpg(vcpu, exit_qualification);
5019 return kvm_skip_emulated_instruction(vcpu);
5022 static int handle_rdpmc(struct kvm_vcpu *vcpu)
5026 err = kvm_rdpmc(vcpu);
5027 return kvm_complete_insn_gp(vcpu, err);
5030 static int handle_wbinvd(struct kvm_vcpu *vcpu)
5032 return kvm_emulate_wbinvd(vcpu);
5035 static int handle_xsetbv(struct kvm_vcpu *vcpu)
5037 u64 new_bv = kvm_read_edx_eax(vcpu);
5038 u32 index = kvm_rcx_read(vcpu);
5040 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5041 return kvm_skip_emulated_instruction(vcpu);
5045 static int handle_apic_access(struct kvm_vcpu *vcpu)
5047 if (likely(fasteoi)) {
5048 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5049 int access_type, offset;
5051 access_type = exit_qualification & APIC_ACCESS_TYPE;
5052 offset = exit_qualification & APIC_ACCESS_OFFSET;
5054 * Sane guest uses MOV to write EOI, with written value
5055 * not cared. So make a short-circuit here by avoiding
5056 * heavy instruction emulation.
5058 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5059 (offset == APIC_EOI)) {
5060 kvm_lapic_set_eoi(vcpu);
5061 return kvm_skip_emulated_instruction(vcpu);
5064 return kvm_emulate_instruction(vcpu, 0);
5067 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5069 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5070 int vector = exit_qualification & 0xff;
5072 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5073 kvm_apic_set_eoi_accelerated(vcpu, vector);
5077 static int handle_apic_write(struct kvm_vcpu *vcpu)
5079 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5080 u32 offset = exit_qualification & 0xfff;
5082 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5083 kvm_apic_write_nodecode(vcpu, offset);
5087 static int handle_task_switch(struct kvm_vcpu *vcpu)
5089 struct vcpu_vmx *vmx = to_vmx(vcpu);
5090 unsigned long exit_qualification;
5091 bool has_error_code = false;
5094 int reason, type, idt_v, idt_index;
5096 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5097 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5098 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5100 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5102 reason = (u32)exit_qualification >> 30;
5103 if (reason == TASK_SWITCH_GATE && idt_v) {
5105 case INTR_TYPE_NMI_INTR:
5106 vcpu->arch.nmi_injected = false;
5107 vmx_set_nmi_mask(vcpu, true);
5109 case INTR_TYPE_EXT_INTR:
5110 case INTR_TYPE_SOFT_INTR:
5111 kvm_clear_interrupt_queue(vcpu);
5113 case INTR_TYPE_HARD_EXCEPTION:
5114 if (vmx->idt_vectoring_info &
5115 VECTORING_INFO_DELIVER_CODE_MASK) {
5116 has_error_code = true;
5118 vmcs_read32(IDT_VECTORING_ERROR_CODE);
5121 case INTR_TYPE_SOFT_EXCEPTION:
5122 kvm_clear_exception_queue(vcpu);
5128 tss_selector = exit_qualification;
5130 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5131 type != INTR_TYPE_EXT_INTR &&
5132 type != INTR_TYPE_NMI_INTR))
5133 WARN_ON(!skip_emulated_instruction(vcpu));
5136 * TODO: What about debug traps on tss switch?
5137 * Are we supposed to inject them and update dr6?
5139 return kvm_task_switch(vcpu, tss_selector,
5140 type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5141 reason, has_error_code, error_code);
5144 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5146 unsigned long exit_qualification;
5150 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5153 * EPT violation happened while executing iret from NMI,
5154 * "blocked by NMI" bit has to be set before next VM entry.
5155 * There are errata that may cause this bit to not be set:
5158 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5160 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5161 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5163 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5164 trace_kvm_page_fault(gpa, exit_qualification);
5166 /* Is it a read fault? */
5167 error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5168 ? PFERR_USER_MASK : 0;
5169 /* Is it a write fault? */
5170 error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5171 ? PFERR_WRITE_MASK : 0;
5172 /* Is it a fetch fault? */
5173 error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5174 ? PFERR_FETCH_MASK : 0;
5175 /* ept page table entry is present? */
5176 error_code |= (exit_qualification &
5177 (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
5178 EPT_VIOLATION_EXECUTABLE))
5179 ? PFERR_PRESENT_MASK : 0;
5181 error_code |= (exit_qualification & 0x100) != 0 ?
5182 PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5184 vcpu->arch.exit_qualification = exit_qualification;
5185 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5188 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5193 * A nested guest cannot optimize MMIO vmexits, because we have an
5194 * nGPA here instead of the required GPA.
5196 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5197 if (!is_guest_mode(vcpu) &&
5198 !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5199 trace_kvm_fast_mmio(gpa);
5200 return kvm_skip_emulated_instruction(vcpu);
5203 return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5206 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5208 WARN_ON_ONCE(!enable_vnmi);
5209 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_VIRTUAL_NMI_PENDING);
5210 ++vcpu->stat.nmi_window_exits;
5211 kvm_make_request(KVM_REQ_EVENT, vcpu);
5216 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5218 struct vcpu_vmx *vmx = to_vmx(vcpu);
5219 bool intr_window_requested;
5220 unsigned count = 130;
5223 * We should never reach the point where we are emulating L2
5224 * due to invalid guest state as that means we incorrectly
5225 * allowed a nested VMEntry with an invalid vmcs12.
5227 WARN_ON_ONCE(vmx->emulation_required && vmx->nested.nested_run_pending);
5229 intr_window_requested = exec_controls_get(vmx) &
5230 CPU_BASED_VIRTUAL_INTR_PENDING;
5232 while (vmx->emulation_required && count-- != 0) {
5233 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
5234 return handle_interrupt_window(&vmx->vcpu);
5236 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5239 if (!kvm_emulate_instruction(vcpu, 0))
5242 if (vmx->emulation_required && !vmx->rmode.vm86_active &&
5243 vcpu->arch.exception.pending) {
5244 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5245 vcpu->run->internal.suberror =
5246 KVM_INTERNAL_ERROR_EMULATION;
5247 vcpu->run->internal.ndata = 0;
5251 if (vcpu->arch.halt_request) {
5252 vcpu->arch.halt_request = 0;
5253 return kvm_vcpu_halt(vcpu);
5257 * Note, return 1 and not 0, vcpu_run() is responsible for
5258 * morphing the pending signal into the proper return code.
5260 if (signal_pending(current))
5270 static void grow_ple_window(struct kvm_vcpu *vcpu)
5272 struct vcpu_vmx *vmx = to_vmx(vcpu);
5273 unsigned int old = vmx->ple_window;
5275 vmx->ple_window = __grow_ple_window(old, ple_window,
5279 if (vmx->ple_window != old) {
5280 vmx->ple_window_dirty = true;
5281 trace_kvm_ple_window_update(vcpu->vcpu_id,
5282 vmx->ple_window, old);
5286 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5288 struct vcpu_vmx *vmx = to_vmx(vcpu);
5289 unsigned int old = vmx->ple_window;
5291 vmx->ple_window = __shrink_ple_window(old, ple_window,
5295 if (vmx->ple_window != old) {
5296 vmx->ple_window_dirty = true;
5297 trace_kvm_ple_window_update(vcpu->vcpu_id,
5298 vmx->ple_window, old);
5303 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
5305 static void wakeup_handler(void)
5307 struct kvm_vcpu *vcpu;
5308 int cpu = smp_processor_id();
5310 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
5311 list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
5312 blocked_vcpu_list) {
5313 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
5315 if (pi_test_on(pi_desc) == 1)
5316 kvm_vcpu_kick(vcpu);
5318 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
5321 static void vmx_enable_tdp(void)
5323 kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
5324 enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
5325 enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
5326 0ull, VMX_EPT_EXECUTABLE_MASK,
5327 cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
5328 VMX_EPT_RWX_MASK, 0ull);
5330 ept_set_mmio_spte_mask();
5335 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5336 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5338 static int handle_pause(struct kvm_vcpu *vcpu)
5340 if (!kvm_pause_in_guest(vcpu->kvm))
5341 grow_ple_window(vcpu);
5344 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5345 * VM-execution control is ignored if CPL > 0. OTOH, KVM
5346 * never set PAUSE_EXITING and just set PLE if supported,
5347 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5349 kvm_vcpu_on_spin(vcpu, true);
5350 return kvm_skip_emulated_instruction(vcpu);
5353 static int handle_nop(struct kvm_vcpu *vcpu)
5355 return kvm_skip_emulated_instruction(vcpu);
5358 static int handle_mwait(struct kvm_vcpu *vcpu)
5360 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
5361 return handle_nop(vcpu);
5364 static int handle_invalid_op(struct kvm_vcpu *vcpu)
5366 kvm_queue_exception(vcpu, UD_VECTOR);
5370 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5375 static int handle_monitor(struct kvm_vcpu *vcpu)
5377 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
5378 return handle_nop(vcpu);
5381 static int handle_invpcid(struct kvm_vcpu *vcpu)
5383 u32 vmx_instruction_info;
5387 struct x86_exception e;
5389 unsigned long roots_to_free = 0;
5395 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5396 kvm_queue_exception(vcpu, UD_VECTOR);
5400 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5401 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5404 kvm_inject_gp(vcpu, 0);
5408 /* According to the Intel instruction reference, the memory operand
5409 * is read even if it isn't needed (e.g., for type==all)
5411 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5412 vmx_instruction_info, false,
5413 sizeof(operand), &gva))
5416 if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
5417 kvm_inject_page_fault(vcpu, &e);
5421 if (operand.pcid >> 12 != 0) {
5422 kvm_inject_gp(vcpu, 0);
5426 pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
5429 case INVPCID_TYPE_INDIV_ADDR:
5430 if ((!pcid_enabled && (operand.pcid != 0)) ||
5431 is_noncanonical_address(operand.gla, vcpu)) {
5432 kvm_inject_gp(vcpu, 0);
5435 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
5436 return kvm_skip_emulated_instruction(vcpu);
5438 case INVPCID_TYPE_SINGLE_CTXT:
5439 if (!pcid_enabled && (operand.pcid != 0)) {
5440 kvm_inject_gp(vcpu, 0);
5444 if (kvm_get_active_pcid(vcpu) == operand.pcid) {
5445 kvm_mmu_sync_roots(vcpu);
5446 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
5449 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5450 if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].cr3)
5452 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5454 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
5456 * If neither the current cr3 nor any of the prev_roots use the
5457 * given PCID, then nothing needs to be done here because a
5458 * resync will happen anyway before switching to any other CR3.
5461 return kvm_skip_emulated_instruction(vcpu);
5463 case INVPCID_TYPE_ALL_NON_GLOBAL:
5465 * Currently, KVM doesn't mark global entries in the shadow
5466 * page tables, so a non-global flush just degenerates to a
5467 * global flush. If needed, we could optimize this later by
5468 * keeping track of global entries in shadow page tables.
5472 case INVPCID_TYPE_ALL_INCL_GLOBAL:
5473 kvm_mmu_unload(vcpu);
5474 return kvm_skip_emulated_instruction(vcpu);
5477 BUG(); /* We have already checked above that type <= 3 */
5481 static int handle_pml_full(struct kvm_vcpu *vcpu)
5483 unsigned long exit_qualification;
5485 trace_kvm_pml_full(vcpu->vcpu_id);
5487 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5490 * PML buffer FULL happened while executing iret from NMI,
5491 * "blocked by NMI" bit has to be set before next VM entry.
5493 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5495 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5496 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5497 GUEST_INTR_STATE_NMI);
5500 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5501 * here.., and there's no userspace involvement needed for PML.
5506 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
5508 struct vcpu_vmx *vmx = to_vmx(vcpu);
5510 if (!vmx->req_immediate_exit &&
5511 !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled))
5512 kvm_lapic_expired_hv_timer(vcpu);
5518 * When nested=0, all VMX instruction VM Exits filter here. The handlers
5519 * are overwritten by nested_vmx_setup() when nested=1.
5521 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
5523 kvm_queue_exception(vcpu, UD_VECTOR);
5527 static int handle_encls(struct kvm_vcpu *vcpu)
5530 * SGX virtualization is not yet supported. There is no software
5531 * enable bit for SGX, so we have to trap ENCLS and inject a #UD
5532 * to prevent the guest from executing ENCLS.
5534 kvm_queue_exception(vcpu, UD_VECTOR);
5539 * The exit handlers return 1 if the exit was handled fully and guest execution
5540 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
5541 * to be done to userspace and return 0.
5543 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5544 [EXIT_REASON_EXCEPTION_NMI] = handle_exception_nmi,
5545 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
5546 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
5547 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
5548 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
5549 [EXIT_REASON_CR_ACCESS] = handle_cr,
5550 [EXIT_REASON_DR_ACCESS] = handle_dr,
5551 [EXIT_REASON_CPUID] = handle_cpuid,
5552 [EXIT_REASON_MSR_READ] = handle_rdmsr,
5553 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
5554 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
5555 [EXIT_REASON_HLT] = handle_halt,
5556 [EXIT_REASON_INVD] = handle_invd,
5557 [EXIT_REASON_INVLPG] = handle_invlpg,
5558 [EXIT_REASON_RDPMC] = handle_rdpmc,
5559 [EXIT_REASON_VMCALL] = handle_vmcall,
5560 [EXIT_REASON_VMCLEAR] = handle_vmx_instruction,
5561 [EXIT_REASON_VMLAUNCH] = handle_vmx_instruction,
5562 [EXIT_REASON_VMPTRLD] = handle_vmx_instruction,
5563 [EXIT_REASON_VMPTRST] = handle_vmx_instruction,
5564 [EXIT_REASON_VMREAD] = handle_vmx_instruction,
5565 [EXIT_REASON_VMRESUME] = handle_vmx_instruction,
5566 [EXIT_REASON_VMWRITE] = handle_vmx_instruction,
5567 [EXIT_REASON_VMOFF] = handle_vmx_instruction,
5568 [EXIT_REASON_VMON] = handle_vmx_instruction,
5569 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
5570 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
5571 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
5572 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
5573 [EXIT_REASON_WBINVD] = handle_wbinvd,
5574 [EXIT_REASON_XSETBV] = handle_xsetbv,
5575 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
5576 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
5577 [EXIT_REASON_GDTR_IDTR] = handle_desc,
5578 [EXIT_REASON_LDTR_TR] = handle_desc,
5579 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
5580 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
5581 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
5582 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait,
5583 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap,
5584 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor,
5585 [EXIT_REASON_INVEPT] = handle_vmx_instruction,
5586 [EXIT_REASON_INVVPID] = handle_vmx_instruction,
5587 [EXIT_REASON_RDRAND] = handle_invalid_op,
5588 [EXIT_REASON_RDSEED] = handle_invalid_op,
5589 [EXIT_REASON_PML_FULL] = handle_pml_full,
5590 [EXIT_REASON_INVPCID] = handle_invpcid,
5591 [EXIT_REASON_VMFUNC] = handle_vmx_instruction,
5592 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer,
5593 [EXIT_REASON_ENCLS] = handle_encls,
5596 static const int kvm_vmx_max_exit_handlers =
5597 ARRAY_SIZE(kvm_vmx_exit_handlers);
5599 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
5601 *info1 = vmcs_readl(EXIT_QUALIFICATION);
5602 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
5605 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
5608 __free_page(vmx->pml_pg);
5613 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
5615 struct vcpu_vmx *vmx = to_vmx(vcpu);
5619 pml_idx = vmcs_read16(GUEST_PML_INDEX);
5621 /* Do nothing if PML buffer is empty */
5622 if (pml_idx == (PML_ENTITY_NUM - 1))
5625 /* PML index always points to next available PML buffer entity */
5626 if (pml_idx >= PML_ENTITY_NUM)
5631 pml_buf = page_address(vmx->pml_pg);
5632 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
5635 gpa = pml_buf[pml_idx];
5636 WARN_ON(gpa & (PAGE_SIZE - 1));
5637 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5640 /* reset PML index */
5641 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5645 * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
5646 * Called before reporting dirty_bitmap to userspace.
5648 static void kvm_flush_pml_buffers(struct kvm *kvm)
5651 struct kvm_vcpu *vcpu;
5653 * We only need to kick vcpu out of guest mode here, as PML buffer
5654 * is flushed at beginning of all VMEXITs, and it's obvious that only
5655 * vcpus running in guest are possible to have unflushed GPAs in PML
5658 kvm_for_each_vcpu(i, vcpu, kvm)
5659 kvm_vcpu_kick(vcpu);
5662 static void vmx_dump_sel(char *name, uint32_t sel)
5664 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
5665 name, vmcs_read16(sel),
5666 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
5667 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
5668 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
5671 static void vmx_dump_dtsel(char *name, uint32_t limit)
5673 pr_err("%s limit=0x%08x, base=0x%016lx\n",
5674 name, vmcs_read32(limit),
5675 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
5678 void dump_vmcs(void)
5680 u32 vmentry_ctl, vmexit_ctl;
5681 u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
5686 if (!dump_invalid_vmcs) {
5687 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
5691 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
5692 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
5693 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5694 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
5695 cr4 = vmcs_readl(GUEST_CR4);
5696 efer = vmcs_read64(GUEST_IA32_EFER);
5697 secondary_exec_control = 0;
5698 if (cpu_has_secondary_exec_ctrls())
5699 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5701 pr_err("*** Guest State ***\n");
5702 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5703 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
5704 vmcs_readl(CR0_GUEST_HOST_MASK));
5705 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5706 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
5707 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
5708 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
5709 (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
5711 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n",
5712 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
5713 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n",
5714 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
5716 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
5717 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
5718 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
5719 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
5720 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5721 vmcs_readl(GUEST_SYSENTER_ESP),
5722 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
5723 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR);
5724 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR);
5725 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR);
5726 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR);
5727 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR);
5728 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR);
5729 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
5730 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
5731 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
5732 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR);
5733 if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
5734 (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
5735 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
5736 efer, vmcs_read64(GUEST_IA32_PAT));
5737 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n",
5738 vmcs_read64(GUEST_IA32_DEBUGCTL),
5739 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
5740 if (cpu_has_load_perf_global_ctrl() &&
5741 vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
5742 pr_err("PerfGlobCtl = 0x%016llx\n",
5743 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
5744 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
5745 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
5746 pr_err("Interruptibility = %08x ActivityState = %08x\n",
5747 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
5748 vmcs_read32(GUEST_ACTIVITY_STATE));
5749 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
5750 pr_err("InterruptStatus = %04x\n",
5751 vmcs_read16(GUEST_INTR_STATUS));
5753 pr_err("*** Host State ***\n");
5754 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
5755 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
5756 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
5757 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
5758 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
5759 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
5760 vmcs_read16(HOST_TR_SELECTOR));
5761 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
5762 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
5763 vmcs_readl(HOST_TR_BASE));
5764 pr_err("GDTBase=%016lx IDTBase=%016lx\n",
5765 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
5766 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
5767 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
5768 vmcs_readl(HOST_CR4));
5769 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5770 vmcs_readl(HOST_IA32_SYSENTER_ESP),
5771 vmcs_read32(HOST_IA32_SYSENTER_CS),
5772 vmcs_readl(HOST_IA32_SYSENTER_EIP));
5773 if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
5774 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
5775 vmcs_read64(HOST_IA32_EFER),
5776 vmcs_read64(HOST_IA32_PAT));
5777 if (cpu_has_load_perf_global_ctrl() &&
5778 vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
5779 pr_err("PerfGlobCtl = 0x%016llx\n",
5780 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
5782 pr_err("*** Control State ***\n");
5783 pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
5784 pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
5785 pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
5786 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
5787 vmcs_read32(EXCEPTION_BITMAP),
5788 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
5789 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
5790 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
5791 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
5792 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
5793 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
5794 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
5795 vmcs_read32(VM_EXIT_INTR_INFO),
5796 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5797 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
5798 pr_err(" reason=%08x qualification=%016lx\n",
5799 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
5800 pr_err("IDTVectoring: info=%08x errcode=%08x\n",
5801 vmcs_read32(IDT_VECTORING_INFO_FIELD),
5802 vmcs_read32(IDT_VECTORING_ERROR_CODE));
5803 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
5804 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
5805 pr_err("TSC Multiplier = 0x%016llx\n",
5806 vmcs_read64(TSC_MULTIPLIER));
5807 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
5808 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
5809 u16 status = vmcs_read16(GUEST_INTR_STATUS);
5810 pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
5812 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
5813 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
5814 pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
5815 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
5817 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
5818 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
5819 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
5820 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
5821 n = vmcs_read32(CR3_TARGET_COUNT);
5822 for (i = 0; i + 1 < n; i += 4)
5823 pr_err("CR3 target%u=%016lx target%u=%016lx\n",
5824 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
5825 i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
5827 pr_err("CR3 target%u=%016lx\n",
5828 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
5829 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
5830 pr_err("PLE Gap=%08x Window=%08x\n",
5831 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
5832 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
5833 pr_err("Virtual processor ID = 0x%04x\n",
5834 vmcs_read16(VIRTUAL_PROCESSOR_ID));
5838 * The guest has exited. See if we can fix it or if we need userspace
5841 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
5843 struct vcpu_vmx *vmx = to_vmx(vcpu);
5844 u32 exit_reason = vmx->exit_reason;
5845 u32 vectoring_info = vmx->idt_vectoring_info;
5847 trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
5850 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
5851 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
5852 * querying dirty_bitmap, we only need to kick all vcpus out of guest
5853 * mode as if vcpus is in root mode, the PML buffer must has been
5857 vmx_flush_pml_buffer(vcpu);
5859 /* If guest state is invalid, start emulating */
5860 if (vmx->emulation_required)
5861 return handle_invalid_guest_state(vcpu);
5863 if (is_guest_mode(vcpu) && nested_vmx_exit_reflected(vcpu, exit_reason))
5864 return nested_vmx_reflect_vmexit(vcpu, exit_reason);
5866 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
5868 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5869 vcpu->run->fail_entry.hardware_entry_failure_reason
5874 if (unlikely(vmx->fail)) {
5876 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5877 vcpu->run->fail_entry.hardware_entry_failure_reason
5878 = vmcs_read32(VM_INSTRUCTION_ERROR);
5884 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
5885 * delivery event since it indicates guest is accessing MMIO.
5886 * The vm-exit can be triggered again after return to guest that
5887 * will cause infinite loop.
5889 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
5890 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
5891 exit_reason != EXIT_REASON_EPT_VIOLATION &&
5892 exit_reason != EXIT_REASON_PML_FULL &&
5893 exit_reason != EXIT_REASON_TASK_SWITCH)) {
5894 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5895 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
5896 vcpu->run->internal.ndata = 3;
5897 vcpu->run->internal.data[0] = vectoring_info;
5898 vcpu->run->internal.data[1] = exit_reason;
5899 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
5900 if (exit_reason == EXIT_REASON_EPT_MISCONFIG) {
5901 vcpu->run->internal.ndata++;
5902 vcpu->run->internal.data[3] =
5903 vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5908 if (unlikely(!enable_vnmi &&
5909 vmx->loaded_vmcs->soft_vnmi_blocked)) {
5910 if (vmx_interrupt_allowed(vcpu)) {
5911 vmx->loaded_vmcs->soft_vnmi_blocked = 0;
5912 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
5913 vcpu->arch.nmi_pending) {
5915 * This CPU don't support us in finding the end of an
5916 * NMI-blocked window if the guest runs with IRQs
5917 * disabled. So we pull the trigger after 1 s of
5918 * futile waiting, but inform the user about this.
5920 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
5921 "state on VCPU %d after 1 s timeout\n",
5922 __func__, vcpu->vcpu_id);
5923 vmx->loaded_vmcs->soft_vnmi_blocked = 0;
5927 if (exit_reason < kvm_vmx_max_exit_handlers
5928 && kvm_vmx_exit_handlers[exit_reason])
5929 return kvm_vmx_exit_handlers[exit_reason](vcpu);
5931 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
5934 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5935 vcpu->run->internal.suberror =
5936 KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
5937 vcpu->run->internal.ndata = 1;
5938 vcpu->run->internal.data[0] = exit_reason;
5944 * Software based L1D cache flush which is used when microcode providing
5945 * the cache control MSR is not loaded.
5947 * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
5948 * flush it is required to read in 64 KiB because the replacement algorithm
5949 * is not exactly LRU. This could be sized at runtime via topology
5950 * information but as all relevant affected CPUs have 32KiB L1D cache size
5951 * there is no point in doing so.
5953 static void vmx_l1d_flush(struct kvm_vcpu *vcpu)
5955 int size = PAGE_SIZE << L1D_CACHE_ORDER;
5958 * This code is only executed when the the flush mode is 'cond' or
5961 if (static_branch_likely(&vmx_l1d_flush_cond)) {
5965 * Clear the per-vcpu flush bit, it gets set again
5966 * either from vcpu_run() or from one of the unsafe
5969 flush_l1d = vcpu->arch.l1tf_flush_l1d;
5970 vcpu->arch.l1tf_flush_l1d = false;
5973 * Clear the per-cpu flush bit, it gets set again from
5974 * the interrupt handlers.
5976 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
5977 kvm_clear_cpu_l1tf_flush_l1d();
5983 vcpu->stat.l1d_flush++;
5985 if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
5986 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
5991 /* First ensure the pages are in the TLB */
5992 "xorl %%eax, %%eax\n"
5993 ".Lpopulate_tlb:\n\t"
5994 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
5995 "addl $4096, %%eax\n\t"
5996 "cmpl %%eax, %[size]\n\t"
5997 "jne .Lpopulate_tlb\n\t"
5998 "xorl %%eax, %%eax\n\t"
6000 /* Now fill the cache */
6001 "xorl %%eax, %%eax\n"
6003 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6004 "addl $64, %%eax\n\t"
6005 "cmpl %%eax, %[size]\n\t"
6006 "jne .Lfill_cache\n\t"
6008 :: [flush_pages] "r" (vmx_l1d_flush_pages),
6010 : "eax", "ebx", "ecx", "edx");
6013 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6015 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6017 if (is_guest_mode(vcpu) &&
6018 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6021 if (irr == -1 || tpr < irr) {
6022 vmcs_write32(TPR_THRESHOLD, 0);
6026 vmcs_write32(TPR_THRESHOLD, irr);
6029 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6031 struct vcpu_vmx *vmx = to_vmx(vcpu);
6032 u32 sec_exec_control;
6034 if (!lapic_in_kernel(vcpu))
6037 if (!flexpriority_enabled &&
6038 !cpu_has_vmx_virtualize_x2apic_mode())
6041 /* Postpone execution until vmcs01 is the current VMCS. */
6042 if (is_guest_mode(vcpu)) {
6043 vmx->nested.change_vmcs01_virtual_apic_mode = true;
6047 sec_exec_control = secondary_exec_controls_get(vmx);
6048 sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6049 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6051 switch (kvm_get_apic_mode(vcpu)) {
6052 case LAPIC_MODE_INVALID:
6053 WARN_ONCE(true, "Invalid local APIC state");
6054 case LAPIC_MODE_DISABLED:
6056 case LAPIC_MODE_XAPIC:
6057 if (flexpriority_enabled) {
6059 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6060 vmx_flush_tlb(vcpu, true);
6063 case LAPIC_MODE_X2APIC:
6064 if (cpu_has_vmx_virtualize_x2apic_mode())
6066 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6069 secondary_exec_controls_set(vmx, sec_exec_control);
6071 vmx_update_msr_bitmap(vcpu);
6074 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
6076 if (!is_guest_mode(vcpu)) {
6077 vmcs_write64(APIC_ACCESS_ADDR, hpa);
6078 vmx_flush_tlb(vcpu, true);
6082 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
6090 status = vmcs_read16(GUEST_INTR_STATUS);
6092 if (max_isr != old) {
6094 status |= max_isr << 8;
6095 vmcs_write16(GUEST_INTR_STATUS, status);
6099 static void vmx_set_rvi(int vector)
6107 status = vmcs_read16(GUEST_INTR_STATUS);
6108 old = (u8)status & 0xff;
6109 if ((u8)vector != old) {
6111 status |= (u8)vector;
6112 vmcs_write16(GUEST_INTR_STATUS, status);
6116 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6119 * When running L2, updating RVI is only relevant when
6120 * vmcs12 virtual-interrupt-delivery enabled.
6121 * However, it can be enabled only when L1 also
6122 * intercepts external-interrupts and in that case
6123 * we should not update vmcs02 RVI but instead intercept
6124 * interrupt. Therefore, do nothing when running L2.
6126 if (!is_guest_mode(vcpu))
6127 vmx_set_rvi(max_irr);
6130 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6132 struct vcpu_vmx *vmx = to_vmx(vcpu);
6134 bool max_irr_updated;
6136 WARN_ON(!vcpu->arch.apicv_active);
6137 if (pi_test_on(&vmx->pi_desc)) {
6138 pi_clear_on(&vmx->pi_desc);
6140 * IOMMU can write to PIR.ON, so the barrier matters even on UP.
6141 * But on x86 this is just a compiler barrier anyway.
6143 smp_mb__after_atomic();
6145 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6148 * If we are running L2 and L1 has a new pending interrupt
6149 * which can be injected, we should re-evaluate
6150 * what should be done with this new L1 interrupt.
6151 * If L1 intercepts external-interrupts, we should
6152 * exit from L2 to L1. Otherwise, interrupt should be
6153 * delivered directly to L2.
6155 if (is_guest_mode(vcpu) && max_irr_updated) {
6156 if (nested_exit_on_intr(vcpu))
6157 kvm_vcpu_exiting_guest_mode(vcpu);
6159 kvm_make_request(KVM_REQ_EVENT, vcpu);
6162 max_irr = kvm_lapic_find_highest_irr(vcpu);
6164 vmx_hwapic_irr_update(vcpu, max_irr);
6168 static bool vmx_dy_apicv_has_pending_interrupt(struct kvm_vcpu *vcpu)
6170 return pi_test_on(vcpu_to_pi_desc(vcpu));
6173 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6175 if (!kvm_vcpu_apicv_active(vcpu))
6178 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6179 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6180 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6181 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6184 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
6186 struct vcpu_vmx *vmx = to_vmx(vcpu);
6188 pi_clear_on(&vmx->pi_desc);
6189 memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6192 static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx)
6194 vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6196 /* if exit due to PF check for async PF */
6197 if (is_page_fault(vmx->exit_intr_info))
6198 vmx->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
6200 /* Handle machine checks before interrupts are enabled */
6201 if (is_machine_check(vmx->exit_intr_info))
6202 kvm_machine_check();
6204 /* We need to handle NMIs before interrupts are enabled */
6205 if (is_nmi(vmx->exit_intr_info)) {
6206 kvm_before_interrupt(&vmx->vcpu);
6208 kvm_after_interrupt(&vmx->vcpu);
6212 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6214 unsigned int vector;
6215 unsigned long entry;
6216 #ifdef CONFIG_X86_64
6222 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6223 if (WARN_ONCE(!is_external_intr(intr_info),
6224 "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info))
6227 vector = intr_info & INTR_INFO_VECTOR_MASK;
6228 desc = (gate_desc *)host_idt_base + vector;
6229 entry = gate_offset(desc);
6231 kvm_before_interrupt(vcpu);
6234 #ifdef CONFIG_X86_64
6235 "mov %%" _ASM_SP ", %[sp]\n\t"
6236 "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
6241 __ASM_SIZE(push) " $%c[cs]\n\t"
6244 #ifdef CONFIG_X86_64
6249 THUNK_TARGET(entry),
6250 [ss]"i"(__KERNEL_DS),
6251 [cs]"i"(__KERNEL_CS)
6254 kvm_after_interrupt(vcpu);
6256 STACK_FRAME_NON_STANDARD(handle_external_interrupt_irqoff);
6258 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6260 struct vcpu_vmx *vmx = to_vmx(vcpu);
6262 if (vmx->exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
6263 handle_external_interrupt_irqoff(vcpu);
6264 else if (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI)
6265 handle_exception_nmi_irqoff(vmx);
6268 static bool vmx_has_emulated_msr(int index)
6271 case MSR_IA32_SMBASE:
6273 * We cannot do SMM unless we can run the guest in big
6276 return enable_unrestricted_guest || emulate_invalid_guest_state;
6277 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
6279 case MSR_AMD64_VIRT_SPEC_CTRL:
6280 /* This is AMD only. */
6287 static bool vmx_pt_supported(void)
6289 return pt_mode == PT_MODE_HOST_GUEST;
6292 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6297 bool idtv_info_valid;
6299 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6302 if (vmx->loaded_vmcs->nmi_known_unmasked)
6305 * Can't use vmx->exit_intr_info since we're not sure what
6306 * the exit reason is.
6308 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6309 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6310 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6312 * SDM 3: 27.7.1.2 (September 2008)
6313 * Re-set bit "block by NMI" before VM entry if vmexit caused by
6314 * a guest IRET fault.
6315 * SDM 3: 23.2.2 (September 2008)
6316 * Bit 12 is undefined in any of the following cases:
6317 * If the VM exit sets the valid bit in the IDT-vectoring
6318 * information field.
6319 * If the VM exit is due to a double fault.
6321 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6322 vector != DF_VECTOR && !idtv_info_valid)
6323 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6324 GUEST_INTR_STATE_NMI);
6326 vmx->loaded_vmcs->nmi_known_unmasked =
6327 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6328 & GUEST_INTR_STATE_NMI);
6329 } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
6330 vmx->loaded_vmcs->vnmi_blocked_time +=
6331 ktime_to_ns(ktime_sub(ktime_get(),
6332 vmx->loaded_vmcs->entry_time));
6335 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
6336 u32 idt_vectoring_info,
6337 int instr_len_field,
6338 int error_code_field)
6342 bool idtv_info_valid;
6344 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6346 vcpu->arch.nmi_injected = false;
6347 kvm_clear_exception_queue(vcpu);
6348 kvm_clear_interrupt_queue(vcpu);
6350 if (!idtv_info_valid)
6353 kvm_make_request(KVM_REQ_EVENT, vcpu);
6355 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6356 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6359 case INTR_TYPE_NMI_INTR:
6360 vcpu->arch.nmi_injected = true;
6362 * SDM 3: 27.7.1.2 (September 2008)
6363 * Clear bit "block by NMI" before VM entry if a NMI
6366 vmx_set_nmi_mask(vcpu, false);
6368 case INTR_TYPE_SOFT_EXCEPTION:
6369 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6371 case INTR_TYPE_HARD_EXCEPTION:
6372 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6373 u32 err = vmcs_read32(error_code_field);
6374 kvm_requeue_exception_e(vcpu, vector, err);
6376 kvm_requeue_exception(vcpu, vector);
6378 case INTR_TYPE_SOFT_INTR:
6379 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6381 case INTR_TYPE_EXT_INTR:
6382 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
6389 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6391 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
6392 VM_EXIT_INSTRUCTION_LEN,
6393 IDT_VECTORING_ERROR_CODE);
6396 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6398 __vmx_complete_interrupts(vcpu,
6399 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6400 VM_ENTRY_INSTRUCTION_LEN,
6401 VM_ENTRY_EXCEPTION_ERROR_CODE);
6403 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6406 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6409 struct perf_guest_switch_msr *msrs;
6411 msrs = perf_guest_get_msrs(&nr_msrs);
6416 for (i = 0; i < nr_msrs; i++)
6417 if (msrs[i].host == msrs[i].guest)
6418 clear_atomic_switch_msr(vmx, msrs[i].msr);
6420 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6421 msrs[i].host, false);
6424 static void atomic_switch_umwait_control_msr(struct vcpu_vmx *vmx)
6426 u32 host_umwait_control;
6428 if (!vmx_has_waitpkg(vmx))
6431 host_umwait_control = get_umwait_control_msr();
6433 if (vmx->msr_ia32_umwait_control != host_umwait_control)
6434 add_atomic_switch_msr(vmx, MSR_IA32_UMWAIT_CONTROL,
6435 vmx->msr_ia32_umwait_control,
6436 host_umwait_control, false);
6438 clear_atomic_switch_msr(vmx, MSR_IA32_UMWAIT_CONTROL);
6441 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
6443 struct vcpu_vmx *vmx = to_vmx(vcpu);
6447 if (vmx->req_immediate_exit) {
6448 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
6449 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6450 } else if (vmx->hv_deadline_tsc != -1) {
6452 if (vmx->hv_deadline_tsc > tscl)
6453 /* set_hv_timer ensures the delta fits in 32-bits */
6454 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
6455 cpu_preemption_timer_multi);
6459 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
6460 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6461 } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
6462 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
6463 vmx->loaded_vmcs->hv_timer_soft_disabled = true;
6467 void vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
6469 if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
6470 vmx->loaded_vmcs->host_state.rsp = host_rsp;
6471 vmcs_writel(HOST_RSP, host_rsp);
6475 bool __vmx_vcpu_run(struct vcpu_vmx *vmx, unsigned long *regs, bool launched);
6477 static void vmx_vcpu_run(struct kvm_vcpu *vcpu)
6479 struct vcpu_vmx *vmx = to_vmx(vcpu);
6480 unsigned long cr3, cr4;
6482 /* Record the guest's net vcpu time for enforced NMI injections. */
6483 if (unlikely(!enable_vnmi &&
6484 vmx->loaded_vmcs->soft_vnmi_blocked))
6485 vmx->loaded_vmcs->entry_time = ktime_get();
6487 /* Don't enter VMX if guest state is invalid, let the exit handler
6488 start emulation until we arrive back to a valid state */
6489 if (vmx->emulation_required)
6492 if (vmx->ple_window_dirty) {
6493 vmx->ple_window_dirty = false;
6494 vmcs_write32(PLE_WINDOW, vmx->ple_window);
6497 if (vmx->nested.need_vmcs12_to_shadow_sync)
6498 nested_sync_vmcs12_to_shadow(vcpu);
6500 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
6501 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6502 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
6503 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6505 cr3 = __get_current_cr3_fast();
6506 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
6507 vmcs_writel(HOST_CR3, cr3);
6508 vmx->loaded_vmcs->host_state.cr3 = cr3;
6511 cr4 = cr4_read_shadow();
6512 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
6513 vmcs_writel(HOST_CR4, cr4);
6514 vmx->loaded_vmcs->host_state.cr4 = cr4;
6517 /* When single-stepping over STI and MOV SS, we must clear the
6518 * corresponding interruptibility bits in the guest state. Otherwise
6519 * vmentry fails as it then expects bit 14 (BS) in pending debug
6520 * exceptions being set, but that's not correct for the guest debugging
6522 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6523 vmx_set_interrupt_shadow(vcpu, 0);
6525 kvm_load_guest_xcr0(vcpu);
6527 if (static_cpu_has(X86_FEATURE_PKU) &&
6528 kvm_read_cr4_bits(vcpu, X86_CR4_PKE) &&
6529 vcpu->arch.pkru != vmx->host_pkru)
6530 __write_pkru(vcpu->arch.pkru);
6532 pt_guest_enter(vmx);
6534 atomic_switch_perf_msrs(vmx);
6535 atomic_switch_umwait_control_msr(vmx);
6537 if (enable_preemption_timer)
6538 vmx_update_hv_timer(vcpu);
6540 if (lapic_in_kernel(vcpu) &&
6541 vcpu->arch.apic->lapic_timer.timer_advance_ns)
6542 kvm_wait_lapic_expire(vcpu);
6545 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
6546 * it's non-zero. Since vmentry is serialising on affected CPUs, there
6547 * is no need to worry about the conditional branch over the wrmsr
6548 * being speculatively taken.
6550 x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
6552 /* L1D Flush includes CPU buffer clear to mitigate MDS */
6553 if (static_branch_unlikely(&vmx_l1d_should_flush))
6554 vmx_l1d_flush(vcpu);
6555 else if (static_branch_unlikely(&mds_user_clear))
6556 mds_clear_cpu_buffers();
6558 if (vcpu->arch.cr2 != read_cr2())
6559 write_cr2(vcpu->arch.cr2);
6561 vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
6562 vmx->loaded_vmcs->launched);
6564 vcpu->arch.cr2 = read_cr2();
6567 * We do not use IBRS in the kernel. If this vCPU has used the
6568 * SPEC_CTRL MSR it may have left it on; save the value and
6569 * turn it off. This is much more efficient than blindly adding
6570 * it to the atomic save/restore list. Especially as the former
6571 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
6573 * For non-nested case:
6574 * If the L01 MSR bitmap does not intercept the MSR, then we need to
6578 * If the L02 MSR bitmap does not intercept the MSR, then we need to
6581 if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
6582 vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
6584 x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0);
6586 /* All fields are clean at this point */
6587 if (static_branch_unlikely(&enable_evmcs))
6588 current_evmcs->hv_clean_fields |=
6589 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
6591 if (static_branch_unlikely(&enable_evmcs))
6592 current_evmcs->hv_vp_id = vcpu->arch.hyperv.vp_index;
6594 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
6595 if (vmx->host_debugctlmsr)
6596 update_debugctlmsr(vmx->host_debugctlmsr);
6598 #ifndef CONFIG_X86_64
6600 * The sysexit path does not restore ds/es, so we must set them to
6601 * a reasonable value ourselves.
6603 * We can't defer this to vmx_prepare_switch_to_host() since that
6604 * function may be executed in interrupt context, which saves and
6605 * restore segments around it, nullifying its effect.
6607 loadsegment(ds, __USER_DS);
6608 loadsegment(es, __USER_DS);
6611 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
6612 | (1 << VCPU_EXREG_RFLAGS)
6613 | (1 << VCPU_EXREG_PDPTR)
6614 | (1 << VCPU_EXREG_SEGMENTS)
6615 | (1 << VCPU_EXREG_CR3));
6616 vcpu->arch.regs_dirty = 0;
6621 * eager fpu is enabled if PKEY is supported and CR4 is switched
6622 * back on host, so it is safe to read guest PKRU from current
6625 if (static_cpu_has(X86_FEATURE_PKU) &&
6626 kvm_read_cr4_bits(vcpu, X86_CR4_PKE)) {
6627 vcpu->arch.pkru = rdpkru();
6628 if (vcpu->arch.pkru != vmx->host_pkru)
6629 __write_pkru(vmx->host_pkru);
6632 kvm_put_guest_xcr0(vcpu);
6634 vmx->nested.nested_run_pending = 0;
6635 vmx->idt_vectoring_info = 0;
6637 vmx->exit_reason = vmx->fail ? 0xdead : vmcs_read32(VM_EXIT_REASON);
6638 if ((u16)vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY)
6639 kvm_machine_check();
6641 if (vmx->fail || (vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
6644 vmx->loaded_vmcs->launched = 1;
6645 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6647 vmx_recover_nmi_blocking(vmx);
6648 vmx_complete_interrupts(vmx);
6651 static struct kvm *vmx_vm_alloc(void)
6653 struct kvm_vmx *kvm_vmx = __vmalloc(sizeof(struct kvm_vmx),
6654 GFP_KERNEL_ACCOUNT | __GFP_ZERO,
6656 return &kvm_vmx->kvm;
6659 static void vmx_vm_free(struct kvm *kvm)
6661 kfree(kvm->arch.hyperv.hv_pa_pg);
6662 vfree(to_kvm_vmx(kvm));
6665 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6667 struct vcpu_vmx *vmx = to_vmx(vcpu);
6670 vmx_destroy_pml_buffer(vmx);
6671 free_vpid(vmx->vpid);
6672 nested_vmx_free_vcpu(vcpu);
6673 free_loaded_vmcs(vmx->loaded_vmcs);
6674 kfree(vmx->guest_msrs);
6675 kvm_vcpu_uninit(vcpu);
6676 kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.user_fpu);
6677 kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.guest_fpu);
6678 kmem_cache_free(kvm_vcpu_cache, vmx);
6681 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
6684 struct vcpu_vmx *vmx;
6685 unsigned long *msr_bitmap;
6688 BUILD_BUG_ON_MSG(offsetof(struct vcpu_vmx, vcpu) != 0,
6689 "struct kvm_vcpu must be at offset 0 for arch usercopy region");
6691 vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
6693 return ERR_PTR(-ENOMEM);
6695 vmx->vcpu.arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
6696 GFP_KERNEL_ACCOUNT);
6697 if (!vmx->vcpu.arch.user_fpu) {
6698 printk(KERN_ERR "kvm: failed to allocate kvm userspace's fpu\n");
6700 goto free_partial_vcpu;
6703 vmx->vcpu.arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
6704 GFP_KERNEL_ACCOUNT);
6705 if (!vmx->vcpu.arch.guest_fpu) {
6706 printk(KERN_ERR "kvm: failed to allocate vcpu's fpu\n");
6711 vmx->vpid = allocate_vpid();
6713 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
6720 * If PML is turned on, failure on enabling PML just results in failure
6721 * of creating the vcpu, therefore we can simplify PML logic (by
6722 * avoiding dealing with cases, such as enabling PML partially on vcpus
6723 * for the guest, etc.
6726 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
6731 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT);
6732 BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
6735 if (!vmx->guest_msrs)
6738 err = alloc_loaded_vmcs(&vmx->vmcs01);
6742 msr_bitmap = vmx->vmcs01.msr_bitmap;
6743 vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_TSC, MSR_TYPE_R);
6744 vmx_disable_intercept_for_msr(msr_bitmap, MSR_FS_BASE, MSR_TYPE_RW);
6745 vmx_disable_intercept_for_msr(msr_bitmap, MSR_GS_BASE, MSR_TYPE_RW);
6746 vmx_disable_intercept_for_msr(msr_bitmap, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
6747 vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
6748 vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
6749 vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
6750 if (kvm_cstate_in_guest(kvm)) {
6751 vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C1_RES, MSR_TYPE_R);
6752 vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
6753 vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
6754 vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
6756 vmx->msr_bitmap_mode = 0;
6758 vmx->loaded_vmcs = &vmx->vmcs01;
6760 vmx_vcpu_load(&vmx->vcpu, cpu);
6761 vmx->vcpu.cpu = cpu;
6762 vmx_vcpu_setup(vmx);
6763 vmx_vcpu_put(&vmx->vcpu);
6765 if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
6766 err = alloc_apic_access_page(kvm);
6771 if (enable_ept && !enable_unrestricted_guest) {
6772 err = init_rmode_identity_map(kvm);
6778 nested_vmx_setup_ctls_msrs(&vmx->nested.msrs,
6780 kvm_vcpu_apicv_active(&vmx->vcpu));
6782 memset(&vmx->nested.msrs, 0, sizeof(vmx->nested.msrs));
6784 vmx->nested.posted_intr_nv = -1;
6785 vmx->nested.current_vmptr = -1ull;
6787 vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED;
6790 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
6791 * or POSTED_INTR_WAKEUP_VECTOR.
6793 vmx->pi_desc.nv = POSTED_INTR_VECTOR;
6794 vmx->pi_desc.sn = 1;
6796 vmx->ept_pointer = INVALID_PAGE;
6801 free_loaded_vmcs(vmx->loaded_vmcs);
6803 kfree(vmx->guest_msrs);
6805 vmx_destroy_pml_buffer(vmx);
6807 kvm_vcpu_uninit(&vmx->vcpu);
6809 free_vpid(vmx->vpid);
6810 kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.guest_fpu);
6812 kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.user_fpu);
6814 kmem_cache_free(kvm_vcpu_cache, vmx);
6815 return ERR_PTR(err);
6818 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6819 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6821 static int vmx_vm_init(struct kvm *kvm)
6823 spin_lock_init(&to_kvm_vmx(kvm)->ept_pointer_lock);
6826 kvm->arch.pause_in_guest = true;
6828 if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
6829 switch (l1tf_mitigation) {
6830 case L1TF_MITIGATION_OFF:
6831 case L1TF_MITIGATION_FLUSH_NOWARN:
6832 /* 'I explicitly don't care' is set */
6834 case L1TF_MITIGATION_FLUSH:
6835 case L1TF_MITIGATION_FLUSH_NOSMT:
6836 case L1TF_MITIGATION_FULL:
6838 * Warn upon starting the first VM in a potentially
6839 * insecure environment.
6841 if (sched_smt_active())
6842 pr_warn_once(L1TF_MSG_SMT);
6843 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
6844 pr_warn_once(L1TF_MSG_L1D);
6846 case L1TF_MITIGATION_FULL_FORCE:
6847 /* Flush is enforced */
6854 static int __init vmx_check_processor_compat(void)
6856 struct vmcs_config vmcs_conf;
6857 struct vmx_capability vmx_cap;
6859 if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0)
6862 nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept,
6864 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
6865 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
6866 smp_processor_id());
6872 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
6877 /* For VT-d and EPT combination
6878 * 1. MMIO: always map as UC
6880 * a. VT-d without snooping control feature: can't guarantee the
6881 * result, try to trust guest.
6882 * b. VT-d with snooping control feature: snooping control feature of
6883 * VT-d engine can guarantee the cache correctness. Just set it
6884 * to WB to keep consistent with host. So the same as item 3.
6885 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
6886 * consistent with host MTRR
6889 cache = MTRR_TYPE_UNCACHABLE;
6893 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
6894 ipat = VMX_EPT_IPAT_BIT;
6895 cache = MTRR_TYPE_WRBACK;
6899 if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
6900 ipat = VMX_EPT_IPAT_BIT;
6901 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
6902 cache = MTRR_TYPE_WRBACK;
6904 cache = MTRR_TYPE_UNCACHABLE;
6908 cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
6911 return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
6914 static int vmx_get_lpage_level(void)
6916 if (enable_ept && !cpu_has_vmx_ept_1g_page())
6917 return PT_DIRECTORY_LEVEL;
6919 /* For shadow and EPT supported 1GB page */
6920 return PT_PDPE_LEVEL;
6923 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx)
6926 * These bits in the secondary execution controls field
6927 * are dynamic, the others are mostly based on the hypervisor
6928 * architecture and the guest's CPUID. Do not touch the
6932 SECONDARY_EXEC_SHADOW_VMCS |
6933 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
6934 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6935 SECONDARY_EXEC_DESC;
6937 u32 new_ctl = vmx->secondary_exec_control;
6938 u32 cur_ctl = secondary_exec_controls_get(vmx);
6940 secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
6944 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
6945 * (indicating "allowed-1") if they are supported in the guest's CPUID.
6947 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
6949 struct vcpu_vmx *vmx = to_vmx(vcpu);
6950 struct kvm_cpuid_entry2 *entry;
6952 vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
6953 vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
6955 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \
6956 if (entry && (entry->_reg & (_cpuid_mask))) \
6957 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \
6960 entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
6961 cr4_fixed1_update(X86_CR4_VME, edx, bit(X86_FEATURE_VME));
6962 cr4_fixed1_update(X86_CR4_PVI, edx, bit(X86_FEATURE_VME));
6963 cr4_fixed1_update(X86_CR4_TSD, edx, bit(X86_FEATURE_TSC));
6964 cr4_fixed1_update(X86_CR4_DE, edx, bit(X86_FEATURE_DE));
6965 cr4_fixed1_update(X86_CR4_PSE, edx, bit(X86_FEATURE_PSE));
6966 cr4_fixed1_update(X86_CR4_PAE, edx, bit(X86_FEATURE_PAE));
6967 cr4_fixed1_update(X86_CR4_MCE, edx, bit(X86_FEATURE_MCE));
6968 cr4_fixed1_update(X86_CR4_PGE, edx, bit(X86_FEATURE_PGE));
6969 cr4_fixed1_update(X86_CR4_OSFXSR, edx, bit(X86_FEATURE_FXSR));
6970 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, bit(X86_FEATURE_XMM));
6971 cr4_fixed1_update(X86_CR4_VMXE, ecx, bit(X86_FEATURE_VMX));
6972 cr4_fixed1_update(X86_CR4_SMXE, ecx, bit(X86_FEATURE_SMX));
6973 cr4_fixed1_update(X86_CR4_PCIDE, ecx, bit(X86_FEATURE_PCID));
6974 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, bit(X86_FEATURE_XSAVE));
6976 entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
6977 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, bit(X86_FEATURE_FSGSBASE));
6978 cr4_fixed1_update(X86_CR4_SMEP, ebx, bit(X86_FEATURE_SMEP));
6979 cr4_fixed1_update(X86_CR4_SMAP, ebx, bit(X86_FEATURE_SMAP));
6980 cr4_fixed1_update(X86_CR4_PKE, ecx, bit(X86_FEATURE_PKU));
6981 cr4_fixed1_update(X86_CR4_UMIP, ecx, bit(X86_FEATURE_UMIP));
6983 #undef cr4_fixed1_update
6986 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
6988 struct vcpu_vmx *vmx = to_vmx(vcpu);
6990 if (kvm_mpx_supported()) {
6991 bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX);
6994 vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
6995 vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
6997 vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS;
6998 vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS;
7003 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7005 struct vcpu_vmx *vmx = to_vmx(vcpu);
7006 struct kvm_cpuid_entry2 *best = NULL;
7009 for (i = 0; i < PT_CPUID_LEAVES; i++) {
7010 best = kvm_find_cpuid_entry(vcpu, 0x14, i);
7013 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7014 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7015 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7016 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7019 /* Get the number of configurable Address Ranges for filtering */
7020 vmx->pt_desc.addr_range = intel_pt_validate_cap(vmx->pt_desc.caps,
7021 PT_CAP_num_address_ranges);
7023 /* Initialize and clear the no dependency bits */
7024 vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7025 RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC);
7028 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7029 * will inject an #GP
7031 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7032 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7035 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7036 * PSBFreq can be set
7038 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7039 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7040 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7043 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn BranchEn and
7044 * MTCFreq can be set
7046 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7047 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7048 RTIT_CTL_BRANCH_EN | RTIT_CTL_MTC_RANGE);
7050 /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7051 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7052 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7055 /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7056 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7057 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7059 /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7060 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7061 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7063 /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabircEn can be set */
7064 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7065 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7067 /* unmask address range configure area */
7068 for (i = 0; i < vmx->pt_desc.addr_range; i++)
7069 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7072 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
7074 struct vcpu_vmx *vmx = to_vmx(vcpu);
7076 if (cpu_has_secondary_exec_ctrls()) {
7077 vmx_compute_secondary_exec_control(vmx);
7078 vmcs_set_secondary_exec_control(vmx);
7081 if (nested_vmx_allowed(vcpu))
7082 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7083 FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
7085 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7086 ~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
7088 if (nested_vmx_allowed(vcpu)) {
7089 nested_vmx_cr_fixed1_bits_update(vcpu);
7090 nested_vmx_entry_exit_ctls_update(vcpu);
7093 if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7094 guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7095 update_intel_pt_cfg(vcpu);
7098 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
7100 if (func == 1 && nested)
7101 entry->ecx |= bit(X86_FEATURE_VMX);
7104 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
7106 to_vmx(vcpu)->req_immediate_exit = true;
7109 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7110 struct x86_instruction_info *info,
7111 enum x86_intercept_stage stage)
7113 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7114 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7117 * RDPID causes #UD if disabled through secondary execution controls.
7118 * Because it is marked as EmulateOnUD, we need to intercept it here.
7120 if (info->intercept == x86_intercept_rdtscp &&
7121 !nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDTSCP)) {
7122 ctxt->exception.vector = UD_VECTOR;
7123 ctxt->exception.error_code_valid = false;
7124 return X86EMUL_PROPAGATE_FAULT;
7127 /* TODO: check more intercepts... */
7128 return X86EMUL_CONTINUE;
7131 #ifdef CONFIG_X86_64
7132 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
7133 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
7134 u64 divisor, u64 *result)
7136 u64 low = a << shift, high = a >> (64 - shift);
7138 /* To avoid the overflow on divq */
7139 if (high >= divisor)
7142 /* Low hold the result, high hold rem which is discarded */
7143 asm("divq %2\n\t" : "=a" (low), "=d" (high) :
7144 "rm" (divisor), "0" (low), "1" (high));
7150 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
7153 struct vcpu_vmx *vmx;
7154 u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
7155 struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
7157 if (kvm_mwait_in_guest(vcpu->kvm) ||
7158 kvm_can_post_timer_interrupt(vcpu))
7163 guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
7164 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
7165 lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
7166 ktimer->timer_advance_ns);
7168 if (delta_tsc > lapic_timer_advance_cycles)
7169 delta_tsc -= lapic_timer_advance_cycles;
7173 /* Convert to host delta tsc if tsc scaling is enabled */
7174 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
7175 delta_tsc && u64_shl_div_u64(delta_tsc,
7176 kvm_tsc_scaling_ratio_frac_bits,
7177 vcpu->arch.tsc_scaling_ratio, &delta_tsc))
7181 * If the delta tsc can't fit in the 32 bit after the multi shift,
7182 * we can't use the preemption timer.
7183 * It's possible that it fits on later vmentries, but checking
7184 * on every vmentry is costly so we just use an hrtimer.
7186 if (delta_tsc >> (cpu_preemption_timer_multi + 32))
7189 vmx->hv_deadline_tsc = tscl + delta_tsc;
7190 *expired = !delta_tsc;
7194 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
7196 to_vmx(vcpu)->hv_deadline_tsc = -1;
7200 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
7202 if (!kvm_pause_in_guest(vcpu->kvm))
7203 shrink_ple_window(vcpu);
7206 static void vmx_slot_enable_log_dirty(struct kvm *kvm,
7207 struct kvm_memory_slot *slot)
7209 kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
7210 kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
7213 static void vmx_slot_disable_log_dirty(struct kvm *kvm,
7214 struct kvm_memory_slot *slot)
7216 kvm_mmu_slot_set_dirty(kvm, slot);
7219 static void vmx_flush_log_dirty(struct kvm *kvm)
7221 kvm_flush_pml_buffers(kvm);
7224 static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu)
7226 struct vmcs12 *vmcs12;
7227 struct vcpu_vmx *vmx = to_vmx(vcpu);
7230 if (is_guest_mode(vcpu)) {
7231 WARN_ON_ONCE(vmx->nested.pml_full);
7234 * Check if PML is enabled for the nested guest.
7235 * Whether eptp bit 6 is set is already checked
7236 * as part of A/D emulation.
7238 vmcs12 = get_vmcs12(vcpu);
7239 if (!nested_cpu_has_pml(vmcs12))
7242 if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
7243 vmx->nested.pml_full = true;
7247 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS) & ~0xFFFull;
7248 dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;
7250 if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa,
7251 offset_in_page(dst), sizeof(gpa)))
7254 vmcs12->guest_pml_index--;
7260 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
7261 struct kvm_memory_slot *memslot,
7262 gfn_t offset, unsigned long mask)
7264 kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
7267 static void __pi_post_block(struct kvm_vcpu *vcpu)
7269 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
7270 struct pi_desc old, new;
7274 old.control = new.control = pi_desc->control;
7275 WARN(old.nv != POSTED_INTR_WAKEUP_VECTOR,
7276 "Wakeup handler not enabled while the VCPU is blocked\n");
7278 dest = cpu_physical_id(vcpu->cpu);
7280 if (x2apic_enabled())
7283 new.ndst = (dest << 8) & 0xFF00;
7285 /* set 'NV' to 'notification vector' */
7286 new.nv = POSTED_INTR_VECTOR;
7287 } while (cmpxchg64(&pi_desc->control, old.control,
7288 new.control) != old.control);
7290 if (!WARN_ON_ONCE(vcpu->pre_pcpu == -1)) {
7291 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7292 list_del(&vcpu->blocked_vcpu_list);
7293 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7294 vcpu->pre_pcpu = -1;
7299 * This routine does the following things for vCPU which is going
7300 * to be blocked if VT-d PI is enabled.
7301 * - Store the vCPU to the wakeup list, so when interrupts happen
7302 * we can find the right vCPU to wake up.
7303 * - Change the Posted-interrupt descriptor as below:
7304 * 'NDST' <-- vcpu->pre_pcpu
7305 * 'NV' <-- POSTED_INTR_WAKEUP_VECTOR
7306 * - If 'ON' is set during this process, which means at least one
7307 * interrupt is posted for this vCPU, we cannot block it, in
7308 * this case, return 1, otherwise, return 0.
7311 static int pi_pre_block(struct kvm_vcpu *vcpu)
7314 struct pi_desc old, new;
7315 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
7317 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
7318 !irq_remapping_cap(IRQ_POSTING_CAP) ||
7319 !kvm_vcpu_apicv_active(vcpu))
7322 WARN_ON(irqs_disabled());
7323 local_irq_disable();
7324 if (!WARN_ON_ONCE(vcpu->pre_pcpu != -1)) {
7325 vcpu->pre_pcpu = vcpu->cpu;
7326 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7327 list_add_tail(&vcpu->blocked_vcpu_list,
7328 &per_cpu(blocked_vcpu_on_cpu,
7330 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7334 old.control = new.control = pi_desc->control;
7336 WARN((pi_desc->sn == 1),
7337 "Warning: SN field of posted-interrupts "
7338 "is set before blocking\n");
7341 * Since vCPU can be preempted during this process,
7342 * vcpu->cpu could be different with pre_pcpu, we
7343 * need to set pre_pcpu as the destination of wakeup
7344 * notification event, then we can find the right vCPU
7345 * to wakeup in wakeup handler if interrupts happen
7346 * when the vCPU is in blocked state.
7348 dest = cpu_physical_id(vcpu->pre_pcpu);
7350 if (x2apic_enabled())
7353 new.ndst = (dest << 8) & 0xFF00;
7355 /* set 'NV' to 'wakeup vector' */
7356 new.nv = POSTED_INTR_WAKEUP_VECTOR;
7357 } while (cmpxchg64(&pi_desc->control, old.control,
7358 new.control) != old.control);
7360 /* We should not block the vCPU if an interrupt is posted for it. */
7361 if (pi_test_on(pi_desc) == 1)
7362 __pi_post_block(vcpu);
7365 return (vcpu->pre_pcpu == -1);
7368 static int vmx_pre_block(struct kvm_vcpu *vcpu)
7370 if (pi_pre_block(vcpu))
7373 if (kvm_lapic_hv_timer_in_use(vcpu))
7374 kvm_lapic_switch_to_sw_timer(vcpu);
7379 static void pi_post_block(struct kvm_vcpu *vcpu)
7381 if (vcpu->pre_pcpu == -1)
7384 WARN_ON(irqs_disabled());
7385 local_irq_disable();
7386 __pi_post_block(vcpu);
7390 static void vmx_post_block(struct kvm_vcpu *vcpu)
7392 if (kvm_x86_ops->set_hv_timer)
7393 kvm_lapic_switch_to_hv_timer(vcpu);
7395 pi_post_block(vcpu);
7399 * vmx_update_pi_irte - set IRTE for Posted-Interrupts
7402 * @host_irq: host irq of the interrupt
7403 * @guest_irq: gsi of the interrupt
7404 * @set: set or unset PI
7405 * returns 0 on success, < 0 on failure
7407 static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
7408 uint32_t guest_irq, bool set)
7410 struct kvm_kernel_irq_routing_entry *e;
7411 struct kvm_irq_routing_table *irq_rt;
7412 struct kvm_lapic_irq irq;
7413 struct kvm_vcpu *vcpu;
7414 struct vcpu_data vcpu_info;
7417 if (!kvm_arch_has_assigned_device(kvm) ||
7418 !irq_remapping_cap(IRQ_POSTING_CAP) ||
7419 !kvm_vcpu_apicv_active(kvm->vcpus[0]))
7422 idx = srcu_read_lock(&kvm->irq_srcu);
7423 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
7424 if (guest_irq >= irq_rt->nr_rt_entries ||
7425 hlist_empty(&irq_rt->map[guest_irq])) {
7426 pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
7427 guest_irq, irq_rt->nr_rt_entries);
7431 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
7432 if (e->type != KVM_IRQ_ROUTING_MSI)
7435 * VT-d PI cannot support posting multicast/broadcast
7436 * interrupts to a vCPU, we still use interrupt remapping
7437 * for these kind of interrupts.
7439 * For lowest-priority interrupts, we only support
7440 * those with single CPU as the destination, e.g. user
7441 * configures the interrupts via /proc/irq or uses
7442 * irqbalance to make the interrupts single-CPU.
7444 * We will support full lowest-priority interrupt later.
7446 * In addition, we can only inject generic interrupts using
7447 * the PI mechanism, refuse to route others through it.
7450 kvm_set_msi_irq(kvm, e, &irq);
7451 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu) ||
7452 !kvm_irq_is_postable(&irq)) {
7454 * Make sure the IRTE is in remapped mode if
7455 * we don't handle it in posted mode.
7457 ret = irq_set_vcpu_affinity(host_irq, NULL);
7460 "failed to back to remapped mode, irq: %u\n",
7468 vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
7469 vcpu_info.vector = irq.vector;
7471 trace_kvm_pi_irte_update(host_irq, vcpu->vcpu_id, e->gsi,
7472 vcpu_info.vector, vcpu_info.pi_desc_addr, set);
7475 ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
7477 ret = irq_set_vcpu_affinity(host_irq, NULL);
7480 printk(KERN_INFO "%s: failed to update PI IRTE\n",
7488 srcu_read_unlock(&kvm->irq_srcu, idx);
7492 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
7494 if (vcpu->arch.mcg_cap & MCG_LMCE_P)
7495 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7496 FEATURE_CONTROL_LMCE;
7498 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7499 ~FEATURE_CONTROL_LMCE;
7502 static int vmx_smi_allowed(struct kvm_vcpu *vcpu)
7504 /* we need a nested vmexit to enter SMM, postpone if run is pending */
7505 if (to_vmx(vcpu)->nested.nested_run_pending)
7510 static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
7512 struct vcpu_vmx *vmx = to_vmx(vcpu);
7514 vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
7515 if (vmx->nested.smm.guest_mode)
7516 nested_vmx_vmexit(vcpu, -1, 0, 0);
7518 vmx->nested.smm.vmxon = vmx->nested.vmxon;
7519 vmx->nested.vmxon = false;
7520 vmx_clear_hlt(vcpu);
7524 static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
7526 struct vcpu_vmx *vmx = to_vmx(vcpu);
7529 if (vmx->nested.smm.vmxon) {
7530 vmx->nested.vmxon = true;
7531 vmx->nested.smm.vmxon = false;
7534 if (vmx->nested.smm.guest_mode) {
7535 ret = nested_vmx_enter_non_root_mode(vcpu, false);
7539 vmx->nested.smm.guest_mode = false;
7544 static int enable_smi_window(struct kvm_vcpu *vcpu)
7549 static bool vmx_need_emulation_on_page_fault(struct kvm_vcpu *vcpu)
7554 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
7556 return to_vmx(vcpu)->nested.vmxon;
7559 static __init int hardware_setup(void)
7561 unsigned long host_bndcfgs;
7565 rdmsrl_safe(MSR_EFER, &host_efer);
7568 host_idt_base = dt.address;
7570 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
7571 kvm_define_shared_msr(i, vmx_msr_index[i]);
7573 if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
7576 if (boot_cpu_has(X86_FEATURE_NX))
7577 kvm_enable_efer_bits(EFER_NX);
7579 if (boot_cpu_has(X86_FEATURE_MPX)) {
7580 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
7581 WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
7584 if (boot_cpu_has(X86_FEATURE_XSAVES))
7585 rdmsrl(MSR_IA32_XSS, host_xss);
7587 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
7588 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
7591 if (!cpu_has_vmx_ept() ||
7592 !cpu_has_vmx_ept_4levels() ||
7593 !cpu_has_vmx_ept_mt_wb() ||
7594 !cpu_has_vmx_invept_global())
7597 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
7598 enable_ept_ad_bits = 0;
7600 if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
7601 enable_unrestricted_guest = 0;
7603 if (!cpu_has_vmx_flexpriority())
7604 flexpriority_enabled = 0;
7606 if (!cpu_has_virtual_nmis())
7610 * set_apic_access_page_addr() is used to reload apic access
7611 * page upon invalidation. No need to do anything if not
7612 * using the APIC_ACCESS_ADDR VMCS field.
7614 if (!flexpriority_enabled)
7615 kvm_x86_ops->set_apic_access_page_addr = NULL;
7617 if (!cpu_has_vmx_tpr_shadow())
7618 kvm_x86_ops->update_cr8_intercept = NULL;
7620 if (enable_ept && !cpu_has_vmx_ept_2m_page())
7621 kvm_disable_largepages();
7623 #if IS_ENABLED(CONFIG_HYPERV)
7624 if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
7626 kvm_x86_ops->tlb_remote_flush = hv_remote_flush_tlb;
7627 kvm_x86_ops->tlb_remote_flush_with_range =
7628 hv_remote_flush_tlb_with_range;
7632 if (!cpu_has_vmx_ple()) {
7635 ple_window_grow = 0;
7637 ple_window_shrink = 0;
7640 if (!cpu_has_vmx_apicv()) {
7642 kvm_x86_ops->sync_pir_to_irr = NULL;
7645 if (cpu_has_vmx_tsc_scaling()) {
7646 kvm_has_tsc_control = true;
7647 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
7648 kvm_tsc_scaling_ratio_frac_bits = 48;
7651 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7659 * Only enable PML when hardware supports PML feature, and both EPT
7660 * and EPT A/D bit features are enabled -- PML depends on them to work.
7662 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
7666 kvm_x86_ops->slot_enable_log_dirty = NULL;
7667 kvm_x86_ops->slot_disable_log_dirty = NULL;
7668 kvm_x86_ops->flush_log_dirty = NULL;
7669 kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
7672 if (!cpu_has_vmx_preemption_timer())
7673 enable_preemption_timer = false;
7675 if (enable_preemption_timer) {
7676 u64 use_timer_freq = 5000ULL * 1000 * 1000;
7679 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
7680 cpu_preemption_timer_multi =
7681 vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
7684 use_timer_freq = (u64)tsc_khz * 1000;
7685 use_timer_freq >>= cpu_preemption_timer_multi;
7688 * KVM "disables" the preemption timer by setting it to its max
7689 * value. Don't use the timer if it might cause spurious exits
7690 * at a rate faster than 0.1 Hz (of uninterrupted guest time).
7692 if (use_timer_freq > 0xffffffffu / 10)
7693 enable_preemption_timer = false;
7696 if (!enable_preemption_timer) {
7697 kvm_x86_ops->set_hv_timer = NULL;
7698 kvm_x86_ops->cancel_hv_timer = NULL;
7699 kvm_x86_ops->request_immediate_exit = __kvm_request_immediate_exit;
7702 kvm_set_posted_intr_wakeup_handler(wakeup_handler);
7704 kvm_mce_cap_supported |= MCG_LMCE_P;
7706 if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
7708 if (!enable_ept || !cpu_has_vmx_intel_pt())
7709 pt_mode = PT_MODE_SYSTEM;
7712 nested_vmx_setup_ctls_msrs(&vmcs_config.nested,
7713 vmx_capability.ept, enable_apicv);
7715 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
7720 r = alloc_kvm_area();
7722 nested_vmx_hardware_unsetup();
7726 static __exit void hardware_unsetup(void)
7729 nested_vmx_hardware_unsetup();
7734 static struct kvm_x86_ops vmx_x86_ops __ro_after_init = {
7735 .cpu_has_kvm_support = cpu_has_kvm_support,
7736 .disabled_by_bios = vmx_disabled_by_bios,
7737 .hardware_setup = hardware_setup,
7738 .hardware_unsetup = hardware_unsetup,
7739 .check_processor_compatibility = vmx_check_processor_compat,
7740 .hardware_enable = hardware_enable,
7741 .hardware_disable = hardware_disable,
7742 .cpu_has_accelerated_tpr = report_flexpriority,
7743 .has_emulated_msr = vmx_has_emulated_msr,
7745 .vm_init = vmx_vm_init,
7746 .vm_alloc = vmx_vm_alloc,
7747 .vm_free = vmx_vm_free,
7749 .vcpu_create = vmx_create_vcpu,
7750 .vcpu_free = vmx_free_vcpu,
7751 .vcpu_reset = vmx_vcpu_reset,
7753 .prepare_guest_switch = vmx_prepare_switch_to_guest,
7754 .vcpu_load = vmx_vcpu_load,
7755 .vcpu_put = vmx_vcpu_put,
7757 .update_bp_intercept = update_exception_bitmap,
7758 .get_msr_feature = vmx_get_msr_feature,
7759 .get_msr = vmx_get_msr,
7760 .set_msr = vmx_set_msr,
7761 .get_segment_base = vmx_get_segment_base,
7762 .get_segment = vmx_get_segment,
7763 .set_segment = vmx_set_segment,
7764 .get_cpl = vmx_get_cpl,
7765 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
7766 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
7767 .decache_cr3 = vmx_decache_cr3,
7768 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
7769 .set_cr0 = vmx_set_cr0,
7770 .set_cr3 = vmx_set_cr3,
7771 .set_cr4 = vmx_set_cr4,
7772 .set_efer = vmx_set_efer,
7773 .get_idt = vmx_get_idt,
7774 .set_idt = vmx_set_idt,
7775 .get_gdt = vmx_get_gdt,
7776 .set_gdt = vmx_set_gdt,
7777 .get_dr6 = vmx_get_dr6,
7778 .set_dr6 = vmx_set_dr6,
7779 .set_dr7 = vmx_set_dr7,
7780 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
7781 .cache_reg = vmx_cache_reg,
7782 .get_rflags = vmx_get_rflags,
7783 .set_rflags = vmx_set_rflags,
7785 .tlb_flush = vmx_flush_tlb,
7786 .tlb_flush_gva = vmx_flush_tlb_gva,
7788 .run = vmx_vcpu_run,
7789 .handle_exit = vmx_handle_exit,
7790 .skip_emulated_instruction = skip_emulated_instruction,
7791 .set_interrupt_shadow = vmx_set_interrupt_shadow,
7792 .get_interrupt_shadow = vmx_get_interrupt_shadow,
7793 .patch_hypercall = vmx_patch_hypercall,
7794 .set_irq = vmx_inject_irq,
7795 .set_nmi = vmx_inject_nmi,
7796 .queue_exception = vmx_queue_exception,
7797 .cancel_injection = vmx_cancel_injection,
7798 .interrupt_allowed = vmx_interrupt_allowed,
7799 .nmi_allowed = vmx_nmi_allowed,
7800 .get_nmi_mask = vmx_get_nmi_mask,
7801 .set_nmi_mask = vmx_set_nmi_mask,
7802 .enable_nmi_window = enable_nmi_window,
7803 .enable_irq_window = enable_irq_window,
7804 .update_cr8_intercept = update_cr8_intercept,
7805 .set_virtual_apic_mode = vmx_set_virtual_apic_mode,
7806 .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
7807 .get_enable_apicv = vmx_get_enable_apicv,
7808 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
7809 .load_eoi_exitmap = vmx_load_eoi_exitmap,
7810 .apicv_post_state_restore = vmx_apicv_post_state_restore,
7811 .hwapic_irr_update = vmx_hwapic_irr_update,
7812 .hwapic_isr_update = vmx_hwapic_isr_update,
7813 .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
7814 .sync_pir_to_irr = vmx_sync_pir_to_irr,
7815 .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
7816 .dy_apicv_has_pending_interrupt = vmx_dy_apicv_has_pending_interrupt,
7818 .set_tss_addr = vmx_set_tss_addr,
7819 .set_identity_map_addr = vmx_set_identity_map_addr,
7820 .get_tdp_level = get_ept_level,
7821 .get_mt_mask = vmx_get_mt_mask,
7823 .get_exit_info = vmx_get_exit_info,
7825 .get_lpage_level = vmx_get_lpage_level,
7827 .cpuid_update = vmx_cpuid_update,
7829 .rdtscp_supported = vmx_rdtscp_supported,
7830 .invpcid_supported = vmx_invpcid_supported,
7832 .set_supported_cpuid = vmx_set_supported_cpuid,
7834 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7836 .read_l1_tsc_offset = vmx_read_l1_tsc_offset,
7837 .write_l1_tsc_offset = vmx_write_l1_tsc_offset,
7839 .set_tdp_cr3 = vmx_set_cr3,
7841 .check_intercept = vmx_check_intercept,
7842 .handle_exit_irqoff = vmx_handle_exit_irqoff,
7843 .mpx_supported = vmx_mpx_supported,
7844 .xsaves_supported = vmx_xsaves_supported,
7845 .umip_emulated = vmx_umip_emulated,
7846 .pt_supported = vmx_pt_supported,
7848 .request_immediate_exit = vmx_request_immediate_exit,
7850 .sched_in = vmx_sched_in,
7852 .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
7853 .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
7854 .flush_log_dirty = vmx_flush_log_dirty,
7855 .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
7856 .write_log_dirty = vmx_write_pml_buffer,
7858 .pre_block = vmx_pre_block,
7859 .post_block = vmx_post_block,
7861 .pmu_ops = &intel_pmu_ops,
7863 .update_pi_irte = vmx_update_pi_irte,
7865 #ifdef CONFIG_X86_64
7866 .set_hv_timer = vmx_set_hv_timer,
7867 .cancel_hv_timer = vmx_cancel_hv_timer,
7870 .setup_mce = vmx_setup_mce,
7872 .smi_allowed = vmx_smi_allowed,
7873 .pre_enter_smm = vmx_pre_enter_smm,
7874 .pre_leave_smm = vmx_pre_leave_smm,
7875 .enable_smi_window = enable_smi_window,
7877 .check_nested_events = NULL,
7878 .get_nested_state = NULL,
7879 .set_nested_state = NULL,
7880 .get_vmcs12_pages = NULL,
7881 .nested_enable_evmcs = NULL,
7882 .nested_get_evmcs_version = NULL,
7883 .need_emulation_on_page_fault = vmx_need_emulation_on_page_fault,
7884 .apic_init_signal_blocked = vmx_apic_init_signal_blocked,
7887 static void vmx_cleanup_l1d_flush(void)
7889 if (vmx_l1d_flush_pages) {
7890 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
7891 vmx_l1d_flush_pages = NULL;
7893 /* Restore state so sysfs ignores VMX */
7894 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
7897 static void vmx_exit(void)
7899 #ifdef CONFIG_KEXEC_CORE
7900 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
7906 #if IS_ENABLED(CONFIG_HYPERV)
7907 if (static_branch_unlikely(&enable_evmcs)) {
7909 struct hv_vp_assist_page *vp_ap;
7911 * Reset everything to support using non-enlightened VMCS
7912 * access later (e.g. when we reload the module with
7913 * enlightened_vmcs=0)
7915 for_each_online_cpu(cpu) {
7916 vp_ap = hv_get_vp_assist_page(cpu);
7921 vp_ap->nested_control.features.directhypercall = 0;
7922 vp_ap->current_nested_vmcs = 0;
7923 vp_ap->enlighten_vmentry = 0;
7926 static_branch_disable(&enable_evmcs);
7929 vmx_cleanup_l1d_flush();
7931 module_exit(vmx_exit);
7933 static int __init vmx_init(void)
7937 #if IS_ENABLED(CONFIG_HYPERV)
7939 * Enlightened VMCS usage should be recommended and the host needs
7940 * to support eVMCS v1 or above. We can also disable eVMCS support
7941 * with module parameter.
7943 if (enlightened_vmcs &&
7944 ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
7945 (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
7946 KVM_EVMCS_VERSION) {
7949 /* Check that we have assist pages on all online CPUs */
7950 for_each_online_cpu(cpu) {
7951 if (!hv_get_vp_assist_page(cpu)) {
7952 enlightened_vmcs = false;
7957 if (enlightened_vmcs) {
7958 pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
7959 static_branch_enable(&enable_evmcs);
7962 if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
7963 vmx_x86_ops.enable_direct_tlbflush
7964 = hv_enable_direct_tlbflush;
7967 enlightened_vmcs = false;
7971 r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
7972 __alignof__(struct vcpu_vmx), THIS_MODULE);
7977 * Must be called after kvm_init() so enable_ept is properly set
7978 * up. Hand the parameter mitigation value in which was stored in
7979 * the pre module init parser. If no parameter was given, it will
7980 * contain 'auto' which will be turned into the default 'cond'
7983 r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
7989 #ifdef CONFIG_KEXEC_CORE
7990 rcu_assign_pointer(crash_vmclear_loaded_vmcss,
7991 crash_vmclear_local_loaded_vmcss);
7993 vmx_check_vmcs12_offsets();
7997 module_init(vmx_init);